
Universitat Politecnica de Catalunya
Barcelona

The implementation of an LDPC
decoder in a Network on Chip

 environment

Author : Massimo Camatel
Tutor : Antoni Gelonch

thanks to : Ismael Gomez, Guido Masera, Fabrizio Vacca

In collaboration with
Politecnico di Torino

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons

https://core.ac.uk/display/301208711?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Index

1. Abstract...4
2. Introduction...5

2.1 The Flexible Radio Concept..5
 2.1.1 The Definition of Flexibility..5

2.2 The WiMAX Standard...6
 2.2.1 The WiMAX main features...6

 2.2.2 The WiMAX physical system...7
 2.2.3 The 802.16e standard..8
 2.2.4 The error correction system..9
 2.2.5 Implementation Issues...10

3. LDPC Concepts...11
3.1 Introduction...11
3.2 Detailed Concepts..11
3.3 LDPC Decoder Conceptual Architecture....................................15

 3.3.1 Architecture Needs...15
 3.3.2 Proposed Architecture based on NoC.............................16

 3.3.2.1 The NoC interfaces...17
 3.3.2.2 The Master Control......................................20

4. PHAL Concepts...21
5. Implementation..23

5.1 The PHAL Component..23
 5.1.1 The Time Slot Management...23
 5.1.2 The PHAL Architecture...24
 5.1.3 The FIFO Component..24
 5.1.4 The Deamon Components..25

5.2 LDPC Components: VN, CN..28
 5.2.1 The ASIP Architecture...28

 5.2.1.1 The memory set..28
 5.2.1.2 The pipeline..31
 5.2.1.3 The whole block and the external interfaces........32
 5.2.1.4 The automatically performed instructions............33

 5.2.2 The instruction set..35

2

 5.2.2.1 The main algorithm instructions............................35
 5.2.2.1.1 Create VN..36

 5.2.2.1.2 Send VN...36
 5.2.2.1.3 Create CN...37
 5.2.2.1.4 Send CN...37

 5.2.2.2 Other ASIP instructions...37
 5.2.2.2.1 Charge input...38
 5.2.2.2.2 Send output..38

 5.2.3 The ASIP main assembler program code............................38
 5.2.3.1 The C code and the loading connections up..........39
 5.2.3.2 The core of the program..39

5.3 Tools: LisaTek, Processor Designer, ISE (Xilinx).......................42
 5.3.1 The LisaTek Coware Tool..42

 5.3.1.1 The Processor Designer...42
 5.3.1.2 The Processor Debugger..44
 5.3.1.3 The Processor Generator..45

 5.3.2 The ISE (Xilinx) Tool..45
6. Simulation Scenario and involved Platforms....................................46

6.1 Full Flexible Scenary...46
 6.1.1 Virtualization Requirements...47
 6.1.2 Resource Management...48
 6.1.3 Proposed Virtualized Environment.....................................48
 6.1.4 Current Development Status...50
 6.1.5 ALOE-based flexible LDPC decoder.................................52
6.2 Following the steps for simulation..53
6.3 The Xilinx Virtex-5 Family...54
 6.3.1 The XC5VFX70T component..55

7. Results and Conclusions..57
7.1 The ASIP Resources Occupation...57
7.2 Limitations and future improvements...59
 7.2.1 Parameters Limitations...59
 7.2.2 View to future improvements...60

 8. Appendix A (main.lisa)...62
 9. Appendix B (instructions.lisa)..74
 10. Appendix C (progr_main.asm)...90
 11. Appendix D (progr_main.cmd)..92
 12. Bibliography...93

3

1. Abstract

The proposed project takes origin from a cooperation initiative named NEWCOM++ among
research groups to develop 3G wireless mobile system. This work, in particular, tries to focuse on
the communication errors arising on a message signal characterized by working under WiMAX
802.16e standard. It will be shown how this last wireless generation protocol needs a specific
flexible instrumentation and why an LDPC error correction code suitable in order to respect the
quality restrictions. A chapter will be dedicated to describe, not from a mathematical point of view,
the LDPC algorithm theory and how it can be graphically represented to better organize the
decodification process.

The main objective of this work is to validate the PHAL-concept when addressing a
complex and computationally intensive design like the LDPC encoder/decoder. The expected results
should be both conceptual; identifying the lacks on the PHAL concept when addressing a real
problem; and second to determine the overhead introduced by PHAL in the implementation of a
LDPC decoder.

The mission is to build a NoC (Network on Chip) able to perform the same task of a general
purpose processor, but in less time and with better efficiency, in terms of component flexibility and
throughput. The single element of the network is a basic processor element (PE) formed by the
union of two separated components: a special purpose processor ASIP, the responsible of the input
data LDPC decoding, and the router component PHAL, checking incoming data packets and
scanning the temporization of tasks execution.

Supported by a specific programming tool, the ASIP has been completely designed, from the
architecture resources to the instruction set, through a language like C. Realized in this SystemC
code and converted in VHDL language, it's been synthesized as to fit onto an FPGA of the Xilinx
Virtex-5 family. Although the main purpose regards the making of an application as flexible as
possible, a WiMAX-orientated LDPC implemented on a FPGA saves space and resources, choosing
the one that best suits the project synthesis. This is because encoders and decoders will have to find
room in the communication tools (e.g. modems) as best as possible.

The whole network scenary has been mounted through a Linux application, acting as a
master element. The entire environment will require the use of VPI libraries and components able to
manage the communication protocols and interfacing mechanisms.

4

2. Introduction

2.1 The Flexible Radio Concept
In the mid 80's, began the research of an increasingly efficient mobile communication

technique, a phenomenon that continued to grow during the 90's. At the beginning there were only
wired connections but the potential of wireless communication soon became evident and then,
thanks to the advance of technology, the transmission of information via Wi-Fi became a reality.
Since then, the demand for ever newer and more complex services for the user, required the
implementation of new wireless standards. And these new standards were designed to accomplish
these service requirements, such as higher bit rate/bandwidth and even more strict QoS (Quality of
Service) parameters than the established standards of GSM, GPRS or UMTS.

The new standards have a double purpose; the first objective is to offer better services than
those of wired connections; the second one tries to overcome the WiFi limitations due to its
technological nature by offering these services even in extreme difficult conditions.

A standard, like WiFi or WiMAX, not only has to establish some restrictions and parameters
and manage services for a medium. A very important feature should be to satisfy a wide description
of the equipment needed for installation. Therefore, the most recent standards require a flexible
equipment, which must be able to adapt to different conditions that may occur during their
operation.

2.1.1 The Definition of Flexibility
The definition of flexibility in a radio context is described by four major features that a

device should have. These are the following:

• adaptivity : literally it's the radio system automatic response to some changes in the circuit
behavior by the modification of the numerical value of a set of parameters. This adaptive
reaction is provided by a control feedback over some change-status signals, constantly
monitored, and then by a subsequent action of an arbitrator on a number of signals;

• reconfigurability : it's the ability of reconfigure at a structural or architectural level some of
its modules without causing a significant change to the set of parameters;

• modularity : describes the degree of separation and recombination of components in a
system. All components can be decomposed into smaller sub-systems, faciliting the process
of planning, reviewing and debugging. This way you can also have a better control of the
more complex block, just by making sure that the simpler blocks work correctly separatly;

• scalability : is the property to handle large amounts of work when required and to maximize
by combining with hardware components.

All these features, or at least some of them, are necessary to deal with all the standard
requests and any inconvenience that may arise from the environment.
In fact, every standard has different restrictions and parameters about location of the terminal, its
speed if moving and the quality of the required service. Joining different features services implies
using different standards. If we'd want to apply to different services which exploit different
standards and we are employing a terminal carrying a single standard, we should change machine

5

whenever we must change service.
Furthermore, many services, especially as regards the most recent ones, such as video

streaming and broadcasting or high-speed internet, exploit more than one standard simultaneously
(e.g., WiFi for video, UMTS for voice). For this reason too, the equipment must implement several
standards or a standard flexibility way of thinking.
For this reason, to ensure flexible working and the means to support the services is something must
be done. Every component related to the WiMAX technology must implement a flexible
architecture or, such as in our case, a flexible processing algorithm, that could work with differentt
codes or in different working conditions.
Finally, the speed rate of innovations in wireless standards requires an improvement of equipment
capacity, through the upgrading of new software and various applications.

2.2 The WiMAX standard
In the new generation standard, we focused on the WiMAX, a technology for transmitting

wireless network, based on the IEEE 802.16 standard. This is not a new technology, besides is a
more innovative and commercially viable adaptation of a technology already in use to deliver
broadband wireless services in private facilities around the globe.

It's very important for the components making part of the WiMAX equipment to respect the
flexibility characteristic, since this standard will provide many new services in the most extreme
conditions, like, as it'll be shown, the high-speed mobil connection (for a standard extension) and
the connections in presence of particular kind of obstacles. In addition to that, since the nature of
WiMAX wireless communication system is based on broadband signals, the connection of several
users and lots of working transactions will be performed, increasing network traffic and requiring
an efficient routing device.

WiMAX standard has the advantage of allowing a wireless connection between a Base
Transceiver Station (BTS) and thousands of receiver points without requiring a direct line of sight
(NLOS, Non Line Of Sight). Actually, WiMAX can overcome only small barriers, such as trees or
buildings, although the supply of bandwidth turns out to be limited to 20 Mbit/s. It will never be
able to overcome hills or mountains.

It can be used within a wide range of plane territories such as metropolitan areas, where it
could reach the 70 Mbit/s throughput. Indeed, when the standard was developped it was thought
that the transmission of broadband could reach the distance of 50 Km. But the amount of tests
carried out revealed that, at the frequency of 3.5 GHz, the performance was acceptable only through
few kilometres, before it started to lose efficiency. Neverthless, it's important to remember that the
transmission power used (the EIRP, Equivalent Isotropically Radiated Power) during the
experiments was limited to the value of 36 dBm, i.e. 4 Watts. In any case the network's coverage
can be considered efficient enough.

2.2.1 The WiMAX main features
The main advantages making the WiMAX technology a very competitive hope for the

foreseeable future in the wireless communication environment, can be sumed up as:

• flexibility : as the definition of flexibility assures, it's the ability of adaptation of a device
or environment against a change of the whole system conditions. Or in other words, the
ability to work under different working conditions or parameters;

6

• security : provides models of encryption, authentication services and security guarantees;
• quality of service : it's measured. The QoS parameters are latency, jitter and packet loss

numerical coefficients. The WiMAX presents very low latency across the wireless span
(many has less then 10 milliseconds), but also jitter tolerance and low percentage of packet
loss;

• throughput : the IEEE 802.16 modulation system can transport a large amount of
network traffic with high spectrum efficiency and excellent tolerance to reflected signals;

• installation : only a simple antenna is required for the basic equipment;
• interoperability : since WiMAX is a standard, it is independent from the apparatus or

the provider;
• mobility : because of the 802.16e standard, the connections are available even on mobile

environment at 120 Km/h;
• cost/coverage ratio : the economy scale of components production, in addition to the

open character of the standard allows the cost reduction with the implementation of a high-
speed bandwidth;

• NLOS (not line of sight) : initially, the particular modulation performed in the
WiMAX standard was used to create a wireless connection between two points that are not
exactly having a direct contact sight, but within a parcially obstructed environment.
Actually, some experiments revealed the decrease of bandwidth and performance: only with
the advent of the 802.16e standard, the efficiency in this exceptional situation has improved,
though less than expected.

These and other potential of the WiMAX brought this new technology to be used in many other
fields, such as Wi-Fi hotspots connection, xDSL technology and mobile phone high velocity
services and connection.

2.2.2 The WiMAX physical system
A WiMAX 802.16 standard network is simply made of 3 elements:

• Base Station (BS) : this fixed wireless station receiver, amplifies and retransmits the
signals coming from other stations faraway;

• Subscriber Station (SS) : it's connected to one Base Station, with which exchanges data
signal;

• Terminal Equipment (TE) : it's the final apparatus, by which the user is connected to the
network and is able to send/receive messages.

An example of how the WiMAX network works is shown in the picture below.

7

The Base Station represents the gateway allowing all the users connection to the WiMAX network:
it provides coverage to all the Subscriber Stations in their area of influence and manages the traffic
to and from these. The Terminal Equipment (e.g., a personal computer) is connected to the
Subscriber Station to deliver it via packet traffic to the Base Station that will care to send it to the
final recipient.

The biggest rival technologies, we may compare the WiMAX with, are the 3G systems, such
as UMTS and CDMA2000. The WiMAX appears to be superior to the previously cited technologies
in speed of transmission and range of cell coverage.
For all practical purposes, a conflict has no reason to exist because WiMAX is designed to connect
distant points between them, with applications as external networks that have great coverage
through licensed spectrum, while on the other hand Wi-Fi has a short range (like ten meters) with no
licensed spectrum, suitable only for providing a good service for a local home network.

2.2.3 The 802.16e standard
The standard 802.16e was born in october 2005 to give the possibility of a mobile

connection. According to the characteristics mentioned in the IEEE package documentation, this
standard should help mantain the connection, while sending and receiving information, of a
terminal moving up to a speed of 120 Km/h.
Basically they can be resumed as:

• band coverage of radio frequencies (2.3 GHz – 2.5 GHz – 3.3 GHz – 3.5 GHz – 3.8 GHz);
• a multiple acces OFDM (Orthogonal Frecuency Division Multiplexing) modulation

splits the spaces of frecuency in several sub-carriers, reducing the interferences for terminals
with omnidirectionals antennas;

• occupation channels scalability in order of disponibility of band;
• better handover management, i.e. the passage of a terminal from a base station to another

holding the connection;
• roaming management.

Besides all the equipments and fixed stations already showed, the mobile 802.16e standard is
provide of others apparatus, as:

• Access Service Network Gateway (ASN GW) : it's the network equipment assembled
with all the base stations in the coverage area. It controls the authentication functionality,
managing the QoS parameters, besides of dealing with the accounting procedures and
holding the encryption keys. It's in charge of the mobile IP registration, so it's mandatory for
a terminal moving through different base stations be furnished with this apparatus;

• Home Agent Mobile IP (HA) : it supports the mobility of a terminal through differents
ASN GW and the IP address changing;

• AAA server : the authentication server AAA realizes the authentication of the user through
username and password or smartcard to complete the connection operations.

All these features should allow a terminal on a moving vehicle to keep the connection, as we said,
up to a speed of around 120 km/h, limited by the constraints of the handover protocol under the
QoS (Quality of Service) range. Indeed, exceeded the speed limit, the power of signal and signal to
noise ratio no longer meet the requirements of quality, resulting in the inmediate disconnection of
the terminal.

8

This leads to an handicap of the WiMAX for a user traveling at a higher speed (like on a high-speed
train); at least until the improvement of IEEE 802.16 standard parameters, such as technic of
modulation, bandwidth and others features of transmissing channels.

2.2.4 The error correction system
An essential service for the transmission that must be considered and developed as best as

possible is the error correction system. Through a wireless connection, it's likely that data is
corrupted and the information received is different from the original broadcast. The channel
introduces errors in the information bits and the WiMAX technology has to manage a system to
correct as much errors as possible, because it's not able to control the communication channel.
That's true for every kind of communication technologies already in use. But since WiMAX
exploits services requiring a very high quality of service, it must implement a very
efficientcoding/decoding error correction system.
For that reason, redundancy of no-information bits is introduced in the information words and at the
time of transmitting and receiving a decoder block uses this redundancy to correct errors.

Hence, the standard suggests the use of the following coding methods:

• Convolutional Code (CC);
• Convolutional Turbo Code (CTC);
• Low-Density Parity-Check (LDPC).

CC is now considered obsolete for the applications requiring high performances, where the CTC
and LDPC codes are used. However, the complexity of CTC and LDPC codes is much higher then
the CC codes, which makes it suitable for small applications where benefits are not so strict
parameters.

Within the category of high-performance codes, the LDPC is, without doubts, the best
choise, since there are many advantages that lead over CTC. First of all, they are characterized by
the need of a fewer amount of resources, for the same quality of encoding/decoding operations, and
thus a smaller amount of area occupied. Furthermore, carrying large quantities of information,
LDPC shows the greatest encoding codeword lenght, up to 2304 bits compared to 960 bits of the
CTC.

The LDPC code is based on the use of SISO (Soft-Input Soft-Output) decoders, that differ in
many aspects from the oldest ECC (Error-Correcting Control) decoders. Indeed, the ECC system
implements a low complexity to achieve high code rate. SISO decoders have probabilistic inputs
and outputs, rather than bit frames, which forces the use of digital signal processing (DSP) to obtain
useful information, resulting in greater complexity; nevertheless, they gain in code rate over the
ECCs.

The DSP used for the decoding operations implements a passing iterative algorithm, a
powerful error correction method for an improvement in bit error rate. Basically, this type of
algorithm receives an encoded input as a frame of bit with a certain amount of redundancy.
Therefore, this is used to create some messages that are internally exchanged between two sets of
processing elements, called nodes; these instruments should be implemented in a software or a
hardware. The nodes are the representation of the raw and columns of the parity check matrix used
to create the code word from the original message. The exchanging of messages and the parity
control done by the nodes allow to correct the errors in the code word and to extract the original
message.
Hardware implementation implies that the nodes would be single blocks able to receive messages

9

from the other ones, process the data and eventually return them to the other nodes. In addition,
since the work of the two sets must be fully separated, there should be a control unit, as a FSM
(Finite State Machine) controlling and determining the temporization.

2.2.5 Implementation Issues
There are several ways to implement the LDPC decoder. All these methodologies have their

pros and cons. There are already several solutions to the problem of LDPC decoding, each one
using different technologies and different approximations. As will be discussed in the concluding
part, some devices of the state-of-the-art, thought reaching excellent performances, completely lost
for what concerns the characteristic of flexibility, in this case regarded as the ability for the decoder
to obtain the original information by working with different LDPC codes.
In the project carried out, the importance of the characteristic of flexibility for the LDPC decoder is
likely to influence the choice of hardware platform. Thus a preferred software solution is not so
much a question of resources available: the algorithm structure becomes suitable to changes of the
LDPC code.

The software solution, that's been adopted in this project, consists in writing a code
dedicated to implement the LDPC algorithm. But in this way, the resources involved would no
longer be controlled, at least not with the normal high level programming languages, such as C or
C++. However, through the use of particular types of languages, such as the SystemC programming
language, this is made possible.
The processor chosen to perform the passing iterative algorithm of the LDPC code is a special
instruction set one, hence able to perform only a specific program code. This so called ASIP, is not
meant to be for general purpose use, since the instructions, although their assembler nature, are
created ad-hoc. The ASIPs are used to improve performance for a very specific application.
By the SystemC language, which is a mixture between C and the assembler code, it's performed the
implementation of a dedicated assembler instruction set into the ASIP processor, customized for our
purposes, in a language like C. These instructions will be executed into the main code program of
the processor, the one that will represent the algorithm. Not only the instructions are implemented
by the user, but every other resource in the processor is declared there, in order to avoid wastage of
memory area.

The LDPC algorithm created in the software way, implemented on the program main code
of an ASIP approach solution, is the better choice in order of efficiency and performance. As the
number of processant nodes is relevant, in case it meants to share the nodes between different
ASIPs, it will be necessary to foresee some routing operation into the ASIP instruction set.
Therefore, to avoid too much work to the ASIP and mantain it effective for the algorithm purpose, it
should be associated with a component managing the communications with the outside world, the
PHAL. The PHAL would help the ASIP to perform the Tanner graph node operations by
synchronize the steps and managing the messages delivering.

The whole LDPC encoding system will be a network of Processor Elements (PE), formed by
the union of ASIP and PHAL, a so called Network on Chip (NoC).

10

3 LDPC Concepts

3.1 Introduction
The LDPC codes (Low-Density Parity-Check) are particular linear corrector block codes,

used to correct errors of bit information transmission through channels of communication.
The name means that the code is based on a little distribution of 1's in his parity check matrix H; in
other words, this matrix has a very small number of 1's in each row and column respect to the
number of 0's.

This type of code was invented in 1960 by Robert Gallager during his doctorate, but since it
required a computation of great complexity and since in the same years the Reed-Solomon codes,
considered very suitable for error control coding, came out, the LDPC code remained unused for
long time. Only from 1998, thanks to MacKay and Richardson/Urbanke the potentiality of this
instrument was rediscovered and it began to get used for control purposes.

3.2 Detailed Concepts
The main feature of the code is the H matrix; it's been said that it has very few 1's, so if it's

possible to say that H is a matrix nxm, it has a number of Wc 1's per raws and Wr 0's per columns,
where

Wc << n Wr << m

If the number of 1's in the columns and in the rows is constant, the code is regular, whether it's
irregular if not.

An LDPC code is always managed starting from its H matrix, by which its manipulation it's
possible to reach the generator matrix G, that permits the creation of coded informations. In fact,
merging the H matrix, this is representable as

H = [PT | I]

and then it's easy to obtein the generator matrix G as

G = [I | P]

Therefore, using this one, the coding phase of the LDPC code involves multiplying the original
message for the matrix to obtein the coded message to send:

c = xG

like all the corrector codes that add redundancy; x is the message to codify and c the encoded
message to send. Since the encoding operation add some bits to better control the correction of
errors, the encoded message c is bigger than the original one x; so if for example x is of 3 bits and
the encoding adds 3 bits, making c of 6 bits, the code will be a (6, 3) one, ie with a ½ code rate.
In the presented case, the LDPC decode is performed with a (2304, 1152) code, so it can be said
that the code doubles the number of bits of information, with the same type of ½ code rate.

11

Basically there are two manner to describe this kind of code; one is the previous matrix
representation, that's quite heavy having to manage very big matrices, being a 1152x2304.
The other better way is a graphical representation. This is based upon a bipartite graph called
Tanner Graph. The reason of the name is that the graph is organized in two sets of nodes and each
node can be connected only to a node of the other set; the sets are

• Variable Nodes (VN) : N nodes that represent the N bits of a codeword;
• Check Nodes (CN) : M nodes that implement the parity-check calculation.

A VN node can be connected only with others CN nodes and a CN node only with others
VN nodes. The connection among them and their number depends from the H matrix: in fact, there
are m VN nodes, as the number of columns in the H matrix and n CN nodes, as the number of rows.
There's a directly correspondence with the previous matrix representation because the previous (6,
3) code, for example, would be implemented through 6 Variable Nodes and 3 Check Nodes; so the
same for ASIP approach to the LDPC decoding, will be implemented 2304 VN nodes and 1152 CN
nodes.

A connection between the i-th VN node and the j-th CN node exists only if the bit in the H matrix at
the i-th column and j-th raw is 1:

VN(i) ↔ CN(j) if H(i, j) = 1

Here it's possible to see an example of Tanner Graph, although it's not a perfect example of “low
density” because of the little size of the H matrix, that should be larger to respect the definition.

How it's shown, there are two groups of nodes; 4 CN nodes, as the number of rows and 6 VNs as
the number of columns. And there's a connection between nodes CN and VN depending on the H
matrix: CN0, representing the first row, is connected to VN1, VN3 and VN4 because in those

12

H =

0 1 0 1 1 0
1 1 1 0 0 1
0 0 1 0 0 1
1 0 0 1 1 0

columns of H, representing the VN nodes, there are 1's, while in the first column, for example
(VN0), there's a 0 and so CN0 is not connected to VN0.
Finally, the CNs have a different number of VNs connected to its (CN0 to three VNs, CN1 to four
VNs, CN2 to two VNs, …) so this code is not a regular one.

What it's of most importance for the project aim, it's the LDPC decoding operation, by
which, from a coded message, the original message transmitted must be extracted. There are many
possible executable algorithms for that purpose, but the better onewhich is the considered on this
work, is the Message Passing Algorithm. This process is based upon the continuos exchange of
messages between the two sets of nodes connected to each others; the nodes are seen as
computational points able to manipulate, and then send, data received in the previous phase, stored
in appropriated cells of memories. The computational and sending operation phase of a group of
node must be strictly separated from the other set one.

The VN nodes contain the original information, the LLR (Log-Likelihood Ratio) input as a
logarithmic representation of the encoded bit. Every time space, in its computational phase, each
Vnj node, generate a message Qji for every CNi connected to and a unique output to be stored in the
memory, using all the messages previously received from the CNs:

outputj
[k] = λj + ΣRlj

[k-1]

Qji[k] = λj + Σ(Rlj
[k-1])- Rij

[k-1]

where λj is the LLR input of the Vnj node and l represent the index of all the CN nodes connected to
the node VNj. Here's indicated the k iteration and k-1 represent the previous one.
So the output data for a node VNj is calculated as the sum of its λj input and of all the Rij messages
previously received from all the CNi nodes connected to its.
On the other hand, the Qji message for one CNi is the sum of the λj input plus all the Rij messages,
except the one received from the CNi to which the message is directed.

During the following stage of the process, every CNi node will have been received all the Qβi

messages from the VNs; when the computational step will begin it'll elaborate the Rij next messages
to deliver to each VNj connected to it, performed as follows

Rij
[k] = ѱ-1[Pi – ѱ(Qji

[k-1])] where Pi = Σ(ѱ(Qβi
[k-1]))

As well as the VN node one, the CN message depends on the sum of all the previously received
messages except for the one come from the VN node the message is directed too. But still, now a
non linear function is involved, that makes all more difficult. ѱ(x) is a non-linear, non-limited
function defined as:

() ()
()
1

ln(tanh) ln
2 1

x

x

ex
x

e
ψ

−

−

+
= − =

−

Working with this function carries a lot of mathematical problems and makes the processor much
more complex and heavy. Since the complexity of this function, a lot of approximations have been
developed. For this implementation, the minsum approximation will be used, that simply consider
the least one among all the Qβi messages received, except the one Qji previously received from the
VNj to which the message is directed:

13

Rij
[k] = minβ/j |Qβi

[k-1]|

That's clearly the simpliest approssimation might be used.

Summarily, the LDPC algorithm here implemented is composed by two different and
sequential phases and it's for that reason called Two Phases Message Passing (TPMP) algorithm
too:

1. firstly, all the VN nodes send the first message, composed only by the LLR inputs, to all the
CNs connected to them;

2. the CN nodes, having received the Q messages from the VN nodes, elaborate the data and
create an R message for each VN connected to them, then send it to all the VN nodes;

3. the VN nodes, having received the R messages from the CN nodes, combine the data with
the input associated to each one creating the output, that will be stored in a dedicated
memory, and new Q messages to send to all the CN nodes;

4. the process follows at point 2.

All the enumerated phases must be fully separated without overlapping, to ensure the correct
execution of the algorithm.
This exchanging mechanism continues till the convergency of the algorithm and so the correction of
the data input. Sometimes the convergency is puntual, so after a number more or less big of
iterations, the result will arrive at a unique solution; other times the convergency is asymptotic, so
the result oscillates between two values. In this case is sufficient to let the algorithm execute for a
large time and then to take the obteined result.

At the end of the iterations, the Message Passing performs a large amount of data output,
since the precision used for the ecoded bit is a 6-bits data information cell for each VN, i.e. 2304
bytes for WiMAX case. In fact, the encoded bit contained in the VN node is represented as the sign
bit (the most significative one) in a 6-bit data information format.
Finally, when all the obteined 2304 bits are taken out, it's mandatory to remember that the nature of
the LDPC code is a (2304, 1152) one: from the encoded 2304 bits will be obtain 1152 bits of
decoded information, by multipling them with the H matrix:

x = cH

it's easy to demontrate this relationship. Therefore, the encoded message came from multipling the x
message with the generator matrix G (c = xG), so to come back to x from the code c it's necessary
to reverse the G matrix,

G = [I | P] =>(-1) [PT | I] = H

and the reverse of G is the H parity-check matrix.

14

3.3 LDPC Decoder Conceptual Architecture

3.3.1 Architecture needs
Once studied the Message Passing algorithm that exploits the Tanner graph, the approach

that should be applied to solving the problem must be specified. In the case of a hardware approach
to the graph, then by using the physical creation of its nodes and interconnections between them, the
number of resources would be very substantial, given the size of the matrix H. The project was
thought by a software approach, in which the nodes are not physically built into the architecture.

What is needed in the architecture of the processor ASIP thus depends on the particular
variety of tasks performed. It is seen as the Message Passing algorithm performs calculations
internally to nodes, such as sending and receiving packets of data, creation of output and processing
input data.

Regarding the management of data packets, this function is performed entirely by the
component PHAL, which should be composed of multiple functional blocks, because it also has
other tasks: the package management control and synchronization, mapping of the network, ...

The ASIP, however, will be responsible for receiving and storing messages contained in the
packages into dedicated memory. Since the approach focuses on flexibility, as mentioned above, the
nodes contained inside the ASIP can be anyone, thus they're not tied to a single array H. The ASIP
will receive and send packets with data and indications of the source node and destination node,
which will interpret to deposit it in different memories depending on the buffer fields and algorithm
step.
Will then be needed, apart from a program memory in which to store the main program that
performs the Message Passing algorithm, other memories as separate. Besides this, of course, the
architecture of the parallel type is provided, then served by a system of pipelines. Several buffers
will be used to temporarily contain the input or output or for purpose of calculation. For the
messages calculation will be necessary to use an arithmetic logic structure, in this context having
the form of a DSP (Digital Signal Processing) located inside the platform.

LDPC algorithm
functionalities

Processor Involved Architecture Resource

Control and synchronization
packages management

PHAL
FIFOs, ALU

Network mapping PHAL FIFOs, ALU

Message packages forwarding PHAL FIFOs, ALU

Creation messages by data
messages and data input
elaboration

ASIP
Memories, buses, temporary
registers, DSP

Creation output
ASIP

Memories, buses, temporary
registers, DSP

Algorithm code flow
ASIP

Program Memory, program
memory bus, pipeline,
customized instruction set

FIFO-based communications ASIP, PHAL FIFO-based interfaces

15

Therefore, in summary, the feature set provided by each processor element (PE) of the
network, divided for PHAL and ASIP, as the LDPC decoding algorithm has been thought, is
composed by all the components shown in the table above.

The PHAL component only needs of several FIFO where to store the incoming packets and
an ALU system, because it has only to check the fields of the buffer to interpret, thus to forward it
through the correct destination. Was chosen to use a standard FIFO-based communication system
made of data buses and control signal for comfort of use: its operation will be explained later.

The ASIP has much more duties and responsabilities into the LDPC decodification, since it
must keep memory of the incoming messages to then process them and create new messages and
output. So it will need several memories where to store data messages and the origin/destination
nodes information and DSPs to perform calculations. Finally, since the Message Passing algorithm
is exploited through an assembler instruction set code, must be given an extra memory where to
save the code and a set of instructions that performs the algorithm.

3.3.2 Proposed Architecture based on NoCs
The Message Passing algorithm operations, the LDPC decoder requires, are very heavy to

support. This depends on the fact that a large amount of data must be elaborated: the H matrix of the
WiMAX case is 1152x2304, so the Tanner Graph system needs 2304 VN nodes and 1152 CN nodes.
By using a single processor element to perform the algorithm, all the nodes should be allocated in
only one component. This approach would occupy a great bandwidth and a lot of resources, with
the consequence to be very slow and to consume a lot of energy.
The idea is to split the nodes among more processors ASIP, as reduce the complexity and the power
consumption (joined to the time of execution) of each one. There will be no longer a unique
Processor Element (PE) but different PEs connected in a dedicated network, or a Network on Chip
(NoC). In advance, this would be a specific NoC, because the protocol of communication and the
performed operations are specific for the LDPC decoding algorithm aim, becoming an ASNoC
(Application Specific NoC).

The entire structure can be illustrated like an all-connected network of equal elements in the
figure below.

16

The network is composed by 4 PE interconnected each others by 2 pair of buses, including a 32-bit
word through which the data will be delivered plus some singol bit control signals. All the
components have a unique clock, distributed by an external Linux master controller that delivers its
control message packets via synchronization and control interfaces.
Every PE is formed by the union of 2 separeted components, as already said: one ASIP, that
contains a part of VN nodes and a part of CN nodes and it's responsible of the calculation tasks and
output storing; one PHAL, a processor working as a router, whose duty is to deliver messages and
to manage packets through the network.

3.3.2.1 The NoC interfaces
The PHAL is the only part of the PE responsible to communicate with the ASIP and with all

the others processor PHALs; a simple scheme is shown in figure below.
Every ASIP has 3 interfaces with its PHAL, one for each PE to which the message can be delivered;
in this manner, the PHAL can be built with an easier logic, since it automatical knows that if a word
came from a virtual interface (the connection ASIP-PHAL), it must be sent to a particular output
interface (the conection PHAL-PHAL). Hence the PHAL needs only a simple routing map
associating one virtual interface with one and only one data output interface.

There are different type of interfaces; indeed, there's an interface ASIP-PHAL, one ASIP-
Linux, a PHAL-PHAL interface and a PHAL-Linux one.
Every interface as a behaviour different from the others but the common thing is that each one is
made of two 32-bits word bus data, one for the input and one for the output, plus four control
signal, two for each data bus (one empty-fifo controller and one read-enable for the output plus a
fifo-full controller and a write-enable for the input).

The distinction between the interfaces depends on how these signals affect the logic of each
component.
Before to explain the way of working of the different interfaces is important to describe the storing
method. The ASIP interfaces aren't fifo register systems; they don't have temporary registers where
to store information packets to deliver, because they process the arriving data and they need it for a
longer time. Because of that, they have several memories where to store data bytes. Instead, every

17

PHAL has a complex fifo interface system: two fifos (one for input and one for output) for data
packets to and from each ASIP interface; one input fifo for the data arriving from other PEs; two
fifos for the control and two fifos for the synchronization interfaces.
Let's see all:

• ASIP-PHAL : the ASIP doesn't have fifos, so it has to store the input data directly in
memory; similarly, when it has data to send, it must throw it out immediately. So, the PHAL
must have two fifos where to store data temporarly.

If the ASIP needs to send data, looking the fifo full control signal from the PHAL output fifo
for that it doesn't get filled, it set the write enable and put the word in the output 32-bit bus.
Meanwhile, when the PHAL input fifo contains some data word for the ASIP, it puts low the
empty fifo control signal; in that manner, the ASIP will know that there's some data to
adquire. By settin the read enable control signal it will get the word to be stored in its
memory.

• PHAL-PHAL : two PEs exchange data word informations through its PHAL. Since the
operationws are managed by only one FSM each component, when data's arriving it might
be performing other tasks. For that, it's fitted with an input fifo, so that the output data can
be throw out anytime it's desired: although the PHAL is doing other tasks and it can't look at
the input interfaces, incoming data is stored in the fifo registers and the PHAL will check the
packet later, when it'll have time to do it.

The signals are the same but are managed in a different way. The data sending out is
performed by each PHAL as the ASIP does: it throws out words through the 32-bit data out
bus and setting the write enable, checking the fifo doesn't get filled. But for the reading
phase, the PHAL doesn't look at the control input signals. In fact, the PHALinput interface
has an incorporated fifo working alone, storing data input in its registers. The PHAL looks
directly at its empty fifo signal to obtein incoming packets.

18

• ASIP-Linux : between each ASIP and the Linux Controller, there's a particular
communication chanel (virtual interface 0) dedicated to the exchange of initialization and
final information data packets. In this case, in which the initialization is performed statically,
this interface is used only by the ASIP sending the output data words to the Linux
Controller at the end of the LDPC decoding iterations.

When the ASIP arrives at the last operation step, delivering out the algorithm results, it
sends to the Linux Controller the data in as well as all the other interfaces, through a 32-bit
width bus and setting the write enable.

• PHAL-Linux : the aim of the PHAL is primarly to monitor the correct execution of every
process task. It has to receive orders from the master and report the status of the algorithm,
so it needs two interfaces to the Linux Controller, one to and one from that.
In advance, the synchronization Deamon in the PHAL needs a periodical communication
with its master, to request the correct time and synchronize it to one unique time clock; so it
needs two more interfaces to the Linux Controller.

The Linux master controller has to face with many duties and tasks. It will not be always
able to check incoming pakcets form the PEs. Therefore, the ideal way of exchanging
information is that the master could decide each time when do adquire the informations
contained in the PHAL fifos by controlling the fifo full signals. Each PHAL will store data
in an output fifo connected to the master and input data information form the master will be
stored in an input fifo internal the PHAL component. In total, the PHAL, with two register
fifos for control operations and two for synchronization operations, will be able to manage
all the communications with the master control.
The Linux Controller is directly controlling the exchanging performance with the PHAL,
while this is only concern of watching constantly at the fifo input and charging the fifo
output with data to throw out.

19

3.3.2.2 The Master Control
Theoretically, one of the four PE should act as the master, ie set a master clock time to

synchronize all the other elements and manage the execution orders of the LDPC algorithm. In
practice, as the NoC has been implemented with all-similar PEs, neither of the processing elements
has the power to influence the instruction flow. The role of arbiter is played by an external Linux-
based controller inglobing all the network and acting for the components from an higher point of
view.

Communicating rather with the PHAL then the ASIP, it requires the commands to manage
the execution by delivering some information packets to each PHAL. So the Linux external
controller take in charge when loading the applications onto the ASIPs, when beginning the
initialization procedure and running up. Eventually, as the figure of a user, it makes the LDPC
algorithm converging, establishing how much time slot cycles are necessary for the error correction
system.

The only real function dedicated to the PHAL is the time slot division, being up to this
component setting the ENABLE time slot signal to the ASIP. Actually, the time slot duration has
been previously decided by the PHAL code programmer.
There might be a future improving implementation. One another possibility, in fact, could be that
the Linux (like any other) master controller, during the initialization phase send to each PHAL the
time slot duration required by the LDCP complexity. Other still better solution could be to make it
flexible, i.e. let the PHAL change the time slot duration value. With an additional part, the PHAL
could check if all messages are sent in time before the beginning of the next time slot, and so to
lengthen or to shorten this time dinamically.

It'll be explained, in later chapters, as the external control relies on VPI libraries to function
and to communicate with the various elements of the network.

20

4 PHAL Concepts

The PHAL concept tries to address the main issues related with the Software Radio technology. It
assumes the need of supporting reconfiguration of the radio processing chain, the need to deploy the
radio application onto a heterogeneous hardware platform capable to assume the high computing
requirements of modern wireless systems, the need to assure strong real-time execution constraints,
the need to easily develop and integrate software modules and the possibility to execute them in
different types of processors assuming an easy portability.

One of the most relevant objectives in the process of defining a common framework to
develop and deploy software radio applications is to eliminate platform (hardware and support
software) dependencies. On the other hand, radio applications are built through a set of software
modules (hardware or software based) that communicates among them. The common used terms
denominates such modules as “objects”. Therefore each one of such objects are signal processing
blocks, some of them with important requirements in terms of computing resources, that needs to
acquire/deliver information from/to other objects through proper interfaces. Nevertheless, one of the
most relevant assumptions of PHAL-OE is that such interfaces between objects are unknown at
object development time. Only at execution time all the required objects will be integrated and the
entire radio application will be built.

All these objectives have pushed us to define and develop a multi-platform software
abstraction layer and execution environment, ALOE (Abstraction Layer & Operating Environment),
capable to provide such features. The list of the main functionalities where the PHAL-OE must
provide support on includes:

• Flexibility : the framework must efficiently implement the flexibility concept required by
SDR. It is assumed to be based in the capacity to facilitate the reconfiguration as the basic
mechanism providing flexibility;

• Execution control management : the coordinated execution of the whole system must be
assured;

• Hide the platform heterogeneity to the radio application : abstraction layers are required
are basic mechanisms to provide such feature;

• Computing resource management : under a scenario with limited computing resources the
need of a specific mechanism to manage the available resources promotes the efficiency in
the whole system and extends its interactions with the radio resources management part. In
addition it is capable to assure the overcoming of the real-time constraints;

• Data packet oriented messaging: not processor (device) oriented communication
mechanisms. Data packet oriented communication network among the heterogeneous
processors is built;

• Parameter or variable (signals) evolution capture during the execution of the application;

• Processing resource parameters evolution captured for autonomous management or
control;

• Auto-learning/cognitive capabilities for the internal resource management can be easily
incorporated;

• Support to the Cognitive Radio strategies thanks to the capacity to capture, in a

21

coordinated way, relevant information from different layers of the radio and computing
system;

Previouse figure tries to illustrate the PHAL-OE concept. On the bottom we can see the
Hardware Layer where we can found several processors or Processing Elements (PE) physically
interconnected among them. On top of the figure we can see the Abstract Application Layer where a
graph of a radio application tries to define the required tasks (objects) and the data flow among
them. In the Real Application Layer we can see the previous tasks but using the services or
functionalities provided by PHAL-OE to build coherently the radio application. On the PHAL-OE
Layer we observe that from the point of view of the tasks (objects) conforming the radio application
all them only see the same platform, the PHAL-OE Platform, not being aware of any detail related
with the hardware. On such layer, but from the hardware point of view, we can find the specific
implementation of the PHAL-OE functions for each one of the processors used to build the entire
Hardware Layer.

22

5 Implementation

5.1 The PHAL Component
Let's focus on this section of the whole PE. The PHAL component is the peripheral part of

the Processing Element or it can be better considered as the interface between the ASIP (ie the real
processing part) and the external world. Indeed, it's basically responsible of the routing operations,
since it controls the packet traffic to and from the ASIP component, and so permitting the data
exchanging through the entire network.
Plus, the PHAL has the duty to manage the control and synchronization packets coming from a
master that's been controlling the LDPC decoding operation: if the entire system was a network
made of several elements, it would have to control and synchronize it.

5.1.1 The Time Slot Management
As it's been said, each ASIP in the PE must be able to execute the VN node operations and

the CN operations alternatively. Since the two operations must be performed separately, it's
mandatory to implement a time slot, in which each operation node phase is alternately executed
without overlapping: for this reason, the PHAL has a timer inside that scan the enable execution
time of each operation.

Each time slot, the ASIP, alternately, performs the node operation (Variable or Check) as a
calculation phase and then sends all the messages created through its data interfaces. The associated
PHAL gets these messages and delivers it into the network.

The time slot must be calculated for there will be time enough to perform the node
calculation and sending operations. In fact, at the beginning of the next time slot and so of another
calculation step, all the data must already be arrived to destination and stored in memory.
The PHAL, following the master directive, worries that its ASIP does its job and does it in a
resonable time; it controls the change of status of the ASIP and the time partitioning of all the
system, including the time slots.

23

5.1.2 The PHAL Architecture
Unlike the ASIP, that’s a SystemC code based processor, the PHAL has been created using

the VHDL hardware code (Vhsic Hardware Description Language). That’s because this part wasn’t
thought to be too large, being only a router component and the idea of using an ASIP-like
microprocessor, with dedicated resources and instructions, seemed a waste of space.
On the contrary, a VHDL-based architecture allows to have a FSM with very few resources and the
possibility to join different pieces; finally, all the component is implementable on a FPGA board
with the characteristics shown in the table below:

Number of Registers 9193

Number of Look Up Table 6561

Number of IOs 583

Minimum Clock Period 4.828 ns

Maximum Frequency 207.108 MHz

It's possible to see in the figure in the following pages that the whole PHAL system is
formed by the union of different blocks joined together to perform all the basic communication and
control tasks. The fundamental idea is the modularity feature, hence the possibility to add or remove
blocks, adding operations (such as the statistical one) or removing its from the scenario. There's no
danger of signal conflicts because each input/output and each register is managed by only one block
at a time.

A block unit is thought to act as a Deamon, performing a specific task and aim, capable to
control only a part of the input/output signals and of the resources, but responsible of an entire
process. They’re composed, each one in a different way, by a finite state machine (FSM) having the
role of signal managing, data processing and output delivering. The interface mechanism of each
Deamon block is fifo-based: all the signals moving through the network from or to other Processing
Elements are stored in fifo registers controlled by the FSM in each block through the signals in the
fifos. The number of fifos and kind of interchanging between blocks will be discussed in an other
chapter.

5.1.3 The FIFO Component
The fifos used in the PHAL component belong to the same model, with the same mode of

function. The main shape of this component is shown in a figure of the next page.
The considered component is more then a fifo, because it manages a real complex storing function.
It's composed mainly by a parallel-in-parallel-out collection of registers, in the format of 32-bits
words. There's only one clock signal entering, so that it's completely synchronous, with the same
temporization for the Writing process and for the Reading process. It has an asynchronous reset
input, connected to the outsider general reset that clean all the registers and set its to an all-zeros
value. Plus, even if not essential, it's performed an enable input that actives the fifo when pulled at a
high level.
For the operations of writing and reading, the system manages the parallel data input and the
parallel data output (of a word dimension) with a write enable and a read enable and two others wire
reporting the state of the fifo (full in one case and empty in the other one).

When the write enable is pulled up, the fifo block gets the word that finds at the data_in

24

input and stores it into the first free register, once every clock period (on the rising edge) until the
write enable (we) is at logic ‘1’; for sure, when in the fifo there will be no free space, the fifo full
output (ff) will be internally pushed to high level. For that reason, the external agent pushing data
into the component must control that signal and stops in case of fifo full to prevent the overwrite of
informations already stored in the register memory.

 On the other side, the fifo is always pushing out on the data_out output pin the first word in
the registers, but till the read enable (re) will not be pulled up to ‘1’, it will not throw out anything.

Generally, monitoring the empty fifo signal (ef), the outside agent can realice when information data
is stored, put the read enable input to ‘1’ and start catching words, one for each clock period. Every
time that the read enable is put to ‘1’ the data is thrown out and borrowed from the internal
registers. When, finally, the fifo will not have more words, the empty fifo will be put to '0'.

5.1.4 The Deamon Components
Let's take a look now at the higher level, the PHAL.

25

The actual version is made of 4 main blocks:

• FRONT END: it’s responsible of the command and control operations of the whole system.
It receives the command packets from the master controller, that are stored in a dedicated
fifo. Moreover, the outgoing packets are not sent directly to the master, but they’re stored in
another fifo so that, when the master could, it will catch it in order to obtain the PHAL
informations.
It has two other fifos, by which it can receive informations from other blocks of the PHAL
and so better manage the correct execution of the algorithm. One of these fifo receives the
informations on the changing status process from the EXEC block. Each time the status of
the ASIP has been changed by the EXEC Deamon, this has to make known the FRONT
END of the new status. It does it by sending a packet to this fifo.
The other fifo is done to contain the packet received by the BRIDGE block during the bridge
identification operation.
There's only one FSM controlling the execution of all the commands in the entire Deamon.
After an initial reset, to make the machine began in a known status, the “Registration to the
master” packet is built. It carryes the ID randomly proposed, so the fifo ctrl_out is filled
with all the packet, waiting for the master removing all.
Then, the FSM remains in a waiting state, monitoring the empty fifo signal of each fifo from
where new packets could come: the ctrl_in, the packet_bridge_ident or the
changed_status_packet one. And every time one of this contains a packet information, the
FSM flow follows a different operation branch.
When the packet_bridge_ident fifo is no longer empty, it means that the bridge identification
operation must be performed. The FSM takes all that packet, put a header and send it by the
ctrl_out interface to the master.
In the other case, when the EXEC block responds to a changing status process and returns
the actual status of the ASIP by the changed_status_packet fifo, the FRONT END
communicate it to the master, by building the “Watch object status change” packet and
sending it through the ctrl_out interface.
When’s arriving a packet from the ctrl_in interface, the PHAL firstly realizes two control
packet operations: checking the first word (must be the HEADER MAGIC constant value,
otherwise the packet is trashed) then controlling the size of the received packet having the
same of the one reported in the header. Finally it looks at the type of command and executes:

1. FRONTEND_REGISTER_ACK : it’s the response of the master to the request of an ID
made at the boot. The FRONT END changes the ID and communicates it to the
BRIDGE;

2. EXEC_SETSTATUS : it’s the command to change the ASIP status. The information of
the new status is sent by the new_status_packet output by filling the fifo in the EXEC
block;

3. BRIDGE_ADDITF : this packet containes the field to create the routing table of input
(external to virtual interface) and output (virtual to external interface) in the BRIDGE
component. The four words in the packet with the routing informations (input/output,
header, virt_itf and ext_itf) are then sent to the fifo in the BRIDGE block;

4. BRIDGE_IDENT : when receiving this command, the FRONT END advertises the
bridge that must deliver a packet through each data_out, to make known all its
neighbours of its presence. And to avoid the waste of another dedicated fifo, a single

26

word packet is sent to the routing fifo of the bridge, that'll be aware of this command
because of its format.

• SYNC : the synchronization component is made of two fifos, connected to the interfaces
sync_in and sync_out allowing the communication with the master, and one timer counter.
This is the only block controlling the temporization and the time slots. In fact, synchronous
with the clock, it punctuates the time and returns to the system the count of microseconds
and seconds. But its main task involves the indication of a new time slot beginning to the
ASIP via the ENABLE pin activation.
Because of inaccuracies, the timer watch is subject to drift; to avoid this problem, the SYNC
block periodically sends to the master a synchronization request, to which the master will
responde with its master time. This will be used to correct each SYNC Deamon time.
The FSM of the SYNC block provides, like the one of the FRONT END, a boot stage.
During this first step, it creates the “Register to sync_master” packet and send it through the
sync_out interface. Then it just lays in a waiting step, while it keeps monitoring if something
arrives through the sync_in interface. In this case, when a packet arrives from the master
control, it's the “Synchronization Acknowledgment Packet”, containing the master time to
correct the SYNC timer. Otherwise, periodically, the SYNC creates the “Synchronization
Request” packet with the own timer time and sends it through the sync_out interface to the
master.

• EXEC : the EXEC block manages the changing status operations of the ASIP. It's furnished
with only one fifo to receive the packet from the FRONTEND, with the order for the new
status to the ASIP. The FSM is always waiting for a new status notification arriving into the
fifo and when it happens, it collects the basic informations (object, status and time stamp)
and transmits the new status to the ASIP. Then, it waits the ASIP updating its current status
and communicates it to the EXEC. When the EXEC will receive the current status of the
ASIP LDPC algorithm, it will communicate it to the FRONT END block, this last in charge
of submit the status to the external master.

• BRIDGE : it’s in charge of deliver the packets arriving from the external interfaces to the
correct virtual interface and vice versa. It has one fifo for each virtual input interface (data
arriving from the ASIP to send outside) and one for each external input interface (data
arriving from outside to deliver to the ASIP), plus one by which the informations on how to
build the routing tables from the FRONT END arrives.
It does nothing but to keep controlling the empty fifo signal of all the input data fifos,
checking if there's a packet arriving:

1. If something arrives into the routing parameters fifo, it could be the BRIDGE
IDENTIFICATION COMMAND or the parameters to fill a routing table. In the first
case, it throw out through all the data_out interface a packet for the identification
process; if it’s for a routing table, it fills the right table (input or output is indicated in the
arrived packet) with the informations of destination and header;

27

2. If there’s a data input fifo not empty, it goes catching the packet, it looks at the header,
searches in the routing table input the corresponding virtual interface and forward
through it the information;

3. If there’s a virtual input fifo not empty, it goes catching the packet, it searches in the
routing table output the header which corresponds to that virtual interface and deliver
outside all through the data out interface indicated.

PHAL tasks are completely indipendent from the ASIP purposes. As a matter of fact, the ASIP
depends on PHAL performance and operation managing. This makes the PHAL the most important
device into a NoC. Furthermore, the ASIP task, as implementing the message passing algorithm, is
partitioned into time slots and it's not able to begin the execution phase without an ENABLE
activation, performed by the PHAL component. On the other hand, PHAL is always executing and
checking the network functionality on one side, while scanning the ASIP operations and managing
its packet delivering on the other.

5.2 LDPC Components: VN, CN
ASIP is the acronym of Advanced-Special Instruction Processor, a customized

microprocessor designed to perform only a specific kind of instruction set internally to the program
main code. Its architecture and instructions are built for a specific purpose, not for general use.
The software instrument by which the processor's been developed is the LisaTek Coware
programmer device. This framework provides the possibility to declare all the needed resources, as
registers, memories, pipelines and so on, plus to implement and describe the instructions that permit
to realize the desired aim. By this tool it's possible to declare the instruction set to better perform the
LDPC algorithm minimizing the resource allocation.

5.2.1 The ASIP Architecture
The CoWare working platform is composed by several fields, each one with different

features; the principal one is the main, reported in the Appendix A. Into this area, takes room the
resources declaration, the main and reset part of execution code, the different groups of instructions
and the instructions automatically executed during the fetch part of the decoding operation.

5.2.1.1 The memory set
Let's begin seeing at the resources declaration of the memory set.

It's mandatory to specify every memory, comprised the program code one. Joint to the memory, the
respective bus must be allocated, one for memory, to carry data words during either reading and
writing operations. The LDPC decoding ASIP has a set of memories with different purposes; each
one of them it's thought to host a specifical kind of data and data bit format. The great amount of
memories (normally should be one for the program code and one for the data) will require a lot of
heavy logic to be managed. Though it might be better organized in a unique whole memory, to
reduce the access logic, it's now necessary because of the access to memory limited to one acces for
cycle period.

Substantially there’s a program memory, where the program code executed for the

28

algorithm purpose is stored and others six memories containing different nature data:

• VNi_mem : it contains the connections between each VN node and the CN nodes, with the
data processed by the VN to be sent to the relative CN.

Each bus number addresses a block of 32 bits, divided into several fields.
Each connection, in a word, is represented by indicating the pair of nodes (the VN one and
the CN one) joined together and the information data.

The interface field indicates through which virtual interface this word must be sent. It
requires only 2 bits because the NoC provides 4 PEs and each interface is directed to one of
the other three PEs. Besides, the interface “00” doesn't indicate an external PE destination,
but the same of the origin. In this case the target lays in the same PE of origin and it won’t
be delivered outside but directly stored in memory.

The VN node field indicates the number by which is performed the identification of
each VN in the entire network.

The CN node field shows the CN node joined to the VN.
The data field is occupied by the Q message, elaborated by the VN in the word and

directed to that specific CN. In the beginning, it will be filled with the input LLR data, the
same data message to all the CNs connected to the same VN.

There’s a dedicated interface (virtual data 0), connecting the ASIP and the Linux
controller, by which it’ll be possible, in a future expansion, to charge this memory (and the
CNi_mem too), during the initialization stage, with the node connections expressed in the
Tanner Graph. Right now, the data connection (with input LLR in the VNi_mem) is stored in
the static way, by evocation in the main program code.

The format choice is due to the 32-bit word standard of use. The VN and CN nodes,
in the WiMAX standard implementation, are expressed by identification numbers
representable in a 12-bit format. Indicating the origin node and the destination one occupies
24 bit. Other 6 bits are mandatory to carry the message data. 2 bits lack to fill the entire
buffer and they're dedicated to the interface number.

Surely, if the NoC were composed by more then four PE or the Tanner Graph were
made of a greater number of nodes, no longer expressable on 12 bits, a single 32-bits buffer
wouldn't be enough and a longer one would be necessary. Or another field buffer
organization should be performed. Neverthless, this project is customized to the WiMAX
requirements, not to other ones. The ASIPs don't know which nodes they contein, so in
every data packet is necessary to indicate origin and destination. Furthermore, only the
PHAL knows how to deliver packets in the network but it doesn't own the indication of
every node's position: it only knows by which interface they came from and the interface
field helps the delivering task.

• CNi_mem : it’s basically organized as the VNi_mem, except for the field order (it contains
the connections between each CN node and the VN nodes with the R messages).

29

Each bus number addresses a block of 32 bits, divided into several fields,

The data field is filled by the R message produced by CN to the VN. In the
beginning, this field is empty (there are zero bits) because no messages were exchanged yet;
in fact, the first operation is the VN input sending and only then the CN nodes will elaborate
and replace the message.

For this memory too, the connection storage will be made statically.

● VN_to_CN_mem : it has the same format of the VNi_mem, because it contains the Q
messages received by the VNs from other PEs and directed to the CNs contained in the PE
of this memory.
The difference with the VNi_mem is that, into this memory, messages are ordered by
increasing number of CN. That's because of comfort: when, during the creating R message
operations by the CN nodes, it will be necessary to obtein the Q messages in the
VN_to_CN_mem, the LDPC algorithm in the ASIP will know exactly where to find each
message related to a known CN.

● CN_to_VN_mem : it has the same format of the CNi_mem, because it contains the R
messages received by the CNs from other PEs and directed to the VNs contained in the PE
of this memory.
The difference is that, into this memory, these messages are ordered by increasing number of
VN. That's because of comfort: when, during the creating Q message operations by the VN
nodes, it will be necessary to obtein the R messages in the CN_to_VN_mem, the LDPC
algorithm in the ASIP will know exactly where to find each message related to a known VN.

• Input memory : it was thought as a 8-bit width RAM because of the standard memory size
based on multiples of 8 bit cells. Neverthless, only 6 bit will be important, since it must
contain the input LLR 6-bits data of the VN nodes. Actually, in the beginning, the data is
already contained in each connection word of the VNi_mem memory. The reason why it's
been decided to dedicate an entire memory to these data is that every VN calculation phase,
the VN node needs its LLR to perform the next step messages and they can't be borrowed by
newest incoming messages. Therefore, in the initialization step, the ASIP gets the input data
(ones each VN) and stores it in this memory.

• Output memory : created as 8-bit width RAM for the same reason of the VNi_mem,
conteins the refreshed output of each VN execution iteration.
From those data will be delivered the sign bit to the control master through the virtual data 0
interface, at the end of all the requested iterations.

It's important to underline that, except for the input and output ones, in which each VN
occupies only one byte cell, all the memories allocate more than one cell dedicated to each VN (in
the VNi_mem and in the CN_to_VN_mem cases) or CN. That's mandatory, thinking that every
memory describes the connections among VNs and CNs: each VN node might be connected to
other 6 CN nodes and each CN node to 7 VN nodes, in the WiMAX implementation. But, since the

30

WiMAX standard implements an irregular LDPC decoding algorithm, those indicated are the
maximum numbers of connections. And since it has never known how much node, each node is
connected to, 6 word cells for each VN in the VNi_mem and in the CN_to_VN_mem and 7 word
cells for each CN in the CNi_mem and in the VN_to_CN_mem must be reserved, although not all
of them will be filled with a message.

On the other hand, this make the algorithm execution easier, because, since the maximum
number of CN and VN in each PE is well known, the procedure can be, simply, scanning 6 or 7
words for VN or CN, knowing that they contain an all-zeros value if they're empty (there are no
more connections, i.e. less than 6 or 7), in this way creating an automatic control cryteria.
For that reason too, in the beginning of the main program code, when the memories are filled with
the words representing the connections, all the 6 reserved words for the VNs and the 7 reserved
words for the CNs will be filled. If the nodes don't reach the maximum number of connections, the
word will be filled with an all-zeros word.

Splitting the data memory in so many different blocks is due to the nature of the Message
Passing Algorithm. When, as it will be shown, the code begins to deliver packet messages to other
PEs, or even the same, these must be stored somewhere.
For example, during the Q messages sending operation, all the words in the VNi_mem, containing
the connections of CNs with each VN, are sent. When received, they can't be stored in the
VNi_mem because does exist the possibility to overwrite messages not sent yet. Similarly, it's
forbidden to store them in the CNi_mem because the connection list of the CN nodes would get
lost; or in anycase, it would be harder to manage the R messages calculation operation later.
Implementing other two memories, the VN_to_CN_mem for the Q messages forwarded by the VNs
to the CNs and the CN_to_VN_mem for the R messages delivered by the CNs to the VNs, the
iterations are more ordered and simpler.

5.2.1.2 The pipeline
It's been discussed how much the LDPC algorithm implemented into the WiMAX

environment is heavy to support. And since the calculation procedures could last a long time, it's
better to improve the processor performances as instruction branches management and normal
instruction flow too (fetching-decoding-execution).
Buying time is possible realizing a pipelined architecture, ables to execute several tasks in one clock
period. As every single part of the processor is personally designed, the pipeline stages declaration
must be introduced too.

Still in the resources section, the pipeline declaration done by three stages: Fetch, Decode
and Execute, plus all the Program Counters for each stage and the specific Program Counter for the
branch operations.
Basically, the PC is the counter of the operations performed, while the Address Register (AR) keeps
memory of the address where to point: that will be the address in the program code part of memory
where the hardware will extract the instruction with which fill the Instruction Register (IR).

In the fetch stage of the pipeline, the IR is charged with the instruction to perform and the
PC keeps on the counting operation; during the second stage, decode, the instruction contained in
the IR is decoded and interpreted, while the registers needed for the operations are evocated; finally,
the last stage execute, is responsible of the operation execution, by implementing the command and
storing the results in the data memory.

The grace of a pipelined architecture is the chance to perform an instruction per clock cycle,
in order to obtein a continous program code flowing. Indeed, a part three initial cycles needed by
the pipe to be filled, every time an instruction is executed, the next one is already decoded and the
following fetched. In other words, while an instruction is executed, concerning the calculation and

31

storing operations, it already begun the manipolation of the next addressed instruction and the next
next one(i.e. the next two rows of program code instruction).
The one just described is the procedure followed if a branch doesn't occur. In that case, all the
previously charged instructions must be thrown to charge the next one where the program jumped,
through a stall pipe operation that avoid the instruction in the decode stage to be executed and a
flush pipe operation performed in the fetch stage to clean the pipe. The only advertice is try to use
as less jumps as possible to prevent the continued stale in the pipe that would slow down and render
ineffective this type of architecture.

5.2.1.3 The whole block and the external interfaces
A part from the memory and pipeline declaration, all the needed registers plus the

input/output pins for making possible interfacing with the external world must be declared.
The ASIP architecture can be designed as that below.

The whole block presents an input Enable, through which the PHAL informs the ASIP main
program the beginning of a new time slot.

A 2-bits input, New Status, is charged into two 1-bit registers controlling the change of status
and consequently the evolution of the machine, while the Current Status 2-bits output allows the
PHAL to know every moment in which state the ASIP's executing its tasks.
The Time Stamp, as a hexadecimal value frame of 32-bits, provides the time indication of the
current temporal slot. In our implementation this signal wasn't really used, but it could be used to
delay the beginning of the calculations to a prefixed ordered time slot.

The group of virtual data pins represents the interconnections with the external world,
performed by the PHAL and the Linux master control. They are only used for the data exchanging.
The first group, the Virtual Data 0 interface, connects the ASIP with the Linux Controller bi-
directionally: in one way, the Linux master control will send (in a future implementation) the LLR
encoded data to the VN nodes; in the opposite way, the master receives the output data at the end of
the algorithm iteration by the elaboration of the output_mem data.

32

The other interfaces allow the LDPC decoder Message Passing Algorithm to be executed. They
implement the connection with the PHAL, therefore to the other PEs. During the exchanging
packets step, through this interfaces, message packets flow from and to the other PEs. The number
of virtual data interfaces depends on how much processors the network is composed by: basically
there's one interface group for each PE connection, so there will be only one for a 2-PEs network or
three for a 4-PEs network.

Each virtual data set of interface pins is composed by 2 data signals of 32 bits (one for input
and one for output) and 4 control signals as the figure shows.

The reason why using so many control signals is because signals passing through these interfaces
move from and towards fifo registers in the PHAL component, so the control signals are needed to
manage those last one. The ASIP always keep controlling the empty fifo control signal (ef): if goes
to '0' it means that there's something in the PHAL fifo to process, so it set the read enable fifo signal
(re) and obteins the data through the virtual data input; on the other hand, when ASIP's got
something to throw, set the write enable fifo signal (we) and sends the data through the virtual data
output.
Those elements here presented are complex components formed by simpler objects, such as
counters, memories and controlling components. The protocol of reading and writing operations
performed follows a recognized standard of communication: a write and a read enable, plus the
control on empty or full fifo. The PHAL-based system needs this interface resources since it
controls several operations and some registers temporarly storing the incoming informations are
compulsory.

5.2.1.4 The automatically performed instructions
In the main designer layer of the LisaTek framework, other fields are mandatory, such as the

definition of main and reset, fetch and decode operations.
The OPERATION reset only initializes every register. The main program must always begin

with a global reset, to start the instruction executing from the first one and to clean the pipeline and
its registers.

The OPERATION main is always performed because rules the correct flowing of the entire
main program code, by incrementing the PC register. Indeed, it shifts the instructions contained in
the pipeline through its execution and activates the fetch operation, unless the pipeline it's not been
stalled. Practically, thanks to the main, the program instructions are scrolled in the order decided by
the status registers.

The OPERATION fetch, firstly controls if the condition for a branch has been accomplished,
in these case giving to the fetch program counter the value of the Branch Program Counter, the
addressed place where to jump. On the contrary, it charges the Instruction Register with the
instructions contained in the place of program memory pointed by the program counter.

The OPERATION decode, as the name suggests, decodes the instructions and permits its

33

virt_data_out

virt_data_in

empty fifo
fifo full

write enable
read enable

execution. The execution stage of the pipeline is not implemented as a single instruction. The
execute is activated during the decode stage to be performed during the following clock cycle. The
kind of execution will depend on the instruction fetched by the Instruction Register.

Some operations are automatically performed during the fetch stage of the pipeline to
manage the network traffic travelling from a PE to another. They're essential for the correct
execution of the algorithm since the normal algorithm processing flow of execution can't be stopped
whenever external data is coming. It's essential to keep executing instructions and calculations in
the main code flow while receiving from the external world, i.e. the PHAL, a change of status or
new data.

In order to accept automatically a new status request, the OPERATION adquire_state is
performed. Initially, each one of the 2 bits input status is placed in a register, for comfort of use;
then, the only thing this operations execute is changing the exit value of the current status in which
the ASIP is supposed to be. But the most important thing is that the value of the registers
STATUS_OBJ, in which we saved the current status of the ASIP, will influence the normal flowing
of the main code. The processes carry out during each step are all in the same program code and the
normal flowing isn't interrupted to execute some other operations, such as the initialization.
Different routines contain the instructions necessary to perform every stage and their execution is
controlled by branches checking the status object registers.

More complex task is performed by OPERATION adquire_virt_data: the operation is
activated every fetch and keeps on monitoring all the control input signals empty fifo related to each
virtual data input, waiting for some data in the PHAL fifos to charge in memory.
Depending on which virtual interface is receiving the data, the operation activates the corresponding
read enable control signal and place the packet in a temporary register.

The received word might be a Q message or a R message and they must be stored in two
different memories. But both of them have the same format and the same field division. There's a
problem on how distinguish one from the other.
The numeration of the nodes may be helpful, because VN nodes are identified by numbers with a
range between 0 and the maximum VN nodes number (2303 in WiMAX case) while the CNs from
that number (plus 1, i.e. 2304) till the total of all the VN and CN nodes (it means
2304+1152=3456). For LDPC purpose, it'll be sufficient to look at the word field containing the
destination node (between the 6th and the 17th bit) of the temporary register (the input data just
adquired). In case the number is smaller then the maximum number reachable by a VN node, sure
the element in the field must be a VN node and consequently the input is an R message to be stored
in the CN_to_VN_mem. On the other hand, if the number is greater, there's a CN node and the data
carryies a Q message to be stored in the VN_to_CN_mem.

The storing process is not as easy as previously explained, because each VN receives up to 6
messages (and each CN up to 7) every iteration (of a time slot duration). Hence filling one of the 6
memory cells dedicated to the node could overwrite of a message, if it already contains one
message previously received. For that reason, it's necessary to take off every cell in the space of
memory dedicated to the destination node (VN_to_CN_mem in case of CN and CN_to_VN_mem for
VN) and to control which is the first one empty, then fill it with the new data.
The control is performed by checking if the destination node field (6th to 17th bit) is full of zeros, ie
empty or not. In order to be able to achieve this control, it's mandatory to clean all the
VN_to_CN_mem and CN_to_VN_mem memory cells at the end of every calculation (when the new
created messages are stored in the CNi_mem or VNi_mem), having no longer need of the contained
data.
An even particular case is based upon the VN0 node. For this element the previously described
checking method doesn't work, because its identification number (all zeros) corresponds with the
same control cryteria (it's all-zeros or not?). To solve this, when node zero is met, a dedicated
counter (VN0_counter) causes the data to be stored in the very first rooms of memory.

34

5.2.2 The instruction set
Declaration of the instructions are mandatory for the main field CoWare framework too. The

customized instructions are executed in the decode stage of the pipeline and, for their nature, it's
possible to organize two groups. One of these is the branch instructions where conditional and
unconditional branches are declared and activated. In the behavioural part of the instruction the
Address Register is assigned with the address indicated in the code and the pipe is stalled at decode
level, as to jump to the other program memory cell. Plus, since the decode and fetch stage contain
instructions that no longer need to be executed, a flush operation is performed to clean the pipe and
to start with the instructions of the jump branch.

All the others instructions of similar nature can be fitted in the same instruction set. They
only access data memory and perform even complicated calculations.

The feature and aim of the SET and RESET instructions are obvious, since they only give a
'1' or '0' value to the bit in the register literally expressed after the instruction sintax (e.g. SET
DONE, puts a '1' in the DONE register). Actually, they're the only two composed by the instruction
label and an operand. They are used to control the repetition of the messages routines.

The construction of the other instructions is much more complex and articulated, although
each one is executed in only one clock period.

5.2.2.1 The main algorithm instructions
Basically, the LDPC algorithm is achievable using only 4 instructions, expressed into the
instructions.lisa field of the processor declaration, as it can be seen in the Appendix B.
These are the following::

• Create VN : creates the Q messages exploiting the data contained in the CN_to_VN_mem
spaces of memory and stores its in the VNi_mem memory. Furthermore it performs the
output data for each VN node;

• Send VN : delivers outside the Q messages stored in the VNi_mem to the CN nodes or, in
case the CN target is contained in the same PE of the VN source, copies the packets, orderly
by CN, in the VN_to_CN_mem being, careful not to overwrite (it knows it by the VNi_mem
word interface field);

• Create CN : realizes the R messages creaction using data contained in the VN_to_CN_mem
memory and stores its into the CNi_mem;

• Send CN : forwards to the VNs of other PEs the R messages stored in the CNi_mem or, in
case the node VN target lays in the same PE of the CN source, copies the packets, orderly by
VN, in the CN_to_VN_mem, being careful not to overwrite.

The instruction set is been chosen as only one instruction can perform the processes of creating Q
and R messages and sending packets. Instructions don't need any extra label because all the
information is mapped in memory. The checking constants too are already contained and the
counter variables mantein their value because of its global nature. Therefore each one of all the full
algorithm computations is done by one of these instructions and a branch operation checking the
DONE register and creating a repetition loop. The DONE register will be set internally to each
operation at the end of the all the needed iterations.

35

5.2.2.1.1 Create VN
It's useful to remember how the VN nodes work: what's their task and how they use and

manipulate the data to create the output data and the Q messages for the CNs connected to.
Let's suppose having a VN connected to four CNs, so containing four 6-bits datas in its
CN_to_VN_mem (in practrice four words with the pair CN-VN, data and interface number),
representing the R messages previously come from the CNs. The output data will have to be stored
in the output_mem, at the location with address equal to the VN identification number, as the sum
of all the four datas. The Q message for a CN is the sum of all the datas, except the one previously
arrived as R messages having CN as source node.
These Q messages will be stored in the VNi_mem; later the send_VN instruction will deliver the
packets to the destination interfaces indicated in the interface field.
In tabel, there's an example of messages and output creation.

The instruction is executed a number of times equal to the number of VN nodes in the PE,
plus all the needed accesses to the memory, only one per clock cycle. At the end of all the iterations,
when all the VNs are scanned, the DONE register is pulled up and an external branch control allows
the program flow to continue with the others istructions.

The behavior is very simple. During the first iterations, datas of the same VN are saved in a
registers vector, and so the destination CNs at the same index, but in other vectors ; this is done
because it's not sure that the connections are equally ordered in both the memories (e.g., for the
previous case, in the same raw there could be the connection with CN78 in the CN_to_VN_mem
memory and the connection with the CN98 in the VNi_mem one).
When the registers vectors contain all the useful information, the instruction consists in summing all
the contents for the output and, by a control of the CN index, summing all the datas except the ones
in the same CN for the Q messages.

The results of the sum operations are stored in the VNi_mem in the correct order and so the
next instruction will be able to send the words orderly.
After each VN node message calculation, all the respective 6 cells in the CN_to_VN_mem are
cleaned to avoid a bit field confusion during the data adquisition stage.

5.2.2.1.2 Send VN
The sending operations would be easier if the nodes origin and destination weren't allowed

to be implemented in the same PE. Since this is not only possible, but even very frequent, we have
to consider that the message could be delivered to an inner node, hence directly stored in the
VN_to_CN_mem (or the CN_to_VN_mem in case of VN) instead to be thrown out through any of
the virtual interfaces.

36

CN78 VN34 16

CN98 VN34 20

CN120 VN34 08

CN121 VN34 33

CN78VN34 20+08+33

CN98VN34 16+08+33

CN120VN34 16+20+33

CN121VN34 16+20+08

16+20+08+33

CN_to_VN_mem VNi_mem

output

The task of send_VN instruction consists on scanning all the entire VNi_mem, where the Q
messages were stored at the end of the calculation steps concerning the create_VN instruction.
Firstly, it will control if the memory word contains something (it could contain an all-zeros word in
case the VN node does not reach the maximum number of connections) by checking the CN
destination field. Then it will get the interface number.
If the binary number contained is a number between 01 and 11, it's directed outside to another PE
through an external virtual interface. So the ASIP deliveres outside the word by setting the write
enable of the virtual interface indicated by the interface value and places the word in the virtual data
out bus. If the interface field shows a double zero value (00), the CN which the message is
destinated to, lays in the same PE of the VN source: the ASIP must store it in the VN_to_CN_mem
ordered by CN number.

As the adquire_data instruction showed, other messages could have been already stored, so
it's essential, to avoid overwriting, to extract all the seven consecutive words beginning from that
CN address, in order to reach the first empty word. In that cell, the word will be stored.

5.2.2.1.3 Create CN
A CN node produces one R message to every VN is connected to, that it's indicated in the

CNi_mem, while the data to be used is stored in the VN_to_CN_mem. The message to one VN is the
minimum 6-bits value, to be chosen among all the previous data messages conteined in the
VN_to_CN_mem (in the space of that CN), except the one previously received by the VN which the
message is addressed to.

For every CN, the program will pull out, scanning all the CNi_mem, the identification
number of each CN, with the related ordered VN identification numbers and will search in the
VN_to_CN_mem the data to manipulate. When it will have stored in a temporary registers vector all
the data elements, the algorithm instruction will create the R messages, excluding data of the VN to
which the message is addressed, by finding the minimum value. Eventually it will store the message
packets in the CNi_mem and reset the VN_to_CN_mem.

5.2.2.1.4 Send CN
The send_CN instruction is very similar to the send_VN one, except for the memory;

indeed, in this case is the CNi_mem to be scanned.
As for the other sending instruction, the control is based upon the interface field. Depending on that
value, all the CNi_mem packet words are delivered outside through a virtual interface or stored in
the CN_to_VN_mem.

Something more here it's the control upon the number of the VN node, because in this case
it's possible to meet the zero VN node and the control cryteria could fail. That's why a special
counter is dedicated for the VN0.

5.2.2.2 Other ASIP instructions
The LDPC algorithm could be executed even with this four instructions. But for a better

performance, other two instruction must be declared. They're not used as frequently as the previous
four, but are necessary for the correct realization of the decoding.

37

5.2.2.2.1 Charge input
Since the VNi_mem and CNi_mem are filled statically by the main assembler program,

there's no need to perform this operation during the initialization procedure of the ASIP.
Neverthless, we can performe other operations in order to simulate this stage; the idea is filling the
input_mem with the original LLR data originally contained in all the VN nodes implemented in the
PE.

The task is achieved by scanning the VNi_mem (at the beginning, when no operation has
been performed and no data has been modified yet, all the data contained in the six least
significative bits is the original input data), jumping six memory cells at a time (for all six cells
there will be the same VN, then with the same LLR) The instruction will take the 6-bits data and
store it in the input memory, one per cell, in exactly the VNi_mem memory order of VN.

Performing the LLR charging instruction and the four LDPC algorithm instructions, the
decoding iteration to reach the correct data output can begin and may continue for an indefinite
time, as the Linux master control decide. At the end, when the STOP status will be evocated, the
program flow will exit from its normal routine jumping to the last step of the algorithm: the delivery
of outputs.

5.2.2.2.2 Send output
After that every iteration, such the exchange of messages between nodes VN and CN, have

been repeted the amount of times decided by the Linux controller, the output memory is filled with
a 6-bit data for each VN node (the two most significative are unused, so set to '1'). These are the
error-free data that the LDPC decoder gave us, but still it's necessary to extract the real result data
without redundancy. Only 1 bit, which the 6-bit output data is the representation of: the sign bit, i.e.
the most significative one.

The send_output instruction throws out this bit through the Virtual Data 0 interface, that's
thought to be connected directly to the Linux controller. Since the memory is accessible only one
time per clock cycle, the single bit could be sent ones per clock cycle, but this would be a waste of
bus space, knowing that the interface is able to carry a 32-bits word.
For that reason the instruction, scanning all the output memory, every period take out one bit from
the byte in a cell to put it into a 32-bit word, ordered from the least to the most significative bit.
When it has filled all the word, reaching the 32 output data bits, it delivers the packet through the
virtual data 0 interface.

When it has thrown the bits of all the VN nodes, it sends the last words (filling it with zeros
if the number of VNs is not a multiple of 32 and some word bit remained empty) and sets the
DONE register to exit the operation loop and to rest in the final infinite loop zone.

5.2.3 The ASIP main assembler program code
The main program code of the ASIP component, as Application Specific Instruction-Set

Processor, is build of the costumized instruction set described in the previous section. In other
words they represent the bricks of the program code.

The flow followed by the processor to achieve the LDPC decoding task lays in the appendix
C (progr_main.asm).

38

5.2.3.1 The C code and the loading connections up
The first two groups of words provide the statical charging of the VN and CN nodes

connections. As already said, the VN nodes connections carry in their data field the LLR 6-bits
input relative to that particular VN, while the CN nodes connections conteins only an all-zeros 6-
bits frame in the data field, since they contain nothing at the beginning.

The very first raw means the section data_VN in writing mode is declared. This label is
evocated in another file, the progr_main.cmd, about which it'll be discussed in the next section.
Basically, every word written below that section declaration will be stored (in the one row per cell
format) into the VNi_mem memory.
The hexadecimal word is due for comfort to express into an 8 values number what would require a
32 bit information width. It's clearly composed by all the fields described in the ASIP memory
section.
The same format is followed by the CNi_mem charged words, now evocated by the data_CN label.

When facing an architecture as the WiMAX LDPC algorithm, containing thousands of
nodes, each one with a number of connections up to seven, the number of hexadecimal words to
build grow significantly. It's clearly unthinkable to manually write all the connections word from
the indication of nodes, data and interface.
The WiMAX has well-known LDPC decoder algorithm features, such as the H matrix reporting the
connections between nodes and the encoded LLR information. Merging all of them it's possible to
obtein several files containing all the connections and data information needed:

• VN interconnections files : they show each VN node by its identification number and all
the connections to the CN nodes (by identification number too). Plus, they indicate the VN
and CN nodes processor membership, so if the message should be delivered outside or just
stored in the same PE origin;

• CN interconnections files : having the same format of the VN one, describe all the
interconnection of each CN;

• input file : carries the LLR input 6-bit data information, which each VN is responsible of.
Each row conteins a 6-bits word representing the significative bit, 2304 as the number of
VN nodes.

The availability of these resources, organized has formatted files, encouraged the creation of
a simple C-based programme able to implement a complete list of interconnection hexadecimal
words by interpreting the files.
The assignment part of the VN and CN field is pretty easy, just a conversion to a binary value; and
so for the interface field assignment, knowing which interface connects one PE to other PE.
Concerning the VN interconnections files, the relative VN input charging is quick, since in the input
file, the LLRs are ordered by increasing VN identification number.
Finally, since the LDPC algorithm's been working on is an irregular one, it's not exactly known the
number of interconnection words created for a single VN or CN. But knowing its upper limit, it's
easy to make the C program instantiate an all-zeros word for the cells lacking.

5.2.3.2 The core of the program
After the memory initialization, the real program algorithm code begins (marked by the

label .text). Since this processor is a Special Purpose one, the instructions were totally built for the
LDPC aim in a simil-C way of programmation, although the code is an assembler-like one.

At the boot of the program, hence of the PHAL, this is supposed to begin from the STOP
status, provided in the reset operation and indicated by the 00 pair of bits in the new status.

39

The 2-bits input responsible of the new status changing process, sent by the PHAL to the ASIP, are
immediately stored in two status object registers, one bit per register. In this manner it's easier to
control the evolution of the program code, i.e. the execution flow. The code keep on checking,
through the branch instructions, the contents of the STATUS_OBJ0 first (bit 0) and then of the
STATUS_OBJ1 (bit 1). Knowing the correspondence between the status and the 2-bits value
representing it,

STOP status -> 00
PAUSE status -> 10
RUN status -> 01
INIT status -> 11

is possible, through single bit check, to orientate the flow.
The bit value of the current status was decided depending on its nature. In fact, it's possible

to divide the status into two groups: STOP and PAUSE, having the least significative bit '0'; RUN
and INIT, having the least significative bit '1'. This separation make easier to control the flowing,
since STOP and PAUSE status have similar behavior than the others. They both have to wait for
something changing the status (STOP only during the first phase), while the RUN and INIT perform
always an instruction. Since only one bit of the status registers is controlled at a time, it's possible to
wait or immediately look at the other status registers bits.

The first instruction is a branch control operation (BC), jumping to the address indicated by
the label _loop if the contents of the register is equal to '0' (EQ). Indeed, for how the relationship
status-bits was designed, if bit 0 is '0' value, it might be only STOP or PAUSE status request and the
program should stay there doing nothing but waiting a change of status.
When bit 0 had turned to '1' value, the program follows checking the other bit register, because the
status may be RUN or INIT. The next instruction is another branch control one, but this, checking
bit 1, must jump if it conteins a '1' value (NEQ). In that case, the status would be a “11”, i.e. INIT
status. The flow jumps to the initialization routine where it'll have to perform the very first
operation.

Into the initialization routine, only one instruction is executed, the charge input. Since the
LLR inputs and the connection indications are alredy stored in the memories, this operation only
take the input data associated to each VN, stored in the 6 least significative bits of the words in the
VNi_mem, and put it into the input mem. In this manner, it will be a directed VN-based ordered
correspondence between the VNi_mem and the input_mem (only the VN_to_CN_mem and the
CN_to_VN_mem are ordered per increasing CN and VN respectively).

The execution of this instruction is internally controlled by a counter, checking the scanning
up of all the VNs in the PE. When the counter will reach the total number of VNs, the register
DONE will be switched to '1' value, internally to the instruction, and eventually the external branch
control will make the program flow exit the routine and return to the main program execution.

Filled the input memory with the original LLR data, all the instruments to begin the LDPC
message passing algorithm calculation and sending operations are ready and the main flow can be
performed.
When the PHAL sends the RUN status order of execution, the program flow is able to go waiting
for the ENABLE signal that fixes the beginning of each time slot.
Before to proceed with the task execution, it's necessary a control of the status, that has possibly
been changed during the initialization procedure: the algorithm could have been paused or already
stopped for any kind of problem. It's mandatory to control the status to assure is RUN.
If the status was turned to PAUSE, the program will wait there till the RUN command or, in case of
a STOP command, will go to finalize the execution to the sending output routine. Normally, the
RUN status is guaranteed at least for the first iterations, obviously, so the flow will proceed with the

40

next step.
Initially, the ASIP should build the new Q messages merging both LLR inputs and R

messages received during the previously phase; but since the ASIP haven't received R messages
from others CN yet, being at the very first step, the Q message data is composed exclusively by the
LLR input, the same by each VN to all its CNs.
For this reason, just the send_VN instruction will make part of the first iteration, since the LLR
inputs, hence the first Q messages, are already contained in the VNi_mem connection words. The
instruction reads the interface field and sends each word through the corresponding virtual interface
or, in case it reveales a “00” value, stores it, ordered by CN, in the VN_to_CN_mem. The instruction
termination is, like before, controlled by the DONE register, set when the number of VN contained
in the PE will be reached.

After the sending VN message step, the program will stand in an awaiting state, during
which the messages from the others PEs, directed to its CNs will have the possibility to arrive and
to be automatically stored in the memory. Till the ENABLE input will be set to '1' other time, in
order to advice the beginning of another time slot and than the execution of another task.

 Before to begin a new time slot and so to perform a new task, the program must be sure to
stay still in the RUN condition of operations.
The next step, each CN contained in the PE has to process all its messages to create the R messages,
that will be sent to other VNs. Scanning the data in the VN_to_CN_mem, each CN creates a
different message for each VN is connected to and stores it in the correct word in the CNi_mem, till
the last one CN.

After this operation has been totally performed, the algorithm, through the send CN
instruction, scans all the CNi_mem and sends all the word messages through the virtual interfaces or
stores the packets in the CN_to_VN_mem, in case that the VN to which it's directed is contained in
the same PE.

In the awaiting step of the following time slot, the R messages directed to the VNs will have
been arrived. When ENABLE signal will be set, the program flow processes the instruction
producing ouputs and Q messages (create VN), that will be stored in the VNi_mem. After that,
through the send VN instruction, all the messages are delivered away or stored in the
VN_to_CN_mem. An uncondinated branch at the end will restart the iteration from the CN node
procedure task.

The P_HAL lets the iteration run for several time slots, just to permit the LDPC alghoritm to
converge. Finally, it will switch the status operation to STOP, in order to communicate the ASIP to
stop processing data and to throw out results. For this purpose, it jumps to the send output routine,
where the single instruction send output elaborates data contained in the output_mem and sends,
through the special virtual interface 0, the 32-bits output words to the linux master controller.

Scanned all the output memory, the algorithm flow lays in an infinite loop waiting for a
global reset and a new decoding operation performance. Actually, the reset intervention is the only
way to quit this routine, because there are no branch control operations inside that. It couldn't exist
another decoding process after the first one, since that every memory and every 6-bits data in the
VNi_mem should be cleaned. Otherwise, when the initialization status began, the input memory
would be filled with random incorrect data.

The execution routine of calculation or sending messages by each instruction is controlled
by a branch operation. This means that a part of clock cycles needed by the routine are lost in the
DONE register checking up, without doing nothing else. Basically a waste of clock cycle.
It might be thought to include within the instruction itself the control of jump, to repeat the
operation or move to the next one by directly modifing the Program Counter address. This solution,
however, would render the code less flexible to possible changes: as it is constructed now, it's
furnished of instructions for execute the algorithm LDPC separated by the branch instructions. The
advantage is the possibility to modify the algorithm without changing the nature of instructions.

41

5.3 Tools: LisaTek, Processor Designer, ISE (Xilinx)
For the realization of the project, we made use of several tools to aid the development of

processors and electronic systems in general. In particular, we needed an instrument where we
could design every single part of the ASIP device, included the instruction set and the program flow,
as a real complex dedicated processor. On the other side, in order to create the PHAL component,
we weren't looking for a dedicated flexible processor but on a simple routing element, no matter
how heavy.
The first tool used to meet the achievement of the ASIP is the LisaTek CoWare tool, which exploits
the use of the SystemC language to create every part of the processor. For the component PHAL, it
was decided to implement it in VHDL using the Xilinx ISE environment tool, as it was then possible
to synthesize it in order to know the potentiality of the device.

5.3.1 The LisaTek Coware tool
As already said in advance, the building up of a customized processor ASIP implies the

declaration of every single part of the component, as:

• description of the program code assembler instruction set;
• main program code;
• implemented resources, such as pipeline system, set of registers and memories;
• input and output pin interfaces.

After to proceed with the physical implementation, it's necessary to check the syntax of the created
code and then perform the simulation and debugging process in order to control how it works.
Eventually would be interesting to synthesize the whole processor, obtaining physical parameters as
area occupation, maximum frequency and throughput.

The LisaTek programmer provides for the ASIP purposes several separated frameworks. The
first tool a user must work on is the LisaTek Processor Designer. It's used for declaring resources
and instruction set, checking the syntax and creating the executable files. The following step, the
processor simulation, was performed by using the Processor Debugger software. Finally, thanks to
the Processor Generator, the ASIP could be synthesized from the software to the hardware point of
view.

5.3.1.1 The Processor Designer
The Processor Designer offers an optimal user visual interface. The job is easily splitted in a

few ordered sectors and the software helps using the SystemC code language. There's an example of
the main view in the figure below.

42

The parts, in which the code must be divided, are the main one, the instruction one and the operands
and misc parts. Every section must contain some specific fields where to describe instructions and
hardware resources, pipelined architecture and automatic executing instructions.

Building all the process, if the sintax turns out to be correct, the LisaTek Processor Designer
creates the executable archives following a procedure of assembling and simulation, in order to
implement the processor designed.
One problem come out working with the LisaTek device was a library one. The LisaTek version
used to implement the LDPC decoder dedicated ASIP, needed libraries of an older version of the
Linux operative system installed in the virtual machine, the software was installed on. On the other
hand, libraries could not be changed without the other programs used stopped working.
To resolve this problem, both the library packages had to be placed into the operative system. Then,
thanks to a libraries switch program, it was possible to switch for a little time (e.g. 60 seconds) the
normal libraries to the older ones, every time the compiling of ASIP software was to carry out. At
the end of the 60 seconds, the normal version libraries would have replaced the older ones while the
building process would have already been over. In this manner, a builded application is obteined to
simulate.

Before checking the software behaviour, it's necessary to apply the assembling program.
This application, from the assembler main program creates an executable program, done through
command line by the instruction:

./lasm progr_main.asm

checking the assembler sintax of the instructions used in the main program code.
 Another file must be implemented, as important as the assembler program one: the
progr_main.cmd, indispensable to declare and allocate the memory spaces, which can be found in
the Appendix D.

In the first section, each memory is declared, such as its address of origin, size and byte for
cell occupation:

• the origin is indicated in hexadecimal number and represents the address from which that
memory is addressable;

• the lenght, in hexadecimal too, expresses the number of single addressable blocks into the

43

memory;
• the byte field, finally, represent the number of bytes by which each single block is composed

(so, as seen, a part from the program memory, the cells of the four memories containing
interconnections and data are four byte width, i.e. 32 bit, while the cells of others, conteining
only 6-bit data, are a single byte width).

The second section evocates that correspondences between a label and one memory it's been
talked about in the previous section. This means that, what's preceded by that label in the assembler
program will be stored ordered in the correspondent memory. For example, in the assembler
program, the main ASIP code is titled by the label .text, while the .data_VN and .data_CN are
followed by the connection-input words.

The executable assembler program just created must be linked to the .cmd file, in order to
assure the memory partitioning and data storing, with the command line instruction,

./llnk progr_main.lof progr_main.cmd

where the .lof file is the one previously generated by the assembler code.
Finally, it will be obteined the executable file progr_main.out, by which simulate the

performed program.
The simulation procedure needs obviously another tool, actually because there's there need to look
at the memory rooms and the register contents; the flowing of the program must be controlled and
the perfect execution of the jumping operations checked; plus, it's essential to assure the correct
functionality of interfaces as well as a good global communication system performance.

5.3.1.2 The Processor Debugger
For this aim, the Processor Debugger tool is used.

44

This simulator device allows to execute the code step by step, viewing what's happening in the
internal memory and registers, plus the pipeline structure and the input/output signals. In this
manner can be checked the behaviour of the ASIP before the implementation into the complete
scenary of the Processing Element.

5.3.1.3 The Processor Generator
In order to check the real physical properties of the ASIP device, it's useful the use of the Processor
Generator tools. Fixing some parameters in the program, as the memory interface configuration and
the script generation, a VHDL code is built starting from the original CoWare LisaTek project. The
Processor Generator put in a space of memory all the VHDL files representing the ASIP, as written
in the other language.

One time that the VHDL code of the ASIP is obtained, it's possible to put all the files in the
Xilinx simulator tool and to synthesize the ASIP. When ENABLE signal will be set, the program
flow processes the instruction producing ouputs and Q messages (create VN), that will be stored in
the VNi_mem. After that, through the send VN instruction, all the messages are delivered away or
stored in the VN_to_CN_mem. An uncondinated branch at the end will restart the iteration from the
CN node procedure task.

5.3.2 The ISE (Xilinx) tool
Other tool's been used in the project is the ISE Xilinx architecture generator. Basically, it's a

very powerful instrument able to check VHDL code and synthesize it into an FPGA platform.
The project was in part developed by the use of the SystemC programming code, concerning

the ASIP component. But the PHAL component was made through VHDL code. Furthermore, the
same ASIP programmed and built with the SystemC code, was converted into VHDL to be
implemented on a platform. So the Xilinx was used for this purpose too, in order to check and
synthesize the main LDPC decoding device.

The Xilinx work environment has many libraries of platform FPGAs. Once you have
checked that the code written or generated is completely correct, it's possible to generate the net list
and the percentage of area occupation, choosing the desired platform. ISE also gives information on
the frequency of operation, in addition to the total number of registers and logic slices.

45

6 Simulation Scenario and involved Platforms

6.1 Full Flexible Scenary
Field-Programmable Gate Array (FPGA) is the most widely accepted reconfigurable device

in the industry. Reconfigurable computing is expected to cope with high performance and low
power requirements of actual and future mobile communications devices. Moreover, due to the
large diversity existing in Radio Access Technologies (RATs), the aforementioned architectures
combine the flexibility of General Purpose Processors (GPP) and DSPs, with the performance and
efficiency of dedicated hardware.

The concept of virtual hardware is analogous to the concept of virtual memory in classical
computers, i.e. to provide the user an unbounded amount of hardware resource, instead of memory.
Traditionally, applications can address a larger amount of memory than physically available in the
computer while a run-time execution environment (Operating System) swaps them from and to a
slower memory (i.e. disk) in form of pages. The time spent by the system moving data in and out
the main resource reduces application performance; it will increase gracefully as more physical
resource is available in the system. Maximum performance is achieved when all addressed memory
fits in the system. On the other hand, memory virtualization enables developers to design memory-
size-independent applications, i.e. targeting architectures rather than characteristics (memory size),
which significantly reduces software production cost.

Therefore, in a virtual hardware environment the user should be able to use more hardware
than physically available in the system. This would allow independence between user application
and actual device size, analogously to software programs, which can be executed in several
computers despite the available memory. Moreover, in actual FPGA designs, designers can not take
advantage of new transistors in larger devices because can not exploit the increased potential
parallelism without redesigning the whole application.

Hardware virtualization mechanisms are classified in three approaches:
1) temporal partitioning maps an application of arbitrary size to a device with insufficient

capacity by temporal partitioning the application into smaller parts and running them
sequentially. If all parts fit in the FPGA at the same time, throughput will be maximized
because one sample will be produced at every cycle;

2) virtualized execution specifies applications in a custom programming model which defines
some atomic computation called operator or task. An application is defined as collection of
these operators and their interactions. The members of the device family implement the
abstractions defined in the programming model, i.e. tasks, communication interfaces,
synchronization, etc. Each device in a family differs in the amount of tasks that can be
executed concurrently, thus in overall performance. This approach offers device-
independence for a device family;

3) virtual machine maps the application to an abstract architecture. The specific architecture
performs the conversion from the abstract architecture during the execution. This
mechanism is analogous to the Java virtual machine in software. This virtualization
mechanism provides full device-independence.

Hardware virtualization is comparable with traditional hardware abstraction in software
contexts. In the latter, software programs can access hardware services from different vendors
through standard interfaces. Although the mechanisms in software and hardware are different, the

46

objective is the same: to provide device independence and reduce development effort and cost. As a
consequence, the device or set of devices appears to the user as a single virtual device, providing an
amount of computational capacity, in terms of

• time-multiplexed fixed operations executed by programmable processors;
• time-multiplexed variable operations configured in reconfigurable devices (FPGA).

Note that whereas computing resource is time in the former (area is fixed) it is a
combination of area and time in the latter; this suggests the complexity of the resource management
problem.

6.1.1 Virtualization Requirements
Virtualized environments and abstraction mechanisms usually require of a runtime system

embedded in the device. It provides the standard communication mechanisms, synchronization
between isolated parts in the device or with external devices and frequently used libraries,
specifically implemented for a single device, in order to improve efficiency of some applications
(e.g. FIFOs, memories, etc.).

This section enumerates the requirements these runtime systems must provide to the designer.
1) Task partitioning: Signal processing applications are defined as a set of operations to be

applied to a continuous data flow one after another, e.g. codification, symbol mapping,
modulation, etc. Thus, this step is straightforward; a natural partitioning might consist on
assigning a task to each of these operations.

2) Resource sharing: Multiple accesses to the same resource shall be scheduled in time by the
runtime environment constrained to application time requirements.

3) Communications infrastructure: Each task can have one or more virtual interfaces to
send/receive data to/from other tasks. The execution environment must provide efficient
routing mechanism in order to deliver data to its destiny under QoS restrictions.

4) Performance scalability: Increasing the number of chips or the number of transistors in the
chip should translate in a higher performance without recoding or redesigning the
application.

5) Complexity scalability: Efficient routing, synchronization and management of large
designs.

6) Task mapping: Tasks are assigned to processors or FPGAs, depending on their nature or
implementation language and some optimization goal, i.e. network utilization, load
balancing, etc.

47

6.1.2 Resource Management
One of the most relevant issues in virtualization is the resource management. The proper

mapping among the available resources and the required ones becomes a high complex task not
only due to the hardware resources management possibilities but also due to the need to find a
proper and generic model capable to meet the hardware and software applications particularities. In
the side of the available resources we need to talk not only about the available processors, its
computing capacity, the memory, the communication links bandwidth, etc but also the scheduling
mechanisms and mapping approaches available. Particularly, in FPGA world the available resources
are silicon area and time whereas in classical processors it is reduced only to time resources.

6.1.3 Proposed Virtualized Environment
The proposed platform physically consists on a network of silicon chips. Some of them will

be static, in the sense that its circuitry will be fixed, some of them will not. For the former, a
program read from a memory might specify the order and set of operations that shall be executed
(processor). For the reconfigurable ones, operations must also be defined (bitstream in FPGAs)
besides their scheduling, thus, a combination of program and operation-set is needed.

A more general scenario considers a network of mixed devices with static and
reconfigurable part, as in the figure above. The designer benefits from the joint computing capacity
of all elements. From here and beyond, we will use the term Processing Element (PE) for the static
part and Dynamic Reconfigurable Area (DRA) for the reconfigurable one.

PEs capable to perform context switching (i.e. multi-threaded) will access system-level
functions through APIs interacting with background processes (HAL); on the other hand, single-
threaded processors and DRAs will use a piece of static logic. The runtime system is called
Abstraction Layer and Operating Environment (ALOE) – the term inherits classical PHAL
philosophy. This framework, initially designed and validated for software-based computers (PC and
TI DSP) , is now being translated to hardware description (VHDL language). Data and control
communications, synchronization and execution control mechanisms are abstracted by ALOE
which, if present, will use platform-specific services to improve efficiency, i.e. Operating System
services, Network on-Chip, etc. Therefore, applications take advantage of particular services
without need to know their specific architecture and interface.

48

A directly acyclic graph (DAG) defines the set of tasks and connections describing the application.
Time is divided in slots where the execution of every task is scheduled in a pipelined fashion.
Minimum time slot duration has to be equal or greater than the maximum task delay plus the data
propagation time (for that task); total application delay will be equal or lower the number of tasks
times the slot duration. In order to increase throughput, parallelizable tasks can be executed
concurrently reducing slot duration; conversely, those tasks not using the whole time-slot can be
multiplexed in time and properly scheduled which reduces area utilization (). Both resources, time
and area, can be exchanged matching application requirements. The complexity of this joint
management strategy is simplified by relaxing real-time scheduling through the pipelined execution.
Therefore, we advocate that conventional signal processing applications for communications are
easy to be pipelined due to their data flow nature thus, increasing the potential parallelism.

This advanced resource management is necessary since applications have not been designed
ad-hoc for the target platform. Therefore, designers can not optimize time and area; this job has to
be done by the runtime system (which has been specifically parameterized for the target device).
The pipelined pattern imposed by ALOE allows filling resources in both dimensions.

The problem of dynamically placing and routing components in a DRA is very complex to
compute algorithmically. If the DRA is too large, the algorithm can take too much time to be
executed in runtime; moreover, a situation of unfeasible or inefficient routing is highly probable
after a large number of reconfigurations. Therefore, another approach divides the whole DRA in a
set of isolated and closed surfaces where tasks are mapped into, minimizing certain metric (i.e.
network utilization). Smaller areas make easier to place and route circuits, moreover, the platform
can use specific fixed routing mechanisms (NoC) improving overall efficiency.

49

6.1.4 Current Development Status
The platform chosen to implement a preliminary design of the environment has been the

ML507 board with a Virtex-5 FX70 FPGA from Xilinx. With the XPS tools one can customize
memory and peripherals for the embedded PPC440 running at 400 MHz. The rest of the system has
been set to run at 100 MHz. The initial scenario considers a single DRA, configured by a control
circuit which reads bitstream data from an external SRAM. Bitstreams are downloaded to the
SRAM through an Ethernet 10/100 interface using the TCP/IP protocol stack.

This kind of protocol, although is highly standardized, extremely easy to use and flexible, shows
significant drawbacks for reconfigurable computing:

1. it needs about >800 Kbytes of memory to fit a minimal set of functionalities (lwIP stack at
RAW mode, no CRC, default buffer sizes);

2. the average throughput it exhibits is significantly below the bandwidth offered by Ethernet.
The reason to choose this interface is to integrate, in the next scenario, a hardware ALOE
controller with an external software-based ALOE controller running in a Linux machine.
Thus, reconfiguration procedure will be fully integrated in ALOE.

Protocol stack memory requirements are too high to fit in the internal BRAM memory of size 64
KB. Consequently, an external SDRAM DDR2 memory was used. In order maintain acceptable
performance levels, memory architecture caches 32 KB of program and 32 KB of data from the
external memory.

50

The figure shows the processor architecture: PLB bus is used to access the hard-coded Ethernet
MAC controller and the external GPIO ports interfacing the reconfiguration control logic and the
SRAM memory (where bitstreams will be saved).

Partial reconfiguration is performed using the ICAP primitive which can read 32 bits of data
per cycle. Despite bitstream downloading time through TCP/IP is relatively long, the
reconfiguration time is much shorter; consequently, once the new bitstream is loaded in the SRAM,
the aforementioned time multiplexing of circuits in pipeline stages is still valid. The table below
shows the measured throughput of both situations as well as the reconfiguration time for a 100
Kbytes bitstream.

Transmission Throughput Time (100 Kbytes)

PC - SRAM 16 Mbps (mean) 6,25 ms (mean)

SRAM – ICAP (reconfig) 3,2 Gbps 31,25 usec

Area occupation is slightly higher than other approaches, mainly due to the SDRAM and Ethernet
controllers. We argue that these resources might be used anyway for another purpose. Only a
portion of these devices is used to perform the actual reconfiguration thus, the total overhead is
minimal. Table below shows area resource occupation of the design.

Used Utilization

Registers 6,232 13%

LUTs 6,094 13%

IOBs 211 32%

Memoey (KB) 900 16%

51

6.1.5 ALOE-based flexible LDPC decoder
This section describes the implementation of our LDPC decoder using ALOE in the

previously described NoC. In order to get benefit from the potential parallelism of the algorithm
(computation in nodes) a network of Processing Elements (PE) has to be considered, Network On-
Chip (NoC). Efficiency is exploited in both parts: PE and NoC. Nevertheless, the purpose of
efficiency usually goes in decrement of flexibility, i.e. ad-hoc designs optimize certain code or a
standard family. These designs set PE and network channel capacities to fit loads given certain
Tanner graph. On the other hand, a flexible decoder should be able to decode any kind of code, thus
any node graph; this means that PE and network need to support any load.

The aim of this project is twofold: to prove virtual hardware paradigm development and to
dynamically adapt NoC routing mechanism when code is changed.

ALOE will be used to abstract platform-specific network interface (NoC), such that there
will be no knowledge of it at PE design time. Therefore, NoC routing infrastructure will increase
global efficiency albeit the only interface PE designer has to consider is ALOE.

The decoder consists on 4 Application-Specific Instruction-set Processors (ASIP), 4
hardware-based ALOE controllers and 1 PC-Linux running software-based ALOE managers.
Considering ALOE time-slotted execution pattern, each ASIP will be assigned a variable set of
nodes (CNs and VNs) which will perform their computations on each slot and so to lighten the
work. PEs have an input virtual interface and three output virtual interfaces; one towards each other
ASIP. Interfaces are FIFO-like while their implementation type – BRAM, register-bank, etc –
resides under ALOE control. Packets through virtual interfaces are merged into the physical NoC
channels thus exploiting its efficient communications mechanism; routing policy between PE is
maintained, again, by ALOE.

The algorithm ALOE uses to map functions into computing resources is the tw-mapping
algorithm. This algorithm is inadequate for Tanner Graphs because they are not Direct Acyclic
Graphs (DAG). Therefore, code selection is performed off-line while an external tool provided in
computes node to ASIP mapping and routing.

Finally, simulations have been performed in order to prove the correct behavior. The
scenario merges software and hardware (VHDL) descriptions, thus, VPI interface and custom code
has been chosen to interface gHDL (GNU tool), LisaTek Processor Debugger and ALOE in Linux.

Due to a license problem, we could not charge the LisaTek program in more than two
machines, so we cannot start the whole system simulation.
To avoid the license problem and to allow the verification of the LDPC algorithm behaviour, we
implemented a more simple 2 PEs network scenary as in the figure. There were no big problem in
changing the main component features, because thanks to how the architecture and the codes were
designed, there were actually no need of changes.

52

The PHAL doesn't really know if or if is not connected to the PHAL of another PE: it only
delivers the packet through the external data interfaces without knowing what is on the other side.
In this case it's the external Linux master controller having the duty to check that the PHAL send
data only by the interface connected to the correct PE. Likely, the ASIP instructions and memory
space are the same whichever were the number of PEs connected in network (up to 4, since the
interface field in the data word is 2-bit width), because there's no previous indication fixed in the
architecture of which nodes are thought to lay in that ASIP.

The only things that had to be changed are the precharged connections-input words, because
now the VNs and CNs are splitted onto only 2 processors; so the amount of charged nodes for each
PE is now theoretically doubled and plus only one interface (a part the 00) exists, through the other
PE. We had already developped a C program to create the interconnections-input word to be stored
in the ASIPs memory, able to interprete the identificative number of VN and CN and to assign an
interface number according to the direction. So we immediately managed to change a little the
program and so to obtein the new words.

6.2 Following the steps for simulation
For comfort of use, instead of taking the loading of PEs on two separate machines, it was

decided to charge the PE applications (ASIP + ALOE) on two virtual machine frameworks in the
same calculator.
Firstly, it's been necessary to check if the machines were able to communicate by the intranet.
During the development of this configuration came out had some problems too, due to the LisaTek
license: the machine couldn't get connected and the connection MACs had to be the same,
otherwise the LisaTek Processor Debugger did not work.

Once they reached the connection, it was possible to getting started the simulation. The
simulation procedure consisted only in giving the change status order by command line, that the
linux master controll concerned to deliver to the PHAL and this to the ASIP. For do this a correct
order must be followed:

1. phload tst : it's the first command, by which the application is loaded into the ASIP, i.e.
the program it must follow, with the connections and input words;

2. phinit tst : after the application loading, the first operation is the initialization stage,
during which the input data is stored in its memory. This might take a long time to execute,
since the PEs involved are only two and each one conteins a great amount of VN nodes, so
inputs;

53

3. phrun tst : as already said in the main ASIP program chapter, the run command can be
launched even during the initialization step. When finally this one will be over, the ASIP
will begin the algorithm execution;

4. phstop tst : this is the last command to be executed, when the program was already left
running for enough time. Finally, the ASIP will throw out, through the virtual interface 0
connected to the master controller, the output data resulted from the message passing
iterations.

An important parameter that must be considered is the time of simulation; in fact, the flow of the
main program can be controlled, but anyway its execution will stop after a time decided by that
factor, whatever the program is doing. For this reason is important to set the time of simulation
quite large, enough to permit a satisfactory simulation with a reasonable number of iterations and
the sending output stage.

Opening the gtkwave wave viewer is then possible to see the signals going to or coming
from the ASIP and the PHAL. Furthermore, there's the option to open the LisaTek Program
Debugger too and to see what's happening into the ASIP (in the memory and the interfaces) during
the program execution, step by step.

6.3 The Xilinx Virtex-5 Family
The Xilinx Virtex-5 family offers the newest and more powerful features in the FPGA world.

It's composed by five distinct sub-family platforms, each one performing different capabilities and
resources for all the possible implementations.
Xilinx created the ASMBL (Advanced Silicon Modular Block) architecture, initially applied to
Virtex-4, to enable rapid and cost-effective assembly of FPGA platforms with varying feature mixes
optimized for different application domains. This new architecture breaks through traditional design
barriers by eliminating geometric layout constraints and enhancing on-chip power and ground
distribution by allowing power and ground to be placed anywhere on the chip.

The Virtex-5 family introduced the first FPGAs produced through a 65-nm triple-oxide
technology process. Acting as an excellent programmable alternative to the ASIC customed way,
they require the best solution for high-performance logic, DSP or embedded systems designers.
Thanks to the revolutionary manifacturing size, obtaines over the previous generation increased by
65% in logic capacity and 30% in speed.

The board could be seen as the union of Configurable Logic Blocks (CLB), made of two
slices conteining each one four function generators, configurable as real 6-input LUTs or dual 5-
input LUTs, four storage elements, several arithmetic logic gates and large multiplexers.
Alternatively, the CLB shall be organized as 32-bit shift registers or 64-bit distributed RAMs. In
addition, as for the SelectIO IOBs, the storage elements can be configured as flip-flop D or latches.
The amount of resources is considerable: 32-bit shift registers and up to 330,000 logic cells
(depending on the sub-family type), including flip-flops with clock enable and 6-input LUTs.

The system clocking is generated from up to six Clock Management Tiles (CMTs), each one
containing two Digital Clock Manager (DCM) and one PLL blocks, for the frequency synthesis and
clock phase shifting. The system allows to optimize the low-jitter clocking and to avoid duty cycle
drifts by a differential tree-structure clock and 32 global clock networks, by which reaching the
frequency of 550 MHz.

RAM blocks provided as true dual-port at 36 Kbits could be programmed from 32K x 1 bits
to 512 x 72 bits, in various depth and configurations. This means a total amount of integrated block

54

memory of 16.4 Mbits. Optionally built-in error correction circuitry and enhanced programmable
FIFO logic availables.

To interfacing with the external world, parallel SelectIO technology is provided with a width
selection of I/O standard operations from 1.2V to 3.3V voltage level, up to 1,200 I/Os ports.
Exploiting the ChipSync technology, the interface will be able to communicate in a source-
synchronous mode. In advance, termination are furnished by Digitally-controlled impedances
(DCI). Their nature makes possible to compensate temperature and voltage variations and easier the
board layout, by reducing resistors and placing terminations in the ideal location.
The SelectIO Input/Output Blocks (IOBs) are programmable and its registers could be edge-
triggered D-type flip-flops or level-sensitive latches.

High-performance calculations are performed through the use of advanced DSP slices (up to
640), based on 25x18 bit two's complement multipliers and optional adder/substractor, to perform
complex-multiply or multiply-adder operations. A 48-bit accumulator for multiply-accumulate
(MACC) operations can be provided. Available pipelining and bitwise logical functionality.

In order to assure intellectual property security, Virtex-5 implements in its FPGAs the 256-
bit AES bistream decryption, with improved error detection/correction capability.

6.3.1 The XC5VFX70T component
The FXT Virtex-5 platform's been used, assures high performance embedded systems with

advanced serial connectivity. It's the only platform of the Virtex-5 family providing PowerPC 440
microprocessors, based on RISC architecture (32 K-byte instructions and data cache included).
Working at the very low voltage of 1.0V, it can reach the 550 MHz operation frecuency with more
then 1000 MIPS (Million Instructions Per Second) through a multiple instruction per clock cycle
architecture, parallelized by a 7-stage pipeline.

Logic Resources

Slices 11200

Logic Cells 71680

CLB Flip-Flops 44800

Memory Resources

Maximum Distributed RAM
(Kbits)

820

Block RAM/FIFO (36 Kbits
each)

148

Total block RAM (Kbits) 5328

Clock Resources
Digital Clock Managers (DCM) 12

PLLs 6

I/Os Resources
Max Single-Ended Pins 640

Max Differental I/Os Pairs 320

Embedded Resources

DSP slices 128

PowerPC 440 processor blocks 1

RocketIO GTX Transceivers 16

55

Implemented by the TXT sub-family too, FXT conteins RocketIO transceivers: full-duplex
serial transceivers capable of 150 Mb/s to 6.5 Gb/s baud rates. A part form CRC generating and
checking, it provides programmable equalization systems for the transmitter and the receiver plus
receiver signal detection and loss of sognal indicator.

Each platform has a different amount of architectural resources, so the chosen one has the
features illustrated in the table below.

What's been generally said for the whole Virtex-5 family applies for the FX70 brench too.
So the logic resources will be applied to implement not only the registers but the multiplexers, the
comparators and the counters. The ROM containing the program code of the LDPC algorithm will
find room through the memory resources, as well as the others RAM memory designed into the
ASIP architecture.

All the I/Os resources will have to satisfy the need of I/O pins connecting the ASIP with the
PHAL and the Linux controller. Finally, the DSP slices will implement all the calculation part
instruments, as the multipliers and the adder/substractors.

56

7 Results and Conclusions

7.1 The ASIP Resources occupation
The amount of resources requested by the ASIP can be seen in the table.

It wasn't possible to get the entire NoC resources occupation, but only of one (ASIP + PHAL) of the
two PEs making part of the LDPC decoding network.

Slice Logic Utilization

Number of Slice Registers 473 / 11200 4,2%

Number of Slice LUTs 840 / 11200 7,5%

Number Used as Logic 840 / 11200 7,5%

Slice Logic Distribution

Number of LUTs Flip Flop pairs used 857

Number with an unused Flip Flop 384 / 857 44%

Number with an unused LUT 17 / 857 1%

Number of fully used LUT-FF pairs 456 / 857 53%

Specific Feature Utilization

Number of DSP48Es 5 / 128 3,9%

Total Amount of Memory (Kbits) 1120 / 5380 21%

Maximum Frequency (MHz) 280

The use of logic units, including LUTs and registers, appears to be quite small compared to the total
amount available in the platform. The exploitation of DSPs for arithmetic-logic calculation is
negligible too, since it's about the 3,9%.

As shown in the table below, it's possible to appreciate the memory coverage and the FSM
requirement.

FSMs 2 3-states

ROM memories 1 4K x 8 bits

RAM memories 6
4K x 8 bits 2

8K x 32 bits 4

IO pins 309

1-bit 17

2-bit 2

32-bit 9

57

The VHDL language code generated by the Processor Generator from the SystemC original code
ASIP description synthesized two Finite State Machine of 3 states each one.

Totally, as expected from the project, the Xilinx synthesizer device declares 7 memories:

• the ROM containing the program code and identified in the ASIP architecture by the
program_mem, as a 4K x 8 bits memory;

• 2 RAMS having a 4K x 8 bits size like the program code one, representing the input and
output memories (input_mem and output_mem);

• 4 RAMS with the biggest width, 8K x 32 bits, because are the one hosting the
interconnection-data buffers, ie VNi_mem, CNi_mem, VN_to_CN_mem and
CN_to_VN_mem memories.

Even including the ROM for the area memory occupation, as the total FPGA available is 5320
Kbits, the total needed memory block is 1120 Kbits, about the 21%.

The greatest occupation factor concerns the Input Output pins. In the simulation scenario
composed by only 2 PEs, it can't be appreciated because there's only one virtual data interface. But
in the general case, with a 4-PE NoC scenario and 3 virtual data interface (plus the virtual data 0)
each ASIP, this will keep more signal pins. Eventually, it'll have the consumption of a 48,28% of
available pins.

Checking the critical path of the ASIP circuitry, the maximum working frequency reaches
the value of 280 MHz. The Xilinx family platforms express the occupation area of the board in
number of slices. Through this unit, it's impossible to make a comparison with other solutions,
because the number of slices in which a component is implemented depends on the technology.
In order to compare the project with others already present implementation, it's mandatory to
convert the slices in equivalent gates. Therefore, it's essential to know the convertion factors for the
FX70 in the Virtex-5 family: 1 LUT corresponds to 10 gates, 1 Flip Flop to 4 gates and 1 bit RAM
to 4 gates.
For the Virtex-5 FX70 family case, each slice contains 4 LUTs and 4 Flip Flops. Thus, the previous
table showed that the slice occupation is 473 slice Flip Flop registers and 840 slice LUTs.
Multipling both the slice counts for the number of LUTs and Flip Flops in each slice, it comes to a
total amount of 1892 Flip Flops and 3360 LUTs. Through the gate convertion, the logic gate value
in table can finally be obtained.

[14] [15] [16] [17] ZO-NOC ASIP NoC

CN method phy 3-min minsum minsum minsum minsum

Precision 8 bit 6 bit 8 bit 6 bit 6 bit 6 bit

Technology 160 nm 65 nm 130 nm 90 nm 130 nm 65 nm

Frequency 500 MHz 400 MHz 83 MHz 109 MHz 300 MHz 280 MHz

Logic
kgates

N/A 520 420 380 125 52,52

It can be noticed how the number of gates allocated for the ASIP solution presented is much smaller
than any other one in the state-of-art. Considering, however, a network of two processors, such as
the implemented one, provides a logic amount of about 105 kgates.
The operating frequency remains quite low compared to other solutions, but it's acceptable

58

considering the size of the used technology. The most disproportionated resource is the memory, for
which there has been no optimization.
It wasn't possible to obtein the real occupation area (in mm2) and the throughput, due to the lack of
the CMOS libraries in the Xilinx synthesizer tool.

How it's showed, the LDPC decoder in the first columns was realized exploiting the original
no-linear phy function. This method requires a more complexity, as demonstrated for the major size
technology and the 8-bit data information, but at the same time reaches a better efficiency and
higher frequency. Neverthless, it has the disadvantage to be able to work only with some custom
codes. The other LDPC decoders, though implementing an approximation CN method, have a lower
technology size. Among them, the better one is certainly the second, due to the use of a 65 nm
technology and the higher work frequency; although the amount of logic Kgates resources is large
enough.
All these LDPC decoding architectures have one great problem, having been optimized only for a
specific set of codes. On the other hand, the ZONOC (Zero-Overhead NoC) solution, though
through a larger technology dimension, is not limited by the code used. Furthermore, it works at a
quite good frequency, implementing a low amount of gate resources.

The ASIP-approach LDPC decoder here presented, has features very similar to the ZONOC
one. Firstly, it uses the same approximation to the CN node task with the same data precision. The
resources occupation is, totally, quite the same and the frequency a bit lower. Besides, its
manifacturing technology is the newest 65 nm one. This LDPC decoder, as the ZONOC one, is able
to work with different codes and it's not bound by the nature of inputs.

7.2 Limitations and future improvements
The LDPC decoder's been developed through the ASIP approach, could work even with a

kind of data input different from that produced by the WiMAX standard. That's because, actually,
the nodes aren't physically built in the ASIP architecture as it could be in an hardware way of
programmation. The processor doesn't know the existence of the nodes and this for how it's been
thought the algorithm. Basically the ASIP read some parts of the packet coming in and compute its
to realize some tasks; even there could be more or less nodes and it would be the same.

7.2.1 Parameters limitations
Obviously some parameters have to be respected; for example, the number of CN connected

to a VN can not be higher then 6 and the number of VN connected to a CN higher then 7. This is
clearly due to the lack of memory space. As a matter of fact, every VN node (and the same for a CN
node) has a reserved space in the VNi_mem and in the CN_to_VN_mem memories of 6 word cells
(7 in the CNi_mem and in the VN_to_CN_mem for a CN node) to contain all the messages sent by
the CNs connected. So if there were more then 6 CN connected to a VN, there would not be enough
room for the 7-th message and so on; worst, for how the storing instruction is done, the messages
coming after the 6-th to be stored in the same range of memory would overwrite the last cell
message, the 6-th.

There are another parameters by which the storing instructions depend, that are the number
of VNs and the one of CNs. Indeed, as explained in the ASIP architecture chapter, since the ASIP
never knows in which stage the LDPC algorithm is (if the R messages or Q messages computational
step), to recognize which type of message arrived (and in which memory to store it), compares a
field of the word with the number of VN, because the CN identification numbers follow the

59

numeration from the last VN identification number.
For that reason it's mandatory to correct these constants into the instruction creation program by
manipulating the code just in case the number of nodes are changed.

7.2.2 View to future improvements
The way the LDPC message passing algorithm as been designed within the concept of the

Tanner Graph is not the only one achievable. Likely there may be many other possible ways to
reach the decoding target.
It might be thought to create in the hardware way the Tanner Graph nodes, thus making even the
interconnections between them fixed. But this would make the algorithm static and inflexible to
changes in input data and those of the H parity matrix, the value of which depends on the
interconnections between the sets of nodes.
Another way to address the problem might be to implement the VN nodes sending a single
broadcasting message to all the CN nodes connected to it, containing the sum of all the messages
previously received plus the LLR input (the VN output value). The CN node will just have to worry
about keeping the message to send to that specific VN node and substract it at the time of receipt in
order to obtein its useful information.

Internally to the developed solution, there could be open fields to improve.
It's just been pointed out how , by some fixed parameters depend the storage of data in memory.
This is because the total number of nodes affects some comparison operations. But these parameters
are contained in registers initialized in the main part of the program and thus made constant.
If it could be possible to write these logs from outside, they could be made variables. The idea is, at
the initialization time, to send a word containing the number of nodes for both sets: changing the
ASIP code, will be possible to change the value of the two registers and thus make the algorithm
adaptive to the number of nodes (ie the number of 1's of the H matrix).

Regarding the employment of memory, what can worry about most is the need of many logic
to handle six separate memories. Reducing the number of memories requires a different
organization of the individual cells or the implementation of a dedicated extra searching messages
algorithm, not too onerous in terms of computational difficulty.
A node could, then, be identified simply by its memory address without having to specify the
number into a dedicated buffer field, thereby saving space for more messages in a single cell.

Another point in question just inside the project is the timing and synchronization part. Since
the SYNC Deamon block is implemented in the PHAL, it cares to split operations in time slots. But
time slots duration is decided in advance, when planning the PHAL and can't be changed during the
algorithm execution.
What would happen if the complexity of the algorithm was bigger and the time to perform
calculations was too large for the time slot? The code provides that the program flow can't move to
the sending packets operation until the calculation of all messages isn't finished. But this doesn't
affect the next time slot, because nothing happens if both (or all four) processors terminate after the
PHAL has triggered the enable and then started the next time slot. They simply stand waiting until
the next step of the enable makes begin a new time operation slot.
The question then arises whether a PE finishes on time and the other not, depending on the
distribution of nodes. In this case, one would start a new operation phase while the other would be
waiting for the next one, resulting in an uncoordinated receiving packets.
What the Linux master controller can do, then, during the initialization step, would be sending the
length of time slot to the PHAL, depending on the complexity of the algorithm. That means an
improvement capability for the PHAL, making flexible the time duration of process execution, not
just from the controller, but also from the PHAL point of view, who then will check whether the

60

messages are all sent within the time limit or not and in that case extend the time slots.
The improvement of PHAL functionality is required, since it's easy to join other blocks to

the component too. Therefore, a statistical block could be a good way to control data.
However, after adding other parts increasing the complexity, the already implemented blocks should
be better fixed. For example, the FRONT END block is the responsible of control command but
what it does right now goes beyond its duties. Indeed, it should only check the received packet
destination Deamon and forward it to the correct internal block. While in the actual version, it
elaborates the data into the packet and sends to the other blocks only few costumed informations.

Concerning the EXEC block, it works exactly as expected. The improvement must be done
on the ASIP component. Actually, the ASIP, before receiving a change status request by the EXEC,
fills with the corresponding bit value the status registers. It doesn't even control if something goes
wrong in the application changing status. What the ASIP could do is a better checking status and
responding current status to the EXEC.

In this LDPC implementation, as seen in the main program, the ASIP in the NoC can
perform only one decodification. Then, only the reset operation makes quit the execution from the
routine loop to begin a new decodification. But, likewise, it shouldn't be possible to decod other
data, even with the same Tanner Graph, because the data memories are dirty with the random data
produced by the algorithm execution. It should be necessary to clean all the memories up before
charging another times connections and inputs.

61

8 Appendix A (main.lisa)

RESOURCE
{
 MEMORY_MAP
 {
 BUS(progr_bus), RANGE(0x0000, 0x0fff) -> progr_mem[(31..0)];
 BUS(VNi_bus), RANGE(0x1000, 0x2fff) -> VNi_mem[(31..0)];

BUS(CNi_bus), RANGE(0x3000, 0x4fff) -> CNi_mem[(31..0)];
BUS(VN_to_CN_bus), RANGE(0x5000, 0x6fff) -> VN_to_CN_mem[(31..0)];
BUS(CN_to_VN_bus), RANGE(0x7000, 0x8fff) -> CN_to_VN_mem[(31..0)];
BUS(input_bus), RANGE(0x9000, 0x9fff) -> input_mem[(31..0)];
BUS(output_bus), RANGE(0xa000, 0xafff) -> output_mem[(31..0)];

 }

 BUS char progr_bus
 {
 ADDRTYPE(unsigned long);
 BLOCKSIZE(8,8);
 };

 BUS bit[32] VNi_bus
 {
 ADDRTYPE(unsigned long);
 BLOCKSIZE(32);
 };

 BUS bit[32] CNi_bus
 {
 ADDRTYPE(unsigned long);
 BLOCKSIZE(32);
 };

 BUS bit[32] VN_to_CN_bus
 {
 ADDRTYPE(unsigned long);
 BLOCKSIZE(32);
 };

 BUS bit[32] CN_to_VN_bus
 {
 ADDRTYPE(unsigned long);
 BLOCKSIZE(32);
 };

 BUS bit[8] input_bus
 {
 ADDRTYPE(unsigned long);

62

 BLOCKSIZE(8);
 };

 BUS bit[8] output_bus
 {
 ADDRTYPE(unsigned long);
 BLOCKSIZE(8);
 };

 RAM char progr_mem
 {
 SIZE(0x1000);
 BLOCKSIZE(8,8);
 FLAGS(R|X);
 };

 RAM bit[32] VNi_mem
 {
 SIZE(0x2000);
 BLOCKSIZE(32);
 FLAGS(R|W);
 };

 RAM bit[32] CNi_mem
 {
 SIZE(0x2000);
 BLOCKSIZE(32);
 FLAGS(R|W);
 };

 RAM bit[32] VN_to_CN_mem
 {
 SIZE(0x2000);
 BLOCKSIZE(32);
 FLAGS(R|W);
 };

 RAM bit[32] CN_to_VN_mem
 {
 SIZE(0x2000);
 BLOCKSIZE(32);
 FLAGS(R|W);
 };

 RAM bit[8] input_mem
 {
 SIZE(0x1000);
 BLOCKSIZE(8);
 FLAGS(R|W);
 };

63

 RAM bit[8] output_mem
 {
 SIZE(0x1000);
 BLOCKSIZE(8);
 FLAGS(R|W);
 };

 PIPELINE pipe = { FE ; DE ; EX };
 REGISTER short AR;
 PIPELINE_REGISTER IN pipe {
 unsigned short instr_reg;
 PROGRAM_COUNTER short PC;
 };

 PROGRAM_COUNTER short EPC;
 REGISTER short FPC;
 REGISTER short BPC;
 REGISTER unsigned bit[1] BPC_valid;
 REGISTER uint8 R[0..15];

 REGISTER uint32 VNi_counter;
 REGISTER uint32 CNi_counter;
 REGISTER uint32 VNi_charge_counter;
 REGISTER uint32 CNi_charge_counter;
 REGISTER uint32 VN_to_CN_counter;
 REGISTER uint32 CN_to_VN_counter;
 REGISTER uint32 input_counter;
 REGISTER uint32 output_counter;
 REGISTER uint32 counter;

 REGISTER bit[32] OBJ_REG;
 REGISTER bool STATUS_OBJ0;
 REGISTER bool STATUS_OBJ1;

 REGISTER bool ENABLE_REG;
 REGISTER bool DONE;

 REGISTER bit[32] tmp_data;
 REGISTER bit[12] CN_reg;
 REGISTER bit[12] VN_reg;
 REGISTER bit[2] itf_reg;

 REGISTER uint32 VN_temp_count;
 REGISTER uint32 CN_temp_count;

 REGISTER uint8 n;
 REGISTER uint8 s;
 REGISTER uint8 m;
 REGISTER uint8 c;
 REGISTER uint32 VN0_counter;

 REGISTER uint32 total_VN_n;

64

 REGISTER uint32 total_CN_n;
 REGISTER uint32 max_VN_to_CN;
 REGISTER uint32 max_CN_to_VN;
 REGISTER uint32 min_CN_value;

 REGISTER bit[6] temp_calc[0..6];
 REGISTER bit[12] reg_calc[0..6];
 REGISTER bit[12] reg_home_calc[0..6];

 PIN IN bit[32] virt_data0_in;
 PIN OUT bool virt_data0_in_re;
 PIN IN bool virt_data0_in_ef;

 PIN OUT bit[32] virt_data0_out;
 PIN OUT bool virt_data0_out_we;
 PIN IN bool virt_data0_out_ff;

 PIN IN bit[32] virt_data1_in;
 PIN OUT bool virt_data1_in_re;
 PIN IN bool virt_data1_in_ef;

 PIN OUT bit[32] virt_data1_out;
 PIN OUT bool virt_data1_out_we;
 PIN IN bool virt_data1_out_ff;

 PIN IN bit[32] virt_data2_in;
 PIN OUT bool virt_data2_in_re;
 PIN IN bool virt_data2_in_ef;

 PIN OUT bit[32] virt_data2_out;
 PIN OUT bool virt_data2_out_we;
 PIN IN bool virt_data2_out_ff;

 PIN IN bit[32] virt_data3_in;
 PIN OUT bool virt_data3_in_re;
 PIN IN bool virt_data3_in_ef;

 PIN OUT bit[32] virt_data3_out;
 PIN OUT bool virt_data3_out_we;
 PIN IN bool virt_data3_out_ff;

 PIN IN bool ENABLE;

 PIN IN bit[2] new_status;
 PIN OUT bit[2] current_status;

 PIN IN bit[32] time_stamp;

 long cycle, instruction_counter;
}

OPERATION reset

65

{
 BEHAVIOR
 {
 int i;

 for (i = 0; i < 16 ; i++)
{

R[i] = 0;
}

 AR = 0;
 cycle = instruction_counter = 0;
 BPC = 0;
 BPC_valid = 0;
 EPC = FPC = LISA_PROGRAM_COUNTER;

STATUS_OBJ0 = 0;
STATUS_OBJ1 = 0;
ENABLE_REG = 0;

 DONE = 0;

VNi_counter = 0x1000;
CNi_counter = 0x3000;
VNi_charge_counter = 0x1000;
CNi_charge_counter = 0x3000;
VN_to_CN_counter = 0x5000;
CN_to_VN_counter = 0x7000;
input_counter = 0x9000;
output_counter = 0xa000;

VN_temp_count = 0;
CN_temp_count = 0;

s = 0;
m = 0;
n = 0;
c = 0;
VN0_counter = 0;

total_VN_n = 1142;
total_CN_n = 573;
max_VN_to_CN = 6;
max_CN_to_VN = 7;
min_CN_value = 2304;

 PIPELINE(pipe).flush();
 }
}

OPERATION main
{
 DECLARE
 {
 INSTANCE fetch;

66

 }

 BEHAVIOR
 {
 ENABLE_REG = ENABLE;
 PIPELINE(pipe).execute();
 PIPELINE(pipe).shift();
 cycle += 1;
 }

 ACTIVATION
 {
 if (!pipe.DE.IN.stalled())
 {
 fetch
 }
 }
}

OPERATION fetch IN pipe.FE
{
 DECLARE

{
 INSTANCE decode;

INSTANCE adquire_state, adquire_virt_data;
 }

 BEHAVIOR
 {
 short tmp_FPC=FPC;
 if(BPC_valid!=0)

{
 tmp_FPC=BPC;
 BPC_valid=0;

 }
 FPC = tmp_FPC + 2;
 char tmp1, tmp2;
 progr_bus.read(tmp_FPC+1, &tmp1);

progr_bus.read(tmp_FPC, &tmp2);
 FE.OUT.instr_reg = (((unsigned char)tmp1) << 8) | ((unsigned char)tmp2);
 FE.OUT.PC=tmp_FPC;
 instruction_counter += 1;
 adquire_virt_data();

adquire_state();
 }
 ACTIVATION{ decode }
}

OPERATION decode IN pipe.DE
{
 DECLARE
 {

67

 GROUP instruction = { branch_instr || main_op };
 }
 CODING AT (DE.IN.PC) { DE.IN.instr_reg == instruction }
 SYNTAX { instruction }
 BEHAVIOR
 {
 EPC=DE.IN.PC;
 }
 ACTIVATION { instruction }
}

OPERATION adquire_virt_data IN pipe.FE
{
 BEHAVIOR

{
bit[32] tmp_data_in;
bit[32] tmp_reg;
bit[12] gen_reg;
uint32 gen_int;
bit[12] gen_old0;
bit[12] gen_old1;
bit[12] gen_old2;
bit[12] gen_old3;
bit[12] gen_old4;
bit[12] gen_old5;
bit[12] gen_old6;

if ((!virt_data0_in_ef)||(!virt_data2_in_ef)||(!virt_data3_in_ef))
{
 if (!virt_data0_in_ef)

 {
virt_data0_in_re = 1;
tmp_data_in = virt_data0_in;
virt_data2_in_re = 0;
virt_data3_in_re = 0;

 }
 else

{
 if (!virt_data2_in_ef)

 {
virt_data2_in_re = 1;
tmp_data_in = virt_data2_in;
virt_data0_in_re = 0;
virt_data3_in_re = 0;

 }
 else

{
virt_data3_in_re = 1;
tmp_data_in = virt_data3_in;
virt_data0_in_re = 0;
virt_data2_in_re = 0;

 }

68

}
gen_reg = tmp_data_in.to_bitvec(6, 12);
gen_int = gen_reg.to_uint32(0, 12);

if (gen_int >= min_CN_value)
 {
VN_to_CN_bus.read(VN_to_CN_counter +

max_CN_to_VN*(gen_int - min_CN_value), &tmp_reg);
gen_old0 = tmp_reg.to_bitvec(6, 12);

VN_to_CN_bus.read(VN_to_CN_counter +
 max_CN_to_VN*(gen_int - min_CN_value) + 1, &tmp_reg);
gen_old1 = tmp_reg.to_bitvec(6, 12);

VN_to_CN_bus.read(VN_to_CN_counter +
 max_CN_to_VN*(gen_int - min_CN_value) + 2, &tmp_reg);
gen_old2 = tmp_reg.to_bitvec(6, 12);

VN_to_CN_bus.read(VN_to_CN_counter +
 max_CN_to_VN*(gen_int - min_CN_value) + 3, &tmp_reg);
gen_old3 = tmp_reg.to_bitvec(6, 12);

VN_to_CN_bus.read(VN_to_CN_counter +
 max_CN_to_VN*(gen_int - min_CN_value) + 4, &tmp_reg);
gen_old4 = tmp_reg.to_bitvec(6, 12);

VN_to_CN_bus.read(VN_to_CN_counter +
 max_CN_to_VN*(gen_int - min_CN_value) + 5, &tmp_reg);
gen_old5 = tmp_reg.to_bitvec(6, 12);

VN_to_CN_bus.read(VN_to_CN_counter +
 max_CN_to_VN*(gen_int - min_CN_value) + 6, &tmp_reg);
gen_old6 = tmp_reg.to_bitvec(6, 12);

if (gen_old0 != gen_reg)

 {
VN_to_CN_bus.write(VN_to_CN_counter +
 max_CN_to_VN*(gen_int - min_CN_value), &tmp_data_in);

 }
else

 {
if (gen_old1 != gen_reg)
 {
VN_to_CN_bus.write(VN_to_CN_counter +

 max_CN_to_VN*(gen_int - min_CN_value) + 1, &tmp_data_in);
 }
else
 {
if (gen_old2 != gen_reg)

 {
 VN_to_CN_bus.write(VN_to_CN_counter +
 max_CN_to_VN*(gen_int - min_CN_value) + 2, &tmp_data_in);

69

 }
else

 {
if (gen_old3 != gen_reg)

 {
VN_to_CN_bus.write(VN_to_CN_counter +

 max_CN_to_VN*(gen_int - min_CN_value) + 3, &tmp_data_in);
 }
else

 {
if (gen_old4 != gen_reg)

 {
VN_to_CN_bus.write(VN_to_CN_counter +

 max_CN_to_VN*(gen_int - min_CN_value) + 4, &tmp_data_in);
 }

else
 {
if (gen_old5 != gen_reg)
 {
VN_to_CN_bus.write(VN_to_CN_counter +

 max_CN_to_VN*(gen_int - min_CN_value) + 5, &tmp_data_in);
 }
else
 {
VN_to_CN_bus.write(VN_to_CN_counter +

 max_CN_to_VN*(gen_int - min_CN_value) + 6, &tmp_data_in);
 }

 }
 }

 }
 }

 }
 }

else
 {
if (gen_reg != 0)

 {
CN_to_VN_bus.read(CN_to_VN_counter +

max_VN_to_CN*gen_int, &tmp_reg);
gen_old0 = tmp_reg.to_bitvec(6, 12);

CN_to_VN_bus.read(CN_to_VN_counter +
 max_VN_to_CN*gen_int + 1, &tmp_reg);

gen_old1 = tmp_reg.to_bitvec(6, 12);

CN_to_VN_bus.read(CN_to_VN_counter +
 max_VN_to_CN*gen_int + 2, &tmp_reg);

gen_old2 = tmp_reg.to_bitvec(6, 12);

CN_to_VN_bus.read(CN_to_VN_counter +
 max_VN_to_CN*gen_int + 3, &tmp_reg);

gen_old3 = tmp_reg.to_bitvec(6, 12);

70

CN_to_VN_bus.read(CN_to_VN_counter +
 max_VN_to_CN*gen_int + 4, &tmp_reg);

gen_old4 = tmp_reg.to_bitvec(6, 12);

CN_to_VN_bus.read(CN_to_VN_counter +
 max_VN_to_CN*gen_int + 5, &tmp_reg);

gen_old5 = tmp_reg.to_bitvec(6, 12);

if (gen_old0 != gen_reg)
 {

CN_to_VN_bus.write(CN_to_VN_counter +
 max_VN_to_CN*gen_int, &tmp_data_in);

 }
else

 {
if (gen_old1 != gen_reg)
 {
CN_to_VN_bus.write(CN_to_VN_counter +

 max_VN_to_CN*gen_int + 1, &tmp_data_in);
 }

else
 {

if (gen_old2 != gen_reg)
 {

CN_to_VN_bus.write(CN_to_VN_counter +
 max_VN_to_CN*gen_int + 2, &tmp_data_in);

 }
else

 {
if (gen_old3 != gen_reg)

 {
CN_to_VN_bus.write(CN_to_VN_counter +

 max_VN_to_CN*gen_int + 3, &tmp_data_in);
 }

else
 {

if (gen_old4 != gen_reg)
 {

CN_to_VN_bus.write(CN_to_VN_counter +
 max_VN_to_CN*gen_int + 4, &tmp_data_in);
 }

else
 {

CN_to_VN_bus.write(CN_to_VN_counter +
 max_VN_to_CN*gen_int + 5, &tmp_data_in);
 }

 }
 }

 }
 }

 }

71

else
 {
CN_to_VN_bus.write(CN_to_VN_counter + VN0_counter,

&tmp_data_in);
VN0_counter++;
 }

 }
}

}
}

OPERATION adquire_state IN pipe.FE
{

 BEHAVIOR
{
STATUS_OBJ0 = new_status.to_bool(0);
STATUS_OBJ1 = new_status.to_bool(1);

if (STATUS_OBJ0 == 0 && STATUS_OBJ1 == 0)
{
current_status = 0;
}

else
{
if (STATUS_OBJ0 == 1 && STATUS_OBJ1 == 0)

{
current_status = 1;
}

else
{
if (STATUS_OBJ0 == 0 && STATUS_OBJ1 == 1)

{
current_status = 2;
}

else
{
current_status = 3;
}

}
}

}
}

OPERATION branch_instr IN pipe.DE
{
 DECLARE
 {
 GROUP address = { addr8 };
 GROUP insn = { BC || B };
 }
 CODING { insn address }
 SYNTAX { insn }

72

 BEHAVIOR
 {
 AR = ((R[15] << 8) | address);
 pipe.DE.IN.stall();
 }
 ACTIVATION { insn }
}

OPERATION main_op IN pipe.DE
{
 DECLARE

{
 GROUP instr = { SET || RESET || send_VN || create_CN || create_VN ||

 send_CN || send_output || charge_input };
 }
 CODING { instr }
 SYNTAX { instr }
 ACTIVATION { instr }
}

73

9 Appendix B (instructions.lisa)

OPERATION BC IN pipe.EX
{
 DECLARE
 {
 GROUP condition = { EQ || NEQ };
 REFERENCE address;
 INSTANCE ctrl_reg;
 }
 CODING { 0b1000 condition ctrl_reg }
 SYNTAX { "BC" ~" " address "," ctrl_reg ~":" ~condition }
 SWITCH (condition) {
 CASE EQ: {
 BEHAVIOR

{
virt_data0_out_we = 0;
virt_data2_out_we = 0;
virt_data3_out_we = 0;

 if (ctrl_reg == 0)
 {

 BPC = AR;
 BPC_valid = 1;
 pipe.DE.IN.flush();

 }
}

 }
 CASE NEQ: {
 BEHAVIOR

{
virt_data0_out_we = 0;
virt_data2_out_we = 0;
virt_data3_out_we = 0;

 if (ctrl_reg == 1)
 {

BPC = AR;
 BPC_valid = 1;
 pipe.DE.IN.flush();
 }
}

 }
 }
}
 OPERATION B IN pipe.EX
{
 DECLARE
 {
 REFERENCE address;
 }

74

 CODING { 0b01000001 }
 SYNTAX { "B" ~" " address }
 BEHAVIOR
 {

virt_data0_out_we = 0;
virt_data2_out_we = 0;
virt_data3_out_we = 0;
BPC = AR;

 BPC_valid = 1;
 pipe.DE.IN.flush();
 }
}

OPERATION RESET IN pipe.EX
{
 DECLARE

{
 INSTANCE ctrl_reg;
}

 CODING { 0b01000010 ctrl_reg 0bx[5]}
 SYNTAX { "RESET" ~" " ctrl_reg }
 BEHAVIOR

{
 ctrl_reg = 0;
 }
}

OPERATION SET IN pipe.EX
{
 DECLARE

{
 INSTANCE ctrl_reg;
}

 CODING { 0b01000110 ctrl_reg 0bx[5]}
 SYNTAX { "SET" ~" " ctrl_reg }
 BEHAVIOR

{
 ctrl_reg = 1;
 }
}

OPERATION send_VN IN pipe.EX
{
 CODING { 0b01000011 0bx[8] }
 SYNTAX { "send_VN" }
 BEHAVIOR

{
 bit[32] tmp_data_out;
 bit[32] tmp_reg;
 bit[1] itf_to_send_bit0;
 bit[1] itf_to_send_bit1;
 bit[12] gen_reg;

75

 uint32 gen_int;
 bit[12] gen_old0;
 bit[12] gen_old1;
 bit[12] gen_old2;
 bit[12] gen_old3;
 bit[12] gen_old4;
 bit[12] gen_old5;
 bit[12] gen_old6;
 VN0_counter = 0;

 if (VN_temp_count < total_VN_n)
{
if (n < max_VN_to_CN)

{
VNi_bus.read(VNi_counter, &tmp_data_out);
gen_reg = tmp_data_out.to_bitvec(6, 12);
gen_int = gen_reg.to_uint32(0, 12);
VNi_counter++;
n++;
if (gen_int != 0)

{
itf_to_send_bit0 = tmp_data_out.to_bitvec(30, 1);
itf_to_send_bit1 = tmp_data_out.to_bitvec(31, 1);

if (!itf_to_send_bit0)
{

if (!itf_to_send_bit1)
{
virt_data0_out_we = 0;
virt_data2_out_we = 0;
virt_data3_out_we = 0;

VN_to_CN_bus.read(VN_to_CN_counter +
 max_CN_to_VN*(gen_int - min_CN_value), &tmp_reg);

gen_old0 = tmp_reg.to_bitvec(6, 12);

VN_to_CN_bus.read(VN_to_CN_counter +
 max_CN_to_VN*(gen_int - min_CN_value) + 1, &tmp_reg);
gen_old1 = tmp_reg.to_bitvec(6, 12);

VN_to_CN_bus.read(VN_to_CN_counter +
 max_CN_to_VN*(gen_int - min_CN_value) + 2, &tmp_reg);
gen_old2 = tmp_reg.to_bitvec(6, 12);

VN_to_CN_bus.read(VN_to_CN_counter +
 max_CN_to_VN*(gen_int - min_CN_value) + 3, &tmp_reg);
gen_old3 = tmp_reg.to_bitvec(6, 12);

VN_to_CN_bus.read(VN_to_CN_counter +
 max_CN_to_VN*(gen_int - min_CN_value) + 4, &tmp_reg);
gen_old4 = tmp_reg.to_bitvec(6, 12);

76

VN_to_CN_bus.read(VN_to_CN_counter +
 max_CN_to_VN*(gen_int - min_CN_value) + 5, &tmp_reg);
gen_old5 = tmp_reg.to_bitvec(6, 12);

VN_to_CN_bus.read(VN_to_CN_counter +
 max_CN_to_VN*(gen_int - min_CN_value) + 6, &tmp_reg);
gen_old6 = tmp_reg.to_bitvec(6, 12);

if (gen_old0 != gen_reg)

{
VN_to_CN_bus.write(VN_to_CN_counter +
 max_CN_to_VN*(gen_int - min_CN_value), &tmp_data_out);
}

else
{

if (gen_old1 != gen_reg)
{
VN_to_CN_bus.write(VN_to_CN_counter +

 max_CN_to_VN*(gen_int - min_CN_value) + 1, &tmp_data_out);
}

else
{

if (gen_old2 != gen_reg)
{

 VN_to_CN_bus.write(VN_to_CN_counter +
 max_CN_to_VN*(gen_int - min_CN_value) + 2, &tmp_data_out);

}
else

{
if (gen_old3 != gen_reg)

{
VN_to_CN_bus.write(VN_to_CN_counter +

 max_CN_to_VN*(gen_int - min_CN_value) + 3, &tmp_data_out);
}

else
{

if (gen_old4 != gen_reg)
{
VN_to_CN_bus.write(VN_to_CN_counter +

 max_CN_to_VN*(gen_int - min_CN_value) + 4, &tmp_data_out);
}

else
{

if (gen_old5 != gen_reg)
{
VN_to_CN_bus.write(VN_to_CN_counter +

 max_CN_to_VN*(gen_int - min_CN_value) + 5, &tmp_data_out);
}

else
{
VN_to_CN_bus.write(VN_to_CN_counter +

 max_CN_to_VN*(gen_int - min_CN_value) + 6, &tmp_data_out);

77

}
 }

 }
 }

 }
 }

}
else

{
virt_data3_out_we = 0;
virt_data0_out_we = 0;
if (!virt_data2_out_ff)

{
virt_data2_out_we = 1;
virt_data2_out = tmp_data_out;
}
else
{
virt_data2_out_we = 0;
}

}
}
else
{

if (!itf_to_send_bit1)
{
virt_data3_out_we = 0;
virt_data2_out_we = 0;
if (!virt_data0_out_ff)

{
virt_data0_out_we = 1;
virt_data0_out = tmp_data_out;
}

else
{
virt_data0_out_we = 0;
}

}
else

 {
virt_data0_out_we = 0;
virt_data2_out_we = 0;
if (!virt_data3_out_ff)

{
virt_data3_out_we = 1;
virt_data3_out = tmp_data_out;
}

else
{
virt_data3_out_we = 0;
}

 }

78

 }
}

 else
 {

virt_data0_out_we = 0;
virt_data2_out_we = 0;
virt_data3_out_we = 0;

 }
 }
else
 {

virt_data0_out_we = 0;
virt_data2_out_we = 0;
virt_data3_out_we = 0;
n = 0;
VN_temp_count++;

 }
 }
else
 {

DONE = 1;
VNi_counter = 0x1000;
VN_temp_count = 0;
n = 0;
virt_data0_out_we = 0;
virt_data2_out_we = 0;
virt_data3_out_we = 0;

 }
 }
}

OPERATION create_CN IN pipe.EX
{
 CODING { 0b01000100 0bx[8] }
 SYNTAX { "create_CN" }
 BEHAVIOR

{
 uint8 p;
 uint8 g;
 uint8 z;
 bit[32] zero_reg;
 bit[12] temp;
 bit[32] tmp_reg;
 bit[32] tmp_reg2;
 bit[8] data_out;
 bit[12] gen_reg;
 uint32 gen_int;
 VN0_counter = 0;

 if (CN_temp_count < total_CN_n)
{
 zero_reg = 0x00000000;

79

 if (s < (max_CN_to_VN + 1))
{
 if (s == 0)

{
 CNi_bus.read(CNi_counter, &tmp_reg2);
 temp = tmp_reg2.to_bitvec(18, 12);
 counter = temp.to_uint32(0, 12);
 s++;
}

 else
{

 CNi_bus.read(CNi_counter + s - 1, &tmp_reg2);
 gen_reg = tmp_reg2.to_bitvec(18, 12);

 gen_int = gen_reg.to_uint32(0, 12);
 if (gen_int == counter)

{
 reg_home_calc[m] = tmp_reg2.to_bitvec(6, 12);
 m++;

 VN_to_CN_bus.read(VN_to_CN_counter +
 max_CN_to_VN*(counter - min_CN_value) + s - 1, &tmp_reg);

 temp_calc[n] = tmp_reg.to_bitvec(0, 6);
 reg_calc[n] = tmp_reg.to_bitvec(18, 12);
 n++;

}
}

 s++;
}

 else
 {
 if (c < m)

{
 data_out = 0xff;

 for (p = 0 ; p < n ; p++)
{

 if (reg_calc[p] == reg_home_calc[c])
{

 z = p;
}

}
 for (g = 0 ; g < n ; g++)

{
 if (g != z)

{
 if ((temp_calc[g] & 0x3f)<(data_out&0x3f))

{
 data_out = (temp_calc[g]&0x3f);

}
}

}
 data_out = data_out & 0x3f;

 CNi_bus.write(CNi_counter + c, &data_out, 1, 0, 6);
 c++;

80

}
 else

{
 VN_to_CN_bus.write(VN_to_CN_counter +

max_CN_to_VN*(counter - min_CN_value), &zero_reg);
 VN_to_CN_bus.write(VN_to_CN_counter +
 max_CN_to_VN*(counter - min_CN_value) + 1, &zero_reg);
 VN_to_CN_bus.write(VN_to_CN_counter +
 max_CN_to_VN*(counter - min_CN_value) + 2, &zero_reg);
 VN_to_CN_bus.write(VN_to_CN_counter +
 max_CN_to_VN*(counter - min_CN_value) + 3, &zero_reg);
 VN_to_CN_bus.write(VN_to_CN_counter +
 max_CN_to_VN*(counter - min_CN_value) + 4, &zero_reg);
 VN_to_CN_bus.write(VN_to_CN_counter +
 max_CN_to_VN*(counter - min_CN_value) + 5, &zero_reg);
 VN_to_CN_bus.write(VN_to_CN_counter +
 max_CN_to_VN*(counter - min_CN_value) + 6, &zero_reg);

 CN_temp_count++;
 CNi_counter = CNi_counter + max_CN_to_VN;

 n = 0;
 z = 0;
 s = 0;
 p = 0;

 c = 0;
 m = 0;
 g = 0;
}

}
}

 else
{
 CN_temp_count = 0;
 CNi_counter = 0x3000;
 VN_to_CN_counter = 0x5000;
 DONE = 1;
 n = 0;
 z = 0;
 s = 0;
 p = 0;
 c = 0;
 m = 0;
 g = 0;
}

}
}

OPERATION send_CN IN pipe.EX
{
 CODING { 0b01000101 0bx[8] }
 SYNTAX { "send_CN" }
 BEHAVIOR

{

81

 bit[32] tmp_data_out;
 bit[32] tmp_reg;
 bit[1] itf_to_send_bit0;
 bit[1] itf_to_send_bit1;
 bit[12] gen_reg;
 uint32 gen_int;
 bit[12] ctrl_reg;
 uint32 ctrl_int;
 bit[12] gen_old0;
 bit[12] gen_old1;
 bit[12] gen_old2;
 bit[12] gen_old3;
 bit[12] gen_old4;
 bit[12] gen_old5;

 if (CN_temp_count < total_CN_n)
{
 if (n < max_CN_to_VN)

{
 CNi_bus.read(CNi_counter, &tmp_data_out);
 gen_reg = tmp_data_out.to_bitvec(6, 12);
 gen_int = gen_reg.to_uint32(0, 12);
 ctrl_reg = tmp_data_out.to_bitvec(18, 12);
 ctrl_int = ctrl_reg.to_uint32(0, 12);
 CNi_counter++;
 n++;

 if (ctrl_int != 0)

{
 itf_to_send_bit0 = tmp_data_out.to_bitvec(30, 1);
 itf_to_send_bit1 = tmp_data_out.to_bitvec(31, 1);

 if (!itf_to_send_bit0)
 {
 if (!itf_to_send_bit1)
 {

virt_data0_out_we = 0;
 virt_data2_out_we = 0;
 virt_data3_out_we = 0;

if (gen_reg != 0)
{

CN_to_VN_bus.read(CN_to_VN_counter +
max_VN_to_CN*gen_int, &tmp_reg);

gen_old0 = tmp_reg.to_bitvec(6, 12);

CN_to_VN_bus.read(CN_to_VN_counter +
 max_VN_to_CN*gen_int + 1, &tmp_reg);

gen_old1 = tmp_reg.to_bitvec(6, 12);

CN_to_VN_bus.read(CN_to_VN_counter +
 max_VN_to_CN*gen_int + 2, &tmp_reg);

gen_old2 = tmp_reg.to_bitvec(6, 12);

82

CN_to_VN_bus.read(CN_to_VN_counter +
 max_VN_to_CN*gen_int + 3, &tmp_reg);

gen_old3 = tmp_reg.to_bitvec(6, 12);

CN_to_VN_bus.read(CN_to_VN_counter +
 max_VN_to_CN*gen_int + 4, &tmp_reg);

gen_old4 = tmp_reg.to_bitvec(6, 12);

CN_to_VN_bus.read(CN_to_VN_counter +
 max_VN_to_CN*gen_int + 5, &tmp_reg);

gen_old5 = tmp_reg.to_bitvec(6, 12);

if (gen_old0 != gen_reg)
 {

CN_to_VN_bus.write(CN_to_VN_counter +
 max_VN_to_CN*gen_int, &tmp_data_out);

 }
else

 {
if (gen_old1 != gen_reg)
 {
CN_to_VN_bus.write(CN_to_VN_counter +

 max_VN_to_CN*gen_int + 1, &tmp_data_out);
 }

else
 {

if (gen_old2 != gen_reg)
 {

CN_to_VN_bus.write(CN_to_VN_counter +
 max_VN_to_CN*gen_int + 2, &tmp_data_out);
 }

else
 {

if (gen_old3 != gen_reg)
 {

CN_to_VN_bus.write(CN_to_VN_counter +
 max_VN_to_CN*gen_int + 3, &tmp_data_out);
 }

else
 {

if (gen_old4 != gen_reg)
 {

CN_to_VN_bus.write(CN_to_VN_counter +
 max_VN_to_CN*gen_int + 4, &tmp_data_out);
 }

else
 {

CN_to_VN_bus.write(CN_to_VN_counter +
 max_VN_to_CN*gen_int + 5, &tmp_data_out);
 }

 }

83

 }
 }

 }
 }
else

{
CN_to_VN_bus.write(CN_to_VN_counter + VN0_counter,

&tmp_data_out);
VN0_counter++;

}
}

 else
 {

 virt_data3_out_we = 0;
 virt_data0_out_we = 0;
 if (!virt_data2_out_ff)
 {

 virt_data2_out_we = 1;
 virt_data2_out = tmp_data_out;

 }
 else
 {

 virt_data2_out_we = 0;
 }

 }
 }
 else
 {

 if (!itf_to_send_bit1)
 {

 virt_data3_out_we = 0;
 virt_data2_out_we = 0;
 if (!virt_data0_out_ff)
 {

 virt_data0_out_we = 1;
 virt_data0_out = tmp_data_out;

 }
 else
 {

 virt_data0_out_we = 0;
 }

 }
 else

 {
virt_data0_out_we = 0;
virt_data2_out_we = 0;
if (!virt_data3_out_ff)

 {
virt_data3_out_we = 1;
virt_data3_out = tmp_data_out;

 }
else

84

 {
virt_data3_out_we = 0;

 }
 }
 }
}

 else
{
 virt_data0_out_we = 0;
 virt_data2_out_we = 0;
 virt_data3_out_we = 0;
}

 }
else
 {

virt_data0_out_we = 0;
virt_data2_out_we = 0;
virt_data3_out_we = 0;
n = 0;
CN_temp_count++;

 }
 }
else
 {

DONE = 1;
CNi_counter = 0x3000;
CN_temp_count = 0;
n = 0;
virt_data0_out_we = 0;
virt_data2_out_we = 0;
virt_data3_out_we = 0;

 }

 }
}

OPERATION create_VN IN pipe.EX
{
 CODING { 0b01000111 0bx[8] }
 SYNTAX { "create_VN" }
 BEHAVIOR

{
 uint8 p;
 uint8 g;
 uint8 z;
 bit[32] zero_reg;
 bit[12] temp;
 bit[32] tmp_reg;
 bit[32] tmp_reg2;
 bit[8] data_to_output;
 bit[8] data_out;
 bit[12] gen_reg;

85

 uint32 gen_int;
 VN0_counter = 0;

 if (VN_temp_count < total_VN_n)
{
 zero_reg = 0x00000000;
 if (s < (max_VN_to_CN + 1))

{
 if (s == 0)

{
 VNi_bus.read(VNi_counter, &tmp_reg2);
 temp = tmp_reg2.to_bitvec(18, 12);
 counter = temp.to_uint32(0, 12);
 s++;
}

 else
{

 VNi_bus.read(VNi_counter + s - 1, &tmp_reg2);
 gen_reg = tmp_reg2.to_bitvec(18, 12);
 gen_int = gen_reg.to_uint32(0, 12);

 if (gen_int == counter)
{

 reg_home_calc[m] = tmp_reg2.to_bitvec(6, 12);
 m++;

 CN_to_VN_bus.read(CN_to_VN_counter +
 max_VN_to_CN*counter + s - 1, &tmp_reg);

 temp_calc[n] = tmp_reg.to_bitvec(0, 6);
 reg_calc[n] = tmp_reg.to_bitvec(18, 12);
 n++;

}
}

 s++;
}

 else
 {
 if (c < m)

{
 input_bus.read(input_counter, &data_to_output);
 data_to_output = data_to_output & 0x3f;
 data_out = data_to_output;

 for (p = 0 ; p < n ; p++)
{

 if (reg_calc[p] == reg_home_calc[c])
{

 z = p;
}

}
 for (g = 0 ; g < n ; g++)

{
data_to_output=data_to_output+(temp_calc[g]&0x3f);

 if (g != z)
{

86

 data_out = data_out + (temp_calc[g]&0x3f);
}

}
 data_out = data_out & 0x3f;
 data_to_output = data_to_output & 0x3f;

 VNi_bus.write(VNi_counter + c, &data_out, 1, 0, 6);
 output_bus.write(output_counter, &data_to_output);
 c++;
}

 else
{
 CN_to_VN_bus.write(CN_to_VN_counter +

max_VN_to_CN*counter, &zero_reg);
 CN_to_VN_bus.write(CN_to_VN_counter +

 max_VN_to_CN*counter + 1, &zero_reg);
 CN_to_VN_bus.write(CN_to_VN_counter +

 max_VN_to_CN*counter + 2, &zero_reg);
 CN_to_VN_bus.write(CN_to_VN_counter +

 max_VN_to_CN*counter + 3, &zero_reg);
 CN_to_VN_bus.write(CN_to_VN_counter +

 max_VN_to_CN*counter + 4, &zero_reg);
 CN_to_VN_bus.write(CN_to_VN_counter +

 max_VN_to_CN*counter + 5, &zero_reg);
 VN_temp_count++;

 input_counter++;
 output_counter++;
 VNi_counter = VNi_counter + max_VN_to_CN;

 n = 0;
 z = 0;
 s = 0;
 p = 0;

 c = 0;
 m = 0;
 g = 0;
}

}
}

 else
{
 VN_temp_count = 0;

 input_counter = 0x9000;
 output_counter = 0xa000;

 VNi_counter = 0x1000;
 DONE = 1;
 n = 0;
 z = 0;
 s = 0;
 p = 0;
 c = 0;
 m = 0;
 g = 0;
}

87

}
}

OPERATION send_output IN pipe.EX
{
 CODING { 0b01001000 0bx[8] }
 SYNTAX { "send_output" }
 BEHAVIOR

{
 bit[32] temporary_data;
 bit[6] tmp_output;
 bool bit_out;

 if (VN_temp_count < total_VN_n)
{
if (n < 32)
 {

output_bus.read(output_counter + VN_temp_count, &tmp_output);
bit_out = tmp_output.to_bool(5);
temporary_data.assign(bit_out, n, 1);
tmp_data = temporary_data;
virt_data1_out_we = 0;
VN_temp_count++;
n++;

 }
else
 {

if (!virt_data1_out_ff)
 {

virt_data1_out = tmp_data;
virt_data1_out_we = 1;
n = 0;

 }
else
 {

virt_data1_out_we = 0;
 }

 }
}

 else
{
 if (n != 0)

{
 temporary_data.assign(0, n, 32-n);
 tmp_data = temporary_data;
 if (!virt_data1_out_ff)
 {

 virt_data1_out = tmp_data;
 virt_data1_out_we = 1;
 n = 0;

 }
 else

88

 {
 virt_data1_out_we = 0;

 }
}

 else
{
DONE = 1;
virt_data1_out_we = 0;
}

}
 }
}

OPERATION charge_input IN pipe.EX
{
 CODING { 0b01001001 0bx[8] }
 SYNTAX { "charge_input" }
 BEHAVIOR

{
bit[32] tmp_data_in;
bit[8] data_in;

 if (VN_temp_count < total_VN_n)
 {

VNi_bus.read(VNi_counter, &tmp_data_in);
data_in = tmp_data_in.to_bitvec(0, 8) & 0x3f;
input_bus.write(input_counter, &data_in);
VNi_counter = VNi_counter + max_VN_to_CN;
input_counter++;
VN_temp_count++;

 }
else
 {

DONE = 1;
VNi_counter = 0x1000;
input_counter = 0x9000;
VN_temp_count = 0;

 }
}

}

89

10 Appendix C (progr_main.asm)

;==
; FILE: progr_main.asm
; DESCRIPTION: main ASIP program
;==
;=================================
;filling data memory VNi_mem

.section .data_VN, "aw", @progbits

.word 0x0016921f

.word 0x0017165f

.word 0x0017569f

.word 0x00000000

.word 0x00000000

.word 0x00000000

.word 0x001a9260

.word 0x001b16a0

.word 0x001b56e0

.word 0x00000000

.word 0x00000000

.word 0x00000000
…....................................
;=================================
;filling data memory CNi_mem

.section .data_CN, "aw", @progbits

.word 0x24081800

.word 0x240842c0

.word 0x2408ce40

.word 0x2408ed40

.word 0x24092240

.word 0x24093880

.word 0x00000000

.word 0x241418c0

.word 0x64144380

.word 0x2414cf00

.word 0x2414ee00

.word 0x24152300

.word 0x24153940

.word 0x00000000
…....................................

.text
_loop: BC @_loop, STATUS_OBJ0:EQ

BC @_init, STATUS_OBJ1:NEQ
_run: BC @_run, ENABLE_REG:EQ
_wait1: BC @_first_step, STATUS_OBJ0:NEQ

90

BC @_wait1, STATUS_OBJ1:NEQ
B @_out_step

_first_step: send_VN
BC @_first_step, DONE:EQ
RESET DONE

_run_CN: BC @_run_CN, ENABLE_REG:EQ
_wait2: BC @_CN_step, STATUS_OBJ0:NEQ

BC @_wait2, STATUS_OBJ1:NEQ
B @_out_step

_CN_step: create_CN
BC @_CN_step, DONE:EQ
RESET DONE

_CN_send: send_CN
BC @_CN_send, DONE:EQ
RESET DONE

_run_VN: BC @_run_VN, ENABLE_REG:EQ
_wait3: BC @_VN_step, STATUS_OBJ0:NEQ

BC @_wait3, STATUS_OBJ1:NEQ
B @_out_step

_VN_step: create_VN
BC @_VN_step, DONE:EQ
RESET DONE

_VN_send: send_VN
BC @_VN_send, DONE:EQ
RESET DONE
B @_run_CN

_init: charge_input
BC @_init, DONE:EQ
RESET DONE
B @_loop

_out_step: send_output

BC @_out_step, DONE:EQ
RESET DONE

_inf_loop: B @_inf_loop
.end

91

11 Appendix D (progr_main.cmd)

MEMORY
{
 progr_mem : origin = 0x0000 , length = 0x1000 , bytes = 1
 VNi_mem : origin = 0x1000 , length = 0x2000 , bytes = 4
 CNi_mem : origin = 0x3000 , length = 0x2000 , bytes = 4
 VN_to_CN_mem : origin = 0x5000 , length = 0x2000 , bytes = 4
 CN_to_VN_mem : origin = 0x7000 , length = 0x2000 , bytes = 4
 input_mem : origin = 0x9000 , length = 0x1000 , bytes = 1
 ouput_mem : origin = 0xa000 , length = 0x1000 , bytes = 1
}

SECTIONS
{
 .text: > progr_mem
 .data_VN: > VNi_mem
 .data_CN: > CNi_mem
}

92

12 Bibliography

[1] Wen Ji, Yuta Abe, Takeshi Ikenaga, Satoshi Goto. A High Performance Partially- Parallel
Irregular LDPC Decoder Based on Sum-Delta Message Passing Schedule. In IEICE
TRANS. FUNDAMENTALS, vol.E91-A, no.12, pp.36223629. December 2008.

[2] Jian Suan. An introduction to Low PArity Check (LDPC) Codes. WCRL Seminar Series, West
Virginia University. June 3, 2003

[3] D. Declercq and F. Verdier. Optimization of LDPC Finite Precision Belief Propagation
Decoding with Discrete Density Evolution. ETIS ENSEA/UCP/CNRS UMR 8051, France.

[4] Xilinx. Virtex-5 FPGA Documentation. DS100 (v5.0). www.xilinx.com. February 6, 2009.

[5] Fabrizio Vacca, Guido Masera and Hazem Moussa, Amer Baghdadi, Michel Jezequel. Flexible
Architectures for LDPC Decoders based on Network On Chip Paradigm. Dipartimento di
Elettronica Politecnico di Torino, Torino, Italy and Electronics Department Technopole
Brest-Iroise, Bretagne, France.

[6] Federico Quaglio, Fabrizio Vacca, Cristiano Castellano, Alberto Tarable, Guido Masera.
Interconnection Framework for High-Throughput, Flexible LDPC Decoders. 3-9810801-0-
6/DATE06 2006 EDAA. CERCOM-Dipartimento di Elettronica Politecnico di Torino,
Torino, Italy.

[7] Bernhard M.J. Leiner. LDPC Codes - a brief Tutorial. April 8, 2008.

[8] Federico Quaglio, Fabrizio Vacca, Guido Masera. Low Complexity, Flexible LDPC Decoders.
Dipartimento di Elettronica Politecnico di Torino, Torino, Italy.

[9] Jean Nguyen, Dr.Borivoje Nikolic, Engling Yeo. Design of a Low Density Parity Check
Iterative Decoder. University of Wisconsin, Madison and University of California, Berkeley.

[10] Ioannis Dagres, Andreas Zalonis, Nikos Dimitriou, Konstantinos Nikitopoulos, Andreas
Polydoros. Flexible Radio: A Framework for Optimized Multimodal Operation via Dynamic
Signal Design. EURASIP Journal on Wireless Communications and Networking 2005:3,
284-297.

[11] Jinghu Chen, Ajay Dholakia, Evangelos Eleftheriou, Marc P.C. Fossorier, Xiao-Yu Hu.
Reduced-Complexity Decoding of LDPC Codes. IEEE TRANSACTIONS ON
COMMUNICATIONS, vol. 53, no. 8, pp.1288-1299. August 2005.

[12] Ismael Gomez Miguelez. A Software Framework for Software Radio. Final Project. UPC,
Barcelona, Spain. January, 2008.

[13] TurboBest, BEST IP FEC CORES. IEEE 802.16e LDPC Encoder/Decoder Core.
www.turbobest.com.

[14] T. Theocharides, G. Link, N. Vijaykrisham, M.J. Irwin. Implementing LDPC Decoding on

93

NetworkOnChip. In Proc. 18th INT. CONF. ON VLSI DESIGN (VLSID05), pp. 134137.
2005.

[15] T. Brack, M. Alles, T. Lehnigk-Emden, F. Kienle, N. Wehn, N. L’Insalata, F. Rossi, M. Rovini,
L. Fanucci. Low complexity ldpc decoders for next generation standards. Proc. of Design,
AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION 2007, pp. 16.
April, 2007.

[16] S. Xin-Yu, Z. Cheng-Zhou, L. Cheng-Hung, W. An-Yeu. An 8.29 mm2 52 mW multi-mode
ldpc decoder design for mobile wimax system in 0.13 μm cmos process. IEEE Journal of
Solid-State Circuits, vol. 43, no. 3, pp. 672683. March 2008.

[17] L. Chih-Hao, Y. Shau-Wei, C. Chih-Lung, C. Hsie-Chia, L. Chen-Yi, H. Yar-Sun, J. Shyh-Jye.
An ldpd decoder chip based on self-routing network for 802.16e applications. IEEE Journal
of Solid-State Circuits, vol. 43, no. 3, pp. 684694. March 2008.

94

