

MASTER THESIS

TITLE: Study and implementation of Polisave Client for Linux

MASTER DEGREE: Master in Science in Telecommunication Engineering
& Management

AUTHOR: Joan Vila Canals

DIRECTOR: Marco Mellia

DATE: Monday, 24 May 2010

MASTER THESIS

Study and implementation of Polisave Client for Linux

MASTER DEGREE: Master in Science in Telecommunication Engineering

Joan Vila Canals

Marco Mellia

May 2010

Study and implementation of Polisave Client for Linux

MASTER DEGREE: Master in Science in Telecommunication Engineering

Title: Study and implementation of Polisave Client for Linux
Author: Joan Vila Canals
Director: Marco Mellia
Date: Monday, 24 May 2010

Overview

This project is written with the purpose to find a solution to the high levels
of energy consumption that there are nowadays. The current proliferation
of network devices that are continuously powered on produces an urgent
need to think about a simple and effective way to reduce their power
consumption. We find out that most people prefer to leave their PCs
always on; this mainly dues to the little sensibility that people have
toward the cost of keeping a PC on and the cost of both, in terms of time
and technical skill, to properly and quickly switch on and off a PC. These
somehow surprising facts suggested us to design a solution able to
control the power state of PCs in the Campus, explicitly targeting the
ease of use. The result is Polisave, a centralized web-based architecture
which allows users to schedule power state of their PCs; the server
remotely triggers power-up and power-down events by piloting a custom
software which has to be installed in each PC.

This thesis is based on the realization of Polisave for Linux. This project
examines how to perform actions to turn on, suspend, hibernate or shut
down computers with Linux through the programming. There is also a
great survey of two complex technologies such as HAL, which allows
obtaining the hardware characteristics of a computer and DBUS, which
allows multiple applications to communicate. It also analyses other
simple but important technologies in the Linux software such as logs,
daemons, GUI...

Therefore, the result of this thesis is not only a software to perform
energy saving actions, but a small study with examples of technologies
which can help anyone interested in learning these technologies.

Thanks to all the people whom I
met in Italy, friends, family and
especially to Neus, Joan, Xavier
and Cristina for their patience and
help.

“Quan coneixes dues coses teòricament iguals te n’adones del munt de
diferències que tenen entre si.”

“Quando sai due cose teoricamente uguali ti rendi conto la pila di differenze tra
di loro”

INDEX

Introduction... 1

Motivations and objectives ... 2

1 General concepts .. 4

1.1 Why is Polisave necessary? .. 4

1.2 Polisave definition ... 4

1.3 Polisave structure .. 5

1.4 Basic functionalities ... 5

2 Polisave Server ... 7

2.1 Server information ... 7

2.2 Server-Client communication .. 8

3 Polisave Client .. 11

3.1 Technologies ... 11

3.1.1 Python .. 11

3.1.2 Graphical Interface ... 12

3.1.3 HAL - Hardware Abstraction Layer ... 13

3.1.4 DBUS .. 14

3.1.5 Pm-utils ... 16

3.1.6 Daemon-Autoboot ... 17

3.1.7 LOGs .. 18

3.2 Client files .. 19

3.2.1 General structure .. 19

3.2.2 DattiPc.py ... 20

3.2.3 Polling.py .. 22

3.2.4 Popup.py .. 27

3.2.5 My.polisave.service and my.polisave.conf 28

4 Client Installation ... 29

4.1 First step: Requirements. .. 29

4.1.1 Programming details ... 29

4.2 Second step: Sign up for Polisave Server. .. 30

4.2.1 Programming details ... 33

4.3 Third step: Installation on the computer. ... 33

4.3.1 Programming details ... 34

4.4 Uninstall .. 35

5 Ubuntu, Fedora and Opensuse versions ... 36

5.1 Polisave deamon ... 36

5.2 Ubuntu ... 37

5.2.1 Functions of the daemon .. 37

5.2.2 Autoboot ... 38

5.3 Fedora ... 38

5.3.1 Functions of the daemon .. 38

5.3.2 Autoboot ... 39

5.4 OpenSUSE .. 39

5.4.1 Functions of the daemon .. 40

5.4.2 Autoboot ... 40

6 Using Polisave .. 42

6.1 Polisave distribution .. 42

6.2 Polisave installation ... 42

6.3 Polisave execution .. 43

6.4 Examples of the client-server communication 44

6.4.1 Example 1 ... 44

6.4.2 Example 2 ... 44

6.4.3 Example 3 ... 45

7 Problems ... 46

7.1 Standardization ... 46

7.2 HAL-DBUS .. 46

7.3 Session or system DBUS? The graphical interface problem 46

8 Conclusions ... 48

9 Bibliography .. 50

APPENDIX ... 51

A DattiPc.py .. 51

B Polling.py ... 53

C PopupThread.py .. 58

D My.polisave.service ... 60

E My.polisave.conf .. 60

F Installazione.py .. 61

G Disinstallazione.py ... 69

H Polisave daemon ... 73

Introduction, motivations and objectives 1

INTRODUCTION

Nowadays, how to save energy is an important factor to consider. The
Politecnico di Torino has designed a software (Polisave) to reduce the energy
consumption caused by the large number of computers that there are in the
campus.

The main objective of this project is to develop a software for the platforms of
Linux capable of performing energy-saving features. Previously, this software
has already been created for Windows platforms, so the software has been
developed using the physical resources of the Windows version. Due to the
diversity of Linux distributions, Polisave has been programmed as standard as
possible, therefore, this software is capable of running on most Linux computers
available on the campus.

In order to more easily explain the development and operation of Polisave, the
thesis has been divided into 9 different sections according to the information
they contain.

Initially there is a brief explanation about the objectives and motivations in
developing this thesis. In other words, this section explains the reasons why it is
important to make this software.

The first chapter is a description of general concepts, where it is find what is
Polisave, its structure and how it works.

The second chapter is a detailed study of how is the Polisave server, that is,
what functions it performs and how it is organized.

The next chapter is the most important, it explains how is the client Polisave.
This chapter studies the technologies used and how software was created.

In chapter four we find the explanation of how to install Polisave, in other words,
the whole procedure done by the user and the computer before the user can
start using Polisave.

In the fifth chapter there is a brief explanation of how Polisave has been created
for various Linux distributions, and the differences between different versions of
Polisave.

The sixth chapter shows how the software works correctly and the explanation
is supported by different images that show all the operations.

The seventh chapter lists the major problems we have found to make this
thesis.

In the last chapter we find different conclusions from this thesis.

Finally there is also an appendix, where the full software codes created can be
found.

2 Study and implementation of Polisave Client for Linux

MOTIVATIONS AND OBJECTIVES

Energy consumption has become a key challenge in the last few years.
According to several studies (1) (2) the Information and Communication
Technology (ICT) sector alone is responsible of a percentage which varies
widely from 2% to 10% of the worldwide energy consumption. The largest
majority of power consumption in the ICT is today due to the billions of terminals
in both households and companies. Furthermore, with the current proliferation
of networked devices that are continuously power on, it is becoming urgent to
think about a simple and effective way to reduce their power consumption, not
only by reducing the energy consumed while they are active, but by turning
them off when left unused.

Politecnico di Torino has 1800 staff members, and 28.000 students. The energy
consumption is more than 1000 MWh/month in 2008. The monthly bill is always
more than 150keuros/month (3).

Fig.1 Power consumption 2008

Today a typical desktop PC consumes about 65 to 250 watts when active. The
idle state power consumption is still in the order of 100W. Fig.2 reports the
power consumed by two desktop PCs, equipped by a dual core CPU from Intel
and AMD, which were running standard benchmarking software.

Fig.1 Benchmark of power consumption
Source: http://www.tomshardware.com/reviews/truth-pc-power-

consumption,1707-7.html

Introduction, motivations and objectives 3

Fig.3 reports the breakdown of the active devices, detailing different OS
architectures. From the bottom, the plot reports: network, networked printers,
VoIP phones and other small network boxes. All these devices are always
powered on, with only printers that are seldom powered off at night. Most of
Unix hosts are left up and running, possibly due to their “server” capabilities,
even if a large fraction of the 350 hosts running Linux could be actually used as
simple terminals. Finally, the largest fraction of devices is due to personal
computers running Windows like OS.

Fig.2 Variation of devices Fig.3 Estimation of power consumed

Fig 1.4 assumes that desktop computers consume 150W. It assumes that
BSD/SUN systems are used as servers, for which the power footprint is higher
than desktop PCs. Finally, the power consumption of network devices like
routers is assumed to be 100W per interface. During the day the total energy
required is more than 500 kWh, (around 26% of the total of the Campus).
During the night, about 300kWh are consumed (35-40% of the total).

These results confirm the intuition that people usually leave their PCs up and
running for most of the time, causing a considerable energy waste. What are
the reasons that refrain users to turn off their PC. First, the economic incentive
is absent in the Campus, since energy costs are not split among users. Second,
the frustration of long power down and bootstrap times. Third, the loss of state a
reboot causes has also been found to be annoying (if not upsetting), since
users are used to leave the office with applications and documents still opened
on their desktops. Fourth, some users want to access the applications and data
on their office PCs even when they are at home. While technical solutions to the
previous issues are already available (e.g., the “hibernate”, Wake of Lan).

These results suggested us to design a solution that controls the power state of
PCs. The result is PoliSave, a centralized web architecture which allows users
to schedule power state of their PCs; the server remotely triggers power-
up/down events by piloting software which has to be installed in each PC.

This thesis is the creation of Polisave for Linux, because the Windows version is
already created and Linux is the other OS most popular in the Campus.

4 Study and implementation of Polisave Client for Linux

1 GENERAL CONCEPTS

In this chapter, the reason why is necessary to create Polisave is pointed out.
For this purpose, its description, its structure and its operation are analyzed.

1.1 Why is Polisave necessary?

Nowadays, computers are used in all kinds of works. Any operation, even the
simplest one, needs the use of a computer. This means that the increase of
computers is growing up every day at all levels: domestic, business or
education.

To save natural resources should be a priority of all companies. If we analyze
the quantity of computers that are in use nowadays and the consumption of
energy that these need, the results are unsustainable. The principal problem is
that many users leave the computer turned on during all day and this causes a
considerable increasing of the energetic consumption. The following graph (Fig.
1.1) shows the accumulative function of computers switched on from one
department of the Politecnico di Torino.

Fig. 1.1 Cumulative function of computers switched on
Source: http://www.polisave.polito.it/hosts_delen_domain.shtml

As can be seen, more or less half of the PCs are switched on all day long. For
this reason, is necessary to create an application able to control when a
computer should remain on, off, standby or hibernate.

1.2 Polisave definition

Polisave is software that allows the control and the programming functions of
on, off, suspend, and hibernation of one or more computers. Polisave can run

General concepts 5

these functions from a distance, in other words, you can control the status of
your computer without need to be physically in front of the computer. Polisave
also allows cancelling the planned energy savings if a user is using the
computer at the same time.

Polisave currently is only designed to work within the Politecnico di Torino
network.

1.3 Polisave structure

As mentioned in previous sections, after years working on this project, the result
has been a Polisave version for Windows. Polisave for Windows is based on a
client-server model. One of the requirements of the project is to use the same
infrastructure used in the Windows version, therefore, the Linux version of
Polisave is also based on a client server. The following graph (Fig.1.2) shows a
basic example of the structure of Polisave.

Fig. 1.2 Polisave structure.
Source: http://www.polisave.polito.it/

In summary, it is necessary to create an entirely new client, capable of
interacting with a server (http://www.polisave.polito.it/) already created.

In the following chapters the different elements of the structure of Polisave are
given in detail.

1.4 Basic functionalities

Before looking in detail the different parts of this project, is essential to know its
basic operation.

6

This explanation considers a computer with Polisave already installed. When
the computer is powered on
it is properly configured to start whenever the computer turns on.

On the server web (4), actions such as: hibernation, standby, shutdown or
switch on can be programmed for saving energy. These actions can be
programmed to be executables one or more times.

The client objective is to ask regularly if there is any unresolved action.
However, the server aim is to answer to the client the questions indi
there any programming action in the next 20 minutes.
server responds to the client indicating the action and how long does it take to
run. If there is not any action, the server answers indicating to the client
again in 20 minutes.

If the client receives a response from the server announcing that there is a
hanging action in an alpha time , after this time,
this one responses indicating the action and time = 0. Then it is time to execute
the action, but before, Polisave asks if the user agrees with the execution of that
action. If he agrees, it is displayed a window with the action that is going to be
executed and a countdown which begins in 60 seconds.
cancel the action by clicking the appropriate button. If the user is not using the
computer and allows these 60 seconds elapse, Polisave automatically performs
the action. If the user cancels the action, the client will ask the server if there is
any other pending action.

Study and implementation of Polisave Client for Linux

This explanation considers a computer with Polisave already installed. When
is powered on, Polisave starts automatically; since it is a daemon,

it is properly configured to start whenever the computer turns on.

, actions such as: hibernation, standby, shutdown or
can be programmed for saving energy. These actions can be

programmed to be executables one or more times.

The client objective is to ask regularly if there is any unresolved action.
However, the server aim is to answer to the client the questions indi
there any programming action in the next 20 minutes. If there is an action, the
server responds to the client indicating the action and how long does it take to
run. If there is not any action, the server answers indicating to the client

If the client receives a response from the server announcing that there is a
hanging action in an alpha time , after this time, again the server is asked and
this one responses indicating the action and time = 0. Then it is time to execute
the action, but before, Polisave asks if the user agrees with the execution of that

it is displayed a window with the action that is going to be
ted and a countdown which begins in 60 seconds. The user can accept or

cancel the action by clicking the appropriate button. If the user is not using the
computer and allows these 60 seconds elapse, Polisave automatically performs

ancels the action, the client will ask the server if there is
any other pending action.

Fig. 1.3 Polisave pop-up

Study and implementation of Polisave Client for Linux

This explanation considers a computer with Polisave already installed. When
, Polisave starts automatically; since it is a daemon,

, actions such as: hibernation, standby, shutdown or
can be programmed for saving energy. These actions can be

The client objective is to ask regularly if there is any unresolved action.
However, the server aim is to answer to the client the questions indicating it if is

If there is an action, the
server responds to the client indicating the action and how long does it take to
run. If there is not any action, the server answers indicating to the client to ask it

If the client receives a response from the server announcing that there is a
again the server is asked and

this one responses indicating the action and time = 0. Then it is time to execute
the action, but before, Polisave asks if the user agrees with the execution of that

it is displayed a window with the action that is going to be
The user can accept or

cancel the action by clicking the appropriate button. If the user is not using the
computer and allows these 60 seconds elapse, Polisave automatically performs

ancels the action, the client will ask the server if there is

Polisave Server 7

2 POLISAVE SERVER

First of all, should be remembered that the Polisave server was already created
before starting this project, however it is absolutely necessary to make a
detailed study of how it works.

Polisave server contains a database that stores information about clients using
this software and information of scheduled action. Furthermore storing all this
information, the server has to inform the client when an action is performed.

2.1 Server information

The server stores information related with customers such as: computer name,
IP address, MAC address, user name, manager, description of user and
operating system. These data are often static and are included in the Polisave
client installation process, it means that there is a user registration dialog
between the client and the server on which the client sends his information. This
process will be detailed in Chapter 4. In addition to static information also saves
the client's current state, in other words if it is off or if it is on. Since the
computer is turning on, it stores the number of WAITs that have been generated
since the client was on, and the time of the last WAIT. The following screenshot
(Fig. 2.1) shows the data that is stored on the server about a client:

Fig. 2.1 Client data stored by the server.

There is also stored energy saving actions were scheduled. These actions can
be specific (only run once), daily or once at week. Possible actions that can be
implemented are: on, off, hibernate and standby. Actions can be programmed
via any machine by means of the Polisave server web interface:
https://www.swas.polito.it/intra/polisave/. The following screenshot (Fig. 2.2)
shows scheduled actions for a client.

8 Study and implementation of Polisave Client for Linux

Fig. 2.2 Scheduled actions for a client.

Finally, the server also stores information about the messages sent to the
users, the process is called LOG system. The following picture (Fig 2.3) shows
this LOG:

Fig. 2.3 Polisave server LOG.

2.2 Server-Client communication

This section explains the process of communication between the server and the
client. All communications are performed through HTTP requests and
responses over TCP.

The server has always to perform the function of responding to the requests of
the client. There is only one situation in which the server sends a message to
the client without any response. This occurs in the case of action on, in which
the server sends a Magic Packet WOL to turn on the computer.

On the other hand, there is also a communication between the client-server and
the client in the installation process. This process is described in section 4.

The following explanation shows the basic communication that is taking place
when a client is installed and it is working. At the beginning: the client sends a
"POLLING" message to the server. Then the server looks for any scheduled

Polisave Server 9

action in the next 20 minutes of this client. If is there any scheduled action, the
server responds to the client announcing this action and how much time it
needs to be completed. If the server does not have any pending action, it sends
a message of "WAIT" with a definite time of 1200s. After this time, the client
sends another "POLLING" asking again if there is any pending action and so
on.

The following graph (Fig 2.4) shows POLLING dialogue between a client and a
server.

Fig. 2.4 POLLING communication

The response packets are “200 OK” type which indicate that everything is
correct. The responses contain the following information in TEXT/HTML format:

ANS=[200]\r\n � HTTP RESPONSE (5)
IP=[XX]\r\n � IP Client
MAC=[XX]\r\n � MAC Client
ACTION=[XX]\r\n � Action, can be: WAIT, POWER ON,

OFF, STBY and HIB
TIME=[XX]\r\n � Action Time

The following pictures show two examples of server response (in agreement
with Fig. 2.4). Figure 2.5 A represents the “WAIT=1200s” message and Figure
2.5 B represents “OFF=120s” message.

10 Study and implementation of Polisave Client for Linux

(a)

(b)

Fig. 2.5 Wait and OFF response

It is important to know that in any request of the client, the server is checking if
the IP is defined in its database. If the IP is not in the database, the server
sends a "WAIT", but now with a “TIME” of 43200 seconds, thus the client will
send a "POLLING" message within 12 hours. This situation usually occurs when
Polisave users are connected outside of the Politecnico network.

Fig. 2.5 WAIT when user is out of Politecnico network.

“POLLING” message description is detailed in section 3.2.3.

Polisave Client 11

3 POLISAVE CLIENT

The previous chapters described the general concepts and basic features of the
server. As mentioned before, the server was created before this thesis.

Now it is the moment to concentrate the thesis in the Polisave client. The client
is the main block of this thesis because it was created entirely new, so this first
section examines what technological needs of the client and later its
implementation.

3.1 Technologies

3.1.1 Python

All software is created using a programming language. There are infinite
programming languages, each with specific characteristics. Polisave has been
created using the Python language.

3.1.1.1 Why Python?

One of the requirements is that Polisave has to support different Linux
distributions, so it is interesting the code standard. If using a compiled language
(6) Polisave would be compiled for each type of computer. Simply, compiled
languages create the resulting program on the machine from the developer, if
the developer's machine is different from the user's machine, the program does
not work. For example, the 32-bits Polisave version computer does not work in
a 64-bits computer. Since there are many Linux distributions, a compiled
language is not interesting. Python is an interpreted language (7), in other
words, users install an interpreter on their computers and then the resulting
program is generated when the user runs, that is, when the computer interprets.
Thus, the final program is created according to the characteristics of the user's
computer. Furthermore Python interpreter is usually available on most
platforms.

Finally, Python is one of the most commonly used interpreted languages: fast
learning, the large number of libraries available, easy to find and debug errors,
dynamism and it is free technology. Python is the best solution to implement
Polisave.

3.1.1.2 Programming details

On the Python homepage there is a very complete API, a tutorial and the
interpreter that can be downloaded download for free.

http://www.python.org/

12

3.1.2 Graphical Interface

Polisave operation requires a graphical interface, that is, when the server sends
an order to the client (Off, Hibernation, Standby ...) Polisave should show a
popup to the user announcing that in 60 seconds, if the user does not oppose,
Polisave will execute the order. GTK is the technology chosen
popup window.

3.1.2.1 Why GTK?

GTK+ is a highly usable, feature rich toolkit for creating graphical user
interfaces which boasts cross platform compatibility and an easy to use API
As you can see in the previous definition, GTK can generate simple GUI, is free
and has a version for Python, the PyGTK.
documentation and support on the network, since it is the most common
technology in this field. GTK is

3.1.2.2 Programming details

Developing graphical interfaces is similar in all the languages.
graphic elements of the application (button, label ...) are defined. Then Polisave
has to define the actions of the
when you press a button. Finally a window must be assigned to each element in
order to be showed.

For our purposes, we use GTK+ with the PyGTK wrapper
features and elements of PyGTK and GTK, the libraries have to be imported:
import pygtk and import gtk.
possible to see a small example:

i mport pygtk

Study and implementation of Polisave Client for Linux

raphical Interface

Polisave operation requires a graphical interface, that is, when the server sends
order to the client (Off, Hibernation, Standby ...) Polisave should show a

popup to the user announcing that in 60 seconds, if the user does not oppose,
Polisave will execute the order. GTK is the technology chosen

Fig. 3.1 Polisave popup.

GTK+ is a highly usable, feature rich toolkit for creating graphical user
interfaces which boasts cross platform compatibility and an easy to use API
As you can see in the previous definition, GTK can generate simple GUI, is free
and has a version for Python, the PyGTK. In addition, GTK has a lot of
documentation and support on the network, since it is the most common

GTK is also standard for all Linux systems.

Programming details

Developing graphical interfaces is similar in all the languages.
graphic elements of the application (button, label ...) are defined. Then Polisave
has to define the actions of the elements, for example, what should happen
when you press a button. Finally a window must be assigned to each element in

For our purposes, we use GTK+ with the PyGTK wrapper (9)
elements of PyGTK and GTK, the libraries have to be imported:

import pygtk and import gtk. PyGTK version must be at least 2.0. Later it is
possible to see a small example:

mport pygtk

Study and implementation of Polisave Client for Linux

Polisave operation requires a graphical interface, that is, when the server sends
order to the client (Off, Hibernation, Standby ...) Polisave should show a

popup to the user announcing that in 60 seconds, if the user does not oppose,
Polisave will execute the order. GTK is the technology chosen to display the

GTK+ is a highly usable, feature rich toolkit for creating graphical user
interfaces which boasts cross platform compatibility and an easy to use API (8).
As you can see in the previous definition, GTK can generate simple GUI, is free

In addition, GTK has a lot of
documentation and support on the network, since it is the most common

also standard for all Linux systems.

Developing graphical interfaces is similar in all the languages. First, all the
graphic elements of the application (button, label ...) are defined. Then Polisave

elements, for example, what should happen
when you press a button. Finally a window must be assigned to each element in

(9). To use the
elements of PyGTK and GTK, the libraries have to be imported:

PyGTK version must be at least 2.0. Later it is

Polisave Client 13

pygtk.require(‘2.0’)
import gtk

window=gtk.Window(gtk.WINDOW_TOPLEVEL)
buttonEnd = gtk.Button(“Button 1”)
buttonEnd.connect(“clicked”,function_after_click)
buttonEnd.show()
window.add(buttonEnd)

3.1.3 HAL - Hardware Abstraction Layer

Sometimes Polisave should consult the hardware of the machine, for example
to find the MAC address of a network interface, or even to check if the WoL is
enabled. There is a technology capable of classifying information of the
hardware (low level) to other layers (high level) to perform queries and
modifications to the hardware. This technology is known as HAL.

3.1.3.1 What is HAL?

According to (10) HAL is an abstraction layer, implemented in software,
between the physical hardware of a computer and the software that runs on that
computer. Its function is to hide differences in hardware from most of the
operating system kernel, so that most of the kernel-mode code does not need to
be changed to run on systems with different hardware. On a PC, HAL can
basically be considered to be the driver for the motherboard and allows
instructions from higher level computer languages to communicate with lower
level components, such as directly with hardware.

3.1.3.2 Why HAL?

Today, all products support the HAL technology, these are defined so that HAL
can get their data and classifies them. Thus, you can know all the features of
hardware that a computer has, whether it's Linux, Windows or Mac. HAL's
election is for the simple reason that today there is no other technology capable
of performing these functions as standard for all systems and free.

3.1.3.3 Programming details

HAL simply orders and classifies the characteristics of the hardware, therefore,
there is no direct interaction between Python and HAL. Polisave needs a
connection between Python and HAL able to collect data from HAL to Python.
This connection is created with DBUS. To sum up, HAL technology is not in
programming terms.

14 Study and implementation of Polisave Client for Linux

3.1.4 DBUS

Polisave needs to connect data obtained by HAL and the program in Python.
This connection is provided DBUS, a technology of freedesktop.

3.1.4.1 What is DBUS?

According to (11) D-Bus is a message bus system, a simple way for
applications to talk to one another. In addition to interprocess communication,
D-Bus helps coordinate process lifecycle; it makes it simple and reliable to code
a "single instance" application or daemon, and to launch applications and
daemons on demand when their services are needed.

D-Bus supplies both a system daemon (for events such as "new hardware
device added" or "printer queue changed") and a per-user-login-session
daemon (for general IPC needs among user applications). Also, the message
bus is built on top of a general one-to-one message passing framework, which
can be used by any two apps to communicate directly (without going through
the message bus daemon).

3.1.4.2 Why DBUS?

DBUS connects two applications, through the system or the session. Apart from
connecting Python and data HAL, Polisave also needs to connect the graphics
application to the program in Python. Therefore, DBUS is the most appropriate
technology because it is the most developed in this field. Moreover, DBUS is
free and is standard for all the Linux distributions.

3.1.4.3 How does DBUS work?

Working with DBUS is not simple. There are several ways to work with DBUS.

Polisave can work depending on the bus type: session bus and system bus. It is
very important to differentiate when to work through a session DBUS or system
DBUS. If data are collected by applications run by the user, it must use DBUS
session. Otherwise, if data from the system (HAL) or applications are run by the
operating system (or other users), it uses DBUS system.

It also can be differentiated according to the form of exchanging data:

• Requests for static data: the receiver receives a request and responds
with the existing static data. For example, when Polisave wants to obtain
data from the hardware (via HAL), these data are static and HAL only
responds to requests. It is a request-response system. It is typically used
when an application does not depend on the programmer.

Polisave Client 15

• Sending dynamic data: an application sends a message to the other
without waiting for an answer. For example, the exchange of messages
between the popup and the application in Python. The application is
continuously waiting for a message from the Popup. When the popup
sends a message, the application analyzes it and does not answer to the
Popup. It is a messages exchange system. It is typically used when two
applications depend on the programmer.

DBUS is based on objects and interfaces, request or data are sent as objects.
To read an object, it is necessary knowing what kind of object is. For this, it is
necessary knowing which interface can read data that contains the object. If the
interface is not appropriate, data cannot be read correctly.

3.1.4.4 Programming details

Polisave uses DBUS to collect data from HAL and to send actions between the
Polisave brain and the graphical interface. In both cases the information is sent
through a system DBUS. The following is an example of how to get data from
HAL, in particular to discover if the computer is capable of hibernation:

A1: bus = dbus.SystemBus()
A2: device = bus.get_object("org.freedesktop.Hal",

"/org/freedesktop/Hal/devices/computer")
A3: prod = device.GetPropertyString(

'power_management.can_hibernate',
dbus_interface='org.freedesktop.Hal.Device')

A1 creates the bus to receive the information and indicates bus type (system).
A2 asks an object of "org.freedesktop.Hal" with the following name:
"/org/freedesktop/Hal/devices/computer". At this point, “device” has a computer
object with several properties inside. A3 wants to analyze the properties of the
computer object, it specifically requires the value (as string) of the variable
'power_management.can_hibernate' and shows what kind of interface is
needed to consult the variable, in this case should be looked up through the
interface 'org.freedesktop.Hal.Device'. The result indicates if this computer is
able to hibernate or not.

The following example shows the exchanged data between applications. In
particular the data from Polisave Popup to the Polisave brain are detailed:

MY_BUS_NAME = 'my.polisave'
MY_OBJECT_PATH = '/my/polisave'

PopUp:

B1: bus = dbus.SystemBus(mainloop=DBusGMainLoop())
B2 dbus.service.Object.__init__(self, bus, MY_OBJEC T_PATH)
B3: @dbus.service.signal(dbus_interface=MY_BUS_NAME ,signature='s')

16 Study and implementation of Polisave Client for Linux

B4: def Off(self,numAction):
B5: …

B6: self.Off(“3”)

Brain:

C1: dbus.mainloop.glib.DBusGMainLoop(set_as_default =True)
C2: bus = dbus.SystemBus()

C3: bus.add_signal_receiver(self.ExitAction,

dbus_interface=MY_BUS_NAME, signal_name="Off")

C4: mainloop = gobject.MainLoop()
C5: mainloop = mainloop.run()

C6: #@dbus.service.method(MY_BUS_NAME,in_signature= 's',

out_signature='as')
C7: def ExitAction(self, numAction):
C8: …

B1, C1 and C2 define the type of DBUS, DBUS System here. Popup contains:

• B2 creates an object with path MY_OBJECT_PATH.
• B3 sends a MY_BUS_NAME object when someone runs “Off” (B4).
• B6 called an “Off” and thus sends the object. The object is formed by the

“Off” function variables (B4), in this case, numAction.

The Brain contains:

• C3 defines a receiver of MY_BUS_NAME objects, this receiver only
listens to the objects that have been sent through Off function. In
addition, C3 indicates when an object is received, the program must
execute the method ExitAction (C7).

• C6 defines that ExitAction (C7) is a DBUS method.
• Finally, the brain must always be listening for messages arrive, for this

reason there is a listening loop (C4 and C5).

3.1.5 Pm-utils

Polisave need some kind of technology that allows suspending and hibernating.
A few years ago, finding a standard technology to do this was very difficult,
because each system and each distribution were based on different
management systems. It is important to know that suspend and hibernation are
actions that store all running processes in memory and execute a partial
(suspend) or total (hibernation) shutdown of the computer, specifically:

• Suspend: Processes are stored in RAM because this memory is not
interrupted. (12)

Polisave Client 17

• Hibernation: It is a complete shutdown of the computer. In this case, the
running processes are stored in the swap system. For this reason, it is
often advisable to have a swap larger than RAM, because otherwise the
computer cannot store all the RAM information in the swap and therefore
hibernation is not successful. (13)

There are many ways to perform these functions, including hardware, software,
or even kernel modification. In our case we adopt Pm-utils to perform these
tasks. Pm-utils is a framework to set suspend and power state mode (14) (15)

We chose this framework since it is the simplest in application terms and it is
the standard in all systems. Pm-utils contains a package of applications that can
execute suspend and hibernation actions. These applications use HAL and are
transparent to the user. So we can say that Pm-utils works at software level but
using Hardware terms. Currently Pm-utils is already included in most Linux
systems.

3.1.5.1 Programming details

In programming terms, Polisave has only to run the appropriate script when it
wants to execute the action. To run the scripts Polisave uses the commands
library of Python, this allows to execute Shell commands, specifically
getstatusoutput() method. Therefore to call the scripts pm-suspend and pm-
hibernate from python, the following code must be run:

import commands
commands.getstatusoutput(‘pm-suspend)
commands.getstatusoutput(‘pm-hibernate’)

3.1.6 Daemon-Autoboot

A daemon is not a technology but it is an essential element to Polisave.

3.1.6.1 What is a Daemon?

In Unix and other computer multitasking operating systems, a daemon is a
computer program that runs in the background, rather than under the direct
control of a user; they are usually initiated as background processes.

In a Unix environment, the parent process of a daemon is often (but not always)
the init process (PID=1). Processes usually become daemons by forking a child
process and then having their parent process immediately exit, thus causing init
to adopt the child process. This is a somewhat simplified view of the process as
other operations are generally performed, such as disassociating the daemon
process from any controlling tty.

18 Study and implementation of Polisave Client for Linux

Systems often start daemons at boot time: they often serve the function of
responding to network requests, hardware activity, or other programs by
performing some task. Daemons can also configure hardware (like devfsd on
some GNU/Linux systems), run scheduled tasks (like cron), and perform a
variety of other tasks. (16)

3.1.6.2 Why a Daemon?

Polisave must run in background and has to be properly initialized when the
computer starts therefore, Polisave must be controlled by a daemon.

3.1.6.3 Programming details

As the definition says, when a program is initialized by a daemon, it must create
a child process with a fork and kill the father process. The base directory must
also be changed as the root computer directory. The following code can be
viewed as Polisave creates a child process at the beginning (A1), killing the
father process (this process always has a pid=0) (A2 and A3), changes
directory (A4) and implements the other functions required for good
management of the process (A5 and A6). Finally Polisave starts (A7).

 try:
 A1: pid_daemon = os.fork()
 A2: if pid_daemon > 0 :
 A3: sys.exit(0)
 except OSError, e:
 sys.exit(1)
 A4: os.chdir("/")
 A5: os.setsid()
 A6: os.umask(0)

 A7: Inizio()

It is important to know that this code is not the daemon, this is the first thing that
runs when Polisave starts, which has been initialized by the daemon. The
daemon internal structure is different in every Linux distribution. The daemon
structure is detailed in Chapter 5.

3.1.7 LOGs

3.1.7.1 What is LOGs?

It is recommended that the program monitors all actions carried out: the
important steps of the process, errors or warnings. This is done with LOG’s
files. Every time that an important action happens, a line is written in the log file
annotating the description and the time it happened. Thus, if someone wants to

Polisave Client 19

check if an error has occurred or what actions have been done, the LOGs file
shows the information.

3.1.7.1 Programming details

Polisave only used LOGs in the brain of the program, in other words, the
Polling.py file. Next code configures the LOGs system (Polling.py).

 import logging
 SELF = 'Polisave'
A1: if os.getenv('MWC_DEBUG') != None:
 DEBUG = True
 if DEBUG:
A2: DEBUG_LEVEL = logging.DEBUG #print all message s
 else:
A3: DEBUG_LEVEL = logging.WARNING #print warnings
A4: FORMATTER = '%(asctime)s %(levelname)s %(messag e)s'
A5: logging.basicConfig(level=DEBUG_LEVEL,format= F ORMATTER,

filename = '/var/log/' + SELF + '.log',filemode = ' a')

To use LOGs it is necessary to import the logging library. Polisave LOGs
defines two levels: the first one writes the error messages (A3) while the second
one r writes all the messages (A2). If the computer is in debug mode (A1), it
writes all the messages, if it is not in debug mode, it writes only error messages.
Polisave defines a message format, for example the date inclusion in the
message (A4). Then it executes the LOG configuration (A5), indicating the kind
of messages, the format, where the LOG file is stored (in this case
/var/log/polisave.log) and if it wants to write all messages or only last message.
Once configured, when Polisave wants to write a log message simply does:

A6: logging.debug(“Polisave started”)
A7: logging.critical('Error POLLING: invalid destin ation host')
A8: logging.shutdown()

A6 writes a message only if debug mode is activated, but not in Warning mode,
however, A7 message is always written. Finally, if an error has occurred, the
LOG file will be closed (A8).

3.2 Client files

Previous section described the most important technologies that have been
used and programming details. This section explains how these technologies
have been implemented on the client.

3.2.1 General structure

20 Study and implementation of Polisave Client for Linux

The following diagram shows an overview of Polisave. Files are represented in
squares and the most important actions are represented in circles.

Fig. 3.2 General diagram of the Polisave client.

Understanding the diagram at first sight is a bit complicated, therefore, the main
functions that implements each file are explained.

3.2.2 DattiPc.py

3.2.2.1 General function

Polisave Client 21

The general function of this file is to obtain data from the computer. Data
obtained are: hibernation and WoL capabilities, operating system, hostname
and IP and MAC addresses.

The operation is basic: the client asks for a data and DattiPc.py returns the
requested data. DattiPc.py is a library, that is, if you execute the file does
nothing, since the file simply has methods.

Data are obtained by querying HAL (via DBUS) or through Shell commands.
Data obtained from DattiPc.py are used to create POLLING messages and
messages of the installation process.

3.2.2.2 Programming details

DattiPc.py has 6 methods:

• Get_hib(): obtains if the computer is capable of hibernation. This is
obtained using a HAL query to the object "/org/freedesktop/Hal/
devices/computer" with interface “org.freedesktop.Hal.Device” and
property “power_management.can_hibernate”.

• Get_so(): gets the machine's operating system using the Shell command

"uname -o". To implement commands of Shell through Python is used
getstatusoutput() method of the commands library.

commands.getstatusoutput('uname -o')[1]

• Get_hostname(): gets the hostname using the Shell command "uname-
n" a shell. Commands library is used.

• Get_ip(interface): gets IP address of the interface (input parameter)
through the socket library.

s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
ip=socket.inet_ntoa(fcntl.ioctl(s.fileno(),0x8915,s truct.pa
ck('256s', ifname[:15]))[20:24])

• Get_tutti_ip_mac(): get all the IP and MAC address of the machine

through HAL query.

The procedure is as it follows: A1 and A2 create a HAL manager.
Manager filters all “net” devices and gets "device" objects (A3 and A4).
After objects are interpreted by the appropriate interface and it obtains
MAC address (A5) and network card name (A6) of each device. To
obtain the IP address through the network card name, Polisave uses
Get_ip(interface) (A7).

bus = dbus.SystemBus()

A1: objeto_hal = bus.get_object(hal_dot, hal_path+ '/Manager')
A2: halmanager = dbus.Interface(objeto_hal, hal_do t+'.Manager')

22 Study and implementation of Polisave Client for Linux

A3: for dev_name in halmanager.FindDeviceByCapabil ity("net"):
A4: device = bus.get_object("org.freedesktop.Hal", dev_name)

A5: mac = device.GetPropertyString('net.address',

dbus_interface='org.freedesktop.Hal.Device')

A6: net = device.GetPropertyString('net.interface',
dbus_interface='org.freedesktop.Hal.Device')

tutti_mac= tutti_mac + ',' + mac

A7: tutti_ip= tutti_ip + ',' + get_ip(str(net))

• Get_WOL(mac): obtains, through HAL query, if the computer supports

WOL capability.

First Polisave should get the "device" object which has the MAC, that is
passed by parameter. This procedure is similar to that used in
Get_tutti_ip_mac(), because it must analyze all the devices and select
the device which has the correct MAC. Once the “device” object is
correct, Polisave should check whether it has the "wake_on_lan"
property.

prod = device.GetPropertyString('info.capabilities' ,
dbus_interface='org.freedesktop.Hal.Device')

for property in prod:

 if property =='wake_on_lan':
 return 'OK'

The complete listing of DattiPc.py file is detailed in the Annex.

3.2.3 Polling.py

3.2.3.1 General function

Polling.py is the Polisave brain, the client. Polling.py is controlled through the
polisave.sh (daemon), it is what starts and stops Polling.py. The main function
of Polling.py is to send POLLING messages to the server and it acts according
to server response. Next, its operation is detailed; it can be seen graphically in
Fig. 3.4.

The first step that Polling.py should do when it starts is to create a child process
(using a fork()) and kill the father process. This is essential to do because it
comes from a daemon.

Already in the child, it should create another thread, so now there are two
threads: a “polling” thread and “DBUS” thread. It is essential to do this because
otherwise it is not possible to have both parts running simultaneously.

Polisave Client 23

Polling thread

The polling process has the function of sending POLLING messages to the
server. The library DattiPC.py is used to create these messages. Then you can
see the structure of a package POLLING:

Fig. 3.3 Polling packet

The most important fields are:

• Action: In this case always equate to POLLING.
• Name: Indicates the computer name.
• Count_polling: indicates the number of times it has sent a POLLING

message and the server has responded WAIT. When you start Polisave
or when the server response with an action, the count_polling restarts at
0.

• IP: indicates all IP addresses on the computer.
• MAC: indicates all MAC addresses on the computer.

When Polisave sends the POLLING message, it expects a response from the
server. The different responses are described in Chapter 2, they are like this:

Fig. 3.4 Server response

If the “ACTION” field is equivalent to “WAIT”, then “TIME” field is 1200s or
43000s. In contrast, if the "ACTION" is equivalent to another option, the "TIME"
is a countdown time to run that action.

The first thing the client does when it receives the server response is to analyze
the "TIME" field, then:

24 Study and implementation of Polisave Client for Linux

• If "TIME" is more than 60 seconds, the client waits this time and then it
sends another POLLING message to the server, increasing
“Count_Polling" field.

• If "TIME" is less than 60 seconds, the client initializes a Popup for the

action specified in "ACTION". When this happens, polling thread ends,
since it has no more tasks to run.

DBUS thread

DBUS process creates a system bus and waits Popup messages. There are 3
groups of messages that the server can receive:

• NoAction: This message occurs when the user rejects the action of the
popup, then the client creates a new polling thread. (Previous polling
thread was over).

• Shutdown: in this case the client shutdowns the computer.

• Hibernation or Standby: in this case, it creates a new polling thread
because when computer is turned on again, Polisave is active. In
addition to creating the polling thread, it runs the action (hibernation or
standby).

3.2.3.2 Programming details

Polling.py file consists of 3 classes: Inizio, DBUSmanagement and Polisave and
a method LOGs.

• Inizio: This class is responsible for creating the child process (A1) and
creates Polling (A3) and DBUS (A4) threads.

 try:
 shutil.copy('/tmp/polisave.txt',

'/usr/local/bin/polisave.txt')
 except OSError:
 logging.debug('Could not copy tmp file')
 try:
A1: pid_daemon = os.fork()
 if pid_daemon > 0 :
 sys.exit(0)
 except OSError, e:
 logging.critical('Fork error')
 logging.shutdown()
 sys.exit(1)
A2: os.chdir("/")
 os.setsid()

os.umask(0)

pid = os.fork()

Polisave Client 25

 if pid != 0:
 A3: Polisave()
 else:
 pid = str(os.getpid())
 A4: file("/var/run/polisave.pid",'w+').write("%s\ n"%pid)
 A5: DBUSmanagement()

Necessary post-daemon functions are also implemented, for example:
changing root (A2), the pidfile (A5), etc.

• DBUSmanagement: This is the class which runs as DBUS thread. This

class is basically composed by the methods needed to analyze the
messages sent by the Popup (B1), so there are implemented actions
here: off (B2), hibernation (B4) and standby (B6). Remember that when
running an hibernation or standby action another polling process is
opened (B3 and B5).

B1: #@dbus.service.method(MY_BUS_NAME, in_signature ='s',
out_signature='as')

 def ExitAction(self, numAction):
 if numAction=='1':
 logging.debug('Azione wait')
 elif numAction=='2':
 logging.debug('Azione off')
 B2: commands.getstatusoutput('shutdown -h now')
 elif numAction=='3':
 logging.debug('Azione hib')

B3: subprocess.Popen("/usr/local/bin/Polling.py
rePolling", shell=True)

 B4: commands.getstatusoutput('pm-hibernate')
 elif numAction=='4':
 logging.debug('Azione stby')

B5: subprocess.Popen("/usr/local/bin/Polling.py
rePolling", shell=True)

 B6: commands.getstatusoutput('pm-suspend')

 return ["Ok"]

• Polisave: This is the class which runs as polling thread. There are three
important methods:

o Polling(): This method performs the following actions: sending a
Polling (C1), analyzing the response (C2) and opening a popup
(C4).

 self.continuare=True
 while (self.continuare == True):
C1: response = self.SEND_POLLING()
C2: azione,msgAzione=self.RECEIVE_POLLING(response)
 self.countPolling+=1
 logging.debug('Open popup')
C3: f=open("/usr/local/bin/polisave.txt", "r")
 XauthDir=f.readline()

26 Study and implementation of Polisave Client for Linux

 if os.path.exists(XauthDir)!=True:
 logging.critical('Error: could not detect X)
 logging.shutdown()
 exit().
 os.environ['XAUTHORITY']=XauthDir

os.environ['DISPLAY']=":0.0"
C4: child = subprocess.Popen("/usr/local/bin/popup .py" +

' ' + str(azione) + ' ' + msgAzione, shell=True)

As you can see, before opening a popup it should verify that the
user has correctly configured X11 Window Manager, if so, it looks
what directory is the variable XAUTHORITY in (C3).

o Send_Polling(): This method creates and sends the message

POLLING to the server via HTTP. It simply uses the methods of the
library DattiPc.py.

o Recive_Polling(): This method analyzes the responses from the

server. As mentioned above, it first sees if there are actions
pending in the next 60 seconds (D1 and D2), if so, it returns the
action to be performed. In case that TIME is more than one minute,
the program sleeps during this time minus 30 seconds (D4) and
returns 1 indicating that it must resent a POLLING message.

 if (R1.status!=200):
 exit()

responseRead=R1.read()

D1: time_wait=int((responseRead.split()[4]).strip(
'TIME=[]'))

D2: if time_wait < 60:
D3: action=responseRead.split()[3]

 numAction = self.ACTION(action)
 self.continuare=False

 if numAction == 6:
 return numAction, responseRead.split()[6]
 elif 0<numAction<6:
 return numAction, 'tutto a posto'
 else:
 exit()
 else:

D4: time.sleep(time_wait-30)
 return 1,'tutto a posto'

• LOGs: LOG file management. See chapter 3.1.7.

To view fully Polling.py file go to the Annex.

Polisave Client

3.2.4 Popup.py

3.2.4.1 General function

The main function of this file is to inform the user that Polisave wants to perform
an action. The user can accept or cancel the action. The following image shows
the popup, it contains a countdown, if the user has not responded to the window
after this time the action is executed.

Another function of the popup is to communicate through DBUS, which is the
user's response.

3.2.4.2 Programming details

The calling of the popup is done using a

Subprocess.Popen(“/usr/local/bin/popup.py Action Me ssage, shell=True”)

This command creates a new thread for the popup. The implementation has two
input parameters: “Action” and “Message”.
wants to run and “Message” is only used when the server wants to send a
message to the user.

Below, the most important groups of methods Popup.py file are described:

• Creation of window:
and instructions to create the graphics window (buttons, dimensions ...).

• Preparation of the

message to display to the user depending on the type of action to
execute.

• Timer: These methods are calculating and updating the counter

that is displayed to the user.

General function

The main function of this file is to inform the user that Polisave wants to perform
an action. The user can accept or cancel the action. The following image shows
the popup, it contains a countdown, if the user has not responded to the window

time the action is executed.

Fig. 3.5 Popup

Another function of the popup is to communicate through DBUS, which is the

Programming details

The calling of the popup is done using a command like the following:

Subprocess.Popen(“/usr/local/bin/popup.py Action Me ssage, shell=True”)

This command creates a new thread for the popup. The implementation has two
input parameters: “Action” and “Message”. “Action” indicates the action that it
wants to run and “Message” is only used when the server wants to send a

Below, the most important groups of methods Popup.py file are described:

Creation of window: these are methods that contain all the properties
to create the graphics window (buttons, dimensions ...).

Preparation of the message to display: This method creates a
message to display to the user depending on the type of action to

These methods are calculating and updating the counter
that is displayed to the user.

27

The main function of this file is to inform the user that Polisave wants to perform
an action. The user can accept or cancel the action. The following image shows
the popup, it contains a countdown, if the user has not responded to the window

Another function of the popup is to communicate through DBUS, which is the

command like the following:

Subprocess.Popen(“/usr/local/bin/popup.py Action Me ssage, shell=True”)

This command creates a new thread for the popup. The implementation has two
Action” indicates the action that it

wants to run and “Message” is only used when the server wants to send a

Below, the most important groups of methods Popup.py file are described:

these are methods that contain all the properties
to create the graphics window (buttons, dimensions ...).

This method creates a
message to display to the user depending on the type of action to

These methods are calculating and updating the counter value

28 Study and implementation of Polisave Client for Linux

• Action by user: These methods show the actions executed by the

program when the user presses the button.

The complete listing of Popup.py is reported in the Annex.

3.2.5 My.polisave.service and my.polisave.conf

3.2.5.1 General function

DBUS Polisave service is announced in advance in a particular directory in
order to be known by the applications. Then my.polisave.service file is created.
It contains the description of the service. Below there is the entire code, which
shows the service name, the running file and the user who can run it:

[D-BUS Service]
Name=my.polisave
Exec=/usr/local/bin/Polling.py
User=root

Polisave also needs a service configuration file (my.polisave.conf). It contains
interfaces, which users have permission to use, etc. The permissions and
interfaces that root user have are detailed as follows:

<policy user="root">
 <allow own="my.polisave"/>
 <allow send_interface="my.polisave.On"/>
 <allow send_interface="my.polisave.Off"/>
</policy>

Client Installation 29

4 CLIENT INSTALLATION

This chapter explains in detail the process of installing Polisave on a Linux
computer. The installation consists mainly of three steps: the first checks that
the computer is ready to install Polisave; in the second step the client has to
authenticate with the server; at last, in the third phase Polisave is installed in the
client machine. It is important to mention that if the results of a phase are not
satisfactory, the installation stops and does not run the next step.

Fig. 4.1 Client installation steps

4.1 First step: Requirements.

The first phase is the simplest one: Polisave has to verify that the machine
where the client wants to install Polisave meets a set of requirements. Mainly,
Polisave has to check three characteristics:

• Python and all its accessories. The computer must have Python
installed, also all the libraries of the language that requires the
installation (httplib, webbrowser, shutil, os, commnads, sys, platform,
subprocess).

• SuperUser. Usually the installation of a program is not executed by a
normal user but by the system administrator, who must run the
installation. At this point, it checks that the user who executed the
installation is the system administrator.

• Power Management. The Main function of Polisave is to control the

power functions of the computer. Therefore, the installation must verify
that the computer can execute these functions.

If the computer where the client wants to install Polisave meets the three
characteristics exposed above, the computer is now ready to sign up for server.

4.1.1 Programming details

In this section are shown, in general, the requirements described above in
terms of programming:

30 Study and implementation of Polisave Client for Linux

• Python and all its accessories. This feature is independent of
programming. So, if Phyton is not installed on the computer it is not
possible to run the installation program. If Python detects that some
libraries are missing, it stops the installation.

• SuperUser. Linux classifies each user according to its level of privileges.

The level assigned to a normal user depends on each Linux distribution,
but the administrator level is equal to all distributions, this is level 0. To
check this feature Polisave uses the Python library os, concretely its
function os.geteuid().This function returns the level of the user who
executed it. Therefore, if the result of os.geteuid() is 0, it means that the
user who executed the installation is the administrator. (17)

• Power Management. Specifically Polisave checks that is possible to run

functions of hibernation and suspend. The option to turn off the computer
is already implemented in all Linux using the command "shutdown". As
mentioned in section 3, the programs chosen to execute these functions
are pm-hibernate and pm-suspend (15). Polisave verifies if these
programs are installed on the computer, checking that pm-hibernate and
pm-suspend are in the computer’s Path. Polisave uses the Python library
os, concretely its function os.path.exists(). This library indicates whether
the program is in the list of executable programs on the computer (17).

The complete listings of the Requirements step can be found in the Annex.

4.2 Second step: Sign up for Polisave Server.

Before a user can use Polisave this user must register its machine to the server.
At this step the user sends data to the server and if it sees something that does
not coincide with the stored data on the server database, the server answers
with an error message. The following image shows a block diagram of the
processes of communication between the client and server:

Client Installation 31

Fig. 4.2 Sign up diagram

The following graphic shows the three situations that can arise from the
previous diagram. The graph Fig.4.3(a) shows a communication without any
error. Graph Fig.4.3(b) shows an error in the final process. Finally, in Fig.4.3(c)
there is an error in the initial point.

(a) OK (b) End_setup error (c) Start_setup error

Fig. 4.3 Sign up communication

Below is a detailed description of packets sent:

• START_SETUP: HTTP Request (GET) with the following variables:
o ACTION=[START_SETUP]
o NAME=[Computer_name] � Computer name.
o OS=[Operating_system] � Operating system.

32 Study and implementation of Polisave Client for Linux

o HIB=[OK/NO] � If the computer is able to hibernate.
o IP=[ip1, ip2,...] � All IPs of the computer.
o MAC=[mac1, mac2,...] � All MACs of the computer.

• 200 OK: HTTP Response (body) of the START_SETUP:

o ANS=[200/40x/500] � If the answer is a error (40x or 500), it
sends a SHOW_HELP message and it aborts the installation.

o IP=[selected_IP] � IP selected by the server.
o MAC=[selected_MAC] � MAC selected by the server.
o MSG=[optional_message] � Informational message server.

The server selects an IP and a MAC in accordance with the IP that has in
its database. In other words, IP of the Politecnico network.

• END_SETUP: HTTP Request (GET) with the following variables:

o ACTION=[END_SETUP]
o WOL=[OK/NO] � If the computer is able to ‘Wake Of Lan’
o NAME=[Computer_name] � Computer name.
o IP=[selected_IP] � IP selected by the server.
o MAC=[selected_MAC] � MAC selected by the server.

• 200 OK: HTTP Response (body) of the END_SETUP:

o ANS=[200/40x/500] � If the answer is a error (40x or 500), it
sends a SHOW_HELP message and it aborts the installation.

o IP=[selected_IP] � IP selected by the server.
o MAC=[selected_MAC] � MAC selected by the server.
o ACTION=[action] � Indicates if there are any pending actions

(POWER OFF, HIB o STBY) or not (WAIT) in the next 20 minutes.
o TIME=[action_time] � Time needed for the action announced.

• SHOW_HELP: HTTP Request (GET) with the following variables:

o ACTION=[SHOW_HELP]
o ERROR=[OK/NOANS/NOPARS/NOIPMAC/NOCONF]� Indicates

whether an error has occurred.
o WOL=[OK/NO] � If the computer is able to ‘Wake Of Lan’
o OS=[Operating_system] � Operating system.
o HF=[OK/NO] � If the computer is able to hibernate.
o IP=[selected_IP] � IP selected by the server.
o MAC=[selected_MAC] � selected by the server.
o S4=[OK/NO] � If the computer is able to hibernate.

• 302 Object Moved: HTTP Response (body) of the END_SETUP:

o The answer is a dynamic website of Polisave that shows whether
an error occurred previously or not.

During this exchange of messages may occur the following errors:

• NOANS: the answer from the server has not been received.

• NOPARS: the parsing of the answer of the server has failed.

Client Installation 33

• NOIPMAC: the answer of the server did not include the MAC and IP of

the selected interface (required only for the first message of the setup
program).

• NOCONF: the client was not able to activate the ‘Wake Of Lan’ or the
Hibernation.

When a failure occurs, a SHOW_HELP message is sent back. In this case the
ERROR variable contains the error code (NOANS, NOPARS, NOIPMAC or
NOCONF). Otherwise, if registration is successful, the ERROR variable is set to
OK.

4.2.1 Programming details

In this section is shown, in general, the process described before in terms of
programming:

• Polisave use httplib.HTTPConnection() function of the httplib library to
create a connection to exchange messages with the HTTP server. (18)

• To obtain the values of the variables of the requests, Polisave uses

DattiPc.py described in chapter 3.2.2. As mentioned before, this file has
been created expressly for Polisave. DattiPc.py provides all data about
the machine that it is running Polisave, such as: IP and MAC address, if
it can make WoL or Hibernation, computer name, operating system, etc.

• To display the final result of registration in a webbrowser, Polisave uses

the library webbrowser. (19)

The complete listings are detailed in the Annex.

4.3 Third step: Installation on the computer.

Finally, once the machine is been registered on the server, it only needs to
install the program on the computer. To install the program it has only to copy
the necessary files to its destination. This location varies according to Linux
distribution. It is important to know that all the files are done in standard form
and therefore, files are useful for all the distributions Linux. The only two
differences are the location where to store the files and the management
daemon. Therefore, this section explains, in general, where to copy files each
Linux distribution.

Then each file is related to its destination. The files have been described in
chapter 3.2:

• DattiPc.py: placed in the directory of the Python libraries so that other
files Python can be used.

34 Study and implementation of Polisave Client for Linux

• Polling.py: placed in a directory Bin, so that the computer is able to

locate it and run it. The chosen directory is /usr/local/bin/.

• Popupthread.py: placed in a directory Bin, so that the computer is able
to locate it and run it. The chosen directory is /usr/local/bin/.

• my.polisave.service: placed in a directory /usr/share/dbus-1/services/

so that the DBUS is able to locate this service.

• my.polisave.conf: placed in a directory /etc/dbus-1/system.d/ so that the
DBUS is able to locate this configuration.

• Polisave.sh: The Linux daemons are located in the directory /etc/init.d/.

• Autoboot: For the daemon is initialized when the computer boots,

Polisave creates a link to start directory of daemons. This directory
varies according to the runlevel (computer boot mode) and the Linux
distribution.

• cpXauth: to initialize a Daemon when session starts, Daemon has been

placed in the directory etc/X11/xinit/xinitrc.d/.

4.3.1 Programming details

In this section we find, in general, the features described above in terms of
programming:

• Location directory of the python libraries: Usually, the path is defined by
/usr/libXX/pythonYY, where XX is 64 if a computer is 64 bits and YY is
the version of Python, for example /usr/lib/python2.6. Therefore, the first
step is to locate the version of Python. This is done by using the method
python_version() of the platform library, being able to determine the
version of Python this way. Finally, Polisave consults which directory has
Python in its path and sees if some directory coincides with the default
one (/usr/libXX/pythonYY). To see the directories that Python has in its
path, Polisave uses the method sys.path[] from the library sys. When all
these operations are done, Polisave knows which one is the directory
where it must be stored DattiPc.py. (20) (21)

• Location of other directories: The other directories are common to all
distributions. So, Polisave can manually put the paths.

• Copy files: The shuntil library is used for copying files and in particular

its method shuntil.copy(). (22)

• Create links: The os library is used for linking files and in particular its
method os.symlink(). (17)

Client Installation 35

4.4 Uninstall

Polisave has a script to uninstall Polisave. The script (disinstallazione.py) clears
the files that are copied into the system during the installation. Before deleting,
Polisave should check if the service is stopped. Here is a part of the code of this
script:

A1: process = subprocess.Popen('/etc/init.d/polisav e.sh stop',

shell=True, stderr=subprocess.PIPE)
A2: process.wait()

A3: version_py = '/usr/lib/python'+platform.python_ version()

lib_path=sys.path[1]
for i in sys.path:
 if version_py.startswith(i):
 lib_path=i

 try:
A4: os.remove(lib_path+ '/DattiPc.py')
A5: os.remove('/usr/local/bin/Polling.py')
A6: os.remove('/usr/local/bin/popup.py')
A7: os.remove('/etc/init.d/polisave.sh')
A8: os.remove('/usr/share/dbus-1/services/my.polis ave.service')
A9: os.remove('/etc/dbus-1/system.d/my.polisave.co nf')
A10: os.remove('/var/log/Polisave.log')
A11: os.remove(lib_path + '/DattiPc.pyc')

except OSError:
 print “Error: Disinstallazione incorretta”

A1 stops Polisave service so it can be uninstalled successfully. Then, the
service is expected to befully stopped (A2). As in the installation, it finds out
which is the Python path where the library DattiPc.py is located (A3) and, once
Polisave has detected the path, it deletes the file (A4). The os library is used for
removing files and in particular its method os.remove(). It also removes the files:
Polling.py (A5), popup.py (A6), the script polisave.sh (A7), my.polisave.service
(A8), my.polisave.conf (A9) and Polisave.log (A10). The file DattiPc.pyc (A11) is
created the first time that Polisave runs.

36 Study and implementation of Polisave Client for Linux

5 UBUNTU, FEDORA AND OPENSUSE VERSIONS

Polisave has been created for 3 distributions of Linux: Ubuntu, Fedora and
Opensuse:

• Ubuntu: Ubuntu is a computer operating system based on the Debian
GNU/Linux distribution. New versions of Ubuntu are released every six
months and supports Ubuntu for eighteen months. The latest version of
Ubuntu, 9.10 (Karmic Koala), was released on October 29, 2009. (23)

• Fedora: Fedora is an RPM-based, general purpose operating system

built on top of the Linux kernel, developed by the community-supported
Fedora Project and sponsored by Red Hat. With 6 months between
releases, the maintenance period is about 13 months for each version.
The latest version, Fedora 12, was released on November 17, 2009. (24)

• OpenSUSE: OpenSUSE is a general purpose operating system built on

top of the Linux kernel, developed by the community-supported
openSUSE Project and sponsored by Novell. With 6 months between
releases, the current stable release is openSUSE 11.2 and it was
released on November 12, 2009. (25)

5.1 Polisave deamon

In previous chapters we have commented that all files are common for all
platforms but the daemon, which differs from the others depending on Linux
distribution. A daemon should have 3 main functions:

• Start: this function starts Polisave. First of all Polisave must verify that
the Daemon is not already started.

• Stop: this function stops Polisave but before that it must verify that the

Daemon is started.

• Restart: Combining the previous two features, in the first place it
executes a stop and then a start.

To execute these actions manually, the user can simply launch the following
commands:

/etc/init.d/polisave.sh start/stop/restart

To create the daemon as standard as possible, it is been decided to create a
daemon with Shell language, in other words, scripts ".sh"

A Daemon creates child processes, ending processes, etc. This means that
when Polisave wants to stop the service, it does not know exactly what process
to stop, because Polisave is not the same process that has executed the start.

Ubuntu, Fedora and Opensuse versions 37

To perform these operations properly Polisave creates a pidfile. A pidfile is a file
that contains the number of pid of the process that is actually running and so it
is the process that it wants to finish later. This pidfile is created in Polling.py file
and Polisave stores it in the directory /var/run/polisave.pid (directory where the
majority of pidfiles are located).

pid = os.fork()
 if pid != 0:
 Polisave()
 else:
 pid = str(os.getpid())
 file("/var/run/polisave.pid",'w+').write("%s\n" % pid)
 DBUSmanagement()

This Pidfile is created just as Polisave creates the DBUS thread, because the
polling thread finishes and starts depending on the needs of Polisave. When
Polisave executes a stop, it deletes the file "/var/run/polisave.pid”. Then, there is
a start action, where it checks whether the file exists or not, and if it exists it
means that the daemon is started.

Every Linux platform has its own methods to perform the functions Start, Stop
and Restart. The upcoming sections will explain these functions.

5.2 Ubuntu

This section is divided into two parts: Functions of the daemon and the autoboot
when computer starts.

5.2.1 Functions of the daemon

The start and stop functions are managed with the script start-stop-daemon.
This script is responsible for managing all the ‘start/stop’ of the process and is
transparent to the user. Here is some of the code of the daemon:

A1: POLISAVE_BIN="/usr/local/bin/Polling.py"
A2: ARG="start"
A3: PIDFILE='/var/run/polisave.pid'

case "$1" in

A4: start)
A5: if [-f $PIDFILE]; then
 echo -n "Daemon gia aperto"
 else
A6 start-stop-daemon --start --pidfile $PIDFILE --

exec $POLISAVE_BIN $ARG
 fi
 ;;
A7: stop)
A8: start-stop-daemon --stop --pidfile $PIDFILE
A9: rm -f $PIDFILE

38 Study and implementation of Polisave Client for Linux

 ;;

A10: restart)
 $0 stop
 $0 start
 ;;
 *)
 echo "Usage: $0 {start|stop|restart}"
 exit 1
 ;;

First of all, the daemon defines the variables. These variables indicate the path
of the file polling.py (A1), the arguments of start (A2) and location of the pidfile
(A3).

When the user or the computer wants to implement the action ‘start’ (A4), the
program must check for an existing pidfile (A5). If the pidfile exists, it means that
the process is open and the daemon cannot start. On the contrary, if the pidfile
does not exist, Polisave is able to start. The action that is used to start Polisave
is shown in line A6 and it indicates to the script start-stop-daemon that Polisave
starts (-start), the pidfile directory (A3), the file to execute (A1) and its
arguments (A2).

When user wants to stop the process using the method ‘stop’ (A7), the client
first stops the daemon using the script start-stop-daemon (A8) indicating that it
wants to kill (-stop). The command also indicates that the pidfile (A3) for the
script checks if the process is already started or not. Then it deletes the pidfile
(A9).

The method ‘restart’ (A10) simply calls the methods stop (A7) and start (A4).

5.2.2 Autoboot

To create an autoboot in Ubuntu, Polisave must make a link to the daemon in
the autoboot directory. This directory in Ubuntu is in /etc/rcX.d/ where X is the
runlevel in which the computer starts (usually 2 or 4). This link is created when
Polisave is installed and is called S99Polisave. The character S means to make
a start when the computer starts and 99 is the boot order of daemons. Polisave
is not a daemon priority for the system, so is the last level of boot (99).

5.3 Fedora

This section is divided into two parts: Functions of the daemon and the autoboot
when computer starts.

5.3.1 Functions of the daemon

Ubuntu, Fedora and Opensuse versions 39

The start and stop functions are managed with the scripts daemon and killproc.
This script is responsible for managing all the ‘start/stop’ of the process and is
transparent to the user. Here is some of the code of the daemon:

A1: MYDAEMON="/usr/bin/python /usr/local/bin/Pollin g.py start"
 RETVAL=0

A2: start()

{
A3: if [! -f /var/lock/subsys/polisave]; then
A4: daemon $MYDAEMON && success || failure

 RETVAL=$?
A5: ["$RETVAL" = 0] && touch /var/lock/subsys/p olisave

 else
 echo "Polisave gia iniziato"
 fi
}

A6: stop()
{

A7: killproc $MYDAEMON -TERM
 RETVAL=$?

A8: ["$RETVAL" = 0] && rm -f /var/lock/subsys/po lisave
}

The difference with Ubuntu is that here the daemon uses a particular file for the
pidfile. The file is /var /lock/subsys/polisave.

The script defines the variable "MYDAEMON" indicating the file path Polling.py
(A1). The start() method checks if the pidfile exists (A3) and if so, Polisave
starts(A4). The daemon script is simple; it executes the action A1 and shows
whether the command succeeded or if it has occurred an error. The A5 is the
path of the pidfile when A4 was successful.

The stop() method uses the script killproc (A7). If the stop is correctly, then it
deletes the pidfile (A8).

5.3.2 Autoboot

To create an autoboot in Fedora, Polisave must make a link to the daemon in
the autoboot directory. This directory in Fedora is in /etc/rcX.d/ where X is the
runlevel in which the computer starts (usually 2 or 4). This link is created when
Polisave is installed and is called S99Polisave. The character S means to make
a start when the computer starts and 99 is the boot order of daemons. Polisave
is not a daemon priority for the system, so is the last level of boot (99).

5.4 OpenSUSE

This section is divided into two parts: Functions of the daemon and the autoboot
when computer starts.

40 Study and implementation of Polisave Client for Linux

5.4.1 Functions of the daemon

The start and stop functions are managed with the scripts startproc and killproc.
This script is responsible for managing all the ‘start/stop’ of the process and is
transparent to the user. Here is some of the code of the daemon:

A1: POLISAVE_BIN="/usr/local/bin/Polling.py"
A2: ARG="start"
A3: PIDFILE='/var/run/polisave.pid'

case "$1" in

A4: start)
A5: if [-f $PIDFILE]; then
 echo "Daemon gia aperto"
 else
A6: /sbin/startproc -f $POLISAVE_BIN $ARG
 rc_status -v
 fi
 ;;

A7: stop)
A8: /sbin/killproc -L -p $PIDFILE $POLISAVE_BIN
A9: rm -f $PIDFILE
 rc_status -v
 ;;

First of all, daemon defines the variables. These variables indicate the path of
the file polling.py (A1), the arguments of start (A2) and location of the pidfile
(A3).

When the user or the computer wants to implement the action ‘start’ (A4) must
check for an existing pidfile (A5). If the pidfile exists, it means that the process is
open and the daemon cannot start. On the contrary, if the pidfile does not exist,
Polisave is able to start. The action that is used to start Polisave is shown in line
A6 and it indicates to the script /sbin/startproc that Polisave starts (-start), the
pidfile directory (A3), the file to execute (A1) and its arguments (A2).

When user wants to stop the process using the method ‘stop’ (A7), first stops
the daemon using the script /sbin/killproc (A8) indicating the path of Polisave.
The command also indicates that the pidfile (A3) for the script checks if the
process is already started or not. Then it deletes the pidfile (A9).

5.4.2 Autoboot

In openSUSE to generate an autoboot Polisave must run the following action
when user installs Polisave:

commands.getstatusoutput('insserv /etc/init.d/polis ave.sh')

Ubuntu, Fedora and Opensuse versions 41

This shell command inserts Polisave service in the list of scripts that start
automatically when user starts the computer. Therefore, when user uninstalls
Polisave, Polisave have to remove the service from the list and this is done with
the following command:

 commands.getstatusoutput('insserv -r /etc/init.d/p olisave.sh')

Polisave must create a link to the daemon in the autoboot directory. This
directory in openSUSE is in /sbin/rcpolisave/. As in the installation, this is done
through the command symlink of the os library.

 os.symlink('/etc/init.d/polisave.sh', '/sbin/rcpol isave')

42 Study and implementation of Polisave Client for Linux

6 USING POLISAVE

6.1 Polisave distribution

Polisave has been created for different Linux distributions. When Polisave has
created for Fedora and openSUSE, it has been done in virtual machines. For
this reason, once finished Polisave has to be tested on other machines.
Polisave for Linux has been sent to several people who helped with the project
testing the new program. This testing process has helped to change some
details and it can do a better Polisave. In the next picture you can see some
users use Polisave.

Fig. 6.1 Several users use Polisave

6.2 Polisave installation

The following image shows how the installation program copied the files in the
correct directories.

Using Polisave

6.3 Polisave execution

The following image shows the implementation of the daemon functions:

With Polisave running, we see that the

The following image shows how the log file works correctly.

Fig. 6.2 Polisave files

Polisave execution

The following image shows the implementation of the daemon functions:

Fig. 6.3 Daemon functions

With Polisave running, we see that the pidfile exists:

Fig. 6.4 Polisave pidfile

The following image shows how the log file works correctly.

43

The following image shows the implementation of the daemon functions:

44

6.4 Examples of the

In this section, we can see several examples of clients using Polisave.

6.4.1 Example 1

The first example shows the messages sent when there is no scheduled action.

We can see how Polisave sends Polling messages every 1170 seconds (20
minutes minus 30 seconds) when there is no action scheduled.
increases. All messages "200 OK" have the ACTION=[WAIT] and TIME=[1200].

6.4.2 Example 2

The second example shows the exchange of the messages when there is a
scheduled action.

Study and implementation of Polisave Client for Linux

Fig. 6.5 LOG file

Examples of the client-server communication

In this section, we can see several examples of clients using Polisave.

The first example shows the messages sent when there is no scheduled action.

Fig. 6.6 Capture Wireshark

We can see how Polisave sends Polling messages every 1170 seconds (20
minutes minus 30 seconds) when there is no action scheduled. Polling counter

All messages "200 OK" have the ACTION=[WAIT] and TIME=[1200].

e second example shows the exchange of the messages when there is a

Fig. 6.7 Capture Wireshark

Study and implementation of Polisave Client for Linux

In this section, we can see several examples of clients using Polisave.

The first example shows the messages sent when there is no scheduled action.

We can see how Polisave sends Polling messages every 1170 seconds (20
Polling counter

All messages "200 OK" have the ACTION=[WAIT] and TIME=[1200].

e second example shows the exchange of the messages when there is a

Using Polisave 45

The response messages are the following:

Packet 52 Packet 61 Packet 70

Fig. 6.8 Capture Wireshark

Here we see the operation explained in Chapter 3. When there is an action, the
response indicates the time remaining to execute the action. The client program
looks at whether this time (120 seconds) is less than 60 seconds. The client
waits 120 seconds minus 30 seconds. After 90 seconds Polisave sends another
Polling message. The following response (packet 61) indicates that TIME=60
seconds, as it is not minor than 60seconds, the client waits for 60-
30=30seconds. When these 30 seconds are passed, client asks again and the
server sends a response (packet 70) with a TIME=0 and then client opens the
popup.

6.4.3 Example 3

The third example shows the exchange of the messages when there is a
scheduled action and the user rejects the action via Popup.

Fig. 6.9 Capture Wireshark

The package 70 is a response with ACTION=HIB and TIME=0. When the user
rejects the Popup, the client waits 60 seconds and it sends another Polling
message to the server. Here, the important thing is to see how the field
count_polling is reset to 0 when Polisave opens a Popup.

46 Study and implementation of Polisave Client for Linux

7 PROBLEMS

While we have been developing this project, we have encountered many
problems, some simple, because of lack of use of some technologies and other
more complicated problems. This chapter mentions the three most difficult
problems of this project.

7.1 Standardization

Polisave has to be completely standard for all Linux distributions. Polisave was
originally created for Ubuntu, this version could not use perfect implementations
for Ubuntu but unusable for Fedora and OpenSUSE. So when Polisave has
been tested in other platforms, we have found that the platforms are very
different. We have then modified Polisave according to the capabilities of each
platform, since a possible solution to Fedora is not the same that for
OpenSUSE. Finding a compatible implementation with all platforms has
sometimes been a problem; it was not difficult but laborious and costly in terms
of time.

7.2 HAL-DBUS

In general, DBUS has been one of the most difficult concepts to implement. It
works with objects and interfaces, it is difficult to understand and moreover
there are not many tutorials, manuals nor examples on the Internet. If DBUS is
to communicate two new applications complicity is not as high, because the
programmer always knows the interfaces and objects that he has to use, for
example the communication between Polling.py and Popup.py. However, when
you have to work with an independent application, as the case of HAL, the
implementation is complicated. HAL organizes items but there is not a tree
explaining the name of the interfaces, or objects anywhere. Because of that, it
had to be tested interface by interface. For example, if you want to find if a
particular interface is capable of execute WOL or not, it can be complicated.

7.3 Session or system DBUS? The graphical interface problem

According to the explanation of the creators we must use a Session Dbus if we
want to communicate two applications and System Dbus when the application is
communicating with an element of the system. At first Popup and Polling should
communicate through a Session Dbus because they are two applications. The
Session Dbus, as its name suggests, can only be used by users in the same
Session. This, in principle, should not be a problem, Polisave is designed for
only one user simultaneously using the computer. The problem comes when we
want to initialize Polisave automatically after the system boot, to do this we
create a daemon and we indicate the system to initialize the daemon
automatically. The system initializes the daemon but not in the user's session

Problems 47

(like the popup) but in the “boot” session. As a result, the popup cannot find the
bus daemon because they are in different sessions.

There are two possible solutions to this problem: implementing everything in the
same user’s session or System DBUS:

• The implementation of the first option leads Polisave not to start until the
user enters their username and password. It does not matter because if
a computer is not logging, it also has to make energy saving actions.
Moreover Polisave does not start as system daemon, but as the session
daemon, a concept that is not simple in all Linux distributions.

• The second option results in a very difficult but solvable problem.

Therefore, the implanted solution relies on this option. If the
communication is done via a system Dbus, the Polling.py and the
Popup.py and can communicate for sure, since there is only one system.
The problem comes when Polisave tries to show the graphical interface,
it has been run as root and therefore communication has nothing to do
with the Session, then the Popup does not found the graphical user
interface to represent the popup. The solution to this problem is to detect
active graphical user interface, this is done by the DISPLAY environment
variable where its value is typically "0.0". Once we have detected the
DISPLAY, Polisave needs to have the authorization to represent
windows; this is done with a session key. In most systems this key is
stored in a directory which is indicated in the environment variable
Xauthority, usually this key is in the Home of the user. So what is the
problem? If we run everything as root, we cannot get the environment
variables of users, because root has its own values of environment
variables. To solve this we have implemented a solution a bit
complicated but conceptually simple. A script starts when the user opens
the session, this script copies the environment variables (DISPLAY and
Xauthority) to a temporary file. Then, when it wants to display a popup to
the user, it must obtain the environment variables. Polisave gets the
variables from the stored file when the session starts and Polisave maps
Display and Xauthority variables to the root user variables. Doing all this
procedure, Polisave starts automatically by a daemon and it displays
popup to the user.

Once solved, the problem seems simple, but the deduction of why popups were
not open, after trying many solutions and finally think about an entirely new
solution, has turned this into a problem for several months, but finally with a
happy ending.

48 Study and implementation of Polisave Client for Linux

8 CONCLUSIONS

The final result of this thesis has been Polisave for Linux. During the carrying
out of this project we have obtained the following conclusions.

It is a fact that nowadays there is too much unnecessary energy consumption.
As an illustration, on a campus where there are more than 4000 devices, for
sure it leads to a very high economic cost. That is why the carrying out of a
program like Polisave is absolutely necessary and its implementation should be
done as soon as possible. With Polisave we can reduce from 16 hours to 10
hours the power on of a computer every day. This results in saving 250,000
Euros per year just by reducing six hours daily on all computers.

We have seen too, how Python is now a very powerful language. In the case of
online support information and libraries, Python, which is an interpreted
language, it has been very helpfully at the moment to generate Polisave
versions for different Linux distributions.

DBUS is a technology of great use, but its learning is complicated. It has
allowed us to link multiple applications, whether at the hardware level and user
level. DBUS is a powerful technology. In the near future applications will be
generated by simply attaching processes of various applications using DBUS.

It is incredible to see how all the hardware devices and operating systems use
HAL to describe their characteristics. This is a technology allowed to standard
the information of all devices in order to be treated to other hardware devices or
software. It is still a standard but it needs a better organization of its elements to
make clearer his ease of use.

To carry out energy saving actions, in particular suspend and hibernate actions,
Pm-utils is the component that has been used. Internally, this component uses
HAL functions. Pm-utils is the most simple, effective and standard of all the
technologies tested in this field.

We have studied the Linux world, seeing that the three most commonly used
distributions are Ubuntu, Fedora and OpenSUSE. Each distribution has its
peculiarities. Specially, we noted that Fedora and Ubuntu use the same
structure for the daemons autoboot. OpenSUSE has a similar structure but we
run more actions.

During this project we learned how to organize the GUI in Linux. Initially it
seemed a simple issue but it has generated many problems. The GUI can
cause problems if you do not choose the appropriate parameters, such as the
display that it is currently active or the appropriate environment variables
(different for each type of session, user, or Linux distribution.)

Our aim for this thesis is not only to give a tool for the implementation of a
software, but to give a reference aid to all people who wants to learn the
technologies explained here. We also hope that in a future Polisave achieve will

Conclusions 49

be able to reduce energy and economic costs of different organizations, not
only of the Politecnico di Torino.

50 Study and implementation of Polisave Client for Linux

9 BIBLIOGRAPHY

1. http://www.globalactionplan.org.uk/. Global Action Plan Report, An inefficient
truth,. [Online] 2007.
2. http://www.theclimategroup.org. SMART 2020 Report, Enabling the low
carbon economy in the information age. [Online] 2008.
3. http://www.telematica.polito.it/chiaraviglio/papers/polisave_techreport.pdf.
[Online]
4. http://www.polisave.polito.it/. [Online]
5. http://en.wikipedia.org/wiki/List_of_HTTP_status_codes. [Online]
6. http://en.wikipedia.org/wiki/Compiled_language. [Online]
7. http://en.wikipedia.org/wiki/Interpreted_language. [Online]
8. http://www.gtk.org/. [Online]
9. http://www.pygtk.org/. [Online]
10. http://en.wikipedia.org/wiki/Hardware_abstraction_layer. [Online]
11. http://www.freedesktop.org/wiki/Software/dbus. [Online]
12. http://en.wikipedia.org/wiki/Sleep_mode. [Online]
13. http://en.wikipedia.org/wiki/Hibernation_(computing). [Online]
14. http://wiki.archlinux.org/index.php/Pm-utils. [Online]
15. http://pm-utils.freedesktop.org/wiki/. [Online]
16. http://en.wikipedia.org/wiki/Daemon_(computer_software). [Online]
17. http://docs.python.org/library/os.html. [Online]
18. http://docs.python.org/library/httplib.html. [Online]
19. http://docs.python.org/library/webbrowser.html. [Online]
20. http://docs.python.org/library/platform.html. [Online]
21. http://docs.python.org/library/sys.html. [Online]
22. http://docs.python.org/library/shutil.html. [Online]
23. http://www.ubuntu.com/. [Online]
24. http://fedoraproject.org/. [Online]
25. http://www.opensuse.org. [Online]
26. http://www.python.org/doc/essays/blurb/. [Online]

Appendix 51

 APPENDIX

A DattiPc.py

#! /usr/bin/python
codice simple per sapere le proprieta del compute r
import dbus
import socket
import fcntl
import struct
import commands

hal_dot = 'org.freedesktop.Hal'
hal_path = '/org/freedesktop/Hal'

def get_hib():
 bus = dbus.SystemBus()
 device =
bus.get_object("org.freedesktop.Hal","/org/freedesk top/Hal/devices/com
puter")
 prod =
device.GetPropertyString('power_management.can_hibe rnate',
dbus_interface='org.freedesktop.Hal.Device')
 if prod==1:
 return 'OK'
 else:
 return 'NO'
 return 'NO'

def get_so():
 return commands.getstatusoutput('uname -o')[1]

def get_hostname():
 return commands.getstatusoutput('uname -n')[1]
 #return socket.gethostname()

def get_tutti_ip_mac():
 tutti_ip=''
 tutti_mac=''
 bus = dbus.SystemBus()
 objeto_hal = bus.get_object(hal_dot, hal_path+'/Ma nager')
 hal_manager = dbus.Interface(objeto_hal, hal_dot+' .Manager')

 for device_name in hal_manager.FindDeviceByCapabil ity("net"):

 device = bus.get_object("org.freedesktop.Hal",dev ice_name)

 prod = device.GetPropertyString('info.capabilitie s',
dbus_interface='org.freedesktop.Hal.Device')
 mac = device.GetPropertyString('net.address',
dbus_interface='org.freedesktop.Hal.Device')
 net = device.GetPropertyString('net.interface',
dbus_interface='org.freedesktop.Hal.Device')

 tutti_mac= tutti_mac + ',' + mac
 tutti_ip= tutti_ip + ',' + get_ip(str(net))
 return tutti_ip.lstrip(','), tutti_mac.lstrip(',')

52 Study and implementation of Polisave Client for Linux

 #return tutti_ip+',130.192.86.27',
tutti_mac+',00:03:0d:37:02:cc'

def get_WOL(mac_selected):
 bus = dbus.SystemBus()
 objeto_hal = bus.get_object(hal_dot, hal_path+'/Ma nager')
 hal_manager = dbus.Interface(objeto_hal, hal_dot+' .Manager')

 for device_name in hal_manager.FindDeviceByCapabil ity("net"):

 device = bus.get_object("org.freedesktop.Hal",dev ice_name)

 mac = device.GetPropertyString('net.address',
dbus_interface='org.freedesktop.Hal.Device')
 if mac==mac_selected:
 prod = device.GetPropertyString('info.capabiliti es',
dbus_interface='org.freedesktop.Hal.Device')
 for lala in prod:
 if lala=='wake_on_lan':
 return 'OK'
 print 'WARNING: WOL no e attivato'
 #return 'NO'
 return 'OK'

def get_ip(ifname):
 s = socket.socket(socket.AF_INET, socket.SOCK_DGRA M)
 try:

 ip=socket.inet_ntoa(fcntl.ioctl(s.fileno(),0x8915, struct.pack('2
56s', ifname[:15]))[20:24])
 except EnvironmentError:
 return 'null'
 return ip

def test():
 print get_hib()
 print get_so()
 print get_hostname()
 ip,mac = get_tutti_ip_mac()
 print ip
 print mac
 print get_WOL(('00:03:0D:37:02:cc').lower())

#test()

Appendix 53

B Polling.py

#!/usr/bin/env python

import gobject
import subprocess
import dbus
import dbus.service
from dbus.mainloop.glib import DBusGMainLoop
import httplib
import time
import sys
import commands
import DattiPc
import os
import signal
import shutil

Define global variables

MY_BUS_NAME = 'my.polisave'
MY_OBJECT_PATH = '/my/polisave'

pid_dbus=''

def logs():
 #
 # Logging & Debug
 #
 try:
 import logging
 except:
 print 'Failed to import logging module. Exiting.. .'
 sys.exit(1)

 SELF = 'Polisave'
 DEBUG = True #print all messages in file
 STREAMOUTPUT = False #print in console

 if os.getenv('MWC_DEBUG') != None:
 DEBUG = True

 if os.getenv('MWC_STREAMOUTPUT') != None:
 STREAMOUTPUT = True

 if DEBUG:
 DEBUG_LEVEL = logging.DEBUG #print all messages in file
 else:
 DEBUG_LEVEL = logging.WARNING #print warnings in file

 DEBUG_FORMATTER = '%(asctime)s %(levelname)s %(mes sage)s'

 logging.basicConfig(level = DEBUG_LEVEL,
 format = DEBUG_FORMATTER,
 filename = '/var/log/' + SELF +
'.log',
 filemode = 'a')

54 Study and implementation of Polisave Client for Linux

 if STREAMOUTPUT:
 console = logging.StreamHandler()
 console.setLevel(DEBUG_LEVEL)
 console.setFormatter(logging.Formatter(DEBUG_FORM ATTER))
 self.logging.getLogger('').addHandler(console)

 return logging

logging=logs()

class DBUSmanagement:

 #@dbus.service.method(MY_BUS_NAME,in_signature='s' ,
out_signature='as')
 def Continuare(self, continuare):
 logging.debug(str(continuare))
 subprocess.Popen("/usr/local/bin/Polling.py rePol ling",
shell=True)
 return ["Okkkkkkk"]

 #@dbus.service.method(MY_BUS_NAME,in_signature='s' ,
out_signature='as')
 def Uscire(self, numAction):
 if numAction=='1':
 logging.debug('Azione wait')
 elif numAction=='2':
 logging.debug('Azione off')
 commands.getstatusoutput('shutdown -h now')
 #subprocess.Popen("shutdown -h now", shell=True)
 elif numAction=='3':
 logging.debug('Azione hib')
 subprocess.Popen("/usr/local/bin/Polling.py
rePolling", shell=True)
 commands.getstatusoutput('pm-hibernate')
 #subprocess.Popen("suspend.sh hibernate", shell= True)
 elif numAction=='4':
 logging.debug('Azione stby')
 subprocess.Popen("/usr/local/bin/Polling.py
rePolling", shell=True)
 commands.getstatusoutput('pm-suspend')
 #subprocess.Popen("suspend.sh suspend", shell=Tr ue)
 elif numAction=='5':
 logging.debug('Azione power on')

 return ["Ok"]

 #@dbus.service.method("com.example.SampleInterface ",in_signature
='', out_signature='')
 def Exit(self):
 mainloop.quit()
 exit()

 def __init__(self):
 logging.debug('Inizio DBUS')

 dbus.mainloop.glib.DBusGMainLoop(set_as_default=T rue)
 bus = dbus.SystemBus()

 bus.add_signal_receiver(self.Continuare,
dbus_interface=MY_BUS_NAME, signal_name="On")

Appendix 55

 bus.add_signal_receiver(self.Uscire,
dbus_interface=MY_BUS_NAME, signal_name="Off")

 mainloop = gobject.MainLoop()
 mainloop = mainloop.run()

class Polisave:
 HOST = 'www.swas.polito.it'
 DIRECTION="/services/polisave/polisave.asp"

 #Datti di Dbus
 NAME="NAME=["+ DattiPc.get_hostname() +"]"
 tutti_IP=""
 tutti_MAC=""

 #Variables
 COUNT_POLLING_STR="COUNT_POLLING="
 countPolling=1
 conn=''
 continuare=True

 #PROGRAMME
 def __init__(self):
 logging.debug('Polling')
 try:
 self.conn = httplib.HTTPConnection(self.HOST)
 except httplib.HTTPException, e:
 logging.critical('Error POLLING: invalid destina tion
host')
 logging.shutdown()
 exit()
 time.sleep(60)
 #Datti di Dbus
 ipDbus, macDbus = DattiPc.get_tutti_ip_mac()
 self.tutti_IP="IP=["+ ipDbus + "]" #Unico importa nte
 self.tutti_MAC="MAC=["+ macDbus + "]"
 self.POLLING()

 def SEND_POLLING(self):
 logging.debug('Send Polling')
 ACTION="ACTION=[POLLING]"
 COUNT_POLLING=self.COUNT_POLLING_STR + '['+
str(self.countPolling) +']'
 cadena = self.DIRECTION + "?" + ACTION + "&" + se lf.NAME +
"&" + COUNT_POLLING + "&" + self.tutti_IP + "&" + s elf.tutti_MAC
 try:
 self.conn.request("GET", cadena)
 except httplib.HTTPException, e:
 logging.critical('Error send polling')
 logging.shutdown()
 return self.conn.getresponse()

 def RECEIVE_POLLING(self,R1):
 if (R1.status!=200):
 logging.critical('Error Polling: risposta divers e a
200-OK')
 logging.shutdown()
 exit()

56 Study and implementation of Polisave Client for Linux

 responseRead=R1.read()
 #time_wait=int(6)
 try:

 time_wait=int((responseRead.split()[4]).strip('TIM E=[]'))
 except:
 logging.critical('Error Polling: This is not pol ito
ip')
 logging.shutdown()
 #logging.critical(pid_dbus)
 #os.kill(int(pid_dbus), signal.SIGTERM)
 sys.exit(1)

 if time_wait < 60:
 action=responseRead.split()[3] #ha de ser 3 (1 a
casa)
 numAction = self.ACTION(action)
 self.continuare=False
 logging.debug('numAction:' + str(numAction))
 #Amb Proces
 if numAction == 6:
 return numAction, responseRead.split()[6]
 elif 0<numAction<6:
 return numAction, 'tutto a posto'
 else:
 logging.critical('Error: response polling')
 logging.shutdown()
 exit()
 else:
 logging.debug('Wait ' + str(time_wait) + 's')
 #time.sleep(60)
 time.sleep(time_wait-30)
 return 1,'tutto a posto'

 def POLLING(self):
 self.continuare=True
 while (self.continuare == True):
 response = self.SEND_POLLING()
 azione, msgAzione = self.RECEIVE_POLLING(respons e)
 self.countPolling+=1
 logging.debug('Open popup')
 user = commands.getoutput("who -
u").splitlines()[0].split()[0]
 XauthDir ="/home/"+user+"/.Xauthority"

 if os.path.exists(XauthDir)!=True:
 logging.critical('Error: could not detect Xwindo ws')
 logging.shutdown()
 exit()
 os.environ['XAUTHORITY']=XauthDir
 os.environ['DISPLAY']=":0.0"
 child = subprocess.Popen("/usr/local/bin/popupThr ead.py" +
' ' +
str(azione) + ' ' + msgAzione, shell=True)

 def ACTION(self,action):
 if action=='ACTION=[WAIT]': #hauria de ser wait (Polling a
casa)
 return 1

Appendix 57

 elif action=='ACTION=OFF':
 return 2
 elif action=='ACTION=HIB':
 return 3
 elif action=='ACTION=STBY':
 return 4
 elif action=='ACTION=POWER ON':
 return 5
 elif action=='ACTION=[MSG]':
 return 6
 return 7

class Inizio:
 def __init__(self):
 logging.debug('Polisave started.')
 pid = os.fork()
 if pid != 0:
 Polisave()
 else:
 pid = str(os.getpid())
 file("/var/run/polisave.pid",'w+').write("%s\n" %
pid)
 DBUSmanagement()

if __name__ == "__main__":
 if (len(sys.argv)>1 and sys.argv[1]=='rePolling'):
 Polisave()
 #else:
 elif (len(sys.argv)>1 and sys.argv[1]=='start'):
 try:
 shutil.copy('/tmp/polisave.txt',
'/usr/local/bin/polisave.txt')
 except OSError:
 logging.debug('Could not copy tmp file')
 try:
 pid_daemon = os.fork()
 if pid_daemon > 0 :
 sys.exit(0)
 except OSError, e:
 logging.critical('Fork error')
 logging.shutdown()
 sys.exit(1)
 os.chdir("/")
 os.setsid()
 os.umask(0)

 Inizio()

 else:
 print 'Command is not valid!'

58 Study and implementation of Polisave Client for Linux

C PopupThread.py

#!/usr/bin/env python

import pygtk
import commands
pygtk.require('2.0')
import gtk
import gobject
import time
import os
import sys
import dbus
import dbus.service
from dbus.mainloop.glib import DBusGMainLoop

MY_BUS_NAME = 'my.polisave'
MY_OBJECT_PATH = '/my/polisave'

class Eieruhr(dbus.service.Object):
 def __init__(self, numAction):
 bus = dbus.SystemBus(mainloop=DBusGMainLoop())
 dbus.service.Object.__init__(self, bus, MY_OBJECT _PATH)
 self.numAction = numAction
 self.msgPopUp = self.msgAction(numAction)
 self.temps='60'

 def main2(self):

 self.window = gtk.Window(gtk.WINDOW_TOPLEVEL)
 self.window.connect("destroy", self.destroy)
 self.window.set_title("PoliSave")
 self.window.set_default_size(300, 240)

 self.vbox = gtk.VBox()
 self.vbox.show()

 self.label=gtk.Label('PoliSave: spegnimento PC in corso.')
 self.label.show()
 self.vbox.add(self.label)

 self.label2=gtk.Label(self.msgPopUp)
 self.label2.show()
 self.vbox.add(self.label2)

 self.timedisp = gtk.Label("Time left: " + self.te mps + "
seconds")
 #self.timedisp.set_alignment(0.5)
 self.timedisp.show()
 self.vbox.add(self.timedisp)

 self.hbox = gtk.HBox()
 self.hbox.show()
 self.vbox.add(self.hbox)

 self.start = gtk.ToggleButton("Continuare")
 self.start.connect("clicked", self.start_clicked)
 self.start.show()

Appendix 59

 self.hbox.add(self.start)

 self.stop = gtk.Button("Realizzare l'azione")
 self.stop.connect("clicked", self.stop_clicked)
 self.stop.show()
 self.hbox.add(self.stop)

 self.lastTime = time.time()
 self.timeout = gobject.timeout_add(500, self.time r_tick)

 self.window.add(self.vbox)
 self.window.show()

 def start_clicked(self, widget, data=None):
 self.On('Continuare')
 sys.exit(0)

 def stop_clicked(self, widget, data=None):
 self.Off(self.numAction)
 sys.exit(0)

 def timer_tick(self):
 curdowntime=self.currentTime(self.temps)
 if(time.time() - self.lastTime) >= 1:
 # 1 sec has passed, so we count the time down
 self.temps=("%i" % (curdowntime-1))
 self.timedisp.set_text("Time left: " + self.temp s + "
seconds")
 self.lastTime = time.time()
 if curdowntime == 0:
 self.Off(self.numAction)
 sys.exit(0)
 return False
 return True

 def currentTime(self, minsec):
 minsec = minsec.split(":")
 return int(minsec[0])

 def destroy(self, widget, data=None):
 self.On('Continuare')
 sys.exit(0)

 @dbus.service.signal(dbus_interface=MY_BUS_NAME,si gnature='s')
 def Off(self,numAction):
 print("PoliSave: LogOff")

 @dbus.service.signal(dbus_interface=MY_BUS_NAME,si gnature='s')
 def On(self,user):
 print("Polisave: continue")

 def msgAction(self,numAction):
 if numAction=='1':
 return 'Action: Force WAIT'
 elif numAction=='2':
 return 'Action: Force POWEROFF'
 elif numAction=='3':
 return 'Action: Force HIBERNATION'
 elif numAction=='4':
 return 'Action: Force STANDBY'
 elif numAction=='5':

60 Study and implementation of Polisave Client for Linux

 return 'Action: Force POWERON'
 elif numAction=='6':
 if len(sys.argv) > 2:
 j=2
 cadena =''
 while j<len(sys.argv):
 cadena = cadena + ' ' + sys.argv[j]
 j+=1
 return cadena
 return 'Error'

 def main(self):
 Eieruhr.main2(self)
 gtk.main()

gui = Eieruhr(sys.argv[1])
gui.main()

D My.polisave.service

[D-BUS Service]
Name=my.polisave
Exec=/usr/local/bin/Polling.py
User=root

E My.polisave.conf

<?xml version="1.0" encoding="UTF-8"?> <!-- -*- XML -*- -->

<!DOCTYPE busconfig PUBLIC
 "-//freedesktop//DTD D-BUS Bus Configuration 1.0// EN"
 "http://www.freedesktop.org/standards/dbus/1.0/bus config.dtd">
<busconfig>

 <!-- Only root can own the service -->
 <policy user="root">
 <allow own="my.polisave"/>
 <allow send_interface="my.polisave.On"/>
 <allow send_interface="my.polisave.Off"/>
 </policy>

 <policy group="users">
 <allow own="my.polisave"/>
 <allow send_interface="my.polisave.On"/>
 <allow send_interface="my.polisave.Off"/>
 </policy>

 <!-- Allow anyone to invoke methods on the interf aces -->
 <policy context="default">
 <allow send_interface="my.polisave.On"/>
 <allow send_interface="my.polisave.Off"/>
 </policy>

</busconfig>

Appendix 61

F Installazione.py

Installazione.py (Ubuntu)

#!/usr/bin/env python

import httplib
import webbrowser
import DattiPc
import shutil
import os
import commands
import sys
import platform
import subprocess

HOST = 'www.swas.polito.it'
DIRECTION="/services/polisave/polisave.asp"

#Dati di Dbus
NAME="NAME=["+ DattiPc.get_hostname() +"]"
ipDbus, macDbus = DattiPc.get_tutti_ip_mac()
tutti_IP="IP=["+ ipDbus + "]" #Unico importante
tutti_MAC="MAC=["+ macDbus + "]"
OS="OS=["+ DattiPc.get_so() +"]"
HIB="HIB=["+ DattiPc.get_hib() +"]"
WOL="WOL=[NULL]"

IP="IP=[null]"
MAC="MAC=[null]"
HF="HF=["+ DattiPc.get_hib() +"]"
S4="S4=["+ DattiPc.get_hib() +"]"

conn = httplib.HTTPConnection(HOST)

def START_SETUP(conn):
 ACTION="ACTION=[START_SETUP]"
 cadena = DIRECTION + "?" + ACTION + "&" + NAME + " &" + OS + "&"
+ HIB + "&" + tutti_IP + "&" + tutti_MAC
 conn.request("GET", cadena)
 return conn.getresponse()

def END_SETUP(conn, IP, MAC):
 ACTION="ACTION=[END_SETUP]"
 cadena = DIRECTION + "?" + ACTION + "&" + WOL + "& " + NAME + "&"
+ IP + "&" + MAC
 conn.request("GET", cadena)
 return conn.getresponse()

def SHOW_HELP_ERROR(conn,reason):
 ACTION="ACTION=[SHOW_HELP]"
 ERROR="ERROR=[" + reason + "]"
 cadena = DIRECTION + "?" + ACTION + "&" + ERROR + "&" + NAME +
"&" + OS + "&" + HIB + "&" + IP + "&" + MAC

62 Study and implementation of Polisave Client for Linux

 conn.request("GET", cadena)
 return conn.getresponse()

def SHOW_HELP_OK(conn):
 ACTION="ACTION=[SHOW_HELP]"
 ERROR="ERROR=[OK]"
 cadena = DIRECTION + "?" + ACTION + "&" + ERROR + "&" + WOL +
"&" + OS + "&" + HF + "&" + IP + "&" + MAC + "&" + S4
 conn.request("GET", cadena)
 return conn.getresponse()

def AprireWeb(response):
 #print("Aprire explorer")
 webbrowser.open_new('http://www.swas.polito.it/ser vices/polisave
/'+response.getheader('Location'))
 exit()

def ErrorToShell(response, responseRead, reason):
 print(response.status)
 print(responseRead)
 rError = SHOW_HELP_ERROR(conn,reason)
 AprireWeb(rError)

def ComprovazioneOK(response):
 responseRead= response.read();
 IP=responseRead.split()[1]
 MAC=responseRead.split()[2]

 if 'ANS=[200]' != responseRead.split()[0]:
 ErrorToShell(response, responseRead, 'NOIPMAC')
 else:
 return IP, MAC

def InstallazioneDir():
 version_py = '/usr/lib/python'+platform.python_ver sion()
 lib_path=sys.path[1]
 for i in sys.path:
 if version_py.startswith(i):
 lib_path=i

 try:
 os.link('DattiPc.py', lib_path+'/DattiPc.py')
 os.link('Polling.py', '/usr/local/bin/Polling.py')
 os.link('popupThread.py', '/usr/local/bin/popupTh read.py')
 shutil.copy('my.polisave.service','/usr/share/dbu s-
1/services/my.polisave.service')
 shutil.copy('my.polisave.conf', '/etc/dbus-
1/system.d/my.polisave.conf')

 #Ubuntu
 runlevel=(commands.getstatusoutput('runlevel'))[1] .strip()[2]
 shutil.copy('polisaveUbuntu.sh','/etc/init.d/poli save.sh')
 os.symlink('/etc/init.d/polisave.sh',
'/etc/rc'+runlevel+'.d/S99polisave')

 except OSError:
 print 'ERRORE: non puo copiare i file'
 sys.exit(1)
 subprocess.Popen('/etc/init.d/polisave.sh start', shell=True)

#====PROEDIMENT CORRECTE====

Appendix 63

#Devi essere Root per fare l'installazione
if os.geteuid() != 0:
 print "ERRORE: Devi essere root per installare l'a pplicazione"
 sys.exit(1)

if os.path.exists('/usr/sbin/pm-suspend')!=True or
os.path.exists('/usr/sbin/pm-hibernate')!=True:
 print "ERRORE: E necessario installare 'pm-utils' per usare
Polisave."
 sys.exit(1)

r1 = START_SETUP(conn)

if r1.status==200:
 IP, MAC = ComprovazioneOK(r1)
 mac2 = MAC.lstrip('MAC=[')
 mac2 = mac2.rstrip(']')
 WOL="WOL=["+DattiPc.get_WOL(mac2.lower())+"]"
elif r1.status==500:
 AprireWeb(r1)
else:
 ErrorToShell(r1, r1.read(),'NOPARS')

r2 = END_SETUP(conn,IP, MAC)

if r2.status==200:
 IP, MAC = ComprovazioneOK(r2)
else:
 ErrorToShell(r2, r2.read(),'NOPARS')

if WOL!="WOL=[OK]":
 rError = SHOW_HELP_ERROR(conn, 'NOCONF')
 AprireWeb(rError)

r3 = SHOW_HELP_OK(conn)
InstallazioneDir()
print "Installazione corretta!"
AprireWeb(r3)
conn.close()

Installazione.py (Fedora)

#!/usr/bin/env python

import httplib
import webbrowser
import DattiPc
import shutil
import os
import commands
import sys
import platform
import subprocess

HOST = 'www.swas.polito.it'
DIRECTION="/services/polisave/polisave.asp"

64 Study and implementation of Polisave Client for Linux

#Dati di Dbus
NAME="NAME=["+ DattiPc.get_hostname() +"]"
ipDbus, macDbus = DattiPc.get_tutti_ip_mac()
tutti_IP="IP=["+ ipDbus + "]" #Unico importante
tutti_MAC="MAC=["+ macDbus + "]"
OS="OS=["+ DattiPc.get_so() +"]"
HIB="HIB=["+ DattiPc.get_hib() +"]"
WOL="WOL=[NULL]"

IP="IP=[null]"
MAC="MAC=[null]"
HF="HF=["+ DattiPc.get_hib() +"]"
S4="S4=["+ DattiPc.get_hib() +"]"

conn = httplib.HTTPConnection(HOST)

def START_SETUP(conn):
 ACTION="ACTION=[START_SETUP]"
 cadena = DIRECTION + "?" + ACTION + "&" + NAME + " &" + OS + "&"
+ HIB + "&" + tutti_IP + "&" + tutti_MAC
 conn.request("GET", cadena)
 return conn.getresponse()

def END_SETUP(conn, IP, MAC):
 ACTION="ACTION=[END_SETUP]"
 cadena = DIRECTION + "?" + ACTION + "&" + WOL + "& " + NAME + "&"
+ IP + "&" + MAC
 conn.request("GET", cadena)
 return conn.getresponse()

def SHOW_HELP_ERROR(conn,reason):
 ACTION="ACTION=[SHOW_HELP]"
 ERROR="ERROR=[" + reason + "]"
 cadena = DIRECTION + "?" + ACTION + "&" + ERROR + "&" + NAME +
"&" + OS + "&" + HIB + "&" + IP + "&" + MAC
 conn.request("GET", cadena)
 return conn.getresponse()

def SHOW_HELP_OK(conn):
 ACTION="ACTION=[SHOW_HELP]"
 ERROR="ERROR=[OK]"
 cadena = DIRECTION + "?" + ACTION + "&" + ERROR + "&" + WOL +
"&" + OS + "&" + HF + "&" + IP + "&" + MAC + "&" + S4
 conn.request("GET", cadena)
 return conn.getresponse()

def AprireWeb(response):
 #print("Aprire explorer")
 webbrowser.open_new('http://www.swas.polito.it/ser vices/polisave
/'+response.getheader('Location'))
 exit()

def ErrorToShell(response, responseRead, reason):
 print(response.status)
 print(responseRead)
 rError = SHOW_HELP_ERROR(conn,reason)
 AprireWeb(rError)

def ComprovazioneOK(response):
 responseRead= response.read();

Appendix 65

 IP=responseRead.split()[1]
 MAC=responseRead.split()[2]

 if 'ANS=[200]' != responseRead.split()[0]:
 ErrorToShell(response, responseRead, 'NOIPMAC')
 else:
 return IP, MAC

def InstallazioneDir():
 version_py = '/usr/lib/python'+platform.python_ver sion()
 lib_path=sys.path[1]
 for i in sys.path:
 if version_py.startswith(i):
 lib_path=i

 try:
 os.link('DattiPc.py', lib_path+'/DattiPc.py')
 os.link('Polling.py', '/usr/local/bin/Polling.py')
 os.link('popupThread.py', '/usr/local/bin/popupTh read.py')
 shutil.copy('my.polisave.service','/usr/share/dbu s-
1/services/my.polisave.service')
 shutil.copy('my.polisave.conf', '/etc/dbus-
1/system.d/my.polisave.conf')

 #Fedora
 runlevel=(commands.getstatusoutput('runlevel'))[1] .strip()[2]

 shutil.copy('cpXauth.sh','/etc/X11/xinit/xinitrc.d /cpXauth.sh')
 shutil.copy('polisaveFedora.sh','/etc/init.d/poli save.sh')
 os.symlink('/etc/init.d/polisave.sh',
'/etc/rc'+runlevel+'.d/S99polisave')

 except OSError:
 print 'ERRORE: non puo copiare i file'
 sys.exit(1)
 subprocess.Popen('/etc/init.d/polisave.sh start', shell=True)

#====PROEDIMENT CORRECTE====

#Devi essere Root per fare l'installazione
if os.geteuid() != 0:
 print "ERRORE: Devi essere root per installare l'a pplicazione"
 sys.exit(1)

if os.path.exists('/usr/sbin/pm-suspend')!=True or
os.path.exists('/usr/sbin/pm-hibernate')!=True:
 print "ERRORE: E necessario installare 'pm-utils' per usare
Polisave."
 sys.exit(1)

r1 = START_SETUP(conn)

if r1.status==200:
 IP, MAC = ComprovazioneOK(r1)
 mac2 = MAC.lstrip('MAC=[')
 mac2 = mac2.rstrip(']')
 WOL="WOL=["+DattiPc.get_WOL(mac2.lower())+"]"
elif r1.status==500:
 AprireWeb(r1)
else:
 ErrorToShell(r1, r1.read(),'NOPARS')

66 Study and implementation of Polisave Client for Linux

r2 = END_SETUP(conn,IP, MAC)

if r2.status==200:
 IP, MAC = ComprovazioneOK(r2)
else:
 ErrorToShell(r2, r2.read(),'NOPARS')

if WOL!="WOL=[OK]":
 rError = SHOW_HELP_ERROR(conn, 'NOCONF')
 AprireWeb(rError)

r3 = SHOW_HELP_OK(conn)
InstallazioneDir()
print "Installazione corretta!"
print "Per il buon funzionamento di Polisave devi r iiniziare il
computer"
AprireWeb(r3)
conn.close()

Installazione.py (OpenSUSE)

#!/usr/bin/env python

import httplib
import webbrowser
import DattiPc
import shutil
import os
import commands
import sys
import platform
import subprocess

HOST = 'www.swas.polito.it'
DIRECTION="/services/polisave/polisave.asp"

#Dati di Dbus
NAME="NAME=["+ DattiPc.get_hostname() +"]"
ipDbus, macDbus = DattiPc.get_tutti_ip_mac()
tutti_IP="IP=["+ ipDbus + "]" #Unico importante
tutti_MAC="MAC=["+ macDbus + "]"
OS="OS=["+ DattiPc.get_so() +"]"
HIB="HIB=["+ DattiPc.get_hib() +"]"
WOL="WOL=[NULL]"

IP="IP=[null]"
MAC="MAC=[null]"
HF="HF=["+ DattiPc.get_hib() +"]"
S4="S4=["+ DattiPc.get_hib() +"]"

conn = httplib.HTTPConnection(HOST)

def START_SETUP(conn):
 ACTION="ACTION=[START_SETUP]"
 cadena = DIRECTION + "?" + ACTION + "&" + NAME + " &" + OS + "&"
+ HIB + "&" + tutti_IP + "&" + tutti_MAC
 conn.request("GET", cadena)
 return conn.getresponse()

Appendix 67

def END_SETUP(conn, IP, MAC):
 ACTION="ACTION=[END_SETUP]"
 cadena = DIRECTION + "?" + ACTION + "&" + WOL + "& " + NAME + "&"
+ IP + "&" + MAC
 conn.request("GET", cadena)
 return conn.getresponse()

def SHOW_HELP_ERROR(conn,reason):
 ACTION="ACTION=[SHOW_HELP]"
 ERROR="ERROR=[" + reason + "]"
 cadena = DIRECTION + "?" + ACTION + "&" + ERROR + "&" + NAME +
"&" + OS + "&" + HIB + "&" + IP + "&" + MAC
 conn.request("GET", cadena)
 return conn.getresponse()

def SHOW_HELP_OK(conn):
 ACTION="ACTION=[SHOW_HELP]"
 ERROR="ERROR=[OK]"
 cadena = DIRECTION + "?" + ACTION + "&" + ERROR + "&" + WOL +
"&" + OS + "&" + HF + "&" + IP + "&" + MAC + "&" + S4
 conn.request("GET", cadena)
 return conn.getresponse()

def AprireWeb(response):
 #print("Aprire explorer")
 webbrowser.open_new('http://www.swas.polito.it/ser vices/polisave
/'+response.getheader('Location'))
 exit()

def ErrorToShell(response, responseRead, reason):
 print(response.status)
 print(responseRead)
 rError = SHOW_HELP_ERROR(conn,reason)
 AprireWeb(rError)

def ComprovazioneOK(response):
 responseRead= response.read();
 IP=responseRead.split()[1]
 MAC=responseRead.split()[2]

 if 'ANS=[200]' != responseRead.split()[0]:
 ErrorToShell(response, responseRead, 'NOIPMAC')
 else:
 return IP, MAC

def InstallazioneDir():
 version_py = '/usr/lib/python'+platform.python_ver sion()
 version_py2 = '/usr/lib64/python'+platform.python_ version()
 lib_path=sys.path[1]
 for i in sys.path:
 if version_py2.startswith(i):
 lib_path=i
 if version_py.startswith(i):
 lib_path=i

 try:
 shutil.copy('DattiPc.py', lib_path+'/DattiPc.py')
 shutil.copy('Polling.py', '/usr/local/bin/Polling .py')
 shutil.copy('popupThread.py',
'/usr/local/bin/popupThread.py')

68 Study and implementation of Polisave Client for Linux

 shutil.copy('my.polisave.service','/usr/share/dbu s-
1/services/my.polisave.service')
 shutil.copy('my.polisave.conf', '/etc/dbus-
1/system.d/my.polisave.conf')

 #OpenSuse
 shutil.copy('polisaveOpenSuse.sh','/etc/init.d/pol isave.sh')
 shutil.copy('cpXauth.sh','/etc/X11/xinit/xinitrc. d/90-
cpXauth.sh')
 commands.getstatusoutput('insserv /etc/init.d/pol isave.sh')
 os.symlink('/etc/init.d/polisave.sh', '/sbin/rcpo lisave')

 except OSError:
 print 'ERRORE: non puo copiare i file'
 sys.exit(1)
 subprocess.Popen('/etc/init.d/polisave.sh start', shell=True)

#====PROEDIMENT CORRECTE====

#Devi essere Root per fare l'installazione
if os.geteuid() != 0:
 print "ERRORE: Devi essere root per installare l'a pplicazione"
 sys.exit(1)

if os.path.exists('/usr/sbin/pm-suspend')!=True or
os.path.exists('/usr/sbin/pm-hibernate')!=True:
 print "ERRORE: E necessario installare 'pm-utils' per usare
Polisave."
 sys.exit(1)

r1 = START_SETUP(conn)

if r1.status==200:
 IP, MAC = ComprovazioneOK(r1)
 mac2 = MAC.lstrip('MAC=[')
 mac2 = mac2.rstrip(']')
 WOL="WOL=["+DattiPc.get_WOL(mac2.lower())+"]"
elif r1.status==500:
 AprireWeb(r1)
else:
 ErrorToShell(r1, r1.read(),'NOPARS')

r2 = END_SETUP(conn,IP, MAC)

if r2.status==200:
 IP, MAC = ComprovazioneOK(r2)
else:
 ErrorToShell(r2, r2.read(),'NOPARS')

if WOL!="WOL=[OK]":
 rError = SHOW_HELP_ERROR(conn, 'NOCONF')
 AprireWeb(rError)

r3 = SHOW_HELP_OK(conn)
InstallazioneDir()
print "Installazione corretta!"
AprireWeb(r3)
conn.close()

Appendix 69

G Disinstallazione.py

Disinstallazione.py (Ubuntu)

#!/usr/bin/env python

import commands
import sys
import os
import platform
import subprocess
import time

if os.geteuid() != 0:
 print "ERRORE: Devi essere root per disinstallare
l'applicazione"
 sys.exit()

process = subprocess.Popen('/etc/init.d/polisave.sh stop', shell=True,
stderr=subprocess.PIPE)
process.wait()

print 'Disinstallazione...'

runlevel=(commands.getstatusoutput('runlevel'))[1]. strip()[2]
version_py = '/usr/lib/python'+platform.python_vers ion()
lib_path=sys.path[1]
for i in sys.path:
 if version_py.startswith(i):
 lib_path=i

try:
 os.remove(lib_path+ '/DattiPc.py')
except OSError:
 print 'WARNING: non puo cancellare il file ' + lib _path +
'/DattiPc.py'
try:
 os.remove('/usr/local/bin/Polling.py')
except OSError:
 print 'WARNING: non puo cancellare il file
/usr/local/bin/Polling.py'
try:
 os.remove('/usr/local/bin/popupThread.py')
except OSError:
 print 'WARNING: non puo cancellare il file
/usr/local/bin/popupThread.py'
try:
 os.remove('/etc/init.d/polisave.sh')
except OSError:
 print 'WARNING: non puo cancellare il file
/etc/init.d/polisave.sh'
try:
 os.remove('/usr/share/dbus-1/services/my.polisave. service')
 os.remove('/etc/dbus-1/system.d/my.polisave.conf')
except OSError:
 print 'WARNING: non puo cancellare i file my.polis ave.service e
my.polisave.service'

70 Study and implementation of Polisave Client for Linux

try:
 os.remove('/var/log/Polisave.log')
 os.remove(lib_path + '/DattiPc.pyc')
except OSError:
 disinstallazione = True

try:
 os.remove('/etc/rc'+runlevel+'.d/S99polisave') #Fe dora e Ubuntu
except OSError:
 disinstallazione = True

print 'Disinstallazione correta!'

Disinstallazione.py (Fedora)

#!/usr/bin/env python

import commands
import sys
import os
import platform
import subprocess
import time

if os.geteuid() != 0:
 print "ERRORE: Devi essere root per disinstallare
l'applicazione"
 sys.exit()

process = subprocess.Popen('/etc/init.d/polisave.sh stop', shell=True,
stderr=subprocess.PIPE)
process.wait()

print 'Disinstallazione...'

runlevel=(commands.getstatusoutput('runlevel'))[1]. strip()[2]
version_py = '/usr/lib/python'+platform.python_vers ion()
lib_path=sys.path[1]
for i in sys.path:
 if version_py.startswith(i):
 lib_path=i

try:
 os.remove(lib_path+ '/DattiPc.py')
except OSError:
 print 'WARNING: non puo cancellare il file ' + lib _path +
'/DattiPc.py'
try:
 os.remove('/usr/local/bin/Polling.py')
except OSError:
 print 'WARNING: non puo cancellare il file
/usr/local/bin/Polling.py'
try:
 os.remove('/usr/local/bin/popupThread.py')
except OSError:
 print 'WARNING: non puo cancellare il file
/usr/local/bin/popupThread.py'
try:

Appendix 71

 os.remove('/etc/init.d/polisave.sh')
except OSError:
 print 'WARNING: non puo cancellare il file
/etc/init.d/polisave.sh'
try:
 os.remove('/usr/share/dbus-1/services/my.polisave. service')
 os.remove('/etc/dbus-1/system.d/my.polisave.conf')
except OSError:
 print 'WARNING: non puo cancellare i file my.polis ave.service e
my.polisave.service'

try:
 os.remove('/var/log/Polisave.log')
 os.remove(lib_path + '/DattiPc.pyc')
except OSError:
 disinstallazione = True

try:
 os.remove('/etc/rc'+runlevel+'.d/S99polisave') #Fe dora e Ubuntu
 os.remove('/etc/X11/xinit/xinitrc.d/cpXauth.sh') # Fedora
 user = commands.getoutput("who -u").splitlines()[0].split()[0]
 os.remove("/home/"+user+"/.Xauthority")
except OSError:
 print 'WARNING: non puo cancellare i file del deam on'

print 'Disinstallazione correta!'

Disinstallazione.py (OpenSUSE)

#!/usr/bin/env python

import commands
import sys
import os
import platform
import subprocess
import time

if os.geteuid() != 0:
 print "ERRORE: Devi essere root per disinstallare
l'applicazione"
 sys.exit()

process = subprocess.Popen('/etc/init.d/polisave.sh stop', shell=True,
stderr=subprocess.PIPE)
process.wait()

print 'Disinstallazione...'

version_py = '/usr/lib/python'+platform.python_vers ion()
lib_path=sys.path[1]
for i in sys.path:
 if version_py.startswith(i):
 lib_path=i
try: #OpenSuse
 commands.getstatusoutput('insserv -r /etc/init.d/p olisave.sh')
except e:
 disinstallazione = True

72 Study and implementation of Polisave Client for Linux

try:
 os.remove(lib_path+ '/DattiPc.py')
except OSError:
 print 'WARNING: non puo cancellare il file ' + lib _path +
'/DattiPc.py'
try:
 os.remove('/usr/local/bin/Polling.py')
except OSError:
 print 'WARNING: non puo cancellare il file
/usr/local/bin/Polling.py'
try:
 os.remove('/usr/local/bin/popupThread.py')
except OSError:
 print 'WARNING: non puo cancellare il file
/usr/local/bin/popupThread.py'
try:
 os.remove('/etc/init.d/polisave.sh')
except OSError:
 print 'WARNING: non puo cancellare il file
/etc/init.d/polisave.sh'
try:
 os.remove('/usr/share/dbus-1/services/my.polisave. service')
 os.remove('/etc/dbus-1/system.d/my.polisave.conf')
except OSError:
 print 'WARNING: non puo cancellare i file my.polis ave.service e
my.polisave.service'

try:
 os.remove('/var/log/Polisave.log')
 os.remove(lib_path + '/DattiPc.pyc')
except OSError:
 disinstallazione = True

try:
 os.remove('/sbin/rcpolisave') # OpenSuse
except OSError:
 disinstallazione = True

print 'Disinstallazione correta!'

Appendix 73

H Polisave daemon

PolisaveUbuntu.sh

#!/bin/sh

Startup/shutdown script for Polisave.

@Author Joan Vila <email>

BEGIN INIT INFO
Provides: polisave
Required-Start:
Required-Stop:
Should-Start:
Should-Stop:
Default-Start: 2 3 5
Default-Stop:
Short-Description:
Description:
END INIT INFO

POLISAVE_BIN="/usr/local/bin/Polling.py"
ARG="start"
PIDFILE='/var/run/polisave.pid'
case "$1" in

 start)
 # start daemon
 if [-f $PIDFILE]; then
 echo -n "Daemon gia aperto"
 else
 echo -n "Starting Polisave service\n"
 start-stop-daemon --start --pidfile $PIDFILE --e xec
$POLISAVE_BIN $ARG
 fi
 ;;
 stop)
 # stop daemon
 echo -n "Stopping Polisave service\n"
 start-stop-daemon --stop --pidfile $PIDFILE
 rm -f $PIDFILE
 ;;

 restart)
 $0 stop
 $0 start
 ;;

 *)
 echo "Usage: $0 {start|stop|restart}"
 exit 1
 ;;

esac

74 Study and implementation of Polisave Client for Linux

PolisaveFedora.sh

#!/bin/bash

Init file for mydaemon

Run-Level Start Stop
vvvv vv vv
chkconfig: 2345 99 25

description: Polisave

processname: Polisave
config: /etc/polisave.conf
pidfile: /var/run/polisave.pid

source function library
. /etc/rc.d/init.d/functions

you may keep some variables in an external file
for easy access so pull in sysconfig settings
[-f /etc/sysconfig/polisave] && . /etc/sysconfig/ polisave

Some more variables to make the script readable
MYDAEMON="/usr/bin/python /usr/local/bin/Polling.py start"
PID_FILE=/var/run/polisave.pid
RETVAL=0
prog="Polisave"

start()
{
 if [! -f /var/lock/subsys/polisave]; then
 echo $"Starting $prog:"
 daemon $MYDAEMON && success || failure
 RETVAL=$?
 ["$RETVAL" = 0] && touch /var/lock/subsys/polis ave
 echo
 else
 echo "$prog gia iniziato"
 fi

}

stop()
{
 echo -n $"Stopping $prog:"
 killproc $MYDAEMON -TERM
 RETVAL=$?
 ["$RETVAL" = 0] && rm -f /var/lock/subsys/polisa ve
 echo
}

reload()
{
 echo -n $"Reloading $prog:"
 killproc $MYDAEMON -HUP
 RETVAL=$?
 echo

Appendix 75

}

case "$1" in
 #DDD='444'
 #export $DDD
 start)
 #status $MYDAEMON && exit 0
 start
 ;;
 stop)
 stop
 ;;
 restart)
 stop
 start
 ;;
 reload)
 reload
 ;;
 status)
 status $MYDAEMON
 RETVAL=$?
 ;;
 *)
 echo $"Usage: $0 {start|stop|restart|reload|statu s}"
 RETVAL=1
esac
exit $RETVAL

PolisaveOpenSuse.sh

#!/bin/sh

Startup/shutdown script for Polisave.

@Author Joan Vila <email>

BEGIN INIT INFO
Provides: polisave
Required-Start:
Required-Stop:
Should-Start:
Should-Stop:
Default-Start: 2 3 5
Default-Stop:
Short-Description:
Description:
END INIT INFO

. /etc/rc.status

First reset status of this service
rc_reset

POLISAVE_BIN="/usr/bin/python /usr/local/bin/Pollin g.py"
ARG="start"
PIDFILE='/var/run/polisave.pid'

76 Study and implementation of Polisave Client for Linux

case "$1" in
 start)
 # start daemon
 if [-f $PIDFILE]; then
 echo "Daemon gia aperto"
 else
 echo "Starting Polisave service "
 /sbin/startproc -f $POLISAVE_BIN $ARG
 rc_status -v
 fi
 ;;

 stop)
 # stop daemon
 echo "Stopping Polisave service"
 /sbin/killproc -L -p $PIDFILE $POLISAVE_BIN
 rm -f $PIDFILE
 rc_status -v
 ;;

 status)
 # status daemon
 echo -n "Status Polisave service\n"
 /sbin/checkproc -L $POLISAVE_BIN
 rc_status -v
 ;;

 restart)
 $0 stop
 $0 start
 rc_status
 ;;

 *)
 echo "Usage: $0 {start|stop|restart|status}"
 exit 1
 ;;

esac
rc_exit

