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My mother, Maria Raso Artiga, passed away April 19th 2009. Born in Ólvega (Soria), 

she showed me how love, joy, effort and creativity can intermingle. 

Raül Vinyes Raso 

Frankfurt am Main, August 31st 2009 
  

 
CANT ESPIRITUAL 

 
Si el món ja és tan formós, Senyor, si es mira 

amb la pau vostra a dintre de l’ull nostre, 
què més ens podeu dar en una altra vida? 

 
Perxò estic tan gelós dels ulls, i el rostre, 
i el cos que m’he donat, Senyor, i el cor 

que s’hi mou sempre... i temo tant la mort! 
 

¿Amb quins altres sentits me’l fareu veure 
aquest cel blau damunt de les muntanyes, 
i el mar immens, i el sol que pertot brilla? 
Deu-me en aquests sentits l’eterna pau 
i no voldré més cel que aquest cel blau. 

Aquell que a cap moment li digué «─Atura’t» 
sinó al mateix que li dugué la mort, 

jo no l’entenc, Senyor; jo, que voldria 
aturar a tants moments de cada dia 

per fé’ls eterns a dintre del meu cor!... 
O és que aquest «fer etern» és ja la mort? 

Mes llavores, la vida, què seria? 
¿Fóra només l’ombra del temps que passa, 

i la il·lusió del lluny i de l’a prop, 
i el compte de lo molt, i el poc, i el massa, 

enganyador, perquè ja tot ho és tot? 
 

Tant se val! Aquest món, sia com sia, 
tan divers, tan extens, tan temporal; 

aquesta terra, amb tot lo que s’hi cria, 
és ma pàtria, Senyor: i ¿no podria 
esser també una pàtria celestial? 
Home só i és humana ma mesura 

per tot quant puga creure i esperar: 
si ma fe i ma esperança aquí s’atura, 

me’n fareu una culpa més enllà? 
Més enllà veig el cel i les estrelles, 
i encara allí voldria esser-hi hom: 

si heu fet les coses a mos ulls tan belles, 
si heu fet mos ulls i mos sentits per elles, 
per què aclucà’ls cercant un altre com? 
Si per mi com aquest no n’hi haurà cap! 

Ja ho sé que sou, Senyor; pro on sou, qui ho sap? 
Tot lo que veig se vos assembla en mi... 
Deixeu-me creure, doncs, que sou aquí. 
I quan vinga aquella hora de temença 

en què s’acluquin aquests ulls humans, 
obriu-me’n, Senyor, uns altres de més grans 

per contemplar la vostra faç immensa. 
Sia’m la mort una major naixença! 

 
 

 Joan Maragall.  “Cant espiritual”. 
Glòria Casals (1998), Poesia, Edicions La Magrana, 

pages 814-815, Barcelona 
 

 
SPIRIT SONG 

 
Since the world is already so lovely, Lord 

—seen with your peace in our eyes— 
what more could you give us in another life? 

 
Therefore I am jealous of my eyes, Lord, 

and of my face and of the body you have given me 
and of my ever-beating heart… and fear so much to die! 

 
With what further senses would you make me see 

the blue that overhangs the mountains, 
and the vast sea, and the all-enlightening sun? 

Give me in my herebound senses everlasting peace 
and I’ll ask for no further heaven than this one of blue. 

The man who bids no moment “stop”, 
except the one that seals his death, 

I cannot understand, Lord; I, who would 
hold back so many moments of each day, 
to make them everlasting in my heart…! 

Or is that “everlastingness” itself a form of death? 
But then, what of life — what would it be? 

No more than time’s shadow passing, 
the illusion of the far and near, 

the tally of the great, the small, the overmuch, 
deceptive, since all that is, is all there is? 

 
So much for that! This world, just as it is, 

so divers, so extense, so temporal; 
this earth, with all that grows within it, 
is my homeland, Lord; and might it not 

as well be a heavenly homeland? 
I am a man, and human is my measure 

for all I can believe and hope: 
if my faith and hope are anchored here 

will you hold it against me there beyond? 
There beyond I see the sky, the stars, 

and even there I would be a man. 
If you have made all things so lovely to my eyes, 
if you have made my eyes and senses for them, 
why close them, then, in search of other worlds? 

Seeing that for me, there’ll be no other such as this! 
Lord, I know now that you exist, but who knows where? 

All that I behold resembles you in me… 
Let me, then, believe that you are here. 
And when the dreaded moment comes 
in which these human eyes are closed, 
then open up still greater eyes in me, 

that I may gaze upon your endless face. 
Let death for me be a yet greater birth! 

 
 

Joan Maragall. “Spirit Song” (“Cant espiritual”). 
Tranlsated by Joseph Daries with J.M.Coromines’ 

assistance. Maragalll Archive. 
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0  PRELIMINARY 

0.1 Abstract 
 
ENGLISH VERSION 
 
 
Title: Integrating aesthetics and statics: study of a geodesic dome 

Author: Raül Vinyes Raso 

Tutors: Maurizio Brocato, Ramon Codina Rovira and Dipl.-Ing. Horst Peseke 

 
Abstract: 
 We usually go to great lengths to separate the roles of engineers and architects 

so as to avoid communication problems in common tasks. However, the role of both 
architects and engineers can be included in the same task: being creative designers 
(Ove Arup). Architects cannot express their creativity while ignoring the physical 
constraints (statics) and engineers cannot design solutions in the absence of an 
understanding of their aesthetical dimension. Thus we propose to integrate aesthetics 
and statics. 

 
Nevertheless, it would not be coherent to materialize such a general idea without 

drawing on the work of our predecessors, which led us to the previous approach. It has 
always existed a fascination of human beings for domes, maybe because they are 
elegant in their appearance and in their structural behavior. This interesting subject 
integrates both a historical and modern dimension that can be used to establish a link 
with the latest tendencies in design.  

 
Thus, we will focus on the study of a very specific geodesic dome (the 

experimental Zeiss dome in Jena, 1922), the first one made of a steel mesh that allows 
for the construction of an incredibly thin concrete shell.  

 
First of all, we will do a bibliographical and historical study of the structure, which 

includes a visit to the Carl Zeiss Archive in Jena to retrieve all of the conserved 
drawings: the dome was demolished some years after its construction. Thanks to this 
precious information, we will analyze the structure from the geometrical point of view, 
going from the steel bars composing the mesh to the connecting elements in the 
nodes. 

 
Furthermore, we will compare its theoretical behavior using the shell theory applied 

to its membrane version with the calculations made in 1922 and with the solution of the 
finite-element calculation. Such an approach helps us to understand the interaction 
between the steel mesh and the concrete shell. It is precisely through this careful and 
in-depth study that we will be able to make connections with modern design tools. 

 
Therefore, scripting a parametric model of the geometry compatible with both a 3D 

design program and a 3D statics program will be a powerful tool to achieve these 
objectives. We can then set up a dialogue between both approaches, helping us to 
study the structure in a more accurate way and giving us the possibility of thinking of 
further developments related to geometric imperfections or integrated design. Only 
creativity can limit us. 
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Short version: 
Human beings have always exhibited a fascination for domes. This is also the 

case of the experimental Zeiss geodesic dome in Jena (1922), the first made of a steel 
mesh that allows for the construction of an incredibly thin concrete shell. The careful 
and in-depth study of its history, the structure geometry, the associated shell theory 
and the finite-element calculation will allow to make connections with modern design 
tools. A parametric model of the geometry compatible with both a 3D design program 
and a 3D statics program has been scripted. It renders possible a dialogue between 
both approaches, enabling a more accurate study of the structure and paving the way 
for further progress related to geometric imperfections or integrated design. Only 
creativity can limit us. 

 
Keywords: geodesic dome, Carl Zeiss, shell theory, scripting, finite-element 

calculation, aesthetics, statics, integrated design, openings 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



0  Preliminary   Abstract 

Integrating aesthetics and statics: study of a geodesic dome Page  11

CATALAN VERSION 
 
 
Títol: Intregrant estètica i estàtica: estudi d’una cúpula geodèsica 

Autor: Raül Vinyes Raso 

Tutors: Maurizio Brocato, Ramon Codina Rovira i Dipl.-Ing. Horst Peseke 

 
Resum: 
Sovint es dediquen grans esforços en separar les funcions d’enginyers i 

arquitectes per evitar problemes de comunicació en les tasques compartides. 
Tanmateix, el paper de tant arquitectes com enginyers es pot incloure en una mateixa 
activitat: la de ser dissenyadors creatius (Ove Arup). Els arquitectes no poden 
expressar la seva creativitat ignorant les limitacions físiques (estàtica) i els enginyers 
no poden dissenyar solucions sense una comprensió de la dimensió estètica. 
Proposem, doncs, integrar estètica i estàtica. 

 
No obstant, no seria coherent materialitzar una idea de caire tan general sense 

revisar l’obra dels nostres predecessors, que ens portarà al punt de vista anunciat. 
Sempre ha existit una fascinació de l’ésser humà per les cúpules, potser perquè són 
elegants en la seva aparença i en el seu comportament estructural. Aquest interessant 
tema integra tant una visió històrica com una visió més moderna que pot ser utilitzada 
per establir un nexe amb les darreres tendències en disseny. 

 
Per tant, ens centrarem en l’estudi d’una cúpula geodèsica molt concreta (la 

cúpula experimental de Zeiss a Jena, de 1922), la primera feta d’una malla d’acer que 
permet construir una closca de formigó extremadament fina. 

 
En primer lloc, farem una recerca bibliogràfica i històrica sobre l’estructura que 

inclou una visita a l’Arxiu Carl Zeiss a Jena per recuperar tots els documents que es 
conserven: la cúpula va ser enderrocada pocs anys després de la seva construcció. 
Gràcies a aquesta preuada informació podrem analitzar l’estructura des del punt de 
vista geomètric, des de les barres d’acer que componen la malla fins els elements de 
connexió en els nodes. 

 
A més, compararem el seu comportament teòric utilitzant la teoria de closques, 

aplicada a la seva versió per a membranes, amb els càlculs fets el 1922 i amb la 
solució obtinguda gràcies a un model d’elements finits. D’aquesta manera podrem 
entendre la interacció entre la malla d’acer i la closca de formigó. És precisament 
aquest estudi profund i precís el que ens permetrà establir connexions amb les eines 
modernes de disseny. 

 
Per tant, el fet de programar un script per a establir un model paramètric de 

l’estructura compatible tant amb un programa de disseny 3D com amb un programa de 
calcul estructural 3D representa una eina poderosa per assolir aquests objectius. 
Podrem, doncs, crear un diàleg entre els dos models, la qual cosa ens ajudarà a 
aprofundir en l’estudi i ens obrirà les portes de noves perspectives relacionades amb 
les imperfeccions geomètriques i el disseny integrat. Només ens podrà limitar la 
creativitat. 

 
 
Mots clau: cúpula geodèsica, Carl Zeiss, teoria de closques, scripting, càlcul per 

elements finits, estètica, estàtica, disseny integrat, obertures 
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SHORT FRENCH VERSION 
 
 
La fascination de l’homme pour les dômes a toujours existé. C’est aussi le cas 

pour la coupole géodésique expérimentale de Zeiss à Jena (1922), la première qui a 
été faite avec un maillage en acier qui permet la construction d’une coque en béton 
extrêmement fine. L’étude détaillée de son histoire, la géométrie de la structure,  la 
théorie des coques associée et le calcul par éléments finis permettra d’établir un lien 
avec des nouveaux outils de design. Un modèle paramétrique de la géométrie 
compatible au même temps avec un logiciel de design 3D et un logiciel de calcul de 
structures 3D  a été scripté. Il rend possible un dialogue entre les deux approches, en 
aidant dans l’étude plus approfondie de la coupole et en ouvrant les portes à des 
éventuels développements dans le domaine des imperfections géométriques ou du 
design intégré. Il n’y a que la créativité qui peut nous limiter. 

 
 
0.2 Index of figures 

 
Cover illustration: A combination of the render view, a historical photo and the geometry, self-elaborated 

with 3D Studio Max 9.0, Zeiss’ Archive, Rhinoceros 4.0 and Adobe Photoshop 7.0. 

 
Figure 0.1: Pavilion designed for the presentation of the BMW group, www.bollinger-grohmann.de. 

Figure 0.2: Render views of the Vienna DC Sky-Towers, www.bollinger-grohmann.de. 

 
Figure 1.1: Agamemnon tomb in a fortress in Mykene, Heine and Schlaich (1996). 

Figure 1.2: Relief found in the Sanherib palace, Heine and Schlaich (1996). 

Figure 1.3: Section and floor plan of Rome’s pantheon,  Heine and Schlaich (1996). 

Figure 1.4: Section and floor plan  of the Hagia Sophia in Byzantium, Heine and Schlaich (1996). 

Figure 1.5: Section and floor plane of Santa Maria del Fiore in Florence, Heine and Schlaich (1996). 

Figure 1.6: Schematic view and section of Saint Peter’s dome in Rome, Heine and Schlaich (1996). 

Figure 1.7: The 25 m diameter planetarium (Jena), Heine and Schlaich (1996). 

Figure 1.8: Interior view of the Breslauer Jahrhunderthalle, Müller-Wulckow (1975). 
Figure 1.9: Roof for a fuel station in Switzerland, Jahrhunderthalle in Frankfurt  and San José Obrero 

church in Monterrey, Heine and Schlaich (1996). 

Figure 1.10: PQ, hexagonal and pentagonal meshes for freeform surfaces, Pottmann et al. (2007). 
Figure 1.11: Outer skin of the Zlote Tarasy in Warsaw, Pottmann et al. (2007). 
 
Figure 2.1: Steel mesh of a building in Jena and view of the first Zeiss dome, Zeiss’ Archive in Jena. 

Figure 2.2: Copy of the patent by Carl Zeiss, Deutschen Reichspatentamt. 
Figure 2.3: Pictures of the construction of the first Zeiss dome and documents containing the planes and 

details of the studied structure, Zeiss’ Archive in Jena. 
Figure 2.4: Elevation of the factory in which the first Zeiss dome was built, Zeiss’ Archive in Jena. 
Figure 2.5: Section of the Zeiss dome and details of the support plates, Zeiss’ Archive in Jena. 
Figure 2.6: Construction process of the dome, Zeiss’ Archive in Jena. 
Figure 2.7: Views from the connection system for the bars, self-elaborated with Rhinoceros 4.0. 
Figure 2.8: Detail in perspective of the connection system, self-elaborated with Rhinoceros 4.0. 
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Figure 2.9: Dimensional details of the steel nodes, self-elaborated with Rhinoceros 4.0. 
Figure 2.10: Maximal rotation angle of the incoming bars and most sensible areas, self-elaborated with 

Rhinoceros 4.0 
Figure 2.11: Buckminster Fuller’s patent for geodesic domes, Heine and Schlaich (1996). 
Figure 2.12: Division of one face into the desired number of equal segments, Pottmann et al. (2007). 
Figure 2.13: Whole process used to obtain a geodesic sphere level 2, Pottmann et al. (2007). 

Figure 2.14: Original icosahedron and the geodesic spheres of levels 1,2 and 3. The first method of 

construction has been used, Pottmann et al. (2007). 

Figure 2.15: Original icosahedron and the geodesic spheres of levels 1,2 and 3. The second method of 

construction has been used, Pottmann et al. (2007). 
Figure 2.16: Subdivision alternatives, Pottmann et al. (2007). 
Figure 2.17: Histogram showing the distribution and frequency of the bars length, self-elaborated with 

SPSS PASW Statistics 17.0. 
Figure 2.18: Spatial distribution of bars, self-elaborated with Rhinoceros 4.0. 
Figure 2.19: Spatial distribution of faces, self-elaborated with Rhinoceros 4.0. 
Figure 2.20: Detail of the assembly model, self-elaborated with Rhinoceros 4.0 and Adobe Photoshop 7.0. 
Figure 2.21: Detail of the assembly model in a node, self-elaborated with Rhinoceros 4.0 and Adobe 

Photoshop 7.0. 
Figure 2.22: Graphic showing the main properties of a geodesic sphere, self-elaborated with Microsoft 

Office Excel 2003 and Adobe Photoshop 7.0. 
Figure 2.23: Assembly of the steel mesh with the framework elevator system, Zeiss’ Archive in Jena. 

Figure 2.24: Completed concrete shell and the finished structure, Zeiss’ Archive in Jena. 
Figure 2.25: Five render views showing the construction stages, self-elaborated with Rhinoceros 4.0. 

Figure 2.26: Scenes of the designed video recreating the emplacement of the factory, self-elaborated with 

Autodesk 3D Studio Max 9.0. 
Figure 2.27: View of the element and the stresses and forces acting in it, Girkmann (1978). 
Figure 2.28: View of the analysis of a rotation membrane, Girkmann (1978). 
Figure 2.29: Forces and geometry details in a revolution membrane, Girkmann (1978). 
Figure 2.30: Tangential and circular normal forces induced by the dead load, Girkmann (1978). 
Figure 2.31: Tangential and circular normal forces induced by the snow load, Girkmann (1978). 
Figure 2.32: Accuracy problem in the dome zenith, self-elaborated with Rhinoceros 4.0. 
Figure 2.33: Generated geometry and original dome, self-elaborated with Rhinoceros 4.0 and Zeiss’ 

Archive in Jena. 

Figure 2.34: Detail of the orientation of the bars in the structure, self-elaborated with Dublal RFEM 3.0. 

Figure 2.35: Support plates’ properties, Zeiss’ Archive in Jena, self-elaborated with Rhinoceros 4.0 and 

Dublal RFEM 3.0. 
Figure 2.36: Snow load applied to the structural model, self-elaborated with Dublal RFEM 3.0. 
Figure 2.37: Wind load schema applied to the structural model, self-elaborated with Dublal RFEM 3.0. 
Figure 2.38: Overview of the model including all structural details, self-elaborated with Dublal RFEM 3.0. 
Figure 2.39: Deformation of the steel structure under the dead load (complete FE-model), self-elaborated 

with Dublal RFEM 3.0. 
Figure 2.40: Deformation of the concrete shell under the dead load, with the detail of section S (complete 

FE-model), self-elaborated with Dublal RFEM 3.0. 
Figure 2.41: 3D view of the deformation of the concrete shell under the dead load (complete FE-model), 

self-elaborated with Dublal RFEM 3.0. 
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Figure 2.42: Normal force in the steel structure under the dead load (complete FE-model), self-elaborated 

with Dublal RFEM 3.0. 
Figure 2.43: Internal circular normal force in the concrete shell under the dead load, with the detail of 

section S (complete FE-model), self-elaborated with Dublal RFEM 3.0. 
Figure 2.44: Internal tangential normal force in the concrete shell under the dead load, with the detail of 

section S (complete FE-model), self-elaborated with Dublal RFEM 3.0. 

Figure 2.45: Deformation of the concrete shell under the dead load in S (complete FE-model), self-

elaborated with Dublal RFEM 3.0. 
Figure 2.46: Internal circular normal force in the concrete shell under the dead load in S (complete FE-

model), self-elaborated with Dublal RFEM 3.0. 
Figure 2.47: Internal tangential normal force in the concrete shell under the dead load in S (complete FE-

model), self-elaborated with Dublal RFEM 3.0. 
Figure 2.48: Comparing the FE calculation and the theoretical one of the deformation of the concrete shell 

under dead load in section S, self-elaborated with Microsoft Office Excel 2003. 
Figure 2.49: Comparing the FE calculation and the theoretical one of internal circular normal force in the 

concrete shell under dead load in section S, self-elaborated with Microsoft Office Excel 2003. 
Figure 2.50: Comparing the FE calculation and the theoretical one of internal tangential normal force in 

the concrete shell under dead load (section S),self-elaborated with Microsoft Office Excel 2003. 
Figure 2.51: Deformation of the steel structure under the snow load (complete FE-model), self-elaborated 

with Dublal RFEM 3.0. 
Figure 2.52: Deformation of the concrete shell under the snow load, with the detail of section S (complete 

FE-model), self-elaborated with Dublal RFEM 3.0. 
Figure 2.53: 3D view of the deformation of the concrete shell under the snow load (complete FE-model), 

self-elaborated with Dublal RFEM 3.0. 
Figure 2.54: Normal force in the steel structure under the snow load (complete FE-model), self-elaborated 

with Dublal RFEM 3.0. 

Figure 2.55: Internal circular normal force in the concrete shell under the snow load, with the detail of 

section S (complete FE-model), self-elaborated with Dublal RFEM 3.0. 

Figure 2.56: Internal tangential normal force in the concrete shell under the snow load, with the detail of 

section S (complete FE-model), self-elaborated with Dublal RFEM 3.0. 

Figure 2.57: Deformation of the concrete shell under the snow load in S (FE-model), self-elaborated with 

Dublal RFEM 3.0. 
Figure 2.58: Internal circular normal force in the concrete shell under the snow load in S (FE-model), self-

elaborated with Dublal RFEM 3.0. 
Figure 2.59: Internal tangential normal force in the concrete shell under the snow load in S (FE-model), 

self-elaborated with Dublal RFEM 3.0. 
Figure 2.60: Comparing between the FE calculation and the theoretical one of the deformation of the 

concrete shell under a snow load in section S, self-elaborated with Microsoft Office Excel 2003. 
Figure 2.61: Comparing the FE calculation and the theoretical one of internal circular normal force in the 

concrete shell under a snow load in section S, self-elaborated with Microsoft Office Excel 2003. 
Figure 2.62: Comparing the FE calculation and the theoretical one of internal tangent normal  force in the 

concrete shell under a snow load in section S, self-elaborated with Microsoft Office Excel 2003. 
Figure 2.63: Deformation of the steel structure under the wind load (complete FE-model), self-elaborated 

with Dublal RFEM 3.0. 
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Figure 2.64: Deformation of the concrete shell under the wind load, with the detail of section S (complete 

FE-model), self-elaborated with Dublal RFEM 3.0. 

Figure 2.65: 3D view of the deformation of the concrete shell under the wind load, with the detail of 

section S (complete FE-model), self-elaborated with Dublal RFEM 3.0. 

Figure 2.66: Normal force in the steel structure under the wind load (complete FE-model), self-elaborated 

with Dublal RFEM 3.0. 
Figure 2.67: Internal circular normal force in the concrete shell under the wind load, with the detail of 

section S (complete FE-model), self-elaborated with Dublal RFEM 3.0. 
Figure 2.68: Internal tangential normal force in the concrete shell under the wind load, with the detail of 

section S (complete FE-model), self-elaborated with Dublal RFEM 3.0. 
Figure 2.69: Deformation of the concrete shell under the wind load in S (complete FE-model), self-

elaborated with Dublal RFEM 3.0. 
Figure 2.70: Internal circular normal force in the concrete shell under the wind load in S (complete FE-

model), self-elaborated with Dublal RFEM 3.0. 
Figure 2.71: Internal tangential normal force in the concrete shell under the wind load in S (complete FE-

model), self-elaborated with Dublal RFEM 3.0. 
Figure 2.72: Deformation of the concrete shell under the deformation load group, with the detail of section 

S (complete FE-model), self-elaborated with Dublal RFEM 3.0. 
Figure 2.73: Deformation of the concrete shell under the deformation load group in section S (complete 

FE-model), self-elaborated with Dublal RFEM 3.0. 
Figure 2.74: Normal force in the steel structure under the design load group (complete FE-model), self-

elaborated with Dublal RFEM 3.0. 
Figure 2.75: Internal circular normal force in the concrete shell under the design load group, with the detail 

of section S (complete FE-model), self-elaborated with Dublal RFEM 3.0. 

Figure 2.76: Internal tangential normal force in the concrete shell under the design load group with the 

detail of section S (complete FE-model), self-elaborated with Dublal RFEM 3.0. 
Figure 2.77: Stresses in the concrete shell under the design load group, with the detail of section S 

(complete FE-model), self-elaborated with Dublal RFEM 3.0. 
Figure 2.78: Moment mx in the concrete shell under the dead load case (complete FE-model), self-

elaborated with Dublal RFEM 3.0. 

Figure 2.79: Random generated imperfections in the steel structure, self-elaborated with Rhinoceros 4.0. 

Figure 2.80: Zeiss dome with random generated holes, self-elaborated with Rhinoceros 4.0. 
Figure 2.81: Render views of the script-designed structure, self-elaborated with Rhinoceros 4.0. 

Figure 2.82: Moment mx and deformation of the concrete shell with random openings (dead load), self-

elaborated with Dublal RFEM 3.0. 

Figure 2.83: Internal circular normal force and internal tangential normal force in the concrete shell with, 

respectively, a tangential opening and a circular opening (dead load), self-elaborated with 

Dublal RFEM 3.0. 

 

0.3 Index of tables 
 
Table 2.1: General properties of  geodesic spheres level n and the Zeiss dome, self-elaborated. 

Table 2.2: Properties of the bars length in the Zeiss dome, self-elaborated with PASW Statistics 17.0. 

Table 2.3: Frequency and percent of the bars length values, self-elaborated with PASW Statistics 17.0. 

Table 2.4: Maximal angle between the faces of a geodesic sphere level n, self-elaborated. 
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Table 2.5: Accuracy study of geodesic spheres according to their area, self-elaborated. 

Table 2.6: Global statistics of the generated geometry, self-elaborated with PASW Statistics 17.0. 
Table 2.7: Structural details introduced in Dublal RFEM 3.0, self-elaborated. 
Table 2.8: Properties and schema of the section, self-elaborated with Dublal RFEM 3.0. 
Table 2.9: Properties of the steel used for the bars, self-elaborated with Dublal RFEM 3.0. 

Table 2.10: Properties of the concrete used for the shell, self-elaborated with Dublal RFEM 3.0. 
Table 2.11: Description of the four different approaches, self-elaborated. 
Table 2.12: Values of the parameters used in the theoretical model, self-elaborated. 
Table 2.13: Extreme values for stresses for the design load case, self-elaborated. 

Table 2.14: Comparison of the displacements and the normal force maximal anomaly around the openings 

in the different models (dead load), self-elaborated with Dublal RFEM 3.0. 

 
Table 4.1: Used software description, self-elaborated. 
 

 
0.4 About the office 
This work was developed during an internship in Bollinger+Grohmann, a German 

engineering and consulting firm originally located in Frankfurt am Main. After over 20 

years of experience in planning and building, a second office was opened in Vienna in 

2001, followed by a third in Paris in 2007: needless to say, the company has 

demonstrated its global presence from the start. 

Although the team is composed primarily of engineers, what truly sets this 

company apart is the integration of a team of architects in its very structure. Thus, it is 

possible to establish and maintain dialogue between engineers and architects, 

breaking down the historical barriers that existed previously. This cooperation begins 

with the design and permits an aesthetic, economic, and audacious solution; it is 

thanks to this cooperation early on that both parts are able to produce a common 

result, based on creativity and rationality. 

 

 

 

 

 

 

 

 
 

Figure 0.1: Pavilion designed for the presentation of the BMW group at the International Automobile show 

IAA 1999. Its double curved shell made of crystal clear acrylic glass was manufactured thanks to a 

computer-controlled process. 
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While the office provides a wide range of services, its main focus is on structural 

engineering: from residential buildings to offices and commercial buildings and from 

exhibitions and event locations to classical structural engineering for bridges, roofs, 

and towers. 

A high-quality standard is assured from the planning process to the completion of 

the project. Evidence of this fact include projects such as the BMW 'Bubble' IAA 1999, 

which received several awards, the Vienna DC Towers 2005 (Dominique Perrault 

Architecte), and a number of other works including a narrow collaboration with Zaha 

Hadid Architects (figures 0.1 and 0.2).  

 

 
 

 

 

 

 

 
 
 

Figure 0.2: Render views of the Vienna DC Sky-Towers, with a height of 220 m and 160 m, designed by 

the French architect Dominique Perrault. The aim is to obtain a slender profile as opposed to the curved-

shaped façade. 

 
All this activity would not be possible without a clever and coordinated use of 

specific software which includes every stage of the conception. The key is not to use 

many different programs, but rather knowing how to establish common models which 

can allow the team to work together. Speaking a common language enables 

optimization of each task, simultaneously taking into account all the stages. 

We have sought to accomplish in this work an initial step of this process by giving 

some integrated design tools. The final objective would be to build a model with a 

global approach of the whole project and establish a bidirectional dialog between 
aesthetics and statics. 
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1  INTRODUCTION 

 

“An engineer must be devoted to architecture. He must have enthusiasm. He must not 

just be a calculator or analyzer, he must be a creative designer.” 

Ove Arup, Rappaport (2007) 
 

We will begin by presenting, on the one hand, the objectives we wish to achieve 

and, on the other, the historical background that makes such an approach possible. 

Both parts are presented in the same chapter because they are inextricably 

intertwined. 

 
1.1 Goals 
The underlying goal of this project is perfectly described by Ove Arup’s quotation, 

reproduced at the beginning of this chapter. We usually go to great lengths to separate 

the roles of engineers and architects so as to avoid communication problems in 

common tasks. However, the role of both architects and engineers can be included in 

the same task: being creative designers. Architects cannot express their creativity while 

ignoring the physical constraints (statics) and engineers cannot design solutions in the 

absence of an understanding of their aesthetical dimension. Thus we propose to 

integrate aesthetics and statics. 
Nevertheless, it would not be coherent to materialize such a general idea without 

drawing on the work of our predecessors, which led us to the previous approach. A 

fascinating subject that can integrate both a historical and modern dimension is the 

study of a dome. 

 

Our first goal will be to focus on the study of a very specific dome (the first Zeiss 

dome in Jena, 1922), the first one made of a steel mesh that allows for the construction 

of an incredibly thin concrete shell. It is precisely through a careful and in-depth study 

of its history, the structure geometry, the associated shell theory and the finite-
element calculation that we will be able to make connections with modern design 
tools. 

 

At this point, our underlying goal will appear: we will script a parametric model of 

the geometry compatible with both a 3D design program and a 3D finite-element 

analysis program. We can then set up a dialogue between both approaches, helping us 

to study the structure in a more accurate way and giving us the possibility to think in 
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further eventual developments related to geometric imperfections or integrated design. 

Only creativity can limit us. 

 

 

1.2 Historical background: from massive domes to shells 
It would be difficult to understand the revolution triggered by Carl Zeiss’ dome 

without first discussing the evolution of this kind of structure over the last 2000 years. 

More specifically, Heine and Schlaich (1996) made a significant contribution by 

compiling and describing the best examples of domes over the course of human 

history; we have tried to condense the main aspects into two paragraphs. 

 

Although the Stone Age contains examples of pre-domes (in the surroundings of 

Nice), as well as in Egypt, Mesopotamia (Sanherib Palace in Kujundschik, figure 1.2) 

and Greece (Mykene (figure 1.1), Orchomenos), the first real domes appeared with 

Roman civilization. Springs, palaces, temples, domes began to flourish, and the first 

masterpiece appeared in 125 a.C. with the achievement of Rome’s Pantheon (figure 

1.3). With a spread of 44 m, it synthesized the accumulated knowledge in the new 

materials and techniques of that period. 
 

 

Figure 1.1: Agamemnon tomb in a fortress in Mykene (Greece). Built in 1325 b.C., it contains a console-

dome with a spread of 14,5 m and a height of 13,2 m. It represented the night sky, with its gold-plated 

rosette. 
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Figure 1.2: In the Sanherib palace (Kujundschik, Mesopotamia, Assyrian) we can find this relief from 

around the 700 b.C. It shows semi-circular and elliptical domes. 

 

 

 

 
 

 

 

 

 

 

 

 

Figure 1.3: Section and floor plan of Rome’s pantheon, which was built during the reign of the emperor 

Hadrian from Apollodorus (Damascus) between the years 118 a.C. and 125 a.C. (the named gold century). 

It is a very representative Roman dome that would become one of the more famous works from the 

ancient world. 

We can imagine that the building is interiorly shaped, in its upper part, by a sphere of 43,3 m of diameter; if 

we extend this sphere to the lower part, its south pole coincides with the ground floor. Furthermore, the 

section has been weight-optimized in the sense that, in its upper part, it is less thick and made of 

appropriate materials in order to lighten the structure. 

 

After this important inflexion point in history, other great structures containing 

impressive domes appeared: the Hagia Sophia in Constantinople (537 a.C., spread 

of 32 m, figure 1.4), the domes from Byzantine, Islamic, Ottoman and Buddhism 

architecture and those from the Middle Ages, Romanic and Gothic architecture. 

However, not until 1420 a.C. did the world discover a new engineering prodigy with 

Filippo Brunelleschi’s dome in Florence (spread of 42 m, figure 1.5). During the 

Renaissance many domes would be built, followed by Saint Peter’s dome in Rome 
(1590 a.C., spread of 40 m, figure 1.6). It is amazing to see the correlation between the 

evolution of the dome and human progress; what would happen in the last century is 

not an exception either. 
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Figure 1.4: Section (east-west axis 

on top, north-south axis on bottom) 

and floor plan (over the gallery on the 

left, at the level of the window’s 

cornice on the right) of the Hagia 

Sophia in Byzantium, which was built 

from 532 a.C. to 537 a.C. when 

Justinian was emperor.  

The connection between lateral and 

central naves is innovative and the 

central and lateral domes allow an 

opened space of 75 m per 30 m with 

a height of 55 m. 

Structurally, the idea is to keep the 

thrust line in the core of the wall 

section (kern). Thus, the correct 

transmission of the forces is assured. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.5: Section and floor plane of Santa Maria del Fiore in Florence, isometric perspective of the 

cathedral dome and view and section of the dome and the reel (from left to right). It has a diameter of 42m, 

and its higher point is situated 103 m above the floor. 

In fact, the exterior dome had the sole function of protecting the interior dome from rain and improving the 

design. However, Brunelleschi added some massive wood-rings connected with steel brackets in order to 

minimize the deformations induced by the dome-push. It is also important to highlight the ribbed 

structural principle.  
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Figure 1.6: Schematic view and section of Saint Peter’s dome in Rome. The original design of 

Michelangelo included a double dome and 16 counterforts but it suffered some modifications after his 

death. Giacomo della Porta and Domenico Fontana reduced the thickness of the outside shell and made 

the profile of the dome more slender.  

 
The list of great domes goes on, but that is not the purpose of the project at hand. 

Nevertheless, it is necessary to make mention of an event that took place in 1922 with 

the construction, among others, of the first Zeiss dome in Jena (Germany), with a 

diameter of 16m. In the Carl Zeiss office Dr. Bauersfeld and his team developed, in 

collaboration with Dyckerhoff & Widmann AG engineers, a new way of conceiving 

domes (figure 1.7) that would remain an integral part of 20th Century engineers’ spirit: 

they managed to build a dome with a spread of 40m with a concrete thickness of only 6 

cm. This was undoubtedly revolutionary.  

 

 

 
 
 

Figure 1.7: The innovative idea of 

a new conception system: the 

steel mesh of the 25 m diameter 

planetarium in Jena. This kind of 

structure can support great 

charges suffering a minimal 

deformation, as we will see in the 

following chapter. 
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Figure 1.8: Interior view of the Breslauer 

Jahrhunderthalle, built in 1913. This 65 m spread steel-

concrete dome with a ribbed structure represents a 

transition between the massive domes and the new shell 

domes that would appear in the following years. It was 

designed by the Dyckerhoff & Widmann AG office. 

 

If we analyze the relationship between 

the weight and the spread of the old massive 
domes and the new Zeiss domes, we find a 

relation of 30:1; thus, a 120 m spread Zeiss 

dome would weigh the same as the 65 m 

spread Breslauer Jahrhunderthalle (figure 1.8). How was this possible? We will discuss 

all the details of this dome in the following chapter, but the secret lies both in the 

membrane behavior (spatial structure without bending stiffness) of the structure and 

in the construction of a steel mesh that reinforces the concrete shell. The study of the 

mechanic behavior and material properties can lead, thus, to a cost-effective structure. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 1.9: Roof for a fuel station in Switzerland (H.Isler), shell of about 100m diameter in the 

Jahrhunderthalle in Frankfurt (Dyckerhoo & Widmann) and San José Obrero church in Monterrey (Félix 

Candela) (above, from left to right).  

Below, a load test (50 people standing on the roof) in a double curved square shell (7,3 m x 7,3 m) with a 

thickness of only 1,5 cm and reinforced with a steel net  of 3 mm (Dischinger-Finsterwalder,1932). 
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It was a period of great changes, and engineers such as Ulrich Finsterwalder, 

Franz Dischinger, Walther Bauersfeld, Heinz Isler, Félix Candela, and Eduardo Torroja 

would continue to study these new structures with origins in Zeiss’ dome: shells (figure 

1.9). A quotation from Heinz Isler can describe the importance of such an approach: 

“When a shell turns into a plate, it loses 97% of its load bearing capacity”. On the other 

hand, R. Buckminster Fuller would also apply certain of those ideas to his work with 

geodesic domes. 

 

Finally, one could assert that this concept has been superseded, but the fact of 

building a triangular mesh of a dome is related to some current research projects. 

When conceiving freeform surfaces (figure 1.11), we must be able to build them, and a 

classical steel-glass structure usually requires plane surfaces on which to dispose the 

glass planes. Properly meshing freeform surfaces as those shown below (figure 1.10) 

then becomes a major problem still being studied, for example, in the case of 

quadrilateral meshes with planar faces (also known as planar quad meshes, PQ) 

(Pottmann et al., 2007). 
 

 

 

 
 

 

 
Figure 1.10: PQ, hexagonal and 

pentagonal meshes for freeform 

surfaces. The development of 

algorithms generating this kind of 

meshes constitutes a vast domain of 

research. 
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Figure 1.11: The fluid body of the outer skin of the Zlote Tarasy in Warsaw, by Jerde Partnership. This 

structure clearly shows the challenge of discretizing a freeform surface using planes. 
 

It is thanks to the historical approach and study of the first Zeiss dome in Jena that 

we are able to fully understand the evolution of dome structures. Thus, we will be in the 

ideal position to apply current methods to the design and calculation of a dome. 
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2  STUDY OF THE FIRST ZEISS DOME 

 
“God is in the details.”  

Mies van der Rohe 
 
In order to accurately describe the geometry and materials of the first Zeiss dome 

in Jena, it is important to introduce the work of Dr. Bauersfeld and his team in Germany 

during the 1920. This was a pivotal moment during which a group of German engineers 

worked in the same direction to develop the theory of thin shells, which originated with 

the revolutionary idea of the so called Kuppelbausystem “Zeiss-Dywidag” (dome 

construction system “Zeiss-Dywidag”, Dischinger (1925)). It was the result of new ideas 

applied to new materials and new times. 

 

At this point, it is important to underline the fact that all of the great domes 

mentioned in the first chapter merit special attention as they were built in the absence 

of an accurate method of calculation and using materials without tensile strength. 

However, Dr. Bauersfeld, of the Carl Zeiss office (Jena), proposed the construction of a 

dome, which had to reproduce the sky, using a light steel mesh (figure 2.1). The 

tensile strength, as well as the shape itself, played an essential role. 

 
 

 

 

 

 

 

Figure 2.1: Extreme 

light and resistant steel 

mesh of a building in 

Jena made by Schott & 

Gen. office. The same 

system was used 

multiple times to 

conceive many different 

structures. 

 

The mesh was built from thin bars and audacious nodes, which will be studied in 

detail later on. This mesh was then covered by a thin layer of shot-fast hardening 
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concrete. It is precisely thanks to the shot concrete and the fast hardening concrete 

(inventions of that time) that such a system could function. 

 

It is not by chance that this new method was patented on October 31st, 1925 in the 

Deutschen Reichspatentamt (Zeiss (1925), figure 2.2). The general idea is described 

with great emphasis on the node detail. Mies van der Rohe was certainly right : “God is 

in the details”. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 2.2: Copy of the patent by Carl Zeiss in the Deutschen Reichspatentamt. The text explains how the 

bars are connected and the illustration shows the detail of the connection element. 
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2.1 Description of the structure 
Many different structures were built using the Zeiss-Dywidag system, but we will 

study the first because it is the more representative and many further developments 

rest upon it. In fact, the system evolved between 1920 and 1930, going from a 

reinforcement system to a shell system: the shape of the structure plays a central role 

in the stability of the structure. It all began with the first design of an experimental 

planetarium for a projector that was built on the roof of a factory in the same city 

(1922). The historical background (Kurze, 2006) is essential to understand the 

chosen structure. 

In fact, Zeiss’ engineer Walter Bauersfeld needed an accurate spherical dome to 

test a Planetarium projector that he had designed with Franz Meyer. As the dome had 

to be built on the roof of an existing building, it needed to be extremely light. They first 

thought of a structure similar to a circus tent, but the textile material was too expensive 

during that time of high inflation. Per contra, a steel solution was much more attractive 

in terms of the price as it was a common product in Germany. Thus, they developed a 

half spherical dome mesh made of steel-bars which had to be covered with projected 

concrete. The process was made possible by a wood formwork of approximately 3 m x 

3 m that could be displaced and used multiple times in order to cover the entire 

surface. Unfortunately, the structure was demolished some years after to extend the 

building.  

Thanks to a visit to the Carl Zeiss Archive in Jena, we have managed to obtain 

all the details of the studied structure. It was truly fascinating to have access to original 

Bauersfeld’s documents and pictures taken during the construction of the dome (figure 

2.3). 

 

 

 

 

 

 

 

 

 

 
Figure 2.3: On the left, negative and positive picture of the construction of the first Zeiss dome in the 

picture archive. On the right, the documents containing the planes and details of the studied structure. 
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2.1.1 OVERVIEW OF THE STRUCTURE 

The geometry of the studied structure is, therefore, a hemisphere shaped dome (a 

vertical line passing through the center of the sphere and the zenith of the dome forms 

an angle of 102,18° with a line passing through the center of the sphere and the 

support line of the dome) with a diameter of 16m. The steel mesh is constituted of bars 

(about 60 cm long, rectangular section of 8 x 20 mm), following a pattern related to the 

principle of geodesic spheres (4600 bars in a triangular mesh obtained from the 

projection into a sphere of the division in 16 parts of the icosahedron sides). There are 

72 different bar lengths due to the geometrical construction method of the dome and, 

however, they were built with a precision of 1/20 mm; the resulting weight of the steel 

structure is 9 kg/m2. The concrete shell is only 3 cm thick. All of the details of the 

construction details appear in the publication Kurze (2006), in the Zeiss patent (1925) 

and in some of the documents from the Carl Zeiss Archive. 

Concerning the materials, we will assume that the bars are made of steel with a 

yield strength of 370-450 MN/m2 and a modulus of elasticity E = 210 000 MN/m2. The 

concrete used at that time had a compressive strength of 20 MN/m2, a tensile strength 

of 2,5 MN/m2 and a modulus of elasticity E = 21100 MN/m2. These assumptions are 

made taking into account the materials that were used at that time, according to 

Bargmann (1993) and Mörsch (1923). We have a total sum of 0,45 m3 of steel and 14,5 

m3 of concrete and the weight of the structure is 39,7 tones (3,5 tones of steel and 36,2 

tones of concrete).  We found some drawings in the Carl Zeiss Archive in Jena that 

are useful to understand how the structure was conceived (figures 2.4 and 2.5 and 

2.6). 

 
Figure 2.4: Elevation of the factory in which the first Zeiss dome was built. 
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Figure 2.5: Section of the Zeiss dome and details of the support plates. We can see how the new 

structure was adapted to the existing factory building. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.6: Image during the construction process of the dome that is going to be studied in this chapter. 

We can clearly appreciate the icosahedrons inspired pattern of the mesh. 
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2.1.2 CONNECTING ELEMENTS 

One of the most brilliants aspects of the Zeiss system could, unfortunately, go 

unnoticed: the way in which the three elements are connected. In fact, in such a 

structure, the number of bars that meet in a node are not always the same, nor are the 

angles between them. It consisted, in its first version, of three different elements that 

were assembled to build a dome shaped steel mesh: pierced bars, discs (so as to 

assemble the bars) and bolts and nuts. The discs allowed, then, to connect such a 

variable system with an audacious and simple solution. 

 

Before doing a theoretical approach and building our geometrical and structural 

model it is important to see how this connection works and which movements are 

allowed, and this detail is fundamental. Using the information from the Reichspatentamt 

we have built a 3D model representing the way in which the bars are connected. It is a 

good way to understand the system and allows us to see the allowed movements and 

angles for the incoming bars (see figures 2.7, 2.8 and 2.9). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.7: Two perspective views from the connection system for the bars (upper images) and a plan 

view and a side view of the same system (lower images). In the right lower image we can see how this 

simple system hides a high complexity concerning the allowed angles for the incoming bars. 

 

 

Bolt 

Nut 

Disc 

Pierced bar 
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Figure 2.8: Detail in perspective of the connection system.  

 

The contact between the incoming bar and the disc is the more delicate part of the 

mechanism, as it defines the allowed movements. It is precisely those contact points 

that must be analyzed in order to determine where the system could fail. 

 
Figure 2.9: Dimensional details of the steel nodes. Proportional to the patent illustration. 
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We have done an angle analysis to understand how the bars are integrated in this 

system, how free are they and how the mechanism could potentially fail (see figures 

2.10). Further analysis by means of a finite-element (FE) calculation could be done, but 

it is not the purpose of the present study. The sections of the bars are shown divided 

and shaded in order to highlight the different parts of the design. 
 

 

 

 

 

 

 

 

 

 

 
Figure 2.10: Maximal rotation angle of the incoming bars, center of the rotation (C) and contact point (P) 

(left image). In the right image we can appreciate the most sensible areas (1 and 2) in terms of stresses:  

the surfaces separating each of those areas to the object to which they belong are critical.  
 

These elements are very important for the design phase of the structure. We have 

to pay close attention not only to the mechanical aspects (in this case, the stresses in 

the sensible areas) but also to the construction of the structure (for example, the 

maximal permitted rotation angle has to be bigger than the angle required to obtain the 

spherical shape). The assembly and realization of the steel mesh is very complex and 

requires great attention to detail. 

 

 

2.1.3 GEOMETRICAL BACKGROUND 

An introduction to geodesic spheres helps to perfectly define the model that we 

wish to build. Although a sphere is a very simple geometric element to describe - we 

can determine it just with a point (center) and a distance (radius) -, it is not easy to 

model as it has to de discretized. In 1954 R.Buckminster Fuller (figure 2.11) first 

displayed a geodesic dome at the Milan Triennale; it made a lasting impression despite 

the fact that engineer Bauersfeld and his team first introduced this idea in 1922.   

C

P

1 
2 
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Figure 2.11: On the left, we can see 

Buckminster Fuller’s patent for geodesic 

domes. His most important realization 

was in 1967, with the construction of a 

dome for the American pavilion in the 

universal exhibition in Montreal. 
 

In fact, a geodesic sphere is a polyhedron that attempts to reproduce the shape of 

a sphere. Therefore, all vertices lie on a common sphere and certain sequences of 

vertices are arranged on great circles of the sphere (geodesics). All faces are triangles 

but not always congruent. 

Those spheres are generated thanks to Platonic solids. There are only 5 solids of 

this kind: tetrahedron, cube, octahedron, dodecahedron and icosahedron; we can say 

that a convex polyhedron is Platonic solid if all faces are congruent regular polygons 

and if, at each vertex, the same number of faces meet. These solids can all be 

inscribed in a sphere in such a way that the vertices are contained in that sphere and 

are equally distributed. 

Although we could also start with the other Platonic solids, we usually use the 

icosahedron as it closely approximates the sphere. There are two alternatives 

(Pottmann et al., 2007) that produce slightly different geodesic spheres; in both cases 

we obtain faces which are incongruent. 

One option is to subdivide each face of the solid into a regular pattern of triangles 

(we create n-1 new vertices by dividing edges into the desired n number of equal 

segments, as we see in figure 2.12) and then project (figure 2.13) the new vertices into 

the circumsphere of the Platonic solid. The resulting solid is the desired geodesic 

sphere level n (figure 2.14) (the term “frequency” is sometimes used instead of “level”). 

 

 

 

 

 
Figure 2.12: Division of one face into the desired number of equal segments (alternative 1). 
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Figure 2.13: Illustration showing the whole process used to obtain, in this case, a geodesic sphere level 2 

using the first method of construction. 

 

 

Figure 2.14: Illustration showing the original icosahedron and the geodesic spheres of levels 1,2 and 3. 

The first method of construction has been used and the congruent faces are painted in the same color. 
 

Alternatively, we can repeat the following iterative process n times: we take our 

solid (which is the icosahedron only in the initial step), divide its edges into two 

segments and project the new vertices into the circumsphere of the Platonic solid. The 

next n-1 steps begin with the solid resulting from the previous step. The solid we obtain 

is the desired geodesic sphere level n (figure 2.15), different from the geodesic sphere 

level n obtained using the first method. A detailed explanation is given in figure 2.16. 

 
Figure 2.15: Illustration showing the original icosahedron and the geodesic spheres of levels 1,2 and 3. 

The second method of construction has been used. 
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Figure 2.16: If we take a circular section, we can easily understand why the order of subdivision matters: 

on the left (alternative 1) we project the vertices contained in the original icosahedron while on the right 

(alternative 2) we project the vertices contained in the solid obtained in the step before. 
 
In order to build a model of the planetarium in Jena we will use the first 

construction method, as it perfectly fits the geometry of the studied structure. Thus, our 

object of study is half (and a little more) of a geodesic sphere level 16 (alternative 1), 

called also hemispherical dome level 16 (alternative 1). To obtain the final geometry 

from the complete sphere, we will have to trim it: talking in terms of the original 

icosahedron structure, we will remove five original triangles having a common vertex 

and we will cut the ten original triangles having a common side or vertex with the 

previous five triangles obtaining five 11-subdivided triangles and five trapezoids. 

The level of the geodesic dome can play a very important role in the conception 

and construction of the dome. Different levels lead to different bar lengths and 

distribution, making the assembly easier or harder and making the final structure more 

or less accurate. Thus, it is not a trivial question to choose the level for a given 

geodesic dome structure, as we have to take into account many different aspects. In 

the following chapters we are going to present some approaches related to this subject 

which can allow us to better understand the influence of the degree of subdivision of 

the initial icosahedron. 

 
2.1.3.1 Study of bars’ length 

First of all, we would like to summarize some of the main geometrical properties of 

the steel mesh. As we are discussing quite a large amount of geometrical objects, we 

have decided to analyze its properties so as to provide a good overview. The bar 

length is one of the most important parameters, as it will be fundamental to 

successfully assemble the structure. Furthermore, it is important to highlight the fact 

that the way to proceed in such a study is to first analyze the properties of one of the 

original triangles (an original face of the icosahedron) and extrapolate the results 
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knowing that the complete structure is composed of parts of them. In the following table 

2.1 and table 2.2 we can see a summary of those properties, going from the general 

case of a geodesic sphere level n to our particular case (Zeiss dome). We have used 

the statistics software SPSS PASW Statistics 17.0 to analyze the bars length. 

 
Sides 

…in the original triangle level n St (n) = 3 * n (n+1) / 2 

…in the sphere level n Ss(n) = 30 * n * (n-1) 

…in the Zeiss dome 10 * St (16) + 5 * St(11) - 5 * ( St(5) - 5 ) - 10 * 16 - 10 * 11 = 4600 

…of different length  L (n) = (n) * (n+2) / 4 for even n, L (n) = (n+1)2 / 4 for odd n  
L(16) = 72 

Faces 

….in the original triangle level n Ft (n) = n2 

… in the sphere level n Fs(n) = 20 * n2 

… in the Zeiss dome 10 * Ft  (16) + 5 * Ft  (11) - 5 * Ft  (5)  = 3040 
 
Table 2.1: General properties of  geodesic spheres level n and the Zeiss dome. 

 
Statistical properties 

Mean of the bars length l  (mm) 604,92 

Median of l (mm) 615,27 

Mode of l (smallest) (mm) 564,65 

Standard deviation (mm) 41,46 

Range (mm) 198,20 

Minimum value of l  (mm) 462,64 

Maximum value of l  (mm) 660,84 

Different values of l 72 
 
Table 2:2 Properties of the bars length in the Zeiss dome. 

 
 

 

 
 

 

 
 

 

 

 

 

 

 

 

Figure 2.17: Histogram showing the distribution and frequency of the bars length in the Zeiss dome. 

Mean value = 604,92 mm 
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As we are not studying the complete sphere or exactly half of it, it is more difficult 

to extract some conclusions from these tables and the preceding figure 2.17 and table 

2.3. 

 
VALUE 
(MM) 

FREQUEN

CY 
PERCENT 

CUMULATIVE 

PERCENT 
VALUE 
(MM) 

FREQUENCY PERCENT 
CUMULATIVE 

PERCENT 
462,64 30 0,7 ,7 609,49 80 1,7 49,1 

483,85 60 1,3 2,0 612,58 35 0,8 49,9 

493,46 30 0,7 2,6 615,27 70 1,5 51,4 

505,25 60 1,3 3,9 616,04 80 1,7 53,2 

515,83 60 1,3 5,2 616,66 40 0,9 54,0 

523,34 30 0,7 5,9 618,07 70 1,5 55,5 

526,30 60 1,3 7,2 618,46 70 1,5 57,1 

537,99 60 1,3 8,5 618,94 80 1,7 58,8 

543,63 30 0,7 9,1 622,66 80 1,7 60,5 

546,36 60 1,3 10,4 623,48 80 1,7 62,3 

546,39 60 1,3 11,7 623,67 80 1,7 64,0 

551,15 30 0,7 12,4 626,03 70 1,5 65,5 

559,25 60 1,3 13,7 627,47 80 1,7 67,3 

561,07 60 1,3 15,0 631,37 40 0,9 68,2 

564,65 80 1,7 16,7 631,38 70 1,5 69,7 

568,69 60 1,3 18,0 633,35 80 1,7 71,4 

574,22 60 1,3 19,3 633,79 80 1,7 73,2 

575,61 30 0,7 20,0 635,15 70 1,5 74,7 

576,52 60 1,3 21,3 635,33 70 1,5 76,2 

578,84 70 1,5 22,8 639,19 80 1,7 77,9 

579,54 30 0,7 23,5 639,38 35 0,8 78,7 

580,33 80 1,7 25,2 639,84 80 1,7 80,4 

589,25 60 1,3 26,5 641,95 80 1,7 82,2 

589,45 70 1,5 28,0 643,31 80 1,7 83,9 

592,63 80 1,7 29,8 647,70 80 1,7 85,7 

595,43 40 0,9 30,7 648,19 70 1,5 87,2 

595,78 60 1,3 32,0 648,25 70 1,5 88,7 

595,87 80 1,7 33,7 650,32 80 1,7 90,4 

595,90 70 1,5 35,2 651,90 40 0,9 91,3 

597,90 70 1,5 36,7 652,00 80 1,7 93,0 

598,56 70 1,5 38,3 656,36 70 1,5 94,6 

600,89 80 1,7 40,0 656,37 45 1,0 95,5 

603,84 80 1,7 41,7 656,93 80 1,7 97,3 

604,67 80 1,7 43,5 659,16 80 1,7 99,0 

607,74 70 1,5 45,0 660,84 45 1,0 100,0 

609,01 70 1,5 46,5 Total 4600 100,0  
609,42 40 0,9 47,4 

 

Table 2.3: Frequency and percent of the length values for the bars composing the Zeiss  dome.  
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However, it is interesting to know not only the distribution and frequency of the 

bars length, but also where are the bars located in the structure. It is precisely thanks 

to this information that we will be able to assemble the bars that form the steel mesh. 

Using the script described in 2.3.1 Scripting the geodesic sphere we have 

managed to produce the following figure 2.18, in which the color of each bar depends 

on its length. Being c a coefficient between 0 and 1 (0 for the shortest bar, 1 for the 

longest), the gradient color is assigned as: RGB ( 255*coef, 0 , 255 - 255*coef ). Thus, 

the shortest bar is drawn in blue and the longest in red. 

 

 
Figure 2.18: Spatial distribution of bars. Shorter bars are shown in blue, longer bars in red.  
 

Even if in this case the steel mesh is going to be covered with shoot-concrete, it 

can also be interesting to look at the faces area of the Zeiss dome. It is, obviously, 

going to follow the same pattern, as the area is related to the bars length. Once again, 

we have used the scripted structure to obtain the desired information and translate it 

into a graphic result, shown in figure 2.19.  

 

We can clearly see how the areas which are near to the vertices of the original 

icosahedron contain the shortest bars and the faces with smallest area: the further we 

are from the original vertices, the biggest is the distance-distortion effect when 

projecting the vertices onto the ideal sphere. The way we have conceived our mesh 

obviously determines its properties. 

 

 

lmin = 463 mm 

lmax = 661 mm 
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Figure 2.19: Spatial distribution of faces. Faces with smaller area are shown in blue, bigger faces in red.  
 

Finally, we have designed an adapted model in which we can also see the bar 

length and its position (figures 2.20 and 2.21). This kind of support is very useful and 

even essential to make possible the assembly of the bars. 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
 

 

 

 
 

 

Figure 2.20: Detail of the assembly model in which each bar has a label with its length. 

Amin = 1017 cm2 

Amax = 1891 cm2 
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Figure 2.21: Detail of the assembly model showing the symmetry around the original icosahedron vertex. 
 

2.1.3.2 Study of angles between bars 

Another important aspect to analyze to understand how the mesh can be 

assembled is the angles between bars. We have already seen that, according to the 

design of the nodes, the maximum allowed angle is circa 4° (2° for each incoming bar 

in a node). There must also be, however, a minimal angle value to avoid instability 

phenomena. Let us see how the level of a geodesic sphere determines the angle 

between its faces (table 2.4). 

 

Geodesic sphere level Maximal angle between faces 

1 (icosahedron) 40,810 ° 

5 5,813 ° 

6 4,588 ° 

7 3,771 ° < 4 ° 

10 2,432 ° < 4 ° 

16 (Zeiss dome) 1,407 ° < 4 ° 

25 0,939 °< 4 ° 

50 0,410 ° < 4 ° 

 

Table 2.4: Maximal angle between the faces of a geodesic sphere level n. 
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Thus, it is only for a level equal to or bigger than 7 that the connection system for 

nodes would work. It also important to highlight the fact that the maximal angle 

between faces occurs near the barycenter of each original triangle: in this area the bars 

have a maximal length and, as their vertices lie on the ideal sphere, the angle between 

them is maximal. The complete list of values is in the Annex 5.2. 

 

2.1.3.3 Study of accuracy 

Finally, apart from conceiving a structure that must be built, we may also require a 

certain degree of accuracy, depending on the use of the structure. We can imagine that 

in the conception of Zeiss dome a quite high degree of accuracy was required, as it 

had to be used to test a research projector.  

The parameter used to rate the accuracy is the total surface of the geodesic 
sphere faces compared to the surface of the ideal sphere (we consider a constant 

radius of 8 m). We have computed these values, thanks once again to the script, 

obtaining the following table 2.5 : 

 

Ideal sphere area Geodesic sphere level Geodesic sphere area Accuracy 

1 (icosahedron) A (R=8)  = 612,771 m2 76,192 % 

5 A (R=8) = 794,460 m2 98,783 % 

10 A (R=8) = 801,778 m2 99,693 % 

16 (Zeiss dome) A (R=8) = 803,281 m2 99,880 % 

25 A (R=8) = 803,852 m2 99,951 % 

 

 
 

A (R) = 4 * π * R2 

A (R=8) = 804,248 m2 

50 A (R=8) = 804,149 m2 99,988 % 

 

Table 2.5: Accuracy study of geodesic spheres according to their area. 

 

Thus, we can see how, as we expected, the degree of accuracy of the Zeiss dome 

is very high (this degree does not change if we consider the whole geodesic sphere or 

the part that constitutes the Zeiss dome). It is also important to highlight the fact that in 

the lowest levels the increase of accuracy is more important: building a geodesic dome 

level 16 or level 25 does not involve a great increase in the accuracy but represents a 

really important problem in terms of assembly due to the high number of elements. 

The complete list of values is in the Annex 5.2. 
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2.1.3.4 Design tool 

We will conclude this first part of the study with a graphic (figure 2.22) which 

summarizes the most important elements concerning the geodesic spheres that have 

been analyzed. It is only by means of such an overview that we can understand all the 

elements contributing to the complexity of this structure and, thus, decide which is the 

more appropriate level when conceiving a geodesic dome. We have adopted a 

maximal value of n=50 as the analysis is the same for higher values. 
 

 
Figure 2.22: Graphic showing the main properties of a geodesic sphere according to its level. 

 
As we could already deduce from the analytical expressions, the number of sides, 

the number of different sides and the number of faces have a quadratic growth. The 

curves for the accuracy and the maximal angle are an interpolation of the values found 

thanks to the script. The complete list of values is in the Annex 5.2. 

These geometrical aspects are related to the way in which the Zeiss dome was 

designed and built. It is in this sense that we will describe the construction method, 

even if we do not know all the details as the structure was built in 1922. 

 

2.1.4 CONSTRUCTION METHOD 

The description of the construction method will be only qualitative and quite 

intuitive as there are no documents detailing the whole process. We have used some 

drawings and pictures from the Carl Zeiss Archive in Jena to deduce how the structure 

was built and we have elaborated other figures to explain it clearly. 

As the dome was built on the roof of an existing factory, the first step was to 

conceive a concrete ring in which to support the structure. It was a good way of 

assuring the correct transmission of forces and fixing the inferior part of the structure. 

This concrete ring was fixed in the existing concrete beams of the factory. 

4° 

Zeiss dome 
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The second step consisted of building the steel mesh. We retrieved some 

information concerning this part of the process in other domes using the same system 

but many differences exist. In our case of study, they began to assemble the zenithal 

bars of the dome. A framework system allowed them to gradually elevate the 

completed structure and proceed to the 

next level. Thus, it was unnecessary to 

install falseworks and workers could do 

their job in comfortable conditions on the 

roof of the factory (figure 2.23). The fact 

that the existing factory could not 

support a big overload was probably at 

the origin of this decision as in the other 

structures of the same type the 

assembly of the bars was done in the 

inverse direction. 

This process was completed thanks to the shown node system and with an 

appropriate assembly plan detailing the position of the 72 different bar types. The 

precision of the elements and the assembly was fundamental to reach the desired 

structure shape. With the correct assembly of the bars we automatically obtain the 

conceived dome. 

The construction of the concrete shell is also a very delicate stage. The idea was 

to install wood formworks of approximately 3 m x 3 m in the internal part of the dome, 

from the lower part to the higher and in rings. Once the formworks were installed, a thin 

layer (3 cm) of shot-fast hardening concrete was applied on the surface. The 

formworks could be used more than once as the curvature of a sphere is constant. 

The last step consisted in covering the concrete shell with an appropriate roofing 

(figure 2.24), in this case with metallic plates.  

 

 

 

 

 

 
 
 

Figure 2.24: On the left, a view of the completed concrete shell; we can still appreciate  the presence of 

the steel structure due to the shot concrete method. On the right, the finished structure the day of its 

inauguration. 

Figure 2.23: Assembly of the steel mesh with the 

framework elevator system. 



 2  Study of the first Zeiss dome  Description of the structure 

Integrating aesthetics and statics: study of a geodesic dome Page  45

Below are pictures intended to illustrate the different stages of the construction 

method (figure 2.25).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 2.25: Five render views showing the construction stages of the Zeiss dome. 
 

We have also produced a video to show how the structure was integrated into its 

environment. It helps to have a general overview of the factory in which the dome was 

1  Support ring 2 Steel mesh assembly

3  Steel mesh completed 

4  Concrete shell 
        installation 

5  Completed 
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built, its final aspect and how the nodes were connected. We have joined some render 

views of the video which illustrate its most important parts (figure 2.26). 
We have used the 3D modeling software Google Sketch Up 7.0 and Autodesk 3D 

Studio Max 9.0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 Finally, it is important to highlight the fact that the execution of such a process 

requires a previous theoretical reasoning, presented in the following chapter, justifying 

the dome stability. 

Figure 2.26: Scenes of the designed video recreating the 

emplacement of the factory in which the first Zeiss dome was built, 

the aspect of the finished dome and the node assembly process. 
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2.2 Theoretical approach by means of the shell theory 
As this is not intended to be a deep study centered upon the shell theory, which 

merits more time and dedication, we will present in this chapter some of its results 

without following the entire deductive process. The aim is to obtain some analytical 

results which can be compared to the results obtained using the finite-element 

calculation, keeping in mind the theoretical background. 

Another important decision at this point was the choice between the approaches to 

the shell theory. On the one hand, we could have presented the whole basis of the 

theory using differential geometry (Bisch, 1997), in order to understand the essential 

role of the curvature of the surfaces in its structural behavior. However, this approach 

requires a lengthy mathematical development, which, although truly fascinating, is too 

wide and powerful for our case study.  

On the other hand, we can easily deduce how a dome structure behaves by 

looking at one part of it and establishing some balance equations (Girkmann, 1978). 

Conceptually, it does not provide such a general approach, but is nevertheless quite 

efficient and practical for our study. Thus, we have decided to retain this approach, 

which is presented below. 

 

Surfaces with single or double curvature will be referred to as shells. Loads in 

these structures are mainly equally distributed in the wall thickness, parallel to the 

middle surface active interior force (extension force), until they reach the supports. 

Other more complete works concerning the shell theory aim to present a complete 

representation of the final equations, valid for all coordinate systems and shapes. In 

this sense, they normally proceed so as to reach an application, doing without the 

geometry approach. Thus, we will consider some special shell shapes that can be 

easily calculated using simple mathematical resources. We will work with the Kirchhoff-

Love theory.  

The analytic approach will allow to compare its results to those obtained with the 

finite-element calculation. As the dome has both a concrete and a steel structure, we 

will be able to analyze the different models and to understand how both parts 

contribute in the static behavior. 

 

2.2.1 SHELLS 

We will assume the following facts (Girkmann, 1978) so as to calculate shells in a 

simplified way: 

- The shell thickness is small compared to the other dimensions of the shell. 

- The shell deflection is small compared to his thickness. 
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- Points that lie in a perpendicular line to the middle surface before a change in the 

shape of the shell remain in a deformed line that is always perpendicular to the 

deformed middle surface. 

- The normal stresses perpendicular to the middle surface can be neglected. 

In the following figure 2.27 we have a δ = 2h thick element limited perpendicularly 

to the middle surface by the x = constant and y = constant sections (x,y curvilinear 

coordinates). The associated radii of rotation are ry and rx. In the side x = constant we 

can find the stress components σx, τxy and τxz and in the side y = constant σy, τyx and τyz. 

The magnitude of these variables is related to the distance z from the middle surface. 

We can also appreciate the considered forces and moments. 

 

 
Figure 2.27: View of the element and the stresses and forces acting in it. 

 



 2  Study of the first Zeiss dome  Theoretical approach by means of shell theory 

Integrating aesthetics and statics: study of a geodesic dome Page  49

The width of the sides of the considered element is variable. For, respectively, c = 

constant and y = constant, the width w is, in z = 0, equal to:  

 
Thus, we can deduce (Girkmann, 1978) the expressions of the forces and 

moments acting in our section: 

 

The sign of nx and ny is positive for a traction. The positive sign of the other 

magnitudes is shown in figure 2.27. Positive moments give (for a positive z) negative 

normal stresses and positive shear forces produce negative shear stresses. 

As the sides of the element are perpendicular between them, we obtain: 

 
The shear forces nxy and nyx and the torsional moments mxy and myx are equal only 

when rx = ry. 

 

Finally, we could assume that, as the width of the studied element depends on z, 

the stress components parallel to the middle surface are not linearly distributed along 

the shell width. However, as h and z are small compared to rx and ry, we can assume 

rectangular sides and that the normal stresses and the stresses parallel to the middle 

surface are linear all along the shell width. 
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2.2.2 MEMBRANES 

In many cases, we have to assume that the middle surface stresses are equally 

distributed in the shell thickness δ = 2h. In this case, the stress components no longer 

depend on z, and we obtain, from (1), (2), (3), and (4):  

 

 

 

 

For the same reason, qx and qy are eliminated so as to obtain forces parallel to the 

middle surface. This state free of moments in the shell is called membrane stress 
condition. In this way, the middle surface only suffers a deformation and a shear force 

induced by the curvature. The bending stress, then, can be neglected. 

The stress state of a shell can be seen as bending free when the following 

conditions are present (Girkmann, 1978): 

- The shell has a constant curvature. 

- The shell thickness does not suddenly change. 

- The loads are constant in their spatial distribution and magnitude. 

- The border forces are tangent to the middle surface.  

- The support structure impedes the deformation of the structure creating only 

tangential forces. 

 

2.2.3 REVOLUTION MEMBRANES 

Since we seek to study the behavior of a dome, we are interested in the revolution 

shells. The middle surface of a revolution membrane is obtained by rotating a planar 

curve (meridian) around an axis that is in the same plane. The points of the middle 

surface are determined by means of the angle θ of the meridian plane and the angle φ 

that forms the normal of the shell at that point and the rotation axis. The radii of the 

main curvatures (meridian and transverse curvatures) are called r1 and r2 and that of 

the parallel is called r0. 

We analyze an element of the shell which has the middle surface between the 

meridians θ and θ + dθ and the parallels φ +dφ. The forces in the section are 

represented by nθ, nφ, n θφ = n φθ. When considering a load p in this element, we will 

decompose it into the parallel tangent direction, the meridian tangent direction and the 

normal of the shell plane (components X, Y and Z). X and Y are positive in the sense of 

θ and φ and Z is positive in the inside direction. 
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In general, the stresses and the forces acting in the sections vary from a point to 

another. For this reason, the stresses must be expressed as functions of θ and φ. We 

can then write: 

 

 
Figure 2.28: View of the analysis of a rotation membrane. The A, B and C segments show the details of 

the projections. 
 

However, if we analyze the meridian direction, it is not only the force but also the 

length of the section that changes: r0+dr0. These variations result in the following 

expression in the side φ +dφ for the initial value (nφr0) dθ in the side φ: 

 

 
 

In order to clarify the notation and the reasoning, we have included the schema of 

figure 2.28, which will help to establish the balance conditions for the membrane. We 

will consider the three directions of our system of reference and, for each one, we will 

take all the acting forces into account by projecting them in the right direction (see 

A)          B)     C)
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figure 2.28, details A, B and C). We can then obtain (Girkmann, 1978) the three 

equations, for X,Y and Z directions respectively, that follow: 

 

 

 

 

 

 

 

 

where n θφ = n φθ and r0 = r2 sin φ. 

 

2.2.4 ROTATION-SYMMETRICAL LOAD IN A MEMBRANE 

We will now integrate the resulting equations considering that we have a rotation-

symmetrical load: X = 0, so n θφ = n φθ = 0. Equation number (8) is accomplished and 

for (9) and (10) we obtain: 

 

 

So 

 

 

And, from (11),  

 
We then multiply by -sin φ  and use that r0 = r2 sin φ : 

 
By observation, 

 
We just need to integrate in terms of φ : 

 

 

 

where C depends on the boundary conditions. We can then deduce nθ from (12). 
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Another approach involves establishing a vertical 

balance of the whole structure, as shown in figure  

2.29.  

If Pφ is the resultant of all the loads that are applied 

to the dome, we have: 

 
So, we can find the following expression: 

 

 

 

Once again we can then deduce nθ from (12). 

 

We have seen how, thanks to the balance equations, we can deduce the forces 

acting in the shells. We can now for this rotation-symmetrical problem write the 

equations that link the strain with the displacements and the strain with the forces 

acting in the shell (from the properties of the material). Thus, we will be able to obtain 

the displacements in terms of these forces.  

The results that we present now are the final part of a development done following 

the mechanics of solids and the strength of materials. The complete explanations can 

be found in Bisch (1997). We must also keep in mind that we are still in our rotation-

symmetrical problem and that, from now on, r1=r2=a. 

 

We consider now a local reference system in the surface of the shell, with the x-

axis following the meridian direction, the y-axis in the parallel direction and the z-axis in 

the direction of the normal to the surface, positive to the outside. Thus, the vector of 

displacements can be written as (u,v,w). With small displacements and in its linear 

version, the strain tensor, constant in the shell thickness (Kirchhoff-Love), has the 

following aspect (Bisch, 1997): 

 

 

 

 

 

 

 

 

Figure 2.29: Forces and geometry 

details in a revolution membrane. 
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Considering a linearly elastic, homogeneous and isotropic material (where e is 

the thickness of the shell, E is the modulus of elasticity and ν is the Poisson ratio) we 

can write, if we look only at the purely elastic part (Bisch, 1997): 

 

 

 

 

 

 

 

Finally, we would like to comment on some aspects of the assumptions of the 
membrane theory. It is very important to remember that two conditions are required to 

establish balance in a membrane. On the one hand, the exterior forces applied on the 

shell must be compatible with the balance equations: the surface must be free of 

moment and the reaction in the boundary must be tangent to the surface. 

On the other hand, the strains must be compatible with the different parts of the 

shell and the exterior. Some incompatibilities may arise due to thickness or curvature 

discontinuities, concentrated forces, or inappropriate kinematic boundary conditions. 

In order to respect the way the dome of study was built, we will be forced not to 

accomplish certain of these conditions. For instance, even if the tangent to the surface 

at the boundary is not vertical, we will set up horizontal support plates. This procedure 

will lead to slightly different results for the parts of the shell near the boundary, where a 

local  bending will appear. 

 

2.2.5 DEAD LOAD ON A DOME SHELL 

The dome has thickness δ and we assume a constant uniformly distributed dead 

load g. The load has the following components in terms of φ (Girkmann, 1978): 

 

 

We use (12) and (14) so as to obtain the normal forces. The area over the φ 

parallel circle is: 

 
The load acting in this part of the dome, then, is: 
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Thus, we obtain from (14): 

 
 

with  

 
and 

 

 

 

As we have r1=r2=a, we can use (12): 

 

 

 

Finally, using (15) and (16) we can write: 

 

 

 

The following figure 2.30: is a representation of the normal forces induced by this 

load case. It is important to highlight the fact that the circular normal force over the 

angle φ = 51° 49’ is negative (compression) and positive under it (traction).  

Figure 2.30: Tangential and circular normal forces induced by the dead load in a dome shell. 
 

Using the preceding results and expressions (15) and (18) we can write, as any 

force is applied in the direction perpendicular to the radius (n φθ = 0, ε12=0): 
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If we subtract these expressions and integrate them, we deduce the displacement 

u(φ). We then impose the boundary condition of no displacement in the support plates 

u(φ=102,18°)=0, obtaining the constant of integration C1=-1,67. We have used (26) to 

write the expression of w(φ). Obviously, v=0. 

 

 

 

 

 

 

 

 

 

As the boundary condition is only imposed for the u displacement, we obtain an 

expression of w which is not null at φ=102,18° (support plates). Therefore, a local  

bending will  appear. It is small, however, as we can observe in 2.3 (Ideal shape’s 

finite-element calculation).  

 

2.2.6 SNOW LOAD ON A DOME SHELL 

We consider the following constant uniformly distributed snow load p with 

components (Girkmann, 1978): 

 

 

Over the parallel φ we have a load of: 

 
We obtain, from (14): 

 

 

 

Finally, using (17) and (19) we deduce: 
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The following figure 2.31 shows a representation of the normal forces induced by 

this load case. This time, the transition between the negative and positive circular 

normal force is for an angle φ = 45°. 

Figure 2.31: Tangential and circular normal forces induced by the snow load in a dome shell. 
 

Using the preceding results and expressions (15) and (18) we can write, as any 

force is applied in the direction perpendicular to the radius (n φθ = 0, ε12=0): 

 

 

 

 

 

If we subtract these expressions and integrate them, we deduce the displacement 

u(φ). We impose then the boundary condition of no displacement in the support plates 

u(102,18°)=0, obtaining the constant of integration C2=0,481. We have used (33) to 

write the expression of w(φ). Obviously, v=0. 
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As the boundary condition is only imposed for the u displacement, we obtain an 

expression of w which is not null at φ=102,18° (support plates). Therefore, a local  

bending will appear. 

 

Finally, we would like to draw attention to the fact that the theoretical development 

for a wind load on a dome shell will not be done. It can be found in the literature 

(Girkmann, 1978) and requires a previous study of skew-symmetrical loads in a 

membrane. However, we will present the results computed with the finite-element 

model so as to see the behavior of the Zeiss dome. 
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Figure 2.32: Accuracy problem in 

the dome zenith: vertices do not 

meet in the same point 

2.3 Ideal shape’s finite-element calculation 
Thanks to the geometrical description we will now be able to build our model and, 

taking into account the structural details, import it into a finite-element calculation 

program.  

2.3.1 SCRIPTING THE GEODESIC SPHERE 

The first step is to obtain the 3D geometry of the studied dome. However, we may 

want to study geodesic domes in a more general way, so an efficient way to work 

would consist in conceiving an algorithm that generates a R radius geodesic sphere of 

level n. This will not only be a good starting point for further research but also an easy 

way to define the Jena dome: we will only have to fix R = 8 m and n = 16 and trim the 

useless part of the sphere. 

In this first approach, we will design a script by means of the computing interface 

offered by Rhinoceros 4.0, a 3D NURBS modeling software (Rutten, 2009). NURBS 

are B-spline curves with a nonuniform knot vector, being B-splines freedom curves that 

consist of Bézier curve segments of the same degree and that are knotted together at 

their endpoints with the highest possible smoothness (Pottmann et al., 2007). The main 

language is Visual Basic, but the program offers specific commands that allow 

visualization and graphical work with the mathematical objects stored in variables. We 

will work with a Rhino 3D Visual Basic Script file (.rvb), 

Even if we only present the final script, there were of course many other versions 

as many problems occurred during this process. On the one hand, we wanted to obtain 

the geodesic sphere by only building one of the projected faces of the icosahedron and 

then copy it by means of geometrical 

transformations so as to find the whole sphere. 

However, because an icosahedron’s vertices have 

irrational coordinates and that Rhino works with 

floats, some accuracy problems occurred: the 

assembly of the original triangles was not accurate 

enough (figure 2.32). The solution was to give the 

12 point coordinates of the icosahedron as an input 

and then build the 20 faces one per one. It is 

obviously a slower process but solves the problem. 

On the other hand, the problem was related to the means of dividing the 

icosahedron faces and projecting the resulting intersection points. The first method 

consisted in simply dividing the edges, tracing the lines that define the division of the 

face, finding the intersection between those lines, and projecting the beginning and 

end points of each of the resulting lines into a R radius sphere. We used many Rhino 
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commands to perform these operations and this fact made the script slower; 

furthermore, we obtained the geometry of the geodesic sphere, but without any 

information on the faces that define the sphere. 

A much better approach to our problem uses vectors. All the operations that have 

been described can easily and efficiently be performed using vector commands, which 

are contained in the Scripting Library version 1.10 by Stylianos Dritsas (see the Annex 

5.1 for more details). Knowing the three vertices that define the icosahedron face, we 

know also the vectors that define its edges. It is by rescalating these vectors and by 

doing simple operations between them that we can build the partitioned face of the 

icosahedron. The fact of projecting the icosahedron face into the sphere is easily made 

by rescaling the vector that goes from the origin to the newfound vertices giving it 

length R. We are working with each face of the future geodesic sphere; thus, we only 

have to define, for each face, a mesh element that will be recognized when exporting 

the model. The resulting script and its analysis is as follows: 

 
Option Explicit 
'Script written and copyrighted by <Raül Vinyes Raso> 
'Script version Spring 2009 
 
Dim intLevel, dblRadius, arrObjects 
 
Call Main() 
Sub Main() 
 
 Call Rhino.EnableRedraw(False) 
  
 Dim arrCenter, dblA, dblB, dblT, dblx,dbly, arrP(11) 
 intLevel = Rhino.GetReal("Level", 16, 1, 100) 
 dblRadius = Rhino.GetReal("Radius of the sphere", 8, 1, 100) 
 
 dblT = (1+(5)^(1/2)) / 2 
 dblA = dblRadius*( ((dblT)^(1/2)) / ((5)^(1/4)) ) 
 dblB = dblradius*( 1 / ( (5^(1/4)) * ((dblT)^(1/2)) ) ) 
 
 arrP(0)=Array(0,dblA,dblB) : arrP(1)=Array(dblB,0,dblA) 
 arrP(2)=Array(dblA,dblB,0) : arrP(3)=Array(0,-dblA,dblB) 
 arrP(4)=Array(-dblB,0,dblA) : arrP(5)=Array(-dblA,dblB,0) 
 arrP(6)=Array(0,dblA,-dblB) : arrP(7)=Array(dblB,0,-dblA) 
 arrP(8)=Array(dblA,-dblB,0) : arrP(9)=Array(0,-dblA,-dblB) 
 arrP(10)=Array(-dblB,0,-dblA) : arrP(11)=Array(-dblA,-dblB,0) 
  
 Face arrP(0),arrP(1),arrP(2) : Face arrP(0),arrP(5),arrP(6) 
 Face arrP(11),arrP(5),arrP(10) : Face arrP(3),arrP(11),arrP(9) 
 Face arrP(3),arrP(1),arrP(8) : Face arrP(4),arrP(0),arrP(5) 
 Face arrP(4),arrP(5),arrP(11) : Face arrP(4),arrP(11),arrP(3) 
 Face arrP(4),arrP(3),arrP(1) : Face arrP(4),arrP(1),arrP(0) 
  
 Face arrP(8),arrP(9),arrP(3) : Face arrP(9),arrP(10),arrP(11) 
 Face arrP(10),arrP(6),arrP(5) : Face arrP(2),arrP(6),arrP(0) 
 Face arrP(2),arrP(8),arrP(1) : Face arrP(7),arrP(8),arrP(9) 
 Face arrP(7),arrP(9),arrP(10) : Face arrP(7),arrP(10),arrP(6) 
 Face arrP(7),arrP(6),arrP(2) : Face arrP(7),arrP(2),arrP(8) 
  

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
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 dblx =1 / ( (dblT*((5)^(1/2)))^(1/2) ) 
 dbly = 180 * ( Atn( dblx / ((-dblx * dblx + 1)^(1/2)) ) ) / Pi 
 arrObjects = Rhino.AllObjects 
 Rhino.RotateObjects arrObjects,Array(0,0,0),dbly,Array(0,1,0) 
 
 Call Rhino.EnableRedraw(True) 
  
End Sub 
 
 
Function Face (p1,p2,p3) 
  
 Dim i,j,p1bis,vp1,vp2,vp1s,vp2s,a,b,c,va,vb,vc,strPl 
  
 p1bis=p1 
 vp1 = vector_create (p1,p2) 
 vp2 = vector_create (p1,p3) 
 vp1s = vector_scale (vp1,1/intlevel) 
 vp2s = vector_scale (vp2,1/intlevel) 
 
 For i=1 To intlevel 
  a = p1bis 
  b = vector_add(p1bis,vp1s) 
  c = vector_add(p1bis,vp2s) 
  va = vector_create (array(0,0,0),a) 
  vb = vector_create (array(0,0,0),b) 
  vc = vector_create (array(0,0,0),c) 
  va = vector_rescale (va,dblRadius) 
  vb = vector_rescale (vb,dblRadius) 
  vc = vector_rescale (vc,dblRadius) 
   
  For j=1 To (2*(intlevel-i)+1) 
   strPl = Rhino.AddPolyline (array(va,vb,vc,va)) 
   Rhino.MeshPolyline strPl 
   Rhino.DeleteObject strPl 
       
   a = b : b = c : c = vector_add(a,vp2s) 
   va = vb : vb = vc : vc = vector_create (array(0,0,0),c) 
   vc = vector_rescale (vc,dblRadius) 
  Next 
  p1bis=vector_add(p1bis,vp1s) 
 Next 
  
End Function 

 
 
 
 
 
 
 
 

Line Description 
 Main 

12...14 Input of the radius and the level of the geodesic sphere. 
20...25 Coordinates of the 12 vertices of the inscribed icosahedron. 
27...37 Subdivision and projection into a R radius sphere of the 20 faces. 
38...41 Rotation of the sphere so as to place an original vertex in the z-axis. 

  

38 
39 
40 
41 
42 
43 
44 
44 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
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 Function face 

53...56 Vectors defining two of the face sides (vp1,vp2) and vectors defining the 
subdivision in the same directions (vp1s,vp2s) : 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

58...79 Loop traveling across all face-subdivisions. 
59...61 Points (a,b,c) defining each sub-face. 
65...67 Projection of the points into the sphere. 
70...72 Creation of the mesh defined by the three projected points. 
74...78 Coordinates of the next sub-face : 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

vp1s 

vp2s

p1

p2

p3

vp1

vp2

vp2s

a 

b 

c b = c

a = b c = b + vp2s

vp2s 

b = c 

c = b + vp2sa = b

vp1s 

b = b + vp1s

c = b + vp2sa = b 
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2.3.2 EXPORT OF THE GEOMETRIC MODEL 

 

We have managed to obtain our geometry for a geodesic sphere, as we can see in 

figure 2.33. Thus, we only have to trim the sphere in order to keep 11 subdivisions for 

the lateral faces of the dome, as shown in the drawings and pictures of the structure. 

The model can be exported from an OpenNURBS 3D Model file (.3dm) to an AutoCAD 

drawing exchange file (.dxf); all the planar objects will be converted to polylines and the 

meshes written as 3D planes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.33: In the upper part of the composition we can see how the geometry is built and how it looks 

when the script is over. In the lower part we see the obtained geometry after trimming the geodesic sphere 

and the modeled original structure, both with exactly the same mesh subdivision. 
 

The next step is to import this file to a Dlubal RFEM 3.0 file (.rf3). Dlubal RFEM 

3.0 is a finite-element software for 3D structural calculations. With this software we can 

calculate beams, shells and volumes; those structures are decomposed into smaller 

parts (finite-elements) and, for each part, the balance equations are set up (Vogl et al., 

2008). 
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1D-elements are assumed to have a section that remains planar after deformation. 

Each element has 12 degrees of freedom, 6 for each endpoint. For a linear calculation, 

compression, tension and torsion are also assumed to be linear on the x axis of the 

beam, independently from deflection and shear forces. Those are approximated with a 

third degree polynomial in x, taking into account the effect of shear stresses. 

2D-elements are normally described with square elements and conditions at nodes 

are the same as those for 1D-elements. The basis of plane surfaces constitute the 

Mindlin/Reissner theory (keep in mind that we used the Kirchhof-Love theory in our 

analytical approach). A quadratic reference system is chosen to ensure a direct link 

with beams. Based on a mixed interpolation of the transversal displacement, the 

rotation of the section and the transversal shear strain, MITC4-elements (Mixed 

Interpolation of Tensorial Components) are employed (Dvorkin, 1984). 

 

The transferred information appears as nodes, lines and planes. Table 2.6 

summarizes those properties; for more details see the Construction methods chapter 

2.1.4. 
  

Properties’ overview 

Number of nodes 1561 

Number of planes 3040 

Number of bars 4600 

Mean of the bars length l  (mm) 604,9 

Different values of l 72 

 
Table 2.6: Global statistics of the generated geometry exported to the statics program. 

 

2.3.3 STRUCTURAL PROPERTIES  

We must now introduce all of the described structural properties into the FE-

model, which are summarized in the following table 2.7.  

 
FE-calculation parameters 

Bars’ section and class Rectangular section of 8 x 20 mm 

Truss : bar accepting only a normal stress 

Concrete shell Plane surfaces 

Thickness: 30 mm 

Materials Steel : tensile strength of 370 MN/m2 

Concrete : compressive strength of 20 MN/m2 and tensile 

strength of 2,5 MN/m2 
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Support plates Locked displacement in x, y, z axis 

Locked rotation around the z axis 

Support plates located in the base nodes 

Load cases  LC1 : Dead load = 0,815 kN/m2 

LC2 : Snow : vertical load of  s = 0,68 kN/m2 

LC3 : Wind : horizontal load of  q = 0,94 kN/m2 

Load groups LG1 : Deformation load group = LC1 + LC2 + LC3 

LG2 : Design load group = 1,35*LC1 + 1,5*LC2 + 1,5*LC3 

 

Table 2.7: Structural details introduced in Dublal RFEM 3.0 in order to reproduce the conditions of the Carl 

Zeiss dome in Jena. 

 

Concerning the bars section (table 2.8 and figure 2.34), it is important to highlight 

the fact that it is not symmetrical. This means that we have to orient all the bars of the 

model in such a way that the centered normal of the faces having two 8 mm sides 

passes through the center of the dome. We have used trusses as they reproduce the 

way bars work in the structure, only accepting a normal stress. A more detailed model 

with beams (bars having bending strength) produces identical results, confirming our 

hypothesis.  

 

Section properties 

Width b 8,0 mm 

Depth h 20,0 mm 

Cross-section area  A 1,60 cm2 

Shear area Ay 1,33 cm2 

Shear area Az 1,33 cm2 

Moment of inertia Iy 0,53 cm4 

Moment of inertia Iz 0,09 cm4 

Governing radius of rotation ry 5,80 Mm 

Governing radius of rotation rz 2,30 Mm 

Weight Wt 1,30 kg/m 

Surface ASurf 0,056 m2/m 

Torsional constant J 0,26 cm4 

Elastic section  modulus Sy,max 0,53 cm3 

Elastic section  modulus Sy,min -0,53 cm3 

Elastic section  modulus Sz,max 0,21 cm3 

Elastic section  modulus Sz,min -0,21 cm3 

Statical moment of area Qy 0,40 cm3 

Statical moment of area Qz 0,16 cm3 

 

 
 

 

 

 

Table 2.8: Properties and schema of the section.  
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Figure 2.34: Detail of the orientation of the bars in the structure. 

 

We have used plane surfaces, which are defined in Dlubal RFEM 3.0 as surfaces 

accepting all forces and moments. This is a good way to verify that the shell acts as a 

membrane, as we will find very small and localized (near the support plates) moments 

(see 2.3.5 Analysis of the results).  

 

The materials used have the following detailed description (tables 2.9 and 2.10): 

Steel mesh properties 

Unit weight γ 78,5 kN/m3 

Modulus of elasticity E 210000 MN/m2 

Shear modulus G 81000 MN/m2 

Poisson ratio ν 0,30  

Yield strength fy 370 MN/m2 

Ultimate tensile strength fu 490 MN/m2 

 
Table 2.9: Properties of the steel used for the bars. 

 

Concrete shell properties 

Unit weight  γ 25,0 kN/m3 

Modulus of elasticity E 21100 MN/m2 

Shear modulus G 9000 MN/m2 

Poisson ratio ν 0,12  

Characteristic cube compressive strength fck,cube 20,0 MN/m2 

Mean axial tensile strength fctm 2,5 MN/m2 

 
Table 2.10: Properties of the concrete used for the shell. 
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Furthermore, the support plates (figure 2.35) have been disposed horizontally in 

the base nodes. Even if we considered inclining them in such a way that their normal is 

tangent to the dome surface as required for the shell theory, the support structure in 

the documents from the Carl Zeiss Archive is closest to the chosen option.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Finally, in order to obtain the values of the snow (figure 2.36) and wind (figure 

2.37) loads we have followed the German norm (DIN 1055-4 and DIN 1055-5).  

 
Figure 2.36: Snow load (in violet) applied to the structural model.  

R 

Figure 2.35 From the left to the right and from over to below we can 

appreciate the following details: the support structured figuring in the 

original planes, with a 25 cm thick concrete ring, the constructed 

support structure, how the support plates should be modeled 

according to the shell theory (allowed surface tangential reaction and 

surface normal displacements) and the modeled support plates for the 

finite-element calculation (no displacements allowed, reaction not 

tangent to the surface). 

Planes Execution 

Theory 

FE-model 
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Concerning the snow load, we should consider that this load is only effective in 

the part of the roof which forms an angle smaller than 60° with the horizontal, but we 

will do it for the whole hemisphere in order to compare the results with the theoretical 

solution. Furthermore, we are only going to consider the symmetrical case, with a load 

of 0,8 * sk , where sk represents the characteristic snow load on the ground. The 

German snow map gives us the value of sk for Jena (zone 2), which is sk = 0,25 + 1,91 

* ( (A + 140) / 760 )2 ≥ 0,85 with A = 155 m (Jena’s altitude). Thus, we obtain sk = 0,85 

kN / m2 and p = 0,8 * 0,85 = 0,68 kN / m2. 

 

Taking into account that the city of Jena is in zone 2 on the German wind map, we 

have a qref = 0,39 kN/m2. The dome is built, however, on the roof of a 22 m high factory; 

thus, we can take z = 26 m so as to obtain an average value for q. Using the formulas 

given by the German norm we have q (z = 26 m) = 1,7 * qref * (z / 10)0,37 , as we are in a 

land class III (Binnenland, inland) and 7 m < z ≤ 50 m. The resulting q is 0,94 kN / m2. 

 

 
Figure 2.37: Wind load schema (in violet) applied to the structural model. 

 

 

Figure 2.38 shows the final aspect of the model. We are ready now to run the 

calculations and analyze the results. 
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Figure 2.38: Overview of the model including all the structural details. The load cases are not shown. 
 

 

2.3.4 LOAD CASES AND LOAD GROUPS 

 

We have defined the dead load case and the snow load case to compare the 

FE-model results with the theoretical approach. Furthermore, the wind load case will 

show how the structure behaves in such a case. Finally, the deformation load group 

will give us the maximal deformation of the structure and with the design load group 

we will be able to obtain the maximal stresses in it. We will always show the detailed 

results in the same control section named S. 

 

2.3.4.1 Dead load case 

By means of the following figures and tables we will present the results of the 

described structure and its further analysis. When we compute the dome under a dead 

load, we can produce the following figures 2.39 to 2.47. We can already see one of the 

most interesting aspects of the structure behavior: the extremely small deformations. 

 

 
 

Steel bars 

Concrete shell 

Support 
plates 
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Figure 2.39: Deformation of the steel structure under the dead load (complete FE-model). 

 

 

 

 

 

 
 
Figure 2.40: Deformation of the concrete shell under the dead load, with the detail of section S (complete 

FE-model). 

Section S 
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Figure 2.41: 3D view of the deformation of the concrete shell under the dead load (complete FE-model). 
 

 

 

 

 

 

 
 

Figure 2.42: Normal force in the steel structure under the dead load (complete FE-model). 
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Figure 2.43: Internal circular normal force in the concrete shell under the dead load, with the detail of 

section S (complete FE-model). 

 

 

 

 

 

 
Figure 2.44: Internal tangential normal force in the concrete shell under the dead load, with the detail of 

section S (complete FE-model). 
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Figure 2.45: Deformation of the concrete shell under the dead load in S (FE-model). 

 

 
Figure 2.46: Internal circular normal force in the concrete shell under the dead load in S (FE-model). 
 

 
Figure 2.47: Internal tangential normal force in the concrete shell under the dead load in S (FE-model). 

 

Although the results are very interesting and self-explanatory on their own, we 

would like to comment on the relationship between the solution obtained with the finite-
element model and the theoretical solution calculated by hand, both in the dead 
load case and in the snow load case. For the other load cases and load groups we 

will only present the complete FE-model solution. We continue to present the results in 

the same control section S as before and using the Excel worksheets detailed in the 

Annex 5.3. 

We thus have four different solutions to our problem, resulting from four different 

approaches. On the one hand, we can obtain some results thanks to our FE-model. We 

can compute the whole structure (concrete shell + steel mesh, approach A) or we can 

simply compute the concrete shell with an additional load equivalent to the steel mesh 

dead load (approach B). Thus, we will be able to compare our results more accurately 

and extract some interesting conclusions. 

On the other hand, the theoretical solution can be calculated assuming that we 

only have a concrete shell but applying the dead load of both the concrete and the 

steel structure (approach C). We can also proceed in the inverse way, assuming that 
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we only have a steel shell and applying the same load as before (approach D). In this 

case the thickness of the steel shell is taken as the volume of steel divided by the 

surface of the dome; this procedure was followed by engineer Finsterwalder in 1923 in 

his Final Year Project (Finsterwalder, 1923). He obtained overestimated deformations. 

Finally, another way to consider both the steel mesh and the concrete shell would 

be to use a homogenization approach. We can learn more about this subject in 

Meschke-Rumanus (2008) and Kaminski (2005). 

 

We summarize the four approaches in the following table 2.11: 

 

Approach FE-model Theory Concrete shell Steel mesh 

A     

B     

C     

D     

 
Table 2.11 Description of the four different approaches to our problem in the dead load case and in the 

snow load case. 
 

The values of the parameters used in expressions (22), (24), (27), (28), (30), (31), 

(34), (35) are the same as those used in the finite-element model, as we can see in 

table 2.12.  

Theoretical model parameters 

Radius of the dome (m) R 8

Area of the dome (m2) A 487

Maximum value of φ (°) φmax 102,18

Concrete’s modulus of elasticity (MN/m2) Ec 21100

Concrete’s Poisson ratio νc 0,12

Steel’s modulus of elasticity (MN/m2) Es 210000

Steel’s Poisson ratio νs 0,30

Weight of the whole structure (kN) W 397

Volume of steel (m3) Ms 0,445

Dead load (kN/m2) g 0,82

Snow load (kN/m2) p 0,68

 

Table 2.12: Values of the parameters used in the theoretical model. 



 2  Study of the first Zeiss dome  Ideal shape’s finite-element calculation 

Integrating aesthetics and statics: study of a geodesic dome Page  75

In the following figures 2.48 to 2.50 we can see how the results of the four models 

look. Curves A and B have been softened. 

The differences between A and C can be explained by the mechanical role of the 
steel bars, which has not been taken into account in the theoretical approach (the 

steel bars, as we can see when we compare A and B models, take a part of the circular 

and tangential normal forces of the concrete shell). Furthermore, we have made many 

approximations in our theoretical model that are not always the same done in the 

finite-element model and that can help to explain the small differences in terms of 

displacements between B and C, which should produce the same results.  

The differences between C and D are only in terms of displacements. We can 

conclude that approximating the displacements of the structure by only considering a 

concrete shell is the best way to obtain similar results to the complete FE-model (A). 

Thus, the displacement behavior of the concrete shell predominates over that of its 

steel counterpart.  

 

We will show the same sort of figures for the snow load case, holding the 

preceding analysis valid. It is necessary to highlight the fact that, for this load case, the 

displacements for B and C are nearly equal. 
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Figure 2.48: Comparison between the finite-element calculation and the theoretical one of the deformation 

of the concrete shell under the dead load in section S. 
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Figure 2.49: Comparison between the finite-element calculation and the theoretical one of the internal 

circular normal force in the concrete shell under the dead load in section S. 

 

 

 
 

 

 
Figure 2.50: Comparison between the finite-element calculation and the theoretical one of the internal 

tangential normal force in the concrete shell under the dead load in section S. 
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2.3.4.2 Snow load case 

The snow load also produces an interesting effect in the dome (figures 2.51 to 

2.59): 

 
 

Figure 2.51: Deformation of the steel structure under the snow load (complete FE-model). 

 

 
 

Figure 2.52: Deformation of the concrete shell under the snow load, with the detail of section S (complete 

FE-model). 

Section S 



 2  Study of the first Zeiss dome  Ideal shape’s finite-element calculation 

Integrating aesthetics and statics: study of a geodesic dome Page  78

 
 

Figure 2.53: 3D view of the deformation of the concrete shell under the snow load (complete FE-model). 

 

 

 

 

 
 

 
 

Figure 2.54: Normal force in the steel structure under the snow load (complete FE-model). 
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Figure 2.55: Internal circular normal force in the concrete shell under the snow load, with the detail of 

section S (complete FE-model). 

 

 

 

 

 

 
Figure 2.56: Internal tangential normal force in the concrete shell under the snow load, with the detail of 

section S (complete FE-model). 
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Figure 2:57: Deformation of the concrete shell under the snow load in S (FE-model). 
 

 
Figure 2.58: Internal circular normal force in the concrete shell under the snow load in S (FE-model). 

 

 
Figure 2.59: Internal tangential normal force in the concrete shell under the snow load in S (FE-model). 

 

We can already see with the preceding figures that some of the predictions of the 

theoretical model are confirmed. However, a deeper analysis is necessary to compare 

the different models. Once again, we obtain the expected results and the comments on 

the dead load case are also validated for this load case (figures 2.60 to 2.62). 
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Figure 2.60: Comparison between the finite-element calculation and the theoretical one of the deformation 

of the concrete shell under the snow load in section S. 

 

 

 

 

 

 

 
Figure 2.61: Comparison between the finite-element calculation and the theoretical one of the internal 

circular normal force in the concrete shell under the snow load in section S. 
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Figure 2.62: Comparison between the finite-element calculation and the theoretical one of the internal 

tangent normal  force in the concrete shell under the snow load in section S. 
 

 

2.3.4.3 Wind load case 

These are the effects of the wind load (figures 2.63 to 2.71).  
 

 
 

Figure 2.63: Deformation of the steel structure under the wind load (complete FE-model). 
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Figure 2.64: Deformation of the concrete shell under the wind load, with the detail of section S (complete 

FE-model). 

 

 

 

 

 
 

Figure 2.65: 3D view of the deformation of the concrete shell under the wind load, with the detail of 

section S (complete FE-model). 
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Figure 2.66: Normal force in the steel structure under the wind load (complete FE-model). 

 

 

 

 

 
 

 
 

Figure 2.67: Internal circular normal force in the concrete shell under the wind load, with the detail of 

section S (complete FE-model). 
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Figure 2.68: Internal tangential normal force in the concrete shell under the wind load, with the detail of 

section S (complete FE-model). 

 

 

 
Figure 2.69: Deformation of the concrete shell under the wind load in S (FE-model). 

 

 
Figure 2.70: Internal circular normal force in the concrete shell under the wind load in S (FE-model). 

 

 
Figure 2.71: Internal tangential normal force in the concrete shell under the wind load in S (FE-model). 
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Even if it is more difficult to analyze the wind load case as we do not have a 

theoretical model to work with, we see that the induced deformation and normal forces 

are slightly bigger but spatially distributed in a different way. The steel mesh has, 

probably, a more important role with this kind of skew-symmetrical load case. 

 

2.3.4.4 Deformation load group 

We have also considered a load group so as to evaluate the deformations, which 

consists in the sum of the dead load, the snow load and the wind load (figures 2.72 and 

2.73). Once again we obtain extremely small values.  

 

 
Figure 2.72: Deformation of the concrete shell under the deformation load group, with the detail of section 

S (complete FE-model). 

 

 
Figure 2.73: Deformation of the concrete shell under the deformation load group in section S (complete 

FE-model). 
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2.3.4.5 Design load group 

We also have a load group for the design phase, which is defined as 1,35 times 

the dead load plus 1,5 times the snow and wind loads. In this case it is important to 

look at the stresses (figures 2.73 to 2.77), which are minimal. 
 

 
Figure 2.74: Normal force in the steel structure under the design load group (complete FE-model). 
 

 
Figure 2.75: Internal circular normal force in the concrete shell under the design load group, with the detail 

of section S (complete FE-model). 
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Figure 2.76: Internal tangential normal force in the concrete shell under the design load group with the 

detail of section S (complete FE-model). 
 

 

 

 

 

 

 
Figure 2.77: Stresses in the concrete shell under the design load group, with the detail of section S 

(complete FE-model). 
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All of these results are analyzed in the following chapter, although we can already 

glimpse the outstanding behavior of the structure just from observing the stresses on 

both the concrete shell and stabs (table 2.13). As we can appreciate in the results of 

the FE-model, the stresses in the concrete shell remain very small, since they are 

distant from the tensile and compressive strengths. The same phenomenon occurs in 

the bars: we can calculate the stress in them by dividing the normal force by its known 

section. We obtain once again small values relative to the yield strength. We have 

taken, in each case, the extreme value even if it does not occur at the same point. 

To obtain a stress value that takes into account both the shell and the bars, we 

assume that the force acting in the bars is distributed in its surrounding concrete shell. 

Thus, we assume a mean bar length of 0,60 m, 0,67 m apart in the tangential direction 

and 0,60 m in the circular direction. Furthermore, when we calculate the stress in the 

tangential direction we must take into account two inclined bars at approximately 60°. 

 

In the concrete shell 

Max compressive stress (σMises) 1,4 < 20,00 MN/m2 Fig. 2.77 

Max circular compressive stress 0,0057 / (0,03) = 0,19 MN/m2 Fig. 2.75 

Max tangential compressive stress 0,0195 / (0,03) =  0,65 MN/m2 Fig. 2.76 

Max circular tensile stress 0,0202 / (0,03) = 0,68 MN/m2 Fig. 2.75 

In the steel bars 

Max compressive stress in the bars 0,00083 / (0,02*0,008) = 5,2 <370 MN/m2 Fig. 2.74 

Max tensile stress in the bars 0,001 / (0,02*0,008) = 6,3 < 370 MN/m2 Fig. 2.74 

Composite model (shell + bars) 

Max circular compressive stress 0,19 + 0,00083 / (0,03*0,67) = 0,23 MN/m2 Fig. 2.75 + 2.74

Max tangential compressive stress 0,65 + 0,00083 * 30.5 / (0,03*0,6) = 0,73 MN/m2 Fig. 2.76 + 2.74

Max circular tensile stress 0,68 + 0,001 / (0,03*0,67) = 0,73 MN/m2 Fig. 2.75 + 2.74

 

Table 2.13: Extreme values for stresses both in the concrete shell and in the bars for the design load 

case. 
 

2.3.5 ANALYSIS OF THE RESULTS 

At this point, it is important to try to explain the role of the steel bars in this 

structure. First of all, we have seen that the differences in the results between the 

complete model (FE-model A) and the theoretical model C, which takes only into 

account the concrete shell, can be explained by the forces acting in the bars, even if it 

constitutes only a small part of the total forces generated by the studied load cases. 

Comparing models A and B, we can also deduce that the steel mesh helps to retain the 
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displacements. Those bars, then, have a mechanical role and could, with larger loads, 

support the tension that eventually the concrete would be unable to resist; the steel 

structure could also help to resist the effects of the local bending near the support 

plates. Bars can also have a more important role in skew-symmetrical load cases such 

as wind. Furthermore, we have to remember that it is thanks to the construction of the 

steel mesh that we can achieve the desired spherical shape; without the geometric 

study of geodesic spheres it would be impossible to approximate such a shape. Finally, 

the existence of the mesh allows for the installation of the formworks and the 

construction of the concrete shell. Thus the steel mesh has mechanical, geometrical 
and constructive roles.  

 

However the concrete shell plays a role as well, apart from the already known 

and studied mechanical behavior. On the one hand, it covers the structure, which is a 

problem that appears in all the framework structures. On the other, it also helps to 

avoid the deflection of the steel bars: small angles between the bars can create this 

phenomenon.  Finally, we have verified that the concrete shell acts as a membrane 

when the moments are zero, confirming our hypothesis; only small moments appear 

near the support plates. Figure 2.78 shows the value of mx; we obtain similar results for 

my and mxy. 

 

 
 
Figure 2.78: Moment mx in the concrete shell under the dead load case (complete FE-model). 
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In addition, it is important to comment on the differences that appear between the 

theoretical and finite-element models near the support plates (φ=102,18°). We 

discussed a local  bending in this part of the structure resulting from the imposed null 

displacement, which does not fit the theory assumptions; in fact, the natural 

deformation of the dome is to expand its radius, but this is impeded by the use of a 

concrete ring that connects the dome and the roof of the building. Furthermore, these 

support plates are disposed horizontally, obtaining a reaction that is not tangential to 

the shell (once again, the theory assumptions are not locally accomplished).  

This fact explains the differences between both models, as well as the small 

problems that may appear during and after the construction of the dome, such as 

cracks near the support plates. However, the deformations are very small compared to 

the thickness of the shell, so we will not encounter major problems. 

 

As a final comment, we should highlight the general behavior of the structure. 

Even if the thickness of the concrete shell is small and we have a mesh of extremely 

thin bars, the deformations suffered by the structure are always less than 1 mm. 

Unfortunately, we cannot compare these results with experimental observations since 

the structure was demolished some years after.  

There are obviously other factors that can degrade this situation: on the one hand, 

the bars are actually less performing as we have not taken into account the connection 

between them. On the other, we have not considered the geometric imperfections and 

the influence of non-uniform material properties, which are factors with a potentially 

notable negative influence on the behavior of the structure.  

 

Thus the dome is not over dimensioned at all (in any case, a 3 cm shell is not 

excessive as we also have to take into account constructive aspects), but certainly very 

stable. It is precisely thanks to its dome shape that the forces are so highly efficiently 

distributed in the structure, leading to minimal deformations. We can now understand 

from the static point of view why domes have been used so frequently throughout our 

history. But there are certainly other criteria, such as aesthetics. Let us see how we 

can factor in these additional criteria. 
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2.4 Script design : connecting creativity to statics 
It would be unfair to conclude this project without highlighting the main role that 

scripting has played in many areas. On the one hand, we used it to analyze bar length, 

to compute angles between bars and to obtain the area of a geodesic sphere level n. 

Such a precise study would have been impossible without this tool, as we are dealing 

with structures that can have over one thousand elements. 

On the other hand, we displayed all of these results in a self-explanatory manner: 

bars and planes are labeled and color-coded according to their properties in order to 

clearly illustrate the assembly process. 

Finally, we built the 3D model of the Zeiss dome and exported it to the FE-

calculation software. It is thanks to this connection that we were able to go one step 

further and establish a connection with static concepts.  

Thus, we are talking about a very powerful tool which allows us to analyze, show, 
and create. We are limited only by our creativity as we need only translate our 

thoughts into commands. We could go so far as to say that scripting helps us to boost 

our design possibilities, and offers at the same time, a soft transition to the structural 

calculation. 

 

It is precisely for this reason that we have even more ideas on how to improve the 

study of the Zeiss dome, but much more time would be required to develop them 

appropriately. Therefore, we will show only two more examples of how to use the script 

tool in the design process. 

 

2.4.1 SCRIPTING THE IMPERFECTIONS 

The first example is related to the study of the effects that imperfections would 

have in the Zeiss dome. A practical way to do it would be to slightly modify the 

coordinates of the geodesic dome vertices, by introducing a random variation in the 

vector length when projecting the new vertices into the ideal sphere (the new vertices 

are at a distance of R * (1 - r) from the center of the sphere, with r being a random 

value 0 ≤ r ≤ ε). 

We present the new geometry in the following figure 2.79. We assume that the 

bars of the structure were produced with an accuracy of ε = 0,6 % (a deviation of 0,05 

mm was accepted in the original structure, 8 mm being the smallest principal 

dimension of the bars). Imperfections are shown in figure 2.79 with a factor 7 and bars 

have been colored with a gradient color going from red to blue proportional to the value 

of the displacement respect to the original position. We would only have to export the 

new geometry into the FE-calculation software to obtain the structural solution. 



 2  Study of the first Zeiss dome  Script design: connecting creativity to statics 

Integrating aesthetics and statics: study of a geodesic dome Page  93

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 2.79: Random generated imperfections in the steel structure, shown with a factor 7 and colored 

depending on their value (blue for maximal imperfections, red for minimal ones). 
 
However, we can predict that such a deformed structure would produce an 

anomaly in terms of deflection, being the membrane theory invalidated. 

 
2.4.2 SCRIPTING THE DESIGN 

The second example has to do with design. It is commonplace to add some holes 

on the roofing, either to improve the illumination of the interior spaces or simply for 

aesthetic reasons. But how would this variation influence the static behavior?  

Figure 2.80: Zeiss dome with random generated holes representing 20% of the original dome area. 

Maximal imperfection = 0,6% 
 

Original position 
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The preceding figure 2.80 shows how this modified geodesic dome could look, with 

random holes on its roof. The holes represent, in this case,  20% of the original dome 

area, but we can modify this parameter depending on our preferences. Figure 2.81 

shows a more accurate view of the design. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.81: Render views of the script-designed structure. 

 

We can go one step farther by showing the effects of such a modification of the 

structure under the dead load. We have built three new geometrical models to study 

the behavior of a dome with circular, tangential, and random openings (these represent 

approximately 5% of the original dome area). We can already guess that the 
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membrane behavior will disappear due to a local deflection around the openings and, 

as we will no longer have the dome-shape effect, we should expect larger 

displacements (30% larger, as indicated by figure 2.82 and table 2.14). The radial 

normal forces and tangential normal forces must now find a new path, creating a local 

anomaly around the openings (with a radius measuring approximately two times the 

width of the openings) that is even more significant near the support plates (figure 

2.83).  

 
Figure 2.82: Moment mx and deformation of the concrete shell with random openings (dead load). 

 
Figure 2.83: Internal circular normal force and internal tangential normal force in the concrete shell with, 

respectively, a tangential opening and a circular opening (dead load). 

 

Models Zeiss dome Open dome A Open dome B Open dome C

Zenith displacement 0,16 mm 0,21 mm 0,13 mm 0,21 mm 

Local max. displacement (openings) - 0,47 mm 2,1 mm 2,5 mm 

Normal force max. anomaly (op.) - + 21 kN / m - 24 kN / m - 40 kN / m 

 

Table 2.14: Comparison of the displacements and the normal force maximal anomaly around the openings 

in the different models (dead load). 

B C

A
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First, it is important to highlight that such a modification in the structure provides 

the basis for the preceding reasoning process. Careful study of the original dome 

enables us to predict the general behavior of the open dome. Second, the study of the 

modified structure represents a link between the old obstacles concerning standard 

shell structures and the new challenge that openings represent.   

In this case, we are restricted by the function of the structure. However, there are 

more generic examples in which the idea of scripting a shape can be applied. Freeform 

surfaces are widely used today and such an approach not only simplifies the 

calculations but also gives the designer a greater degree of freedom 

 

Finally, as a future work, we could even think about a more advanced way of 

understanding the connection between aesthetics and statics. We could set up a 

dialogue between both approaches of the object and define an optimizing criterion 

thanks to the parametric model of the geometry that is compatible with both a 3D 

design program and a 3D statics program. This would produce a structure that not only 

fits into the given geometry but also has an internal framework that induces minimum 

stress: the so-called shape-stress or topological optimization.  

 

We can now draw a number of conclusions. However, we can already say that in 

this reasoning process we have attempted to include some stages of the conception 

process: in other words, we have sought to be creative designers.  
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3  CONCLUSIONS 

 

“It is pertinent to ask what qualities and attitudes mark the sort of engineer who is 

willing to break through the many constraints and do something different (…). 

Obviously, there must be a strong motivation. Ambition is an important factor, but there 

must be much more: a sense of mission (…), a lively sense of curiosity and fascination 

with structures and objects; and dissatisfaction with conventional ways of doing things”  

Alan Holgate, Holgate (1997) 
 

 

Jena, 1922. A group of engineers conceive a new system that allows for the 

construction of incredibly thin concrete shells. Frankfurt am Main, 2009. The same 

system is studied, trying to provide new reasoning elements. Eighty-seven years have  

passed but something has not changed. The aim of doing something new, something 

different. 

 

Aside from the intermediate conclusions developed in the preceding chapters, this 

work strives to demonstrate that a multiple and intertwined approach to a given 

problem is much more useful than many different independent approaches, because 

they cannot take into account the connection that always exists between them. 

For example, the historical research concerning the Zeiss dome was 

fundamental to explain how the structure was understood in its time and allowed us to 

build the parametric geometrical model. The unique flexibility of this model, that can 

be adapted to many different needs, permitted a permanent dialogue between both 
aesthetics and statics issues.  

 

 

The main goal of the project was to answer to the following question: why are we 

separating the functions of architects and engineers? It would be certainly naïve to 

think that all engineers can have an aesthetic sensibility, or that all architects want to 

work with complex structural problems. But tools such as scripting and an open mind 

can make them work together, contributing both parts in all stages of a project and 

creating a much richer solution. This idea can of course be broadened and applied to 

many other fields. 
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Finally, we should highlight the fact that this study does not claim to be exhaustive 

but rather to show certain tools that can aid in the exploration of boundless possibilities. 

This particular interest of the presented work, is precisely what drives us to go farther 
every day, with curiosity, illusions, and expectations. But why? Baudelaire may have 

the answer. We have only shown some of the paths, now feel free to enjoy your own 

trip. 

 
Nous voulons, tant ce feu nous brûle le cerveau, 

Plonger au fond du gouffre, Enfer ou Ciel,qu'importe?

Au fond de l'Inconnu pour trouver du nouveau! 

 
Charles Baudelaire, « Le voyage », extract. 

This fire burns our brains so fiercely, we wish to plunge

To the abyss' depths, Heaven or Hell, does it matter?

To the depths of the Unknown to find something new! 

 
Charles Baudelaire “The Voyage” (« Le voyage »), 

extract. Translated by William Aggeler (1954), The 

Flowers of Evil , Academy Library Guild, Fresno. 
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4.3 Internet sources 
 
Dritsas, S. (2005), Scripting library version 1 release 10, public electronic publication in 
“http://dritsas.jeneratiff.com/scripting/library/”. 
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4.4 Software 
We have used the software shown in table 4.1. 

 

Software Description 

Adobe Photoshop 7.0 Image processing software 

Autodesk 3D Studio Max 9 3D modeling software 

Basic Miktex 2.7 Text and formula specialized processing software 

Google SketchUp 7.0 3D modeling software 

Microsoft Office Word 2003 Text processing software 

Microsoft Office Excel 2003 Tables and graphics processing software 

Rhinoceros 4.0 3D modeling software 

Dlubal RFEM 3.0 3D finite-element calculation software 

SPSS PASW Statistics 17.0 Statistics software 

 

Table 4.1: Used software description. 
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5  ANNEX 

 

5.1 Vectors’ scripting library 
The following commands are very useful when working with vectors and vertices 

as we avoid using the much slower Rhino commands. Vertices commands are also 

essential to build this library. 
 
''#license copyright 
    ''  scripting library version 1 release 10 
    ''  copyright (c) 2003-2005 stylianos dritsas 
    ''  license: 
    ''  http://creativecommons.org/licenses/by/2.5/ 
    ''  contact: 
    ''  dritsas [at] alum [dot] mit [dot] edu 
''#endlicense 
 
dim vector_x: vector_x = 0 
dim vector_y: vector_y = 1 
dim vector_z: vector_z = 2 
 
dim vector_nl: vector_nl = vector_new( 0.0, 0.0, 0.0 ) 
dim vector_dx: vector_dx = vector_new( 1.0, 0.0, 0.0 ) 
dim vector_dy: vector_dy = vector_new( 0.0, 1.0, 0.0 ) 
dim vector_dz: vector_dz = vector_new( 0.0, 0.0, 1.0 ) 
 
function vector_new( x, y, z ) 
 vector_new = vertex_new( x, y, z ) 
end function 
 
function vector_create( va, vb ) 
 vector_create = vector_new( _ 
  vb( vector_x ) - va( vector_x ), _ 
  vb( vector_y ) - va( vector_y ), _ 
  vb( vector_z ) - va( vector_z )  _ 
  ) 
end function 
 
function vector_make( vector ) 
 vector_make = vector_create( _ 
  vector( 1 ),               _ 
  vector( 0 )                _ 
  ) 
end function 
   
function vector_length( vector ) 
 vector_length = sqr( _ 
  vector( vector_x ) * vector( vector_x ) + _ 
  vector( vector_y ) * vector( vector_y ) + _ 
  vector( vector_z ) * vector( vector_z )   _ 
  ) 
end function 
 
function vector_add( va, vb ) 
 vector_add = vector_new( _ 
  va( vector_x ) + vb( vector_x ), _ 
  va( vector_y ) + vb( vector_y ), _ 
  va( vector_z ) + vb( vector_z )  _ 
  ) 
end function 
 
function vector_scale( vector, factor ) 
 vector_scale = vector_new( _ 
  vector( vector_x ) * factor, _ 
  vector( vector_y ) * factor, _ 
  vector( vector_z ) * factor  _ 
  ) 
end function 
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function vector_scalexyz( vertex, fx, fy, fz ) 
 vector_scalexyz = vertex_new( _ 
  vertex( vector_x ) * fx, _ 
  vertex( vector_y ) * fy, _ 
  vertex( vector_z ) * fz  _ 
  ) 
end function 
 
function vector_normalize( vector ) 
 dim length: length = vector_length( vector ) 
 if( length = 0.0 ) then 
  vector_normalize = vector_new( 0.0, 0.0, 0.0 ) 
 else 
  vector_normalize = vector_new( _ 
   vector( vector_x ) / length, _ 
   vector( vector_y ) / length, _ 
   vector( vector_z ) / length  _ 
   ) 
 end if 
end function 
 
function vector_rescale( vector, length ) 
 dim length_: length_ = vector_length( vector ) 
 if( length_ = 0.0 ) then 
  vector_rescale = vector_new( 0.0, 0.0, 0.0 ) 
 else 
  vector_rescale = vector_new( _ 
   length * vector( vector_x ) / length_, _ 
   length * vector( vector_y ) / length_, _ 
   length * vector( vector_z ) / length_  _ 
   ) 
 end if 
end function 
     
function vector_cross( va, vb ) 
 vector_cross = vector_new( _ 
  va( vector_y ) * vb( vector_z ) - va( vector_z ) * vb( vector_y ), _ 
  va( vector_z ) * vb( vector_x ) - va( vector_x ) * vb( vector_z ), _ 
  va( vector_x ) * vb( vector_y ) - va( vector_y ) * vb( vector_x )  _ 
  ) 
end function 
     
function vector_dot( va, vb ) 
 vector_dot = va( vector_x ) * vb( vector_x ) + _ 
  va( vector_y ) * vb( vector_y ) + _ 
  va( vector_z ) * vb( vector_z ) 
end function 
 
function vector_equals( va, vb ) 
 vector_equals = ( ( va( vector_x ) = vb( vector_x ) ) and _ 
  ( va( vector_y ) = vb( vector_y ) ) and _ 
  ( va( vector_z ) = vb( vector_z ) ) ) 
end function 
 
function vector_null( vector ) 
 vector_null = ( ( vector( vector_x ) = 0.0 ) and _ 
  ( vector( vector_y ) = 0.0 ) and _ 
  ( vector( vector_z ) = 0.0 ) ) 
end function 
 
function vector_zero( vector, zero ) 
 vector_zero = ( abs( vector( vector_x ) <= zero ) and _ 
  abs( vector( vector_y ) <= zero ) and _ 
  abs( vector( vector_z ) <= zero ) ) 
end function 
 
function vector_invert( vector ) 
 vector_invert = vector_new( _ 
  -vector( vector_x ), _ 
  -vector( vector_y ), _ 
  -vector( vector_z )  _ 
  ) 
end function 
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function vector_absolute( vector ) 
 vector_absolute = vector_new( _ 
  abs( vector( vector_x ) ),  _ 
  abs( vector( vector_y ) ),  _ 
  abs( vector( vector_z ) )   _ 
  ) 
end function 
 
function vector_align( va, vb ) 
 vector_align = ( vector_dot( va, vb ) > 0.0 ) 
end function 
 
function vector_normal( va, vb, vc ) 
 dim u: u = vector_create( va, vb ) 
 dim v: v = vector_create( va, vc ) 
 vector_normal = vector_normalize( vector_cross( u, v ) ) 
end function 
 
function vector_reflect( vector, axis ) 
 dim u: u = vector_dot( vector, axis ) 
 vector_reflect = vector_new( _ 
  2.0 * u * axis( vector_x ) - vector( vector_x ), _ 
  2.0 * u * axis( vector_y ) - vector( vector_y ), _ 
  2.0 * u * axis( vector_z ) - vector( vector_z )  _ 
  ) 
end function 
 
function vector_mirror( vector, normal ) 
 dim u: u = vector_dot( vector, normal ) 
 vector_mirror = vector_new( _ 
  -2.0 * u * normal( vector_x ) + vector( vector_x ), _ 
  -2.0 * u * normal( vector_y ) + vector( vector_y ), _ 
  -2.0 * u * normal( vector_z ) + vector( vector_z )  _ 
  ) 
end function 
 
function vector_bisector( vertex, u, v ) 
 vector_bisector = vector_normalize( _ 
  vector_create( _ 
  vertex, _ 
  vertex_middle( _ 
  vertex_translate( vertex, u ), _ 
  vertex_translate( vertex, v )  _ 
  ) _ 
  ) _ 
  ) 
end function 
 
function vector_random( ) 
 vector_random = vector_new( rnd( ), rnd( ), rnd( ) ) 
end function 
 
function vector_dependant( va, vb, tolerance ) 
 dim n: n = vector_cross( va, vb ) 
 vector_dependant = _ 
  ( abs( n( vector_x ) ) <= tolerance ) and _ 
  ( abs( n( vector_y ) ) <= tolerance ) and _ 
  ( abs( n( vector_z ) ) <= tolerance ) 
end function 
 
 
dim vertex_x: vertex_x = 0 
dim vertex_y: vertex_y = 1 
dim vertex_z: vertex_z = 2 
 
dim vertex_null: vertex_null = vertex_new( 0.0, 0.0, 0.0 ) 
 
function vertex_new( x, y, z ) 
 vertex_new = array( x, y, z ) 
end function 
 
function vertex_convert( vertex ) 
 vertex_convert = number_convert( vertex( vertex_x ) ) + "," + _ 
  number_convert( vertex( vertex_y ) ) + "," + _ 
  number_convert( vertex( vertex_z ) ) 
end function 
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function vertex_print( vertex, digits, delimiter ) 
 vertex_print = formatnumber( vertex( vertex_x ), digits, 0, 0, 0 ) + delimiter + _ 
  formatnumber( vertex( vertex_y ), digits, 0, 0, 0 ) + delimiter + _ 
  formatnumber( vertex( vertex_z ), digits, 0, 0, 0 ) 
end function 
 
function vertex_clone( vertex ) 
 vertex_clone = vertex_new( _ 
  vertex( vertex_x ), _ 
  vertex( vertex_y ), _ 
  vertex( vertex_z )  _ 
  ) 
end function 
 
function vertex_length( va, vb ) 
 dim dx: dx = va( vertex_x ) - vb( vertex_x ) 
 dim dy: dy = va( vertex_y ) - vb( vertex_y ) 
 dim dz: dz = va( vertex_z ) - vb( vertex_z ) 
 vertex_length = sqr( dx * dx + dy * dy + dz * dz ) 
end function 
 
function vertex_equals( va, vb ) 
 vertex_equals = ( ( va( vertex_x ) = vb( vertex_x ) ) and _ 
  ( va( vertex_y ) = vb( vertex_y ) ) and _ 
  ( va( vertex_z ) = vb( vertex_z ) ) ) 
end function 
 
function vertex_translate( vertex, vector ) 
 vertex_translate = vertex_new( _ 
  vertex( vertex_x ) + vector( vertex_x ), _ 
  vertex( vertex_y ) + vector( vertex_y ), _ 
  vertex( vertex_z ) + vector( vertex_z )  _ 
  ) 
end function 
 
function vertex_translatexyz( vertex, dx, dy, dz ) 
 vertex_translate = vertex_new( _ 
  vertex( vertex_x ) + dx, _ 
  vertex( vertex_y ) + dy, _ 
  vertex( vertex_z ) + dz  _ 
  ) 
end function 
 
function vertex_scale( vertex, factor ) 
 vertex_scale = vertex_new( _ 
  vertex( vertex_x ) * factor, _ 
  vertex( vertex_y ) * factor, _ 
  vertex( vertex_z ) * factor  _ 
  ) 
end function 
 
function vertex_scalexyz( vertex, fx, fy, fz ) 
 vertex_scalexyz = vertex_new( _ 
  vertex( vertex_x ) * fx, _ 
  vertex( vertex_y ) * fy, _ 
  vertex( vertex_z ) * fz  _ 
  ) 
end function 
 
function vertex_rotate( vertex, origin, axis, angle ) 
 vertex_rotate = vertex_translate( vertex, vector_invert( origin ) ) 
 vertex_rotate = vertex_multiply( vertex_rotate, matrix_rotate( axis, angle ) ) 
 vertex_rotate = vertex_translate( vertex_rotate, origin ) 
end function 
 
function vertex_interpolate( va, vb, factor ) 
 vertex_interpolate = vertex_new( _ 
  ( vb( vertex_x ) - va( vertex_x ) ) * factor + va( vertex_x ), _ 
  ( vb( vertex_y ) - va( vertex_y ) ) * factor + va( vertex_y ), _ 
  ( vb( vertex_z ) - va( vertex_z ) ) * factor + va( vertex_z )  _ 
  ) 
end function 
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function vertex_map( vertex, origin, vx, vy, vz ) 
 vertex_map = vertex_new( _ 
  origin( vertex_x ) + vertex( vertex_x ) * vx( vertex_x ) + _ 
  vertex( vertex_y ) * vy( vertex_x ) + _ 
  vertex( vertex_z ) * vz( vertex_x ),  _ 
  origin( vertex_y ) + vertex( vertex_x ) * vx( vertex_y ) + _ 
  vertex( vertex_y ) * vy( vertex_y ) + _ 
  vertex( vertex_z ) * vz( vertex_y ),  _ 
  origin( vertex_z ) + vertex( vertex_x ) * vx( vertex_z ) + _ 
  vertex( vertex_y ) * vy( vertex_z ) + _ 
  vertex( vertex_z ) * vz( vertex_z )   _ 
  ) 
end function 
 
function vertex_local( vertex, origin, vx, vy, vz ) 
 dim vector: vector = vector_create( origin, vertex ) 
 vertex_local = vertex_new( _ 
  vector_dot( vector, vx ), _ 
  vector_dot( vector, vy ), _ 
  vector_dot( vector, vz ) _ 
  ) 
end function 
 
function vertex_global( vertex, origin, vx, vy, vz ) 
 vertex_global = vertex_map( vertex, origin, vx, vy, vz ) 
end function 
 
function vertex_multiply( vertex, matrix ) 
 vertex_multiply = vertex_new( _ 
  vertex( vertex_x ) * matrix( matrix_00 ) + _ 
  vertex( vertex_y ) * matrix( matrix_01 ) + _ 
  vertex( vertex_z ) * matrix( matrix_02 ) + _ 
  matrix( matrix_03 ),  _ 
  vertex( vertex_x ) * matrix( matrix_10 ) + _ 
  vertex( vertex_y ) * matrix( matrix_11 ) + _ 
  vertex( vertex_z ) * matrix( matrix_12 ) + _ 
  matrix( matrix_13 ),  _ 
  vertex( vertex_x ) * matrix( matrix_20 ) + _ 
  vertex( vertex_y ) * matrix( matrix_21 ) + _ 
  vertex( vertex_z ) * matrix( matrix_22 ) + _ 
  matrix( matrix_23 ) ) 
end function 
 
function vertex_middle( va, vb ) 
 vertex_middle = vertex_new( _ 
  ( va( vertex_x ) + vb( vertex_x ) ) / 2.0, _ 
  ( va( vertex_y ) + vb( vertex_y ) ) / 2.0, _ 
  ( va( vertex_z ) + vb( vertex_z ) ) / 2.0  _ 
  ) 
end function 
 
function vertex_close( va, vb, max ) 
 vertex_close = ( vertex_length( va, vb ) < max ) 
end function 
 
function vertex_match( va, vb, tollerance ) 
 vertex_match = ( ( abs( va( vertex_x ) - vb( vertex_x ) ) < tollerance  ) and _ 
  ( abs( va( vertex_y ) - vb( vertex_y ) ) < tollerance  ) and _ 
  ( abs( va( vertex_z ) - vb( vertex_z ) ) < tollerance ) ) 
end function 
 
function vertex_centroid( va, vb, vc ) 
 vertex_centroid = vertex_new( _ 
  ( va( vertex_x ) + vb( vertex_x ) + vc( vertex_x ) ) / 3.0, _ 
  ( va( vertex_y ) + vb( vertex_y ) + vc( vertex_y ) ) / 3.0, _ 
  ( va( vertex_z ) + vb( vertex_z ) + vc( vertex_z ) ) / 3.0  _ 
  ) 
end function 
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function vertex_average( vertices ) 
 dim result: result = vertex_new( 0.0, 0.0, 0.0 ) 
 dim index 
 for index = lbound( vertices ) to ubound( vertices ) 
  result( vertex_x ) = result( vertex_x ) + vertices( index )( vertex_x ) 
  result( vertex_y ) = result( vertex_y ) + vertices( index )( vertex_y ) 
  result( vertex_z ) = result( vertex_z ) + vertices( index )( vertex_z ) 
 next 
 dim total: total = array_length( vertices ) 
 result( vertex_x ) = result( vertex_x ) / total 
 result( vertex_y ) = result( vertex_y ) / total 
 result( vertex_z ) = result( vertex_z ) / total 
 vertex_average = result 
end function 
 
function vertex_project( va, vb, vc ) 
 dim ua: ua = vector_create( va, vc ) 
 dim ub: ub = vector_normalize( vector_create( va, vb ) ) 
 dim ta: ta = vector_dot( ua, ub ) 
 vertex_project = vertex_translate( va, vector_scale( ub, ta ) ) 
end function 
 
function vertex_flatten( pa, pb, pc, pd ) 
 dim u: u = vector_create( pa, pb ) 
 dim v: v = vector_create( pa, pc ) 
 dim n: n = vector_normalize( vector_cross( u, v ) ) 
 dim s: s = vector_create( pa, pd ) 
 dim t: t = vector_cross( n, s ) 
 dim l: l = vector_cross( t, n ) 
 vertex_flatten = vertex_translate( pa, l ) 
end function 
 
function vertex_mirror( va, vb, vc, vd ) 
 dim projected: projected = vertex_flatten( va, vb, vc, vd ) 
 vertex_mirror = vertex_translate( projected, vector_create( vd, projected ) ) 
end function 
 
function vertex_reflect( va, vb, vc ) 
 dim projected: projected = vertex_project( va, vb, vc ) 
 vertex_reflect = vertex_translate( projected, vector_create( vc, projected ) ) 
end function 
 
function vertex_mutate( vertex ) 
 vertex_mutate = vertex_new( _ 
  vertex( vertex_x ) * number_random( -0.5, 0.5 ), _ 
  vertex( vertex_y ) * number_random( -0.5, 0.5 ), _ 
  vertex( vertex_z ) * number_random( -0.5, 0.5 )  _ 
  ) 
end function 
 
function vertex_closest( vertex, vertices ) 
 dim closest:  closest  = 0 
 dim distance: distance = vertex_length( vertex, vertices( closest ) ) 
 dim index 
 for index = lbound( vertices ) + 1 to ubound( vertices ) 
  dim length: length = vertex_length( vertex, vertices( index ) ) 
  if( length < distance ) then 
   distance = length 
   closest  = index 
  end if 
 next 
 vertex_closest = closest 
end function 
 
function vertex_inside( va, vb, vc, vd ) 
 dim na: na = vector_cross( vector_create( va, vb ), vector_create( va, vd ) ) 
 dim nb: nb = vector_cross( vector_create( vb, vc ), vector_create( vb, vd ) ) 
 dim nc: nc = vector_cross( vector_create( vc, va ), vector_create( vc, vd ) ) 
 vertex_inside = vector_align( na, nb ) and _ 
  vector_align( nb, nc ) and _ 
  vector_align( nc, na ) 
end function 
 
function vertex_between( va, vb, vc ) 
 vertex_between = not ( ( vertex_length( va, vc ) + vertex_length( vb, vc ) ) > 
vertex_length( va, vb ) ) 
end function 
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5.2 Geodesic spheres’ properties 
We have obtained the following geodesic spheres properties by using the 

described script and the deduced mathematical formulas related to the geometry. 

Geodesic sphere  Number of sides Number of different sides Number of faces 
 

Maximal angle Accuracy 

level    [°] [%] 
1 30 1 20 40,81 76,192 
2 60 2 80 18,029 92,835 
3 180 4 180 11,359 96,692 
4 360 6 320 7,802 98,112 
5 600 9 500 5,813 98,783 
6 900 12 720 4,588 99,152 
7 1260 16 980 3,771 99,375 
8 1680 20 1280 3,192 99,521 
9 2160 25 1620 2,762 99,621 
10 2700 30 2000 2,432 99,693 
11 3300 36 2420 2,171 99,746 
12 3960 42 2880 1,960 99,787 
13 4680 49 3380 1,785 99,818 
14 5460 56 3920 1,639 99,843 
15 6300 64 4500 1,514 99,863 
16 7200 72 5120 1,407 99,880 
17 8160 81 5780 1,314 99,893 
18 9180 90 6480 1,232 99,905 
19 10260 100 7220 1,160 99,915 
20 11400 110 8000 1,096 99,923 
21 12600 121 8820 1,038 99,930 
22 13860 132 9680 0,986 99,936 
23 15180 144 10580 0,939 99,942 
24 16560 156 11520 0,897 99,947 
25 18000 169 12500 0,858 99,951 
26 19500 182 13520 0,822 99,954 
27 21060 196 14580 0,789 99,958 
28 22680 210 15680 0,758 99,961 
29 24360 225 16820 0,730 99,963 
30 26100 240 18000 0,704 99,966 
31 27900 256 19220 0,680 99,968 
32 29760 272 20480 0,657 99,970 
33 31680 289 21780 0,636 99,972 
34 33660 306 23120 0,616 99,973 
35 35700 324 24500 0,597 99,975 
36 37800 342 25920 0,580 99,976 
37 39960 361 27380 0,563 99,977 
38 42180 380 28880 0,547 99,979 
39 44460 400 30420 0,532 99,980 
40 46800 420 32000 0,518 99,981 
41 49200 441 33620 0,505 99,982 
42 51660 462 35280 0,492 99,982 
43 54180 484 36980 0,480 99,983 
44 56760 506 38720 0,469 99,984 
45 59400 529 40500 0,458 99,985 
46 62100 552 42320 0,447 99,985 
47 64860 576 44180 0,437 99,986 
48 67680 600 46080 0,428 99,987 
49 70560 625 48020 0,419 99,987 
50 73500 650 50000 0,410 99,988 
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5.3 Comparison worksheet 
These values have been produced with the finite-element calculation and with an 

Excel worksheet in which we have used the deduced theoretical formulas related to the 

shell theory. Thus, we only show the dead load case and the snow load case results. 

 

5.3.1 DEAD LOAD CASE 

5.3.1.1 Displacement 

 

phi 
A : d  

(FE model,concrete+steel) 
B : d 

 (FE model,concrete) 
C : d 

(theoretical,concrete) 
D : d 

(theoretical,steel) 

[°] [mm] [mm] [mm] [mm] 
0,0 0,162 0,175 0,144 0,509 
3,0 0,162 0,176 0,144 0,508 
3,1 0,162 0,176 0,144 0,508 
6,6 0,161 0,175 0,143 0,505 
6,6 0,161 0,175 0,143 0,505 

10,3 0,159 0,173 0,142 0,499 
10,4 0,159 0,173 0,141 0,499 
14,3 0,156 0,170 0,139 0,491 
14,3 0,156 0,170 0,139 0,490 
17,5 0,153 0,167 0,136 0,481 
18,4 0,152 0,166 0,135 0,479 
18,4 0,152 0,166 0,135 0,478 
22,7 0,147 0,161 0,131 0,463 
22,7 0,147 0,161 0,131 0,463 
27,0 0,142 0,155 0,126 0,445 
27,1 0,142 0,155 0,126 0,445 
31,4 0,135 0,148 0,119 0,424 
31,5 0,135 0,148 0,119 0,424 
35,8 0,128 0,140 0,112 0,401 
35,9 0,128 0,140 0,112 0,400 
40,2 0,121 0,132 0,105 0,377 
40,3 0,121 0,132 0,105 0,376 
44,5 0,113 0,123 0,098 0,352 
44,6 0,113 0,123 0,098 0,351 
48,6 0,105 0,115 0,091 0,329 
48,7 0,105 0,115 0,090 0,328 
52,5 0,098 0,107 0,084 0,307 
52,7 0,098 0,107 0,084 0,307 
56,3 0,092 0,100 0,078 0,289 
56,4 0,091 0,099 0,078 0,289 
59,8 0,086 0,093 0,073 0,276 
60,0 0,085 0,092 0,073 0,275 
63,1 0,081 0,087 0,070 0,266 
63,4 0,081 0,087 0,070 0,266 
65,9 0,077 0,084 0,068 0,262 
68,5 0,075 0,081 0,067 0,261 
68,7 0,075 0,081 0,067 0,261 
68,9 0,075 0,080 0,067 0,261 
71,8 0,073 0,079 0,068 0,265 
74,8 0,073 0,078 0,070 0,274 
75,0 0,073 0,078 0,070 0,274 
75,3 0,073 0,078 0,070 0,275 
78,5 0,074 0,079 0,074 0,290 
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81,8 0,076 0,082 0,080 0,310 
82,1 0,076 0,082 0,080 0,312 
82,3 0,076 0,083 0,081 0,314 
85,8 0,080 0,087 0,088 0,340 
89,4 0,088 0,095 0,097 0,372 
89,7 0,089 0,096 0,098 0,374 
90,0 0,090 0,097 0,098 0,377 
93,7 0,101 0,109 0,109 0,413 
97,5 0,084 0,090 0,120 0,453 
97,8 0,083 0,089 0,121 0,456 
98,1 0,077 0,083 0,121 0,459 

101,9 0,000 0,000 0,133 0,502 
 

 

5.3.1.2 Circular normal force 

 

phi 
A : n-θ  

(FE model,concrete+steel) 
B : n-θ  

(FE model,concrete) 
C , D : n-θ 

(theoretical,concrete or steel) 

[°] [kN/m] [kN/m] [kN/m] 
0,0 -2,82 -3,26 -3,26 
3,0 -2,84 -3,24 -3,25 
3,1 -2,85 -3,23 -3,25 
6,6 -2,82 -3,16 -3,21 

10,4 -2,75 -3,05 -3,13 
14,3 -2,64 -3,01 -3,01 
17,5 -2,54 -2,91 -2,88 
18,4 -2,48 -2,84 -2,84 
22,7 -2,28 -2,61 -2,62 
27,0 -2,06 -2,38 -2,36 
27,1 -2,03 -2,33 -2,36 
31,4 -1,77 -2,06 -2,04 
31,5 -1,73 -2,00 -2,04 
35,8 -1,44 -1,69 -1,68 
35,9 -1,39 -1,63 -1,68 
40,2 -1,08 -1,28 -1,28 
40,3 -1,01 -1,21 -1,27 
44,5 -0,68 -0,84 -0,85 
44,6 -0,61 -0,76 -0,84 
48,6 -0,27 -0,38 -0,39 
48,7 -0,19 -0,28 -0,37 
52,5 0,15 0,10 0,09 
52,7 0,24 0,21 0,10 
56,3 0,58 0,59 0,57 
56,4 0,67 0,71 0,59 
59,8 1,03 1,11 1,06 
60,0 1,15 1,23 1,08 
63,1 1,49 1,60 1,54 
63,4 1,66 1,76 1,58 
65,9 1,84 2,00 1,96 
68,5 2,26 2,43 2,38 
68,7 2,26 2,44 2,42 
68,9 2,47 2,66 2,45 
71,8 2,72 2,95 2,93 
74,8 3,25 3,51 3,45 
75,0 3,25 3,51 3,50 
75,3 3,51 3,79 3,54 
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78,5 3,83 4,13 4,13 
81,8 4,47 4,82 4,78 
82,1 4,47 4,81 4,83 
82,3 4,78 5,15 4,88 
85,8 5,14 5,54 5,60 
89,4 6,01 6,50 6,39 
89,7 6,00 6,48 6,46 
90,0 6,55 7,10 6,52 
93,7 7,20 7,75 7,40 
97,5 6,00 6,38 8,35 
97,8 5,84 6,19 8,43 
98,1 2,22 2,28 8,50 

 

 

5.3.1.3 Tangential normal force 

 

phi 
A : n-φ 

(FE model,concrete+steel) 
B : n-φ 

(FE model,concrete) 
C , D : n-φ  

(theoretical,concrete or steel) 

[°] [kN/m] [kN/m] [kN/m] 
0,0 -2,82 -3,24 -3,26 
3,0 -2,94 -3,27 -3,26 
3,1 -2,92 -3,27 -3,26 
6,6 -2,94 -3,27 -3,27 

10,3 -2,95 -3,28 -3,27 
10,4 -2,93 -3,28 -3,29 
14,3 -2,96 -3,30 -3,29 
17,5 -2,95 -3,30 -3,31 
18,4 -2,98 -3,34 -3,35 
22,7 -2,98 -3,34 -3,35 
27,0 -3,03 -3,39 -3,39 
27,1 -3,06 -3,41 -3,45 
31,4 -3,09 -3,45 -3,45 
31,5 -3,13 -3,48 -3,52 
35,8 -3,23 -3,59 -3,52 
35,9 -3,25 -3,62 -3,60 
40,2 -3,32 -3,69 -3,60 
40,3 -3,35 -3,73 -3,70 
44,5 -3,42 -3,80 -3,70 
44,6 -3,46 -3,85 -3,80 
48,6 -3,53 -3,92 -3,81 
48,7 -3,58 -3,98 -3,92 
52,5 -3,65 -4,05 -3,93 
52,7 -3,71 -4,12 -4,05 
56,3 -3,78 -4,20 -4,06 
56,4 -3,84 -4,27 -4,19 
59,8 -3,90 -4,34 -4,20 
60,0 -3,99 -4,42 -4,34 
63,1 -3,95 -4,49 -4,49 
63,4 -4,11 -4,58 -4,50 
65,9 -4,12 -4,62 -4,63 
68,5 -4,31 -4,70 -4,77 
68,7 -4,38 -4,75 -4,78 
68,9 -4,53 -4,87 -4,80 
71,8 -4,56 -4,94 -4,97 
74,8 -4,69 -5,07 -5,16 
75,0 -4,75 -5,09 -5,18 
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75,3 -4,93 -5,30 -5,20 
78,5 -4,95 -5,35 -5,43 
81,8 -5,15 -5,57 -5,71 
82,1 -5,17 -5,55 -5,73 
82,3 -5,48 -5,88 -5,75 
85,8 -5,44 -5,83 -6,08 
89,4 -5,78 -6,21 -6,46 
89,7 -5,72 -6,14 -6,49 
90,0 -6,22 -6,67 -6,52 
93,7 -6,07 -6,51 -6,97 
97,5 -6,47 -6,92 -7,50 
97,8 -6,73 -7,20 -7,54 
98,1 -6,77 -7,37 -7,59 

 

 

5.3.2 SNOW LOAD CASE 

5.3.2.1 Displacement 

 

phi 
A : d  

(FE model,concrete+steel) 
B : d  

(FE model,concrete) 
C : d 

(theoretical,concrete) 
D : d 

(theoretical,steel) 

[°] [mm] [mm] [mm] [mm] 
0,0 0,105 0,114 - - 
3,0 0,105 0,114 0,123 0,435 
3,1 0,105 0,114 0,123 0,435 
6,6 0,103 0,113 0,122 0,431 
6,6 0,103 0,113 0,122 0,431 

10,3 0,101 0,111 0,120 0,423 
10,4 0,101 0,111 0,120 0,423 
14,3 0,098 0,108 0,116 0,412 
14,3 0,098 0,108 0,116 0,412 
17,5 0,095 0,104 0,113 0,400 
18,4 0,094 0,103 0,112 0,396 
18,4 0,094 0,103 0,112 0,396 
22,7 0,089 0,098 0,106 0,377 
22,7 0,089 0,098 0,106 0,377 
27,0 0,084 0,092 0,099 0,354 
27,1 0,084 0,092 0,099 0,354 
31,4 0,077 0,085 0,092 0,329 
31,5 0,077 0,085 0,092 0,329 
35,8 0,071 0,077 0,084 0,302 
35,9 0,071 0,077 0,084 0,302 
40,2 0,064 0,070 0,076 0,276 
40,3 0,064 0,070 0,076 0,275 
44,5 0,057 0,063 0,069 0,251 
44,6 0,057 0,063 0,069 0,250 
48,6 0,051 0,056 0,062 0,228 
48,7 0,051 0,056 0,062 0,228 
52,5 0,047 0,051 0,056 0,209 
52,7 0,047 0,051 0,056 0,208 
56,3 0,043 0,046 0,051 0,194 
56,4 0,043 0,046 0,051 0,193 
59,8 0,040 0,043 0,048 0,183 
60,0 0,040 0,043 0,048 0,182 
63,1 0,039 0,041 0,046 0,175 
63,4 0,038 0,041 0,045 0,174 
65,9 0,037 0,040 0,044 0,170 
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68,5 0,036 0,039 0,043 0,168 
68,7 0,036 0,039 0,043 0,167 
68,9 0,036 0,039 0,043 0,167 
71,8 0,036 0,039 0,043 0,166 
74,8 0,036 0,039 0,043 0,165 
75,0 0,036 0,039 0,043 0,165 
75,3 0,036 0,039 0,043 0,165 
78,5 0,036 0,039 0,043 0,165 
81,8 0,036 0,039 0,043 0,164 
82,1 0,036 0,039 0,043 0,164 
82,3 0,036 0,039 0,043 0,164 
85,8 0,036 0,039 0,043 0,163 
89,4 0,036 0,039 0,042 0,161 
89,7 0,036 0,039 0,042 0,160 
90,0 0,036 0,039 0,042 0,160 
93,7 0,036 0,040 0,041 0,155 
97,5 0,028 0,030 0,039 0,148 
97,8 0,027 0,029 0,038 0,148 
98,1 0,025 0,027 0,038 0,147 

101,9 0,000 0,000 0,036 0,138 
 

 

5.3.2.2 Circular normal force 

 

phi 
A : n-θ  

(FE model,concrete+steel) 
B : n-θ  

(FE model,concrete) 
C , D : n-θ  

(theoretical,concrete or steel) 

[°] [kN/m] [kN/m] [kN/m] 
0,0 -2,29 -2,68 -2,72 
3,0 -2,30 -2,64 -2,70 
3,1 -2,27 -2,63 -2,65 
6,6 -2,21 -2,54 -2,54 

10,3 -2,20 -2,52 -2,54 
10,4 -2,10 -2,40 -2,39 
14,3 -2,07 -2,36 -2,39 
17,5 -1,96 -2,23 -2,23 
18,4 -1,88 -2,13 -2,18 
22,7 -1,63 -1,86 -1,91 
27,0 -1,39 -1,59 -1,60 
27,1 -1,34 -1,53 -1,59 
31,4 -1,06 -1,23 -1,24 
31,5 -1,01 -1,17 -1,23 
35,8 -0,71 -0,84 -0,85 
35,9 -0,65 -0,77 -0,85 
40,2 -0,34 -0,44 -0,45 
40,3 -0,28 -0,37 -0,44 
44,5 0,02 -0,04 -0,05 
44,6 0,09 0,04 -0,04 
48,6 0,37 0,35 0,34 
48,7 0,44 0,43 0,35 
52,5 0,69 0,72 0,71 
52,7 0,76 0,79 0,72 
56,3 0,99 1,06 1,04 
56,4 1,04 1,13 1,06 
59,8 1,26 1,37 1,34 
60,0 1,32 1,44 1,36 
63,1 1,52 1,64 1,63 



5  Annex  Comparison worksheet 

Integrating aesthetics and statics: study of a geodesic dome Page  113

63,4 1,67 1,69 1,81 
65,9 1,78 1,97 1,99 
68,5 1,84 2,00 2,00 
68,7 1,89 2,02 2,02 
68,9 2,12 2,18 2,34 
71,8 2,15 2,32 2,36 
74,8 2,19 2,35 2,37 
75,0 2,29 2,39 2,50 
75,3 2,39 2,49 2,62 
78,5 2,40 2,58 2,62 
81,8 2,49 2,59 2,72 
82,1 2,50 2,64 2,72 
82,3 2,61 2,69 2,70 
85,8 1,94 2,70 2,63 
89,4 1,90 2,80 2,62 
89,7 0,59 0,60 2,61 
90,0 -2,30 -2,65 -2,70 
93,7 -2,31 -2,64 -2,70 
97,5 -2,27 -2,56 -2,65 
97,8 -2,21 -2,54 -2,54 
98,1 -2,10 -2,40 -2,39 

 

 

5.3.2.3 Tangential normal force 

phi 
A : n-φ  

(FE model,concrete+steel) 
B : n-φ  

(FE model,concrete) 
C , D : n-φ  

(theoretical,concrete or steel) 

[°] [kN/m] [kN/m] [kN/m] 
0,0 -2,29 -2,68 -2,72 
3,0 -2,39 -2,70 -2,72 
3,1 -2,37 -2,69 -2,72 
6,6 -2,38 -2,70 -2,72 

10,4 -2,37 -2,69 -2,72 
14,3 -2,37 -2,69 -2,72 
17,5 -2,37 -2,70 -2,72 
18,4 -2,37 -2,69 -2,72 
22,7 -2,38 -2,69 -2,72 
27,0 -2,39 -2,69 -2,72 
27,1 -2,40 -2,69 -2,72 
31,4 -2,40 -2,69 -2,72 
31,5 -2,41 -2,70 -2,72 
35,8 -2,41 -2,69 -2,72 
35,9 -2,42 -2,71 -2,72 
40,2 -2,42 -2,69 -2,72 
40,3 -2,43 -2,71 -2,72 
44,5 -2,43 -2,70 -2,72 
44,6 -2,44 -2,72 -2,72 
48,6 -2,44 -2,70 -2,72 
48,7 -2,45 -2,73 -2,72 
52,5 -2,44 -2,71 -2,72 
52,7 -2,46 -2,73 -2,72 
56,3 -2,44 -2,71 -2,72 
56,4 -2,46 -2,74 -2,72 
59,8 -2,44 -2,74 -2,72 
60,0 -2,47 -2,74 -2,72 
63,1 -2,42 -2,71 -2,72 
63,4 -2,44 -2,72 -2,72 
65,9 -2,45 -2,67 -2,72 
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68,5 -2,48 -2,73 -2,72 
68,7 -2,51 -2,69 -2,72 
68,9 -2,54 -2,72 -2,72 
71,8 -2,51 -2,67 -2,72 
74,8 -2,53 -2,71 -2,72 
75,0 -2,51 -2,68 -2,72 
75,3 -2,54 -2,70 -2,72 
78,5 -2,50 -2,67 -2,72 
81,8 -2,51 -2,69 -2,72 
82,1 -2,49 -2,67 -2,72 
82,3 -2,51 -2,68 -2,72 
85,8 -2,48 -2,66 -2,72 
89,4 -2,48 -2,66 -2,72 
89,7 -2,47 -2,64 -2,72 
90,0 -2,44 -2,61 -2,72 
93,7 -2,53 -2,72 -2,72 
97,5 -2,38 -2,60 -2,72 
97,8 -2,40 -2,62 -2,72 
98,1 -2,31 -2,68 -2,72 
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