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Abstract

Nowadays there is the envision that in a few years the current Wireless Sensor Networks (WSNs) will be
present in many applications in the near future. As long as they keep performing on the ISM 2,4GHz
unlicensed band, they will have to coexist with other succesful technologies such as Wi-Fi or Bluetooth.
Therefore, it is obvious that specially the mentioned band is becoming overcrowded. However and thanks
to the emerging Cognitive Radio (CR) techniques, they will allow to apply an effective Dynamic Spectrum
Access (DSA) that will address the problem of the scarce available spectrum by a rational allocation of the
current wireless communications within the available spectrum on a given time and place. This actuation
will permit accessing to less crowded frequencies in order to perform with less interferences and even with
less propagation losses.

Along this work, an Spectrum-efficient Architecture for Cognitive Wireless Sensor Networks is intro-
duced. The scheme performs a data collection protocol, with a tree-based topology, completely scalable
and with a generic purpose. Through real testing, we can state that our scheme, without altering the
normal data collection cycle, is able to feel the presence of other WSN and, consequently, it will migrate
the entire network to a new frequency while all these operations are transparent to the final user. It is
energy-efficient as well, since no redundant scanning is carried out. As a conclusion, our proposal assures
a better performance in case of an external WSN interference without adding neither complex operations
nor more traffic to the network.

Hoy en día existe la creencia de que en unos pocos años las actuales Redes Inalámbricas de Sensores
estarán presentes en muchas aplicaciones. Mientras estas sigan actuando en la banda sin licencia de ISM
2,4GHz, tendrán que coexistir con otras exitosas tecnologías como Wi-Fi o Bluetooth. En consecuencia,
resulta obvio asegurar que la banda en cuestión estará superpoblada en un futuro próximo. Sin embargo
y gracias a las nuevas técnicas de Radio Cognitiva, que permitirán la aplicación de un eficiente Acceso al
Espectro Dinámico, se conseguirá una distribución racional, dentro del espectro disponible en ese momento
y lugar, de las comunicaciones inalámbricas que se estén llevando a cabo. Esta actuación permitirá acceder
a frecuencias menos pobladas para poder transmitir con menos interferencias e incluso con menos pérdidas
de propagación.

A lo largo de este trabajo se va a presentar una arquitectura eficiente, espectralmente hablando, para
Redes Inalámbricas de Sensores y Cognitivas. Este esquema desarrolla un protocolo de recolección de
datos, para una red con topología de árbol, totalmente escalable y con finalidades genéricas. A través de
las pruebas realizadas, podemos afirmar que nuestro esquema, sin alterar el ciclo normal de recolección de
datos, puede detectar la presencia de otras Redes Inalámbricas de Sensores y, consecuentemente, migrar
la red a nueva frecuencia mientras que todas estas operaciones están ocultas al usuario final. También es
eficiente a nivel de energía, ya que no se realizan comprobaciones redundantes de la presencia de otras
redes. De esta manera, nuestra propuesta asegura un mejor comportamiento en caso de la existencia de
una Red Inalámbrica de Sensores externa, sin realizar operaciones complicadas ni añadiendo más tráfico a
la red.
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Chapter 1

Introduction

The relatively new Wireless Sensor Networks (WSNs) are currently subjected to a deep
development in order to exploit the benefits of these simple, cheap, and robust networks.
The starting point was over a decade ago when, according to their characteristics, a wide
range of application possibilities, beyond the military domain, appeared. Mainly, com-
mercial domains such industrial controls, automotive security, home welfare, surveillance
controls or even medical monitorization are the current research topics within the WSNs.
All these applications have appeared under the commercial name of Zigbee, based on the
IEEE 802.15.4 standard [1]. The current standard, agrees in terms of the scalability and
low-cost requirements needed for the developing of the previously mentioned applications.

A remarkable feature on the current WSNs is that they share the same 2,4GHz ISM1

band with previous standards such as the IEEE 802.11 and the IEEE 802.15.1, named
commercially as Wi-Fi and Bluetooth respectively. In fact, the Wi-Fi has become a very
successful technology and, consequently, has occupied almost globally the mentioned band.
What is more, any emerging wireless communication to be settled on the 2,4GHz unli-
censed band will have to struggle with domestic devices such as microwaves as well, since
they provoke the apparition of high-powered interferences within the mentioned frequency
range. Hence, this fact increases the evidence that the unlicensed spectrum is becoming
overcrowded. Furthermore and following the philosophy of the current WSNs, the 802.15.4
because of the low-power communication feature will be always affected by any other com-
munication or interference done by some of the previous devices. This topic has been
subjected to an extensive research since the efficient use of the scarce available spectrum is
one of the main concerns of the community, and several experimentation has been done to
show the noticeable degradation on the performance in the 802.15.4 networks when there
is a 802.11 network operating in an overlapping frequency bands [2, 3, 4].

By contrast, some of the published works regarding the utilization of the available
spectrum under 3GHz, has shown the inefficient use of the current frequencies distribution,

1Industrial, Scientific and Medical (ISM) radio band, reserved globally for application purposes on the
mentioned fields without license requirements.
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specially on the unlicensed band where even being overcrowded the spectrum distribution is
not homogeneusly allocated on the given band, Figure 2.1 on page 4 [5]. Thus, an optimal
distribution on the unlicensed band will address the problem of the limited spectrum
currently available. Furthermore, considering the time and spatial spectrum variations,
the optimal distribution has to be dynamic and to achieve it, is when enter on scene the
Cognitive Radio (CR) techniques [6]. By using CR devices, we will endow the network
with intelligence in order to choose at a given time and place the best available spectrum
range to perform. Applying these techniques to WSNs, it will permit to cover larger areas
with less devices since the lower is the frequency, the higher powered is the signal at the
receiver.

Nevertheless, the great challenge that implies endowing the current networks with CR
devices, goes first by proposing a valid Dynamic Spectrum Access (DSA) and it is where
the research is headed. Current CR algorithms and protocols carry out very specific DSA
accordingly to a final application purpose. In fact, the current CR algorithms differ among
them since they try to avoid different interference from different devices and, consequently,
they select the best available frequency range following different criteria. Besides, these
algorithms are usually limited by the hardware possibilities, specially on WSNs where
devices are typically single-radio, low-powered and battery-feeded.

In this work, an Spectrum-efficient Architecture for Cognitive Wireless Sensor Networks
is introduced. The proposed scheme is characterized by a typical WSN with a tree topology
and completely scalable, where the root collects any data sent by the network’s leafs for
a generic purpose using a collection protocol. Our scheme will detect the presence of
any other WSN in the coverage area and, subsequently, it will migrate the network to an
interference-free area. Through real testing, the advantatges of CR-based networks are
demonstrated just by using an ease to implement scheme that exploits the opportunities
presented by the given data collection protocol. In other words, our scheme without altering
the normal data collection cycle is able to feel the presence of other WSN and, consequently,
it will migrate the entire network to a new frequency while all these operations are blind
to the final user. It is energy-efficient as well, since no redundant scanning is carried out.
As a conclusion, our proposal assures a better performance in case of an external WSN
interference without adding neither complex operations nor long overheads.

The rest of the thesis is organized as follows: In Chapter 2, the CR techniques are
illustrated and in Chapter 3, some features of the current WSNs are introduced. In Chapter
4, our design approach together with the related work and a possible application scenario
are described. In Chapter 5, there is a detailed explanation of the final application code. In
Chapter 6, the evaluation results are presented so as to, finally, in Chapter 7 the conclusions
together with a few future work guidelines are discussed.
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Chapter 2

Cognitive Radio

Currently, wireless communications are still assigned by a fixed spectrum policy, regu-
lated either by local governmental agencies or international commissions, like the Federal
Communications Commision (FCC) in the United States or the European Telecommu-
nications Standards Institute (ETSI) in Europe. This fixed spectrum assignment is due
to the impossibility of performing a dynamic assignment with the existing devices when
the firsts wireless standards appeared. This dynamic performance requires an important
computional capability that radio devices have been acquiring over time. Thus, actual de-
vices are more able to act autonomously and a new spectrum assignment policy is likely to
come. Through the National Telecommunications and Information Administration (NTIA)
allocation chart [7], we can realise how exploited is the available spectrum for wireless com-
munications. The main advantage of this spectrum allocation is the total control over the
communications in the licensed bands, what in the meantime offers the Quality of Service
(QoS) required for each communication. However, any allocation policy established a few
years ago by those agencies or comissions could be considered outdated, since the current
wireless scenario is totally different.

The lack of free spectrum holes1 is not alarming by now, but in the overcrowded 2,4GHz
ISM band. Hence, is on that unlicensed band where there is the major concurrency of
wireless communications, such as Wi-Fi, Bluetooth, Zigbee and even the cordless phones
and domestic microwaves saturate the mentioned band. Nevertheless, despite the already
known wireless pollution in big city areas wireless communications only uses from 15% up
to 85% of the available spectrum according to FFC [9]. In addition, more than 95% of this
usage is below the 3GHz. Furthermore, most of the time large portions of the spectrum
remain unused or they are only use sporadically due to default presets of the commercial
wireless devices, as long as they all perform at the same band. On the other hand, this
wireless activity is heavier in certain moments during the day depending on the finality
of these communications. Then, it is obvious that the available spectrum varies in space

1Spectrum hole definition[8]: “band of frequencies assigned to a primary user, but, at a particular time
and specific geographic location, the band is not being utilized by that user”
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Figure 2.1: Measurement of 0-6GHz spectrum utilization

as well as in time. A measurement done in Berkeley [5] reinforces this statement, besides
showing up that the 2,4GHz presents occupation but without being totally saturated on
the whole range, Figure 2.1 on page 4. Thus, new techniques have appeared in order to
make an effective utilization of the allocated, still unused, wireless spectrum. Those new
techniques are all based on nodes2 equipped with cognitive radios that provide flexibility
to the network. As a general idea, this cognitive way of act identifies the spectrum holes on
the electromagnetic spectrum depending on the space and time, and rebuilds the network
on an interference-free area, taking into account the priority of the licensed users over the
unlicensed. As a result, high-troughput networks can be achieved without major improve-
ment on the existing protocols.

2.1 Background

The CR was formerly defined as “the point in which wireless personal digital assistants
(PDAs) and the related networks are sufficiently computationally intelligent about the radio
resources and related computer-to-computer communications to: (a) detect user communi-
cations needs as a function of use context, and (b) to provide radio resources and wireless
services most appropiate to those needs” by Mitola [10]. Before, Mitola defined a new ra-
dio language called Radio Knowledge Representation Language (RKRL) in order to make
cognitive radios achieve the flexibility of personal wireless services [11].

After this revolutionary concept the FCC appart from drawing up several guidelines
in order to support the development of CR, they also provided their own definition: “A
Cognitive Radio is a radio that can change its transmitter parameters based on interaction
with the environment in which it operates” [9]. It can be sum up in two main ideas: cognitive

2From now on, device or node are used indistinctively.
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capability and reconfigurability. The first one is related to the possibility of providing
a good performance autonomously, without any human supervision. This capabability
includes not only the monitoring tasks but the power of decision as well. The main tasks
to perform this environment interaction are well depicted by the cognitive cycle, Figure 2.2
on page 5, with the following steps:

1. Spectrum sensing: scans all the available bands in order to get the complete picture
of the current spectrum.

2. Spectrum analysis: lists all the spectrum holes with their features.

3. Spectrum decision: according with the decision policy predefined and the user needs,
chooses the best channel3.

Reconfigurability appears when a decision is taken, CRs must coordinate with the entire
network where they are involved to scroll all the current communications to the new chan-
nel. This action should be hidden to the current users of the network and should involve
operating parameters such as the operating frequency, the modulation, the transmission
power and the communication technology. The possibility of variating those parameters
at run-time is required regarding to the likely variation of the environment.

3From now on, frequency or channel are used indistinctively.
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After the great interest provoked by the guidelines’ publication, some developments
have been headed to separate ways. Thus, several literature about cognitive radios can be
found. As an example, a latter definition by Haykin [12]: “Cognitive radio is an intelligent
wireless communication system that is aware of its surrounding environment (i.e. outside
world), and uses the methodology of understanding-by-building to learn from the environ-
ment and adapts its internal states to statistical variations in the incoming RF stimuli
by making corresponding changes in certain operating parameters in real-time, with two
primary objectives in mind: (1) highly realiable communications whenever and wherever
needed; (2) efficient utilization of the radio spectrum”. However, they all finally converge
in the idea of taking advantage of the unused spectrum when possible and without inter-
fering any licensed user communication.

2.2 Cognitive Radio Networks

Also known as Dynamic Spectrum Access Networks (DSANs), are a DARPAs4 approach
that aims to implement this new DSA. They will provide high bandwith to any wireless
communications through one of the available network architectures at that very spot and
at that very moment. Through opportunistic access within either licensed or unlicensed
bands, respecting the privileges of the licensed networks users and without interfering the
already existing communications. However, the key fact to reach this level of efficiency is
to endow all the wireless devices with CRs.

CR techniques will permit to operate in the best available channel according to an
environmental survey done by the device. Concretely, these techniques will enable the
devices to detect the spectrum holes surrounding them, taking into account the presence
of licensed users if they operate on a licensed band. Subsequently, they will select the
best available channel and they will coordinate with the rest of the users. Eventually,
they would also vacate the current channel in case of a licensed user presence. In [6], a
formal division of these tasks is presented as: collecting information of the current state of
the available spectrum (Spectum sensing), synthesizing the environmental information to
select the best frequency available (Spectrum management), coordinating the network to
hold the existing communications while migrating to the new channel (Spectrum mobility)
and respecting the network privileges to determinated users (Spectrum sharing). In addi-
tion, if we consider the data transmission, the flowchart of a generic cognitive radio device
is presented in Figure 2.3 on page 7.

4The Defense Advanced Research Projects Agency (DARPA) is an agency of the US Defense Dpt.
responsible for the the research and development of new technlogies with military applications.
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2.2.1 Spectrum sensing

The final aim is to seek spectrum holes and the most efficient way to detect them is to
identify primary users that are receiving data from secondary users within our communi-
cation range. This detection takes place in the lower layer of the network protocol and it
will be based on the signal level that the user receives while performing on a given chan-
nel. Eventually, spectrum sensing techniques can be classified as transmitter detection,
cooperative detection and interference-based detection. Both transmitter and cooperative
detection are based on detecting if the present channel is available locally or in the whole
network respectively, whereas interference-based plays with the signal level opportunities.

2.2.1.1 Transmitter detection

Based on detecting weak signals locally from primary users and following the hypothesis
below to establish if there is either vacancy or occupancy of the current channel:

x(t) =

n(t) H0,

As(t) + n(t) H1

Where the n(t) is the noise floor, A the amplitude and s(t) the signal received at
the secondary user defined as x(t). Then the secondary user, will follow this simple rule
to state if there is vacancy H0 or occupancy H1, and act consequently. Hence, there is
no more traffic added to the network as long as the hypothesis is considered only in the user.

2.2.1.2 Cooperative detection

It can be considered an extension of the transmitter detection, as long as it is based
on the same channel occupancy hypothesis. However, what differs is that in cooperative
detection there is the figure of a main user that gathers all the secondary users’ local
information. Hence, the main user has a global vision of the available spectrum and it
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can discard those channels that are occupied on each different secondary users’ environ-
ment. Consequently, it may be discarded a channel that interferes uniquely a certain node.
Despite being more accurate, cooperative detection adds more traffic operations to the
network that in certain cases would be counterproductive regarding to the final aim of
cognitive networks.

2.2.1.3 Interference-based detection

The FCC [9] makes reference to a new procedure for interference detection, based on
the interference temperature, and this detection takes place in the radio station. Primary
users will not have any restriction regarding to the signal level while communicating, how-
ever, secondary users will be allowed to operate on a given spectrum hole, but just when
their signal level is below a certain threshold. This admission level will be established after
taking into account all the cumulative RF existing on the current channel from multiple
transmissions, so that the maximum level will be an acceptable level for data transmissions
of secondary users.

2.2.2 Spectrum management

While spectrum sensing, has been already explained in the last section, now we are
going to take into account the remaining two states of the cognitive cycle, Figure 2.2 on
page 5: the spectrum analysis and the spectrum decision. Both tasks are close among them,
since they operate in an upper layer unlike the spectrum sensing more related to the PHY
layer. Therefore, the spectrum management will collect all the information, it will process
all the information, and finally it will compare all the information so that it will be able
to choose the best channel to perform the communication.

2.2.2.1 Spectrum analysis

Considering how heterogeneus could be the spectrum holes detected, several parameters
that define the network are required to unify the decision criteria. Some of them would
be: interference level, path loss, wireless link errors, link layer delay or holding time. All
gathered we could extract the channel capacity as one of the most important parameters
at the time of selecting the best available channel. Formerly, SNR5 was used to estimate
the capacity, however, that estimation was local, and that follows the same idea of the
non-cooperative detection, that a local vacancy of the current channel is meaningless at
the time to assure there is an spectrum hole. Hence, many primary users could be detri-
mented. Therefore, channel vacancy makes a given channel likely to be selected, though,
it is interesting to take into account the previous parameters as well, in order to select

5Signal to Noise Ratio (SNR), mesure to compare the desired signal to the level of background noise.
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actually the best available channel.

2.2.2.2 Spectrum decision

Subsequently, once all spectrum holes have been characterized it is time to take the
decision. Despite making clear which channel is the best available, user requirements must
be considered as well. That means, once we know the QoS needed, it is on that point that
the spectrum decision will weight up the cost of the channel switching in order to achieve
better channel conditions, instead of working on the current channel with worse conditions.

2.2.3 Spectrum mobility

The process when a secondary user switches the best frequency of operation should
be smooth and rapid. Nevertheless, we have to keep in mind that each time that an user
changes its frequency of operation, subsequently there are other parameters to be reset to
the new situation, and that changes are likely to degrade the performance. In addition,
the network coordination will take some time as well, as long as the entire network has to
converge into the new situation. Thus, the spectrum management would have to consider
the degradation involved in a channel switching in exchange of operating on a better chan-
nel, and it will usually be related to the amount of information to be sent.

2.2.4 Spectrum sharing

Following the general idea of sharing the available spectrum while unused, after a data
transmission the secondary user should abandon the used spectrum hole, just in case any
other incoming communication by other user requires the same frequency. Besides, as
pointed out earlier, if a primary user requires its licensed band to perform, that one should
be cleared of any current communication by secondary users.

2.3 Future challenges

The performance of CR networks directly depend on the properties of the spectrum
band in use. This direct relationship necessitates a cross-layer design in the entire CR
networks protocol stack. Therefore, several open challenges for the CR networks, regarding
to different features of these kind of networks, have entailed the apparition of several
literature trying to solve these challenges one by one. However, they are not often connected
as a consequence of neither having standardization guidelines nor a main work to follow
yet. The main issues to address regarding the CR are explained next [13].

Despite having a number of cross-layer design proposals, there is not clear which one
presents the most robust performance. This is a consequence of the different scenarios
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where the development takes place and the different chosen metrics to evaluate the pro-
posal. Then, it is clear that a harmonization of these scenarios and these metrics is required
to head towards a main proposal. As long as new proposals enter on scene, it is important
to endow these proposals with the capability of coexistence among them since they will
have to coexist without detriment the rest of schemes until the standardization arrives.
Furthermore, it is necessary to think about the interaction between the already existing
schemes due to the fact that is mandatory to carry out the cognitive cycle and, subse-
quently, it may provide the user the best available frequency of operation in the given
area. Therefore, some standard signaling between the different technologies are needed.

Another key challenge to address concerns the provision of an optimal operating to
the final user. To achieve it, the idea is to make the protocol stack responsible to the
variations in the underlying network conditions. Nevertheless, this solution needs first the
establishment of the network conditions under which the proposed design would improve
the performance. Secondly, the implementation of efficient mechanisms on the stack to
make a timely and accurate assessment of the state of the network and, in the meantime,
the corresponding overheads need also to be taken into account. Moreover, the interfaces
need to be standardized to the current protocol designs since several options are available
to the developers. This process usually takes place during the process of drafting technical
standards, normally by the IEEE.
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Chapter 3

Wireless Sensor Networks

WSNs are defined as wireless networks of sensor-powered devices interconnected among
them that cooperatively describe their environment through their sensor measures. The
basic device can be considered as a small computer and it is formed by a microcontroller,
several sensors, a radio transceptor and batteries Figure 3.5 on page 18. Within these
network features, the most remarkable ones could be: the reconfigurability and the energy-
efficient in both hardware and communication protocols. The reconfigurability, already
seen as a requirement for the CR devices, regards to the versatility and the facility to set
up the network. On the other hand, low consumption is mandatory as long as these devices
must work autonomously, for long periods without any maintenance.

In the present days, the current development is headed towards the energy harvesting,
where the energy derived from environmental resources such as solar power, kinetic energy
or wind energy can be captured and stored. Furthermore, low consumption of the devices
is also being improved. Therefore, all gathered we will have at our disposal sensor devices
with upper autonomies. Consequently, such autonomy, which is one of the main cons of
the WSNs, is becoming less problematic [14].

3.1 Background

It was in the late nineties when the firsts WSNs were launched with civil applications
finalities. Nowadays, companies as Crossbow1 have developed reduced motes with great
autonomy just being supplied by batteries and, as a result, current WSNs are mostly
constituted by Crossbow products. Eventually, according with the recent achievements
on integration and miniaturization we can assume that in a few years we will be able to
sensorize and, consequently, control several unthinkable situations nowdays. In fact, Dust
Inc. together with the members of the Smart Dust project [15], have developed pea-sized
sensor devices that can be smartly situated almost everywhere.

1Crossbow Technology, Inc, commercializes the IRIS platform devices among others. This company,
with headquarters in California, US, has taken investment from Cisco and Intel as main investors.
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3.2 Applications

Considering all the existing Ad-Hoc wireless networks and taking into account the cur-
rent development of either new or existing WSNs applications, they have been succesfully
accepted and, consequently, WSNs are fully integrated within the following fields [16]:

• High-security areas: restringed areas such as government buildings, nuclear plants
or airports, where typical monitorization can not be placed, whereas WSNs can be
discreetly placed almost everywhere. It was one of the firsts application fields of the
current WSNs.

• Environmental sensors: monitoring vast areas such as great forests or oceanic areas
could be impossible without WSNs. Moreover, the numerous sensors provide infor-
mation of many variables that can help to prevent certain natural disasters. All of
that while minimizing the environmental impact of the human activities, Figure 3.1
on page 13.

• Industrial sensors: some of the quality controls within the manufacturing industry
are being done by WSNs since they can be placed easily and they accomplish their
tasks more efficiently than the traditional quality controls.

• Automotive industry: as a complement for the control cameras, WSNs can add infor-
mation of the situation of the car either locally by built-in sensors around the car, or
globally by getting live information of the state of our route, warning us from traffic
incidents.

• Medicine: due to the easy integration in small devices, WSNs will improve the control
of patients’ vital signs and act consequently if there is any variation on them. It can
be considered one of the most promising fields of actuation as long as the devices
become smaller.

• Domotics: affordable technology for the next comming homes, WSNs will automat-
ically act according to some user presets and taking into account the environmental
issues as time, temperature, humidity or even the energy consumption. In addition,
this technology is easy to deploy in the already existing homes, without requiring a
great construction work because of the its wireless feature. Furthermore, this tech-
nology is likely to become cheaper than the wired one.
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(a) Wireless sensor monitoring
river environmental parameters

(b) Wireless sensor monitoring
open-sea environmental parame-
ters

(c) Wireless sensor monitoring
weather conditions within a forest
environment

Figure 3.1: Current environmental WSN applications

3.3 Sensor networks features

Regarding to the applications and the way they were concieved, WSNs have a few
unique characteristics that can be sum up as follows [14]:

Regarding to the energy consumption:

• Power limitation: both hardware and software must be restrictive with the consump-
tion of the processing and limitate the processes if they are not required. Hence, we
are facing one of the most remarkables features on WSNs: the autonomy. Subse-
quently, they are able to operate in isolated areas far from energy sources appart
from the natural ones that they could harve.

• Low range coverage: as a consequence of the power limitation, their transceivers are
not able to reach far distances.

• Multihop protocols: following the idea of the low consumption and the low range
transmissions, WSNs require multihop protocols to cover long distances.

Regarding to the isolation:

• Ability to withstand with adverse weather conditions: Despite being fully protected,
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the devices should be as sturdy as possible since they may face sometimes hard
situations that can compromise their performance.

• Malfunction management: in case of system errors, WSNs devices should solve them
by themselves since sometimes they may be placed in isolated areas far from any
human supervision.

Regarding to the environment:

• Devices mobility: according to the application some devices may not be fixed to a
certain position, therefore, the operability of the network can be interrupted. As a
result, WSNs present a dynamic network topology, being able to change from one
topology to another accordingly to the node mobility.

• Channel variations: as stated before, the radio channel is likely to suffer variations
depending on the space and time, so that some devices may become incommunicate
along a certain period. Then, and taking into account the possibility of a device
malfunction as well, WSNs are able to reconfigure the routes in order to keep the
network operative.

Regarding to the product acquisition:

• Cost of the device: as long as several devices are needed to dispose a common WSN,
the comercialization price of each device has to be affordable taking into account the
final purpose as well. In addition, we have to consider the possibility of either loses
or damages of our devices. Moreover, as other electronic devices the unitary price
while producing large quantity of them is decreased.

Regarding to the network infrastructure:

• Absence of predefined structure: as a default there is not any main entity that cen-
tralizes all the data, each node can act either as a routing node or as a terminal
node. Nevertheless, there is usually the figure of the root node while talking about
the current protocols for the WSNs. Those protocols habitually enroute the pack-
ets economically since they generate routes on-demand or creating sink networks
where all packets within the network reach their final destination through a main
device. However, broadcasting techniques are also available, although they are not
very common.
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Figure 3.2: The overall Zigbee protocol stack

3.4 Standards

Despite the fact that several protocols have been developed, only a few have been suc-
cesful and have actually become the standards for the WSNs. One of these standards is
the Zigbee protocol that have specifically become the main standard for the WSN com-
munications. It was born to address the lack of an standard able to operate along with
the low consumption and the low data transmissions, by a conglomeration of hundreds
of enterprises that established the Zigbee Alliance to define the current standard. Their
specification was conceived to complement the already existing IEEE 802.15.4 but in the
upper layers, Figure 3.2 on page 15. Hence, these networks were renamed as Low Rate -
Wireless Personal Area Network (LR-WPAN), that provide low range coverage, low data
transmissions and low consumption. WirelessHART is the other famous standard that was
specifically designed for industrial applications and it is all englobed in the HART protocol
suite approved by the HART Communication Foundation. Later appeared the 6LoWPAN
aimed at making an adaption of the IPv6 communications over Low power WPANs, and
the ISA100 that makes completion to the 6LoWPAN for industrial applications but it is
not yet finished. Although all of them were designed for different applications, they all
share they same underlying radio standard the: 802.15.4 -2006 [1, 14].

3.4.1 IEEE 802.15.4

The main objectives of a LR-WPAN are ease of installation, reliable data transfer,
short-range operation, extremely low cost, and a reasonable battery life. Moreover, a
LR-WPAN device comprises a PHY, which contains the radio frequency (RF) transceiver
along with its low-level control mechanism, and a MAC sublayer that provides access to the
physical channel for all types of transfer. Both layers together with the available topologies
on the IEEE 802.15.4 are presented in the following sections.
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Figure 3.3: A few examples of 802.15.4 existing topologies

3.4.1.1 Topology

The communication among two or more nodes requires that at least one of them ac-
quires a coordinator role to control the network, whilst the rest can be considered only
as regular nodes with the commitment of sending the information required for the correct
functioning of the network. Thus, the IEEE 802.15.4 [1] defines two different types of
nodes:

• Full Function Device (FFD): is able to receive and process the IEEE 802.15.4 mes-
sages. In addition it can act either as a router or as a coordinator as well as provide
the application level required interaction for an user interface.

• Reduced Function Device (RFD): has reduced capability and functionality since it has
to operate as a sensor, just sending the specific information and without processing
any of them. As a consequence, RFDs need less energy than FFDs and, consequently,
they have more autonomy.

Then, according to their characteristics we have to take into account that a RFD can only
communicate with a FFD. Subsequently and considering the final purpose of the network,
there are different topologies, Figure 3.3 on page 16 from [1]:

• Star topology: all the nodes within the same WPAN are coordinated by the same
FFD, coordinator’s main duty is to manage the medium access.

• Peer-to-peer topology: mostly all nodes are FFDs, however, a coordinator node and
some RFDs can be placed without modifying the topology. The main difference with
the star resides on the added redundancy on the network. Besides, more complex
topologies can be achived from peer-to-peer such as mesh networks or cluster-tree
networks.
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PHY

(MHz)

Frequency

(MHz)

Chip rate

(Kchip/s)

Spreading

Modulation

Bit Rate

(Kb/s)

Symbol Rate

(Ksymbol/s)

Data

Modulation

Field of

influence

868-915 868-868,6 300 BPSK 20 20 BPSK Europe

868-915 902-928 600 BPSK 40 40 BPSK USA

2450 2400-2483,5 2000 O-QPSK 250 62,5 16-ary orto Worldwide

Table 3.1: Frequency bands and data rates for the IEEE 802.15.4 standard
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Figure 3.4: The IEEE 802.15.4 and IEEE 802.11 PHY channels disposition

3.4.1.2 PHY layer

The lowest layer of the stack is already divided in two sublayers: PHY data and PHY
management. Globally it is based on the Direct Sequence Spread Spectrum (DSSS) that
gives the possibility of coexistence with the other wireless standards on unlicensed bands.
There are two separate bands, one of them with a spectrum range from 868MHz to 915MHz
which posses a great sensitivity and coverage but, conversely, has a rather slow bit rate.
The other band, totally opposite to the former one, is on the ISM 2,4GHz band as we can
see in Table 3.1 on page 17, with higher rate data transmission and less coverage. They are
classified taking into account their field of influence. In the 2,4GHz band, the spectrum
usage is more efficient, it is separate in 16 channels of 2MHz and it includes a channel
separation of 5MHz to avoid co-channel interference [1]. In Figure 3.4 on page 17, the
channel disposition is presented comparing the IEEE 802.15.4 PHY channels disposition
with the three non-overlapping 802.11 channels on each continent and, as we can see there
is overlapping among the two IEEE standards either ways.

In addition, the PHY layer is responsible for the following tasks: in first place the
activation or deactivation of the radio transceiver, secondly the Energy Detection (ED)
within the current channel, as well as the Link Quality (LQI) for received packets, the
Clear Channel Assesment (CCA), the channel selection, and finally the data transmission
and reception.
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3.4.1.3 MAC layer

The Medium Access Control (MAC) sublayer manages all access to the physical radio
channel and is responsible for the following tasks [1]:

• Generating network beacons if the device is a coordinator

• Synchronizing to network beacons

• Supporting device security

• Employing the Carrier Sense Medium Access - Collision Avoidance (CSMA-CA)
mechanism for the channel access

• Granting QoS by means of Granted Time Slot (GTS)

• Providing a reliable link between peer MAC entities

3.5 Comercial products

A sensor node, as introduced before, is the key part on the WSNs. They are capable
of sensing, processing with their own microcontroller and either storage a small amount
of information on their own external memory, or interchange this information with other
sensor nodes through the radio transceiver, Figure 3.5 on page 18.

The starting point was the Smartdust project [15] in 1998. Afterwards, that first inicia-
tive was bifurcated into several projects including the major research centers as Berkeley
Wireless EmBedded Systems, the birthplace of several of the most used motes2. All the
Berkeley mote’s evolution, gathered with other research groups, is presented in Table 3.2
on page 19.

2A sinonym for a sensor node, commonly used in the United States.
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Mote WeC rené dot mica mica2 mica2dot iris

Released 1999 2000 2001 2002 2003 2003 2007

Processor 4 MHz 7 MHz 4 MHz 16MHz

Flash (code, kB) 8 16 128

RAM (kB) 0.5 1 4 8

Data rate (kbps) 10 40 38.4 250

Radio type RFM ChipCon Atmel

Minimum operation (V) 2.7

Expandable no yes no yes yes yes yes

Table 3.2: Hardware platform evolution

3.5.1 IRIS

The last column of the Table 3.2 on page 19 refers to the IRIS platform from Crossbow
and the evolution is noticeable. These motes are the ones used on this work, and regarding
to the fabricant specifications [17], we can highlight some of several improvements done on
this recent platform:

• Up to three times improved radio range and twice the program memory over previous
MICA Motes

• Outdoor line-of-sight tests have yeilded ranges as far as 500 meters between nodes
without amplification

• 250 kbps data rate

Therefore, it is obvious that a huge work has been done on this platform as long as the
technical features have increased in terms of range and data rate. Finally, in order to load
the applications programmed for this work, a MIB520CA mote board has been used. This
board provides a serial/USB interface for both programming and data communications.

3.6 Operating systems

Presumably WSNs operating systems (OS) are less complex than any other one devel-
oped for any other purpose, because of the special features that WSNs have. Furthermore,
the hardware limitations reinforce this theory. Other characteristics that usually are re-
lated to WSNs are the isolation and the autonomous operation, that make unnecessary
having user interfaces. Consequently, we are facing extremaly basic OS. Several platforms
have appeared in last years [18], some of them such as SOS, MANTIS or Contiki have
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Figure 3.6: The TinyOS 802.15.4 frame format

been described under C language. On the other hand we find TinyOS, an open-source OS,
described in network embedded systems C (nesC) and especially designed for the WSNs.
Unlike other OS, TinyOS is event-driven programming model instead of multithreading.
As is the case of this work, the fact of being open-source is what brings the major appli-
cation development to this platform.

3.6.1 TinyOS

Nodes on WSNs need to be robust and execute several operations at once, but have
limited storage. In order to abstract upper layers from the PHY and MAC layers provided
by 802.15.4 standards, TinyOS creates an intermediate layer called Active Message (AM),
the resulting frame in Figure 3.6 on page 20 [19]. Besides, TinyOS has an architecture based
on components that reduces to the minimum de code size. TinyOS applications are built
out of software components, some of them present hardware abstractions. Components
are connected to each other using interfaces. TinyOS provides interfaces and components
for common abstractions such as packet communication, routing, sensing, actuation and
storage. In order to facilitate modularity each component declares the commands and
events that signals. Commands are non-blocking requests made to lower level components
and that is the reason why event-driven concurrency model suits perfectly. Furthermore,
it is optimized in terms of energy-saving and memory utilization [20].

Appart from the event-driven programming, TinyOS provides an efficient framework
for modularity. Regarding to the program execution, it is divided into hardware events
and tasks. The former are interrupts caused by a timer, sensor or communication device
and they can interrupt tasks that are currently executing. On the other hand, tasks are a
form of deferred procedure call that allow a hardware event or task to postpone processing.
Event handlers are invoked to deal with hardware events, either directly or indirectly. An
event handler can deposit information into its frame, post tasks, signal higher level events
or call lower level commands. Tasks perform the primary work. They are atomic with
respect to other tasks and run to completion though they can be preempted by events.
Tasks can call lower level commands, signal higher level events, and schedule other tasks
within a component. Tasks are non-preemptive and run in FIFO3 order. When the task
queue is empty, the system stands by until the next interrupt, that contributes to the
energy-saving. Tasks are atomic with respect to each other [21].

3First In First Out (FIFO), that describes how to manage a processing queue. Thus, the oldest process
in the system will be the first to be handled.
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includes packet;

configuration MyApp{}

implementation {
   components Main, MyAppM;
   Main.StdControl -> MyAppM.StdControl;
}

(a) MyApp.nc

includes packet;

module MyAppM {
   provides {
      interface StdControl;
   }
   uses {
      interface SendMsg;
   }
}

implementation {}

(b) MyAppM.nc

enum {
   PKT_REQ = 1,
   PKT_HELLO = 2
};

typedef struct paq {
   int address;
   int pkt_type;
} packet;

(c) packet.h

Figure 3.7: Structure files for the TinyOS application definition

Regarding to the motes, there is no preinstalled operating system on them. Therefore,
while compiling an application the TinyOS is added to it and, subsequently, every time
that the mote is flashed the application is loaded all together with the operating system.
Nevertheless, the overall size of the final file to be upload is far to be heavy.

3.7 Programming languages

Along with the operating systems’ development new programming languages have ap-
peared. Mostly, they all are dialects of C language but there is C-based OS as well like
SOS, MANTIS and Contiki, that were introduced previously. However, as TinyOS has
been the most spread OS for the WSNs, its programming language has become the most
used language for the current development on the WSNs, the nesC language.

3.7.1 nesC

nesC is an extension of the C language that, in order to accomplish the requirements of
simplicity and optimization, is a component-based language. To define these components
nesC uses modules and configurations. Inside each module there is the code for a single
component, whereas the configuration is needed for the wiring. A final application can
be formed by several configurations if and only if there is a defined top-level configuration
that wires the whole application modules and configurations. A module implements one or
more interfaces. In the meantime, interfaces describe the commands and events provided
by a component and they are bidirectional. Therefore, configurations will wire modules
using a given interface to a component providing an implementation of this interface [22].

It is assumed an execution model of asynchronous handlers and tasks that have to be
executed totally. The scheduler for those tasks can execute them in any order, normally
FIFO in TinyOS, but always until completion. Since tasks are not preempted but executed
until completion, they are atomic between each one of the others tasks. However, they
are not atomic with respect to interrupt handlers. Thus, nesC programs are likely to race
conditions and they, if existing, are reported at compile-time. They can be avoided either
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by using atomic sections to turn off hardware interrupts on certain block of code, or by
converting the conflicting code into atomic tasks [22].

A TinyOS application implemented in nesC needs a few diferent files to compile, using
gcc, the global C-file to flash the mote. Typically these files are formed by a module file, a
configuration file, a header file and a Makefile with the compiling directions, Figure 3.7 on
page 21. Through the configuration file, it will be included any module of TinyOS if and
only if the module is actually used on the final application. In addition, having a single
file makes possible a whole-program analysis and, consequently, an efficient optimization.
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Chapter 4

Design approach

The overcrowded ISM 2,4GHz band, is shared by the IEEE 802.11 networks, the IEEE
802.15.4 networks, Bluetooth devices and even domestic microwaves and cordless phones,
are likely to make interferences to them like in Figure 4.1 on page 24 [23]. All together
makes this band undoubtedly one of the most highly occupied bands on the scarce available
spectrum. Focusing on the subject of this work, is on the IEEE 802.15.4 networks where
is taking place the major development currently since they are a brand new technology.
Furthermore, this notorious progress on this technology, helps on the envision that in a few
years these devices will multiply their current population. However, these small networks
are on a bad position in comparison with other communication networks as long as they
are low power emissions. Thus, they are more able to be detrimented by the presence
of high-powered IEEE 802.11 signals, since the power transmissions are 0 dBm for the
WPAN devices and 16 dBm for the Wireless Local Area Network (WLAN) devices, whereas
Bluetooth varies from 0 dBm to 20 dBm. As long as the IEEE 802.11 has been settled down
as a one of the most spreaded wireless communication technologies, seems like it is on the
WSNs where the functional changes regarding to dynamic spectrum assignment should be
taken. Then, the global idea of CRs applied to the IEEE 802.15.4 communications, looks
like a great improvement on the current WSNs.

In practice, along with the integration progress on the sensor nodes, a software-level
improvement regarding to the adaptive spectrum assignment seems to be necessary. Re-
garding to the current work on the subject, the several methods proposed in order to
upgrade WSNs into cognitive WSNs have been bifurcated considering the nature of the
interference, the hardware possibilities and the network features such as topology and
routing protocol. On this work, an Spectrum-efficient Architecture for Cognitive WSNs
is introduced in the following sections, all along with the state-of-art on cognitive WSNs
protocols, the channel interference research done in previous works, a suggested application
scenario and a low level description of the scheme.
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Figure 4.1: Interference due to domestic devices while a MicaZ is transmitting

4.1 Related work

There are several related proposals on cognitive networks and they all can be classified
depending on the interference to be avoided or according to the hardware possibilities. In
the following protocols, the authors use either multi-radio devices or use control messages
to set the channel for the network performance. A multi-radio scheme is presented in [24],
where the authors use nodes equipped with more than a single transceiver to separate
the control packets from the data packets. Besides, in [25] and following the idea of
tree networks, the authors provide a solution to complement a generic data collection
application in WSNs. The main idea is to divide the network into subtrees all rooted to the
base station, where each subtree will be allocated on a different channel and, consequently,
it does not need time for synchronization. This feature is assuming that the base station
is equipped with as much transceivers as subtrees rooted to it, however, usually WSN
nodes are equipped with a single-radio. On the other hand, in [26, 27, 28] the authors
provide different solutions based on a previous channel negotiation. Nevertheless, again
these schemes are not efficient in terms of throughput since usually in WSNs the data
packets are limited due to the small bandwidth available and the fact of adding more
packets for the negotiation is not probably the best solution.

Focusing on WSNs, in [29, 30, 31, 32] three multi-channel MAC protocols conceived
for WSNs are introduced. After their tests, all of them coincide to present a noticeable
improvement while performing. They all basically try to assign dynamically the channel
in order to avoid potential interferences of 802.11 networks. They address the interference
avoidance by scrolling the affected nodes into a new channel, constituting a two or more
levels network according with the affected areas. The border nodes of the affected regions
need to keep updated the neighbor’s table with the actual frequencies of each one and they
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802.11a/b/g Bluetooth Class 1 Bluetooth Class 2 Bluetooth Class 3 Microwaves 802.15.4

Output 0-20 dBm 20 dBm 4 dBm 0 dBm 16-33 dBm 0 dBm

Table 4.1: Output power comparison on the 2,4GHz ISM band

will have forward messages by switching their frequency as well. Therefore, regarding to
multi-hop networks, a very frequent channel switching can cause considerable packet losses
and, to address this potential problem, they use negotiation and scheduling schemes to
coordinate the channel migration. They face some of the typical problems on the WSN
as performing in areas with high number of networks. As a result, a high number of
orthogonal channels are required, an accurate time synchronization among nodes has to
be set, the channel switching delay has to be taken into account, and more resources at
the nodes, due to the high number of functionalities added, are required.

Finally, in [33] the authors simulated a WSN with a sink topology affected on a given
area by 802.11 interference. This interference is assumed to vary over time, space and
frequency. Their algorithm works by using a reward function which indicates if a channel
switching is advisable, and thus, the protocol will migrate the whole network to the best
channel available given by the mentioned function. Therefore, this scheme is presumably
more energy-efficient since the migration takes place only if the new conditions are better
than the current ones even with the presence of an interfering device.

4.2 Channel interference

The motivation of this work and the related came up, among other reasons, from several
researches done previously about channel interference on the 2,4GHz ISM band. As an
introductory fact a comparison is presented in Table 4.1 on page 25, where the typical
output powers of the different devices that coexist on the ISM band are listed. Previously
mentioned, the WSNs are in clear disadvantage in comparison with the rest of the wireless
technologies, [17, 34, 35]. Even Crossbow, as one of the most important manufacturers, has
published an application note regarding to the RF interference between WLAN networks
and Zigbee networks [2]. They both are affected by the existing problem of not taking
a proper care of the software configuration. Thus, with their network configuration and
utilizing high-powered WLAN cards, they reach up to 20% of packet loss in the WSN
performing in the same spot. However, in [3] the authors state that even taking into
account the DSSS to reduce interference, a WLAN device can provoke up to 58% of packet
loss in a WSN. Eventually, in presence of an IEEE 802.11b interference, the worst one
appart from domestic devices, the performance degradation is noticeable in [4], where
almost 92% of the IEEE 802.15.4 frames were lost.

For the already existing IEEE 802.11g/n drafts, which may be assumed as the brand
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new standards for WLAN in the next future, the authors of [36] conclude through their
experimentation, that is hard to guarantee the quality of the present WSNs while a IEEE
802.11n is performing with a middle or high traffic load next to it. Therefore and again, if
the channel assignment is not done in a properly manner, the WSNs will be detrimented to
their packet received ratio. Furthermore, they also appeal to a dynamic threshold setting
for the IEEE 802.15.4 devices since high-powered transmissions can increase considerably
the current environmental interference level. Thus, the highly sensitive CCA would reach
such an adaptive sensitivity that consequently would improve the performance of the both
overlapping and non-overlapping IEEE 802.15.4 channels.

Concerning to domestic devices such as microwaves in [23], as shown in Figure 4.1
on page 24, the authors obtained a packet loss ratio from 19% to 54% on the Crossbow’s
MICAz receiver operating in the 2.45GHz channel when the microwave was on, whereas the
packet loss was fixed to 0% when the microwave was off. Their experimental observation
demonstrates that the already implemented DSSS is not enough to solve the crowded
spectrum issue.

Regarding to the interference among WSNs, there are several studies applied to depict
this interference. Typically, if multiple transmissions are taking place on a given spot, they
are likely to be interfered with them but when they use orhogonal channels. Therefore,
it is commonly known that adjacent channels to the present transmission channel provoke
interference due to the existing overlapping in the IEEE 802.15.4 standard. Thus, in
[35] the interference due to other WSNs working in adjacent channels is studied and,
after experimentation, it can be observed that when several transmissions perform on the
adjacent channel their co-channel interference appears.

Finally, again in [35] a relation between the interference at the receiver and the distance
with the interfering jammer is shown. This interference level is aproximated as the loss rate
at the receiver. Eventually, the authors establish that there is a high correlation between
channel spacing and spatial spacing. Hence, the researching line headed to cognitive radios
able to recognise at a given time and on a given spot their environment and, subsequently,
perform on the less harmful frequency available, is more than justified.

4.3 Suggested scenario

Focusing on the main matter of this work, the final aim is to provide an applicable
scheme for the current WSNs. That scheme will have to act cognitively while performing
since they are likely to be deployed on unsettled environments. The generic network is
formed by a root node, that coordinates the rest of the network, and several client nodes
under the directions of the root node. The network topology will be a sink network or
tree-based network, where the client nodes or leafs capture the information from their
sensors and they send it, periodically or everytime there is a variation, to the sink or the
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Figure 4.2: Hospital floorplant diagram distribution for a possible WSN application

root node. With preciseness, the protocol utilized is the Collection Tree Protocol (CTP)
on its implementation in TinyOS that will be described later.

For a better comprehension a possible application field is provided. As seen before,
WSNs are likely to be omnipresent almost everywhere, and one of these possible places are
hospitals. In medicine, WSNs can monitor vital signs and act consequently according to
any patient health variation. Then, we can deploy several WSNs on a hospital where each
one will control the existing patients per floor. Thus, a control room with the personal
on duty are able to follow the behaviour of the patients and anticipate possible actions
involving surgeons or any other high-qualified personal that usually is scarce, even more
at night’s shift. The deployed nodes are constantly sending the patient’s information to
the main node in charge of the floor and, in the meantime, the root node is connected to
a computer that processes all the information and shows the patient’s evolution, and that
floorplant diagram could be repeated according to the number of floors in Figure 4.2 on
page 27.

Moreover, we have to take into account that nowadays on most working environments
there is a working wireless network, normally a regular WLAN, to carry out the different
administrative tasks involving the hospital burocracy. In addition, microwaves or similar
electronic devices are likely to be present on the day by day in a hospital. Therefore, this
typical environment has been studied in [37], where the authors tried to characterize it.
As a conclusion, they found high activity and the interference level measured was time
varying and dynamic, since there were high variations depending time of the day and the
floor that they took measures. Furthermore, it is necessary consider the patients’ mobility
within the hospital whether they have to be tested or simply they have to be transfered
into another room.
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All gathered, we are facing a high activity environment regarding to the 2,4 GHz band
and it is also time varying and dynamic. Thus, an adaptive scheme for the current con-
ditions at each moment and in any place is required, as long as the information of all the
monitored patients must reach the root node regardless of the existance of interferences
or not. In addition, the deployed network should be flexible in number of patients to
monitor since the number of patients could vary in time. This problem is what is tried to
be addressed along this work providing an standard solution for WSNs to be deployed on
crowded spectrum areas.

4.4 Application description

Previously exposed while talking about the cognitive cycle, Figure 2.2 on page 5, differ-
ent techniques for the spectrum sensing were introduced. This former step will characterize
the global application developed that is presented in the following sections. The proposed
technique is related to detecting presence through packet snooping, thus, the channel occu-
pancy by a nearby subnetworks will suppose the migration into the next available channel.
From now on we can refer to this technique as jammer1 detection. This detection will be
cooperative since each node will report to the root node the presence of a jammer and
subsequently, the root will dispose an overall situation of the network considering not only
its environment but also each node’s environment.

The application has been developed using the CTP already implemented on the TinyOS.
Therefore, the provided code will act on the application layer as well as the CTP layer and
they will interact between them at the runtime. In other words, the system will start and
the CTP will form the network with the existing devices and, once the protocol provides
routes to the whole network from the root, the developed application will perform the
cognitive cycle. Afterwards, if a channel migration is required the application through the
root node will interact with the hanging network to scroll it to a given channel by using
the CTP. Finally, the application will restart the subnetwork and, consequently, the CTP
layer will form again the network on the new channel.

4.4.1 CTP on TinyOS

The Collection Tree Protocol sets a tree-based topology network in order to collect
all the information from the hanging nodes or leafs. One or a few nodes can be marked
as the tree roots and the rest of the network establish routes to these roots, since a leaf
node can not send a packet to another leaf. The resulting routes are established by using
a routing gradient. As a result CTP can be considered as an address-free protocol. The

1The radio transmission that interfere into our desired signal from an external device by decreasing the
SNR at the receiver.
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CTP considers that the data link layer provides:

• an efficient local broadcast address

• synchronous acknowledgments for unicast packets

• a protocol dispatch field to support multiple higher-level protocols

• a single-hop source and destination fields

Besides, the CTP assumes that the link quality provides the value with the nearby neigh-
bors. Hence, the number of retransmissions to send an unicast packet whose acknowledg-
ment is received can be achieved [38].

As mentioned before, CTP uses a routing gradient to calculate the best route to the
tree root. Specifically this gradient is the ETX2, therefore, a root node will have typically
ETX of 0, for the rest of the nodes the ETX will be the ETX of its parent plus the ETX
of its link to its parent. Once all the possible routes are listed, CTP selects the ones with
the lowest ETX values.

Due to the changing environment that usually surrounds the network, routing loops are
likely to appear. However, CTP has two mechanisms to address this situation, in fact they
are applied sequentially just in case the former fails. Firstly, if CTP detects a packet with a
lower ETX than the one it has, it will report this anomaly by broadcasting a beacon frame,
expecting that the causing node receives the frame and updates its routes accordingly.
Nevertheless, if the causing node does not receive the frame the second mechanism to avoid
the routing loops is started. Basically, it consists on checking the ETX value is below a
reasonable constant, and as a result all the routes with a higher ETX will be discarded.
Another important issue that can entail some problems is the packet duplication. This
common problem while treating with Acknowledgment packets (ACK), occurs when an
ACK is not received by the sender and the packet is retransmitted again. This can provoke
congestion within the network since the packet duplication will be exponential according
to the number of hops to reach the tree root. The solution is the Time Has Lived (THL)
field that is incremented on each hop. Hence, a looped packet THL will differ from the
THL of a link-level retransmission and, consequently, it will be dropped. Either ETX and
THL field disposition on the CTP frames are presented in Figure 4.3 on page 30 [38].

On the other hand, and as its name reveals, CTP uses the Collection services also
implemented on TinyOS. In fact, is because of the Collection that a node can advertise
itself as a root and, consequently, collect all the information. Another important remark

2 Expected Transmissions (ETX), measures the quality of the path between two nodes.
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(a) Data frame (b) Routing frame

Figure 4.3: CTP either data and routing frames

is that the CTP is not a bidirectional protocol, following the idea of sink networks by
which all the information flows like a stream towards the sink and there is no possibility
to go backwards. However, on TinyOS there is the possibility to spread short packets
from the root to the entire network by using the Dissemination of Small Values service.
This service, makes possible to disseminate a small value, typically an integer, within the
network without using any collection service. Both Collection and Dissemination will be
explained in detail on the following sections.

4.4.1.1 Collection

Mostly all WSNs require at least the minimum expression of a Collection protocol. The
network topology is still tree-based subnetworks gathered among them by a base station
and the data is managed to reach the tree root as well. While having several tree subnet-
works within the same network, the protocol provides a best-effort packet delivery to one
of the roots but there is no total guarantee of delivery and no ordering guarantees either.
On the contrary, duplicate packets can be delivered to one or more roots. Collection and
CTP share the same problematic situations and in the same way, the share the same so-
lutions as loop detection, duplicate suppression, link estimation and self-interference. A
node can have four different roles in Collection protocol: producer, snooper, in-network
processor and consumer. According to each one, the node will choose the needed interfaces
to perform its role. The nodes that capture the information to be sent are the producers.
Secondly, the snoopers overhear the packet and if they are not a root, they will forward
the packet up to reach the nearest root. If required, a node can update a packet by adding
some information of its environment and subsequently forward it as well, becoming an in-
network processor. Finally, if the node is a root that is supposed to be the final destination
of the data packets, the node act as a consumer [39].
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4.4.1.2 Dissemination of Small Values

In order to fulfill the point regarding to the bidirectional communications, the dissem-
ination services are required as long as they are able to update homogeneusly the value of
a shared variable within the network, and that is the reason why is denoted as Dissem-
ination of Small Values. The service warns nodes when the value of the shared variable
has been updated by interchanging packets in order to reach eventual consistency on the
whole network. It may occur, however, that a few nodes disagree momentarily on the value
but after a while the disagreements will shrink and the network will converge on a single
value. This eventual consistency is robust to temporary disconnections and high packet
loss rates, the dissemination assures this consensus as long as the node is not disconnected
permanently [40]. This fact is going to be important at the programming time since a
channel switching by node can be considered a disconnection from the network.

Furthermore, this consistency across the network considers the newest value to estab-
lish the consensus. When a node receives a supposed new dissemination value that it is
older than the one already existing in the node, it will be able to prompt the network
and it will warn the rest of the network that there is a new value. Once this new value
is updated by several nodes, the mechanism will make the rest converge into the real new
value. Finally, the consistency assures that the network will share the same value of a
given variable after a while, however, it is probably that some nodes on the network do
not see the different values that the variable has along a given period, and they just get
the last new value. This situation could be due to a temporary disconnection or because
of several updates done in a short period [40]. Therefore, it is not possible to guarantee
that a node’s variable will be updated with all the new values and, consequently, a proper
programming is required if all of these values are needed along the performance.

4.4.2 Role description

As CTP-based protocol, the jammer detection scheme has two main roles on the net-
work topology: the root node as the main control entity and the client nodes as sensing
captors. As a low level description of the cognitive WSN the Figure 4.4 on page 32 rep-
resents an understandable diagram that shows the final aim of the application. Firstly,
the network is formed on the default channel through the CTP procedure. However, af-
terwards appears an external network operating in the same frequency plane within the
coverage range. Later, the affected node reports this situation to the root node and pro-
ceed to the channel migration in order to avoid this external interference. Eventually, both
networks will still be operative but in different frequencies and the overall operation has
been transparent to the final user.

The application has been implemented without any specific purpose, thus, the data
information to be sent by the client nodes is easily adaptable in order to send certain
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(b) The application scrolls its subnetwork into an-
other frequency plane after a jammer detection

Figure 4.4: Channel distribution before and after the cognitive performance

information captured by the client nodes. Moreover, the cognitive process that takes place
on the application is hidden to the user interface since neither the jammer reporting nor
the channel migration are lasting operations. It is worth pointing out another feature of
the scheme, whereas the network is starting the root node receives data messages from the
client nodes already operative, the root node will consider, after a preset time, that there
is no more clients on its network and will report the network size, that has been checking
all along this period, to the client nodes. Hence, code modifications are not required in
order to set the network size and, consequently, all the network will be able to determine
if a received packet comes from a known user of their network or if it can be considered as
a jammer.

4.4.2.1 Root node

As the main entity, the root node coordinates the whole network. This responsibility
implies, in addition to the default tasks of a root node, most of the cognitive tasks. Al-
though the spectrum sensing is cooperative within the entire network, the remaining tasks
as spectrum analysis and spectrum decision from the cognitive cycle, Figure 2.2 on page
5, are all performed in the root node. According to this point of view, it is fair to say
that the root node, as the intelligent device of the network, is what provides the cognitive
adjective. In Figure 4.5 on page 33, the flowchart for the root node is presented and, as
simple as it is, the cognitive operations are summed up in detecting a jammer and moving
to a free channel if required, besides the data reception period that can be considered, in
a certain way, part of the cognitive operations, since if there is a jammer on the coverage
area the client nodes will report that situation through their data packets. Finally, a serial
communication has been implemented on the root node code since, as seen in Figure 4.2
on page 27, usually the root node will be connected to a computer in order to process and
monitorize the information received.



33

Start

SET NETWORK 
SIZE

Data RX

Is there a 
jammer?

SET NEW 
CHANNEL

NO

YES

Figure 4.5: Root node flowchart

4.4.2.2 Client node

The client node will only need a few lines of code for its performance, in as much as
sending information is its unique commitment. However, there are small code modifications
regarding to a standard sending node for a regular CTP networks. Those modifications
are basically implemented for the jammer detection to make them to be able to determine
the procedence of a received packet. On the other hand, they will send packets randomly
to the root with the desired information captured by their sensors.
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Chapter 5

Implementation

After an overall explanation of the application behaviour in the previous sections, now
it is time to a detailed explanation taking into account the actual code used for this work.
On the current section firstly, a detailed performing description is presented by using an
application example showing the possible packet interchange concerning three nodes on the
network, during a certain period of time. However, the implicit packet transmissions due to
the standard CTP network formations and data disseminations will be ignored since they
are not part of this work and they are detailed in [38, 39, 40]. Secondly, the resulting event
execution will be explained briefly in order to remark how this event-driven programming
influence in the resulting execution threads on the node. Later, some of the important
variables, structs and constant definitions that take part on the performance are listed to-
gether with the main functions and event handlers defined on the application code. Finally,
some considerations regarding the possibilities and limitations of the scheme are presented.

5.1 Performance

Following the network performance example in Figure 4.4 on page 32, a packet trans-
missions diagram is presented in Figure 5.1 on page 36 in order to complete totally the
description of the application developed on this work. The example represents the commu-
nication between three nodes: the root node and two client nodes. The root node, named
as NODE 0, is only at one hop distance of one of the clients named NODE 1. The last
node, NODE 2, is at two hops distance of the NODE 0 and needs the NODE 1 to forward
its either sending or receiving packets.

Once the network is started, there is a dedicated period for constituting the network
routes using the CTP and inmediately the nodes will start sending data messages to the
NODE 0. At this time, there is no node able to detect any jammer, since they do not know
the network size yet. When the TIMER_1 fires, the NODE 0 disseminates the netsize

value, and from then on the network is able to perform the jammer detection. After a
reasonable time of data collection, specifically TIMER_2, the NODE 0 will check if any
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jammer has been reported. On the example, NODE 1 has reported the presence of other
network on the present channel. Consequently, NODE 0 disseminates a new channel value
and starts its TIMER_3 and, NODE 1 and NODE 2 start their TIMER_3 as well when the
new value is received. These TIMER_3 are needed since an inmediate channel change will
be understood as a disconnection. Thus, when the first TIMER_3 of the whole network fires
the dissemination service, it has to reach consensus on the new value of channel variable.
When the last of the TIMER_3 fires, the CTP is restarted in order to form again the routes
but this time at the new frequency. Eventually, to close up the circle, a new data collection
is started. However, at this time is noticeable that there is not a period to update the
netsize, since as mentioned before this variable will remain with the same value until
the end of the session. In addition, we can realise how in the example this description is
separate into three stages: the former is the group formation, then the data collection and
finally the channel migration if needed.

On the other hand, is worth to mention that there is neither specific functions nor
longer periods dedicated just for the cognitive actuation. In fact, just TIMER_3 is totally
dedicated to cognitive finalities, however, as it will be explained later, this timer is a small
period that can be depreciated while comparing with the data periods. Hence, the whole
performing procedure is also energy-efficient, as long as there is no continuous scan while
performing the spectrum sensing like other similar schemes presented on a previous chapter.
Besides, the spectrum analysis takes place discretely, and at the same time that the root is
acquiring the data from the client nodes. Moreover, the decision procedure, concerning the
spectrum decision does not either delay or postpone the data collection period. Therefore,
the three steps of the cognitive cycle, in Figure 2.2 on page 5, are efficiently carried out by
the scheme since they are all done while the main data operations take place and taking
advantatge of them. Finally, a generic step-by-step description of the network events is
presented as follows:

1. The root node together with the client nodes are switched on and the group formation
period is started

2. The client nodes send randomly data messages following the CTP formation routes
and the root node collects them

3. After a given time, the root node has enough information to set the network size
and, consequently, disseminates the value of the netsize variable

4. From this moment the data collection period is started and the nodes keep on sending
information to the root

5. However, at this time jammer detections can be reported since the network size has
already been established
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6. After the data collection period, the root node checks if any jammer has been reported
on the current channel by any of the nodes

7. If detected, the root node disseminates the new channel value and starts the channel
migration period by calling its timer

8. At the time that the dissemination service warns the value has been updated, on the
remaining nodes the timer is started as well

9. Before the first timer fires, the network has to reach consensus on the new channel

value and when the timer fires, each node changes its frequency

10. The root restarts the network by using the CTP to constitute the new routes but
this time at the new channel

5.2 Events execution

As stated before, TinyOS uses an event-driving execution that makes easier to describe
the application. In Figure 5.2 on page 38, both possible event executions depending on the
assigned role are presented. The single execution thread, as a consequence of the event-
driving programming, can be described as three threads for a better understanding. After
all the network formation events have finished, the data collection period is started. During
this period, on the root node three different events may happen: either receive or send a
message or to have a fired timer. In the same way, on the client nodes three different situa-
tions can occur as well: either forward or send a message or having a variable update by the
dissemination service. In practise, due to the event execution architecture, it is not possible
to consider three execution threads since only one event handler will be executed at the
time. Nevertheless, if after the handler has been executed there is a long function call, that
does not prevent the execution of the next event to occur. Therefore, the example in Fig-
ure 5.2 on page 38 shows the clear difference between the group formation period and the
rest of the time since the former is more predictable regarding to the events to be executed.

5.3 Baring the code

The IRIS motes incorporate the Atmel RF230 radio transceiver that entails the util-
isation of the RF230 stack interfaces on the TinyOS 2.x tree. This stack, as almost the
whole TinyOS tree is under development and, that is the reason why at the beginning
the RadioConfig interface was not yet implemented. However and thanks to Miklos
Maroti1, at the programming time the RadioConfig interface was just implemented

1Currently, associated professor at the University of Szeged and core developer of the TinyOS tree.
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Figure 5.2: Events execution for both existing roles on the network
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and it has become essential for the final application. This interface is needed in order to
change into a new channel at the runtime and is provided by the RF230ActiveMessageC

module as seen in Figure A.8 on page 59. The application was deployed using the already
existing TestNetwork application as a starting model since it was designed to implement
a simple data collection by the root node. There were no multihop implemented since the
forward event was not deployed. Obviously, all the functions and events regarding to the
cognitive cycle were not either deployed. A code description of the RssiJammer application
deployed for this work is presented in the next sections.

5.3.1 Variables, structs and constant definitions

On the global application many variables either local or global are defined. However,
just a few have a remarkable importance since they will be disseminated, if required, within
the network. In Figure 5.1 on page 36 an application example is presented and these vari-
ables are shown while being disseminated. As comented before, while disseminating only
small values can be sent, and that is the reason why they will be typically integers:

netsize: It applies on all nodes. This variable has a shared value in the whole network
and is initialized with 0 as a non-valid network size. Thus, all networks expect the
root to modify this value in order to detect any jammer presence while performing.
The variable is modified only once at the network starting and remains with the same
value unless the network is rebooted.

channel: It applies on all nodes. This variable has a shared value in the whole network
and this is how it has to be as long as the node wants to be connected to the current
network. This variable is initialized with the default radio channel and it is supposed
to change everytime there is a jammer detection reported to the root.

For the data collection, a few structs are required in order to encapsulate the information
while sending it through the network and to storage the valid information in the root node.
The following structs will be implemented:

RssiDetectionMsg: An standard network struct to encapsulate the data to be sent to-
wards the root node. The data field, will be filled with the RSSI2 of the received
packet at the first hop. It will also include a source field in order to report if there is
a jammer on the current channel.

RssiRoot: A simple struct to storage the data collected for a later network analysis.
2The Radio Signal Strength Indicator (RSSI) measures the power received due to a radio signal.
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The are a few constant definitions that influence on the behavior of the network, regarding
basically to the time that the application will dedicate to each action. Again, in the Figure
5.1 on page 36, a typical ordering of execution of these constants is presented. These
constants are the following:

TIMER_1: It only applies on the root node code. This variable sets the time that will take
to define the network size since the timer associated to this variable fires, the root
node will disseminate the current value of the network size to the rest of the network.
Subsequently, the client nodes will consider as a jammer any other node if they have
been switched on after the timer fires. Therefore, the value should be long enough
to switch on all the devices that will constitute the network.

TIMER_2: It only applies on the root node code. This variable sets the period for the data
reception from the client nodes at the root node. As this period concerns to the
main duty of the network, the data collection, it will typically be the longest period.
Nevertheless, it is advisable to cut this time short in time varying and dynamic either
networks or environments to assure a free-interference performance during most of
the time.

TIMER_3: It applies on all nodes. This variable sets the time between the moment when
node is warned about a new channel value and the channel switching into the chan-
nel pointed by the root. This timer value must be set carefully since a small value
could lead to a network division. If the time is less than the required for the dis-
semination service to reach consensus, the non-updated nodes will not change their
frequency and, consequently, they will be considered as disconnected for the network
since it will already perform in the new channel. In contrast, a long timer value
obliges the network to remain in the channel supposedly affected by a jammer.

5.3.2 Functions and event handlers

In the execution code presented in RssiDetectionC.nc there are a few relevant functions
and event handlers regarding mainly to the cognitive operations. They are all listed as
follows together with a brief description of their duties.

void setChannel(uint16_t chan)

By using the RadioConfig interface the application is able to set a new given chan-
nel at the runtime. In case an error returned by the RadioConfig interface, setChannel
will incide in the channel switching until there is no error returned.
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void Decision(RssiRoot rssi[MAX_NODES][MAX_JAMMERS], bool jammed[], uint16_t

mean[])

The most important function regarding to the cognitive actuation of the application.
This function makes the decision of a possible channel migration regarding to the data
collected along the previous data collection period. If a channel migration is required the
function will call the dissemination services to warn the rest of the network about the
new performing channel and it will call the timer whose handler will call the setChannel

function.

void sendMessage()

By calling this function, a generic message is send towards the root node. The message’s
information is filled with generic fields totally modifiables according to the final purpose.

event void Timer0.fired()

Event handler for the TIMER_0 that only calls the sendMessage function. It also starts
the next TIMER_0 but randomly.

event void Timer1.fired()

Event handler for the TIMER_1 that sets the netsize variable for a later dissemination
of the value. In addition, it starts the TIMER_2.

event void Timer2.fired()

Event handler for the TIMER_2 that simply calls the Decision function.

event void Timer3.fired()

Event handler for the TIMER_3 that calls the setChannel function and starts the new
period of data collection by using the TIMER_2 again.

event void DissChannelValue.changed()

Event handler for a DissChannelValue change, it updates the channel value and starts
the TIMER_3.

event message_t* Receive.receive(message_t* msg, void* payload, uint8_t len)

Event handler for a received message at the root node. Depending on the data payload,
a jammer detection will be reported. It also stores the RSSI data on the RssiRoot struct.
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RF230.h

RF230_TX_PWR_DEFAULT 0

RF230_CHANNEL_DEFAULT 11

RssiDetectionC.h

MAX_CHANNELS 16

MAX_NODES 10

MAX_JAMMERS 50

RssiDetectionC.nc

TIMER_1 10000

TIMER_2 50000

TIMER_3 10000

Table 5.1: Preset values for the global application

Memory required Memory available on the IRIS motes Percent

Flash memory 28758bytes (28kB) 128kB 22%

RAM 5384bytes (5kB) 8kB 66%

Table 5.2: Memory requirements for the global application

event bool Forward.forward(message_t* msg, void* payload, uint8_t len)

Event handler for a received message at a client node. In case of an empty value of the
RSSI the current node will add the information and will return TRUE, indicating that this
message must be forwarded to its final destination, the root node.

5.4 Global application issues

After compiling, the global application is ready to be flashed on the nodes. There is
only a single file to flash and regarding to the ID given to each node the code will assign
the corresponding role. The ID’s of each device must go from 0 to 9 as a maximum defined
for this application, Table 5.1 on page 42. The root node will be the mote flashed with the
ID=0, and it is mandatory the existance of a root node. The rest of the nodes can be the
other ID from 1 to 9 and they have to be ordered.

Again in Table 5.1 on page 42, the default value for the transmission power will be
0 dBm and the default channel is 11. Regarding to the timers, these values have been
assigned in order to assure the correct behaviour at the time of the network formation and
the channel migration. Pressumably, TIMER_3 can present a lower value since the time that
takes to reach consensus while disseminating is not noticeable after testing the application.
Furthermore, the global application to be flashed presented the following memory needs
after compilation, Table 5.2 on page 42. These values can be considered reasonable since
there is some information to store in the device.

5.4.1 Considerations

Due to design issues together with WSNs limitations, a few considerations are exposed
chronologically about the spectrum-efficient architecture for cognitive WSNs presented on
this work as follows:
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• The network size is limited in number of nodes

• The devices offer a limited storage of information for a later process

• The timers’ value must be adapted to the spatial disposition of the network since
longer distances requires more propagation time

• To increase the network, it must be restarted since the new node will start its per-
forming on the default channel and the network is likely to have changed its channel
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Chapter 6

Evaluation

Eventually, a formal evaluation of the implemented code is carried out on the cur-
rent chapter. For the final testing, we have used IRIS motes together with the MIB520
programming board. Regarding to the network topology proposed, we tried to deploy a
generic data collection network with a tree topology imposed by the CTP. Besides, we
distributed the nodes estrategically in order to test the multi-hop feature added to the
application. The final testing took place in a common room, thus, the distances were
short. However, during the programming time the motes range were tested indoor, and
they perform normally with four floors of separation in a regular building.

Therefore, in Figure 6.1 on page 44, a diagram of the distribution is presented. Because
of the disposition of the motes, a few different topologies can occur. Even they are likely
to switch from one to another at runtime because of the variability, constantly mentioned
along the work, of the spectrum conditions. After the network formation, a jamming node
will enter on scene in order to prove the cognitive capabilities of our application. The
mentioned jammer will vary slightly its position while performing.

In the following section, by analizing the event’s log at the root node, we will be able
to compare the final performing conditions of the network with the expected behaviour of
the application.

Figure 6.1: Network distribution during the test
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6.1 Results

Taking a look at the event’s log in Figure 6.2 on page 46, it is easy to state that
the protocol has worked. All the devices are initialized on channel 11, as well as the
jammer mote, and they perform the data collection but, in the meantime, the root node
detects a jammer node interference. Therefore, after the data collection period is finished
the root node decides to migrate the network to the next available channel, that is the
reason why they continue with the data collection at channel 12. After the migration,
no other jammer is reported, at least the jammer with the ID:5 is not longer interfering.
As not being part of the network, the jammer does not interprete the root’s message and,
consequently, it remains at the same channel.

Another remarkable issue, would be the multi-hop behaviour of the network. On the
event’s log there is a field named hopcount that shows the number of hops that the packet
has done until it has reach the final destination. By inspection, one can see that the
number is not constant along the packets with the same source. This fact reinforces the
ability of the continuous communication in spite of either the mobility of the network or the
spectrum variations. However, these topology variations in our results can be atributted
fundamentally to the spatial variation of the jammer node, since its interference can provoke
path modifications due to a failed ACK packet from the parent.

Finally, regarding to the last field, the RSSI received values are shown. These values
suffer a noticeable change when the jammer is switched on, and after the application
migrates the network to the new channel, they return to their previous values. Regarding
to the RSSI values, they are not shown in dBm, and they need obviously to be converted.
Nevertheless, we should take into account the noticeable difference that one can observe
in Figure 6.2 on page 46 between the non-interfered values and the interfered ones, even
without applying the conversion. Hence, our scheme has improved the performance by
bringing the signal levels to the non-interfered values once a jamming device has appeared.
However, the most imporant fact is that all the operations involving this behaviour, have
been done autonomously and without any human supervision, in other words, cognitively.
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Figure 6.2: Root node event log



47

Chapter 7

Conclusions and future work

All along this work, we have introduced the emerging CR techniques, and justified
their application under WSNs due to their low-powered emissions. Furthermore, there is
the envision that in the next years the population of the WSN will increase considerably.
Thus, an extensive development on these networks is required to address the distribution
of the available spectrum for wireless communications. The aim of the already presented
work is to contribute with an adaptive scheme, that is able to coexist with other WSNs.
The design of the application has tried to accomplish with the main features of the WSNs
that may be affected by the application design, such as autonomy, mobility and robustness.
As a result, our proposal does not consume more resources than the expected for a regular
collection protocol, and in the meantime, offers a clear advantage than other similar data
collection applications when another WSN is present.

Through real testing, at the programming time we have debugged the application in
order to obtain the desired behaviour, and we have validate our scheme with favourable
results by testing a real application scenario. The application performs smoothly under
ideal spectrum conditions, and keeps performing fine in spite of a jamming interference,
because of endowing a cognitive behaviour to the existing collection protocol . Hence, the
commitment of this work has been achieved, however, further development on cognitive
schemes is needed. In the next section, a few future working guidelines are suggested.

7.1 Future work

As a first step, our scheme could be complemented by considering the RSSI level at the
receiver as a decision factor. Therefore, our scheme would be sensitive to other interferences
appart from the WSNs. However, in the current devices the RSSI measurement is not
totally reliable and, consequently, a new procedure to characterize the interference has to
be devise. This first actuation, would position the WSNs on a better place since they
would not struggle with other powerful devices and, moreover, they would be intelligently
placed on the best available frequency.
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As a middle step, all technologies that coexist on the ISM band should incorporate a
similiar adaptive scheme as our proposal, although, a standard negotiation protocol un-
derstandable by all the devices, regardless the standard they use, would be necessary as
well. This way, they could arrange the best spectrum disposition for the present commu-
nications by negotiating the utilisation of a certain frequency range, at each moment that
an incoming communication appears.

Finally, as the last step and according to the future challenges of the CR networks,
the mentioned procedure should be extrapolated to all the frequency bands available for
wireless communications. Thus, appart from obviously having more spectrum range to
share, the QoS of certain standards, such as WSN, would be improved since they could
take advantage of the lower losses in the lower frequencies.
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Appendix A

Application code
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Figure A.1: RssiDetection.h

Figure A.2: RssiDetectionC.h



54

Figure A.3: RssiDetectionC.nc
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Figure A.4: RssiDetectionC.nc
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Figure A.5: RssiDetectionC.nc
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Figure A.6: RssiDetectionC.nc
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Figure A.7: RssiDetectionC.nc
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Figure A.8: RssiDetectionAppC.nc


