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Thesis Summary

Transcranial magnetic stimulation procedures use a magnetic field to carry a short-lasting elec-
trical current pulse into the brain, where it stimulates neurons, particularly in superficial regions
of the cerebral cortex. It is a powerfull tool to calculate several parameters related to the intra-
cortical excitability and inhibition of the motor cortex. The cortical silent period (CSP), evoked
by magnetic stimulation, corresponds to the suppression of muscle activity for a short period af-
ter a muscle response to a magnetic stimulation. The duration of the CSP is paramount to assess
intracortical inhibition, and it is known to be correlated with the prognosis of stroke patients’
motor ability. Current mechanisms to estimate the duration of the CSP are mostly based on the
analysis of raw electromyographical (EMG) signal and they are very sensitive to the presence of
noise.

This master thesis is devoted to the analysis of the EMG signal of stroke patients under reha-
bilitation. The use of advanced statistical machine learning techniques that behave robustly in
the presence of noise for this analysis allows us to accurately estimate signal parameters such
as the CSP. The research reported in this thesis provides us with a first evidence about their
applicability in other areas of neuroscience.

Keywords: Electromiography, Stroke ,Variational Bayesian Generative Topographic Mapping,

Index of Variability, Silent Period.
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stroke patients. My gratitude extends to Nóra Schulcz, for her personal supporting during the

redaction of this master thesis.

I acknowledge the economic support of La Marató de TV3 in our project Musical Supported
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Chapter 1

Introduction

1.1 Introduction and Motivation

Recent years have witnessed an unprecedented assault on one of the most ambitious goals of
contemporary science: the evidence-based investigation of the workings of large-scale natural
neural networks, or, in other words, the workings of of the human brain.

Computational neuroscience has become on the key columns of this intensely multi-disciplinary
research effort that gathers its strength from fields as diverse as systems biology, genetics, bioin-
formatics, signal processing, artificial intelligence, and psychology.

The area of cognitive neuroscience is benefiting from the use of the most technologically ad-
vanced tools developed within each of these fields, with the purpose of unraveling high-level
cognitive processes. The data acquired with some of these tools has become complex enough
as to require advanced data analysis techniques with capabilities beyond those of traditional
statistics.

Physiological data usually have a strong component of noise that must be processed using robust
procedures in order to extract usable knowledge from them. This is the case both for the purpose
of research and for routine medical practice. In electromiographical (EMG) recordings, the
electrical activity of motor neurons is recorded from the skin surface above the muscle, and not
at the muscle itself, in order to avoid unnecessary discomfort in the analyzed subject. Also,
in electroencephalography data recordings (EEG), external electrodes are used to register the
electrical activity of the brain from the skin of the scalp, due the obvious difficulties that an
intracranial recording would imply.

The amount of noise in the recorded data is not only related to the limitations of the data ac-
quisition techniques, but also, importantly, to the conditions in which these data are acquired.
Neurophysiological data are very sensible to motion. EEG recordings, for instance, are sensi-
ble to eye blinking, causing large artifacts on the register and rendering the data useless in that
time-window. EMG recordings are very sensible to muscle activation, and it is very important
to maintain the muscle in a state of relaxation during data collection.

In clinical research, the majority of subjects participating in studies are patients affected by a
given pathology. This often makes data acquisition, processing, and analysis rather difficult
undertakings. For the reasons outlined above, physiological data in general and EMG data,
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Chapter 1. Introduction 2

which are the concern of this thesis, in particular, would benefit from the development and use
of data analysis models that behaved robustly in the presence of noise.

This thesis contributes in a sensitive area of neuroscience, in the frontier with clinical medicine:
the rehabilitation of patients affected by stroke. A brain stroke is the rapidly developing loss
of brain functions due to disturbance in the blood supply to the brain. This may cause the
large-scale death of neuron populations located in the area where the blood disturbance affects.

Depending on this location, different symptoms and conditions will occur. For example, if stroke
affects occipital region of the brain, there is a high probability of loss of visual skills. Because
of the topology of the pyramidal tract (fibers of neurons related with motor skills), the majority
of stroke patients suffer motor disabilities on the body side contralateral to the lesion side on
the brain. The improvement of such skills depends on the rehabilitation performed in the acute
phase of stroke (under 6 months after stroke).

In this period, many brain mechanisms are activated to replace the loss of the affected functions,
such as motor impairments. The onset of these different mechanisms is called plasticity. Ba-
sically, plasticity is the ability of the brain to change, modify and modulate itself structurally
and functionally, in order to adapt to contextual novelties. Many studies of plasticity in stroke
patients show that there exist correlations between brain parameters and the prognosis of the
patient (i.e., the prediction of the function recovery after acute stroke phase). These parameters
are related to neuropsychological tests and brain stimulation results.

Transcranial Magnetic Stimulation (TMS) is a non-invasive method used to excite the elemen-
tary unit of the nervous system: neurons. Using a coil attached to special capacitor, weak electric
currents are induced in the tissue by rapidly changing magnetic fields (electromagnetic induc-
tion). This way, brain activity can be triggered with minimal discomfort, and the functionality
of the circuitry and connectivity of the brain can be studied. Many applications of cortical stim-
ulation has been explored. For example, TMS was applied to understand how the visual cortex
works in blind people in relation with memory, demonstrating that this visual cortex has an im-
portant role in working memory processing, as compared with non-blind subjects [70]. TMS
has also been applied to patients affected by depression. It has been demonstrated that repetitive
application of magnetic pulses on frontal lobe regions leads to an important improvement in the
mood of patients with anxiety and emotional disorders [58]

This technique has its more obvious application in motor cortex analysis. The motor cortex has
been studied in depth with brain stimulation (over 3,200 published articles since the 80’s in U.S.
National Library of Medicine, NIH). For a large part of these publications, The EMG recording
was used to register the signal of the corresponding muscle activation. Through this signal,
many excitatory (like the amplitude of the signal muscle potential) and inhibitory parameters
can be studied.

One of the most important inhibitory parameters is the Cortical Silent Period (CSP) [65]. The
CSP is a refractory period in the EMG signal after motor cortex stimulation with voluntary pre-
activation of the target muscle, showing both cortical and spinal cord inhibition. The duration
of this de-activation interval is an important parameter in neurophysiology. More specifically, in
stroke rehabilitation, many studies have demonstrated that the CSP shortens during the recovery
of the affected limbs, being a reliable indicator of therapeutic progress [46, 47]. EMG recordings
of stroke patients are often difficult in both acute and chronic patients. In particular, the EMG
signal recording from stroke patients is fraught with difficulties that become explicit in the form
of a CSP measurement protocol. In this protocol, it is critical to ensure that the patient is able
to sustain a stable voluntary contraction of the muscle, even when the TMS pulse is performed,
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in order to obtain a reliable EMG post-CSP contraction signal and, with this, the offset of the
silent period. Some stroke patients have great difficulty in maintaining the muscle contraction
in any stable way. The result is that some spurious low-amplitude EMG signal appears during
the CSP.

The existing CSP measuring methods in common use are yet imprecise and known to yield a
significant error due to their sensitivity to noise, which is commonplace in this kind of data.
This is a call for the development of EMG signal analysis methods that behaved robustly in the
presence of these data and, specifically, methods for the robust estimation of the CSP in EMG
recordings. The current thesis is a response to such call.

For this, we resort in this thesis to a manifold-constrained Hidden Markov Model, which for-
mulation within a variational Bayesian framework imbues it with regularization properties that
minimize the negative effect of the presence of noise in the EMG multivariate times series. A
novel index of variability is defined for this model, and it is shown that it is capable to estimate
the duration of the CSP by accurately pinpointing its offset time.

The remaining of this master thesis is structured into five chapters, as follows:

• Chapter 1 It describes the principles and applications of Transcranial Magnetic Stimula-
tion, through a historical and technical approach. It also introduces the concept of induced
inhibition with magnetic stimulation and provides a precise description of the silent pe-
riod.

• Chapter 2 This chapter aims to summarily introduce the a medical background and the-
oretical principles of brain stroke, describing typology, symptoms and conditions. The
biological basis and principles of neuro-rehabilitation and plasticity are introduced, which
are basic to understand the improvement mechanisms of the brain.

• Chapter 3 It provides a description of the machine learning technique proposed for the ro-
bust estimation of the CSP duration. The Generative Topographic Mapping (GTM) tech-
nique, and its principled extension, Generative Topographic Map Through Time (GTM-
TT) are described. The latter is suited to deal with the unsupervised analysis of multivari-
ate time series.

• Chapter 4 The theoretical approach described in chapter 3 is used in a battery of ex-
periments with artificial data and real EMG signal corresponding to human controls and
stroke patients.

• Chapter 5 concludes the master thesis with a summary of its main contributions. Further-
more, a discussion on future directions, as well as of open research questions, is summar-
ily outlined.



Chapter 2

Medical Background

2.1 Medical Background: Stroke and Neorological Basis of Reha-
bilitation

2.1.1 Brain Stroke

A stroke is the rapidly developing loss of brain functions due to disturbance in the blood supply
to the brain. This can be due to ischemia, which is a lack of glucose and oxigen supply caused
by thrombosis or embolism (Fig. 2.1), or due to a hemorrhage, which is a huge loss of blood
because of a stroke in a vessel. In any case, as a result, the affected area of the brain is unable
to function, leading to inability to move one or more limbs on one side of the body; cognitive
impairing such inability to understand or formulate speech (aphasia); or inability to perceive
one side of the visual field (homonymous hemianopsia).

Stroke can cause permanent neurological damage, complications and even death. It is in fact the
leading cause of adult disability in the developed countries. In an ischemic stroke, blood supply
to part of the brain is decreased, leading to dysfunction of the brain tissue in that area. There are
three reasons why this might happen:

• Thrombosis, which is the obstruction of a blood vessel by a blood clod forming locally
(Fig 2.2).

• Embolism, which is the obstruction due to an embolus from elsewhere in the body.

• Systemic hypoperfusion, a generic decrease in blood supply.

Usually, symptoms occur suddenly and are often most severe a few minutes after they start,
because most ischemic strokes begin suddenly, develop rapidly, and cause death of brain tissue
within minutes to hours [48]. After the initial period, most strokes become stable, causing little
or no further damage. Strokes that remain stable for 2 to 3 days are called completed strokes.
Sudden blockage by an embolus is most likely to cause this kind of stroke.

Many different symptoms can occur, depending to a great extent on which artery is blocked and,
thus, on which part of the brain is deprived of blood and oxygen. For example, damage to the
frontal lobes causes loss of the ability to solve problems, plan actions and the fluency of speech

4



Chapter 2. Medical Background 5

FIGURE 2.1: Structural magnetic resonance image of a ischemic stroke (arrow), located on
right tempo-parietal area.

is significantly reduced. Also, fronto-central damage causes loss of the motor ability and control
of the contralesional side of the body, producing a level of hemiparesis which depends on the
lesion.

Prognosis, a medical term to describe the likely outcome of an illness, is a very important issue
in the treatment of stroke patients. About 10% of people who have an ischemic stroke recover
almost all normal function, and about 25% recover most of it. About 40% of people have
moderate to severe impairments requiring special care, and about 10% require care in a nursing
home or other long-term care facility. During the first few days after an ischemic stroke, doctors
usually cannot predict whether a person will improve or worsen. Younger people and people
who start improving quickly are likely to recover more fully. About 50% of people with one-
sided paralysis and most of those with less severe symptoms recover some function by the time
they leave the hospital, and they can eventually take care of their basic needs. They can think
clearly and walk adequately, although use of the affected arm or leg may be limited. Use of an
arm is more often limited than use of a leg. Most of the impairments that remain after 12 months
become permanent.

2.1.2 Rehabilitation after Stroke

Disability associated with hemiplegia of hemiparesis markedly limits independent living and
social participation in at lest half of all stroke survivors [24]. Reduced levels of exercise and
daily activity as a consequence of disability can increase risk factors for recurrent stroke and
associated cardiovascular disease.
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FIGURE 2.2: Anatomical diagram of stroke. Thrombosis, the obstruction of a blood vessed by
blood clod, it is one of the most common causes of brain stroke.

Within several days after the onset of a stroke, clinicians can begin to promote functional recov-
ery in their patients. It should be possible to tap into fundamental cellular and molecular events
associated with injury in an attempt to lessen impairments, such as the weakness and loss of
coordination resulting from hemiparesis, and disabilities, such as limitations in the use of the
affected upper extremity for self care, or slow and unsafe ambulation.

In this section, we will describe the fundamental basis of neuro-rehabilitation and some exam-
ples of task-oriented practice to improve motor skills.

2.1.2.1 Basic mechanisms of neuroplasticity

Initial motor gains after stroke might result from the resolution of reversible injuries to neurons
and glia, such as alterations in membrane potentials, axon conduction or neurotransmission. Re-
organization of spared assemblies of neurons that represent motor actions within the sensorimo-
tor cortex, as well as in transcortical, ascending and descending pathways, seems to accompany
further improvements in motor skills [24].

Contributions from more widely distributed cortical and subcortical regions, including cerebral
systems for perception, attention, motivation, executive planning, working memory, as well as
explicit and implicit learning, might be required to compensate for strategies that the injured
brain can no longer support. The ability to strengthen muscles and reach an appropriate level of
cardiovascular fitness also depends on these non-motor systems.
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Adaptability of the building blocks of the movement

The skeletomotor system in humans includes at least seven separate descending corticospinal
tract pathways. These tracts seem to rely heavily on intrinsic pattern generators and motor
primitives organized within the motor pools of the spinal cord [14]. Spinal systems provide
automatic movements across joints alternating flexion and extension of the limbs of stepping.
Lesions on these pathways cause loss of movement patterns, along with weakness, fatigability
when performing repetitive movements, specially of the elbow, wrist and fingers for reaching
and grasping.

Collections of neurons that innervate the spinal motor neurons of a singe muscle intermingle
with those that innervate other muscle across one or more joins. This organization allows neu-
rons that innervate different muscle to learn new and fine movement pattern across together,
bound by Hebbian long-term potentiation, and other mechanisms that determine synaptic effi-
cacy [49]. This redundancy created by overlapping supra-spinal descending projections can be
used to re-learn a movement pattern when some of primary motor cortex or the cortico-spinal
pathway has been infarcted. If enough of their pathways have been spared, other parts of the dis-
tributed cortical and subcortical sensorimotor system can be recruited to drive the motor pools
in the spinal cord. Moreover, uncrossed fibers of the corticospinal tract and axons that recross
might provide input that can partially compensate for the loss of motor pathway function.

If an adequate residual percentage of ascending sensory and descending motor contributions are
present, carefully chosen pro-active paradigms might enable adequate reaching and grasping
with the hand, and walking.

Biological changes

In some animal models of stroke, M1 and related motor cortices and the spinal cord evolve
robust changes in their structure and function in response to specific types of motor training.
Skills training induces synaptogenesis (creation of new synaptic connections), synaptic potenti-
ation and reorganization of movement representations within the motor cortex. This plasticity
supports the production and refinement of skilled movement sequences. Strength training, by
contrast, can alter the excitability of spinal motor neurons and induce synaptogenesis within the
spinal cord, but does not alter the organization of the motor map, i.e., can induce subcortical but
not cortical changes [1]

Experimental studies indicate that the biological changes associated with practice-induced plas-
ticity are molecular (e.g.,changes in gene transcription, protein regulation or neurotrasmitter
release), morphological (e.g, growth of dentritic spines associated with long-term potentiation
at synapses), and physiological (e.g., excitation and inhibition among assemblies of neurons).
It has been proved in caged rodents that exercise leads to changes in gene expression, includ-
ing upregulation or downregulation of genes encoding molecules associated with learning and
memory, and also to neurogenesis. [72]

The biological responses to exercise in patients might be less pronounced than those in rela-
tively experience-deprived, genetically homogeneous laboratory animals [25]. Responses are
also likely to depend on how long after stroke the exercise is initiated, the amount of exercise
administered, and the duration and type of the task practiced by a patients.
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2.1.2.2 Task-oriented practice for skills improvement: Music in rehabilitation

In terms of improving daily functioning, task-specific training seems to benefit stroke patients
more than general exercise does (as it does in healthy subjects who wish to learn a new mo-
tor skill). One of the problems in demonstrating the specific effects in practice of any given
task across rehabilitation trials has been the low intensity of training, which might limit the ro-
bustness of outcomes [43]. In addition, responsiveness to training has been observed mostly
in patients who have retained reasonable motor control, such as being able to at least partially
extend the wrist and fingers or flex the hip and extend the knee of the hemiparetic side.

However, effectiveness of classical approaches in rehabilitation methods, such as rehabilitation
based in repetitive manipulation of objects and movement training of the affected side, has been
found to be quite limited[63]. As a result, a need for efficient motor rehabilitation approaches
still remains.

Relatively new concepts and knowledge about plasticity have become the key for this research
on new rehabilitation methods. For example, constraint-induced therapy, which consist on the
use of the impaired extremity while immobilizing the healthy extremity for several hours per
day, has been shown to lead to functional reorganization. This has been demonstrated by TMS
and PET (Positron Emision Tomography). Further studies show that plastic reorganization of
neuronal networks may play an important role in recovery after brain injuries, ischemic lesions
after stroke, or degeneration processes.

In this field, animal studies have shown that cortical plasticity is increased by the behavioral rele-
vance of the stimulation and its motivational value. Previous studies have shown very rapid plas-
tic adaptation due to music performance which is not restricted to cortical motor areas but also
involves auditory and integrative auditory-sensorimotor circuits [51]. Also, because of the hight
motivational value of music, and in light of the aforementioned studies on auditory-sensiromotor
coupling, many studies are designed entailing active music made in the rehabilitation of stroke
patients [60].

Strokes are known to lead to an impairment of propioceptive feedback information, and it has
been suggested in many studies that propioceptive reafferences play an important role in updat-
ing the internal representations during movement. Other studies have suggested that movement
errors committed by moderately to severely hemiparetic patients were due to impaired inter-
pretation of propioceptive information concerning limb position [2, 3]. Therefore, auditory
feedback, may serve to counteract this deficit, while standard occupational and physiotherapy
approaches use either unspecific sensory stimulation that does not require focussed attention
or discriminative effort, or provide only global feedback as to whether or not a movement is
achieved.

2.1.3 Transcranial Magnetic Stimulation and Stroke

Ischemic Stroke frequently leads to impairment of upper limb motor function, after which a
variable degree of motor recovery is seen [71]. Functional Imaging in humans and physiologic
observations in animal models [37] suggest than recovery of function is associated with exten-
sive reorganization of the motor system at the cortical level, presumably to maximize control
of remaining motor output. TMS has also been used in human stroke patients to probe corti-
cospinal and intra-cortical physiology. For example, reduced corticospinal excitability from the
affected hemisphere reflects damage to the corticospinal connection [16] (See Fig.2.4); whereas
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increases in intra-cortical excitability on both hemispheres [45] reflect changes in intrinsic cir-
cuits of the cortex.

FIGURE 2.3: Silent period produced by single transcranial magnetic stimulation (TMS) in one
patient. (A) TMS in the affected hemisphere; (B) TMS in the unaffected hemispheres. In each

trace, 5 recordings are superimposed.

The CSP is also prolonged in patients when the affected hemisphere is stimulated, showing that
cortical disinhibition on the unaffected side may occur simultaneously with an enhanced cortical
inhibition on the affected side (See Fig.2.3).

Importantly for the purpose of this thesis, the CSP can be used as a prognostic parameter after
stroke, and as a means to gauge the effectiveness of rehabilitation. The duration of the silent
period in a normal individual depends mainly on the stimulation intensity, while the level of
background contraction is of less importance [57]

Most reports seem to agree that the threshold for evoking a Silent Period is relatively stable in
patients, especially if expressed as relative to motor threshold intensities. However, the duration
of the Silent Period is prolonged, at least in the acute phase os the affected site. Traversa et al.
([68]), showed that the Silent Period shortens during recovery and there is some suggestion that
the amount of such shortening correlates with the recovery of hand function[20]. More recent
studies support this correlation as a good prognostic indicator and, thus, as a good indicator of
the capabilities of the therapy [27, 28]. However, this shortening of the Silent Period is strongly
dependent on the type of therapy chosen.
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FIGURE 2.4: Three-dimensional map of the representation of the extensor digitorum communis
(EDC) muscle after stimulation of a patient who, 6 months previously, had an infarct on the
left internal capsule. The map was made before (top row) and after (bottom row) 3 weeks of
constraining-induced movement therapy. The x-y grid represents the surface of contralateral
scalp, divided into 1-cm squares. The height of each bar indicates the mean EMG response (in

microvolts).



Chapter 3

Transcranial Magnetic Stimulation

3.1 Principles of Transcranial Magnetic Stimulation

3.1.1 Introduction

Over the last decade, Transcranial Magnetic Stimulation (TMS) has become one of the most
commonly used neuroscience techniques to study the workings of the brain. Differently to the
other classical neuroimaging techniques, such that EEG, fMRI, PET, MEG and so on, TMS
allows neuroscientists to directly stimulate the brain safely without producing any discomfort to
the patient.

The study of the circuitry in the brain has come a long way since the 19th century, when Santi-
ago Ramon y Cajal discovered how the cells in the nervous system were connected, providing
detailed descriptions of cell types associated with neural structures and producing excellent
depictions of neural structures and their connectivity (See Figure 3.1). This so called neuron
doctrine stems from the fundamental idea that the nervous system is made of discrete individ-
ual cells called neurons [62]. These neurons communicate with one another by means of long
protoplasmic fibers called axons, which carry trains of signal pulses called action potentials to
distant parts of the brain or body and target them to specific recipient cells.

The brain as a whole can be extremely complex. The cerebral cortex, the most external layer of
the human brain, contains roughly around 15-33 billions of neurons [56], linked by up to 10.000
synaptic connections each. The communication between neurons is conveyed through chemical
signals by so-called neurotransmitters. Depending on which neurotransmitter the neuron is spe-
cialized, neurons can be excitatory or inhibitory. These features make the brain a device guided
by nonlinear relations, in computational terms. For example, noradrenaline and acetilcoline are
neurotransmitters of excitatory neurons, whereas gamma-aminobutiric acid is a neurotransmitter
of inhibitory neurons.

Transcranial magnetic stimulation provides a way to change the excitability at circuitry level.
For example, if a population of neurons is not activated, a magnetic pulse generates an electrical
field capable of activating the default state neurons. Otherwise, if a populations of neurons
presents sustained activity, then the magnetic pulse will cause a disruption on such activity
by activation of inhibitory circuits [33]. So then, TMS can be used to study and explain the
complexity of natural neural networks.

11
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FIGURE 3.1: Drawing of Purkinje cells (A) and granule cells (B) from pigeon cerebellum by
Santiago Ramon y Cajal, 1899. Instituto Santiago Ramon y Cajal, Madrid, Spain.

This chapter is divided into four sections. The first one aims to provide some historical back-
ground of brain stimulation. The second section describes the theory and technical issues of
TMS, focusing on physical principles and devices. The third one outlines one of the most widely
studied applications of TMS, which is motor cortex stimulation. Finally, the fourth section con-
cludes with a brief introduction about the cortical silent period, describing the physiology of this
motor inhibition parameter, of central interest to the current thesis.

3.1.2 Historical Introduction to Brain Stimulation

In the first half of the 19th century, it was generally believed that there was no localization of
function within the cerebral cortex. During the 1860s this view was challenged by the clinical
observations of Brocca on patients with left frontal lesions and disturbances of language, and
those of Hughlings Jackson on patients with focal seizures. These observations pointed to the
possibility that different activities were localized in different parts of the brain. In particular,
Jackson’s observation on what are now known as Jacksonian seizures, led him to conclude that
event within motor areas of the brain, different parts of the body were mapped into different
anatomical areas. In this way, he could explain the spread of a seizure which began in the
fingers and the progressed to the upper arm, and shoulder and then to the face and trunk.

These speculations were later confirmed by the experiments of Fritsch and Hitzig ([29]), and
by Ferrier ([26]). Fritsch and Hitzig applied galvanic (direct current) stimulation to the cortex
through a pair of electrodes placed 2-3 mm apart at an intensity sufficient to evoke a sensation
when applied to the experimenter’s tongue. This type of stimulation produced brief muscle
twitches on the contralateral side of the body. The area from which the twitches could be evoked
was a relatively circumscribed zone in the frontal part of the dog’s brain. Ferrier also confirmed
the localization of the motor areas of the brain, and also noted that different parts of the body
were represented in different areas of the motor strip. He used galvanic and faradic (alternating
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current stimulation at 30-40 Hz) stimulation, and commented that the latter produced more
prolonged movement than the brief twitches elicited by galvanic stimuli.

In 1874, Bathlolow delivered the first description of the electrical excitability of the human
cortex [6] . The observation that motor responses could be elicited by direct stimulation of
the brain of man was subsequently reconfirmed by several neurosurgeons around the turn of the
century. Despite these advances made by neurosurgeons, no method of brain stimulation through
the intact skull in normal, behaving subjects, was until recently available. Several attempts were
made in the 1950s and most were unsuccessful. Only one report claimed to have achieved
transcraneal stimulation in man Gualtierotti and Paterson ([32]) used bipolar stimulation with
trains of electrical pulses lasting for up to 40s, delivered through electrodes held in place by
rubber bands. They reported movements of the contralateral hand and arm which were tonic
in nature and persisted throughout the period of stimulation. Because this form of repeated
stimulation was rather painful it appears that ether or nitrous oxide anaesthesia was used in their
subjects.

In 1980, Merton and Morton [50] succeeded in producing movement of contralateral limb mus-
cles by electrical stimulation of the motor cortex through the scalp. They discovered that the
secret of the technique was to use a large single shock, rather than small repetitive shocks as
those used conventionally on exposed cortex. Finally, in 1985, Barker, Jalinous and Freeston
([4]), stablished that a magnetic field also was capable of activating the human motor cortex
through the skull. This method, virtually painless, has since achieved widespread acceptance.

3.1.3 Technical and physiological aspects of Transcranial Magnetic Stimulation

The bases of TMS are related at large to the theory of electro-magnetic induction, and are gen-
erally described by Maxwell’s equations. Because the electromagnetic fields associated with
TMS are of low frequency, the quasi-static approximation of the equations can be applied to the
computation of the tissue-induced fields and currents.

As described in [61] A time-varying current pulse, produced using a very wired coil, produces
a magnetic field according to the Biot-Savart law. The time varying magnetic field, in turn,
induces an electric field according to Faraday’s law. The induced electric field moves charges
in the direction of its field lines (Fig.3.2). If the coil is parallel to the surface of the head, no
surface charges appear due to the induction, and the computation of the electric field inside the
conductor is simple. Otherwise, charges accumulate at the conductor surface as well as the
interfaces between tissues with different conductivity, generating a secondary electric field. The
intensity of the magnetic field can be represented by flux lines around the coin and is measured
in tesla (T ). The orientation of the magnetic field is perpendicular to the coil and, for currently
available devices, can reach values of up to 4 T even if average values of maximal stimulating
intensities around 2 T are currently provided by commercially available devices.

The physical expression leading the basic principle of TMS is as follows:

E =
δA

δτ
−∆V

The expression for the total induced electric field E inside a conductor has a term due to induc-
tion, represented by vector potential A, and a term from surface changes, represented by scalar
potential V .
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FIGURE 3.2: The electric current flowing in the TMS coil induces a magnetic field, with pen-
etrates the layers of tissues separating the brain from the outside (scalp). The magnetic field
induces an orthogonal electric field in the underneath brain cortex, which causes the move-
ment of ions. Neuron axons orthogonal to the electric field are maximally perturbed in their
membrane potential and undergo axon depolarization or hyperpolarization depending on axon

orientation with respect to the current flow direction

Because the total induced electric field is strongest at the boundaries of any homogenous con-
ductor compartment, the stimulation effect of TMS in the brain is concentrated at the cortical
surface. The electric field induced in the cortical tissue causes the cell membranes to either
depolarize or hyperpolarize. If the depolarization of the membrane overcomes its threshold, an
action potential is generated. For example, one classical assumption is that the activation of
pyramidal neurons by TMS occurs predominantly via interneurons in superficial cortical layers.
Macroscopically, the locus of activation in the brain seems to be where the induced field is max-
imal. Focal activation is achieved by using a figure-of-eight coin or a double-cone coil with two
loops, in which the current flows in opposite directions. The induced electric field peaks at the
intersection the the coil windings.

The stimulation field experienced by a neuron is of a duration equal to the first phase of the
time-varying waveform of the magnetic field. A greater amount of stored energy is required for
longer-duration stimuli to achieve the same change in transmembrane voltage. Therefore, short
pulses with rise times of less than 100µs are usually applied.

Large magnetic field pulses need to be generated in order to induce intra cortical electric fields
of enough amplitude and duration to provoke the concurrent activation of the surrounding neural
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FIGURE 3.3: (a) Circular coil with the produced stimulating field. Notice that the part of
maximal intensity is localized along the circumference (c), while the one with minimal intensity
is located right in the center of the coil. (b) Figure-of-eight coil. Notice that the intensity of

maximal stimulation (d)corresponds to the point of conjunction between the two wings.

tissue. To release sufficient energy in a very short time, a magnetic stimulator works by charging
one or more energy storage capacitors (Fig.3.4) and then rapidly transferring this stored energy
from the capacitor(s) to the stimulating coil and it discharges. In this way, a very high elec-
trical current with a peak value of more that 5.000A flows from the capacitor(s) through the
stimulation coil generating the required magnetic fiend.

The difficulty in producing magnetic nerve stimulators is related to the high discharge currents,
voltages and power levels involved in producing the brief magnetic pulse. Typically, 500J of
energy has to be transferred from the energy storage capacitor into the stimulation coil in around
100µs. As power, measured in watts, is equivalent to joules per second, the power output of a
typical magnetic stimulator during the discharge phase is 5Mw (5.000.000MV ). As a curiosity,
such electrical power could provide the electricity used by 1, 000 houses over 1ms.

During the discharge, the energy that was initially stored in the capacitor in the form of electro-
static charge is suddenly converted into magnetic energy in the stimulating coil in approximately
100µs. This rapid rate of energy transfer produces a time-varying magnetic field buildup that
induces tissue currents in the proximity of the coil in the order of 1-20 mA/cm2. However, the
amount of thermal energy delivered to the surrounding tissues due to magnetic stimulation is
very small. At maximal output, assuming a maximal stimulus repetition rate of one pulse every
3s the average power deposited in the brain is calculated to be less than 2mW .

The stimulating coil, normally housed in a molded plastic package, consist of one or more
tightly wound and well-insulated copper coils together with other electronic circuitry such as
temperature sensors and safety switches. At the present time, most commercial magnetic stim-
ulator are supplied with a circular coil of 5-10 cm diameter. Different coil types are nowadays
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FIGURE 3.4: (a) Diagram of the circuit of a simple magnetic stimulator. (b) Outline of a simple
round stimulating coil. The arrows indicate the direction of current flow in the coil. To its right
is shown a schematic of the induced electric field in the tissue directly beneath the coil. The
induced current is opposite so that in the stimulating coil. (c) Schematic of the induced current
in the brain beneath a figure of eight coil. The maximum current is in the vicinity of the virtual
cathode, shown by the asterisk. (d) The time-course of the magnetic field and induced electric
field waveforms (solid and dotted lines, respectively) beneath the centre of a simple round coil
stimulation driven by standard rate Magstim 200 machine. (e) The same when driven by a

Magstim Rapid stimulator.

available, each with their own advantages and disadvantages. Large coils cannot produce very
focal stimulation but can penetrate relatively deep in the brain.

Although the circular coil is very useful as a general coil, it does not provide a very defined
site of stimulation. For example, with a standard round coil, the induced current in the brain
flows in an annulus, underneath the coil, which is usually some 8− 12cm in diameter. Clearly,
a large volume of neural tissue may be activated by such a device. Increases in the focality of
stimulation can be achieved by tilting these circular coils so that their plane is not tangential to
the skull at that point. The greater the angle between the skull and the coil, the more focal is the
stimulation.

Figure-of-eight coils, also called butterfly or double coil, induce an electric field under the junc-
tion region of the eight, which is twice as large as that under the two wings. These coils can
sustain larger currents because of the lower induction with respect to circular coils with the same
number of rings (see Fig.3.3).
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3.1.4 Transcranial Magnetic Stimulation of the Motor Cortex

Transcranial magnetic stimulation can be applied in several ways and at different levels of the
nervous system: in the spinal cord, brainstem and peripheral nerves, and, of course, at cortical
level [65]. However, TMS of the cerebral cortex is quite different from that of other parts of the
nervous system. Stimulation of the peripheral nerves, spinal roots, and the afferent and efferent
tracts at the cervicomedullary junction, essentially affects nerve axons. In contrast, the TMS of
the motor cortex can evoke D waves registered in a electromyography device (EMG), represent-
ing direct stimulation of the cortico spinal axon, as well as I waves that arise from trans-synaptic
activation of corticospinal neurons. This complex is caller Motor Evoked Potential (MEP), an
example of which can be seen in Fig.3.5.

FIGURE 3.5: A representative motor-evoked potential (MEP) amplitude beginning approxi-
mately 20 ms after the stimulus artifact (huge amplitude)

Due to this intervening synapse between descending fibers and spinal motoneurones, and the
possibility of evoking more than one descending volley within the pyramidal tract, the EMG
responses to cortical stimulation are more complex than those following peripheral stimulation.
On this side, two important effects can be observed: The first one is the latency; one of the
clearest differences between muscle responses to peripheral nerve and cortical stimulations is
that cortical latencies are shorter by as much as 4 ms in active compared with relaxed muscles.
Since responses in active muscles are always larger than those in relaxed muscles for a given
intensity of stimulation, one possible reason for the latency difference could be the size of of
motor unit recruitment. The other important effect concerns the size and complexity of surface
EMG responses. At relatively high levels, cortical stimulation produces EMG responses which
are generally quite simple and comparable with those following stimulation of peripheral nerves
[61].
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3.1.5 Inhibitory effects and the Cortical Silent Period

With cortical stimulation, not only excitatory effects but also inhibitory effects can be elicited.
This characteristic is used to investigate cerebral functions other than those of the motor cortex.
[33].

When an individual is instructed to maintain muscle contraction and a single suprathreshold
TMS pulse is applied to the motor cortex contralateral to the target muscle, the electromyo-
graphic activity is arrested for a few hundred milliseconds after the MEP [39] (Fig.3.6).

This period of electromyographic suppression is referred to as a silent period, normally defined
as the time from the end of the MEP to the return os voluntary electromyographic activity. How-
ever, it is difficult at times to define the end of the MEP, especially in patients with corticospinal
tract dysfunction. In order to circumvent this difficulty, some investigators have defined the
silent period as the interval from stimulus delivery to the return of voluntary activity [69]

Most of the silent period is believed to be due to inhibitory mechanisms such as Renshaw cells
inhibitions, which are thought to contribute to the first 50-60 ms os this suppression [19]. The
silent period is likely to be mediated by the neurotransmitter GABAB receptors. Supporting
this hypothesis, silent periods of abnormally short or long duration are observed in patients with
various movement disorders [9]. For instance, patients with amyotrophic lateral sclerosis often
show a shortened duration of silent periods due to impairment of intracortical inhibition that can
be reversed by antiglutamatergic drugs; these findings provide insights into the pathophysiology
of this disease [17].

FIGURE 3.6: The effect of TMS on a motor area that represents a voluntarily contracted hand.
Stimulation of the left motor cortex Elicits MEPs in the contralateral First Dorsal Interosseus,
which is followed by a supression of tonic voluntary activity. Rectified 15 EMG responses are

superimposed

Classen and co-workers [21] investigated patients after acute stroke, who showed hemiparesis
and a long duration of the silent period, but normal MEP amplitude in the affected side. These
patients had impaired movement initiation, inability to maintain a constant force, and impaired
movement of individual fingers that resembled motor neglect. The silent period duration de-
creased with clinical improvement. This study suggests that, among patients with hemiparetic
stroke, there is a subgroup whose motor disorders, involving features of motor neglect, are
caused more by exaggerated inhibitory mechanisms in the motor cortex than by a direct corti-
cospinal disorder.
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Machine Learning Background

4.1 Machine Learning Background

4.1.1 Introduction

Machines learn, humans decide. This is, in a nutshell, one of the conceptual drivers of this
thesis. Humans seamlessly process information and perform pattern recognition. This is, they
are capable of extracting meaningful knowledge from a complex mix of streaming raw sensory
data, with little or none at all awareness of the mechanisms involved. This pattern recognition
ability is in turn embedded into ongoing learning and inference systems.

Our research deals with a problem of pattern recognition from multivariate time series of elec-
trophysiological data. Neurology experts and clinicians alike should have learnt over time to
extract meaningful knowledge from this type of data. Nevertheless, the pattern recognition ca-
pabilities of the (trained) human brain are still limited by evolutionary constraints. In other
words, human pattern recognition has evolved to match the requirements of the environment we
live in, not to match the requirements of data analysis in general.

Machine learning techniques come handy to overcome such limitations. They are, in a general
way, computational simulations of learning processes, in which learning may come in different
flavors: it can be the result of a training process in which we seek to model the relation between
a set of observed data and their corresponding outcome; or it can be the emergent result of
an autonomous, self-organizing process. In one way or another, importantly, machine learning
techniques can deal with large data sets of high-dimensional data, well beyond the capabilities
of the human expert.

One of the central problems in machine learning and pattern recognition is that of finding low-
dimensional representations of multivariate data residing on high-dimensional data spaces. La-
tent variable models address this problem by representing information from an observable, usu-
ally high dimensional data space, in an unobservable or latent, usually low-dimensional, space.
In [64], these models are typified as belonging to different but overlapping categories: projection
models, generative models, and other related models.

Projection models aim for the projection of data points residing in �D, onto a hyperplane, �L,
with �L ⊆ �D, where L ≤ D. The most common projection model (and, by far, the most

19
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widely used) is Principal Component Analysis (PCA) [36], although other models, such as prin-
cipal curves and surfaces [34], auto-associative feed-forward neural networks [42], and kernel
based PCA [22], are also of common use.

Generative models are defined stochastically and try to estimate the distribution of data by defin-
ing a density model with low intrinsic dimensionality within the multivariate data space. Pos-
sibly, Factor Analysis (FA) [5, 44] is the most widely used generative model. It must be noted
though, that FA is sometimes confused with rotated variations of PCA and both are used in
similar applications.

Most of the interest in generative models stems from the fact that they fit naturally into the Sta-
tistical Machine Learning category and, in general, to the much wider framework of probability
theory and statistics. Furthermore, generative models can directly make use of well-founded
techniques for fitting them to data, combining different models, missing data imputation, outlier
detection, etc.

Generative Topographic Mapping (GTM) is a non-linear generative model introduced in [12].
In short, it was defined to retain all the useful properties of Kohonen’s Self-Organizing Maps
(SOM) [41], such as the simultaneous clustering and visualization of multivariate data, while
eluding most of its limitations through a fully probabilistic formulation. Its probabilistic setting
has enabled the definition of principled extensions for hierarchical structures [67], missing data
imputation [53], adaptive regularization [11, 73], discrete data modelling [13, 31], robust outlier
detection and handling [74], and semi-supervised learning among others.

GTM-Through Time (GTM-TT) [10] is an extension of GTM suited to deal with the unsu-
pervised analysis of multivariate time series. Given that it is defined as a constrained Hidden
Markov Model (HMM) [59], GTM-TT explicitly accounts for the violation of the independent
identically distributed (i.i.d) condition. This model has been assessed using artificial and real
multivariate time series in [54].

In this chapter, we first describe the original GTM and its extension for the modeling of mul-
tivariate time series: GTM-TT. A Bayesian approach to the definition of GTM-TT is then out-
lined. This Bayesian formulation should deal effectively with the problem of overfitting. Finally,
a recently developed Variational approach for Bayesian GTM-TT [55] is summarily introduced.

4.1.2 The Original GTM

The neural network-inspired GTM is a nonlinear latent variable model of the manifold learning
family with sound foundations in probability theory. It performs simultaneous clustering and
visualization of the observed data through a nonlinear and topology-preserving mapping from
a visualization latent space in �L (with L being usually 1 or 2 for visualization purposes) onto
a manifold embedded in the �D space, where the observed data reside. The mapping that
generates the manifold is carried out through a generalized regression function, given by

y = WΦ (u) (4.1)

where y ∈ �D, u ∈ �L, W is the matrix that generates the mapping, and Φ is a matrix
with the images of S basis functions φs (defined as radially symmetric Gaussians in the original
formulation of the model). To achieve computational tractability, the prior distribution of u in
latent space is constrained to form a uniform discrete grid of K centres, analogous to the layout
of the SOM units, in the form of a sum of delta functions:
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p (u) =
1

K

K�

k=1

δ (u− uk) (4.2)

Defined in this way, GTM can also be understood as a constrained mixture of Gaussians. That
is, a special case of a Gaussian mixture model that is adapted to provide high-dimensional data
visualization. In each component of the mixture, is generated a density model in data space.
Assuming that the observed data set X is constituted by N independent, identically distributed
(i.i.d.) data points xn, leads to the definition of a complete likelihood in the form:
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where yk = WΦ (uk). From Eq. 4.3, the adaptive parameters of the model, which are W
and the common inverse variance of the Gaussian components, β, are usually optimized by
Maximum Likelihood (ML) using the Expectation-Maximization (EM) algorithm [7]. Details
of this calculations can be found in [12].

As mentioned, the GTM is embodied with clustering and visualization capabilities that are
akin those of the SOM. Data points can be summarily visualized in the low-dimensional la-
tent space(1 or 2 dimensions) of GTM by means of the posterior-mode projection [11], defined
as

kmode
n = argmax

{kn}
rkn, (4.4)

which also provides an assignment of each data point xn to a cluster representative uk. The
distribution of the responsibility over the latent space of states can also be directly visualized.
Another possibility of visualization is, for each data point xn, to plot the mean of the posterior
distribution in latent space,

umean
n =

K�

k=1

rknuk, (4.5)

known as posterior-mean projection.

4.1.3 The GTM Through Time Method

The data mining of multivariate time series has long ago become an established research area
([18]). Methods dealing with this problem have stemmed from both traditional statistics and
machine learning field, using neural networks as a fruitful approaches ([75]).

These methods usually consider the problem as supervised, being prediction the main goal of the
analysis. In comparison, little research has been devoted to methods of unsupervised clustering
for the exploration of the dynamics of multivariate time series.
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Some of the most interesting time series clustering results have been obtained with different
variants of SOM models in diverse contexts although, in general, without accounting for the
violation of the i.i.d condition.

The GMT Through Time (GTM-TT: [10]) is an extension of GTM suited to deal with the unsu-
pervised analysis of multivariate time series. It explicitly accounts for the violation of the i.i.d.
condition, given that it is defined as a constrained HMM.

GTM-TT can be considered as a GTM model in which the latent states are linked by transition
probabilites, in a similar fashion to Hidden Markov Models. In fact, GTM-TT can be understood
as a topology constrained HMM.

Assuming a sequence of N hidden states Z = {z1, z2, . . . , zn, . . . , zN} and the observed multi-
variate time series X = {x1,x2, . . . ,xn, . . . ,xN}, the probability of the observations is given
by:

p (X) =
�

all Z

p (Z,X) (4.6)

where p (Z,X) defines the complete-data likelihood as in HMM models [59] and takes the
following form:

p (Z,X) = p (z1)
N�

n=2

p (zn|zn−1)
N�

n=1

p (xn|zn) (4.7)

The model parameters are Θ = (π,A,Y,β) where π = {πj} : πj = p (z1 = j) are the initial
state probabilities, A = {aij} : aij = p (zn = j|zn−1 = i) are the transition state probabilities,
and

{Y,β} : p (xn|zn = j) =
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are the emission probabilities, which are controlled by spherical Gaussian distributions with
common inverse variance β and a matrix Y of K centroids yj , 1 ≤ j ≤ K.

For mathematical convenience, it is useful defining a state in the vectorial form zj,n such that it
returns 1 if zn is in state j, and zero otherwise. Using this notation, the initial state probabilities,
the transition state probabilities and the emission probabilities are defined as:

p (z1|π) =
K�

j=1

π
zj,1
j (4.8)

p (zn|zn−1,A) =
K�

i=1

K�

j=1

a
zj,nzi,n−1

ij (4.9)

p (xn|zn,Y,β) =
�

β

2π

�D/2 K�

j=1

�
exp

�
−β

2
�xn − yj�2

��zj,n

(4.10)
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Eqs. 4.8 to 4.10 lead to the definition of the complete data log-likelihood as:

ln p (Z,X|Θ) =
K�

j=1

zj,1 lnπj

+
N�

n=2

K�

i=1

K�

j=1

zi,n−1zj,n ln aij

+
ND

2
ln

�
β

2π

�

− β

2

N�

n=1

K�

j=1

zj,n �xn − yj�2 (4.11)

Parameter estimation can be accomplished in GTM-TT by maximum likelihood using the EM
algorithm, in a similiar fashion to HMMs. Details can be found in [10].

4.1.4 Bayesian GTM Through Time

Although the ML framework is widely used for parameter optimization, it shows two important
weakness:

• Its maximization process does not take into account the model complexity

• It tends to overfit the model to the training data

The complexity in GTM-TT is related with several parameters, such that the number of hidden
states, their degree of connectivity and the dimension of the hidden space. For visualization pro-
cesses, the dimensions of the hidden space is limited to be three or less. The number of hidden
states and the maximum number of possible state transitions are strictly correlated by a squared
power. In order to solve the overfitting problem, the complexity has been limited by restricting
the number of possible state transitions [10] or by fixing the transition state probabilities a priori
[38]. The alternative technique of cross-validation is very expensive computationally speaking
and it requires large amounts of data to obtain low-variance stimates of the expected test er-
rors. To control overfitting and model complexity a full Bayesian reformulation of GTM-TT
was recently proposed: The Variational Bayesian GTM-TT (henceforth VBGTM-TT [52, 55].

The Bayesian approach treats the parameters as unknown quantities and provides probability
distributions for their priors. Bayes’ theorem can be used to infer the posterior distributions over
the parameters. The model parameters can thus be considered as hidden variables and integrated
out to describe the marginal likelihood as:

p (X) =

�
p (Θ) p (X|Θ) dΘ,

where Θ = (π,A,Y,β) (4.12)
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If an independent distribution is assumed for each parameter, then:

p (Θ) = p (π) p (A) p (Y) p (β) (4.13)

Taking into account Eqs. 4.6, 4.12 and 4.13, the marginal likelihood in GTM-TT can be ex-
pressed, similarly to HMM [8], as:

p (X) =

�
p (π)

�
p (A)

�
p (Y)

�
p (β)

�

all Z

p (Z,X|π,A,Y,β) dβdYdAdπ (4.14)

Although there are many possible prior distributions to choose from, the conjugates of the distri-
butions defined in Eqs. 4.8 to 4.10 are a reasonable choice. In this way, a set of prior distributions
is defined as follows:

p (π) = Dir ({π1, . . . ,πK} |ν)

p (A) =
K�

j=1

Dir ({aj1, . . . , ajK} |λ)

p (Y) =
�
(2π)K |C|

�−D/2
D�

d=1

exp

�
−1

2
yT
(d)C

−1y(d)

�

p (β) = Γ (β|dβ , sβ)

where Dir (·) represents the Dirichlet distribution; and Γ (·) is the Gamma distribution. The
vector ν, the matrix λ and the scalars dβ and sβ correspond to the hyperparameters of the model
which are fixed a priori. The prior over the parameter Y defines the mapping from the hidden
states to the data space as a GP, where y(d) is each of the row vectors (centroids) of the matrix
Y and C is a matrix where each element is a covariance function that can be defined as

C (ui,uj) = ν exp

�
−�ui − uj�2

2α2

�
, i, j = 1 . . .K

The α parameter controls the flexibility of the mapping from the latent space to the data space.
The vector uj , j = 1 . . .K corresponds to the state j in a latent space of usually lower dimen-
sion than that of the data space. Thus, a topography over the states is defined by the GP as in the
standard GTM.

A graphical model representation of the proposed Bayesian GTM-TT can be seen in Fig. 1.

Unfortunately, Eq. 4.14 is analytically intractable. In the following section, we provide the
details of its approximation using Variational inference techniques.
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FIGURE 4.1: Graphical model representation of the Bayesian GTM-TT. Variables are noted by
circles, paramenters, by squares and hyperparamenters, by rounded squares

4.1.5 A Variational Approach for Bayesian GTM-TT

Variational inference allows approximating the marginal log-likelihood through Jensen’s in-
equality as follows:

ln p (X) = ln

� �

all Z

p (Z,X|Θ) p (Θ) dΘ

≥
� �

all Z

q (Θ,Z) ln
p (Z,X|Θ) p (Θ)

q (Θ,Z)
dΘ

= F (q (Θ,Z))

The function F (q (Θ,Z)) is a lower bound such that its convergence guarantees the conver-
gence of the marginal likelihood. The goal in variational inference is choosing a suitable form
for the approximate density q (Θ,Z) in such a way that F (q) can be readily evaluated and yet
which is sufficiently flexible that the bound is reasonably tight. A reasonable approximation for
q (Θ,Z) is based on the assumption that the hidden states Z and the parameters Θ are inde-
pendently distributed, i.e. q (Θ,Z) = q (Θ) q (Z). Thereby, a Variational EM algorithm can be
derived [8]:

VBE-Step:

q (Z)(new) ← argmax
q(Z)

F
�
q (Z)(old) , q (Θ)

�
(4.15)
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VBM-Step:
q (Θ)(new) ← argmax

q(Θ)
F
�
q (Z)(new) , q (Θ)

�
(4.16)

The model is implemented by these two equations. Details of such implementation can be found
in [52].



Chapter 5

Experiments

5.1 A novel approach to the estimation of the Contralateral Silent
Period duration

5.1.1 Introduction

As described in Chapter 3, TMS of the contralateral motor cortex during voluntary muscle activ-
ity produces a motor evoked potential (MEP), followed by a period of cessation of EMG activity,
known as the cortical silent period (CSP).

The early part of this CSP is at least partly related to decreased spinal motor neuron excitability,
while the late part (about 50 ms) is due to intracortical inhibitory mechanisms [19, 69].

The CSP has been shown to be abnormal in many neurological and psychiatric disorders, re-
flecting altered cortical inhibition. It has thus arguably become a key to the understanding of the
pathophysiology of these disorders.

How to demarcate both the start and end of the CSP is an open subject of scientific debate.
The practice of fixing the onset of the CSP at the stimulus onset is generally well established.
Instead, the determination of the end of the CSP is a very difficult task. The return of voluntary
EMG activity as a marker of the end of the CSP is frequently imprecise.

Terms such as the absolute and relative CSP have been introduced to provide some uniformity
when deriving this measure. The end of the absolute CSP is formally defined as the point in
which any EMG activity returns. In contrast, the end of the relative CSP is defined as the
time when the EMG activity approaches the pre-stimulus state [66]. Following either criterion,
extraneous signals originating from a variety of sources such as movement artifacts can often
cause deflections in the waveform that may be inaccurately interpreted as a return of voluntary
motor activity, even after averaging many trials over the same subject.

As a result, the determination of the CSP can be subject to interpretative arbitrariness and of-
ten leads to discrepancies between raters. Given that CSP determination lacks the necessary
objectivity that is a conventional requirement for any neurophysiologic measure, any technique
capable to reliably automate this estimation procedure would be extremely beneficial, as it would
both simplify and standardize the estimation procedure. If applied to the data acquired from pa-
tients undergoing motor rehabilitation from stroke, as in this thesis, such technique might help
to discern with minimum ambiguity the rehabilitation progress.

27
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Nilsson et al ([19]) endeavored to measure the CSP duration through a computer-automated
approach. The end of the CSP was defined as the first epoch in which no significant difference,
as compared to baseline conditions, was to be found. However, there are several drawbacks in
this method: The main one is that it fails to account for the magnitude of such difference. Hence,
a given epoch (2-4 ms of signal), may not necessarily differ statistically from baseline conditions
yet still represent a period of partial cessation of voluntary motor activity and, therefore, be part
of the CSP.

In another approach to this problem, Garvey et al. ([30]) reported an alternative mathematical
approach for determining the CSP duration based on the mean consecutive difference (MCD)
of the data points in the pre-stimulus EMG. The offset of the CSP was defined as the first data
point of a 5 ms window in which at least 50% of the values are higher than the expression (mean-
2.66×MCD) for the pre-stimulus EMG. Using this approach, they found that the obtained CSP
values closely approximated those obtained using the manual method. Again, there are several
problems associated with this approach: considerable differences were found when measured in
children (approximately 10 ms). This is in part due to the fact that the CSP in children is often
short or directly non-existent. Also, the method is extremely sensible to muscle-artifacts and
other sources of noise, making signal filtering necessary. This filtering affects the calculation of
the pre-stimulus activation that is necessary to determine the offset of CSP.

5.1.2 The estimation of the CSP duration

5.1.2.1 The current standard for the estimation of the CSP duration

The current standard for the automated calculation of the offset of CSP was developed by
Daskalakis et al ([23]). In this automated approach (hereafter referred to as Daskalakis’ Method,
or DM for short), a combination of filtering, squaring and threshold detection is used to calculate
the CSP duration. The method has the advantage of being objective, as it avoids the potential
biases and interpretation discrepancies inherent to the previously described, more conventional
and visually-guided CSP measuring techniques. It has also been widely accepted for its simplic-
ity of implementation, which is accessible to people with little or no computational background.
In this approach, the end of the CSP is marked by the first return of any voluntary EMG activity,
which was defined as the first time point at which the background EMG was restored to 25% of
pre-stimulus EMG amplitude. An example of application of this method can be seen in Fig. 5.1.

Despite the reliability of this method to automate the determination of the CSP at short or long
durations, its main limitations reside, first, in the inability to cope with more complex CSP cases
where additional CSPs follow bursts of EMG activity; and secondly, in its bad performance in
the presence of noisy data, which are commonplace in pathological EMG recordings. While
acquiring the EMG signal of activity from patients who are not able to maintain a voluntary
muscle contraction, or who suffer some sickness related to muscle control, spontaneous EMG
activity during the CSP is likely to occur. This activity is not relevant to the analysis, because
it is not related with disinhibition of pyramidal cells. Daskalakis’ method cannot distinguish
these cases. Moreover, the 50 Hz high-pass filtering condition in this method sometimes hides
relevant EMG signal information related to the return of the voluntary contraction, and can result
in an unreliable calculation of the CSP.
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FIGURE 5.1: Transformation of raw data used in DM to detect and measure CSP. Stimulation
levels are 150% of the resting motor threshold. The top trace in an example of raw recordings
of a TMS-evoked MEP and CSP during tonic activation of the FDI muscle. After unprocessed
traces are analyzed by DM, they become as shown in the bottom display. The calculation for
the onset of the CSP is based on the stimulus onset. The threshold calculation for the offset of

the CSP is based on the amplitude of the pre-stimulation EMG.

5.1.2.2 A novel approach: the index of variability

The GTM-TT model, described in the previous background chapter on Machine Learning meth-
ods, can facilitate the faithful identification and visualization of change-points and sudden tran-
sitions in MTS [55]. Change-points, in the low-dimensional visual data representation provided
by the model, correspond to sudden jumps between often distant model states. Instead, subse-
quences of little variability over time will often clump in few model states or even remain in a
single one over time.

In this thesis, we hypothesize that the CSP can be encapsulated by change points. In other
words, we claim that the GTM-TT model should be able to unambiguously identify the CSP as
a time subsequence of little variability, bounded by change points.
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To test such hypothesis, and beyond the exploratory visualization of MTS that GTM-TT can
provide, we need a well-defined measure of MTS variation that allows us to identify and quan-
tify change-points. in GTM-TT, we expect sudden transitions to be accompanied by sudden
increases of the model likelihood [? ], so that the weighted mean of the emission probabilities
of the model in logarithmic form could be a good candidate to consider as an Index of Variability
(IV ):

IVn = −
�

k

rk,n ln p (xn|zn = k) ,

where rk,n is the responsibility (a posterior probability) taken by a hidden state zn = k out of
K for each point xn in the MTS.

Unfortunately, this measure can be affected by noise, and it will no reflect the advantages of the
data regularization provided by the Variational Bayesian-GMT-TT. For this reason, a novel IV ,
namely the weighted-prototype IV (wpIV ), is proposed for the latter model and defined as:

wpIVn = �Ωmean
n − Ωmean

n−1 � , (5.1)

where �·� is the Euclidean distance and Ωmean
n =

�K
k=1�zk,n�yk. Here, the variational parame-

ter �zk,n� plays the same role as rk,n plays for the standard GTM-TT, and vector yk; k = 1 . . .K
is the data prototype of state k in data space. Eq.5.1 is nothing but the weighted distance between
the data prototypes representing two consecutive instants in the MTS, where each prototype can
take at least partial responsibility for the representation of each instant of the MTS. The same
distance measured between the observed data of the two consecutive instants would be of little
use as any relevant information would be masked by noise.

By measuring the distance using the model-generated prototypes, we ensure that, provided the
model manages to faithfully recover the underlying structure of the MTS (and VB-GTM-TT
does this by avoiding overfitting while the standard GTM-TT cannot), the true change-points
will be clearly detected.

5.1.3 The experimental setting

The previous sections should provide the boundaries for our experiments. Given that we are
proposing a new technique -based on a novel Statistical Machine Learning model- that might be
useful to estimate the duration of the CSP in general neurological and psychiatric disorders, we
proceeded as follows:

• First, we used fully synthetic data that simulated simple MTS in order to gauge the ade-
quacy of the proposed wpIV measure. For that, a number of increasing levels of noise
was used to contaminate the original data. This way, we should be able to assess if the
proposed model and the corresponding index are capable of discovering the underlying
true data without being affected by the added noise.

• Second, we generated and analyzed synthetic data that simulate the real EMG that are
the ultimate target of the current thesis. These data were used with a two-fold objective:
validating the previous results with artificial MTS, and comparing the performance of our
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method with that of the current standard in the field, DM, in the presence of increasing
levels of uninformative noise.

• Third: having validated the proposed wpIV measure with artificial data, we proceeded
to test it with real EMG data of control healthy patients (multiple trials per subject), who
were not undergoing any type of motor rehabilitation, again comparing it with DM.

• Fourth: The duration of the CSP is likely to vary in pathological subjects undergoing
rehabilitation. Our last set of experiments was aimed to provide the first preliminary
evidence that the proposed wpIV is a suitably robust method for the estimation of the
CSP in patients undergoing rehabilitation from stroke.

These results are expected to be the starting point for research involving other types of neuro-
logical disorders.

5.1.4 The EMG data

For the experiments concerning human controls, 14 voluntary healthy right-handed subjects (8
women and 6 men, mean age (± standard deviation) of 24.9(±2.5) years) gave their consent to
the study. They were informed about the experimental procedure and remained naive about the
aim of the study. They had not been taking any drugs or alcohol during the previous day and
during the day of the experiment.

TMS of the right M1 was produced using a biphasic Magstim Rapid 2 (Magstim Co., Withland,
Dyfed, UK), with a 8-shaped coil (external diameter of each loop 9cm). The coil handle pointed
backwards and 45 degrees away from the midline. A tightly elastic cap marked with 1 cm × 1
cm left-side grid relative to the vertex (Cz) was fitted to each subject.

EMG signals were acquired using surface electrodes in a belly-tendon montage from the First
Dorsal Interoseus (FDI) muscle of the right hand. The signal was amplified digitalized at 2Khz.
For each subject, the optimal hot spot for the right FDI was defined as the point of the grid where
a MEP of 50µV was elicited with a probability of 50 % using the lowest stimulator output; that
output was defined as the resting motor threshold (RMT). Afterwards, the output stimulator was
set as 150 % of the resting motor threshold and 15 pulses were performed on the spot location
with a controlled voluntary contraction of the right FDI muscle. Such voluntary contraction was
set as the 10 % of the maximum voluntary contraction of the muscle, measured with a proper
pressure gauge pinched.

A total of 15 trials per subject were recorded, and intervals between two consecutive TMS pulses
were of at least 7 seconds, in order to avoid possible slow repetitive effects (See an example of
the data in Fig. 5.2). Each signal covered an interval from 100 ms pre-stimulus to 500 ms post-
stimulus. Subjects were not able to visually monitor the EMG signal, in order to avoid feedback
effects due to the appearance of the signal.

For the experiments concerning pathological subjects, 8 chronic stroke patients (3 women and 5
men, mean age (± standard deviation) of 64.9(±10.5) years old) were identified and recruited by
examining case-records from Bellvitge Hospital at Hospitalet de Llobregat, Barcelona, Spain.
All patients had suffered from first-ever ischemic stroke causing upper limb weakness (3.5-4.5
on the Medical Research Council -MRC- scale). They were able to move the affected arm and
the index finger without help from the healthy side.
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200ms

FIGURE 5.2: 15 trials of EMG signal acquired with surface electrodes in a belly-tendon mon-
tage from the FDI muscle of the right hand.

Exclusion criteria consisted of: 1) history of major psychiatric or previous neurological disease,
including seizures and previous stroke; 2) cognitive impairment or history of dementia and 3)
major comorbidity. All patients received multi-disciplinary post-stroke care appropriate to their
clinical needs. The participants were all right handed. All the participants read and sign an
informed consent prior to the participation on the protocol.

Over the course of four consecutive weeks, the patients received 20 individual Musical Sup-
ported Therapy (MST) sessions of 30 minutes each. Two different input devices were used to im-
prove motor movements [63]: a MIDI-piano for fine motor movements and an electronic drum
set comprising eight pads for gross motor movements. Drum pads (numbered from 1 to 8) were
used to produce piano musical notes (C,D,E,F,G,A’,B’,C’) rather than drum sounds. In a similar
vein, The MIDI-piano was arranged in such a way that only 8 white keys (C,D,E,F,G,A’,B’,C’)
could be played by the patient. Each exercise was demonstrated by the therapist first and then
repeated by the patient.

The patient moved through the therapy onto the next level of difficulty once he/she was able
to complete the current level without errors. Thus, over the course of the therapy, patients
proceeded from playing single notes to playing sequences of notes and beginnings of children’s
songs. Prior to, and at the end of the therapy course, patients were comprehensively evaluated
by using TMS.

This TMS was performed using a focal air-cooled figure-8 coil (9 cm diameter each wing) at-
tached to a biphasic Magstim Rapid 2 Stimulator. The choice of a biphasic rather than monopha-
sic stimulator was based on availability of the stimulator and coils. The point of intersection of
the figure-of-eight coil was placed against the skull and the coil was held at a 45 degrees angle
to the sagittal with the handle oriented posteriolaterally [15].
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A tightly elastic cap marked with 1 cm × 1 grid relative to the vertex (Cz) was fitted for each
subject at baseline (first session) and reapplied consistently for second session to facilitate sys-
tematic sampling of scalp locations. Motor-evoked potentials (MEPs) were obtained from the
First Dorsal Interosseus (FID) muscle of the hand contralateral to the stimulated hemisphere.
Both affected and unaffected hemispheres were tested in each session.

At the begining of each session, a relatively high intensity of stimulation (typically 80% of
maximum stimulator output) was used to locate the scalp position from which the MEPs of
highest amplitude could be obtained and the location was marked on the cap to ensure consistent
targeting of the hot spot location. The stimulator intensity was then dropped to 40% maximum
stimulator output (MSP) and 10 pulses were delivered over the hotspot at a frequency of one
every 5−10 s. If no MEP were observed in those 10 trials, the stimulator intensity was increased
a 10% and 10 more trials were sampled. This procedure was repeated until the first evidence of
a MEP appeared in the EMG trace. At this point, the stimulation threshold was determined by
varying the stimulus intensity in 2% increments or decrements until the stimulus intensity was
able to evoke 5 of 10 MEPs with an amplitude of at least 50µV . This stimulus intensity is called
the resting motor threshold. The active motor threshold (AMT) of the hot spot is defined as the
stimulus intensity able to evoke 5 to 10 MEPs with an amplitude of at least 200µV at hot spot
with sub-maximal shortening contraction.

This contraction was monitored visually for the subject using a pressure gauge pinched between
the index finger and the thumb. The patient was instructed to maintain a 10% of his maximal
voluntary contraction during each stimulation.

For the CSP assessment, 15 trials were recorded for each subject, and intervals between two
consecutive TMS pulses were again of a duration of at least 7 seconds, to avoid possible slow
repetitive effects. The trial time window was pulse-locked and the length of the EMG window
was adapted to the patients, being the same for all of them.

5.1.5 Experiments and results

According to the experimental settings outlined above, the current section is structured in four
parts. The first one reports the results corresponding to the experiments with synthetic general
MTS. The second section reports the comparative results with synthetic data sets that emulate
the typical EMG signal for the problem at hand. The third one reports results with real data of
human controls. Finally, the last subsection offers preliminary results of experiments with real
pathological subjects under rehabilitation from stroke.

5.1.5.1 Validation of the IV technique: experiments with synthetic data

The first set of experiments is meant to show the adequacy and usefulness of the wpIV defined
above. For that, we model a simple artificial set of MTS using both the standard GTM-TT and
the VB-GTM-TT defined in the machine learning background chapter.

This basic data set consists of 3 time series built as a piecewise combination of step-like func-
tions concatenating four periods of constant signal through three sudden transition change-
points. The signal is contaminated with increasing levels of uninformative Gaussian noise (with
standard deviations of, in turn: 0.01, 0.05 and 0.1 (see Fig.5.3, left hand-side column).
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FIGURE 5.3: wpIV for the artificial data at three noise levels of standard deviations: 0.01 (top
row), 0.05 (middle) and 0.1 (bottom). The data are represented on the left column; the center

column shows wpIV results for GTM-TT; and the rightmost one, for VB-GTM-TT.

The wpIV for both models and for the three noise levels is depicted in Fig.5.3 (center and right
columns). At the lowest noise level (top row), the wpIV corresponding to both models captures
both the transitions and the periods of noise-related variability pretty well. At higher levels of
noise, though, only the VB-GTM-TT (rightmost column) is able to keep faithfully modeling
both of them. The wpIV for the standard GTM-TT (center column), instead, clearly reveals
that the model is overfitting the data, rendering the index useless for MTS segmentation through
change-point detection.

This provides the first evidence of the robustness of the VB-GTM-TT model in the presence
of noise. The standard GTM-TT overfits de MTS, while its alternative formulation within a
Variational Bayesian framework is capable of retrieving the original underlying model with
accuracy. This robustness should make the estimation of the wpIV far more faithful than that
rendered by any unregularized technique.

5.1.5.2 Experiments with EMG-like synthetic data

We now step forward in terms of experimental complexity, getting closer to the real EMG data
that are the goal of the thesis. In this experiment, we compare the performances of DM and



Chapter 5. Experiments 35

VB-GTM-TT using artificial MEP-like data with added noise. We do so in order to gauge the
strength of both methods when faced with noisy data.

The DM was implemented in Matlab (Mathworks) to identify the onset and the end of the CSP
using mathematical criteria. The code involved a high-pass filtering process, as well as squaring
and threshold detection. All trials were high-pass filtered (suppressing waveform activity below
50 Hz) to remove movement artifacts from the recordings.

The underlying artificial signal was piecewise-defined. Uninformative white noise was then
generated and added to the CSP interval. The noise was used in three settings:

1. Varying the number of trials corrupted by noise, i.e., the ratio of noisy MTS in the dataset.
Increasing levels of noise, with standard deviations of, in turn: 0.25, 0.5 and 1, were used.

2. Modifying the amplitude of the noise generated at the CSP, as represented by the stan-
dard deviation of the noise, with increasing values of 0.2, 0.4 and 0.6 (See Fig.5.4 for
illustration).

3. Varying the number of time points corrupted by noise at the CSP, i.e., the ratio of noisy
time points in the CSP, with values about 0.4, 0.7, 0.9 (See Fig.5.5).

FIGURE 5.4: (Left) Artificial data created to simulate a typical CSP. (Right) The same artificial
data with white noise added to the CSP interval.

Before and after the simulated CSP, the signal is defined as a high-frequency sinusoidal signal
that emulates the voluntary muscle contraction that has to be performed by the subject.

A total of 27 noisy data sets were generated (Fig.5.5), taking into acoount the three possible
settings described above. For each data set, 15 trials were generated and analyzed by DM
and the VB-GTM-TT wpIV . In all data sets, the offset of silent period was homogeneously
established at the point 426, in order to facilitate the analysis of accuracy measurement of both
methods.

A full report of the results can be found in Table 5.1. It reveals that VB-GTM-TT was able to
measure correctly the offset of the CSP in all contaminated data sets. However, DM was only
able to measure correctly the offset when the noise amplitude was low. An illustration of this
can be found in Fig.5.6. These are a very interesting results in two ways: First of all, VB-GTM-
TT seems to be robust in the presence of noise, and, second, the weakness of DM seems to be
more related to the amplitude of noise located on the silent period than to either the number
of trials corrupted by noise, or to the ratio of corrupted points in each trial. In any case, since
the VB-GTM-TT also correctly estimates the offset of the CSP for the noise-free data set, these
results provide, overall, further evidence that the wpIV calculated through VB-GTM-TT bears
the potential of becoming a reliable tool for automating the determination of the CSP duration,
specially in EMG recordings with high levels of noise.
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FIGURE 5.5: Three examples of synthetic data individual trials that simulate the real EMG, in
the presence of increasing levels of uninformative noise. This time, in each one, the ratio of
noisy points in the silent period is high (0.9), while the noise amplitude varies: 0.2 (top left),

0.4 (top right) and 0.6 (bottom).

5.1.5.3 Experiments with control subjects

We now progress to experimentation with real data acquired from human subjects. One of the
main characteristics of this set of experiments is that we do not know any longer the true duration
of the CSP. This means that there is no longer a true benchmark against which to compare the
performance of the analyzed techniques.

The subjects involved in these experiments were voluntary controls, unaffected by the studied
pathology and, therefore, not undergoing any therapy. These data were acquired with experi-
mental purposes unrelated to any neurological injury.

Our hypothesis is that, since voluntary control data sets should in general not be contaminated
by measurement noise, the estimations of the CSP duration yielded by DM and the VB-GTM-
TT-based wpIV will be quite similar, given that the accuracy of DM in these type of data has
been tested in many experiments.

All trials for each subject were analyzed to determine the offset and the duration of the CSP,
again using DM (with the previously described settings) and the VBGTM-TT-based wpIV . The
squaring of the trace was employed to magnify and rectify the EMG activity as well as further
isolate the MEP and the EMG flat period. The CSP onset was determined by the stimulus onset.
The CSP offset was determined from the processed waveform and was the first point to exceed
25% of the mean pre-stimulus EMG amplitude within a generous window (between 100 and
500 ms after TMS stimulus) that consistently enclosed flat period after the end of the MEP.
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TABLE 5.1: Mean CSP offset estimation for both models in all experimental settings described
in the text.

Trials Corrupted Points Corrupted Noise Amplitude DM VBGTM-TT
25% 40% 0.2 426 426
25% 40% 0.4 394 426
25% 40% 0.6 401 426
25% 70% 0.2 426 426
25% 70% 0.4 393 426
25% 70% 0.6 417 426
25% 90% 0.2 426 426
25% 90% 0.4 401 426
25% 90% 0.6 417 426
50% 40% 0.2 426 426
50% 40% 0.4 378 426
50% 40% 0.6 345 426
50% 70% 0.2 426 426
50% 70% 0.4 360 426
50% 70% 0.6 392 426
50% 90% 0.2 426 426
50% 90% 0.4 360 426
50% 90% 0.6 351 426
100% 40% 0.2 426 426
100% 40% 0.4 306 426
100% 40% 0.6 303 426
100% 70% 0.2 426 426
100% 70% 0.4 302 426
100% 70% 0.6 301 426
100% 90% 0.2 426 426
100% 90% 0.4 303 426
100% 90% 0.6 301 426

All subjects completed the TMS protocol without difficulty. In almost all subjects, all trials
passed a basic quality control. In 3 subjects, less than 3 trials were discarded from the analysis
because of a contamination by movement artifact.

For illustration, we report next the results for two control subjects. Fig. 5.7 (left) shows their
complete EMG. The corresponding estimation of the wpIV is superimposed to Fig. 5.7 (center).
The wpIV provides a completely clean-cut delimitation of the CSP that allows the unambiguous
estimation of its duration.

As explained in the introductory chapters, one of the unique advantages of a manifold learning
method such as VB-GTM-TT is that it can provide a low-dimensional intuitive representation
of high-dimensional MTS. Such visualizations in 2-D for the two controls used for illustration
of the technique can be found in the right-hand side plot of Fig. 5.7. They show that the CSP
is neatly represented by this model using separate states. This is a clean-cut indication that the
change-points defining the onset and offset of the CSP are unambiguously detected and modeled
by VB-GTM-TT.
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FIGURE 5.6: (A) Artificial data created to simulate a typical CSP pattern with Gaussian noise
added to the CSP interval. (B) Normalized DM output after the squaring and filtering of the
data represented in A. (C) Normalized output of the wpIV obtained from the data represented
in A. The arrows mark the estimations of the CSP offset in each method. DM clearly selects a

wrong offset location.

A full report of the mean CSP durations of each subject obtained by both methods is provided in
Table 5.2. It reveals that both methods estimate very similar durations of the CSP for all subjects
but one, namely S14. This is a pretty result indeed for the following reasons: First of all, results
overall corroborate our initial hypothesis: that for data (cases) likely not to be contaminated by
measurement noise, such as the controls under study, there is not much differential advantage
in using the VB-GTM-TT-based wpIV . In other words, these cases are simple enough for the
CSP duration to be easily estimated by any reliable method. In any case, the similarity of the es-
timations indicate that the manifold learning method is yielding accurate estimations. Secondly,
and taking our attention back to control S14, the data corresponding to this subject (see them
represented in Fig.5.8), include many trials where the information about muscle contraction af-
ter the CSP was not properly acquired. As a result, the VB-GTM-TT-based method is not able
to establish a coherent offset of the CSP.

5.1.5.4 Experiments with pathological subjects

The final stage of our experiments concerns the analysis of data corresponding to pathological
patients who have undergone rehabilitation therapy. All subjects under study completed the
TMS protocol without difficulty in two sessions (before and after undergoing musical therapy).
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FIGURE 5.7: (Left) Visualization of the 15 EMG MTS corresponding to the complete sets
of trials for two control subjects. Dashed lines delimit the CSP durations that were estimated
using the wpIV . Middle) wpIV for these subjects. Right) Visualization of the MTS in the VB-
GTM-TT 2-D representation map. Squares represent model states and their size is an indication
of the number of time points (as a ratio) assigned to each state. States filled in black correspond

to the CSP.
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FIGURE 5.8: Left) The EMG time series for control subject S14. As can be observed, the return
of voluntary contraction of the muscle was not acquired. Centre) Output of signal squaring by
DM. The arrow marks the wrong offset of CSP estimated by DM. Right) wpIV of the data; the

method is not able to find any offset of the CSP.

However, although the pattern of EMG data acquired during voluntary muscle contraction be-
tween this population of subjects and the control subjects is quite similar, the acquisition con-
ditions are very different. The patients in general present many difficulties to maintain a stable
contraction of the muscle on the affected hand, and EMG spindles are registered during the CSP
because of slow disruptions of inhibition processes. Also, the time necessary for the montage of
the TMS and for data acquisition protocol is relatively high, causing in many cases discomfort
and tiredness in the patients, making the task difficult. Given the circumstances, it seems prob-
able that raw data will be contaminated by different kind of artifacts, making the the estimation
of the CSP duration far more difficult than with control subjects.
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TABLE 5.2: Table containing the mean of the estimated duration of the CSP for each control
subject, using DM (central column) and VB-GTM-TT-based wpIV (right hand-side column).

Subject CSP DM (ms) CSP GMT (ms)
S01 191 187
S02 283 284
S03 180 171
S04 259 263
S05 283 293
S06 260 261
S07 236 235
S08 236 239
S09 199 184
S10 288 277
S11 189 200
S12 258 245
S13 166 165
S14 157 203

TABLE 5.3: Table containing the mean of the CSP of each participant using DM (central
column) and the VB-GTM-TT-based wpIV (right hand-side column).

Subject Session DM (offset point) VGTM-TT
P01 Pre 403 531
P01 Post 520 608
P02 Pre 622 668
P02 Post 652 515
P04 Pre 431 456
P04 Post 484 695
P05 Pre 666 615
P05 Post 443 519
P07 Pre 490 −
P07 Post 549 615
P09 Pre 658 704
P09 Post 435 520
P10 Pre 594 746
P10 Post 501 792
P11 Pre 301 −
P11 Post 433 653

The patients were evaluated twice. In a first session, before the starting of the neurorehabilitation
sessions; and in a second session that was performed the day after the end of the rehabilitation
procedures, one month after the first session. The original objective of this setting was to inves-
tigate the possible correlation between the shortening of the silent period after rehabilitation and
the improvement in motor ability resulting from therapy.

Our hypothesis now (once both DM and VB-GTM-TT-based wpIV have been evaluated with
artificial data and real EMG from control subjects) is that VB-GTM-TT based wpIV method
will have a differential advantage in the measurement of the silent period in this data, because
of the noisy nature of the data.



Chapter 5. Experiments 41

The mean CSP durations for each subject, obtained both by DM and the VB-GTM-TT-based
wpIV are listed in full in Table 5.3. In contrast to the results obtained with control subjects,
the results obtained by both methods with stroke rehabilitation patients are very different, as we
expected. It must be noted, though, that in two cases, the VB-GTM-TT-based wpIV was not
able to establish the offset of the SP (Fig.5.9).

Results in Table 5.3 do suggest that there is no obvious correlation between the shortening of
the silent period after rehabilitation and the improvement in motor ability resulting from therapy.
There are in fact more subjects that show an increase in the duration of the CSP after therapy.

500 10000 500 10000 500 1000

500 10000 500 10000 500 1000

FIGURE 5.9: Left) The EMG for subjects P011 and P07 (pre-therapy). It is clear that for the
P07 patient (top), the return of voluntary contraction of the muscle was not properly acquired
in several trials. As a result, the VB-GTM-TT-based method was not able to measure the offset

of the CSP.

In the same way we did it for control subjects, illustrative results are presented in Fig.5.10 for
one stroke patient. All data trials and the estimation of the CSP duration is shown in the left
hand-side, the calculated wpIV over time is shown in the centre, while the low-dimensional
VB-GTM-TT representation of the data is shown on the right hand-side.

Results for measurements before rehabilitation are presented in the top row, whereas results after
rehabilitation are presented in the bottom row. The wpIV provides a clean-cut delimitation of
the CSP that allows the unambiguous estimation of its duration. The 2-D visualization shows
that the CSP is accordingly described almost in full by separate model states. In this patient
at least, the CSP duration is shown to have considerably shortened due to rehabilitation, as we
originally expected.

Let us also illustrate the difference of applying either the proposed VB-GTM-TT-based method
or DM to two stroke patients. Results are shown in Fig.5.11: raw data for all trials (left); results
of the application of DM (center) and of VB-GTM-TT (right). In both cases, the DM estimation
of the duration of the CSP places the offset time of the silent period in a noise-affected location
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FIGURE 5.10: Stroke rehabilitation patient. Top) Before rehabilitation; bottom) after rehabili-
tation. Representation as in the previous figure.

of the refractory period. However, also in both cases our proposed method marks the end of the
silent period in a correct way, which is coherent with the visual output of the method.

These results confirm that Daskalakis method does not seem to be a reliable tool to measure the
SP in EMG acquisition from patients, probably because of the huge quantity of noise present
on the data, and also suggest that VB-GTM-TT-based wpIV could be a strong-to-noise method
able to measure SP in data acquired from patients.

5.1.6 Conclusion

The CSP is known to be a key feature of EMG recordings from subjects affected by many
neurological and psychiatric disorders. The CSP in such patients is usually abnormal, reflecting
altered cortical inhibition. For this reason, the accurate determination of the duration of the CSP
is a worthy research target from a clinical point of view.

Traditionally, the CSP has been calculated using ad hoc techniques prone to subjective variabil-
ity. Only recently, computer-based automated procedures for the estimation of its duration have
become mainstream. The current standard procedures, though, are limited mainly for their lack
of robustness in the presence of noise. In this chapter, we have put forward a novel method for
the analysis of the CSP. It is based on the robust detection of change points in the EMG MTS us-
ing a Statistical Machine Learning method of the manifold learning family. This model is meant
to reveal the underlying structure of the MTS signal even if contaminated by uninformative
noise.

To test this proposed new technique, we have gone in this chapter through a battery of experi-
ments. Let us recall them in brief:

• First, we used fully synthetic data that simulated simple MTS in order to gauge the ade-
quacy of the proposed index of variability based on VB-GTM-TT. A number of increasing
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FIGURE 5.11: Comparison between DM and wpIV in two stroke patients. Left) 15 EMG trials
acquired maintaining voluntary contraction of the muscle. Center) Signal after application of
DM. Right) wpIV results. The arrow marks the estimation of the CSP offset in each method.

levels of noise were used to contaminate the MTS. The model showed that it was capa-
ble of discovering the underlying clean data without being too badly affected by the noise.
These findings provided the first evidence of the adequacy and usefulness of the technique.

• We then tried to replicate these results using synthetic data that were closer to the real
EMG that is the object of the thesis. Importantly, we also compared the performance
of the VB-GTM-TT-based method with the DM, which is the current standard in the
field. Increasing levels of uninformative noise were added in several settings. The results
overall showed that VB-GTM-TT was consistently more robust and accurate than CSP
in the estimation of the CSP. Also, importantly, the results suggest that the weakness of
the standard DM is more related to the amplitude of the noise located on the silent period
than to either the number of trials affected by noise, or the number of corrupted points in
each trial. All this provided further evidence that the wpIV may become a reliable tool
for automating the determination of the CSP duration, specially in EMG recordings with
high levels of noise.

• Real EMG data of control healthy subjects were subsequently used to test the new pro-
posed method. This data is supposed to be almost noise- and acquisition artifacts- free.
For this reason, we hypothesized that both compared methods should perform similarly.
The results obtained were very similar for most subjects, corroborating the hypothesis.
The only subject for which some data trials were not properly acquired was the only ex-
ception.
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• We were finally in the position to confidently experiment with real EMG data acquired
from stroke patients. It has been suggested that the duration of the CSP should naturally
vary in pathological subjects undergoing rehabilitation, indicating the progrees due to
therapies aplied to the patients. Both methods were applied to measure CSP duration on
data recorded both before and after the rehabilitation process. The data were expected
to be contaminated by noise and artifacts because of the acquisition conditions. Results
provided some important evidence: Firstly, that the measuremets using both methods were
again very different from each other, as it could have been expected. Since the results
obtained by DM are not coherent with what the data suggest through direct visualization,
these experiments support our hypothesis that the wpIV measure behaves robustly in
the presence of noise, while DM fails to provide an appropriate estimation. Secondly,
and contradicting our hypothesis, there was preliminary evidence of no clear correlation
between the dynamics of silent periods and the performance of this therapy.
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Summary and Conclusions

6.1 Summary and Conclusions

Over the last decade, biomedicine has become a data-intensive field of research in which new
data acquisition techniques appear at a staggering pace. The increasing reliance on microarrays
data in genomics, and on protein chips and tissue arrays in proteonomics, add to the wealth
of information about active metabolic pathways that is available also from many other non-
invasive measurement techniques. The challenge of managing the complexity of biomedical
data invites us to go one step further than traditional statistics and resort to advanced techniques
that are capable to take the best out of both machine learning and statistics. We are to find such
techniques in the area of statistical machine learning.

Computational neuroscience has reached, in parallel to biomedicine, a stage of quick devel-
opment driven by the new data generating possibilities of new noninvasive measurement tech-
niques. In this development, it has gathered strength from fields as diverse as systems biology,
genetics, bioinformatics, signal processing, artificial intelligence, and psychology.

Brain processes can be studied from physiological data. This thesis has been concerned with
the analysis of rehabilitation of patients who suffered a brain stroke. This neuroscience problem
is in the frontier with clinical medicine. The motor rehabilitation of patients affected by this
pathology can be explored through the EMG signal elicited in controlled motor tasks. EMG data
usually have a strong component of noise resulting from measurement conditions that must be
processed using robust procedures in order to extract any kind of medically usable knowledge.
This is the case for the purpose of both medical research and medical practice.

The thesis has explored in some detail one of the key parameters of this type of EMG signal:
the CSP, elicited by TMS. The existing CSP measuring methods are yet imprecise and known
to yield a significant error due to their sensitivity to noise. Yet, this parameter is known to
be very useful for the diagnosis and prognosis of motor progress in patients that have suffered
brain stroke. The correct estimation of the CSP duration is difficult because of the presence of
uninformative noise in the measured signal.

We have shown, through a battery of experiments, the usefulness of a manifold-constrained Hid-
den Markov Model formulated within a variational Bayesian framework in dealing appropriately
with the problem of CSP duration estimation. The proposed model is imbued with regulariza-
tion properties that minimize the negative effect of the presence of noise in the analyzed EMG

45
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data.We hypothesized that this method would be a reliable tool to calculate the offset of the
refractory period even in the presence of relatively large amounts of noise. The experiments
have provided evidence to support such hipothesis. They have also provided evidence of the
superiority of the proposed method with respect to the existing standard.

The contributions of this master thesis are briefly summarized as follows:

We have developed a technique based on a Bayesian Variational variation of the GTM-TT model
that detects sudden transitions and change points on EMG data, with the aim to identifying the
CSP as a time subsequence of little variability, even with presence of noise. An Index of Vari-
ability (namely the weighted-prototype IV) has been described: it allows measuring the degree
of variability of a subsequence. It naturally takes advantage of the data regularization properties
of the underlying model and true change-points can be clearly detected even with presence of
noise. Using a full experimental setting, that included artificial data sets with increasing levels
of noise and real EMG data acquired from control subjects and patients, evidence has been gath-
ered to support two important findings. Firstly, the wpIV has been shown to measure the CSP
duration with better accuracy that the existing standard methods in use in the presence of noise,
while matching the performance of the existing standard in noise-free data. Secondly, we have
not found enough evidence to support the expected correlation between the shortening of the
CSP and the performance of the rehabilitation therapy undergone by the pathological patients.
Some studies have reported that a shortening of the CSP is the result of cortical reorganization on
the affected hemisphere on stroke patients, and is related to motor improvement. Nevertheless,
such studies used data in which different therapies, such that constraint-induced therapy [46],
were used. Constraint-induced therapy is far more agressive on the patient than MST (which
was the one applied to the patients analyzed in this study), in the sense that it involves more
direct stimulation of cortical circuitries through rehabilitation, which means that the effects of
the induced plasticity are likely to be more immediate. Further tests with a larger number of pa-
tients would be required to provide us with a clearer picture of the possible correlation between
the shortening of the CSP and the performance of the MST.

6.2 Future directions

6.2.1 Clinical studies

In this thesis, the proposed method has been applied to data acquired from stroke patients that
have undergone a rehabilitation process, but many other clinical fields are currently interested
in the study of inhibition phenomena. For example, in focal dystonia, a neurological condition
affecting a muscle or group of muscles in a part of the body causing an undesirable muscular
contraction or twisting, studies of inhibition are crucial to understand its dynamics and progno-
sis. However, there are many problems affecting the measurement of cortical silent periods [35],
because the muscle control problems affect the EMG data acquired from these patients.

Also, inhibition is a parameter related with the diagnosis and prognosis of Parkinson and Hunt-
ington diseases[40], which are the cause of tremoring and loss of control of muscles difficulting
the CSP measurement.

Future could be devoted to the application of our proposed model to other neurological condi-
tions as those outlined.
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6.2.2 Application to other EMG parameters

We have focused on the application of VB-GTM-TT to the measurement of CSP. For further
validation of this model as a tool to analyze EMG data, we should test it in the calculation of
other inhibitory and excitatory parameters. An interesting parameter where our method could
be applied are MEP latencies, i.e., the time elapsed between the TMS pulse onset and the MEP.
This could also be treated as a change-point detection problem, since the MEP entails a sudden
change in the EMG signal. The behavior of these latencies is also related to many neurologi-
cal disorders of the central neural system and peripheral nerves, and no automatic methods are
currently used to measure it. Double-paired stimulation studies could also be enriched with the
application of our model.These studies involve performing two consecutive pulses in different
(or equal) magnetic stimulator output (percentage of stimulation), and measuring the effects of
the first stimulation on the second one. Depending on how this two stimulations are performed,
and also depending on how much time separates both stimulations (generally, less than 50ms),
excitatory and inhibitory effects will be generated, reflected on the second MEP acquired us-
ing EMG. Our method could be used to estimate both the latency between stimulations and
also the amplitude of both MEP activations; processes which are currently performed by direct
visualization of the data.

6.2.3 Application on other Neuroimaging Techniques

Further application of our model could extend to other neuroimaging techniques, such as EEG
or functional Magnetic Resonance Imaging (fMRI).

EEG is the recording of electrical activity long the scalp produced by the firing of neurons within
the brain. This signal seems to be very sensible to ocular movements and muscular artifacts.
Currently, there are many ocular artifact rejection algorithms in use, some of them based on
Independent Component Analysis and Artificial Neural Networks paradigms. Nevertheless, this
yet remains an open problem. Our method could be useful in the automatic detection of artifacts
on EEG recordings, since we have provided evidence that it is a powerful method of change-
point detection and resilient-to-noise visualization. Another application in the field of EEG
research could be in the study of event-related potentials (ERP).

An ERP is any measured brain response that is directly the result of a thought or perception.
The study of ERP involves the repetition of some cognitive task, such as movements in response
to any perceptual stimuli. The ERP is the result of averaging the activity of the brain when
the task is performed. Some of these studies require the performance and registration of many
trials (more than 100 in some cases), in order to obtain a clear and usable ERP. This makes
data acquisition difficult for some subjects, such as pathological patients. Our method could
be used as a change-point analyzer in raw EEG data, reducing the time required to register
the data. Our method could also be used in this field as a basis for the future development
of an on-line Brain Computer Interface (BCI) based on hand movement detection mediated by
EEG.Further application of our model could extend to other neuroimaging techniques, such as
EEG or functional Magnetic Resonance Imaging (fMRI). EEG is the recording of electrical
activity long the scalp produced by the firing of neurons within the brain. This signal seems to
be very sensible to ocular movements and muscular artifacts. Currently, there are many ocular
artifact rejection algorithms in use, some of them based on Independent Component Analysis
and Artificial Neural Networks paradigms. Nevertheless, this yet remains an open problem. Our
method could be useful in the automatic detection of artifacts on EEG recordings, since we have
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provided evidence that it is a powerful method of change-point detection and resilient-to-noise
visualization. Another application in the field of EEG research could be in the study of event-
related potentials (ERP). An ERP is any measured brain response that is directly the result of a
thought or perception. The study of ERP involves the repetition of some cognitive task, such as
movements in response to any perceptual stimuli. The ERP is the result of averaging the activity
of the brain when the task is performed. Some of these studies require the performance and
registration of many trials (more than 100 in some cases), in order to obtain a clear and usable
ERP. This makes data acquisition difficult for some subjects, such as pathological patients. Our
method could be used as a change-point analyzer in raw EEG data, reducing the time required to
register the data. Our method could also be used in this field as a basis for the future development
of an on-line Brain Computer Interface (BCI) based on hand movement detection mediated by
EEG.

fMRI measures the hemodynamic response (change in blood flow) related to neural activity in
the brain or spinal cord of humans or other animals, through changes of a powerful magnetic
field. It generates an image with a very precise maximum spatial resolution of 0.5mm of the
activations of the whole brain elicited by a particular cognitive task. As opposed to EEG, this
technique has a poor time resolution, because of the difficulty of measuring the hemodynamic
signal. Our method could be tested in such data, in order to allow high-frequency image ac-
quisitions and calculate more accurately the hemodynamic changes related to a cognitive task.
Also, this signal is very sensitive to motion, and current algorithms of normalization of the data
are affected by the presence of noise in the data. Our Index of Variability could be used also to
correct the images contaminated by noise and allow a more accurate analysis of this signal. To
this aim, some adaptations of our method would be required.

fMRI measures the hemodynamic response (change in blood flow) related to neural activity in
the brain or spinal cord of humans or other animals, through changes of a powerful magnetic
field. It generates an image with a very precise maximum spatial resolution of 0.5mm of the
activations of the whole brain elicited by a particular cognitive task. As opposed to EEG, this
technique has a poor time resolution, because of the difficulty of measuring the hemodynamic
signal. Our method could be tested in such data, in order to allow high-frequency image ac-
quisitions and calculate more accurately the hemodynamic changes related to a cognitive task.
Also, this signal is very sensitive to motion, and current algorithms of normalization of the data
are affected by the presence of noise in the data. Our Index of Variability could be used also to
correct the images contaminated by noise and allow a more accurate analysis of this signal. To
this aim, some adaptations of our method would be required.
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6.3 Appendix 1

Two publications are the result of this thesis

• Olier, I., Amengual, J. and Vellido, A. Segmentation of EMG time series using a varia-
tional Bayesian approach for the robust estimation of cortical silent periods. In Procs. of
the 18th European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning (ESANN), Bruges, 2010.

• Olier, I., Amengual, J. and Vellido, A. A variational Bayesian approach for the robust
estimation of cortical silent periods from EMG time series of brain stroke patients. Invited
for publication, Neurocomputing, 2011.
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6.4 Appendix 2: List of acronyms

• CSP: Cortical Silent Period.

• EEG: Electroencephalography.

• EMG: Electromiography.

• ERP: Event Related Potential.

• fMRI: Functional Magnetic Resonance Imaging.

• GABA: Gamma-aminobutiric acid.

• GTM: Generative Topographic Maps.

• GTM-TT: Generative Topographic Maps-Through Time.

• IV: Index of Variability.

• MEG: Magnetoencephalography.

• MEP: Motor Evoked Potential.

• MST: Musical Supported Therapy.

• MTS: Multivariate Temporal Series.

• PET: Positron Emision Tomography.

• RTM: Resting Motor Threshold.

• TMS: Trasncranial Magnetic Stimulation.

• VB-GTM-TT: Variational Bayesian Generative Topographic Maps-Through TIme.

• wpIV : weighted-prototype Index of Variability.
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