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1
Introduction

This paper is the final document written to gather the impressions and conclusions which we
have come to during the development of this master thesis.

In this research project you will find the description of a new kind of artificial neural network,
Heterogeneous Neural Network 2 (HNN2), which can be seen as a general abstraction of the
Radial Basis Function network. The model of neuron used is an improved version of the one
presented by Belanche [1] and the neural network is initialized using a clustering algorithm,
Leader2, developed at [2].
We will explain the way we have followed to get this artificial neural network that works allways
with understandable information, uses the concept of similarity and allows users to improve the
algorithm results taking advantage of expert information.

The basic Heterogeneous Neural Network (HNN) is also known as Similarity Neural Network
(SNN), by the importance of the similarity measures inside this method. The basic idea is that
a combination of similarity functions, comparing variables independently, is more capable of
catching better the singularity of an heterogeneous data set than other methods which require
previous data transformation. Each variable has its own characteristics, which is information that
can be used by the expert that knows it to choose its most suitable similarity function, taking
advantage of all the information he has. If this is done for each variable, we will be working
probably with a similarity measure that understands better the data. Missing values are also a
relevant characteristic of heterogeneous data, so we have to learn to deal with them. All these
ideas are applied to HNN and Leader2, joint to several improvements performed to the neural
network, like regularization or Alternate Optimization, in order to fit better the data but avoiding
overfitting. This is why we have called it Heterogeneous Neural Network 2 (HNN2).

This document is divided in several chapters. Initially, we will give an in-depth description
of the problem which we want to solve. In the second chapter, State of the art, you will get a
wide perspective of how was the field in which this project has been developed before we started.
Then, there is a description of the used methodology, where you can find the main decisions and
the development itself, followed by the explanation of the experimental settings done to test the
HNN2. Their results are commented and evaluated in the next chapter, and next some conclusions
are inferred. Finally, you will find the references used in the research and several annexes with
additional relevant information.

But in first term, before starting the description of the problem and in the way of making the
reading easier, it is necessary to provide you some vocabulary to know exactly the meaning we
have given to several key words. Next, in the same terms, you will find the most used symbols
with their description.

5



6 Introduction

1.A Vocabulary

Here you will find the definition of some terms which are constantly used in this document and
can have different interpretations. For this reason, we want to stablish the meaning we use:

Similarity It is defined as a value between 0 and 1 that measures the resemblance of two values.
It is such that the more resemblant are two values, the bigger is the similarity. There are
several methods to measure it, which change for different data types. Usually, the similarity
of a value with itself is 1. It will be nearer to 0 for values with lower resemblance.

Distance It is defined as a value between 0 and 1 that measures the resemblance of two values. It
is such that the more resemblance are two values, the smaller is the distance. The distance
is a metric which accomplish the triangular inequality, inside the group of the disimilarities.
For this reason, a distance can be expressed as a similarity doing:

Similarity = 1−Distance

The distance here is bounded between 0 and 1 in order to make easier the movement to
similarity, but it is usually defined in [0,+∞).

Leader2 Clustering algorithm based on the leader algorithm [3] developed at [2]. It is the
modification of an one-pass algorithm, that groups instances choosing some reference
instances (leaders) and assigning to each leader all the instances that are, at least, smin

similar with an specific leader. It only needs the smin parameter to perform (and the data
set, of course).

Cluster Set of instances that have the same reference instance and their similarity with it is
higher than smin. For this reason, the smin is a key parameter that controls the number of
clusters. If an instance has a similarity higher than smin with two different leaders, it will
belong to the most-similar leader cluster because an instance can only belong to one cluster.

Leader It is an instance that is used as reference of a cluster since it is created. It will be used to
assess if instances belong to the cluster that the leader represents. For this, the similarity
between the instance and the leader will be calculated and only would be accepted if it is
higher than smin.

ANN An artificial neural network (ANN), also called neural network (NN), is a mathematical
model based on the structure of biological neural networks that processes data through
an interconnected group of —artificial— neurons. It can adapt to the data and learn from
the examples. It usually distributes the neurons in several layers, each one of them has an
specific role in the learning process. It can be seen as a black-box where you only know
about the first and the last layer, but not about the middle ones.

Neuron A neuron is a mathematical function and the basic unit in an ANN. There are plenty of
different neurons (mathematical functions) and, inside an ANN, we find at least two kinds
of neuron. The common characteristics are that they usually receive one or more inputs,
executes the function and returns a single output. Also, the input(s) can be weighted, for
which some parameters are used. In the mathematical function, which can be also called
transfer function, usually there is a parameter that controls its behaviour, getting different
responses to the same input by changing this paramater.
Attending to the situation of a neuron into the ANN structure, we can classify it in:



1.A Vocabulary 7

* Hidden neuron Hidden neurons are all the neurons which are not in the last layer. They
are the contents of the black-box: we don’t know the values that they interchange, we
only know the inputs.

* Output neuron They are the neurons of the last layer. We know their outputs, because
they are also the outputs of the ANN (black-box).

HNN It is a two-layer ANN. The first-layer neurons use S-neuron, the neuron model described
at [4], and the second-layer transfer function (there is only one output neuron) is a linear
function that adds the weighted outputs of the first layer.

SNN See HNN definition.

smin (Minimum similarity) It represents a similarity value, so it has to be between 0 and 1. It is
used as necessary condition in Leader2 algorithm for an instance belonging to a cluster:
the similarity between the leader of that cluster and the instance has to be higher than smin.

Regularization In machine learning, regularization is a technique that introduces additional
information to cope with a problem preventing overfitting. This information is usually a
penalty for complexity.

Alternate Optimization It is a technique that combines the optimization of two parameters in
an alternate way. It optimizes the first parameter and uses its new value (after optimizing)
to perform the optimization of the second one. Then, it performs the same with the first
optimization and so on. It requires initial values for the parameters.

Missing value Missing value is the name used when there is lack of information. It is the case of
unknowing the value associated with a variable for one instance.

Convergence A numerical series converges if after n iterations the numerical value stabilize
around a non-infinite number.

Data set It gathers all the information that represents the problem. It is made up of a conjunt of
instances, usually divided in training and test sets. The data set has to be a good example
of the data generator behaviour.

Instance It is each one of the observations of the data set gathered to be analysed. It can be
called example, too.

Data type Each variable represents an specific characteristic which determines the set of possible
values. The nature of this set is the data type, which is also different for each variable.

Variable It is each one of the characteristics collected to represent examples in the data set. In
this way, an instance is a set of collected values of the variables characterizing the problem.
Attending to the meaning of the data it contains, we can talk of the class variable, which
indicates the observed result that returns the real model. It will be a numeric continuous
value if the problem is a regression problem or a label of the class which it belongs to if it
is a classification problem.
Attending to the data type, there are different kinds of variables:

* Continuous A variable is continuous if it can take any real value inside an interval and if
it is related with other possible values through an ordering relationship. The number
of possible values is infinite.
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* Discrete A variable is continuous if it can take any natural value inside an interval and if
it is related with other possible values through an ordering relationship. The number
of possible values is infinite only when at least one of the two interval bounds is ±∞.

* Ordinal A variable is ordinal if it can take any value inside a set of possible values
(numerical or not) and if this set can be ordered. The number of possible values is not
infinite.

* Categorical Categorical variables take their non-numerical values from a known set.
There is not an infinite number of possible values and it is not possible to stablish any
order or grade relationship between them.

* Binary This kind of variable indicates the presence or absence of some characteristic.
There are only two possible values (+/-), but only the positive one is a relevant
informative value. If two different instances have the negative value (characteristic
absence), the comparison can not be performed because it is not an interpretable
situation. If this situation could be interpreted, the variable would be a two-valued
categorical variable.

* Fuzzy This kind of variable represents continuous variables whose values are fuzzy
numbers. A fuzzy number is a number with an decreasing interval of possible
membership. It is used to express imprecision.

1.B Symbols

Here you will find the most used symbols with their description. This is necessary to follow the
text reading:

m Number of variables in the data set (without taking into account the class variable).

n Number of instances in the data set.

λ Regularization constant or parameter. When the method uses a different regularization param-
eter for each second layer weight (λi), that is called local regularization.

h Number of hidden neurons or clusters.

t Number of output neurons.

σ Width parameter of the RBF networks. It is possible to use a different width parameter for
each first layer neuron (σi).

p Smoothness parameter of the heterogeneous neurons, S-neurons. It is possible to use a
different smoothness parameter for each first layer neuron (pi).

X Missing value.

X Data set. It is a set of instances that represents an space from which the examples are collected.

x It represents an instance. xi is the ith instance. An instance is composed by some variables such
that xi ≡ {xi1, . . . ,xim}.
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s or S It means similarity. If you find si jk, it means that we are talking about the partial similarity
between the ith and the jth instances of the data set, for the kth variable. From here, an
equivalent nomenclature can be inferred: si j ≡ s(xi,x j) and then si jk ≡ s(xik,x jk).

w It means second layer weight. Their are associated with one hidden neuron and one output
neuron. With only one output neuron, w j is the weight associated to the jth hidden neuron
output. With more than one output neuron, wk j is the weight of the kth output neuron
associated to the jth hidden neuron output.





2
Definition of the problem and

definition of the goals

Machine learning is a field of artificial intelligence where some models are used usually to
analyse real situations and, then, try to predict the outcome of a new case with a similar situation.

Machine learning methods need data to be transformed using a codification that they can in-
terpret. This data usually represents real situations, which are described by natural characteristics
with their own values. For example, describing a car, you can see the color, the number of doors,
if it is automatic, its width/height, etc. All these characteristics (variables) are different in the
way they express the information and also in the type of information they express. A car can be
automatic or not, but a car can be black, red, gray, blue, etc. Also there is information that could
be numeric, like the number of doors, that is represented by a number but that really represents
an ordered group of possible values because often you only find three or five-doors cars. It is
not the same that the height, which is a continuous real number that, in the case of a car, usually
is between 1,20 and 2,5 metres. That is known as heterogeneous data and the world is usually
described with this kind of data.

Traditional machine learning methods requires, if they have to cope with heterogeneous data,
a transformation that converts all this data into numeric values. With this transformation possibly
you are losing some important information, because it can not be represented with the new code
or because whoever is preprocessing the data doesn’t know it. But you also lose the possibility of
interpreting easily the data, because it will be now codified in a non-human understandable way.
Finally, the dimensionality of the data set grows exponentially with this kind of transformation.

In addition, we have considered that the use of ANN matches with this idea of variety and
uncertainty. Then, we proposed to define an ANN that would be able to process the data in
its original representation. We have chosen this method because one of the most important
ANN features is adaptability, which is an interesting characteristic for a method dealing with
heterogeneous data problems. In this way, different parts of the algorithm have to be able to cope
with heterogeneous data, from initializer method of the first layer to activation functions in the
neuron models.

If the new method is able to deal with original data (accepting only basic transformations)
we will get interpretable information, because the data is the one we have collect or, simply, we
know about it. Another advantage of using original data is to retain all the information that could
be in the data and take advantage of it.

To do that, we have to build an ANN where if one reference instance is needed, it has to be one
of the original data set, in order to preserve the interpretability. It also has to be able to deal with
heterogeneous data, which requires a measure of similarity/disimilarity calculated independently
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12 Definition of the problem and definition of the goals

for each variable and then aggregating them, to take advantage of all the original information.
This method has to use original heterogeneous data to improve the fitting. So, at least, this method
has not to be worse than other known methods because, if not, we will not be demonstrating the
advantage of using data without transformations.

The heterogeneuos data has, as its name indicates, many different faces. So, since we are not
able to contemplate all these data types in advance, we have to do a customizable method where
users define their own data types and partial similarity functions.



3
State of the art

The contents of this master thesis belongs to the artificial intelligence area called data mining.
This area groups all the techniques that, using the computational power developed the last years,
extract information and knowledge of the data bases recognizing concepts or patterns that the
human mind can not detect. In this sense, machine learning [5] is the discipline that designs and
develops algorithmic techniques that allow computers to learn from a data set. These methods
extract automatically a common pattern or concept from the data and adapt it in order to infer
some conclusions.

3.A Similarity and missing values

Usually, in the learning process, the instances have to be compared and, for this, different
similarity/dissimilarity methods have been proposed. Traditionally, the most used metric has
been the distance metric, which is called only distance. Distance methods are an specific case of
the dissimilarity methods which fulfill the triangular inequality. The use of similarity measures is
so justified in the literature [1] [6], specially in some topics where the idea of distance doesn’t fit
because it can not be defined.
In classical artificial intelligence, the concept of similarity appears mainly in case-based reasoning
(CBR), but it has had also a long and successful history in the literature of cluster analysis and
data clustering algorithms.
Belanche enumerates the properties that every similarity measure fulfills. For the space X , which
represents all the possible cases of the problem, he defines:

1. Non-negativity. si j ≥ 0 ∀xi,x j ∈ X

2. Symmetry. si j = s ji ∀xi,x j ∈ X

3. Boundedness. There is a maximum attained similarity: ∃smax ∈R+ : si j ≤ smax ∀xi,x j ∈ X .

4. Minimality. Reflexivity in the strong sense. si j = smax⇐⇒ xi = x j ∀xi,x j ∈ X

The semantics of si j > sik is that instance i is more similar to instance j than to instance k.
Belanche also defines the concept of similarity aggregator, which is a function that combines

some similarity measures preserving the original properties of the similarities. One basic ap-
proach of aggregator is the one called Heterogeneous Euclidean-Overlap Metric function, HEOM
[7]. It defines the aggregator as the squared root of the squared partial similarities sum. The
variables can be categoric and be treated with overlap function or continuous and be treated
with continuous range function. Missing values are considered to have the maximum distance
(minimum resemblance).

13



14 State of the art

In depth, Belanche defines the aggregator as:
For a set of n similarity measures s ≡ {s1,s2, . . . ,sn}, where si ∈ [0,smax], with smax > 0. A
similarity aggregation is a function Θ : [0,smax]

n→ [0,smax] fulfilling some properties (minimality,
symmetry, idempotency, continuity, etc.) which introduce a specific semantics that express:

1. Even small contributions can only add something in favour of the overall measure.

2. The eventually missing pieces are regarded as ignorance and do not contribute in favour
nor against the overall measure.

The following is a valid family of similarity aggregators, such as Belanche defined it:

Θ(s) = f−1

(
1
m

m

∑
i=1

f (si)

)
(3.1)

where f is a strictly increasing and continuous function such that f (0) = 0 and f (smax) = smax.
The heterogeneous similarity [1], is basically the aggregation of the partial similarities

calculated independently for each variable using the most suitable (heterogeneous) similarity
measure.

In order to do the comparison process more understandable, most authors prefer the similarity
because it is a bounded value (s ∈ [0,1]). With this unified criteria you can imagine better how
resemblant every two examples are.
In relation with this, some authors have exposed their partial similarity measures and the way
to combine them, that is, their similarity aggregator [6] [1]. Gower explains different similarity
measures for several types of variables as well as an aggregator that is able to cope with missing
values:

G(s1, . . . ,sm) =
∑

m
k=1 skδk

∑
m
k=1 δk

(3.2)

where sk is a partial similarity to be aggregated and δk ∈ {0,1} is an partial similarity associated
value which is equal to 0 only when sk is missing.

All this is extended by Belanche, who exposes new partial similarity measures (he recognizes
new data types) and a generalized aggregator based on the generalized or power mean with
exponent q. This is the definition of his similarity aggregator:

Θ(s) = Mq(s1, . . . ,sm) =

(
1
m

m

∑
k=1

(sk)
q

) 1
q

, q ∈ R (3.3)

Note that this is the general aggregator (3.1) using f (z) = zq.
Changing the q value, you obtain different means (-1: harmonic mean, 0: geometric mean,

1: arithmetic mean, 2: quadratic mean. . . ) and it fulfills the property called generalized mean
inequality: if p < q then Mp(s1, . . . ,sm)≤Mq(s1, . . . ,sm) and the two means are equal if and only
if s1 = s2 = · · ·= sm.
Belanche uses this equation to aggregate the partial similarities but also to solve the problem
of the missing values. In this way, he replace the missing-value partial similarities with the
aggregation of non-missing-value partial similarities:

{s1, . . . ,sm} ≡
{
(sk) k∈C ,h ·Mq((sk) k∈C )

}
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where C is the index set of non-missing-value similarities and h is the size of this set. So, the
h partial similarities that are missing ((sk) k 6∈C ) are replaced with the aggregation of the rest of
partial similarities which are not missing values, Mq((sk) k∈C ).

Missing information is a very common problem in data analysis because there are many
causes for the absence of a value. The missing values problem acquires more relevance when its
number arises. There are basically three ways of dealing with them: completing the data gaps,
extending the learning methods to cope with incomplete data or forgetting instances with missing
values. This third approach is the worst because you are wasting data and its use is only justified
if the quantity of data available is large enough, and the proportion of instances affected is small
[8]. But it is possible the missing values to be normal in a situation (a sensor doesn’t work if
another one achieves some position, for example). In this case, deleting this instances is a serious
error.
On the other hand, the first approach is maybe the most common used one, replacing the missing
value with some other value which could be justified (mean of the variable, mode. . . ). A
complementary action would be to add a new variable indicating the instances that have missing
values in an specific variable. Thus, all variables with some missing value would go with a new
variable of these characteristics, and it would not be incompatible with replacing into the original
variable.
Finally, the second approach is the one that follow [9] and [6]. They use the known information
to estimate the final similarity despite of missing values. Using the known values, their methods
estimate which would be the possible effect of the missing values over the final similarity.
The main difference with the heuristic classical methods is that they estimate a new value for
each missing value whereas, from this point of view, the final aggregated similarity function is
estimated dealing with missing information.

3.B Learning methods

In the situation we are working, where there is a data set to be learnt, machine learning methods
can be separated in two main groups attending to the use of the class variable that the method
does. If the method doesn’t need class variable to perform, it is an unsupervised method. In the
other case, when the class variable is used, the method is called supervised.
The supervised learning tries to learn to relate some characteristics of the examples with an
concept. The objective is to be able to predict, later and using these relations, which is the concept
which a new example belongs to. Otherwise, the unsupervised learning tries to create a good
representation of how the examples are organized. With this representation, some concepts could
be inferred.

3.B.1 Clustering algorithms

A kind of unsupervised learning is the clustering, where the instances are grouped attending to
some measure of similarity between them. One of these methods is the Leader2 [2]. An adapted
version of this algorithm has been used in this thesis to initialize the first layer of the network. It
was chosen basically because it works with heterogeneous data and uses similarity measures.
Others characteristics of the Leader2 algorithm are that it only needs one parameter (smin) to
perform and the leaders (reference instances) are instances of the data set. Also, it preserves all
the properties of the former leader algorithm [3] and, furthermore, Leader2 adds new ones. These
properties are:
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1. For any instance (i), the similarity with its leader is higher than smin.

2. For any two leaders (l,k), the similarity between them is lower than smin.

3. For any two instances (i, j), if they are the same, then they have the same leader.

4. For any instance (i), the similarity with its leader is higher than its similarity with any other
leader.

5. The lowest similarity of an instance (i) with its leader will be higher than the highest
similarity between two different leaders.

This algorithm covers all the instances of the data set taking one at anytime and evaluating if it
can belong to any cluster already created. If it can not, a new cluster will be created using this
new instance. After processing all the instances, several clusters will have been created. The
number of clusters can not be estimated before starting the learning process, but it is possible to
stablish a relationship with the smin parameter: a higher smin (tends to 1), implies a higher number
of clusters.

3.B.2 Artificial Neural Networks

With respect to supervised learning techniques, in this thesis we have develop a new kind of
Artificial Neural Network that follows this learning paradigm. There are a lot of types of ANN
models and the most important ones are well explained at [8] and [10]. The ANN consists of an
interconnected group of neurons that processes information using a connectionist approach. Each
neuron is a process unit and their combination, distributed in layers, builds the model response.
There are many classifications for the different networks and one of them divides the ANN models
attending to whether it allows feedback between the different layers or not. In this sense, the ANN
model that only allows forward communication between the layers is called feedforward ANN
(figure 3.1).

Traditionally, some of the ANN models have been more frequently used than others ones. The
most populars ANN are the Multilayer Perceptron and the Radial Basis Function Networks [8].
These last networks use a two-layer feedforward network (Fig. 3.2) where the hidden neurons
implement a radial function. The neurons on the second layer, output neurons (usually only one),
perform the linear combination of the outputs of the first layer multiplied by their weights. Output
neurons usually incorporate another input, which is a constant input associated to an independent
weight (w0), the bias. So, the first layer neurons have m inputs and the second layer ones have
h+1 inputs. The model of the output neurons is simple. For the kth output neuron, the function
is:

yk(x) =
h

∑
j=1

wk jϕ j(x)+wk0 (3.4)

But the function of the hidden neurons is, as we said before, a radial function, which requires two
parameters: the width (σ ) and the center (µ). The center has to be an instance comparable with
the inputs and the width is a real number.
The function is the following:

ϕ j(x) = exp(−
‖x−µ j‖2

2σ2 ) (3.5)

where x≡ {x1, . . . ,xm} and µ j ≡
{

µ j1, . . . ,µ jm
}

.
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Figure 3.1: Two-layer feedforward ANN.

Here two basic question stand out: which is the right σ? and which µ has to be used at each
hidden neuron? Then, there are some others, as if it is better to use one or several σ ’s, but this is
a question that maybe is easier to answer in an experimental way.
For the first question, many different approaches have been applied to give a value to this
parameter. At [11], the authors defense the idea of choosing the right value using Cross Validation.
Others prefer heuristic functions to get this value [8] [10] [12].
For the second question, the number of radial functions is determined by the complexity of the
mapping to be represented rather than by the size of the data set [8]. In this way, many approaches
use an unsupervised learning method, like a clustering algorithm, to initialize the network. The
number of clusters (complexity) is used as number of hidden neurons and the clustering centroids
as centers of the functions.

In order to avoid overfitting, some functionalities can be introduced in the model construction
procedures, as the one called regularization. There are many ways to perform it, but the approach
most widely used in ANN is penalizing large weights. They are associated with complexity
because they usually mean a higher effort in fitting the data.
In this way, Orr [13] [14] has develop a great job in regularization for RBF networks. Since they
have a two-layers structure, it is only possible to perform regularization over the weights of the
second layer because the weigths of the first layer are the clustering centroids.
In this situation it is possible to perform two kind of regularizations: the standard one (only one
regularization parameter, λ [13]) or the local regularization (one parameter per weight, λi [14]).
Also different methods can be used when we are dealing with regression problems, where the
most used regularization method is called Ridge Regression, or classification ones.

So, the base of this research project is at [9], where Belanche proposes an ANN model,
the Heterogeneous Neural Network. It is inspired by RBF networks, but really it is a sort of
generalization. The HNN is an ANN that copes with heterogeneous data and uses the similarity
measures to build the learning model. Its structure is the same that the RBF network structure,
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but with an only difference: the neuron model chosen is the S-neuron.
The S-neuron (similarity-based neuron) is an H-neuron (heterogeneous neuron) where the function
used is a similarity function (or a similarity aggregator). Then, a feed-forward Heterogeneous
Neural Network (HNN) is a feed-forward artificial neural network where the hidden neurons of
the first layer are S-neurons and all their values are transferred to the second (linear output) layer
(Fig. 3.2).

Figure 3.2: Configuration of RBF networks and HNN.

All the data is heterogeneous in this approach, which means that even the first layer weights
allow missing values since they are instances of the input data set. The S-neuron adds a non-linear
component to the linear aggregator and, in this way, Belanche [9] proposes a family of sigmoidal
functions to operate in the [0,1] interval:

f (x, p) =

{ −p
(x−0.5)−a(p) −a(p) if x≤ 0.5

−p
(x−0.5)+a(p) +a(p)+1 if x≥ 0.5

a(p) =
−0.5+

√
0.52 +4∗ p
2

(3.6)

where p > 0 ∈ R is a parameter controlling the shape of the function inside of the family (Fig.
3.3). Belanche proposes p = 0.1 because it shows an averaged behaviour. The function fulfills
∀p ∈ R+, f (0, p) = 0, f (1, p) = 1, lim

p→∞
f (x, p) = x and f (x,0) = H(x− 0.5), being H the

Heaviside function.
The advantages of the S-neuron are many: it is intuitive, fulfills all the desired properties

for aggregation, is computationally cheap and it doesn’t take assumptions about how the partial
similarities are computed.
Then, the Heterogeneous Neural Network calculates:

yk =
h

∑
i=1

wkiϕi(x)+wk0

ϕi(x) = f (x, p)

where f is the function 3.6, p > 0 and k ∈ {1 . . . t}.
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Figure 3.3: Family of sigmoidal functions f (x, p) for different values of p.





4
Methodology and strategies to

solve the problem

This thesis is a project that has been developed in six months, and since it is a long time work,
it is necessary to plan the methodology. The work has been distributed around all the period,
dividing it into several clear tasks and imposing a working methodology.

4.A Methodology

The method we used in the development of the thesis can be divided in four basic subtasks:

1. Idea. At any point, before starting the research and the documentation, you have to know
exactly what do you want or what you are going to search. This is important because the
idea is the fact that guides the course of the documentation and it helps to avoid situations
where the field of the idea grows excessively and you lose the way.
When a situation like this happens, the idea have to be adjusted if you can find an interesting
way inside the wide grown field, reconsidered if you realize you were wrong or left if any
interesting way can not be found.
New ideas, not initially thought, can emerge during the development of the project. In
this case, you have to evaluate if you are interested in it and, in a positive case, apply this
research method to it.

2. Documentation. It is the first stage of the research, when you look at previous works of
people that have worked before in the field of the research.

3. Proposal. This is a key task, where you propose your own solution or application if you
think that there is a gap which you are able to fill (because you have the required knowledge
and this new idea).

4. Implementation. It is the moment when the idea becomes something tangible. You have
to build the idea taking into account the considerations of the whole implementations and
respecting all the rules. The intention is to add the idea to the system without affecting
parts no related with it. After this task, you will have the same system but with a new
functionality or with a previous functionality redesigned.

5. Test. It is the last step, where you have to verify the usefulness of this idea. Sometimes
this step it is not necessary because the results can not be verified, at least, in a short time.

21
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Otherwise, when it has to be performed, the results can be differents attending to the type
of problem.
If there is a single solution, you have to evaluate its contribution. If it is a basic component
of the project, the idea has to be beneficial for it. If not, if it is a secundary or optional
functionality, it has to do a essencial contribution in some specific situation.
In some cases, the solution is not unique, but there are several approaches. In this case, you
have to return the default, principal or most relevant solution, which will be looked up first.

We follow this method at two level. In a wide level, we follow it to develop the whole thesis.
In a close level, we follow it to develop each small idea that integrates the thesis. Following this
method have allowed us to develop our project.

4.A.1 Planning

This master thesis is targeted to improve the Heterogeneous Neural Network, getting a better
version that we have called Heterogeneous Neural Network 2. But, in a paralel way, we have
incorporated to the HNN2 the necessary functionalities to work like a RBF network. All this work
was divided into ten principal points:

Data types We have to decide which data types incorporate in this version of the algorithm:
continuous, categoric, binary. . . This classification is only a first version; a requirement of
the method is that the algorithm has to be extensible.

Similarity measures For each data type, there are many different similarity measures and we
have to choose several (per data type) to implement. In any case, this similarity measures
list could be extended.

Missing values The objective is to develop an algorithm where the method to deal with missing
values can be changed. But the solution to this point has to be a proposal with a default
method, and some other proposals, to cope with missing information.

Aggregator Dealing with heterogeneous data is a problem which we will try to solve using
partial similarities (similarity per variable). Then, these similarities have to be combined to
get the whole similarity, and that is what an aggregator does. The aggregator has to fulfill
some properties and we will look for a good approach to apply.

Leader2 This method was developed, in its first version, for general porposes. Now we will get
a new specific version adapted to all these functionalities we want to incorporate to HNN2.
We want to develop also an Leader2 distance version.

Neural Network structure This thesis is based in the Leader2 and in the HNN. This neural
network is the base for the development of the HNN2. We will build a two-layer feed-
forward neural network and we have to choose the method to calculate the weights of the
second layer. Like a secondary experiment, from this point we have in mind developing
a paralel RBF network based on the same theory and using the Leader2 algorithm as
initializer.

Regularization We will incorporate a regularization method that, during the building of the
second layer, keeps reasonable weights in order to avoid overfitting. In this case, we have
to decide also between a local version (several regularization parameters, one per weight)
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or a clasical version (only one parameter). This process could be different in regression
to in classification, so these possibilities have to be also explored to cover both. Finally,
this(these) parameter(s) can be optimized.

Standard deviation (p/σ ) The second parameter of the hidden neurons and the only one that
we can change once the centers have been fixed has to be adjusted. We have to choose
a first value for it and some heuristic function is the first option. But before, we have to
decide if we will use several parameters (one per hidden neuron) or only one. This(these)
parameter(s) is also optimizable and, for this reason, we propose an Alternate Optimization
in order to optimize this and regularization parameter together.

Data set choise The problems which have been chosen to test this learning algorithm have to
have heterogeneous data and missing values, for a correct test. It is necessary also to
test all the kinds of problems, so the set of problems has to be representative (basically,
regression/classification).

Experimental setting . With this point we will try to demonstrate that the learning method
performs well and obtains good results. In order to do this, some tests have to be performed:
looking for the best configuration of the algorithm, and others comparating it with different
algorithms.

But, some other tasks have to be carried out in a paralel way: writting this final report, improving
the efficiency of all the improvements that we add to the algorithm. . .

Finally, some of these points were grouped in sets of very closely linked ones. This is the
case of Data types and Similarity measures points, which are directly liked because depending on
which data types are selected, you have to provide different similarity measures. We also grouped
Aggregator and Missing values points, because the missing value treatment is performed during
the aggregation process.

4.A.2 Guidelines

For the implementation, we decided to use the R environment. R is a language and environment
for statistical computing and graphics [15]. R provides a wide variety of statistical techniques
(linear and nonlinear modelling, classical statistical tests, classification, clustering. . . ) and is
highly extensible. It can be run on a wide variety of platforms (Linux, Windows, MacOS. . . ).
It makes data manipulation, calculation, matrix calculations, many tools for data analysis and
others functionalities of classical programming languages.
R allows users to add additional functionalities by defining new functions. There are several
directories from which you can get many packages with non-default R funcionalities. For
computationally-intensive tasks, C/C++ and Fortran code can be linked and called at run time.
All these characteristics were enough to convince us. Here we have all we need to implement the
theoretical conclusions and to demonstrate their practical utility.

In addition, an important criteria in the implementation of the thesis is modularity. Our
objective is to get a method easily extendable. In this way, basic units of code have to be
implemented in separated functions which could be changed easily by the user if it were necessary.
That is basic in this thesis, because we work with many similarity measures, for example, and
maybe users could want to use their own measures.

Of course, another basic criteria is efficiency. R is not prepared for complex weighted
programs, and for this reason they allow users to implement these complex parts in C/C++, which
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do a more efficient use of the computer resources. So we have to implement a R code as efficient
as possible, leaving for further work its implementation in other language.

The third basic criteria is the use of justified decisions. All the changes incorporated to the
learning algorithm have to be justified by either the methodology explained above or a reference
to a previous work that justifies the decision.

4.B Development: decision and implementation

In this section you can look up all the decisions that we have taken for the final implementation
of the HNN2. We will respect the work division done for the development of the thesis and we
will use the same structure in this document. Only we leave the experimental settings out of this
section because they have their own section later.

4.B.1 Data types and Partial similarity measures

We consider that there is an space (X) from where we take some examples to represents a
particular case of something. These examples are allways collected in the same terms taking into
account the same characteristics. So, the ith example could be represented as a vector xi with m
components, and each one of them is a characteristic of the described object. In this way, the kth

variable (characteristic) of the example is represented as xik.
According to Belanche [9], a similarity measure is an unique number expressing how “resemblant”
two patterns are, given these characteristics. Then, a similarity between two instances (xi,x j ∈ X)
is represented as s(xi,x j) or using an equivalent notation: si j. But in this thesis, the similarity is
applied to each variable independently and then they are aggregated later; the meaning is the
same but the representation is s(xik,x jk) or si jk.
In practice, we define the similarity as a measure enclosed into the interval [0,1] and that is
greater the most similar the examples are. Then, the maximum similarity happens when you
compare an example with itself or with another one that is identical.

Attending to the variables, it is possible to find different types of variables and to use different
similarity measures to compare a variable. The data types and similarity measures selection we
present here is based on the Belanche’s selection [1]. But also, we have used some of the Gower’s
concepts [6].

Now we present the list of similarity measures, separated attending to the data type they
require, which were chosen to be included in this project. Note that the HNN2 has been written in
some specific way that allows users to incorporate their own similarity measures, so this list is
only the default collection.

Binary variables

We consider that a variable is binary if only two situations can happen ([+]: presence/ [−]:
absence) and absence in both of a pair of examples is not taken as a match [6]. In this case,
treating the variable as purely two-valued categoric can result in a loss of information because
you are giving to a value more importance that what it really has. Actually, you usually can know
which of the two matches is the relevant one (true-true or false-false) and build the binary variable
based on this.
The difference between a two-valued categoric variable and a binary variable is that in the latter
the two values are exclusive and the two only possibilities. For instance, a variable color with
possible values black and white would be categoric, whereas a variable is-black? with possible
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values yes and no would be binary. Realize that in the first case you can incorporate new colors
but in the second one no values can be added. But sometimes the difference is more conceptual
than practical.
In the literature there are many similarity measures for binary variables, where the negative
match treatment is different attending to the author. There are some approaches that propose all
the binary variables are treated together (Jaccard similarity, Simple Matching. . . ). Nowadays,
it is more common the separated comparison of binary variables. In this way there is the
frequency-based Belanche’s approach [9].

Belanche defines his proposal as:

sk(xik,x jk)≡
{

0 if xik 6= x jk
1−Pik if xik = x jk

(4.1)

where xik,x jk ∈ 0,1 are two binary values of two instances xi,x j ∈ X and Plk would be the fraction
of values of variable k that take on the same value than xlk over the whole space Xk, which is the
space for the kth variable. We calculate it taking into account only the instances in the sample
(data set) because we usually don’t have the real distribution of the variable.

If the values are different, there is not similarity (you are comparing presence with absence).
If they are the same value, the similarity is the inverse of the value probability.
For a variable k, it is more particular finding the same value at two instances (xik, x jk) when it is
an strange value than finding the same value at two instances when it is the most usual value for
this k variable. For this reason, we think that the first case has to have a higher similarity than the
second one and the simplest function that does this is: h(z) = 1− z and z = Pik.

But we introduce here some improvements in order to solve some situations.
In the first case, we propose a more complex function h to invert the probability. We know that
the probability is a real number between 0 and 1. For this reason, the h function has to be a
function that performs the transformation [0,1]→ [0,1] inverting the behaviour of the original
function. In order to get this behaviour, h function has to be decreasing. In this way, we take into
account three possible functions (you can see them in the figure 4.1):

h1(z) = 1− z

h2(z) = 21−z−1

h3(z) =
1− z2

1+ z2

The second improvement is based on the Laplace correction. The data set is a sample of
the real space (X), from where some problems can be generated. If our binary variable is out of
balance and the probability of some of the two values is near to 0 or 1, we would get a sample
with only one value (useless constant variable). Using this similarity function this situation would
generate a global maximum or minimum that is not real. Then, we suggest the probabilities to be
corrected in advance in this way:

Pik =
p
m if Pik = 0

Pik = 1− p
m if Pik = 1

where p≥ 1 and Pik ∈ (0,1). We propose p = 1 because it is the simplest behaviour.
Finally, the similarity function is defined as:

sk(xik,x jk)≡
{

0 if xik 6= x jk
h(Pik) if xik = x jk

(4.2)
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Figure 4.1: Graphical representation of the three possible h functions.

The algorithm incorporates others similarity functions for single binary functions. The first
one 4.3 was proposed at [6], which is an approach that returns 0 if the values are not equal, 1 if
they are equal and this value is positive, or X if they are also equal but the value is negative.
The second one 4.4 is the overlap function applied to binary variables, which returns 1 if the
values are equal or 0 if they are not.

sk(xik,x jk)≡


0 if xik 6= x jk
1 if xik = x jk and xik = 1
X if xik = x jk and xik = 0

(4.3)

sk(xik,x jk)≡
{

0 if xik 6= x jk
1 if xik = x jk

(4.4)

Some other approaches where the similarity is calculated taking into account all the binary vari-
ables together has been included in this learning algorithm. But they are not literally implemented
because using the aggregation functionality (see later), it is possible to simulate them. In concret,
we have Jaccard similarity (4.17), that uses 4.3, and Simple Matching (4.18), that uses 4.4.

Categoric variables

Usually, it is assumed that categoric variables are that variables which have two or more (not
infinite) possible values, no order exists among these values and the only possible comparison is
equality. Now xik,x jk ∈ Xc are not more binary values, but categoric. Xk is the categoric space
which defines the different possible values of the kth variable. The number of possible values can
be defined as ‖Xk‖ ∈ N and 2≥ ‖Xk‖< ∞, but it is not usually huge (an one-digits or two-digits
number).
The basic similarity measure for these variables, which has been named already in the previous
subsection (4.4), is the overlap. It is defined in the same way but two or more possible values as:

sk(xik,x jk)≡
{

0 if xik 6= x jk
1 if xik = x jk

(4.5)

Based on our binary similarity function, the probability approach, we have extended a similar
version for categoric variables. The only difference is again the number of possible values.

sk(xik,x jk)≡
{

0 if xik 6= x jk
h(Pik) if xik = x jk

(4.6)
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The change in these two last similarity measures regarding their binary version is a change
related to the kind of variable that actually doesn’t affect the similarity functions because they
work in the same way with 2 or any finite number of possible values.

Ordinal variables

These variables can be seen as a brigde between the categoric and the continuous variables. It
is assumed that the values of an ordinal variable form a linearly ordered space (Xk,≤) and the
number of them is finite.
For this kind of variables we use the Lin’s proposal [16], which is defined as:

sk(xik,x jk)≡
2log(∑ j

l=i Plk)

logPik + logPjk
(4.7)

where xik,x jk ∈ Xk, xik ≤ x jk, Plk would be the fraction of values of the kth variable that take on
the value xlk over the whole space Xk and the summation run through all the values xlk such that
xik ≤ xlk ≤ x jk.

Continuous variables

The following group of variables are the continuous. A continuous variable is any real variable
that can take infinite values in a range ((r−,r+), where r = r+− r−). In an standard situation,
the range is all R : (−∞,+∞), but it can change attending to the particular conditions of each
variable.
In this way, a large number of similarity functions have been proposed. But also distance functions
can be taken into account because, knowing the range of these variables, distance functions can be
bounded in the [0,1] interval by dividing the classical distance by the variable range, [0,+∞)→
[0,1). Then distance can be converted into similarity using the relation similarity = 1−distance.
In practice the range usually is unknown and that is why we calculate the range based on maximum
and minimum values of the continuous variable in the sample r̂ = max(xik)−min(x jk) when it is
necessary. If the sample is not so good, the possibility of getting a value out of the range rises,
which generates a conflict situation. The easier way to solve this problem is to preprocess new
data and changes the value out of the range by the bound value (∀xik > r+,xik = r+ and ∀x jk <
r−,x jk = r−).

We have incorporated some different measures. For any two values xik,x jk ∈ R:

sk(xik,x jk)≡ 1−
|xik− x jk|

rk
(4.8)

where rk is the range of the kth variable.
The second similarity measure is based on the classical distance measure called canberra. This
distance, in its original state, only works with non-negative values, so it is bounded by the interval
[0,1).

sk(xik,x jk)≡ 1− |a−b|
|a|+ |b|

(4.9)

where the subtraction is used to convert distance into similarity: [0,1)→ (0,1].
The same subtraction is used in the next function to get a similarity measurement from a

distance function:

sk(xik,x jk)≡ 1−min
(
|xik− x jk|

p
,1
)

(4.10)
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where p = 0.5. This p value is key in this function, where it says the scope of the measurement.
For two far values xik,x jk the similarity is 0 and then, the nearer values, the higher similarity.
p defines here the remoteness concept (how far they are) and attending to it we obtain the step
where the similarity begins being higher than 0.

Finally we include a last continuous similarity measure, that is define as:

sk(xik,x jk)≡
1

1+ |xik− x jk|
(4.11)

Note that we don’t separate integer from continuous variables. Given that N ⊂ R, any
similarity in R is also valid in N.

Fuzzy variables

Variables represented as fuzzy sets has been studied in depth by Belanche [17] [9]. Several fuzzy
similarity functions have been proposed and different choices are possible. In possibility theory,
the result is the likeliness of co-occurrence of two vague propositions, with a value of absolute
certainty.
We understand fuzzy as describing the vague observation of an object. When the measurement of
the specific value of a variable is done, some imprecision can be introduce in the result in the
form of indetermination. This is useful in situations where we consider that two close values
have some similarity but when they are far to a certain extent, there is no similarity. This happens
usually in the real life. For example, attending to the person people age, two people of 12 and 14
years old are similar between them (probably, they are students) and they are not similar with
someone of 40 (working), or with someone of 70 (probably retired).
Our proposal is based on fuzzy numbers. A fuzzy number in Xk (the reference set) is a convex and
normalized fuzzy set F with piecewise continuous µF , where symmetry of µF is not required [9].

The first of the approaches we have included in this learning algorithm is based on a triangle
of fixed dimensions for all the values 4.2.

Figure 4.2: Triangle representation of fuzzy sets.

sk(xik,x jk)≡

{
1− |xik−x jk|

2·P if |xik− x jk| ≤ (2 ·P)
0 otherwise

(4.12)

where (2 ·P) is the bottom side length of the triangle that represents the fuzzy number. In our
proposal, it is a fixed value at P = 1.5. You can see the way we follow to get this function at
annex A.4.

The opposite effect is the following, where the shape of the convex function depends on some
percentage of the value that represents.
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sk(xik,x jk)≡

{
1− |xik−x jk|

(xik+x jk)·P if |xik− x jk| ≤ ((xik + x jk) ·P)
0 otherwise

(4.13)

where P is the percentage that allows the function to calculate the width of the shape. The bottom
side of the triangle that represents the fuzzy number has a length of 2 · xlk ·P. In our proposal,
P = 0.05, that is a 5%. This approach is the only one that we propose where the convex shapes
depend on the values that they represent. You can see the way we follow to get this function at
annex A.5.

The following function has been built in the same way, but using the shape of a trapezoid 4.3
instead of the shape of a triangle. Doing that you are supposing that the imprecision level in the
variable measurement is higher and you want to secure that the very near values are considered
the same (without any devaluation).

Figure 4.3: Trapezoid-shaped representation of fuzzy sets.

sk(xik,x jk)≡


1 if |xik− x jk| ≤ (2 ·Pa)

1− |xik−x jk|−(2·Pa)
2·(Pb−Pa)

if |xik− x jk|> (2 ·Pa) and |xik− x jk| ≤ (2 ·Pb)

0 otherwise
(4.14)

where (2 ·Pa) is the upper side length of the trapezoid and (2∗Pb) is bottom side length of it. In
our proposal, they are two fixed values at Pa = 0.5 and Pb = 1.5. You can see the way we follow
to get this function at annex A.6.

It is possible to use other functions that use curved shaped. We incorporate this approach that
uses an exponencial function as convex shape of the fuzzy number 4.4.

Figure 4.4: Gaussian-shaped representation of fuzzy sets.

The function returned of crossing two equal exponential functions, centered at different points,
is used as similarity function:

sk(xik,x jk)≡ e−

(
(xik+x jk)

2 −xik

)2

2·σ2 (4.15)
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where σ2, that states the width of the exponential function, has to be set. In this approach, there
is an unique σ2 = 0.5 but it could depend on the value that the function represents. You can see
the way we follow to get this function at annex A.7.

Remember that the reasoning done to arrive to these fuzzy functions is explained in depth at
the annex A.

4.B.2 Aggregator and Missing values

One of the porposes of this master thesis is that the learning algorithm resulting of this research
works with heterogeneous data. We have decided to implement a method where each variable
could use its own similarity measure (partial similarities). That allows users to take all the
knowledge into the data if they really know the data characteristics.
But, in order to support this idea, we need a function that combines all this partial similarities
in a final global one. This is the reasoning that we have followed to look for an aggregator that
combines well the partial similarities.
Gower [6] proposed his version that was based on the arithmetic measure. A more complex
aggregator was the one proposed by Belanche [1]. He assures that the aggregation functionality
fulfills a semantic role, in the way it has to preserv some properties of the similarity measures.

In the way we have defined similarity measure, before the combination we have a vector
s ≡ {s1,s2, . . . ,sm}, where si ∈ [0,1]. A similarity aggregation is a function Θ : [0,1]m→ [0,1]
fulfilling some properties (Minimality, Symmetry, Monotonicity, Idempotency, Cancellation
law, Continuity, Compensativeness. . . ). This is an adaptation of the Belanche’s work [1] on
aggregation functions to our particular case, where we have m similarities between 0 and 1.
Belanche’s work is useful because he assures that given s≡ {s1, . . . ,sn} (where si is the partial
similarity for the object in Xi), a new measure obtained from any such aggregation operator Θ(s)
is a similarity measure in X = X1×X2× . . .×Xn. If a valid aggregation is that that fulfills all the
properties Belanches defined, a valid family of similarity aggregations could be:

Θ(s) = f−1

(
1
m

m

∑
i=1

f (si)

)
where f is a strictly increasing and continuous function such that f (0) = 0 and f (1) = 1.
A family of similarity aggregators that fits in this definition is:

Θ(s) = Mq(s1, . . . ,sm) =

(
1
m

m

∑
k=1

(sk)
q

) 1
q

, q ∈ R

which has been included by Belanche as aggregator in his works and it is obtained by taking
f (z) = zq. It fulfills the generalized mean inequality:

Mq(x1, . . . ,xn)≥Mq′(x1, . . . ,xn)⇐⇒ q > q′

This family includes some well-known means depending on q. For example, the arithmetic
mean is the mean you get if you use q = 1. Others means are the geometric mean with q = 0,
the quadratic mean with q = 2 or the harmonic mean with q = −1. The family is known as
generalized means or power means.

We consider that this is a good option and we have decided to maintain this family as
aggregator in our learning algorithm, but it will incorporate some additional functionalities, as we
will see below.
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Missing values in the aggregation

A basic characteristic of methods dealing with heterogeneous data that we have forgot expressly
is the missing values treatment. We incorporate this functionality in the aggregator because we
consider it is the best moment. Comparing two instances, the partial similarities for the most
of the variables usually can be performed normally. Sometimes instances have some missing
values, so the partial similarity can not be calculated, or the result of a partial similarity function
is missing. In these two cases the partial similarity is si = X , so the s vector changes:

s≡ {s1,s2, . . . ,sm}, where si ∈ [0,1]∪{X }

This is a problem that have to be solved because the Mq functions are not able to cope
with missing values. We are presenting a learning algorithm, so if some user would prefer to
replace missing values before calling the HNN2, there is no problem. But we have to provide
some funcionality to cope with them and the only option we take into account is to estimate the
aggregated similarity using any si = X with the right value with this objective.
This is a problem that grows with the percentage of partial similarities that are missing. For
example, if there are 10 variables and only 1 missing value, the aggregated similarity depends a
10% on this missing, it is no so important. But, if there are 9 over 10 that are missing, now we
have a 90% of uncertainty, which is a very important problem.
In this way, we have proposed some possible approaches.

1. The first proposal is based on the Gower aggregator [6]. There, when a partial similarity si

is missing, the flag that goes with this partial similarity (δi) is set to 0 (when it is usually 1).
This does that the aggregator calculates the arithmetic mean without taking into account si.
This approach supposes that the values that in this moment are missing would not change
the mean.
But, if you can not delete any partial similarity but you have to replace them in order to
perform the aggregation, an equivalent behaviour is to use the mean of non-missing value
partial similarities to replace the missing values.

Mq(si∈C ) = Mq(s), where si = X is replaced by si = Mq(si∈C )

s≡ {s1, . . . ,X , . . . ,sm}⇒ s≡ {s1, . . . ,Mq(si∈C ), . . . ,sm}

where C is the set of indexes that represent non-missing value partial similarities. That is
true for any q and this is the demonstration:(
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This demonstration has been done for only one additional value. But easily it can be
extended to several additional value.

So, using this property we implement the Gower approach replacing the missing partial
similarity measures by the mean of the non-missing value partial similarity measures.

si 6∈C = Mq(si∈C )

2. The second method is a very basic approach: to replace the missing partial similarity
measures by 0. Doing this you are considering that there is no similarity if one of the
instances has some missing information. That is, you are isolating this example with respect
to any other example, there is no a minimum similar case.

si6∈C = 0

3. Another basic approach is to replace the missing partial similarity measures by 1
2 . Doing this

you are considering that the missing information does the example more similar to any other
example in average. Usually the middle is used as reference point in comparing two any
things, so this same principle is behind our proposal. If similarity is defined between 0 and
1, the nearest point to any other is 1

2 . Latter we will talk about normalizing into aggregators,
which will do this approach more interesting because right now, non-normalized variables
can have their mean in a point different to 1

2 .

si 6∈C =
1
2

4. The last approach is based on an interval of possible values. When we are calculating
an aggregation of partial similarities, the result depends on all the partial similarities in
the same way. So, if some of the partial results is missing, attending to the value used to
replace the X and the non-missing value partial similarities, we can stablish an interval
where the result could be. The center of the interval is the value we propose to replace
missing values.
We define this interval as:
The lower bound (lo) would be the aggregation using 0 as value to replace X . That is the
minimum possible global similarity attending to the non-missing value partial similarities.
The upper bound (up) would be the aggregation using 1 as value to replace X . That is the
maximum possible global similarity attending to the non-missing value partial similarities.
The center would be calculated also as the aggregation of these two previous values.

lo = Mq(s1, . . . ,sm) =
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(
1
m

(
∑
i∈C

(sk)
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q

si 6∈C = Mq(lo,up)
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It could seem that the two last proposals are the same, because both are based on the idea of
going towards the center if there are many missing values. But they only are exactly the same
proposal for q = 1. Developing the previous function we get:
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And the function, using 1
2 as replacing value:

Mq(s1, . . . ,sm) =
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The only one difference is in the second term of the summation, that for Mq(lo,up) can be
expressed as:

∑i6∈C 1
2

And, for the other expression, the term can be expressed as:

∑i6∈C 1
2q

So, only when q = 1 the two results are exactly the same.

Note that this method is only valid for q≥ 0. For q < 0, Mq suffers this transformation:

Θ(s) = Mq(s1, . . . ,sm) =
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, q < 0 and p = |q|> 0
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When we calculate the lower bound we use 0q, which in the case of a negative q for the aggregator
would be 1

0p = ∞. Then, in the summation the other partial similarities doesn’t matter because

∀xi =
(

1
sk

)p
,x1 + x2 + · · ·+∞+ · · ·+ xm = ∞ and the last inversion

(m
∞

)p
= 0p, that is 0 for all

p > 0.
So, these two last approaches try to represent the same concept through different ways. This

last one is less general (not valid for q < 0) and also it is a little bit biased by the non-missing
value partial similarities mean. Against it, the third approach is valid for any q and it is totally
independent, because the value is not calculated.

You can see a camparative table of the different methods proposed for two different values:
q = 1 (table 4.1) and q = 2 (table 4.2).

Table 4.1: Table comparing different replacing missing value functionalities. That is supposing
20 partial similarities and q = 1. The method 1) is Gower, 2) si = 0, 3) si =

1
2 and 4) interval.

sC Number of X [lo, up] 1 2 3 4
0.9 1 [0.855, 0.905] 0.9 0.855 0.88 0.88
0.9 19 [0.045, 0.995] 0.9 0.045 0.52 0.52
0.1 1 [0.095, 0.145] 0.1 0.095 0.12 0.12
0.1 19 [0.005, 0.955] 0.1 0.005 0.48 0.48

Table 4.2: Table comparing different replacing missing value functionalities. That is supposing
20 partial similarities and q = 2. The method 1) is Gower, 2) si = 0, 3) si =

1
2 and 4) interval.

sC Number of X [lo, up] 1 2 3 4
0.9 1 [0.877, 0.905] 0.9 0.877 0.884 0.891
0.9 19 [0.201, 0.995] 0.9 0.201 0.527 0.718
0.1 1 [0.097, 0.244] 0.1 0.097 0.148 0.186
0.1 19 [0.022, 0.975] 0.1 0.022 0.489 0.69

These two tables show the practical behaviour of these methods. The Gower proposal is
less variable, the second one is too much pesimist and the others two are in the middle, but the
proposal of the interval is not so impartial as we had said above theoretically.

Normalized aggregation

When we aggregate some partial similarities we are assuming that all of them have the same
importance. We could give different importances to each partial similarity using a weighted
aggregation but that is not the case.
But what is really happening is that we consider that the partial similarity are homogeneous and
this is not true. Each partial similarity has its own mean in [0,1]. In this way, the partial similarities
with a higher mean finish imposing themselves since they do a more important aportation to
the aggregation. For example, for two variables distributed at [0.2,0.55] and [0.7,0.9], even the
highest similarity of the first variable is less important than the lowest similarity of the second
variable.
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We propose to incorporate a functionality that gives similar importance to all the partial
similarities using the same mean. In order to achieve that, the algorithm has to perform a pre-
process where the partial similarity means are calculated. Then, these means will be used to
normalize to the variables. But we only have the data set, so we calculate the sample mean
comparing all the instances between them.

sk = s..k

where s..k means that all the instances are comparated with all of them for the kth variable.
This value is used to get all variables with mean at 1: ŝi jk =

si jk
sk

. Doing this, any si jk < sk changes
to ŝi jk < 1, any si jk > sk changes to ŝi jk > 1, and only when si jk = sk, ŝi jk = 1.
Now, we have to translate the mean to 1

2 and fit the function into [0,1], because right now it goes
from 0 to +∞. We want to use the function f (z) = 1

1+e−z because it has two horizontal asymptotes
at y = 0 and y = 1, and it moves from x =−∞ to x =+∞ crossing the vertical axis at the point
(0,0.5). Then, we only need a function that transforms the current interval (0,+∞) to the interval
input of the f function (−∞,+∞). That is, g : (0,+∞)→ (−∞,+∞) crossing the horizontal axis
at (1,0) to use 1 as the central value (remember that when si jk = sk, ŝi jk = 1). But, actually, the
function f we have described is the logarithm, g(x) = ln(x). So, we have:

f (z) =
1

1+ e−z with z = g(x) = a · ln(x)

where a is a constant that allows us to reshape the normalization function (see the effect of
changing it at figure 4.5).

If both functions ( f and g) are combined we get:

f (x) =
1

1+ e−a·ln(x) =
1

1+
(
eln(x)

)−a

f (x) =
1

1+ x−a =
xa

xa +1

And the final function n : (0,+∞)→ (0,1) we propose to transform the ŝi jk is 4.16:

n(x) =
xa

xa +1
(4.16)

where a is a factor that stablishes the curve of the function 4.5. We have chosen the value
a = ln(10) = 2.3 > 1, because the black line (in the figure) is the one that works and adjusts
the distribution of similarities better. With lower a values, the similarities are allways near to 1

2
whereas, using a value as the one we propose, the similarities are more spread over the interval
(0,1).
This function has to be called every time that a similarity is calculated with n(ŝi jk) = n

(
si jk
sk

)
.

In this context, we defend the use of the third approach to replace missing values, using 1
2 .

Using this normalized aggregator, the mean value or expected value for every variable is now 1
2 .

In this way, if there are missing values in an aggregation, the most logical solution is to use the
expected value to replace them and perform the aggregation. This simple solution is justified by
the normalization:
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Figure 4.5: Graphical representation of the three a values for the normalizing function n.

When there is no missing information, si jk 6= X , then the aggregator performs over the normal-
ized partial similarities, s′i jk = n( si jk

s..k
).

When there is missing information, si jk = X , then 1
2 is used as its normalized partial similarity

s′i jk =
1
2 . That is using s..k to replace the missing value, si jk = s..k, and then apply the

normalization s′i jk = n( si jk
s..k

) = n( s..k
s..k
) = 1

2 .

So, in the way we have defined the whole aggregator, using s..k (k-variable partial similarity
mean) to replace si jk has the effect we expected over the non-missing value aggregation, moving
it towards the central data model characterization.

Partial aggregations

But we have thought that this concept of aggregation can be used in other fields. Sometimes we
could want to unify several partial similarities in an unique higher order partial similarity. That
could be because some variables represent something and they have to be treated together and not
independently as any other variable.
This conception generates several levels of aggregators and, for example, if the first level aggre-
gator has l variables, the second and final level would have m− l +1 variables (where the 1 of
this formula is the result of the first level aggregator).

Θi(Oi) = Mq(sk∈Oi)

Θ(s) = Mq({sk 6∈Oi ,∀i}∪{Θ1(O1)}∪ · · ·∪{Θn(On)})

where Oi is the conjunt of partial similarities (variables) grouped by the ith aggregator.
In these cases, the normalization would be not necessary because we are relating similar

variables, so they have to be compatible.

There are two basic cases that we have taken into account since we decided to use several
levels of partial aggregators. They are combinations of partial binary similarities into an unique
measure. In this way, we are thinking in two similarity measures that are based on the four
values of the table 4.3. Each letter represents the number of partial similarity measurements that
compare two values following its associate combination of binary values (a: number of ++, b: +-,
c: -+, d: –).
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Table 4.3: Four possibilities of comparing two binary values.

1 0
1 a c
0 b d

Following the table 4.3, the Jaccard similarity can be defined as:

s =
a

a+b+ c
(4.17)

This function, using our aggregator, can be set with q = 1, the binary partial similarity function
“Binary” 4.3, and Gower proposal to replace missing values.
“Binary” only returns 1 when the two values are 1. Then it returns 0 when one value is 1 and the
another is 0, and returns X if both are 0.
Gower doesn’t take into account X ; his proposal is similar to replace missing values with the
non-missing values mean. Then, performing the arithmetic mean (aggregator with q = 1) you get
the Jaccard coefficient.

Following the table 4.3, the Simple Matching similarity can be defined as:

s =
a+d

a+b+ c+d
(4.18)

This function, using our aggregator, can be set with q = 1, the binary partial similarity function
“Binary2” 4.4, and Gower proposal to replace missing values.
“Binary2” returns 1 when the two values are the same or returns 0 when they are different.
Performing the arithmetic mean (aggregator with q = 1) you get the Simple Matching coefficient.
Gower doesn’t take into account X since his proposal is similar to replace missing values with
the non-missing values mean. Here this functionality has no relevant importance because if there
are X , they come from the data collection and not from the partial similarity results, as in the
previous method.

RBF version

In order to implement the RBF network in a paralel way, we have to supply an aggregator specific
for this version.
In the RBF networks, missing values and heterogeneous data are not allowed. Then, the aggregator
is a simple function that implements an exponencial RBF:

Θ(s) = e−
∑

m
k=1(sik−s jk)

2

2σ2 (4.19)

where σ2 = m. This value was chosen because practical proves demonstrate that it can represent
a good solution as heuristic for RBF’s width if you don’t have any more information.
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4.B.3 Leader2

The Leader2 clustering algorithm was presented at [2]. It improves the leader algorithm, its
Hartigan’s classical version [3]. A in-depth study of the original algorithm and the similarity
concept support the changes incorporated in the new version.

This algorithm is unsupervised, that is, it doesn’t uses information about any target to fit the
data. It gets instances, one by one, and asigns them to their most similar cluster. A cluster is
represented by a leader, which is used to calculate the similarity of any instance with the cluster.
The clusters are created dynamically when the similarity of an instance with any cluster is less
than a minimum. This minimum is the only required parameter of the algorithm, the smin, and it
is the key that controls the number of clusters that the algorithm finally returns. Here, there exists
a directly proportional relationship, a low smin value implies a low number of clusters, and a high
smin generates a lot of clusters. smin is a similarity, so it is defined also in [0,1].
When an instance doesn’t belong to any cluster, a functionality that searchs the best candidate
to be the leader of a new cluster starts. Its only condition is that the instance that started this
functionality has to belong to the new cluster. It searchs between the non-assigned instances
a group of very-similar instances. Between them, the algorithm gets the instance that is more
similar in average with all the other instances into the group, and this is the leader of a new
cluster. Everytime a new cluster is created, previous assigned instances are re-evaluated. If some
of these instances is more similar with the new cluster than with the cluster which it belongs to,
this instance is re-assigned to the new cluster.
Finally we get a set of clusters that group instances attending to similarity measures. An instance
is leader of a cluster or it belongs to its most-similar cluster. Leader2 has a hard dependence on
the input instances order that is followed to cover all the instances. That and the smin determine
the appearance of the solution returned by the Leader2.

The changes that we have incorporated into the algorithm during this project are basically
implementation changes. The algorithm continues working in the same way.
The more important change was the incorporation of all the theory we discussed above. All
the aggregators, similarity functions and missing values replacers are implemented to be used
as heterogeneous similarity measure. The basic aggregator allows recursive calls, in order to
perform several levels of aggregation.
When the normalization is used, a preprocess is called to calculated the partial similarity means.
In order to improve the performance of the algorithm a n×n matrix is used to keep the similarity
between all the instances. That is because we confirmed through practical proves that some
similarity measures were done several times. In terms of resources we sacrifice some memory,
that nowadays is cheaper and more common finding computers with big memory spaces, with the
objective of gaining in processor time.
Other deep change is the new data structure used to represent the instances that belong to each
cluster. In the one hand we have a n-length vector that keeps the similarity of each instance with
its cluster. In the other hand, there is a h-length list that, for each cluster keeps a vector with the
instances that belong to it. The characteristic that gives more relevance to this vector list is that
the vector are sorted by similarity. The instances more similars with the leader are located in the
top positions of the vector. The leaders naturally will be in the first position of each cluster vector.
This new structure allows a more direct access to the less-similar instances of each cluster, which
is useful for the reassignation of instances done everytime that a new cluster is created.
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Leader2 supervised version

Following the idea implemented by Wettschereck and Dietterich [11], we have implemented an
semi-supervised version of the Leader2 algorithm. They defense the use of supervised clusterings
to initialize the first layer reasoning that if the results of this algorithm will be used in a supervised
method (the Artificial Neural Network), a supervised clustering would help to separate better the
instances in the first layer of the ANN.
Before we said semi-supervised version because the only change we introduce with respect to
the original version is that instead of calling the algorithm only once using all the instances, we
call it x times, where x is the number of classes. Each time the algorithm is called, we give it
the instances of a different class. Finally, once the algorithm has been called once per class, we
aggregate the clusters returned by each call in a global solution.
For this reason we say that this is a supervised version, because we separate the instances by
class and then we call the algorithm for each group of instances independently. In this way, two
instances of different classes can not be in the same cluster, although they were the most similar
couple of instances.

So, this version breaks some basic similarity principles of the algorithm [2]. The most data
sets don’t have naturally well separated classes, so some instances could have a more similar
cluster than the one it belongs to. That is because there are two divions, the first one by class and
the second one by similarity. Also, since the Neural Network is built, when the HNN2 receives a
new instance, it goes through the first layer without taking into account its class label and maybe
the most excited neuron will not be the one which represents the cluster to which it would belong
attending to this supervised version.

Leader2 distance version

We have also implemented a distance version of the Leader2. The way in which the algorithm
works is the same, but it uses distance measures instead of similarity measures. Doing this we
are limiting the scope of the algorithm because now this version only works with dissimilarity
measures that fulfill the triangle inequality, that are a subset of the dissimilarity measures and so,
a subset of the similarity measures.
But there is a great advantage: distance version can incorporate some improvements that outper-
form the algorithm (pruning the search tree and leaving earlier non-promising calculations). So,
when a problem can be treated using only measures that fulfill the triangle inequality, it should be
treated with this new distance version in order to take advantage of its performance.

First of all, the change between similarity and distance entails a complete change in the
algorithm conception. Traditionally the algorithm is based on a measure that moves between 0
and 1, being maximum resemblance at 1. Now, the distance version preserves the interval, that
is again [0,1], but the maximum resemblance is now 0. The aggregator works in the same way,
but similarity measures are now distance measures. The only parameter that the algorithm has is
dmax in this new version (before smin). Behind the two versions the idea is exactly the same, but
changes with the function that relates distance and similarity: distance = 1− similarity, such as
we have defined distance and similarity concepts.

Once the algorithm has been rewritten using distance measures, some improvements have
been implemented. The first one is based on the idea that Elkan proposed for K-means clustering
algorithm [18].

The first idea is, taking advantage of the new sorted storage of the instances belonging to
a cluster, to use the triangle inequality (4.20) to avoid unnecessary calculations [18] [19]. For
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example, a new cluster has been created and it is exploring the others looking for instances to
reassign. When that is done, the checking starts with the farther instances of the cluster and goes
towards the nearer ones. Then, if the distance of an instance with its leader is less than half of
the distance between its leader and the leader of the new cluster, it can stop because no more
instances will move between the two clusters.

d(a,b)≤ d(a,c)+d(c,b) (4.20)

Using that we know that if d(a,b)≥ 2 ·d(a,c), then d(b,c)≥ d(a,c). So, having a instance a, its
leader l(a) and a new cluster represented by the leader l(x) where l(i) returns the leader of the
instance i, if d(l(a),l(x))

2 ≥ d(a, l(a)), the comparations could stop because d(a, l(x))≥ d(a, l(a)).
The following instance e of the vector related to the cluster l(a) = l(e) can not be moved because
it is stored in a sorted vector such that d(a, l(a))≥ d(e, l(e)). Following the triangular inequality,
if a doesn’t move, e neither.

The second idea is based on the same reasoning to avoid some calculations, trying to predict
if it is impossible to reach the distance required when we want to assign an instance to a cluster.
For this, it is necessary to know the distance between the different leaders and the distances
between the instance to assign and the leaders checked so far. With this data some triangulations
can be drawn and notice the algorithm if a way that it is checking is not promising.

We have rule out a third idea [20], which consists in avoiding the calculation of some partial
distances if we are aggregating the partials results and we realize that this incomplete result is
not so promising. In this case, the algorithm would leave the similarity calculation before all
the partial similarities are calculated. We have decided not to implement it because it performs
inside the aggregator, that is a functionality that we have left out of the basic algorithm in order to
get the algorithm more abstract. In fact, users can define their own aggregator. There is another
problem, working with heterogeneous data implies taking into account missing values and their
behaviour in this case is not so clear. Studying the effect of missing information here requires an
in-depth study that goes away from our research.

Initializing RBF networks

The Leader2 clustering algorithm can be used to work as RBF network initializer selecting
the radial basis aggregator (4.19). This is the only functionality that has to be changed in the
algorithm along with the obligation of using allways continuous variables.
But also some preprocesses can be saved in this version, like the calculation of partial similarity
means, which would accelerate the algorithm.

4.B.4 Neural Network structure

As we have already pointed out, the Heterogeneous Neural Network 2, our ANN model, is
based on Belanche’s work [9] [1]. Belanche’s proposal is a sort of generalization of the RBF
networks. The structure of the HNN2 is also the same that in HNN or RBF networks, a two-layer
feed-forward ANN (fig. 3.2).
The HNN2, as the HNN, is an ANN that deals with heterogeneous data and uses similarity
measures to build the learning model. The Leader2 clustering algorithm is used to initialize the
network. The first layer is composed by h S-neurons, one per cluster and using its leader as center
of the neuron. These neurons use as input heterogeneous data instances without preprocessing.
According to this definition, S-neuron inputs are m-length vectors among which there might be
reals, fuzzy sets, ordinals, categorical and missing data.



4.B Development: decision and implementation 41

The neurons in the second layer perform a simpler function that collects all the outputs of the
S-neurons multiplied by a weight and then mix them to return a combined output. Each one of the
second layer output are also HNN2 outputs, so if it is a regression or a two-classes classification
problem, there will be an only one output neuron. Otherwise, there will be one output neuron per
class.

But let’s see the HNN2 in detail.

S-neuron

The S-neuron (similarity-based neuron) is an H-neuron (heterogeneous neuron) that uses a
similarity function to calculate the response of the neuron. Our proposal reconsiders the neuron
model presented by Belanche [9] incorporating some changes.

In the original version, the S-neuron model has the following parts:

1. The weight vector (µi). It is usually an instance of the data set that is used as center of the
neuron. It represents the point of maximum similarity for the neuron. The more similarity
is an instance with the weight vector, the higher the response of the neuron.

2. Similarity measure. It is the aggregator that returns a global similarity measure for all the
partial similarities. Belanche defines it in this way:

s(x,µi) = Θ(sk(xk,µik)k=1,...,n) = Mq(sk(xk,µik)k=1,...,n)

In this situation an input instance and the weight vector corresponding to that neuron are
allways compared.

3. The smoothing parameter (γi). It is a parameter defined in the interval (0,1] that has as
main purpose to make similarity measures smooth.

4. The activation function ( f ), is any sigmoid-like automorphism in (0,1). It takes the
similarity and adds a non-linear component to the aggregator result, that is linear.
Belanche proposes the family 3.6, above presented. Here we reproduce it again:

f (x, p) =

{ −p
(x−0.5)−a(p) −a(p) if x≤ 0.5

−p
(x−0.5)+a(p) +a(p)+1 if x≥ 0.5

a(p) =
−0.5+

√
0.52 +4∗ p
2

where p is a real-valued parameter that controls the curvature of the function. Belanche
proposes p = 0.1, that gives a central behaviour (see at figure 3.3).

All these parts are combined to make the function (Γ(x)) computed by the S-neuron. This
would be the function computed by the ith hidden neuron:

Γi(x) = f (γi ∗ s(x,µi), p), p = 0.1,q ∈ R,γi ∈ (0,1]

with s(x,µi) = Θ(sk(xk,µik)k=1,...,n) = Mq(sk(xk,µik)k=1,...,n) (4.21)

Our proposal takes this function and changes some aspects in order to improve it and stops
doing unnecessary calculations. Following the same division, we have implemented a new
S-neuron version as:
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1. The weight vector (µi), that fulfills the same role.

2. Similarity measure. It is the similarity aggregator that we defined above:

s(x,µi) = Θt(sk(xk,µik)k=1,...,n)

Since the comparison is allways done when an instance arrives at a neuron, the aggregator
only performs comparison between arrived instances and the weight vector of the neuron.

3. The function of the smoothing parameter, that in Belanche’s proposal was done by a new
parameter (γi), now we propose that this functionality is performed by the p parameter. In
the way it was defined by Belanche, it already has the capacity of changing the response of
the neuron, that is directly connected with the similarity measure.

4. The activation function ( f ) is the same function family that Belanche proposes 3.6. It
fullfils the properties we want for our neuron, returning values in the interval (0,1) and
adding a non-linear component to the aggregator result. In the same way, we also propose
p = 0.1 by the same reason: the shape that draws the function f (x,0.1) gives a central
behaviour (fig. 3.3), but as we will explain below, it is not allways the same.

So, the definition of our S-neuron version can be synthesize in the next function:

Γi(x) = f (s(x,µi), p), p ∈ R,q ∈ R
with s(x,µi) = Θt(sk(xk,µik)k=1,...,n) (4.22)

where p is better in [0,3] (greater than 3 the function becames so linear), p also acquires the γ

skills and Θt is the aggregator we talked about in the previous sections. Now, p can change, but
the HNN2 could use also different p values for each neuron. That is, using pi instead of a global
p.

The main changes between the two versions are the new aggregator and the use of p instead of
γ . We remove the use of γ in the way Belanche points out because it has not an obvious porpose.
He defines γ as a parameter that multiplies the result of the function f looking for smoothness.
But, in the way the neuron model is defined, f ∈ (0,1) and also γ ∈ (0,1]. Since we multiply two
values which are between 0 and 1 (a,b ∈ [0,1]), we know that the result will be lower or equal
than the minimum value a or b. That is, a∗b≤min(a,b). For this reason we know that the real
effect of γ over the f result is that it reduces the f result proportionally (see at figure 4.6).

The solution that we propose really changes the function. Changing p you get a different
function of the f -family where it is more linear the higher is p (see at figure 4.6).

Second layer neurons

The neuron model for the second layer doesn’t change with respect to the HNN Belanche’s
proposal. It is a linear model that performs a summation of all the responses of the first-layer
S-neurons (Γi(x)). These responses are weighted by a coefficient before the summation wki,
where k refers to be the kth output neuron and i refers to come from the ith hidden neuron. Once
the summation is done, some neuron models propose apply a function to transform the output.
That is really necessary in some kinds of learning, like classification, where usually a logistic
or heavyside function is used to return a discrete response {0,1}. But here we will not use any
function and the response will be the weighted summation. In the figure 4.7 you can find a
representation of this kind of neuron.



4.B Development: decision and implementation 43

Figure 4.6: Effect of the parameters p and γ over the function f according to the two proposals.
The first picture represents the effect of varying p and the second one represents the effect
of varying γ for a fixed p = 0.1.

This decision is related with the inclusion of regularization, a method that controls the size of the
weights in the second layer. We will explain it below.

Figure 4.7: Representation of the neuron model used in the HNN2 as output neuron.

Note that the summation incorporates an independent term wk0, a constant coefficient that
gives a linear component to make up for the non-linear responses of the first-layer S-neurons.

Attending to all these explanations, the kth output neuron would calculate:

yk =
h

∑
i=1

wkiΓi(x)+wk0 (4.23)

where Γi(x) is the function performed at the ith hidden neuron and k ∈ {1 . . . t}.
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Training the HNN2

Since the HNN2 is a two-layer feed-forward neural network, we can stablish exactly the steps to
train it:

1. First layer weights.

2. p.

3. Second layer weights.

As we have pointed out before, the first layer weights are instances of the input data set. These
instances are chosen by being the leaders (centroids) of the clusters returned by the Leader2
clustering algorithm. This algorithm has been integrated into the HNN2 and the similarity function
it uses is the one we explain above. It can be completely customize, so using expert knowledge
can be chosen the best similarity functions for each variable and the aggregator (q).

There are several ways to calculate the p value. This parameter is so similar with the width
(σ ) parameter of the RBF networks. Two of the principal ways to get it are to use cross validation
or calculate it using an heuristic function. Both ideas are equally used in the literature. At [11],
the authors defend the cross validation option because they don’t trust the efectiveness of heuristic
methods. Several other authors [8] [10] [12] prefer heuristic methods based on the information
they have about the clusters. We have decided to use an heuristic method to calculate this value.
We have included a new method we have designed and others taken from previous literature. We
will see this in depth later and also a method called Alternate Optimization that optimizes this
value using supervised information. In the same way that an HNN can use several γ values, one
per S-neuron, or a RBF network can use several σ values, one per hidden neuron, our proposal,
that uses p instead of γ or σ , can assign a different p value to each S-neuron (mPi). This means
that each hidden neuron will implement a different function of the f family. We have considered
both possibilities and we have implemented a code that is able to perform in the two ways.

Once we have trained the first layer, we will train the output layer. And here, right now, there
are only the weights to be trained.
The training could be different attending to the kind of learning process: regression or classifica-
tion.

In regression problems you try to fit a function that has real numeric output. From this
function you only have concrete examples (the data set instances) and the collected outputs that
usually are affected by noise, so you don’t really know the function. This kind of problems can
be treated as a linear system of equations, where we have the output y (supervised learning),
the different coefficients Gammai (first layer responses: instances passed trough the S-neurons)
and the variables, the weights wki. For each output neuron we would have h+1 variables, the
weight associated with each S-neuron output and the constant coefficient, and n equations, one
per instance. Depending on h and n, we would have an overdetermined system, if there are more
instances than first layer neurons (the most common case), or an underdetermined system, if there
are more hidden neurons than instances (problems with a low number of examples). This last
case is only possible in one concrete situation: since the number of hidden neurons is lower or
equal than the number of instances, (h+1)> n only when h = n.

The method we have used to solve this system of equation is least squares. This method
minimizes the sum of squared distances between the observed responses in the dataset and the
responses predicted by the linear approximation. In order to achieve that, this method adjusts the
second layer weights.
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For the kth output neuron, this is its output:

fk(xi) =

(
h

∑
j=0

Γ j(xi)wk j

)
+ εi

and the error that it generates would be calculate as:

SSE =
n

∑
i=1

(yki− fk(xi))
2

This is the sum of squared error and it is the error which minimizes least squares.
Note that we suppose ∀x,Γ0(x) = 1 in order to express the constant coefficient wk0 in the same
way that the other weights of the output neurons.

We define the H matrix as:

H =


Γ0(x1) Γ1(x1) Γ2(x1) . . . Γh(x1)
Γ0(x2) Γ1(x2) Γ2(x2) . . . Γh(x2)

...
...

...
. . .

...
Γ0(xn) Γ1(xn) Γ2(xn) . . . Γh(xn)

 (4.24)

That is a nx(h+1) matrix.
Generalizing the first equation we get:

fk(x) = Hwk + ε

where wk is a (h+1)x1 vector and yk and ε are nx1 vectors. And the error can be also expressed
in this way:

SSE = (yk−Hwk)
t(yk−Hwk)

And this expression, which we have to minimize, has an unique global minima:

wk = min
wk∈Rh+1

SSE =

(
1
n

n

∑
i=1

hiht
i

)−1(
1
n

n

∑
i=1

hiyki

)
= (HtH)−1Htyk (4.25)

where hi ≡ [Γ0(xi),Γ1(xi),Γ2(xi), . . . ,Γh(xi)]
t and A = HtH.

Doing that we can get the second layer weights and finish the training of a regression problem
in our HNN2.

In classification problems you try to determine some groups, each instance belongs to a class
and that is what you have to estimate. In order to solve this kind of problems, logistic regression
can deal with two-class problems. For multi-class classification, the extended logistic regression
is called multinomial logit m odeling. The only difference is that now we have a function that
transforms the summation of the output neuron model. That is:

fk(xi) = g

((
h

∑
j=0

Γ j(xi)wk j

))

where g(t) = 1
1+e−t . All the other parameters are the same and now the weights can be computed

numerically by using iteratively reweighted least squares.
But we are not going to use that. Latter we will explain how we incorporate regularization

into the calculation of second layer weights. This kind of regularization is called ridge regression
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and it is only defined for linear regression methods.
Our solution, since getting a regularization method for classification problems doesn’t fit in our
job, is to convert classification into regression problems. That is done defining m class variables
which have two possible values, 0 and 1. The value 1 appears in the ith class variable of an
instance if this instance belongs to the class i in the original class variable. Otherwise, the new
variables have value 0. Note that, if there are only two classes only one variable is necessary,
because the first class can be represented by 0 and the second one by 1.

RBF version

The version of RBF networks that we have gone implementing in a paralel way to the HNN2 has
the same structure. Both are two-layer feed-forward artificial neural networks. The two training
processes only differ in some characteristics that define the HNN2 first and, in other way, RBF
networks.
In order to contrast the different version we use the same traning division than above to explain
the hidden neuron model of RBF neurons:

1. The weight vector (µi), that fulfills the same role.

2. Similarity measure. Now, it uses the radial basis similarity aggregator 4.19. As we already
now, the data is all continuous in order to allow the summation of the squared partial
substractions. That is a distance that latter the exponential transform into similarity.

3. Here, in terms of an smoothing parameter, RBF needs its width parameter (σ ). It has the
capacity of changing the width of the radial basis implemented by the neuron. That means
that achiving a high similarity comparing two instances will be easier because the gaussian
function falls more slowly.

4. The activation function ( f ) is here the gaussian radial basis itself.

So, this is the definition of our version of RBF neuron model:

Γi(x) = f (x,µi,σ) = e−
∑

m
k=1(xk−µik)

2

2σ2 , σ ∈ R (4.26)

Note that it is defined for the ith neuron.
The training process is exactly the same, with the Leader2 clustering algorithm to get the first

layer weights and linear regression to get the second layer ones. σ is calculated using heuristic
measures, but that is also explained below. The use of different width parameters, one per hidden
neuron, is also allowed.

4.B.5 Regularization

Regularization is a technique that incorporates additional information, usually of the form of a
penalty for complexity, in the training of a model trying to prevent overfitting. Andre Tikhonow
was who proposed this method, but he was trying to solve ill-posed problems where no unique
solution exists. Specifically the kind of regularization that takes his name, also called Ridge
Regression, is the one we have used in this thesis.
Ridge regression, applied to the HNN2, could be incorporated as some restrictions for smoothness
bounding the growth of the second layer weights, for example. This is an idea that Orr [13]
has developed for RBF networks. He defines ridge regression from the perspective of bias and



4.B Development: decision and implementation 47

variance, and he uses that for rewriting all the equations that could have been affected by the
penalty. In order to simulate the restrictions, Orr uses a parameter λ (regularization parameter)
to stablish the scale of the penalty. A large λ forces to leave better fitted configurations if they
require high weights.
This optimization is done through an iterative process, that re-estimates the λ and doesn’t stop
until the convergence is achieved. Orr defends using several initial values in order to get several
final λ values after the iteration and choose the best one between them. That allows the algorithm
to avoid local minima.

So, the HNN2 is now defined in terms of the new equations. This is the new development,
including the regularization parameter, for the kth output neuron:

fk(xi) =

(
h

∑
j=0

Γ j(xi)wk j

)
+ εi

that doesn’t vary, but the error includes a second summation:

SSE =
n

∑
i=1

(yki− fk(xi))
2 +λ

h

∑
j=0

w2
k j

where the first term is the classical sum of squared error and the second one is the regularization
term. Now, this is the equation that has to be minimized. The regularization parameter controls
how much high weights are taken into account in the minimization equation. The minimization
forces to compensate good results with low weights.

We define the H matrix in the same way that for linear least squares because it is not affected
by the new penalty term. But, minimizing the generalized error equation we get this expression,
which is the unique global minima:

wk = min
wk∈Rh+1

SSE = (HtH +λ Idh)
−1Htyk (4.27)

Now, the matrix A is defined as A = HtH +λ Idh, when it was only A = HtH so far.
We use a criteria (Generalized Cross Validation, GCV) defined by Orr in order to stablish

a limit for convergence. It is related with an adjustment to the SSE over the training set. If this
limit is not reached, we can use a maximum number of iterations to force the break of the loop.
This criteria is:

cGCV =
nytA−1y

(tr (P))2 (4.28)

Note that this expression use A and P matrices, which means that it needs a λ value to be
calculated. This criteria is used in this way:

c̄GCV

|cGCV − c̄GCV |
>

1
ε

where c̄GCV represents the value of cGCV in the previous iteration and ε = 4
√

Machine:epsilon.
The Machine Epsilon gives an upper bound on the possible relative error that generates the forced
rounding in floating point arithmetic when there is no space for more digits in the machine. It can
be calculated as the smallest positive floating-point number x such that 1+ x 6= 1. It was chosen
by being the most common epsilon used in R, whereas the root was introduced to use a similar
value to the one used by Orr in his calculations (0.001).
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This stop condition says when a regularization parameter can not be optimized anymore. That
happens when the criteria value doesn’t change or its change is negligible.

Finally, we adjust the values of the parameters using a formula derived from this reasoning
for re-estimating lambda:

λ =
ytA−1y∗ tr

(
A−1−λA−2

)
wtA−1w∗ tr (P)

(4.29)

As you can see, it uses the λ previous value to recalculate the new one since λ involves the
creation of some matrices. So this formula has to be applied once these matrices (weights, P and
A) have been calculated using some previous λ value. In the first step, previous λ value is the
initial value.
The function tr(X) calcules the trace of an n×n square matrix, that is summation of the coeffi-
cients in the main diagonal of the X matrix:

tr(An×n) = a11 +a22 + · · ·+ann =
n

∑
i=1

aii

SVD version

Orr defined some time later an efficient re-estimation of λ based on the Singular Value Decompo-
sition of the matrix HHt [14]. Using this decomposition all the formulas used in the regularization
method can be rewritten.

The SVD factorizes an n×m matrix (M) of the form:

M =UΣV ∗

where U is an n×n unitary matrix (U∗U =UU∗ = Idn), the matrix Σ is an n×m diagonal matrix
of non-negative real numbers, and V ∗ is the conjugate transpose of V, an m×m unitary matrix.
So, if we done this decomposition for the matrix H, Orr points out that the U columns are the
eigenvectors (ui

n
i=1) and the squared diagonal elements of Σ are the eigenvalues (µi

n
i=1) of the

HHt matrix.
The function tr(X) can be also defined in terms of SVD. The trace of a matrix is also the

summation of its eigenvalues: tr(Al×l) = ∑
l
i=1 µi

Using the previous matrices, Orr rewrites all the equations replacing the old matrices by some
coefficients. These coefficients can be calculated in an iterative process, avoiding the matrix
calculations:

n− γ =
n

∑
i=1

λ

µi +λ
(4.30)

η = tr
(
A−1−λA−2)= n

∑
i=1

µi

(µi +λ )2 (4.31)

wtA−1w =
n

∑
i=1

µiỹ2
i

(µi +λ )3 (4.32)

ete = ytA−1y =
n

∑
i=1

λ 2ỹ2
i

(µi +λ )2 (4.33)

where ỹi = ytui is the projections of y onto the eigenvectors.
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In this way, the GCV criteria can be rewrite as:

cGCV =
nete

(n− γ)2 (4.34)

But its use remains the same:
c̄GCV

|cGCV − c̄GCV |
>

1
ε

And the formula used to recalculate λ is now:

λ =
ηete

(n− γ)wtA−1w
(4.35)

So, there are two methods to perform the regularization over the second layer weights. Both
have been implemented and adapted to be used by any version of neural network (HNN2, RBF
networks...) developed in this thesis because all the methods share this code.

4.B.6 Standard deviation (p/σ )

The HNN2 learning algorithm is a two-layer neural network. It has several parameters, so we
have designed several functionalities to initialize them and save users from choosing a value for
them.

One of these parameters is the one that controls the shape of the function that is evaluated
in the first-layer neurons. In HNN2, this parameter is p and controls the step of the S-neuron
function, its smoothness. In RBF networks, this parameter sets the width of the gaussian radial
basis, σ .

In the literature, this have been a highly dealt problem for RBF networks. There are several
ways to cope with it, but we have chosen the estimation in order to present an easily configurable
system. In this way, we have had to propose an heuristic method that estimates a value for p
because, since HNN2 is a new learning algorithm, there are no previous proposals in the literature
to apply here.
In this way, we have proposed an heuristic based on the concept of compactness. We associate
the compactness of a cluster with a harder step of the f function (a lower p). When a cluster
is more compact (there is a high number of examples with a high similarity with the leader), it
is easier to decide whether a new example belongs to that cluster or not because the cluster is
well-defined and the limits are clear. Using a family of functions like the f family, this behaviour
is associated to a p that works similar to a heavyside function (p→ 0). Following this reasoning,
we have defined a compactness index B.1, that is a value ic ∈ (0,1) that is closer to 1 the more
compact is the cluster. Then, we use a function r to transform this coefficient into the p value.
In this way, this heuristic returns a different p for each cluster or hidden neuron. It has been
defined as (B.2):

p j = r(ic j) =− ln(ic j) (4.36)

Using the following formula to calculate the compactness index:

ic j =
m jl j

m jl j +(exp(0.1)−1)ml
(4.37)
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where m j and l j are the averaged similarity and the number of instances in the cluster j, and m
and l are global averages (for the whole clustering).

If you want to see the reasoning we have followed to arrive to this proposal, you can find it in
the annex B.

Heuristic measures to calculate σ

A similar parameter exists in RBF networks, σ . We don’t have any proposal in this case, but we
have collected some proposals in the literature. These are the methods we have incorporated:

The first method is a Bishop’s proposal [8]. It can return a different σ for each cluster:

σ j = l ∗mean
(
‖mui−µ j‖∀i∈k−NN j

)
(4.38)

where l is some number that multiplies the average (usually, l = 2), and k−NN j is the set of the k
centers nearest neighbors (k = h

10 ) to the center of the jth hidden neuron. In our case, the centers
are the leaders of the clusters.

Another method design by Bishop is the following one, that returns an only global σ :

σ
2 = l ∗mean

(
‖mui−µ j‖∀i, j∈{1,...,h}

)
(4.39)

where l is some number that multiplies the average (usually, l = 2).
We have collected also an Haykin’s proposal [10] that calculates also a global measure unique

for all the neurons:

σ =
maxi, j∈1,...,h ‖mui−µ j‖√

2h
(4.40)

where l is some number that multiplies the average (usually, l = 2).
As you can see, it is so similar to the Bishop previous proposal.

In [11], the authors present a method that uses also the nearest neighbors concept to calculate
one σ per neuron:

σ j =
1

‖mui−µ j‖∀i∈k−NN j

(4.41)

where k−NN j is the set of the k centers nearest neighbors (k = h
10 ) to the center of the jth hidden

neuron.
Also Benoudjit [21] proposed his own method, based again on the nearest neighbors concept,

which returns several σ j:

σ j =

√
∑i∈k−NN j ‖mui−µ j‖

k
(4.42)

where k−NN j is the set of the k centers nearest neighbors (k = h
10 ) to the center of the jth hidden

neuron.
The two last proposals are reasoned out to apply known functionalities in the HNN2.

The first one is based on the concept of centroid. The main problem is that the reasoning followed
to formulate this method maybe can not fit in HNN2 because it uses centroids, that are an artificial
exact center, and we use leaders, an instance of the input data set that represents a cluster but it is
not exactly the center. In any way, the proposal is the next one:

σ
2
j =

1
|[µ j]|−1 ∑

x∈[µ j]

‖x−µ j‖ (4.43)
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where [µi] is the set of instances in the cluster of the leader µi.
The second proposal is based on the concept of ball. A ball is defined in the following way:

B(a,r) = {x|d(x,a)< r}

If we transform this definition to the HNN2 characteristics we get:

B(µi,smin) = {x|s(x,µi)≥ smin}

All this is in the context of RBF networks, so:

s(x,µi) = exp−‖x−µi‖2

σ2
i

And then:

B(µi,smin)→ exp−‖x−µi‖
σ2

i
≥ smin

And developing the reasoning:
−‖x−µi‖2 ≥ σ

2
i lnsmin

σ
2
i ≥−

‖x−µi‖2

lnsmin

σi ≥ ‖x−µi‖
(

ln
(

1
smin

))− 1
2

σi ≥ max
x∈[µi]
‖x−µ j‖

(
ln
(

1
smin

))− 1
2

Finally, we can define a method based on this reasoning where the objective is to force this
neuron to return the higher response when an instance of the cluster that represents this neuron
arrives. Then, we return several σ j:

σ
2
j = l ∗ max

x∈[µ j]
‖x−µ j‖

(
ln
(

1
smin

))− 1
2

(4.44)

where [µ j] is the set of instances in the cluster of the leader µ j and l ≥ 1 is some number that can
increase the width of the exponential (we use l = 1).

All these are deterministic proposals that define a σ or several σ j usually based on some
clustering characteristics which are used in a more or less justified way.
We have thought about that and we have wanted to incorporate some functionality that compen-
sates the possible lack of correctness of the σ , that is the Alternate Optimization.

Alternate Optimization

The Alternate Optimization (AO) is a functionality we have incorporated to the method that
combines two different optimizations. The first one, that has been explained above, is the weights
regularization. In some way, this process could be seen as an optimization that achieves the best
possible weights attending to some restrictions. The second optimization we want to introduce is
the p/σ optimization that uses the HNN2 results to improve the p/σ parameters calculated with
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heuristic methods.
The problem here is that the weights optimization uses the p/σ parameter and vice versa, so
we have proposed a method that alternates both optimizations in a sequential way. Then, an
optimized parameter is used to the optimization of the other one. Changing a parameter implies
changing the results, so once a parameter has been optimized, the other parameter needs to be
optimized too. This implication never ends, so both optimizations should be alternated until a
convergence situation were achieved. If no convergence is reached, we restric the maximum
number of AO possible iterations.

In any way, the weights optimization or regularization has been already defined. Now, we
present the p optimization. σ optimization performs the same but using the specific functions of
RBF networks.

The f functions family 3.6 of the S-neurons is:

f (x, p) =

{ −p
(x−0.5)−a(p) −a(p) if x≤ 0.5

−p
(x−0.5)+a(p) +a(p)+1 if x≥ 0.5

a(p) =
−0.5+

√
0.52 +4∗ p
2

And we have calculated its partial derivative with respect to p, which is used to estimate the better
p value:

∂ f
∂ p

= f ′p(x, p) =


−(x−0.5)+a(p)−p∗a′(p)

((x−0.5)−a(p))2 −a′(p) if x≤ 0.5
−(x−0.5)−a(p)+p∗a′(p)

((x−0.5)+a(p))2 +a′(p) if x≥ 0.5

a(p) =
−0.5+

√
0.52 +4∗ p
2

da
d p

= a′(p) =
1

2a(p)+ 1
2

(4.45)

In our implementation, we have taken advantage of the R-project possibilities and we have used
the “optimize” function when there is an unique p value and “optim” when there are several.

This functionality is exactly the same but using the specific functions of gaussian RBF’s and
optimizing the value of σ , the width parameter. That is:

ϕ(x,σ) = exp(−‖x−µ‖2

2σ2 )

Which is the function calculated in each neuron, and its partial similarity with respect to σ is:

∂ϕ

∂σ
= ϕ

′
σ (x,σ) =

x
σ3 exp(−‖x−µ‖2

2σ2 ) (4.46)

In this case, the error that minimizes this optimization is the following for HNN2:

∂SSE
∂ p j

=
n

∑
i=1

h

∑
k=1

(ŷki− yki)w jk f ′p j
(x, p j)
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where ŷk = Hwk.
And for gaussian RBF’s we have the following adapted error function:

∂SSE
∂σ j

=
n

∑
i=1

h

∑
k=1

(ŷki− yki)w jkϕ
′
σ j
(x,σ j)

This minimization is the second step of the Alternate Optimization. This and the regu-
larization are the re-estimation methods that we incorporate to improve the solution the built
parameterization.

4.B.7 Final version

So far we have explained the different functionalities we have implemented in HNN2. But now it
is necessary to configure the method to get a default version that only requires smin to perform.
Some of the functionalities we have implemented require choosing a behaviour and we have
chosen default values for them allowing users to use the algorithm in an easy way.

Let’s start with the Leader2 clustering algorithm. From its previous version it maintains the
calculation of the L parameter. This says which is the number of instances that have to be grouped
before choosing the leader. So, this parameter is calculated by default as: L = bn

2−smin
4 c.

In the new version, all the functionalities of the aggregator can be adjusted. The aggregator itself
can be chosen, so the default aggregator is the one we have design: “aggregatePartials” (4.B.2).
In this aggregator we have to choose some behaviours. In first term, the normalization is activated
by default, it performs the arithmetic mean since it uses q = 1 and the method to replace the
missing partial similarity measurements is “fill.zerofive” by default, that is the approach that uses
1
2 to replace missing values.
Regarding partial similarity measures and data types, we have set by default six data types
with their corresponding similarity method: binary variables with “binary” (4.3), categoric
variables with “overlap” (4.5), ordinal variables with “probabilistic” (4.7), continuous variables
with “continuous” (4.8), discrete variables with “continuous” (4.8) and fuzzy variables with
“fuzzy.zerofive” (4.13). Some of these similarity functions require parameters to calculate the
similarity between two values. These parameters are calculated, if it is possible, during a pre-
process attending to the whole data set. For example, the range for “continuous” is calculated as
the substraction of the maximum less the minimum value of the variable over the whole data set.

The HNN2 itself has its own configuration, and it requires also a default setting. The ε value
used finding errors or stablishing convergences is here the fourth root of the machine epsilon.

In the first layer, the activation function used by default is “functFP”, the one we defined
above (3.6). It is calculated for each S-neuron independently using the “findP” function, the
method we have design to do that (B.2).
Attending to the regularization method, we can choose between the method based on matrix
calculations or the one based on the Singular Value Decomposition. The first approach is set
by default. To perform, it uses three different initial λ , that we have set to λi ∈ {10−6,10−3,1}
attending to Orr’s work [13]. If convergence is not reached before, we stablish a maximum
number of 100 iterations for the regularization loop.
The second loop, which performs the p/σ optimization (Alternate Optimization) is set to a
maximum of 10 iterations. According to the use of p parameter and the previous activation
function, we use the method to recalculate p defined in the previous section (4.B.6). But all this
has not importance if the user doesn’t activate the AO because it is off by default.
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That is the configuration for the HNN2 we have stablished by default.

Some little changes in the previous configuration have to be introduced to perform as the RBF
network version we have implemented. The first change is to use the aggregator based on the
gaussian function for the Leader2 clustering algorithm. Also, the gaussian radial basis function is
used as activation function. Now the algorithm uses σ parameter, so we have set the first heuristic
method proposed by Bishop [8] to calculate its value (4.38). As before, we use several σi, one
per hidden neuron. In the same way, the AO uses the method that recalculates σ .

To evaluate both methods we have used a prediction function that calculates the prevision of
the learning algorithm. Prevision (Y ) and real expected output (T ) are compared to return the
error measures. Basically, for regression methods it returns two error measures that point out how
good the algorithm is for an specific data set. These two errors are the mean squared error:

MSE =
1
t ∑

t

1
n ∑

n
(Y −T )2 (4.47)

and the normalized root mean squared error:

NRMSE =

√√√√ 1
t ∑

t
k=1

1
n ∑

n
i=1 (Yki−Tki)

2

1
t ∑

t
k=1

1
n ∑

n
i=1
(
Tki−Tk

)2 (4.48)

T =
1
n

n

∑
i=1

Ti

The second measure returns a global comparable measure since it is normalized. Classification
problems returns also a third measure that represents the accuracy of the method, how many
instances have been correctly classified.
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Experimental results

Once we had finished the development of HNN2, we started the experimental settings. These
test sets were designed in order to perform a complete practical study of the algorithm. We know
its asset, but we have to demonstrate its good performance in a practical way.
In order to achieve that, we have evaluated 10 problems (see their descriptions at appendix C).

The testing was separated in two stages. The first one, the Fractional Factorial Design, is
used to choose the better values to set some default choises in the configuration of the algorithm.
That is, we optimize the default performance of the HNN2 by choosing the configuration that
reports the best results in average over some problems. The second part is a design that compares
our HNN2 with some other algorithms and it is optimized to use two statistical tests that confirm
the difference between methods.

Note that here we don’t talk about the tests done to verify the right performance of the
different functionalities of the algorithm and the final tuned up of the whole HNN2 because there
is no enough space and they are no relevant.

Let’s see the experimental settings.

5.A Fractional Factorial Design

In order to choose an standard configuration for this learning method we have developed a
Fractional Factorial Design (FFD) [22]. There are several reasons that we thought to choose this
specific experimental design. The most important one is that we had 5 principal binary questions
to solve and combinating them would generate 25 = 32 tests. But, in order to get a more realistic
idea, these tests would have to be executed several times. Using a FFD this number can be
significantly reduced.

Developing this concept, it is necessary to choose carefully a subset (fraction) of the experi-
mental runs (tests) of a full factorial design. This full design performs a test for all the possible
combinations of the factors (25 tests). The subset for the fractional design is chosen attending to
the most important features (factors) of the studied problem. We have 5 factors, so we choose the
25−2

III design specification, which requires 8 runs to work, which is a quarter of the runs required
by the full factorial design.
The questions we raised to perform this experimental design are defined as:

1. Cont. Similarity measure for continuous variables. We raise the question of using a
continuous traditional measure to calculate the similarity of continuous variables or using a
fuzzy measure.
The similarity measure used as continuous measure is the one we called continuous (4.8).
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The similarity measure used as fuzzy measure is the one we called fuzzy.zerofive (4.13).
The negative/positive value of the factor are expressed in this way:

X1 ≡ A≡
{

+ : Continuous
− : Fuzzy

2. Cat. Similarity measure for categoric variables. The question now is the choice between
two different similarity measures for categoric variables: overlap (4.5) or frequency (4.6).
The negative/positive value of the factor are expressed in this way:

X2 ≡ B≡
{

+ : Overlap
− : Frequency

3. Norm. Normalization. It is an obvious binary question, have we to use the normalization or
not?
The negative/positive value of the factor are expressed in this way:

X3 ≡C ≡
{

+ : Yes
− : No

4. Uniq. Unique smoothness parameter for all the neurons at the first layer. The σ /p parameter
can be a single parameter, shared by all the hidden neurons, or a set of parameters, where
each hidden neuron has its own parameter. The question, then, is which of the two modes
works better.
The negative/positive value of the factor are expressed in this way:

X4 ≡ D≡
{

+ : A parameter per hidden neuron.
− : An unique shared parameter.

5. AO. Alternate Optimization. Is better to use it or not?
The negative/positive value of the factor are expressed in this way:

X5 ≡ E ≡
{

+ : Yes
− : No

where the order matters, the number of each factor indicates their position inside the confounding
structure (table 5.1). This table relates the factors and allows us to reduce the number of runs.
Choosing the right order of the factors we have taken into account the following relations:
The normalization (Norm.) and the similarity measures (Cont. and Cat.) perform their main task
into the clustering algorithm that initializes the HNN2. The (single or many) σ /p parameter is
used in the first layer of the HNN2, once the centers for hidden neurons have been chosen (the
clustering algorithm is finished). Finally, the AO “optimizes” the configuration of the network.
With this information, we can ensure that the two last factors, in the way they are used in the last
stages of the learning process, are affected by the three firsts ones.

Following the 25−2
III design specification and attending to our factor ordering choice, the 8

runs we have to perform are shown at table 5.2. This division assures all the factors are evaluated,
but in order to get more realistic results we have to do this 8-tests set several times. Each run
performs a 3-fold Cross Validation over the training set (leaving out a test set with the 33% of
instances) for choosing the free parameter: smin in HNN2 and RBF2, k in RBF + K-means, and
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Table 5.1: Map of Factors and Dependences.

FACTOR DEFINITION CONFOUNDING STRUCTURE
1 1 1 + 24 + 35 + 12345
2 2 2 + 14 + 345 + 1235
3 3 3 + 15 + 245 + 1234
4 12 4 + 12 + 235 + 1345
5 13 5 + 13 + 234 + 1245

cost in SVM. Between 10 and 13 different possible free parameters are taken into account and
only the value that returns better results is chosen to get the final results over the test set.
We have performed 3 repetitions of the 8-tests set changing the folds of Cross Validation. All this
process has been done using four different data sets: CRX, BANDS, HC22 and HC23. We chose
these four because all of them have many instances, heterogeneous data and missing values, that
is what we want to fit.

Table 5.2: Map of configurations.

Configuration X1 X2 X3 X4 X5

Cont. Cat. Norm. Uniq. AO
1 + + + + +
2 + + - + -
3 + - + - +
4 + - - - -
5 - + + - -
6 - + - - +
7 - - + + -
8 - - - + +

As we said above, each run performs a 3-fold CV and the best value is used to get the final
result from the test set. Then, when we are evaluating the FFD, we get these final results and
combine them in the following way:

RXi =
1
|CXi |

∑
j∈CXi

c j−
1
| 6CXi |

∑
j 6∈CXi

c j (5.1)

where CXi is the set of indexes which groups the configurations (runs) that perform with the
positive value of the Xi factor. In this way, the configurations in 6CXi perform the same with the
negative value of the Xi factor.
Doing that we get a final value RXi , that represents the valoration of the factors. Depending on the
measure used to do these calculation (error, accuracy...), the positive and the negative value have
different meaning.
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Applied to our method, these are the equations that evaluate the 5 factors:

RX1 = Rcont =
1
4
(c1 + c2 + c3 + c4)−

1
4
(c5 + c6 + c7 + c8)

RX2 = Rcat =
1
4
(c1 + c2 + c5 + c6)−

1
4
(c3 + c4 + c7 + c8)

RX3 = Rnorm =
1
4
(c1 + c3 + c5 + c7)−

1
4
(c2 + c4 + c6 + c8)

RX4 = Runiq =
1
4
(c1 + c2 + c7 + c8)−

1
4
(c3 + c4 + c5 + c6)

RX5 = RAO =
1
4
(c1 + c3 + c6 + c8)−

1
4
(c2 + c4 + c5 + c7)

Our prediction method returns: quadractic error, normalized error and accuracy (when
there is a classification problem). The last reasoning applied to error or accuracy has different
interpretations.
In the one hand, when we want to calculate the configuration using accuracy, we are in front of a
maximizing problem. We want the maximum accuracy for our method, so the higher value the
better. The function 5.1 is only a substraction of two arithmetic means, the one of positive values
of Xi and the one of negative values. The arithmetic mean doesn’t change the properties of the
percentages, so RXi is the substraction of the mean accuracy for positive values and the mean
for negative values. So, RXi < 0 means that the mean accuracy for negative values of Xi factor is
higher than the mean for positive values. Since we are maximizing, the choice is, obviously, the
negative value. If RXi > 0 (the mean accuracy for positive values of Xi factor is higher than the
mean for negative values) the choice would be the positive value.
On the other hand, but following a similar reasoning, when we want to calculate the configuration
using error, we are in front of a minimizing problem. We want the minimum error for our method,
so the lower value the better. Now, RXi < 0 means that the mean error for negative values of Xi

factor is higher than the mean for positive values. Since we are minimizing, the choice is now the
positive value. Otherwise, if RXi > 0 (the mean error for positive values of Xi factor is higher than
the mean for negative values) the choice would be the negative value.

5.A.1 FFD Experimental Results

The results of this experimental setting gave us the default configuration of the HNN2 algorithm.
We have 8 configurations and 4 problems, if each problem returns 3 coefficients, we get 96

final values in one repetition. In the table 5.3 we have all of them, but they are the average of the
3 repetitions.

As you can see, the results move several percentage points between the best configurations
and the worst ones. A similar behaviour, but in other scale happens with the errors. The extreme
cases are the HC23, where the difference of accuracy arrives almost until 6%, against CRX, where
the maximum difference doesn’t pass 2%. In terms of configurations, the configuration number 4
and the number 5 stand out because are the best ones for HC22 and CRX (configuration 5), and
HC23 and BANDS (configuration 4). If we average the results of the different problems we get
the table 5.4.

In this averaged table, the percentage differences vary 3.2%. Configuration number 4 have
good results, but in second place now we have configurations 3, 5 and 7 also with good results.
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Table 5.3: Averaged response by data set and configuration. There are 3 measures by data set,
the percentage of accuracy (Acc.), the quadratic error (QE) and the normalized error (NE).

Name Measure Conf. 1 Conf. 2 Conf. 3 Conf. 4 Conf. 5 Conf. 6 Conf. 7 Conf. 8
HC22 Acc 67.662 68.159 71.144 71.642 72.637 71.144 71.642 68.159

QE 0.144 0.141 0.141 0.138 0.138 0.135 0.134 0.143
NE 0.914 0.905 0.904 0.893 0.894 0.885 0.884 0.909

HC23 Acc 83.824 84.804 84.314 86.765 82.352 81.863 85.784 80.882
QE 0.127 0.122 0.118 0.121 0.125 0.13 0.118 0.133
NE 0.732 0.719 0.707 0.715 0.727 0.742 0.706 0.749

CRX Acc 86.377 86.232 86.957 86.957 87.971 87.246 87.681 87.681
QE 0.103 0.1 0.1 0.106 0.096 0.101 0.097 0.103
NE 0.646 0.634 0.635 0.654 0.624 0.637 0.627 0.645

BANDS Acc 70.185 73.148 73.704 75.741 73.333 72.407 71.667 72.037
QE 0.2 0.187 0.180 0.169 0.184 0.185 0.185 0.187
NE 0.905 0.874 0.858 0.833 0.867 0.87 0.871 0.876

Table 5.4: General averaged response.

Name Coef.1 Coef.2 Coef.3 Coef.4 Coef.5 Coef.6 Coef.7 Coef.8
Acc. 77.012 78.086 79.03 80.276 79.074 78.165 79.193 77.19
QE 0.144 0.138 0.135 0.133 0.136 0.138 0.134 0.141
NE 0.799 0.783 0.776 0.774 0.778 0.784 0.772 0.795

But this is a global consideration, the real application of this experimental setting is a local study
factor by factor.

Table 5.5: Factors selection.

Factor Acc. QE NE
Cont. 0.195 + 0.001 - 0.001 -
Cat. -0.838 - 0.003 - 0.007 -
Norm. 0.148 + -0.001 + -0.002 +
Uniq. -1.266 - 0.004 - 0.009 -
AO -1.308 - 0.004 - 0.012 -

Analysing this table, that shows the global results of the Fractional Factorial Design of five
factors we have studied, we can infer that the configuration with the following values has to be
the default configuration:

1. Cont. This is the least clear decision. For accuracy, the winner similarity function is
fuzzy.zerofive (4.13). But in the error measures, the winner is the continuous (4.8). Allways,
the difference are of very low order. But we have to take a decision, and we choose
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continuous, because it wins in error, that is what we are minimizing.

2. Cat. Here the frequency similarity function (4.6) is chosen unanimously. All the measures
point out this, so frequency is now the default similarity measure for categoric variables.

3. Norm. This is the other factor that has been chosen with a little difference. Allways
the use of normalization wins, but by a small difference. Anyway, the positive value
that incorporates the normalization functionality to the aggregation is used in the default
configuration.

4. Uniq. Here, the unique parameter for all the neurons has been the chosen option. This
conclusion is one of the most solid conclusion we can infer, attending to the results. They
agree between them in choosing this option and even with a larger difference. So, in our
default configuration, we use only one σ /p parameter.

5. AO. In the same way that for the previous factor, FFD determines that is better to perform
without Alternate Optimization. It is also a solid decision, so we will not use AO in the
default configuration of the HNN2.

Such as Wettschereck and Dietterich defended since some time ago, using several p (or σ ), one
per neuron, can not be justified in a practical way because it doesn’t improve the predictions [11].
They defend the use on a unique p (or σ ) and we have arrived to the same conclusion in this
Fractional Factorial Design.

Just out of curiousity, we present also a independent FFD for each problem. We can see the
results at table 5.6.

5.B Final experimental setting

The last experimental setting has been designed to conclude if there is any method really better.
We have compared our HNN2 with the RBF network we have designed (RBF2) and that uses
Leader2 as initializer. We also compare both with another version of RBF networks initialized
with K-means (RBFk)and the SVM algorithm.
As you can see, two versions of RBF networks are used in this comparison. That is because this
kind of network is the HNN2 natural opponent since the HNN2 can be seen has a particular case of
the RBF networks. On the one hand, RBF2 has been chosen because it is a middle point between
the classical RBF network and the HNN2 since it uses also the Leader2 clustering algorithm
as initializer. With this method we are comparing the effect of using heterogeneous (HNN2) or
continuous (RBF2) data. On the other hand, RBF with K-means gives us the performance of RBF
networks when they are not initialized with the Leader2 clustering algorithm but the classical
option, K-means. Actually, here we compare RBF networks with HNN2 as an specification
relationship since RBF is an specific case of HNN2 and here they really use the same learning
method code.
Finally, we have chosen the SVM with radial kernel (and only with this kernel). That is because,
despite the fact that SVM doesn’t build the model in the same way than RBF networks, both build
similar structures that could not be differenciated after the learning process. Since both return
models with similar architecture and functionality, they may be the expected opponent for each
other.
In this project, we don’t implement any SVM method but we use a SVM version already im-
plemented in R. That implies that we will not have any measures that we use to compare the
methods, but the measures that already returns this version.
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Table 5.6: Factors selection for the each data set.

Problem Factor Acc. QE NE
CRX Cont. -1.014 - 0.003 - 0.009 -

Cat. -0.362 - -0.001 + -0.004 +
Norm. 0.217 + -0.003 + -0.01 +
Uniq. -0.29 - 0.001 - 0.001 -
AO -0.145 - 0.002 - 0.006 -

HC22 Cont. -1.244 - 0.004 - 0.011 -
Cat. -0.746 - 0.001 - 0.002 -
Norm. 0.995 + 0.001 - 0.001 -
Uniq. -2.736 - 0.003 - 0.009 -
AO -1.493 - 0.003 - 0.009 -

HC23 Cont. 2.206 + -0.004 + -0.013 +
Cat. -1.225 - 0.004 - 0.01 -
Norm. 0.49 + -0.005 + -0.013 +
Uniq. -0.001 - 0.001 - 0.004 -
AO -2.206 - 0.005 - 0.016 -

BANDS Cont. 0.833 + -0.001 + -0.003 +
Cat. -1.019 - 0.008 - 0.02 -
Norm. -1.111 - 0.005 - 0.012 -
Uniq. -2.037 - 0.01 - 0.025 -
AO -1.389 - 0.007 - 0.016 -

In order to perform this experimental setting, we have studied several statistical tests. We base
our design in the Dietterich’s original idea [23]. In this article, the author compares five statistical
tests for determining whether one learning algorithm outperforms another. One of these methods
was designed by himself, the 5×2 CV paired t test. It uses five different partitions two-fold Cross
Validation, which returns ten estimations on test sets. These estimations are combined in the
following way to get the t̃ value:

t̃ =
p(1)1√

1
5 ∑

5
i=1 s2

i

(5.2)

where p(1)1 is the difference between the proportions of the two methods (A,B) we are comparing
in the same partition (1) of the same replication (1), p(1)1 = p(1)1 A− p(1)1 B. That can be generalized

as p( j)
i = p( j)

i A− p( j)
i B, with i ∈ {1, . . . ,5}and j ∈ {1,2}.

In addition, s2 is the estimated variance s2
i =

(
p(1)i − pi

)2
+
(

p(2)i − pi

)2
, where pi =

(
p(1)i +p(2)i

)
2 ,

is the arithmetic mean also with i ∈ {1, . . . ,5}.
If you start with the hypothesis of both problems having the same error rate, you can refute it

with 95% confidence when t̃ > 2.571. In this case, the error rate of a method is better than the
error rate of the other.

Attending to the configuration of the experimental settings, they chose 2-fold cross validation
because it gives large test sets and disjoint training sets. They need a big test because they only
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use a single difference p(1)1 in the test. The disjoint training sets give some independence, situation
assumed that is not real because in the replications all the instances are reused.
They chose 5 replications of the cross validation because using 5 or more replication increases
the risk of Type-I error, and that is which we want to exploit.
They use only one of the observed differences of proportions rather than the mean of all of them
because this mean tends to overestimate the true difference, attending to their reasoning. This is a
problem generated by the lack of independence between the folds of the cross validation. That
would justify the use of only one difference, so they had to make the assumption that the variance
estimates si are independent of p(1)1 and that p(1)1 is the better difference p( j)

i .

But there is an author that differs from Dietterich on this last point, Alpaydin. He defends the
use of a f Test where all the differences are combined [24]. This test has been called Combined
5×2 CV f Test and it has the following expression:

f =
∑

5
i=1 ∑

2
j=1

(
p( j)

i

)2

2∑
5
i=1 s2

i
(5.3)

He defines a statistic computed from the errors on the test set of the two methods adjusted
with the training set. They follow the null hypothesis, that is, both methods have the same error
rate. If this assumption holds, the statistic obeys a certain distribution.
In this situation, only two kind of errors could happen. If we reject the hypothesis when no
difference between the errors exists, we incur a type-I error. Otherwise, if we accept the null
hypothesis when a difference exists, we incur a type-II error. Using this last error, he defines
the power of the test (1−Pr[Type− IIerror]) as the probability of detecting a difference when a
difference exists.

Assuming the null hypothesis, that is, assuming that both problems have the same error rate,
you can refute it with 95% confidence when f > 4.74. Otherwise, the null hypothesis should be
accepted.

Two main advantages we have found two this second approach:

1. It combines the 10 statistics calculated for each fold (5×2), which gives more robustness
to the method.

2. It increases the robustness but it doesn’t suppose any additional cost.

5.B.1 Final Experimental Results

We have compared the four methods that we talked about above:HNN2, RBF2 (with Leader2),
RBF+K-means and SVM.
Here you can find the results of this experimental setting.

For each problem, we have a table with the averaged results (Accuracy, Quadratic Error and
Normalized Error) of every problem and, then, a second table with the statistic tests (t and f ) that
compare HNN2 with the other methods in terms of the different measurements.
Remember that the SVM version of R doesn’t returns Quadratic Error and Normalized Error for
classification problems nor Normalized Error for regression problems.

Let’s start with the Credit Aproval problem. We obtain a high accuracy for all the methods,
being the HNN2 the best one with a small difference. The same situation happens with the error,
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Table 5.7: Credit Aproval Problem (CRX). Result of the predictions: Averaged Accuracy (Acc),
Quadratic Error (QE) and Normalized Error (NE) for each method. The + sign indicates the
best method in terms of each observed result.

Method Acc QE NE
HNN2 85.913 + 0.11 + 0.666 +
RBF2 85.391 - 0.117 - 0.689 -
RBFk 85.188 - 0.116 - 0.685 -
SVM 83.942 - – | – |

where the HNN2 is again the best method with a small difference, knowing that we don’t have
this information for SVM (see table 5.7).

Since there are small differences, the statistical tests can not assure that there is a real
difference between the results distribution of HNN2 and the other methods. Only SVM is near to
pass the f test because it has an averaged accuracy almost 2 percentage points less than HNN2.
But, since the statistical tests take also into account the variance and not only the mean of the
results, a real difference can not be proven.

Table 5.8: Credit Aproval Problem (CRX). Result of the tests comparing to the HNN2 with
the other methods. That is done for Accuracy (Acc), Quadratic Error (QE) and Normalized
Error (NE), when that is possible. Any number in red color indicates that this combination
of method has different distribution.

Obs. Test RBF2 RBFk SVM
Acc t 0.202 0.315 1.199

f 0.837 1.337 3.276
QE t 0.391 0.952 –

f 1.652 2.884 –
NE t 0.434 1.101 –

f 1.693 3.185 –

The results for the German Credit Data problem are similar, but with a lower rate of right
predictions. Here, the method that achieves a higher accuracy is the SVM, but we don’t have error
information, so we can not know if the error is lower also. The other three methods, despite the
lower accuracy of HNN2 (in this problem, it seems the worst predictor), the errors demonstrate
that the three methods have an almost identical power of prediction (see at table 5.9).

For the CRG problem, the statistical tests results demonstrate what we said above, there is no
way to find a real difference between the results of the different methods with this problem 5.10.
Any test doesn’t stand out because the equality is the general tendency.

In the Cylinder Bands problem results we found larger differences between the four methods.
But, the worst method is again the HNN2, which have more than 5 percentage points less than the
best method, the SVM. The error is also significantly higher in HNN2 (see at table 5.11).

And these last considerations are confirmed with the statistical tests, specifically the f test
that concludes that there is a significant difference between the accuracy of SVM and HNN2.
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Table 5.9: Result of the predictions German Credit Data Problem (CRG).

Method Acc QE NE
HNN2 73.399 - 0.174 - 0.909 -
RBF2 74.419 - 0.171 + 0.901 +
RBFk 74.24 - 0.171 + 0.902 -
SVM 74.581 + – | – |

Table 5.10: Result of the tests German Credit Data Problem (CRG).

Obs. Test RBF2 RBFk SVM
Acc t 0.358 0.351 0.285

f 1.08 1.008 1.09
QE t 1.037 1.009 –

f 0.83 0.812 –
NE t 1.069 1.029 –

f 0.84 0.807 –

Table 5.11: Result of the predictions Cylinder Bands Problem (BANDS).

Method Acc QE NE
HNN2 70.37 - 0.193 - 0.888 -
RBF2 73.074 - 0.172 + 0.839 +
RBFk 72.148 - 0.175 - 0.846 -
SVM 75.593 + – | – |

This is the only result confirmed as different by the tests, but attending to the error measures, the
RBF’s are near to be also confirmed as better methods (see at table 5.12).

Table 5.12: Result of the tests Cylinder Bands Problem (BANDS).

Obs. Test RBF2 RBFk SVM
Acc t 0.916 0.386 0.638

f 2.001 1.119 11.1
QE t 2.214 1.993 –

f 3.741 2.901 –
NE t 2.258 2.031 –

f 3.792 2.931 –

And the Hepatitis problem is other problem that has bad results with HNN2. The results
are allways worse than with the other methods, although they are not so bad as in the previous
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problem. Now, the method with best results is the RBF2, but with a minimum difference with
the RBFk. That can be said because the errors are smaller with the RBFk 5.13 despite the better
accuracy of the RBF2. Anyway, there are so low differences between them.

Table 5.13: Result of the predictions Hepatitis Problem (HEP).

Method Acc QE NE
HNN2 82.06 - 0.125 - 0.875 -
RBF2 83.864 + 0.118 - 0.848 -
RBFk 83.613 - 0.116 + 0.841 +
SVM 82.444 - – | – |

The considerations are confirmed again and we have a positive response for the f test
comparing the accuracy of the HNN2 with the one of the RBF2. This is not supported by the
errors, that have normal responses to the statistical tests, which could indicate that the difference
is not so large as it seems (see at table 5.14).

Table 5.14: Result of the tests Hepatitis Problem (HEP).

Obs. Test RBF2 RBFk SVM
Acc t 0.926 0.425 0.816

f 5.905 1.25 1
QE t 1.662 0.859 –

f 2.583 2.806 –
NE t 1.663 0.799 –

f 2.679 2.632 –

After two problems that return no so good results when they are treated with HNN2, we study
the Horse Colic problem. In this case, we have used its 22th variable as class variable. Now the
HNN2 is the method with better results for all the measures 5.15. The differences are not so
important, but the accuracy of HNN2 is 2 percentage points better than SVM, for example.

Table 5.15: Result of the predictions Horse Colic Problem -Class variable: 22th- (HC22).

Method Acc QE NE
HNN2 67.213 + 0.147 + 0.901 +
RBF2 66.667 - 0.149 - 0.907 -
RBFk 66.776 - 0.148 - 0.906 -
SVM 65.246 - – | – |

But these differences, that seem small, are confirmed by the t test. Attending to this test, the
HNN2 accuracy is really better than the accuracy of RBF2 in this problem. RBFk, with a higher
accuracy than RBF2, is also near to return a positive response to this test. These problems returns
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a high value in t test for the RBF’s, overall for RBFk. That could be due to the dependence of the
t test on the p(1)1 . You can see all this at table 5.16.

Table 5.16: Result of the tests Horse Colic Problem -Class variable: 22th- (HC22).

Obs. Test RBF2 RBFk SVM
Acc t 2.692 2.05 0.755

f 1.783 1.193 2.38
QE t 1.88 2.251 –

f 0.847 1.058 –
NE t 1.894 2.26 –

f 0.855 1.056 –

This behaviour, where the HNN2 is the best method, is repeated in the other problem based on
Horse Colic data set. Now, the class variable is the 23th. In this case, the good results overcome
the other methods with a higher evidence. The HNN2 accuracy is more than 3 percentage points
better than the accuracy of the other methods for this problem. Now, this tendency can be
observed also in the errors, where the HNN2 is significantly the method with better results 5.17.

Table 5.17: Result of the predictions Horse Colic Problem -Class variable: 23th- (HC23).

Method Acc QE NE
HNN2 83.262 + 0.128 + 0.74 +
RBF2 79.994 - 0.152 - 0.808 -
RBFk 79.94 - 0.153 - 0.809 -
SVM 80.056 - – | – |

And all these considerations are absolutely corroborated with the tests. In terms of accuracy,
the tests doesn’t confirm any behaviour, but the errors do it. All the tests of errors are positive (not
t tests of RBF2, but they are near to the edge). That means that HNN2 is here the best method,
out of any doubt (See at table 5.18, where the red color that indicates a positive test response is
the most common).

Table 5.18: Result of the tests Horse Colic Problem -Class variable: 23th- (HC23).

Obs. Test RBF2 RBFk SVM
Acc t 0.505 1.37 0.22

f 1.874 3.053 2.584
QE t 2.286 2.986 –

f 15.119 12.786 –
NE t 2.351 2.755 –

f 14.602 10.346 –

For the next problem, the Congressional Voting Records problem, the HNN2 remains being
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the best method. Here, it doesn’t present the best accuracy but the errors. The best accuracy is
achieved for the RBF2, that is a method with results very close to the HNN2 ones. The RBFk
doesn’t arrive to the level of the two first methods and the SVM presents the worst accuracy 5.21.

Table 5.19: Result of the predictions Voting Records Problem -Original- (HV84).

Method Acc QE NE
HNN2 95.399 - 0.039 + 0.404 +
RBF2 95.495 + 0.042 - 0.417 -
RBFk 95.357 - 0.064 - 0.49 -
SVM 93.473 - – | – |

The tests results demonstrate that the differences are not so important. All the values are
inside normal values, the only tests that are a little bit high are the accuracy tests of the SVM.
We saw above they have the largest difference, but despite the difference there is not enough
information to confirm it. So, we can assure that here the methods returns similar results 5.20.

Table 5.20: Result of the tests Voting Records Problem -Original- (HV84).

Obs. Test RBF2 RBFk SVM
Acc t 0.374 0 1.971

f 0.862 0.805 2.298
QE t 0.599 0.099 –

f 1.05 1.036 –
NE t 0.582 0.16 –

f 1.039 1.067 –

There is another problem based again on the same data set, the Congressional Voting Records.
Now, the variables have a different consideration, but the target remains being the same two-
classes variable. Now, the best methods seem to be the RBF’s, but there is no difference with
HNN2 neither. The changes in the kind of variables don’t have any effect in the predictions
because the results are very similar.

Table 5.21: Result of the predictions Voting Records Problem -Modified- (HV84b).

Method Acc QE NE
HNN2 94.755 - 0.044 - 0.431 -
RBF2 95.262 - 0.043 + 0.424 +
RBFk 95.307 + 0.045 - 0.435 -
SVM 94.57 - – | – |

The tests results for this problem are again so averaged. There is no any positive result, which
means that there is a great similarity between all the methods used here applying to this problem.
The results of the tests for this problem, which are in the table 5.22, confirm these considerations.
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In a similar way, the results of the previous problem which uses the same data set confirmed the
same (see table 5.20).

Table 5.22: Result of the tests Voting Records Problem -Modified- (HV84b).

Obs. Test RBF2 RBFk SVM
Acc t 1.104 0.988 0.905

f 0.759 0.914 1.283
QE t 1.233 0.052 –

f 1.303 0.536 –
NE t 1.21 0.049 –

f 1.333 0.525 –

The two problems that we have not commented yet are regression problems. These problems
returns only error results, because here there exists no accuracy concept.
The first of these problems is Prostate. The best results are achieved with the RBF’s, which return
identical results. SVM and HNN2 perform a little bit worse, as you can see at table 5.23.

Table 5.23: Result of the predictions Prostate Problem (PRO).

Method QE NE
HNN2 0.756 - 0.761 -
RBF2 0.681 + 0.722 -
RBFk 0.681 + 0.721 +
SVM 0.744 - – |

The differences between HNN2 and the other methods can not be confirmed by any statistical
test. Despite of the bad results, the high variance of this regression problem does impossible
drawing conclusions. See that at table 5.24.

Table 5.24: Result of the tests Prostate Problem (PRO).

Obs. Test RBF2 RBFk SVM
QE t 1.062 1.365 0.78

f 2.27 2.988 3.551
NE t 0.997 1.285 –

f 2.253 2.988 –

The last problem we have studied is the second regression problem and it is called Servo.
Here, the HNN2 achieves the best predictions, closely followed by the RBF2 first and the RBFk
then. In the last place, the SVM performs extremely bad for this problem, doubling the error of
the worst method between the other three 5.25.

And the tests confirm the previous considerations. There is an only positive respose corre-
sponding to the comparation with the SVM. The reason to get this positive value is the SVM
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Table 5.25: Result of the predictions Servo Problem (SERVO).

Method QE NE
HNN2 0.933 + 0.619 +
RBF2 0.955 - 0.627 -
RBFk 0.99 - 0.639 -
SVM 2.226 - – |

strange and extremely bad response. For the others, their similar behaviours do that the tests
don’t find a real difference. See at table 5.26.

Table 5.26: Result of the tests Servo Problem (SERVO).

Obs. Test RBF2 RBFk SVM
QE t 1.212 1.356 2.282

f 0.601 0.786 14.386
NE t 1.127 1.266 –

f 0.619 0.841 –





6
Evaluation of results

With the experimental setting results that we have explained above we can draw some ideas
about the HNN2 performance. This is a method that from the beginning has been built putting
some hopeful functionalities together. We have thought these functionalities could help to achieve
a better fitting since they represent an improvement in the different parts of HNN’s regarding
previous versions. For example, using a clustering algorithm that allows heterogeneous data
improves the input data understanding, or using regularization improves the second layer weights
selection.

But these improvements are local interpretations that are not forced to perfom well together.
Even if they work like we had expected, there would be a big problem configuring all these
functionalities to get really good results. Note that this configuration could change for different
problems because that is exactly what allows the algorithm, adaptability to adjust well many
problems.

We have built a HNN version, the HNN2 which has a default configuration based on the
Fractional Factorial Design we have done over a small set of typical heterogeneous problems.
These are problems that fit better the concept of heterogeneous problem we want to adjust. By
lack of time, an study for choosing the better configuration has not been done; instead, the default
configuration has been used with the 10 problems.

The first experimental setting, the Fractional Factorial Design, was developed for Credit
Approval, Horse Colic (using class variable 22 and 23) and Cylinder Bands. The global result
was that no Alternate Optimization had to be performed in the default configuration, that only
one unique p/σ parameter had to be used, using continuous (4.8) to treat continuous variables
and frequency (4.6) to categoric variables, combining the partial similarities with a normalized
aggregator.

Problem by problem, we observe different behaviours. For example, attending to accuracy,
CRX would used frequency (4.6) to treat categoric variables, but since we were optimizing
regarding quadratic error the preferent option attending to QE is more important. So, for this
problem, the factorial selection is the same that the general selection but using overlap (4.5) to
treat categorical variables.
Contrarily, analysing BANDS we could decide to consider continuous variables as fuzzy variables
and not perform partial similarities normalization because the results are so unanimous.
A different case would be HC23, which performs better with fuzzy variables and normalization.
The selection of HC22 is so similar to the global selection, but it would discard the partial
similarity normalization because despite of being good for accuracy, it’s not good for error (as we
have seen before in CRX).

71



72 Evaluation of results

Attending to the results, there are two factors that have a minimum difference between the
two options: A and C (see all the factors at page 56). Both have very similar results, which causes
that in table 5.5 we find some numbers closed to 0. That means that in general using an option is
the same that using the other one. Despite the small difference, we had to decide a default option
and we don’t have any reason to contradict this experimental setting, so we had chosen the option
with this small advantage.
The decision about factor D is supported by an unanimous behaviour (see at table 5.6) in all the
problems, where its use is not recommended. Some authors have defended this conclusion, as
Wettschereck and Dietterich, who said that using several p/σ (one per neuron) is not justified
because it doesn’t improve the predictions [11].
There is a good result to conclude the use of frequency partial similarity function with categorical
variables. This can be explained for the more extrem behaviour of the overlap function, which is
the + option of the factor B and returns only 0 or 1, whereas the other option, frequency, returns
more distributed partial similarities. In this case, the decision is not unanimous between all the
problems, because CRX would use overlap, but there is a wide agreement between the other
problems.
Finally there is the factor E, which decides about whether using the AO in the default configuration
or not. The conclusion is that the algorithm performs better without using it, what is an unanimous
decision between all the problems again. That happens probably because it is an unlimited p/σ
optimization that could generate an overfitted model. And an overfitted model generates a greater
error that goes against what we are optimizing.

Note that this configuration has been chosen attending to some problems, so it is possibly
determined by them and a deeper experimental setting should be done to set a more specific
default configuration. These are also a subset of decisions, if you want you could find new
decisions to be taken that we have no studied by lack of time or less importance. Anyway, each
problem will require its own configuration, so the default configuration won’t work allways well
in the same way we have experimented with Cylinder Bands, for example.

In the case of the final experimental setting, the default configuration of the HNN2 is compared
with the RBF2, the RBF with K-means and the SVM with radial kernel. This comparison is
performed attending to ten different problems, which results are used to draw some conclusions.

If we see the final results problem by problem, we observe different situations.
For the Credit Approval problem all the methods achieve an averaged accuracy near to 85%.

The best method seems to be the HNN2, with the higher accuracy and the lower errors. Despite
of having a good difference, the statistic tests don’t conclude that the HNN2 is really better (see
at tables 5.7 and 5.8).
German Credit Data is the second problem we have studied achieving an averaged accuracy near
to 74% with all the methods. Here, the method with higher accuracy is the SVM and, knowing
that we have no data about the SVM errors, the method with lower errors is the RBF2. The
differences between methods are so small (table 5.9), so the statistic tests are no conclusive, it is
impossible to sure that some method is the best one (table 5.10).
The third data set, Cylinder Bands, is not well-fitted with the default configuration of the HNN2.
The methods accuracy goes from the 70% of the HNN2 to the 75% of the SVM. This is the better
method for accuracy, but attending to the errors, the best method is again the RBF2. As you
can see at table 5.11, the differences here are higher and the HNN2 is really worse than other
methods. The test results seems to bear this idea out since f test between the HNN2 and the SVM
is positive (see at table 5.12). With the RBF networks the difference is lower and statistic tests
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can not confirm it.
A similar situation is found with the Hepatitis problem. Here, the accuracy achieved by all the
methods is near to 83%, specially the RBF2 that arrives almost to 84%. However, the lower errors
are achieved by the RBF + K-means, with a minimum difference over the RBF2 (see at table
5.13). The accuracy is really the only measurement where there exists an important difference
with the HNN2 and this can be demonstrated with the f test between the HNN2 and the RBF2
that is positive. For the other methods tests can not find difference (table 5.14).
For the Horse Colic we have found two similar behaviours despite of the two different class
variables. The HC22 is fitted with an accuracy between 65% of the SVM and 67% of the HNN2.
The HNN2 is the best method again in accuracy, but also in errors. The differences with other
methods are not so large, but we have got a positive value for the t test between the HNN2 and
the RBF2 (see at tables 5.15 and 5.16). In this way, the HNN2 is also the method that works
better with HC23, achieving an accuracy of 83%, whereas the other methods are near to 80% of
accuracy. The errors are also lower with the HNN2, even with an important difference (table 5.17).
This behaviour is confirmed by the tests, with a great number of positive responses: comparing
the HNN2 with the RBF + K-means, QE and NE are confirmed by t and f tests to be really lower
with our algorithm; comparing the HNN2 with the RBF2, QE and NE are only confirmed by f
tests to be really lower with our algorithm (table 5.18).
There is another data set with two different studied problems, United States Congressional Voting
Records. Fitting the HV84, the method that does it better is the HNN2, with the best averaged
errors. This method is closely followed by the RBF2, which wins in accuracy with 95.5%, but
the others are farther. Anyway, these differences are not so important because any tests returns a
positive response (see at tables 5.19 and 5.20). However, the second problem, HV84b, is fitted
better by the RBF networks. The best accuracy is achieved by the RBF + K-means (95.3%), and
the worst is achieved by the SVM (94.5%). The RBF2 errors are the lowest ones, followed closely
by the HNN2 errors. As you can see at table 5.21, the differences are not so large, so the statistic
tests return non-positive responses (table 5.22).
Finally, we have studied two regression problems, so we only dispose of the error measurements.
For the first one, Prostate, the RBF networks return the best results. Both have almost equal
averaged errors, being a little bit larger the HNN2 errors (see at table 5.23). Anyway, the
differences are no too large because the tests don’t return any positive response comparing the
methods (table 5.24). The second problem, Servo, shows a different behaviour: the lower errors
are achieved with the HNN2, followed by the RBF2. The differences are higher than in the
previous problem but only the f test between the HNN2 and the SVM is positive. That is because
the SVM achieves an extremely bad averaged error.

In this study there are two very close situations that could be in-depth compared.
One of these situations is the Horse Colic data set, that has been studied in two different problems.
HC22 uses the 23th variable as class variable (it has three possible values) and HC23 uses the
24th (two possible values). Having different class variable, the first layer is allways the same
because it is based on a clustering performed over the rest of variables. But the second layer, when
supervised learning starts, is built in separated ways. Variable 24 seems to be more predictable
than variable 23 because all the methods return higher accuracy for the first one (an average over
83% versus 66% of variable 23). Having different number of possible classes could be a reason
to get lower accuracy (if there are more possible classes, the probability of failing rises), but that
is not probable because both problems use the same code and algorithm.
Luckily both problems had been studied before with the Fractional Factorial Design and their
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best configurations differ (table 5.6) from the default configuration. That could indicate that the
obtained results could be better changing the configuration, so in this way some differences could
be explained also. Note that the advantage of HNN2 over the rest of methods is higher in HC23
than HC22.

The second situation is the United States Congressional Voting Records data set, that has been
treated also in two different ways. The difference here is that HV84 considers that the variables
are binary whereas the HV84b considers them caterogic. The results with all the methods vary
a little bit between the two problems, only by the redistribution of instances because they use
transformed continuous variables. But the results with the HNN2 change, and that only can have
a reason, considering binary variables is better than considering them categoric.

Analysing the situations where HNN2 seems to perform worse than other methods, we have
found several reasons that despite of using each reason to explain different problems, maybe
more than one of these reasons is affecting not only one problem.
The first problem where we observed HNN2 low performance is CRG. Here, attending to the tests
results, there is a minimum difference between HNN2 and the other methods. Actually, we can
not say that there is HNN2 low performance since all the tests return negative responses. If there
is difference between the HNN2 and the other methods but the tests are negative, probably the
methods results have a high variance that compensates the average. That means that attending to
the instances separation (training/test) the results vary so much. Also there is the uncertainty of
knowing if there is another HNN2 configuration that fits CRG better.
A very similar case is the HV84b problem. The HNN2 has worse results with this problem
(comparing it with the other methods) but the tests can not confirm a real difference because it is
not so large and a high variance can be assumed. The explanation would be the same than above
but here we can compare this problem with the HV84, that uses the same data set. Attending to
the HV84 results, we can see that the HNN2 is the method that fits better the problem. Knowing
that the difference between HV84 and HV84b is only the type of variable we assume for variables
of the data set (which is a configurable point), we can assure that this problem has a bad HNN2
configuration and that is the reason of its poor fitting.

A third case of bad results with the HNN2 is BANDS. Here the difference with the rest of
methods is higher, arriving to be confirmed the difference between the HNN2 and the SVM by a f
test. But analysing these results we dispose of an extra information, the FFD results for BANDS
(table 5.6). This experimental setting was so conclusive in this case and determined that its best
configuration should have no normalization and treat continuous variables as fuzzy. These two
differences regarding the default configuration could justify these poor results because we are
aware of that the HNN2 is not using its best configuration to fit BANDS.

Otherwise, the problem associated with the bad results in HEP and PRO could be made by
the small number of instances in their data sets. Both have poor results (worse in HEP) due to
their high smin variability in the 10 learning runs and, then, also the number of clusters. What
happens in this case is that the division on training/test is more important because there is a small
number of instances and the training set maybe is not enough to represent the whole problem, so
the learning is not complete. Then, the test set returns an important error with a high variance.
There is a third problem which has a data set with less than 200 instances, SERVO. But this
problem has a more deterministic behaviour because regarding to the HNN2 executions results,
there is no high variability and smin and the number of clusters is allways so similar.
That demonstrate that the result is influenced by the kind of problem and the number of instances.
If there is a problem very difficult to be learned, the algorithm will need more instances to fit well
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the problem. Of course, there are other reasons because other methods are not so affected by the
variability. Probably the default configuration is not the best one to cope with these problems.

As secondary observation of this final experimental setting, we could point out that the RBF2
is better than the RBF + K-means, which means that it is better to initialize a RBF network using
the Leader2 clustering algorithm than using the K-means.
We point out that attending to the results problem by problem. Most of them have similar results,
where one of both RBF networks has better results but with a tiny difference. But in the situations
where that doesn’t happen and a higher difference is found (problems HV84, HV84b and SERVO),
the best method is always RBF2. Note that both methods use transformed continuous variables
and the same neurons model, so the only difference comes from the clustering result that builds
the first layer.
Taking into account that algorithms can be reconfigured and probably get better results we only
can say that at least the Leader2 is not worse than the K-means to initialize RBF networks.





7
Discussion and conclusions

These results demonstrate that the HNN2 is a good choice when you are looking for a method
to fit an heterogeneous data set. If you look into the final experimental setting, that is where there
is a real comparison with other learning methods, a half of the problems are better fitted using the
HNN2 with its default configuration. Despite of the rest of problems are better fitted with other
methods (this situation has been justified above), the improvement capacity of this algorithm by
changing its configuration is demonstrated.
So, despite of being a new method, it performs at least as well as other classical methods. That
has more relevance if you note that this method has been built as the result of assembling different
functionalities that represent concepts we wanted to our method. We were confidents of achieving
a great performance, because these are concepts we thought necessaries to this kind of learning
method, but assembling them is not trivial and nobody could sure that it would work well. The
HNN2 has to be consider as an assembly of a set of good ideas that really works well.

This new algorithm uses the similarity concept, which we consider a more intuitive way
to stablish how resemblant are two examples. There is a maximum (1) and a minimum (0) of
similarity and it is increasing, that is the more similar the higher value. So you can stablish an
scale that the distance concept, which is defined in [0,+∞], doesn’t allow you to stablish because
there is no a maximum distance (and then, there is no middle and other reference points). In the
practice, it is possible to stablish the similarity between two kinds of tables, for example, but it is
not possible with distance.

One of the main characteristics of this method is that it is able to treat with original data,
without transformations. Without taking into account specific cases, any data transformation
entails some knowledge loss because right continuous representation is not allways possible for
any data type. The algorithm incorporates a high variaty of data types and functions, but it also
allows users to incorporate their own data types and similarity partial functions. So, it is highly
customizable using personal configurations.
Performing a complete study for each one of the ten problems we have used in this research
project we would probably get ten different configurations. That demonstrates the adaptability of
this method, which is a basic characteristic of methods allowing heterogeneuos data. Adaptability
is required because treating with heterogeneous data the method is adapted to the changeable
data, whereas data is adapted to the method when a classical algorithm is used. The advantage of
adapting the method is that we can treat the data in its original codification. The SVM requires an
optimal way to transform heterogeneous data in its continuous representation. Otherwise, the
HNN2 requires an optimal choice of partial similarity functions that compare two values of a
variable in its original state.
People that know about the data set could know a way to compare a variable, but it could not have
a continuous immediate representation. But also, if an heterogeneous variable has a continuous
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immediate representation, there is at least a way to compare it using a partial similarity function
since there exist well known similarity functions for continuous variables. In this way, data
transformation can not be considered better than heterogeneous functions.

Attending to experimental results, the two test positive values that confirmed that the HNN2
performs worse with some problems than other algorithms, both are accuracy tests. That has
to be emphasized because this algorithm optimizes the quadratic error, so the accuracy is only
an associated measurement that really has less importance than error. In this way, if there is a
positive value for accuracy but this bad performance of the algorithm is not confirmed then by a
positive value for error, the tests results can not be used as a conclusive argument.
In this way, we can say that the HNN2 is not worse than the other methods. We have brought
natural opponents face to face and our method is probably the best method, and here it just
has been used with its default configuration. Maybe it is a method that requires an in-depth
configuration to get the optimal results, but if the user disposes of expert knowledge, the HNN2
is able to take advantage of this knowledge and use it to learn better the problem. Actually, we
don’t know many methods that take advantage of the expert knowledge as much as HNN2 does
it (many data types, specific partial similarity measures, other configurable parameters: p, q,
normalization. . . ). Anyway, the default configuration doesn’t returns worse results in average.

Regarding to other Leader2 version developed in this research project, the supervised version
was not taken into account in the experimental settings because it breaks the similarity principles
because two instances belonging to the same cluster in the unsupervised version (they are more
similar than smin), they could be now in different clusters attending to their class despite of being
so similar. This version is only useful when the data is naturally separated, and we know by [2]
that the Leader2 algorithm recognize perfectly this situations without the supervised version.
The preliminary practical results demonstrate that it was not useful. The opposite case is the
distance version, which is so useful since it is the same algorithm than the similarity version, with
performance improvements, but using the distance concept.

We have built a supervised learning method, an artificial neural network that uses simpler data
representations and more understandable concepts. That is achieved without loss of performance
because the HNN2 equals or outperforms other classical methods as RBF networks or the SVM.
The HNN2 guarantees also an interpretable neural network structure, because even the neuron
centers are original input data. Inside all this understanding tendency we can fit the lower number
of hidden neurons usually associated with the HNN2, which is important because complex models
are not human interpretable.

7.A Future work

During the development of this thesis we have found some topics that could be researched but we
have not done it because of lack of time, size and complexity of the anticipated work or being
unrelated with our research.

Some of these topics are:

1. Since the HNN2 is right now completely written in R language, it is not so fast because
that is not a language optimized to programing. R-project allows users to write the more
complex parts of the code in other languages (C/C++, for example) to make algorithms
faster. That would be a basic tasks to improve the HNN2 performance.
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2. σ regularization. Maybe one of the problems that we have experimented with the Alternate
Optimization is that σ has been optimized perhaps until falling in overfitting. So, we have
thought that some σ regularization method could be used to avoid this over-optimization.

3. Local regularization. We have implemented a global regularization because Orr points out
that local regularization is an unnecessary waste of resources for the minimum improve-
ments achieved in practice [13]. But there are methods, one of them defined by Orr himself,
that perform regularization using a λi different to each weight. That could be tested in the
HNN2.

4. Calculating p in our proposed heuristic method, it takes the mean similarity as reference
behaviour. Another option, a little bit more elaborated would be to use the instances
distribution entropy for each cluster.

5. We have worked with an algorithm that transforms classification problems into regression
ones to perform. An interesting work could be to avoid this transformation extending
the weights regularization, which was the functionality that doesn’t allow us to treat
classification problems.

6. Incorporate new partial similarity functions, aggregators, heuristic methods to initialize
p/σ , etc.

7. New tests should prove the aggregator with different q values, different partial similarity
measures, different heuristic methods to initialize p/σ , different initial λ values, etc.

8. Studying the real value of a RBF network initialized with the Leader2 clustering algorithm.
In our tests it seems to be better that the version initialized with K-means, but that can not be
a right conclusion since these tests were not prepared to demonstrate this relationship. The
idea of considering RBF network a particular case of the HNN2 could teoretically support
this conclusion. So an experimental setting comparing both versions of RBF networks
could be performed.

9. The HNN2 default configuration we have proposed has been set attending to the Fractional
Factorial Design results and some previous good configurations. A better configuration
could be found doing a larger study, including a higher number of problems and new
decisions that we have considered well configured. Anyway, using expert knowledge
would be the best way and getting it should be a priority to configure each problem
independently, that is the correct way.
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A
Reasoning the fuzzy similarity

functions

A.A Triangle-shaped functions

We have two fuzzy numbers represented by two triangle-shaped functions and we are only
interested in the point where they cut. This point is in y≤ 1, but if y < 0 it is replaced by y = 0.
This is the similarity value returned by this approach.
Each function has to be built by two straight lines that cut at (xik,1) and has a base of length 2∗P.
Having this, we know two reference points for each one of the two lines: (xik−P,0),(xik,1) and
(xik,1),(xik +P,0) (the first one is increasing and the second one decreasing).
In the first case, the increasing line has the following function:

y = a · x+b, and (xik−P,0),(xik,1)

0 = a · (xik−P)+b, and 1 = a · xik +b

a · xik−a · xik +a ·P = 1

a =
1
P
, and b =

P− xik

P
So the function is:

y =
1
P

x+
P− xik

P
(A.1)

In the second case, the decreasing line has a different function:

y = a · x+b, and (xik,1),(xik +P,0)

1 = a · xik +b, and 0 = a · (xik +P)+b

a · xik−a · xik−a ·P = 1

a =− 1
P
, and b =

P+ xik

P
So the function is:

y =− 1
P

x+
P+ xik

P
(A.2)

Additionally, we have two functions that could be written as:

y = a1 · x+b1
y = a2 · x+b2

}
(A.3)
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where the number 1 indicates that this is the decreasing function and the number 2 indicates the
increasing function. If we match them we get:

a1 · x+b1 = a2 · x+b2

(a1−a2) · x = b2−b1

x =
b2−b1

a1−a2

And replacing x in some of the two previous functions:

y =
a1 · (b2−b1)

a1−a2
+b1 =

a1 ·b2−a1 ·b1 +a1 ·b1−a2 ·b1

a1−a2
=

a1 ·b2−a2 ·b1

a1−a2

Now, we have the point (x,y) where two straigh lines cut, and we are going to do the specific
development for two triangle-shaped fuzzy numbers xik,x jk.
We incorporate two kind of triangle-shaped functions. The first one, where the width of the
function doesn’t change, cut at the point:

x =
P−x jk

P − P+xik
P

− 1
P −

1
P

=

x jk+xik
P
2
P

=
xik + x jk

2

which is the arithmetic mean. And for y we do:

y =
− 1

P ·
P−x jk

P − 1
P ·

P+xik
P

− 1
P −

1
P

=−
x jk−P

P2 − xik+P
P2

2
P

=−
x jk− xik−2 ·P

2 ·P
=

xik− x jk

2 ·P
+1

Note that here you have to know which is the higher value to be used at the increasing function
leaving the lower one to the decreasing function. But we don’t have to know this order. Instead
of finding out the order, we introduce a little change at the y function in order to generalize it. At
the x function that is not necessary because there is a summation. Here the problem is generated
by the substraction at y. The change we introduce is the absolute value of the substraction:

y = 1−
|xik− x jk|

2 ·P

where the new substraction returns the decreasing behaviour to y, because it will be used as
similarity measure.
Using all this information we build the similarity function:

sk(xik,x jk)≡

{
1− |xik−x jk|

2·P if |xik− x jk| ≤ (2 ·P)
0 otherwise

(A.4)

The same base reasoning is used to build the similarity function where the shape of the convex
function depends on some percentage P of the value that represents. The problem that introduces
this approach is that the width is different at each fuzzy number, so the simplification follows a
different way:

x =

x jk·P−x jk
x jk·P − xik·P+xik

xik·P

− 1
xik·P −

1
x jk·P

=
2
P

xik+x jk
xik·x jk·P

=
2 · xik · x jk

xik + x jk
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which is the harmonic mean. And for y we do:

y =

x jk−x jk·P
xik·x jk·P2 − xik+xik·P

xik·x jk·P2

− 1
x jk·P −

1
xik·P

=

x jk−x jk·P−xik−xik·P
xik·x jk·P2

− xik+x jk
xik·x jk·P

=
−x jk + x jk ·P+ xik + xik ·P

(xik + x jk) ·P
=

xik− x jk

(xik + x jk) ·P
+1

The situation is the same that before. Then, we do the same in order to avoid the substraction
problems:

y = 1−
|xik− x jk|

(xik + x jk) ·P
Using all this information we build the similarity function:

sk(xik,x jk)≡

{
1− |xik−x jk|

(xik+x jk)·P if |xik− x jk| ≤ ((xik + x jk) ·P)
0 otherwise

(A.5)

A.B Trapezoid-shaped functions

A trapezoid is a four-sided figure that has a pair paralel and the another pair not paralel. The
paralel pair has a large side (bottom) and a short one (upper). In this work we impose that the
non-parallel pair of sides have the same degree of inclination. It can be seen as an isosceles
triangle that has been cut out disappearing its upper (different) angle. In this way, it can be also
seen as an isosceles triangle of height = 1, that has been separated into two equal parts (two right
triangles) and then recombined putting in the middle of the two parts a rectangle of height = 1.
Using this last point of view, the fuzzy trapezoid-shaped similarity function is based on the first
fuzzy function we present here A.4.

sk(xik,x jk)≡


1 if |xik− x jk| ≤ (2 ·Pa)

1− |xik−x jk|−(2·Pa)
2·(Pb−Pa)

if |xik− x jk|> (2 ·Pa) and |xik− x jk| ≤ (2 ·Pb)

0 otherwise
(A.6)

In this approach Pa is the length of the bottom side and Pb the length of the upper side. In the
first term of this similarity function, if the values are so near (less than 2 ·Pa) the similarity is
the maximum. When the values are farther, 2 ·Pa (the rectangle length) is substracted to use the
triangular approach. Finally, if they are so far, there is no similarity between them.

A.C Exponential functions

We have two fuzzy numbers represented by two exponential functions and we are only interested
in the point where they cut, that is in y ∈ (0,1], and it is the similarity value returned by this
approach. The exponential function as this appearance:

exp(x) = e−
(x−µ)2

2·σ2

Using this function, we derivate the similarity measure that is returned for two values xik,x jk. We
have to generate two exponencial functions with the same width (σ2) and their centers located at
the values µ1 = xik and µ2 = x jk:

exp1(x) = e−
(x−xik)

2

2·σ2 exp2(x) = e−
(x−x jk)

2

2·σ2
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If we match the two exponentials we get:

exp1(x) = exp2(x)

e−
(x−xik)

2

2·σ2 = e−
(x−x jk)

2

2·σ2

And simplifying this equality:
(x− xik)

2

2 ·σ2 =

(
x− x jk

)2

2 ·σ2

(x− xik)
2 =

(
x− x jk

)2

Now, we have to expand the power and simplify again:

x2−2xxik + x2
ik = x2−2xx jk + x2

jk

−2xxik + x2
ik =−2xx jk + x2

jk

And, finally, isolating the x variable:

−2x
(
xik− x jk

)
= x2

jk− x2
ik

x =
x2

ik− x2
jk

2
(
xik− x jk

) = (xik + x jk
)(

xik− x jk
)

2
(
xik− x jk

) =

(
xik + x jk

)
2

We get a simplified value of x that is replaced in one of the two exponential functions:

exp1(

(
xik + x jk

)
2

) = e−

(xik+x jk)
2 −xik

2

2·σ2

And this is the exponential-based fuzzy similarity function:

sk(xik,x jk)≡ e−

(xik+x jk)
2 −xik

2

2·σ2 (A.7)



B
Reasoning an heuristic to

approximate p

We have created a new learning method, the Heterogeneous Neural Network 2, and we have
to provide answers to all the open questions. One of these questions is the default value p used
by the algorithm.

Belanche [9] used p = 0.1, because it draws a graphic with a curve not so heavy, that is, an
averaged behaviour. We respect this consideration, but we propose a changing p value attending
to the clustering results that initialize the HNN2.

First of all we define a coefficient that characterizes the clusters, the compactness index, a
real value ICi ∈ (0,1) that is higher the more compact is the cluster i. Defining the concept of
compactness for this method, we define two measures:

li = |[µi]|. It is the number of instances in the cluster i.

mi = s([µi]). It is the averaged similarity of the instances of the cluster i with its leader µi.

So, based on these two measures, we say that a cluster i is more compact the higher both li and
mi are.

We have defined the IC ∈ (0,1), but p is a real number defined in all the positive numbers
(p ∈ (0,+∞)). Then, we need a function that transforms r : IC→ p, that is, r : (0,1)→ (0,+∞).
This behaviour is easily found using logarithms, so we define r as:

r(z) =− lnz = ln
1
z

Now, we know the transformation needed and just left defining the method to calculate the
compactness index. We like function f (x) = x

x+n because it is defined in (0,+∞)→ (0,1) and
the n value allows you to change the growing curve of the function.
We have thought that the better combination of li and mi is multiplying them ( f (li ∗mi)). li is a
natural number (li ∈ 1, . . . ,h) and mi is a similarity measure, so mi ∈ [0,1]. This multiplication
produces a value x = li ·mi that is lower or equal than li. The higher similarity mean, the closer x
and li are. This behaviour fits with the definition of compactness we have, both coefficients have
to be high to get a high index. Right now, we have:

ICi =
li ·mi

li ·mi +n
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So, the n parameter will be which differenciates the different clusters. If there are two identical
clusters (same li and mi) of different clusterings, their IC could be different attending to their
clustering. That has to be reflected in n.

Attending to the function f , when n→ 0, f → 1. So, the n has to represent a averaged
behaviour x that allow the IC to get high values when x > x and lower values when x < x. So we
defined n = αml, where m is the average of the similarity of all the instances in the data set with
their leader, l is the number of instances divided by the number of clusters and α a parameter to
fit the relation.
We want the function to get pi = 0.1 when the cluster i is averaged (mi = m and li = l). So, we
have r(ICi) = 0.1 and if we spread out the function:

− ln
(

ml
ml +αml

)
= 0.1

ln
(

ml +αml
ml

)
= 0.1

ln(1+α) = 0.1

1+α = exp(0.1)

And we get the value of α:
α = exp(0.1)−1

Now, using this α value, we can defined the IC as:

ICi =
mili

mili +(exp(0.1)−1)ml
(B.1)

And then, the heuristic we propose to calculate p is:

pi = r(ICi) = r
(

mili
mili +(exp(0.1)−1)ml

)
=− ln

(
mili

mili +(exp(0.1)−1)ml

)
(B.2)

In the cases where an only p parameter is used, it could be calculated using the mean of the p
parameters of all the clusters. That is, when p̂ = p̂i∀i, p̂ = pi, where pi is the pi calculated mean
and p̂ is the global unique p value.



C
Data sets used in the experimental

settings

In order to test our algorithm we have chosen some known problems. These have different
data types and dimensions. The only thing they have in common are the heterogeneous data.
Many of them are taken from the UCI Repository [25].

Now we will explain them in depth to understand the decisions we have taken over the
data. Remember that these decisions are so important in our method because imply an specific
similarity function for each variable.

CRX: Credit Approval

This is a data set available at the UCI repository:
http://archive.ics.uci.edu/ml/datasets/Credit+Approval.

It was created by Quinlan, from School of Information Technologies in the University of
Sydney (Australia). This data set concerns credit card applications.

There are 16 variables and the last one is the class variable. The data set has 690 examples
and the 5% of the instances (37) have missing values. The class variable has only two possible
values (classes), where the first one (+) is the 44.5% of the examples and the second class (-) the
other examples (55.5%).

The variables are:

1. Variable 1: Without any other information we only have the possible values: a and b.
We consider this is a two-value categoric variable.

2. Variable 2: Without any other information, it is a continuous variable.

3. Variable 3: Without any other information, it is a continuous variable.

4. Variable 4: Without any other information we only have the possible values: u, y, l and t.
We consider this is a categoric variable.

5. Variable 5: Without any other information we only have the possible values: g, p and gg.
We consider this is a categoric variable.

6. Variable 6: Without any other information we only have the possible values: c, d, cc, i, j, k,
m, r, q, w, x, e, aa and ff.
We consider this is a categoric variable.

91

http://archive.ics.uci.edu/ml/datasets/Credit+Approval


92 Data sets used in the experimental settings

7. Variable 7: Without any other information we only have the possible values: v, h, bb, j, n,
z, dd, ff and o.
We consider this is a categoric variable.

8. Variable 8: Without any other information, it is a continuous variable.

9. Variable 9: Without any other information, it is a binary variable. The possible values are:
t and f.
We consider this as binary variable, so we assign value 1 to “t” and 0 to “f”.

10. Variable 10: Without any other information, it is a binary variable. The possible values are:
t and f.
We consider this as binary variable, so we assign value 1 to “t” and 0 to “f”.

11. Variable 11: Without any other information, it is a continuous variable.

12. Variable 12: Without any other information, it is a binary variable. The possible values are:
t and f.
We consider this as binary variable, so we assign value 1 to “t” and 0 to “f”.

13. Variable 13: Without any other information we only have the possible values: g, p and s.
We consider this is a categoric variable.

14. Variable 14: Without any other information, it is a continuous variable.

15. Variable 15: Without any other information, it is a continuous variable.

CRG: German Credit Data

This is a data set available at the UCI repository:
http://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data).

It was created by Dr. Hans Hofmann, from Institut fur Statistik und Okonometrie, in the
Universitat Hamburg (Germany). This data set concerns credit card applications in this country.

There are 21 variables and the last one is the class variable. The data set has 1000 examples
and doesn’t have missing information. The class variable has only two possible values (classes),
where the class 1 is the 70% of the examples and the class 2 the 30%.

The variables are:

1. Variable 1: Status of existing checking account. The possible values are:

A11 : . . . < 0 DM ; now 2

A12 : 0 <= . . . < 200 DM ; now 3

A13 : . . . >= 200 DM ; now 4

A14 : no checking account; now 1

We redefine the variable with the changed values and consider it an ordinal variable.

2. Variable 2: Duration in months. Supposing in this field, it has to be the months to return
the credit. It is a continuous variable.

3. Variable 3: Credit history. Information about previous credits. The possible values are:

http://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data)
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A30 : no credits taken/all credits paid back duly

A31 : all credits at this bank paid back duly

A32 : existing credits paid back duly till now

A33 : delay in paying off in the past

A34 : critical account/other credits existing (not at this bank)

We define it as a categoric variable because we can not find any order.

4. Variable 4: Purpose. Why does the client want the money. The possible values are:

A40 : car (new)

A41 : car (used)

A42 : furniture/equipment

A43 : radio/television

A44 : domestic appliances

A45 : repairs

A46 : education

A47 : (vacation - does not exist?)

A48 : retraining

A49 : business

A410 : others

We define it as a categoric variable because we can not find any order.

5. Variable 5: Credit amount. It has to be the money given to the client. It is a continuous
variable.

6. Variable 6: Status of existing checking account. The possible values are:

A61 : . . . < 100 DM ; now 2

A62 : 100 <= . . . < 500 DM ; now 3

A63 : 500 <= . . . < 1000 DM ; now 4

A64 : .. >= 1000 DM ; now 5

A65 : unknown/ no savings account; now 1

We redefine the variable with the changed values and consider it an ordinal variable.

7. Variable 7: Present employment since. The time the client has been working so far. The
possible values are:

A71 : unemployed

A72 : . . . < 1 year

A73 : 1 <= . . . < 4 years

A74 : 4 <= . . . < 7 years

A75 : . . . >= 7 years



94 Data sets used in the experimental settings

These values are already ordered, so we consider this an ordinal variable.

8. Variable 8: Installment rate in percentage of disposable income. With the information we
have, it has to be a continuous variable.

9. Variable 9: Personal status and sex. The possible values are:

A91 : male : divorced/separated

A92 : female : divorced/separated/married

A93 : male : single

A94 : male : married/widowed

A95 : female : single

We define it as a categoric variable because we can not find any order.

10. Variable 10: Other debtors / guarantors. Some people guarantee the client for this credit.
The possible values are:

A101 : none

A102 : co-applicant

A103 : guarantor

We define it as a categoric variable because we can not find any order.

11. Variable 11: Present residence since. It seems to be the time the client has been living in
his current house. It is a continuous variable.

12. Variable 12: Property. It seems to be some client’s property to mortgage. The possible
values are:

A121 : real estate

A122 : if not A121 : building society savings agreement/life insurance

A123 : if not A121/A122 : car or other

A124 : unknown / no property

We define it as a categoric variable because we can not find any order.

13. Variable 13: Age in years. It is the client’s age. It is a discrete variable, that is a subset of
continuous variable.

14. Variable 14: Other installment plans. With the information we have, we only know the
possible values:

A141 : bank

A142 : stores

A143 : none

We define it as a categoric variable because we can not find any order.

15. Variable 15: Housing. Has the client to pay for the residence where he lives? The possible
values are:
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A151 : rent

A152 : own

A153 : for free

We define it as a categoric variable because we can not find any order.

16. Variable 16: Number of existing credits at this bank. It is a discrete variable, that is a subset
of continuous variable.

17. Variable 17: Job. Does he work? The possible values are:

A171 : unemployed/unskilled - non-resident

A172 : unskilled - resident

A173 : skilled employee/official

A174 : management/self-employed/highly qualified employee/officer

We define it as a categoric variable because we can not find any order.

18. Variable 18: Number of people being liable to provide maintenance for. It is a discrete
variable, that is a subset of continuous variable.

19. Variable 19: Telephone. Does have the client telephone number? The possible values are:

A191 : none

A192 : yes, registered under the customers name

We define it as a two-value categoric variable because there are many other possibilities to
incorporate here (mobile phone, fax. . . ).

20. Variable 20: Foreign worker. This is a question with only two possible values:

A201 : yes

A202 : no

It is a binary variable, where we redefine it to “A201”= 1 and “A202”= 0.

HC22/HC23: Horse Colic

This is a data set available at the UCI repository:
http://archive.ics.uci.edu/ml/datasets/Horse+Colic.

It was created by Mary McLeish and Matt Cecile, from the Department of Computer Science
in the University of Guelph (Guelph, Ontario, Canada). It reflexs the problem of the horse colic,
when they can be surgical or the consequences of the illness over the horses. So, each instance is
the clinical record of a horse.

This data set has 28 variables and 5 of them could be class variables. There are 368 examples
and the 30% of the values are missing. In this thesis we have used two problems derived from
this data set.
The first one, HC22, uses the 23th variable as class variable. This variable has three possible
values, that is, three classes. It talks about what happened to the horse and the three opcions are:
it is still alive (1, 61.5%), it died (2, 24.3%) or it was euthanized (3, 14.2%).

http://archive.ics.uci.edu/ml/datasets/Horse+Colic
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The second case, HC23, uses the 24th variable as class variable. This class talks about if the
problem could be surgical, so the possible values (classes) are Yes (1, 63%) or No (2, 37%).
Really, in HC22 there are two less instances because these two examples have a missing value in
its 23th variable.

From the 28 variables, we only use 21 as predictors. Variables 3 and 28 are not used because
they don’t have useful information for the learning. The 23 and 24 that are used as class variables.
Variables 25, 26 and 27 that are deleted because they are class variables that we don’t use, but
also because their information is not so explained and could be incongruous.

The variables are:

1. Variable 1: surgery?

1. Yes, it had surgery

2. It was treated without surgery

We consider this as binary variable, so we assign value 1 to “Yes” and 0 to the other possible
response.

2. Variable 2: Age

1. Adult horse

2. Young (< 6 months)

We consider this is a two-value categoric variable. It is not binary because easily could be
incorporated new possible values (elder, babies. . . ).

3. Variable 4: Rectal temperature. It is a real valued variable that measures in degrees celsius
the temperature of the horse.
We consider it a continuous variable.

4. Variable 5: pulse. It is a natural valued variable, with discrete and continuous values. It
represents the heart rate in beats per minute of the horse.
We consider it a discrete variable, that is a subset of continuous variables.

5. Variable 6: respiratory rate. It is again a natural valued variable, with discrete and continu-
ous values. As its name indicates, it represents the respiratory rate.
We consider it a discrete variable, that is a subset of continuous variables.

6. Variable 7: temperature of extremities. It is an indicator of the peripheral circulation.
Reassigning the values, this variable can be considered as an ordinal variable, because it
can be ordered.

1. Normal; now 3

2. Warm; now 4

3. Cool; now 2

4. Cold; now 1

We redefine the variable with the changed values and consider it an ordinal variable.

7. Variable 8: peripheral pulse. Reassigning the values, this variable can be considered as an
ordinal variable, because it can be ordered.
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1. Normal; now 3

2. Increased; now 4

3. Reduced; now 2

4. Absent; now 1

We redefine the variable with the changed values and consider it an ordinal variable.

8. Variable 9: mucous membranes. It is a measurement of membranes colour. It can have the
following values:

1. normal pink

2. bright pink

3. pale pink

4. pale cyanotic

5. bright red / injected

6. dark cyanotic

We define it as a categoric variable because we can not find any order.

9. Variable 10: capillary refill time. It could have been a continuous variable, but it has been
categorized:

1. < 3 seconds

2. >= 3 seconds

We define it as a categoric variable. It is not binary because easily could be incorporated a
new possible value (> 5 seconds, for example).

10. Variable 11: pain. It is a subjective measurement of the horse’s pain. The possible values
are:

1. alert, no pain

2. depressed

3. intermittent mild pain

4. intermittent severe pain

5. continuous severe pain

These values are already ordered, so we consider this an ordinal variable because despite
the recomendation of no treating it as ordered variable, the author stablishes a clear order
with “the more painful, the more likely. . . ”.

11. Variable 12: peristalsis. It indicates the activity in the horse’s gut. The possible values are:

1. hypermotile

2. normal

3. hypomotile

4. absent
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These values are already ordered, but in the opposite direction. So we consider this an
ordinal variable.

12. Variable 13: abdominal distension. The possible values are:

1. none

2. slight

3. moderate

4. severe

These values are already ordered, so we consider this an ordinal variable. The author
emphasizes that this should be an important variable.

13. Variable 14: nasogastric tube. It indicates if it loses any gas of the tube. The possible
values are:

1. none

2. slight

3. significant

These values are already ordered, so we consider this an ordinal variable.

14. Variable 15: nasogastric reflux. The possible values are:

1. none; now 1

2. > 1 liter; now 3

3. < 1 liter; now 2

We redefine the variable with the changed values and consider it an ordinal variable.

15. Variable 16: nasogastric reflux PH. It is a continuous variable with values between 0 and
14.
We consider it a continuous variable.

16. Variable 17: rectal examination - feces. The possible values are:

1. normal; now 3

2. increased; now 4

3. decreased; now 2

4. absent; now 1

We redefine the variable with the changed values and consider it an ordinal variable.

17. Variable 18: abdomen. Its possible values are:

1. normal

2. other

3. firm feces in the large intestine

4. distended small intestine
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5. distended large intestine

We define it as a categoric variable because we can not find any order.

18. Variable 19: packed cell volume. It is a continuous variable with values usually between
30 and 50.
We consider it a continuous variable.

19. Variable 20: total protein. It is a continuous variable with values usually between 6 and 7.5.
We consider it a continuous variable.

20. Variable 21: abdominocentesis appearance. Its possible values are:

1. clear

2. cloudy

3. serosanguinous

We define it as a categoric variable because we can not find any order.

21. Variable 22: abdomcentesis total protein. It is a continuous variable.

HEP: Hepatitis

This is a data set available at the UCI repository:
http://archive.ics.uci.edu/ml/datasets/Hepatitis.

It was created by G.Gong from the Carnegie-Mellon University (Yugoslavia). It reflexs the
problem of the hepatitis in the people that suffer it and if they can die for this reason. So each
instances is the medical report of a person.

This data set has 20 variables and the first one is consider the class variable. There are 155
examples and the 5.2% of the values (162) are missing values. The class variable has two possible
values (classes), live (79.3%) and die (20.7%), and concludes whether the person died or not.

The variables are:

1. Variable 2: Age. It is a real valued variable, with values between 0 and 80. It represents the
age of the patient.
We consider it a continuous variables.

2. Variable 3: Sex. These are the possible values:

1. male

2. female

It is a binary variable because it is impossible to find a person that has any other sex.

3. Variables 4 to 14: Steroid, Antivirals, Fatigue, Malaise, Anorexia, Liver big, Liver firm,
Spleen palpable, Spiders, Ascites and Varices. All of them have two possible values: 1 or
“no” and, 2 or “yes”. They are binary variables, where we redefine them to “yes”= 1 and
“no”= 0.

4. Variable 15: Bilirubin. It is a continuous variable with values usually between 0.39 and 4.
We consider it a continuous variable.

http://archive.ics.uci.edu/ml/datasets/Hepatitis
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5. Variable 16: Alk phosphate. It is a continuous variable with values usually between 33 and
250.
We consider it a continuous variable.

6. Variable 17: SGOT. It is a continuous variable with values usually between 13 and 500.
We consider it a continuous variable.

7. Variable 18: Albumin. It is a continuous variable with values usually between 2 and 6.
We consider it a continuous variable.

8. Variable 19: Protime. It is a continuous variable with values usually between 10 and 90.
We consider it a continuous variable.

9. Variable 20: Histology. These are the possible values:

1. no

2. yes

It is a binary variable, where we redefine it to “yes”= 1 and “no”= 0.

BANDS: Cylinder Bands

This is a data set available at the UCI repository:
http://archive.ics.uci.edu/ml/datasets/Cylinder+Bands.

It was created by Bob Evans from the RR Donnelley and Sons Co., Gallatin Division
(Tennessee, USA).

This data set has 40 variables, including the class variable, but 6 of them are not used. There
are 540 examples and the 4.625% of the values (999) are missing values. The class variable has
two possible values (classes), band (42.3%) and noband (57.7%), and concludes whether there is
band or not.

The deleted variables are:

Variable 1: timestamp. It is a numeric value that indicates the moment when it was reculled. It
is used as a non-unique example’s code. Without learning relevance.

Variable 2: cylinder number. It is a categoric variable that indicates the cylinder number. There
is a 79.4% of different values, so it can be used also as non-unique example’s code. Without
learning relevance.

Variable 4: job number. It is a numeric value that indicates the job which is associated with the
example. There is a 48.52% of different numbers, so it has not relevant information.

Variable 6: ink color. It is supposed to be a binary variable. In this data set it is a constant
variable. Without learning relevance.

Variable 8: blade mfg. It is supposed to be a categoric variable with three different possible
values (benton, daetwyler and uddeholm). In this data set, it is a constant variable. Without
learning relevance.

Variable 9: cylinder division. It is supposed to be a categoric variable with three different
possible values (gallatin, warsaw and mattoon). In this data set, it is a constant variable.
Without learning relevance.

http://archive.ics.uci.edu/ml/datasets/Cylinder+Bands
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The used variables are:

1. Variable 3: customer. It has 71 possible values to classify the costumers. We consider it a
categoric variable.

2. Variable 5: grain screened. These are two possible values: no and yes. It is a binary
variable, where we redefine it to “yes”= 1 and “no”= 0.

3. Variable 7: proof on ctd ink. These are two possible values: no and yes. It is a binary
variable, where we redefine it to “yes”= 1 and “no”= 0.

4. Variable 10: paper type. It has three possible values (uncoated, coated and super) that
indicate the type of paper. We consider it a categoric variable.

5. Variable 11: ink type. It has three possible values (uncoated, coated and super) that indicate
the type of ink. We consider it a categoric variable.

6. Variable 12: direct steam. These are two possible values: no and yes. It is a binary variable,
where we redefine it to “yes”= 1 and “no”= 0.

7. Variable 13: solvent type. It has five possible values (xylol, lactol, naptha, line and other)
that indicate the type of solvent. We consider it a categoric variable.

8. Variable 14: type on cylinder. These are two possible values: no and yes. It is a binary
variable, where we redefine it to “yes”= 1 and “no”= 0.

9. Variable 15: press type. It has four possible values (Albert70, Motter70, Motter94 and
WoodHoe70) that indicate the type of press. We consider it a categoric variable.

10. Variable 16: press. It has eight possible values (802, 813, 815, 816, 821, 824, 827 and
828) that indicate the press. We consider it an ordinal variable, because we can stablish an
ordering between the values since they are numeric values.

11. Variable 17: unit number. It is a natural valued variable, with discrete values usually
between 1 and 10.
We consider it a discrete variable, that is a subset of continuous variables.

12. Variable 18: cylinder size. It has three possible values (catalog, spiegel and tabloid) that
indicate the size of the cylinder. Without any other information about a possible ordering
between the values, we consider it a categoric variable.

13. Variable 19: paper mill location. It has five possible values (canadian, mideuropean,
northus, scandanavian and southus) that indicate where the industry that makes the paper
is. We consider it a categoric variable.

14. Variable 20: plating tank. It has two possible values (1910 and 1911). It is not a binary
variable because easily we could find a new possible value (1912, for instances), so we
consider it an ordinal variable, because we can stablish an ordering between the values
since they are numeric values.

15. Variable 21: proof cut. It is a continuous variable with values usually between 0 and 100.
We consider it a continuous variable.
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16. Variable 22: viscosity. It is a continuous variable with values usually between 0 and 100.
We consider it a continuous variable.

17. Variable 23: caliper. It is a continuous variable with values usually between 0 and 1.0.
We consider it a continuous variable.

18. Variable 24: ink temperature. It is a continuous variable with values usually between 5 and
30.
We consider it a continuous variable.

19. Variable 25: humifity. It is a continuous variable with values usually between 5 and 120.
We consider it a continuous variable.

20. Variable 26: roughness. It is a continuous variable with values usually between 0 and 2.
We consider it a continuous variable.

21. Variable 27: blade pressure. It is a continuous variable with values usually between 10 and
75.
We consider it a continuous variable.

22. Variable 28: varnish pct. It is a continuous variable with values usually between 0 and 100.
We consider it a continuous variable.

23. Variable 29: press speed. It is a continuous variable with values usually between 0 and
4000.
We consider it a continuous variable.

24. Variable 30: ink pct. It is a continuous variable with values usually between 0 and 100.
We consider it a continuous variable.

25. Variable 31: solvent pct. It is a continuous variable with values usually between 0 and 100.
We consider it a continuous variable.

26. Variable 32: ESA Voltage. It is a continuous variable with values usually between 0 and
16.
We consider it a continuous variable.

27. Variable 33: ESA Amperage. It is a continuous variable with values usually between 0 and
10.
We consider it a continuous variable.

28. Variable 34: wax. It is a continuous variable with values usually between 0 and 4.0.
We consider it a continuous variable.

29. Variable 35: hardener. It is a continuous variable with values usually between 0 and 3.0.
We consider it a continuous variable.

30. Variable 36: roller durometer. It is a continuous variable with values usually between 15
and 120.
We consider it a continuous variable.

31. Variable 37: current density. It is a continuous variable with values usually between 20 and
50.
We consider it a continuous variable.
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32. Variable 38: anode space ratio. It is a continuous variable with values usually between 70
and 130.
We consider it a continuous variable.

33. Variable 39: chrome content. It is a continuous variable with values usually between 80
and 120.
We consider it a continuous variable.

HV84/HV84b: 1984 United States Congressional Voting Records

This is a data set available at the UCI repository:
http://archive.ics.uci.edu/ml/datasets/Congressional+Voting+Records.

It was created by Congressional Quarterly Almanac, 98th Congress, 2nd session 1984, Volume
XL: Congressional Quarterly Inc. Washington D.C., 1985. It includes votes for each of the U.S.
House of Representatives Congressmen.

This data set has 17 variables, including the class variable. There are 435 examples and the
5.3% of the values (392) are missing values. The class variable has two possible values (classes),
democrats (61.38%) and republicans (38.62%), and concludes which party votes each person.

The 16 variables are the same kind of variable. They are: handicapped-infants, water-
project-cost-sharing, adoption-of-the-budget-resolution, physician-fee-freeze, el-salvador-aid,
religious-groups-in-schools, anti-satellite-test-ban, aid-to-nicaraguan-contras, mx-missile, im-
migration, synfuels-corporation-cutback, education-spending, superfund-right-to-sue, crime,
duty-free-exports and export-administration-act-south-africa. All of them have two possible
values: “n” and “y”. They are binary variables, where we redefine them to “y”= 1 and “n”= 0.

We have defined two problems with this data set. In the second one all the variables are used
as categorical variable taking into account some people point of view that said that the missing
values are not really missing values, but a third possible value. Something like “I don’t know”, “I
can not answer”. . .

SERVO: Servo Data

This is a data set available at the UCI repository:
http://archive.ics.uci.edu/ml/datasets/Servo.

It was created by Karl Ulrich in 1986 at the Massachusetts Institute of Technology (MIT).
This data set concerns an extremely non-linear phenomenon that is predicting the rise time of a
servomechanism in terms of two continuous gain settings and two discrete choices of mechanical
linkages.

So, it is a regression problem with 5 variables, including the class variable that vary between
0.131 and 7.1 with mean at 1.39. There are 167 instances and there is no missing information.

The variables are:

1. Variable 1: motor. Information about which motor has been used. The possible values are
∈ {A,B,C,D,E}, so we define it as a categoric variable because we can not stablish any
order.

2. Variable 2: screw. Information about which screws have been used. The possible values
are ∈ {A,B,C,D,E}, so we define it as a categoric variable because we can not stablish
any order.

http://archive.ics.uci.edu/ml/datasets/Congressional+Voting+Records
http://archive.ics.uci.edu/ml/datasets/Servo
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3. Variable 3: pgain. It is a kind of gain, so it is a numerical value ∈ {3,4,5,6}. Despite of
being a set of four possible values, an expert has pointed out that it should be considered
an continuous variable.

4. Variable 4: vgain. It is a kind of gain, so it is a numerical value ∈ {1,2,3,4,5}. Despite of
being a set of five possible values, an expert has pointed out that it should be considered an
continuous variable.

PRO: Prostate

This is a data set available at the lasso2 library of R:
http://www.biostat.jhsph.edu/~ririzarr/Teaching/649/prostate.html.

This data set come from a study that examined the correlation between the level of prostate
specific antigen and a number of clinical measures in men who were about to receive a radical
prostatectomy.

It is a regression problem with 9 variables, including the class variable (lpsa, logarithm of the
prostate specific antigen) that vary between −0.431 and 5.583 with mean at 2.478. There are 97
instances and there is no missing information.

The variables are:

1. Variable 1: lcavol. Logarithm of the cancer volume. It is a logarithm, so it is a real number.
We deal with it using the continuous function.

2. Variable 2: lweight. Logarithm of the postate weight. It is a logarithm, so it is a real
number. We deal with it using the continuous function.

3. Variable 3: Age. It is the patient’s age. It is a discrete variable, that is a subset of continuous
variable. We deal with it using the continuous function.

4. Variable 4: lbph. Logarithm of the benign prostatic hyperplasia amount. It is a logarithm,
so it is a real number. We deal with it using the continuous function.

5. Variable 5: svi. Seminal vesicle invasion. It is a two-valued variable ∈ {0,1}, and an expert
has pointed out that it can be considered a binary variable.

6. Variable 6: lcp. Logarithm of the capsular penetration. It is a logarithm, so it is a real
number. We deal with it using the continuous function.

7. Variable 7: gleason. Gleason score. It is a categoric ordered variable and it has four
possible values ∈ {6,7,8,9}, and an expert has pointed out that it can be considered an
ordinal variable. We consider the order of the values is defined by its numerical value, so
6 < 7 < 8 < 9.

8. Variable 8: pgg45. Percentage Gleason scores 4 or 5. It is a percentage, so it is a real
number ∈ [0,100]. We deal with it using the continuous function.

http://www.biostat.jhsph.edu/~ririzarr/Teaching/649/prostate.html
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This a short guide about how to use the algorithm we have developed in R lenguage. It is
divided in two sections and in the first one you will find all about the Leader2 use. In the second
section you will find the same for Heterogeneous Neural Network 2.

D.A Leader2

The Leader2 version we have developed in this research project has some characteristics that we
will explain here. Let’s start with the customizable functions that allow users to define their own
proposals working with this algorithm.

If you want to incorporate a new partial similarity function, you only has to define these two
functions:

simFunction <- function(a, b, P)

simFunction_param <- function(data)

where simFunction is the name of the function, a and b are the values to be compared, if the
function requires some parameter it is stored at P and, finally, data is a vector with all the values
of this variable in the data set.
The first function is the similarity function itself, so it has to return an only value in [0,1] that
indicates how similar are both values (a, b). It can return a missing value.
The second function, the one finished in param, is a function called by the preprocess function
to calculate a default value for the parameter P, if it exists and it has not been indicated by the
user. So, the function has to return the parameter P that will be used after by its partial similarity
function.

As we said in the document, the aggregator can be redefined by users. It has to follow this
structure:

aggregator <- function(inst1, inst2, obj, calc =
1:length(inst1))
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where aggregator is the function name, inst1 and inst2 are the instances to be compared, obj
is the Leader2 configuration (it is stablished in the preprocess function), and calc indicates the
variables that have to be aggregated (by default, all of them).
It calls the partial similarity functions and combines their values to return an only global similarity
value. It can not return missing values, so an strategy to replace them has to be used. In our
default aggregator this choice is customizable also, so users can define their own proposal using:

fillNA <- function(vect, obj)

where fillNA is the name of the function, vect is the partial similarity measurements (some of
them could be missing values) and obj is the Leader2 configuration. It has to return the same vect
without missing values.

The Leader2 configuration we have refered above is set in the preprocess function:

preprocess <- function(data, methods = NULL, types =
NULL, param = NULL, q = 1, methodsDefault
= MD, calcSk = TRUE, cjts = list(),
treatNA = “fill.zerofive”, aggreg =
“aggregatePartials”)

where data is a data frame structure with the data set (without class variable). The rest of
parameters are:

methods It is a vector with the similarity functions chosen for each variable. By default, it has
no value, so the default partial similarity function is used: continuous 4.8.

types It is a vector with the types of each variable. By default, it has no value, so the default type
is used: continuous.

param It is a list with the parameter P of the partial similarity functions chosen for each variable.
By default, it has no value, so it is calculated using the param functions that we saw above.

methodsDefault It is a matrix with the default partial similarity functions asociated with each
data type. That is used when types are specificated but not methods. It is set to MD, that
we have defined as:

MD <- matrix("", 0, 2)
MD <- rbind(MD, c("binary", "binary"))
MD <- rbind(MD, c("categoric", "overlap"))
MD <- rbind(MD, c("ordinal", "probabilistic"))
MD <- rbind(MD, c("continuous", "continuous"))
MD <- rbind(MD, c("discrete", "continuous"))
MD <- rbind(MD, c("fuzzy", "fuzzy.zerofive"))

That can be modified using:

MD[i,] <- c("dataType", "defaulfSimFunction")
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Or a new structure can be generating following:

newMD <- matrix("", 0, 2)
newMD <- rbind(newMD, c("dataType", "defaulfSimFunction"))

where newMD is the name of the structure, dataType is each one of the data types the user
wants to define and defaulfSimFunction is its associated partial similarity function.

calcSk It is a boolean value that defines if normalization is used (only for default aggregator).
By default, it is TRUE.

q It is the q value of the aggregator. It is a numeric value, by default 1.

treatNA It is the method to replace missing values. By default, it is fill.zerofive.

cjts It is a list with secundary aggregations. It has to be defined as:

cjts <- list()
cjts[[i]] <- list()
cjts[[i]]$q
cjts[[i]]$indexs
cjts[[i]]$funct
cjts[[i]]$treatNA

where q is the q value of the aggregator, indexs are the variables to be aggregated, funct is
the aggregator to be used and treatNA is the method to replace missing values.
Note that this partial aggregations only works in our aggregator.

aggreg It is the aggregator to be used. By default, it is aggregatePartials, our proposal.

This preprocess function returns a list with the Leader2 configuration.
Then, we have the Leader2 functions themselves. They are:

leader2 <- function(data, Smin = 0.5, L = NA, ...)

leader2.obj <- function(data, Smin = 0.5, L = NA, obj =
NULL)

where data is the data set without class variable, Smin is the main parameter in our method and L
says how many instances are required to create a new cluster.
Both functions are the same, but the first one requires also (. . . ) the preprocess function parameters
because it calls the preprocess before performing and the second function assumes you have
called preprocess function before and you have to pass the Leader2 configuration in obj.

But we have also the supervised versions, which are:
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leader2.supervised <- function(data, T, Smin = 0.5, L = NA, ...)

leader2.supervised.obj <- function(data, T, Smin = 0.5, L = NA, obj
= NULL)

where all the parameters are the same but incorporating the class variable in data and indicating
it with the parameter T.

Despite of having different names, all these versions work in the same way and all of them
return:

nclusters The number of clusters created.

Smin The smin used.

clusters It indicates the instances that work as leaders in the clusters.

assign It indicates which instances belong to each cluster.

obj The Leader2 configuration.

sim The similarity measurements of each instance with its leader.

rec The order in which the instances of the data set have been chosen.

MSI The similarity measurements of the instances with the leaders.

D.B Heterogeneous Neural Network 2

Until now we have seen how to use Leader2 clustering algorithm, which initializes HNN2 first
layer. Next, we are going to specify the main characteristics to be set up in order to use this
algorithm. Let’s start again with the customizable functions that allow users to define their own
proposals working with HNN2.

If you want to incorporate a new behaviour for the width parameter (p/σ ), you only has to
define these three functions:

funct_activation <- function(x, sigma)

The activation function, where x is the input of the neuron and sigma is its width parameter.

heuristic_sigma <- function(clust, nSigmas = TRUE)

A heuristic to calculate the width parameter, where clust is the result of the algorithm that
initializes the first layer and nSigmas indicates whether several p/σ have to be generated or not.

recalculate_sigma <- function(sigma, X, W, WLamb, T, nSigmas,
eps, nit)
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where sigma is the width parameter that is a single number or a vector, depending on the nSigmas,
a boolean that indicates whether several p/σ have to be used or not. Here, X is the training set
without the class variable, T is a vector with the class variable, W are the second layer weights
and WLamb is the component of the error that penalizes the high weights. There are two more
parameters related with the optimization itself: eps that indicates when convergence is achieved
and nit that indicates the maximum number of iterations if convergence is not achieved. This
function represents the second optimization of the Alternate Optimization. This last function
optimizes the functions:

fErr <- function(sigma, X, W, WLamb, T)

fdErr <- function(sigma, X, W, WLamb, T)

the error function and its derivative in terms of training data.
Note that all these functions can use their paremeters and several global variables: EPS that

stores the default epsilon, G that stores the resemblance between instances and clusters and Gc
that stores the resemblance between clusters.

The Heterogeneous Neural Network 2 can be called using some different functioncs:

HNN2.linear_regression <- function(data, T, ..., TReg = “matrix”,
epsilon = EPS, limItG = 10, limIt = 100,
findSigma = “findP”, fAct = “functFP”,
nSigmas = TRUE, rSigmas = FALSE, fRSigmas
= “recalculateP”, iniLambdas = c(1e-6,
1e-3, 1))

HNN2.classification <- function(data, T, ..., TReg = “matrix”,
epsilon = EPS, limItG = 10, limIt = 100,
findSigma = “findP”, fAct = “functFP”,
nSigmas = TRUE, rSigmas = FALSE, fRSigmas
= “recalculateP”, iniLambdas = c(1e-6,
1e-3, 1))

where data is the data set, T indicates the class variable and . . . are the parameters to call the
Leader2. Then TReg chooses the method to be used (“matrix” or “svd”), epsilon indicates when
convergence is achieved and limIt and limItG indicate the limits of maximum iterations for
the inner and the outer loop of the AO. Then, fAct is the activation function, findSigma is the
heuristic function to calculate the width parameter, fRSigmas indicates the function to recalculate
this parameter. nSigmas and rSigmas are two boolean values that indicate if an unique width
parameter has to be used and if it recalculation has to be performed. Finally, iniLambdas is a
vector with the different values to test as initial values of λ .

All is configured to perform as our default HNN2 proposal.
When the clustering is performed before you can use its results to call HNN2 using these

functions:



110 Using the Heterogeneous Neural Network 2

HNN2.linear_regression.clust <- function(data, T, clust = NULL, TReg
= “matrix”, epsilon = EPS, limItG = 10,
limIt = 100, findSigma = “findP”, fAct
= “functFP”, nSigmas = TRUE, rSigmas
= FALSE, fRSigmas = “recalculateP”,
iniLambdas = c(1e-6, 1e-3, 1))

HNN2.classification.clust <- function(data, T, clust = NULL, TReg
= “matrix”, epsilon = EPS, limItG = 10,
limIt = 100, findSigma = “findP”, fAct
= “functFP”, nSigmas = TRUE, rSigmas
= FALSE, fRSigmas = “recalculateP”,
iniLambdas = c(1e-6, 1e-3, 1))

where there are no parameters for Leader2 and clust is the previous called Leader2 result.
The same happens with the RBF network version that we have developed paralelly to HNN2.

It has two functions also:

RBF2 <- function(data, T, ..., TReg = “matrix”,
epsilon = EPS, limItG = 10, limIt = 100,
findSigma = “findHeu1Sigma”, fAct =
“functRBF”, nSigmas = TRUE, rSigmas =
FALSE, fRSigmas = “recalculateSigma”,
iniLambdas = c(1e-6, 1e-3, 1),
problem=“regression”)

RBF2.clust <- function(data, T, clust = NULL,
TReg = “matrix”, epsilon = EPS,
limItG = 10, limIt = 100, findSigma =
“findHeu1Sigma”, fAct = “functRBF”,
nSigmas = TRUE, rSigmas = FALSE, fRSigmas
= “recalculateSigma”, iniLambdas =
c(1e-6, 1e-3, 1), problem=“regression”)

They are the same functions but using a different configuration that tries the RBF settings. It also
incorporates the problem parameter, that informs if it is a regression problem or a classification
one.

Despite of having different names, all these versions work in the same way and all of them
return:

nHN The number of hidden neurons (number of clusters).

nOH The number of output neurons.
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alphas Second layer weights.

sigma Width parameter (p/σ ).

obj The Leader2 configuration.

fAct Activation function used.

error Training error.

lambdas Final lambdas.

Once the HNN2 has been trained, we can test it using the following two functions:

ferror <- function(Xt,T,net)

ferrorNorm <- function(Xt,T,net)

where Xt is the test set, T indicates the class variable and net is the HNN2 that returns the training.
The only difference is that the second function returns also a normalized error, when the first one
returns the accuracy (only for classification problems) and the quadratic error of the model in net
with data in Xt.
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