
Title: Two-way Replacement Selection

Author: Xavier Martínez Palau

Advisor: Josep Lluís Larriba Pey / David Domínguez Sal

Department: Computer Architecture

Academic year: 2009-2010

MSc in Applied
Mathematics

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons

https://core.ac.uk/display/301208643?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

1 Introduction 1
1.1 Objectives . 2
1.2 Organization . 2

2 External Sorting 5
2.1 Mergesort . 6

2.1.1 Run generation phase . 6
2.1.2 Merge phase . 6

2.2 Distribution sort . 9

3 Replacement Selection 13
3.1 Heaps . 13

3.1.1 Operations . 15
3.1.2 Implementation . 17

3.2 Heapsort . 18
3.3 Replacement Selection . 19
3.4 Pseudocode . 19
3.5 Run length . 20
3.6 Mathematical Model . 21

3.6.1 Estimating run length . 24
3.7 Related Work . 26

3.7.1 Batched replacement selection 27
3.7.2 Reading strategy . 27
3.7.3 Dynamic memory adjustment for external mergesort . . . 28
3.7.4 Sorting hierarchical data 29
3.7.5 Compression of records 30

4 Two-way Replacement Selection 31
4.1 Algorithm . 31
4.2 Input buffer and Heuristics . 33
4.3 Victim buffer . 35
4.4 Pseudocode . 36
4.5 Example . 37

5 Analysis 41
5.1 Theoretical Analysis . 41
5.2 Run length analysis . 43

5.2.1 Sorted . 45

iii

iv CONTENTS

5.2.2 Reverse Sorted . 45
5.2.3 Alternating . 45
5.2.4 Random . 46
5.2.5 Mixed balanced . 48
5.2.6 Mixed imbalanced . 53

5.3 Conclusions . 57

6 Time Performance Analysis 59
6.1 Experimental setup . 59

6.1.1 Fan in Analysis . 59
6.1.2 Storing decreasing records 60

6.2 Random . 60
6.3 Mixed . 62
6.4 Alternating . 63
6.5 Reverse Sorted . 63
6.6 Conclusions . 64

7 Summary, Conclusions and Future Work 65
7.1 Future work . 67

A Files storing decreasing records 71
A.1 Hard disks . 71
A.2 File format specification . 72

B ANOVA 75
B.1 Factors . 75
B.2 One-way ANOVA . 76
B.3 Hypotheses . 77
B.4 Significance of a factor . 78
B.5 Parameter estimation . 79
B.6 N-way ANOVA . 80

C Conference paper 83

Chapter 1

Introduction

Sorting is a fundamental computing problem that has received a lot of attention
over the years. There are many situations where sorting is needed, ranging from
just a single file to be read from disk, sorted, and written into disk again, to
the case of sorting in the context of complex database queries, where different
operators provide data to the sort operator, forcing different read and write
steps. As a result, there is a large number of sorting algorithms, each with its
own properties. In the case of in memory sorting, the two most widely used
algorithms are quicksort and mergesort. Quicksort was developed in 1960 by
C.A.R. Hoare, at the age of 26, and published in 1962 [5]. Mergesort was
invented by John von Neumann in 1945, see [6] page 159.

A sorting algorithm is an algorithm that sets an order to the elements of
a list. Typical sorting algorithms like mergesort and quicksort need all the
elements to be stored in the memory of the computer being used to sort them.
Some applications, the most typical being databases, need to sort more items
than fit in memory. Thus, a new class of sorting algorithms is needed: one that
sorts amounts of data that do not fit into the memory available to the computer.
These algorithms are named external sorting algorithms. External sorting is a
more complicated problem than regular sorting, also named internal sorting in
contrast to external sorting, since it involves more input/output operations. One
of the most commonly used external sorting algorithms is replacement selection
(RS), introduced by Goetz in 1963 [3].

Replacement selection is commonly used because it has a good performance
and is optimal if the input is already sorted. Replacement selection is based on
the merge paradigm. This paradigm separates the sorting in two phases. The
first phase consists in the generation of sorted lists of elements from the input,
which are stored in secondary storage, typically hard disks. This lists are called
runs. The second phase merges all the runs generated in the first phase in one
sorted list containing all elements from the input. This second phase is faster to
complete when the first phase generates few runs, which means they have long
length.

However, replacement selection has several drawbacks. The most prominent
drawback of RS is that the average length of the runs generated is not stable
for all input distributions. This means that with structured inputs, the average
run length may be very different. For example, if the input is already sorted, it
generates only one run and the merge phase is immediate. However, if the input

1

2 CHAPTER 1. INTRODUCTION

is sorted in reverse order, RS generates runs with minimal length and leads to
the worst case performance.

Several modifications and alternatives to replacement selection have been
proposed over the years. However, none of these proposals aim to generate
longer runs. We propose a new algorithm that generalizes and improves re-
placement selection. The goal of this new algorithm is to consistently generate
longer runs than RS, and address its drawbacks. We call this new algorithm
two-way replacement selection (2WRS), which generalizes replacement selection
and significantly improves its performance.

In this document, we propose the new two-way replacement selection tech-
nique, and analyze its performance in three different ways. First, we prove that
2WRS works better than RS for structured inputs, and performs as well as
RS for random inputs. We also construct statistical models using analysis of
variance (ANOVA) methods, to analyze the performance of the algorithm with
respect to its configuration parameters. Later, we perform tests that compare
the time needed by 2WRS to sort several sets of data with the time needed by
replacement selection, and conclude that the new proposal is preferable to RS
because 2WRS is more stable and generally faster.

1.1 Objectives

This document proposes a new external sorting algorithm, based on replacement
selection, that aims at improving the time needed to sort amounts of data larger
than the available memory by generating larger runs. The objectives of this work
are summarized as follows:

• To understand the problem of external sorting, the typical algorithms used
in this case, and the circumstances that motivate finding new solutions to
this problem.

• To propose a new external sorting algorithm, two-way replacement selec-
tion that generates longer runs than replacement selection.

• To formally prove that 2WRS performance is at least as good as that of
RS.

• To analyze 2WRS and the effects of its configuration, and confirm, with
the aid of statistical methods (ANOVA), that it effectively generates longer
runs for certain input distributions.

• To design a set of experiments that analyze time performance of replace-
ment selection and two-way replacement selection.

• To confirm that the generation of larger runs implies better time perfor-
mance of the whole sorting algorithm.

1.2 Organization

The rest of the document is organized as follows:

1.2. ORGANIZATION 3

• Chapter 2 introduces the concept of external sorting, presenting the prob-
lem to be solved.

• Chapter 3 thoroughly explains the replacement selection technique and
discusses some variations proposed over the years. Section 3.6, which sets
a system of differential equations that models the behavior of RS, is a
contribution.

• Chapter 4 introduces our algorithm, two-way replacement selection. This
entire chapter is an original contribution.

• Chapter 5 proves some properties of RS and 2WRS and presents a statisti-
cal analysis of the performance of RS and 2WRS. This statistical analysis
is used to select optimal 2WRS configurations for different input data
distributions. The theorems in Section 5.1 regarding 2WRS and the sta-
tistical analysis of 2WRS in Section 5.2 are contributions.

• Chapter 6 analyzes and compares the time performance of RS and 2WRS.

• Chapter 7 summarizes and concludes the present document.

4 CHAPTER 1. INTRODUCTION

Chapter 2

External Sorting

External sorting is a term to refer to a class of sorting algorithms that can handle
large amounts of data. The elements that are ordered by a sorting algorithm
are referred to as records, and we will use this nomenclature in the rest of this
document. When there are more records than those that fit in the main memory
of the computing device used to sort the records, external sorting is required.
Since more memory is needed, these algorithms rely on the use of slow external
memory. Historically, magnetic tapes were used as external storage devices;
nowadays, hard drives are used. Accessing and modifying external memory is
much slower than doing the same with internal memory, so the execution time
of external sorting algorithms is heavily influenced by the number of accesses to
external memory. Thus, when analyzing the performance of an external sorting
algorithm, one must consider the amount of input/output operations in addition
to the algorithmic complexity of the algorithm.

The problem of external sorting arises typically in databases, because they
are specialized applications for handling huge amounts of data. When databases
perform operations with data, it is frequently necessary to sort part of the data
as part of a more complex operation. For example, when joining data from
two different tables, or grouping rows having common values, it is necessary to
perform sort operations on data, although the sort is not explicitly requested.
In most cases, the amount of memory available to the processes performing
operations on the database is much less than the amount of data stored in it.
In these cases, an external sorting algorithm is needed.

Two of the most commonly used generic approaches to external sorting are
the merge and distribution paradigms. The merge paradigm consists on sorting
records as they are read from the input, generating several independent sorted
lists of records, that are merged into the final sorted list in a second phase. The
distribution paradigm read records from the input and distributes them into
buckets according to the range to which they belong, so that the ranges assigned
to buckets do no overlap pairwise. Each bucket is then recursively sorted, using
any sorting algorithm. The final sorted list is formed by concatenating the
sorted contents of each bucket.

5

6 CHAPTER 2. EXTERNAL SORTING

2.1 Mergesort

One of the most commonly approaches to external sorting is External mergesort,
which consists of two phases, the run generation phase and the merge phase.
The first phase generates several sorted lists of records, called runs, and the
second phase merges the runs into the final sorted list of records.

Replacement selection, detailed in Chapter 3, is a sorting algorithm that
performs the run generation phase of external merge sort. As such, it can be
combined with any algorithm for the merge phase. It was introduced by Goetz
in [3] and since then several modifications and alternatives have been proposed.
Some of these modifications are explained in Section 3.7. When replacement
selection was first introduced, it was not immediately used in commercial ap-
plications, because it was considered a complicated algorithm because of the
computing limitations of the time. In 1998, Larson and Graefe experimentally
compared different memory management algorithms during run generation when
ordering variable length inputs, showing that replacement selection is a viable
algorithm for commercial database systems [9].

2.1.1 Run generation phase

In the run generation phase, data is read from the input to generate subsets
of ordered records. These subsets are called runs. Runs are generated using
main (internal) memory, and written to external memory (disk). After all input
records are distributed in runs, the run generation phase ends and the merge
phase starts.

There are several methods used to generate the runs, most of them being
based on internal sorting algorithms. For example, the main memory can be
filled with records from the input and then sorted using any internal sorting
algorithm (mergesort, quicksort, etc.) Using this method, called Load-Sort-
Store, the run length is always equal to the size of the main memory, except for
maybe the last run. Another more advanced algorithm is replacement selection
(RS), which is described in Chapter 3. Using RS, the run length is approximately
equal to twice the size of the internal memory when the input data is randomly
distributed.

Generating longer runs means having fewer runs to merge in the next phase,
which in turn allows for shorter execution times. RS is more complicated than
a Load-Sort-Store solution, but overall less time is needed to sort records. Our
algorithm, two-way replacement selection, presented in Chapter 4, generates
longer runs than RS, as analyzed in Chapter 5. Chapter 6 shows that this
results in faster execution times.

2.1.2 Merge phase

The purpose of the merge phase is to merge the runs generated in the previous
phase into a unique run containing all input records. Two different ways of
performing this phase are k-way merge and polyphase merge.

2.1. MERGESORT 7

 8 12 16 2

 3 13 14

 1 7 9

17

18

run 1

run 2

run 3

 1 2 3 7output run 8 9 12 13 14 16 17 18

Figure 2.1: Three runs ready to be merged and the run resulting from the merge.

 8 12 16 2

 3 13 14

 7 9

17

18

Figure 2.2: The three runs of Figure 2.1 after the first record has been removed
and put in the output run.

k-way merge

A k-way merge combines k runs into one sorted run. This process reduces the
number of runs to merge by k − 1, and is repeated until only one run is left.
The simplest example is the 2-way merge, where two sorted runs are merged
into one. In a two way merge, we only need to know the first two records
of each run. The smallest of these two records is the smallest record overall.
This record is put in the output run and removed from the corresponding run.
This process is repeated until the two initial runs are empty. The k-way merge
behaves identically, but at each step the smallest of k records is selected and
removed from its run.

As an example, consider that we want to merge 3 runs in a 3-way merge. We
start with the 3 runs shown in Figure 2.1. At each step, we do the following:

1. Consider the first record of each run: {2, 3, 1}

2. Take the smallest record, 1, add it to the output run and delete it from
the original run. At this point, the output run is {1} and the state of the
three runs to be merged is shown in Figure 2.2.

The process of merging the three runs of Figure 2.1 is as follows:

• The three top records are {3, 2, 1}. Remove 1 from the third run and put
it in the output: {1}.

• The three top records are {3, 2, 7}. Remove 2 from the second run and
append it to the output: {1, 2}.

• The three top records are {3, 13, 7}. Remove 3 from the first run and
append it to the output: {1, 2, 3}.

8 CHAPTER 2. EXTERNAL SORTING

12 16

13 14 17

18

Figure 2.3: The three runs of Figure 2.1 after the sixth merge step. The output
run at this point is: {1, 2, 3, 7, 8, 9}.

• The three top records are {8, 13, 7}. Remove 7 from the third run and
append it to the output: {1, 2, 3, 7}.

• The three top records are {8, 13, 9}. Remove 8 from the first run and
append it to the output: {1, 2, 3, 7, 8}.

• The three top records are {12, 13, 9}. Remove 9 from the third run and
append it to the output: {1, 2, 3, 7, 8, 9}. The state of the three runs
being merged at this point is shown in Figure 2.3.

• The three top records are {12, 13, 18}. Remove 12 from the first run and
append it to the output: {1, 2, 3, 7, 8, 9, 12}.

• The three top records are {16, 13, 18}. Remove 13 from the second run
and append it to the output: {1, 2, 3, 7, 8, 9, 12, 13}.

• The three top records are {16, 14, 18}. Remove 14 from the second run
and append it to the output: {1, 2, 3, 7, 8, 9, 12, 13, 14}.

• The three top records are {16, 17, 18}. Remove 16 from the first run and
append it to the output: {1, 2, 3, 7, 8, 9, 12, 13, 14, 16}. The first run is
now empty, the merge follows as a 2-way merge instead of a 3-way merge.

• The two top records are {17, 18}. Remove 17 from the second run and
append it to the output: {1, 2, 3, 7, 8, 9, 12, 13, 14, 16, 17}. Now, the
second run is also empty, only the third run remains non-empty.

• The records of the las run, {18}, are appended to the output and the final
run is obtained: {1, 2, 3, 7, 8, 9, 12, 13, 14, 16, 17, 18}.

The run that results of merging the three initial runs is {1, 2, 3, 7, 8, 9, 12,
13, 14, 16, 17, 18}.

Polyphase merge

Polyphase merge is a merging algorithm designed to minimize the amount of
I/O [2]. It was developed when the more commonly used external storage devices
were magnetic tapes. The algorithm starts with k +1 tapes, one of them empty
and the rest containing runs. At each step it performs a k-way merge, writing
the output run in the initially empty tape. This step is repeated until any tape
becomes empty. This emptied tape is then reused as the output tape. The
whole process is repeated until all runs have been merged into one. Polyphase

2.2. DISTRIBUTION SORT 9

Tape 1 Tape 2 Tape 3 Tape 4 Tape 5 Tape 6
Step 0 8 10 3 0 8 11
Step 1 5 7 0 3 5 8
Step 2 2 4 3 0 2 5
Step 3 0 2 1 2 0 3
Step 4 1 1 0 1 0 2
Step 5 0 0 1 0 0 1
Step 6 1 0 0 0 0 0

Table 2.1: Example of a polyphase merge with 6 tapes. The table shows the
number of runs stored in each tape after the execution of each step has com-
pleted.

merge is most efficient way of merging the runs when the number of output runs
in each tape is different.

As an example, suppose that we have 6 magnetic tapes (or other external
storage devices, numbered from 1 to 6), each containing a number not necessarily
equal of runs, for example { 8, 10, 3, 0, 8, 11}. Table 2.1 shows the status of each
tape at each step of the polyphase merge. The tape number 4 is the only one
empty at the beginning, so it will be the output tape of the runs that result of
performing 5-way merges of the runs stored in the other tapes. After 3 merges,
tape number 3 becomes empty, since it had 3 runs at the beginning. The step
ends here and tape number 3 becomes the new output tape. The algorithm
ends when all tapes are empty except for one, that contains a unique run.

2.2 Distribution sort

Another approach to external sorting, different from the merge paradigm, is
distribution sort. A distribution sort is a sorting algorithm where records are
distributed to several intermediate data structures, named buckets, and then
sorted and gathered together to form the final sorted list. These sorting algo-
rithms are characterized by the fact that the ranges of values that each data
structure accepts do not overlap between them, in contrast with external merge-
sort, where the ranges of each run can overlap. As a result, the merge phase is
unnecessary in a distribution sort, and the sorted contents of each bucket are
concatenated to form the final sorted list of records.

External distribution sort algorithms are an adaptation of the internal sort-
ing algorithm called bucket sort. Bucket sort partitions the records in several
disjoint sets, called buckets, with the property that records in one bucket are
smaller than records in the next one. Once the records have been distributed
in buckets, the contents of each bucket are sorted using any sorting algorithm.
Since each bucket stores records smaller than following bucket, the content of
the buckets can be sorted independently and concatenated to obtain a sorted
list of records. A schematic working of the algorithm would be as follows:

1. Set up a number of buckets and define the range of values of records
accepted by each one.

2. Distribute: put each record into the bucket where it belongs.

10 CHAPTER 2. EXTERNAL SORTING

 1-10 11-20 21-30 31-40 41-50

Figure 2.4: Five empty buckets with their corresponding range of accepted
records.

 1-10 11-20 21-30 31-40 41-50

2 37 452217
12

18
23

25 42

Figure 2.5: Five buckets filled with records.

3. Sort the contents of each bucket.

4. Concatenate the buckets to obtain the final list of sorted records.

The sorting algorithm used in Step 3 can be any other sorting algorithm.
Using bucket sort again at this step results in a recursive version of bucket sort
similar to radix sort. Radix sort is a sorting algorithm that can sort a number
of records in linear time. Details on radix sort can be found in [6]. Using
this recursive bucket sort with only two buckets corresponds to the quicksort
algorithm.

Variants of bucket sort use different strategies to select the range of records
that go into each bucket. The simplest and most common variant is to distribute
the possible range of values uniformly among all the buckets. For example, let
us consider the problem of sorting the following set of integers: {37, 2, 45, 22,
17, 12, 18, 23, 25, 42}. If we want to use 5 buckets, we set up 5 buckets, as
shown in Figure 2.4. We know that all records are integers between 1 and 50,
so each bucket has a range of 10 integers. Then we follow the second step: the
integers are distributed, each one in its corresponding bucket. The result of this
step is shown in Figure 2.5. Next, the contents of each bucket must be sorted,
using any sorting algorithm, possibly bucket sort again. Finally, the records in
each of the buckets are concatenated to obtain the final sorted list: {2, 12, 17,
18, 22, 23, 25, 37, 42, 45}.

Distribution sort operates similarly to bucket sort, but each bucket is stored
in a disk file, since the main memory is not large enough to hold all buckets at
once. If the contents of a bucket fit into the internal memory, an internal sorting
algorithm can be used when recursively sorting its contents (Step 3). However, if
the contents of a bucket do not fit into the internal memory, an external sorting
algorithm needs to be used. This external sorting algorithm can be any one,
possible a distribution sort or a mergesort. Therefore, mergesort algorithms are
also used as part of distribution sort algorithms.

In order to make distribution sort efficient in terms of needed I/O operations
and total execution time, it is necessary that the different buckets have a similar
amount of records. If the range of possible records for each bucket is uniformly
distributed along the total range of possible records, clustering of the records
affects distribution sort negatively: if many records are close, they will all go to

2.2. DISTRIBUTION SORT 11

a single bucket. If the bucket sizes are not distributed uniformly, the recursion
will take a long time to finish for the buckets with a larger number of records.
The problem of choosing good intervals for each bucket is similar to the problem
of choosing the pivot in the quicksort algorithm. There are several techniques
that try to balance the load across the buckets, detailed in [6] and [14].

12 CHAPTER 2. EXTERNAL SORTING

Chapter 3

Replacement Selection

Replacement Selection (RS) is an external sorting algorithm, based on the merge
paradigm, introduced by Goetz [3]. The objective of RS is to sort a stream
of records as they come (usually from secondary storage), producing another
stream of released data records called run, which is sorted. Generated runs are
always at least as large as the available memory, so it is at least as good as
Load-Sort-Store in terms of generated run length.

This chapter is organized as follows: Section 3.1 details the data structure
known as heap, Section 3.2 explains heapsort, a sorting algorithm upon which
RS is based, Section 3.3 details the RS algorithm, Section 3.4 presents a pseu-
docode version of RS, Section 3.5 shows a proof of the average length of the runs
generated by RS with random uniformly distributed input records. Section 3.6,
which is an original contribution, closes the chapter presenting the construction
of a mathematical model of RS.

3.1 Heaps

Before introducing RS, we describe some previous concepts. The RS algorithm
uses a tree-based data structure called heap. A tree is a subtype of a more
general entity called graph.

A graph G is an ordered pair of sets G = (V, E). The elements of the set V
are called vertices or nodes and the elements of the set E are called edges, and
are subsets of V of size 2. Two edges u, v ∈ V are called adjacent if the pair
(u, v) is in the set E. We will only consider simple graphs, which are those that
do not have nodes adjacent to themselves and each edge appears at most once.
Figure 3.1 shows an example of a graph, where nodes have been labeled using
integers from 1 to 7.

Given a graph G = (V,E) and two edges u, v ∈ V , a path between u and v
is a sequence {u, a1, . . . , an, v} such that ai ∈ V for 1 ≤ i ≤ n and (u, a1) ∈ E,
{(ai, ai+1) ∈ E|1 ≤ i ≤ n − 1} and (an, v) ∈ E. In other words, a path is a
sequence of nodes in which every pair of consecutive nodes are adjacent. The
length of a path P is defined as the number of nodes in the path minus 1,
length(P) = |P |− 1. A path is called simple if each node appears at most once.
Two edges u, v ∈ V are connected if there is a path between u and v. A graph
is said to be connected if every pair of nodes are connected. A cycle is a path

13

14 CHAPTER 3. REPLACEMENT SELECTION

 5

 3
 2

 7

 1

 6

 4

Figure 3.1: A graph.

between a node and itself.
We will use a subtype of graph called tree. A tree is a connected graph

without cycles. There are several other definitions of tree, however, all of them
are equivalent. For instance, a tree is a connected graph where there is a unique
path between every pair of nodes. For the interested reader, more definitions
and properties of trees can be found in [1].

A convenient form of describing a tree is classifying the nodes following the
symmetric relation parent of and child of. In order to define the relation, we
select an arbitrary node of the tree and designate it as the root node. When
then have what is called a rooted tree. The parent node of a node u is the node
connected to it in the unique path between the root node and u. A child node
of a node u is a node whose parent is u. Note that in a rooted tree, the root
has no parent and all other nodes have a single parent. If a node does not have
any children, it is said to be a leaf node.

In a rooted tree, the depth of a node u is the length of the path between u
and the root. The height of the tree is the maximum of the depth of each node.

An important set of trees are binary trees, which are trees with the property
that each node has at most two children. If all nodes have exactly two children
except possibly one, then the tree is called complete binary tree.

A data structure is a way to store and organize data so it can be accessed.
A tree-based data structure maps a set of records to the set of nodes of a tree
assigns a record to each node of a tree. A heap is a tree-based data structure
that stores a set of records having a total order, denoted by ≤. There are
several variations of the heap data structures. The most common, the binary
heap, uses a complete binary tree. A heap stores records in the nodes of the
tree satisfying the heap property, namely, that if a node v is a child node of u,
then these records are such that u ≤ v. This means that the record stored at
the root node, called top record, is always the smallest record according to the
total order defined on the records. If the order relation is changed from ≤ to ≥,
the heap is called max heap because the top record is the greatest record stored
in the heap. If the order relation is the usual ≤, the heap is sometimes called
min heap to distinguish it from max heaps. Figure 3.2 shows an example of a
completely filled max heap.

Replacement selection stores the records in a binary min heap in memory.

3.1. HEAPS 15

93

88 82

66 20 42 7

Figure 3.2: A completely filled binary max heap.

3.1.1 Operations

Heaps implement two operations, adding a record to it and popping the top
record.

Adding a record

In order to add a record to a binary heap, a procedure named upheap is used.
The upheap procedure is the following: the record is added at the bottom level
of the heap, keeping the heap binary and complete. However, it is possible that
the new record violates the heap property. A sequence of swaps is needed to
restore this property. The process starts in the new node, which is compared
to its parent. If they are in the wrong order, that is, if the heap condition is
not satisfied, they are swapped. This comparison with the parent node goes on
until the node is in the correct order with respect to its parent or the root node
of the tree is reached.

It is possible to prove by induction the correctness of the upheap procedure:
when the upheap procedure ends, the resulting tree is a heap, that is, the heap
condition is satisfied everywhere in the tree. The induction hypothesis is that
after the k-th step, the heap condition is satisfied in for every record in the last
k + 1 levels of the tree. When the k + 1-th step begins, the heap condition may
only be violated for a record in the level k + 2 from the end, per the induction
hypothesis. Only the record in this level that belongs to the path between the
root and the new record can violate the heap condition, because the rest of the
heap is identical to the heap before the new inserted node. The k+1 step swaps
this record with one of its children if necessary, so after completion of this step,
the heap condition is met everywhere in the last k +2 levels of the heap. Before
the first step, the last level consists of records without children, so the heap
condition is vacuously met, completing the proof.

As an example, consider the heap shown in Figure 3.2. This heaps stores
integers with the total order (N,≥), which means that it is a max heap. The
process of adding a new record, 91, is depicted in Figure 3.3. When the new
record is inserted, the 91 is first added at the end of the heap. Since the last level
of the heap is already full, a new one is created with the new record, as shown in
Figure 3.3(a). Now, the new record has to be compared with its parent. Since
it is a max heap, the heap condition says that parent records need to be larger
than child records, and in this case this condition is not met, since 66 < 91, so
they are swapped. The current state of the heap is shown in Figure 3.3(b). The
heap condition must be checked with the new parent of 91, which is 88, and the
condition is still not met. 91 is now swapped with 88 and the result is shown in

16 CHAPTER 3. REPLACEMENT SELECTION

93

88 82

66 20 42 7

91

(a) 91 added at the end of the
heap.

93

88 82

91 20 42 7

66

(b) 91 swapped with 66.

93

91 82

88 20 42 7

66

(c) 91 swapped with 88.

Figure 3.3: The process of adding the record 91 to the heap shown in Figure 3.2.

Figure 3.3(c). The new parent of 91 is 93, which is larger, so the heap condition
is satisfied and the process of adding the new record to the heap ends. As it
can be checked in Figure 3.3(c), the heap condition is satisfied for all records in
the heap, as it is assured by the correctness of the upheap procedure.

The complexity of adding a record depends on the number of swaps. This
number is bounded by the height of the tree. If there are n records stored on the
heap, the depth size is O (log n). So, assuming that two records can be swapped
in constant time, which can be done by swapping values when the record size
is small or by swapping pointers, and that the time needed to compare two
records is negligible in front of the time needed to swap two records, the process
of adding a record to the heap has a time complexity of O (log n).

Popping the top record

In order to delete the root record of the heap, a procedure named downheap is
used. The downheap procedure is the following: the root record is replaced with
the last record on the last level of the tree. The record at the root node is then
compared to its children, and if the heap condition is not met, it is swapped
with the largest of the two children (smallest in a min heap). This is repeated
until the heap condition is met or the last level of the tree is reached.

The proof of correctness of the downheap procedure is very similar to the
proof of correctness of the upheap procedure, but changing the induction hy-
pothesis by “After the k-th step, the heap condition is satisfied everywhere in
the first k + 1 levels of the tree”.

As an example, consider removing the top record of the heap in Figure 3.3(c).
The process is depicted in Figure 3.4. The first step is to remove the top record,
93, and put in its place the last record of the last level, 66 in this case. The result
of this step is shown in Figure 3.4(b). Now, the heap condition is not satisfied,
because 66 is not greater than both its children, so it is swapped with the largest
of the two child records, 91. The heap is now as shown in Figure 3.4(c). The
second step is repeated, and since the heap condition is again not met, 66 is
swapped with the largest of its two child records, 88. The heap is now as shown
in Figure 3.4(d). Since 66 has no children the process ends here. It can be
checked that in the end the heap condition is satisfied for all records.

The number of swaps to be done is at most the height of the tree, so deleting

3.1. HEAPS 17

91 82

88 20 42 7

66

(a) The top record is removed.

66

91 82

88 20 42 7

(b) The last record of the last
level, 66, is put at the top po-
sition.

91

66 82

88 20 42 7

(c) 66 swapped with 91.

91

88 82

66 20 42 7

(d) 66 is swapped with 88.
The downheap ends.

Figure 3.4: The process of deleting the top record of the heap shown in Fig-
ure 3.3 (c).

the top record has a time complexity of O (log n), the same as adding a record.
The action of deleting the top record of a heap is referred to as popping the

top record. Note that this operation always retrieves the maximum element of
the record set stored in the max heap (minimum in a min heap).

3.1.2 Implementation

Heaps are stored contiguously in memory as arrays because of efficiency. The
array is one of the simplest data structures: the records are stored as a sequence
and they are accessed through a set of integer indexes. An n-dimensional array
uses n integers to index each record. The simplest case is the one-dimensional
array, in which records are indexed using only one integer. Usually if the array
has n records stored, the index is between 0 and n − 1. Vectors and matrices
are typically implemented as one and two-dimensional arrays, and hence arrays
are also referred to as vectors and matrices.

In order to use a one-dimensional array to store a heap, each node is labeled
with an integer, starting with 0 for the root node and assigning the numbers in
order level by level, left to right. If a node has the label i, its parent node has
the label

⌊
i−1
2

⌋
, and its children nodes have labels 2i + 1 and 2i + 2. This is

true for every complete binary tree with any number of nodes. Thus, a heap is
stored in memory using an array of records, having each record indexed by the
integer indicated by its label in the heap. In Figure 3.5, we depict a complete

18 CHAPTER 3. REPLACEMENT SELECTION

 A

 C B

 G F E D

0

1 2

3 5 64

 C B G A F E D

0 1 2 3 4 5 6

Figure 3.5: A binary complete tree with 3 levels and its associated array.

binary tree, representing a heap, and the array storing the heap.
Since the operations of access and modification of records in an array can

be executed in constant time, this implementation allows for O(log n) time-
complexity addition and deletion of records in the heap.

3.2 Heapsort

Heapsort is an internal sorting algorithm that uses a heap to sort records initially
stored in an array. Heapsort is implemented with the aid of a heap in addition
to the input array1. The heap is used to sort the records while the array stores
them already sorted.

The algorithm performs two steps. The first step consists of inserting all n
records into the heap, one by one. Once this process is finished, the top record
of the heap is the smallest of the n records. This record is removed from the
heap and put in the first position of the array, because it is the smallest record
due to the heap property. The new top record of the heap is the second smallest
record. This record is removed from the heap and inserted into the second
position of the array. This process is repeated n, times: at each step, the top
record of the heap is removed and inserted into the next empty position of the
heap. Once the heap is empty, the array contains the n records already sorted.

In Section 3.1.1, it is shown that, in a heap with n records, the operations
of adding and deleting a record require O (log n) time. When sorting n records
using heapsort, each record is inserted and deleted one time, and written to the
output array. When the i-th record is inserted, the heap has i records, so the
insertion cost is O(log i). When this same record is removed, the heap has also
size i, so the removal cost is also O(log i). Writing a record to the array has a
constant cost, that is, O(1). Thus, heapsort has a worst-case running time of

n∑
i=1

(2 · O (log i) + O (1)) =
n∑

i=1

O (log i) ≤
n∑

i=0

O (log n) = O (n log n)

1There are implementations of heapsort that use the input array to store the heap. How-
ever, for clarity, we use a separate array to store the heap

3.3. REPLACEMENT SELECTION 19

3.3 Replacement Selection

Replacement Selection (RS) is a run generation algorithm based on heapsort,
that can be applied if the set of records to be sorted does not fit into memory. It
uses a heap to store records. At each step, the top record of the heap is removed
and put in the output, like heapsort does. Once a record has been removed, a
new record is read from the input and inserted into the heap.

The main difference between heapsort and RS is the fact that, at each step,
a new record is inserted into the heap. Another difference is that the output is
written directly into a run, which is stored on disk, in order to have more internal
memory available for the heap. This is possible because each time a record is
removed from the heap, it has to be appended to the output and it is not needed
again during the run generation, so there is no need to store all the sequence of
output records in internal memory. The runs are written sequentially to disk,
and there is no random access. This is a limitation of magnetic tapes, as they
only allow sequential reading or writing. Hard disks allow random access, but
sequential reading and writing is much faster.

If a record read from the input is smaller than the last record used as output
in the current run, it is not be possible to use it as part of the current run,
because records being output are already larger. This situation arises with RS
and not with heapsort because RS adds new records to the heap. In this case,
the record is marked as belonging to the next run. When a record marked is
inserted into the heap, it is put at the bottom of the heap. In order to do
this, it is considered that records belonging to the next run are larger than all
records belonging to the current run. Therefore, when the top record of the
heap belongs to the next run, all records stored in the heap also belong to the
next run. The reasoning is the following: suppose that we had another record
belonging to the current run in the heap. This record is smaller than the top
record. Thus, the heap condition would be violated somewhere along the path
that joins the top record with the record belonging to the current run. Since
this is an impossible situation, if the top record belongs to the next run, so do
the rest of the records stored in the heap.

The generation of the current run ends when the top record belongs to the
next run, and then a new run is started. The algorithm proceeds using the same
strategy until there are no more records to read from the input.

3.4 Pseudocode

Algorithm 1 shows the pseudocode for the main loop of RS. In the first phase,
method heap.fill loads the first records from the input into the heap. This step
is the same first step of heapsort: no records need to be marked as belonging to
the next run since the output is still empty.

Then, the main loop is executed while the heap is not empty. First, a record
is output to make room for a new one. This is done by method output. Next, a
record is read from the input. If the record is smaller than the last output record,
it is marked as belonging to the next run, else it is marked as belonging to the
current run. Next, the top record of the heap is removed with heap.pop and the
record read from the input is inserted in the buffer with heap.insert(current).
This method checks whether the record to be inserted belongs to the current or

20 CHAPTER 3. REPLACEMENT SELECTION

Algorithm 1 RS(heapSize)
Require: The maximum size of the heap heapSize.
Ensure: Each run is sorted.

1: let current a pair of integers containing a value for a record and the run to
which it belongs.

2: let heap a min heap, of maximum size heapSize.
3: let currentRun an integer.
4: let nextOutput an integer.
5: heap.fill(inputBuffer);
6: currentRun = 0;
7: while heap.size() > 0 do
8: nextOutput = heap.pop()
9: write(nextOutput);

10: //Read next value
11: if input.read(current.value) then
12: if current.value < nextOutput then
13: current.run = currentRun + 1;
14: else
15: current.run = currentRun;
16: end if
17: heap.insert(current);
18: end if
19: //Start next run?
20: if heap.top().run > currentRun then
21: currentRun = 1 + currentRun;
22: end if
23: end while

next run, and inserts it accordingly.
Finally, when the top record of the heap belongs to the next run, i.e., it is

too small to be part of the current run, the current run ends. Since all records
stored in the heap are larger than the top record, if the top record belongs to
the next run, all other records also belong to the next run. The whole process
starts again, and new runs are generated until the input is fully read.

3.5 Run length

The length of the runs generated by a run generation algorithm like RS has an
impact on the performance of the merge phase. If we consider a k-way merge
as the merging algorithm, older machines stored runs using tapes, so the value
of k is bounded by the number of tapes used to store runs. Newer computer
are able to perform a k-way merge for small and large values of k, but there is
an optimum value of k in terms of performance, as shown in Subsection 6.1.1.
Thus, if a run generation algorithm creates larger runs, the total number of runs
to be merged decreases, and the merge phase has a shorter execution time.

When the input records follow a random uniform distribution, RS generates
runs that have an average length equal to the size of the available memory.

3.6. MATHEMATICAL MODEL 21

Figure 3.6: Circular road with a snowplow.

Figure 3.7: Stabilized situation.

There is a proof of this fact in [6]. This proof is intuitive because it builds a
physical model for the problem, and it is reproduced here.

The proof considers a circular road on which snow flakes drop at a constant
rate. A snowplow is continually clearing the snow, as shown in Figure 3.6. Once
the snow is plowed, it disappears from the system. Points on the road may be
designated with a real number 0 ≤ x < 1. A snowflake falling on x represents
an input value of x. That is, we consider input records to be between 0 and 1,
without loss of generality.

The snowplow represents the output of RS, and has a speed inversely pro-
portional to the height of the snow it encounters. The situation is balanced so
the quantity of snow in the road is P at all times (so P corresponds to the total
memory available). The generation of a run finishes when the snowplow passes
through x = 1.

After operating for a while, this system will approach a stable situation
where the snowplow has a constant speed, because of the circular symmetry
of the road. This means that the snow is at a constant height in front of the
snowplow and decreases linearly in front of it. It follows that the amount of snow
removed at each revolution is 2P (see Figure 3.7). The first triangle represents
the snow which is already on the track and has size P , and the second one
represents snow that will fall while the snowplough is running, and it also has
size P .

3.6 Mathematical Model

In this section, we generalize Knuth’s model by constructing a set of equations
that model the behavior of the replacement selection algorithm in order to

22 CHAPTER 3. REPLACEMENT SELECTION

be able to analyze it mathematically. The purpose of having a mathematical
model is to have a formal tool to easily analyze the behavior of the algorithm
with different inputs.

We assume that the data in memory are real values between zero and one,
and model the contents of the memory with density distributions. Let t ≥ 0
be the time and 0 ≤ x < 1 a variable indicating a sorting key. Let m(x, t)
be a two variable function. On a given instant t = t0, m (x, t0) indicates the
contents of the memory as a density distribution. So, for instance, if at the
beginning the memory is filled with data uniformly distributed between 0 and
1, then m (x, 0) = 1; or, if the data is linearly decreasing, m (x, t0) = 2 − 2x,
as it is the case when the situation has stabilized on Knuth’s proof (previous
section).

The percentage of total memory containing values between x1 and x2 at
t = t0 is

∫ x2

x1
m (x, t0) dx. The percentage of memory used at any given moment

t = t0 is given by the integral
∫ 1

0
m (x, t0) dx. To fix that the total amount of

data doesn’t exceed available memory, equation 3.1 must be met. In the ideal
situation, equality holds and all memory is used at all times.

∫ 1

0

m(x, t) dx ≤ 1 (3.1)

Let p (t) ≥ 0 be a real valued function, which corresponds to the value being
output at instant t. Since values in memory are modeled to be between zero
and one, the floor of p(t) is subtracted from p(t) when used as the argument
x of m(x, t). This models the periodic behavior of RS that generates multiple
runs to form a sorted set. Each interval defined by p(t) ∈ [n, n + 1) represents
the time spent building the n-th run. The derivative of p(t) can be seen as
the velocity with which p advances to complete the current run and models the
snowplough from the previous section.

If we consider that the throughput of the algorithm is constant, that is, that
the number of values being output per unit of time is constant, dp

dt (t) is inversely
proportional to the value of the function m (p(t) − ⌊p(t)⌋ , t). This means that
the larger m (p(t) − ⌊p(t)⌋ , t) is, the larger is the probability to find elements in
memory in the range (p(t) − ⌊p(t)⌋ − ε, p(t) − ⌊p(t)⌋ + ε) and thus the output
values, given by p(t) increase slowly, so dp

dt (t) is smaller. That means that
the derivative of p is inversely proportional to the value of m, as Equation 3.2
shows. p(t) − ⌊p(t)⌋ models the value being output at instant t, so it is a
strictly increasing function. If m (p(t0) − ⌊p(t0)⌋ , t0) = 0 then p(t) has a jump
discontinuity at t = t0 and it jumps from p(t0) to infx>p(t0){x|m (x − ⌊x⌋ , t0) >
0}.

dp

dt
(t) =

k1

m (p(t) − ⌊p(t)⌋ , t)
(3.2)

The throughput of the algorithm, which corresponds to the number of records
being output per unit of time, can be calculated from Equation 3.2 as Equa-
tion 3.3 shows.

Throughput = m (p(t0) − ⌊p(t)⌋ , t0) ·
dp

dt
(t0) = k1 (3.3)

3.6. MATHEMATICAL MODEL 23

As the records are output, they are cleared from memory. The record being
output at instant t = t0 is given by p(t0). Just after records are output, they are
cleared from memory. This means that m (p(t0), t) has limit zero as t approaches
t0 from the right. The function m(x, t) has a jump discontinuity at x = p(t) −
⌊p(t)⌋ and the limits in Equation 3.4 hold.{

limt→t+0
m (p(t0) − ⌊p(t0)⌋ , t) = 0

limt→t−0
m (p(t0) − ⌊p(t0)⌋ , t) = m(p(t0) − ⌊p(t0)⌋ , t0)

(3.4)

In order to model data that enters the system, we define data(x), 0 ≤ x < 1
to be the distribution that input data follows. At any given instant t, data(x)
gives the rate of increase of m(x, t), so ∂m

∂t is proportional to data(x), as Equa-
tion 3.5 states. For example, for uniformly distributed data, data (x) = 1.

∂m

∂t
(x, t) = c(t) · data (x) (3.5)

The flow of data joining the system is given by the expression in Equation 3.7,
where

∫ 1

0
data(x) dx is substituted by a constant, k2.

Input flow =
∫ 1

0

∂m

∂t
(x, t0)

=
∫ 1

0

c(t0) · data(x) dx (3.6)

= c(t0)
∫ 1

0

data(x) dx

= c(t0) · k2 (3.7)

If we equal the input flow (Equation 3.7) to the throughput (Equation 3.3)
we obtain that c(t) is the constant function k1/k2, as Equation 3.8.

c(t) =
k1

k2
(3.8)

If we fix k1 as an arbitrary constant corresponding to the throughput of the
algorithm and k2 =

∫ 1

0
data(x) dx, the derived model is:

dp

dt
(t) =

k1

m (p (t) − ⌊p (t)⌋, t)
(3.9){

limt→t+0
m (p(t0) − ⌊p(t0)⌋ , t) = 0

limt→t−0
m (p(t0) − ⌊p(t0)⌋ , t) = m(p(t0) − ⌊p(t0)⌋ , t0)

(3.10)

∂m

∂t
(x, t) =

k1

k2
· data (x) (3.11)∫ 1

0

m (x, t) dx ≤ 1 (3.12)

24 CHAPTER 3. REPLACEMENT SELECTION

3.6.1 Estimating run length

The model from previous section can be applied to estimate the run length
for a given distribution. Each run is built during the time interval comprised
between the passing of p(t) between two consecutive integers. The length of
a run (with respect to the total available memory) corresponds to the path
integral of m(x, t) along the line described by p(t).

We illustrate the process for the case of uniformly distributed input data.
data(x) = 1, k2 =

∫ 1

0
data(x) dx =

∫ 1

0
1 dx = 1, and fixing k1 = 1, a solution to

the system of equations is given by:

p(t) =
t

2

m (x, t) =

{
2 − 2x + 2

(
t
2 −

⌊
t
2

⌋)
, if x ≥ t

2 −
⌊

t
2

⌋
−2x + 2

(
t
2 −

⌊
t
2

⌋)
, if x < t

2 −
⌊

t
2

⌋
In this solution, data is distributed in memory in triangular form. At the

start of each run, the memory contents distribution is 2− 2x, and at any given
t = t0, it is distributed starting at p(t0) and it decreases linearly, up to x = 1,
and from x = 0 to x = p(t), where the limit limx→p(t0)− m(x, t0) = 0.

All equations of the model must be checked. The first one, Equation 3.9 is
a simple calculation:

m (p(t) − ⌊p(t)⌋ , t) = m

(
t

2
−

⌊
t

2

⌋
, t

)
= 2 − 2

(
t

2
−

⌊
t

2

⌋)
+ 2

(
t

2
−

⌊
t

2

⌋)
= 2

dp

dt
(t) =

1
2

=
1

m (p(t) − ⌊p(t)⌋ , t)
Equation 3.10 is verified as follows:

lim
t→t+0

m(p(t0) − ⌊p(t0)⌋ , t) = lim
t→t+0

−2 (p(t0) − ⌊p(t0)⌋) + 2
(

t

2
−

⌊
t

2

⌋)
= lim

t→t+0

−2
(

t0
2
−

⌊
t0
2

⌋)
+ 2

(
t

2
−

⌊
t

2

⌋)
= 0

lim
t→t−0

m(p(t0) − ⌊p(t0)⌋ , t) = lim
t→t−0

2 − 2 (p(t0) − ⌊p(t0)⌋) + 2
(

t

2
−

⌊
t

2

⌋)
= lim

t→t−0

2 − 2
(

t0
2
−

⌊
t0
2

⌋)
+ 2

(
t

2
−

⌊
t

2

⌋)
= 2
= m(p(t0) − ⌊p(t0)⌋ , t0)

To check the third equation, we calculate the partial derivative ∂m
∂t using

that
⌊

t
2

⌋
is constant piecewise, and its derivative is zero almost everywhere:

∂m

∂t
(x, t) = 1 = data(x)

3.6. MATHEMATICAL MODEL 25

Finally, the last equation is:∫ 1

0

m (x, t) dx =
∫ t

2−⌊ t
2⌋

0

m (x, t) dx +
∫ 1

t
2−⌊ t

2⌋
m (x, t) dx

=
∫ t

2−⌊ t
2⌋

0

−2x + 2
(

t

2
−

⌊
t

2

⌋)
dx+

+
∫ 1

t
2−⌊ t

2⌋
2 − 2x + 2

(
t

2
−

⌊
t

2

⌋)
dx

=
∫ t

2−⌊ t
2⌋

0

−2x + 2
(

t

2
−

⌊
t

2

⌋)
dx+

+
∫ 1

t
2−⌊ t

2⌋
−2x + 2

(
t

2
−

⌊
t

2

⌋)
dx+

+
∫ 1

t
2−⌊ t

2⌋
2 dx

=
∫ 1

0

−2x + 2
(

t

2
−

⌊
t

2

⌋)
dx+

+
∫ 1

t
2−⌊ t

2⌋
2 dx

= −x2 + 2x

(
t

2
−

⌊
t

2

⌋)∣∣∣∣x=1

x=0

+

+ 2x|x=1
x= t

2−⌊ t
2⌋

= −1 + 2
(

t

2
−

⌊
t

2

⌋)
+ 2 − 2

(
t

2
−

⌊
t

2

⌋)
= 1

In this case, the whole memory is used at all times, because the equality
holds.

Each time the value of p(t) is an integer, the generation of a run ends and
the next run is generated. p(t) = t/2, so the n-th run begins at t = 2n and
ends at t = 2n + 2. The size of the n-th run corresponds to the following path
integral, using m (p(t), t) = 2 and p′(t) = 1/2:∫

p(t)

m(x, t) =
∫ 2n+2

2n

m (p(t), t) p′(t)dt

=
∫ 2n+2

2n

2 · 1
2

= 2n + 2 − 2n

= 2

which means that the length of all runs is twice the memory available. This
solution corresponds to the stabilized situation of Knuth’s proof in Section 3.5.

We also verify that starting with uniform memory contents distribution, the
solution approaches the stable solution given. We have not been able to find an

26 CHAPTER 3. REPLACEMENT SELECTION

 0

 0.5

 1

 1.5

 2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

de
ns

ity

memory

(a) Density distribution of memory contents
before the algorithm starts.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

de
ns

ity

memory

(b) Density distribution of memory contents
after the generation of the first run.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

de
ns

ity

memory

(c) Density distribution of memory contents
after the generation of the second run.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

de
ns

ity

memory

(d) Density distribution of memory contents
after the generation of the third run.

Figure 3.8: Evolution of density distribution of memory contents after comple-
tion of the first three runs. Data in memory at the beginning and input data is
uniformly distributed.

analytic solution for the system of differential equations, so we solved it numer-
ically implementing a version of the classical Runge-Kutta method [8] adapted
to this particular system. For the initial condition m(x, 0) = 1, which corre-
sponds to having data in memory uniformly distributed when the algorithm
starts, we found that the system rapidly converges to the stable solution pro-
vided. Figure 3.8 shows the evolution of the density distribution of the contents
of the memory just before the generation of a run starts. The stable solution
has m(x, 2n) = 2 − 2x. After the completion of the second run, the density
distribution is almost 2 − 2x, and after the generation of the third run, the
density distribution is indistinguishable from the theoretical 2 − 2x.

3.7 Related Work

Since replacement selection was introduced, several modifications and alterna-
tives have been proposed, and in 1998 Larson and Graefe showed that RS is a
viable algorithm for commercial database systems [9]. Moreover, a recent survey
on sorting in database systems pointed out that replacement selection is one of
the most used techniques for external sorting in databases [4].

In this section we present some of the variations and techniques based on RS
that have been proposed over the years. We should note that all modifications
and improvements of RS can be readily applied to two-way replacement selection

3.7. RELATED WORK 27

without change, so 2WRS also benefits from all these changes, while emphasizing
on the generation of larger runs.

3.7.1 Batched replacement selection

Larson introduced a modified version of replacement selection called batched
replacement selection, a cache conscious version that also works for variable
length records [10]. In his paper, Larson first introduces a version of replacement
selection that can be used with variable length records. In this version, the heap
is not of constant size. When a record is removed from the heap and output, it
is possible that the next record does not fit in memory. In this case, more than
one record is output without introducing new records. It is also possible that
several new records fit together in the newly created space. In this case, several
records are added to the heap without removing any other record.

Larson argues that when adding or deleting a record, a branch of the heap is
explored, and this branch is independent of previous explored branches. Thus,
the records near the top record are accessed frequently and kept in the cache,
but records closer to the leaves are not, and generate cache misses. Batched
replacement selection reduces the number of cache misses by reducing the size
of the heap. Incoming records are not immediately inserted into the heap, and
instead are kept sorted in intermediate buffers called miniruns. When a record
is removed from the heap, the next record from its minirun is inserted.

Batched replacement selection introduces another modification in order to
further reduce cache misses. The main loop of replacement selection outputs
one record, and then reads one record from the input. The main loop of batched
replacement selection outputs a batch of 1000 records, and then fills the freed
memory with a batch of records read from the input.

The experiments show that batched replacement selection generates fewer
cache misses, executes fewer instructions, needs less comparisons and runs faster
than replacement selection.

3.7.2 Reading strategy

The typical merge phase implementation uses one buffer for each run being
merged. In this case, reading new records from the runs cannot be overlapped
with the processing. The reading is on hold until one buffer becomes empty,
and the processing has to wait for the emptied buffers to be filled.

One reading strategy, proposed by Knuth [6], is forecasting. Forecasting
uses an additional buffer. When one block from each run being merged is in
memory, the last key of each block is compared to determine which buffer will
be emptied first. The additional buffer is filled with records from that run, while
the algorithm is already merging runs.

Another strategy is double buffering, proposed by Salzberg [13]. This strat-
egy allocates two buffers for each input run. One buffer from each run is filled
with records, and the merging starts while the rest of the buffers are filled.
When one buffer becomes empty, the other one already has more records, so
the processing continues while the other buffer is filled. The drawback of this
strategy is that it either needs more memory, or each buffer is smaller, which
means that more disk readings are necessary.

28 CHAPTER 3. REPLACEMENT SELECTION

Zheng and Larson introduced a new reading strategy, called planning, for
improving the performance of external mergesort [18]. The planning strategy
precomputes the order in which data blocks are to be read during the merge
phase.

The planning reading strategy is based on the following observation. If there
are many more buffers than runs, the extra buffers can be used for reading
some blocks of data that are not immediately required by the merge algorithm
but that are located contiguously in disk after a read block of data. The cost
of reading these extra blocks is minimal, since there is no seek or rotational
overhead. If these blocks are needed soon by the merge algorithm, the buffers
can be quickly reused for reading more contiguous data blocks.

Planning uses a heuristic algorithm to decide the order in which each data
block will be read from disk. The heuristic tries to minimize the total time
needed to read the data blocks. The time needed to read two different data
blocks depends on the relative position in which they are stored on disk, which
is known by the heuristic. The heuristic algorithm also ensures that the situation
where all buffers are filled with immediately unneeded data does not arise.

The heuristic decides the order in which data blocks are to be read. In order
to do so, it constructs a read sequence and increases it by adding one block at
a time. The new record is added at the end of the read sequence, and is moved
to an earlier position if it can be read together with another block residing in
the same disk cylinder. This heuristic does not take into account seek distance
or rotational delay.

The experimental results show that this new reading strategy consistently
outperforms forecasting and double buffering, due to the reduction of the num-
ber of disk seeks needed to read all data. Also, beyond a certain point, fore-
casting and double buffering do not benefit from additional buffer space, while
planning continues to benefit.

3.7.3 Dynamic memory adjustment for external merge-
sort

When the input size is unknown or available memory space varies during the
execution of a sorting algorithm, static memory allocation either wastes memory
space or fails to make full use of all available memory. In these cases, dynamic
memory allocation is necessary. Zhang and Larson presented a new method for
run time adjustment of in-memory workspace for external mergesort and a policy
for allocating memory when multiple sorts compete for memory resources [17].

The external sorting algorithm that the authors consider in the article is one
based on the merge paradigm with the three following phases:

• In-buffer sort : during this phase, the sort process uses buffers to store
data. The contents of each buffer are sorted using any internal sorting
algorithm. When the process runs out of free memory, it tries to allocate
some more space for buffers. If successful, this phase continues. Else, the
next phase begins.

• In-memory merge: during this phase, the buffers are merged into one
sorted run. As buffers are emptied, they may be freed if the system is
short of memory or filled with data for the next run.

3.7. RELATED WORK 29

• external merge: in this phase, the runs are merged into the final sorted
list of records.

Moreover, the sort process is divided in seven stages, from the beginning,
when the sort is waiting to start, to the end, when the process is merging runs
into the final sorted list.

When there are several sort processes being executed concurrently, the mem-
ory adjustment policy decides whether to give more memory to precesses in the
first phase, and whether the processes can keep buffer memory or not in phase
two. The policy makes the decisions based on total available memory, the mem-
ory already assigned to each process, and the stage in which the sort process is.
In five situations, a process may choose to wait for memory when the request
for memory is denied:

1. The process is about to start.

2. The process is generating the first run in memory, and has the minimum
memory possible assigned.

3. The process is generating the first run in memory, but has more than
minimum memory assigned.

4. The process is processing the rest of the runs during the in-buffer sort
phase.

5. The process is before an external merge step.

The processes are prioritized in the following order: 1, 3, 5, 4 and 2. The
reasoning is the following. Sort processes in situation 1 have the most priority
to give a chance to very small sorts to finish. Processes in situation 2 have
low priority because they use few memory. Processes in situation 3 have high
priority to give them a chance to proceed to further stages. Finally, Processes
in situation 5 have priority over processes in situation 4 because they hold more
memory and are closer to completion.

The policy defines minimum and maximum memory values for the first run,
for the rest of the runs and for the external merge phase. When a process fails to
allocate more memory, it can either continue sorting with the already allocated
memory or, if it has not reached the maximum memory, wait for the needed
memory to be available. When it decides to wait, it does so with the assumption
that the total sorting time will be shorter because having more memory the
latter sorting stages finish faster. When memory is freed, the policy assigns it
to waiting processes, giving priority to processes depending on the sorting stage
they are on and the memory already allocated by them.

The experiments performed by the authors showed that this memory ad-
justment policy significantly improves sort throughput and response times when
compared to static memory allocation.

3.7.4 Sorting hierarchical data

In 2008, Koltsidas, Müller and Viglas introduced a new variation of replace-
ment selection for sorting hierarchical data, for example XML2, which they call
Hermes [7].

2Extensive markup language, a set of rules to encode hierarchical data

30 CHAPTER 3. REPLACEMENT SELECTION

Hierarchical data is structured in levels arranged in a tree-like data structure.
The tree is stored in disk similarly to how an XML file is. A node is specified
by a pair of opening and ending tags, and its children are specified within. The
data stored in a node is specified just after the opening tag.

Each node of the tree storing the hierarchical data stores a key. Nodes having
the same parent are sorted by the value of their key. The sorting process consists
on sorting the children of the root node by key value, and then recursively
repeating this process for each child node. The algorithm proposed by the
authors reads the file and stores the tree in memory. When the memory is
filled, the algorithm selects the subtree with minimum key between those that
have been completely read, applies replacement selection at each node to obtain
a sorted run of its children, and outputs the entire subtree to the current run.

Once the whole tree has been processed, the generated runs are merged to
form the final output. The result is a file like the input one, but where the
children of each node are specified in the correct order.

The authors prove that the average length of a run is twice the size of
available memory, like with replacement selection. The experimental results
compared Hermes with Nexsort, another external sorting algorithm for hierar-
chical data. The results show that Hermes outperforms Nexsort, being 8.5 to
10.8 times faster.

3.7.5 Compression of records

Recently, Yiannis and Zobel studied the possibility of compressing sets of records
during the run generation phase in order to reduce disk and transfer costs of
external sorting by reducing the number of runs generated, and proposed new
compression techniques adapted to sets of records [16].

Compressing records has two advantages. One is that it can reduce the
I/O costs of transferring uncompressed data if the overhead of compressing and
decompressing the data plus the I/O costs of transferring the compressed data
is smaller. Also, having the records compressed in memory allows to generate
longer runs, reducing the cost of the merge operation.

Compression techniques that work on records meet several strong constraints:
they must allow individual access to records, record reordering and they must
use a low amount of memory, since memory is needed by the sorting algorithm.
Also, the compression and decompression needs to be fast enough so the whole
sorting process is faster overall than if not using compression. In order to be
able to sort the records after compression, the sorting key is not compressed,
and only the values of the records are compressed. Such values are assumed to
be strings of characters.

Their most successful compression technique is based on a ternary search
trie3. This trie is used to store statistics on common strings observed in the data.
Common strings are substituted by bytewise codes, using shorter codewords for
the most common strings. This technique is parametrized to to balance memory
requirements, compression efficiency and compression effectiveness.

The results obtained by the authors show that, in the best case, the total
sorting time is reduced by about 36%, and the temporary disk space used by
about 60%.

3A trie is a tree based data structure that stores ordered data, usually strings.

Chapter 4

Two-way Replacement
Selection

We propose a modification of replacement selection, which we call Two-way
Replacement Selection (2WRS), characterized by the use of two heaps instead
of one and two intermediate buffers, named input and victim buffers. The
purpose is to generalize RS and to be able to tailor it to different distributions
of the input data in order to maximize the run length.

One bad thing about RS is that it produces runs of infinite length when
the input is already sorted, but when it is sorted in reverse order the runs
are of the minimal length possible. While the two situations are symmetrical,
the performance of the algorithm is extremely different. By having two heaps,
2WRS behaves identically when the input is already sorted as well as when it
is sorted in reverse order, a symmetry that RS lacks.

4.1 Algorithm

Figure 4.1 shows a functional diagram of 2WRS. Records read from the input are
inserted into the input buffer, which is a FIFO queue. Records from the input
buffer can go to one of two heaps or to the victim buffer. The victim buffer is
explained in Section 4.3. One of the two heaps stores records greater than those
already in the output run, exactly as RS does. This heap is called TopHeap
and is a min heap. The new heap, called BottomHeap, stores records smaller
than those already output and is a max heap. Records from both heaps and
from the victim buffer are finally stored in four streams. Streams are FIFO lists
of sorted records. The TopHeap is a min heap, meaning that each new record
output by it will be larger than the preceding one, so the stream generated
by the TopHeap, Stream 1, is increasing. Similarly, the BottomHeap is a max
heap, so the stream associated with it, Stream 4 is decreasing. Streams 2 and 3
are explained in Section 4.3. Each stream contains records in a fixed range, in
a way that the four different ranges do not overlap pairwise. Thus, the final
output run is generated concatenating the contents of the four streams.

The two heaps occupy together a fixed amount of memory, but the size
of each one changes during the execution of the algorithm. If both heaps are
stored in memory as an array, as explained in Section 3.1, they must be stored

31

32 CHAPTER 4. TWO-WAY REPLACEMENT SELECTION

input buffer

Top

Heap

Bottom

Heap

victim buffer

ouput stream 1

ouput stream 2

ouput stream 3

ouput stream 4

Figure 4.1: Functional diagram of 2WRS.

as dynamic data structures. This means that memory is dynamically allocated
and freed continually, adding an overhead to the execution time of 2WRS. In
order to avoid this, both heaps are stored contiguously in a single static array.
One heap is stored starting at position 0 and growing with increasing memory
indexes and the other one starting at the end and growing with decreasing
memory indexes. This way one of them can grow larger at the expense of the
other one shrinking.

The two heaps are stored contiguously in memory, one starting at position 0
and growing with increasing memory indexes and the other one starting at the
end and growing with decreasing memory indexes. This way one of them can
grow larger at the expense of the other one shrinking.

In order to illustrate how two heaps are stored in one array, let us consider,
as an example, the two heaps shown in Figure 4.2. The one in the left is a
max heap, corresponding to a BottomHeap, while the other one is a min heap,
corresponding to a TopHeap. In the same figure we also depict how they are
stored in memory, each in a different array. Figure 4.3 shows the same two heaps
and the way they are stored in a single array following the storage structure used
by 2WRS described here. The thicker line shows the point in the array that
separates both heaps. In the actual implementation, this separation does not
physically exist. Instead, the size of each heap is known. In this case, knowing
that the BottomHeap has seven records allows to logically separate the two
heaps in the array. Note that the only difference between the two-array and the
single-array storing methods is that the TopHeap is stored in the array after the
BottomHeap in reverse order.

As an example of how one heap can grow at the expense of the other one
shrinking, we consider the following scenario: if the top record of the Bot-
tomHeap, 33, is removed, the resulting situation is shown in Figure 4.4. The
size of the BottomHeap has been reduced by one unit, and now there is an
empty position in the array storing the heaps. This position corresponds to a
record removed in the BottomHeap, and it is positioned next to the end of the
subarray containing the BottomHeap. Thus, another record can be inserted in
it. But this empty position also lies at the end of the TopHeap, next to the
record 77, so a new record can be inserted in the TopHeap. If the record 53 is
inserted into the TopHeap, the heaps are now as in Figure 4.5.

4.2. INPUT BUFFER AND HEURISTICS 33

28 32 1633 20 22 4

54 72 7552 64 81 77

memory

33

28 32

16 20 22 4

52

54 72

75 64 81 77

BottomHeap

TopHeap

Figure 4.2: Two heaps and their näıve array representation.

If the TopHeap grows to occupy the whole memory while the BottomHeap
is kept at size 0, the algorithm is equivalent to RS.

The general idea is similar to having two separate RS algorithms working
together, one gives larger records as output while the other one gives a decreasing
output.

4.2 Input buffer and Heuristics

The performance of 2WRS is very dependent on how the memory is partitioned
between the TopHeap and the BottomHeap. For the algorithm to work in a
balanced way, meaning that each heap is used in a way that maximizes the run
length, it is crucial to choose a good first output record. This is because the
first record given as output marks a division: records greater than it belong to
the TopHeap, and smaller records belong to the BottomHeap.

If we do not know anything about the input data, the first record may go at
any one of the two heaps, and performance may be suboptimal. This is why an
input buffer is introduced. A part of the memory is filled with input records in
the same order they are read, and this buffer is used to ample the input data
and infer its distribution.

The input buffer works as a FIFO queue of records. When a record read
from the input can be inserted into both heaps, the contents of the input buffer
are used to choose which heap will store the record. We have proposed and
analyzed several different heuristics for this:

• Random: chooses one heap at random, where the record will be stored.

34 CHAPTER 4. TWO-WAY REPLACEMENT SELECTION

28 32 1633 20 22 4 81 64 7577 72 54 52

33

28 32

16 20 22 4

BottomHeap

52

54 72

75 64 81 77

TopHeap
memory

Figure 4.3: The two heaps of Figure 4.2 and their single-array representation,
as used by 2WRS.

32

28 22

16 20 4

52

54 72

75 64 81 77

28 22 1632 20 4 81 64 7577 72 54 52

Figure 4.4: The two heaps of Figure 4.3 and their single-array representation,
after removing the top record of the first heap.

• Alternate: records are assigned to the BottomHeap and TopHeap alter-
natively. If a record is inserted in the BottomHeap, the next one will be
inserted in the TopHeap, and vice versa.

• Mean: compares the record to be inserted with the mean of the records
in the input buffer. If the mean is smaller, the record is stored in the
TopHeap, else it is stored in the BottomHeap.

• Median: behaves similarly to the Mean, but the next record is compared
with the median of the records.

• Useful : keeps a dynamic track of the usefulness of each heap. The useful-
ness of a heap is measured as the number of records output by that heap
divided by its size. New records are stored in the most useful heap.

• Balancing : records are stored in the smallest of the two heaps. When a
run starts, if one heap has more records than the other one, records are
popped from the large heap and inserted into the small one until both
heaps contain the same number of records.

It should be noted that not all of the heuristics make use of the input buffer,
namely, Random, Alternating, Useful and Balancing. In Section 5.2 we compare
the different heuristics and conclude which are preferable for different input
distributions.

4.3. VICTIM BUFFER 35

32

28 22

16 20 4

52

53 72

54 64 81 77

75

28 22 1632 20 4 81 64 5477 72 53 5275

Figure 4.5: 53 has been inserted into the TopHeap.

Output Heuristics

When the algorithm outputs a records of the current run, it is taken from one
of the two heaps. If the two heaps are not empty, the record to be output can
be chosen from either heap. In order to select from which heap the record will
be popped, a second heuristic, called output heuristic is used. As with the input
heuristic, we study several alternatives:

• Random: chooses one heap at random. The record is popped from that
heap and written to the corresponding output stream.

• Alternate: chooses the heaps in an alternating fashion. First, a record is
popped from the BottomHeap, and the next one from the TopHeap.

• Useful : using the same usefulness measure as the Useful input heuristic,
the record is popped from the most useful heap.

• Balancing : keeps both buffers the same size. Thus, the record is popped
from the larger heap.

• Min distance: the first output is chosen at random, and for the following
ones, the closer record in absolute value to the first output is selected.

Note that with six input and five output heuristics, there is a total of 30
different combinations of heuristics to choose from, which are analyzed in Chap-
ter 5.

4.3 Victim buffer

The victim buffer is a pool of memory dedicated to store and sort records that
can not be stored into either heap as records belonging to the current run. At
the start of the algorithm, the output of each heap is stored in separate files,
corresponding to Streams 1 and 4 in Figure 4.1. Since Stream 1 is increasing
and Stream 4 is decreasing, these streams will not have any record that lies in
the range comprised between the greatest record in Stream 1 and the smallest

36 CHAPTER 4. TWO-WAY REPLACEMENT SELECTION

record in Stream 4. With the introduction of the victim buffer, if a new record
read from the input is in this valid range, then it will be stored in the victim
buffer instead of being marked as belonging to the next run and stored in one
of the heaps, as would normally happen.

When the victim buffer is full, the records are sorted. The largest gap
between consecutive records is selected as the new valid range for the victim
buffer. Records smaller than the new valid range are stored in Stream 3, which
is increasing, and records greater than it in Stream 2, which is decreasing. The
next time the victim buffer is full, the same operations are performed, but the
records can be appended to the two streams already created, instead of having
to create new streams. This is because the records in the victim buffer are in
the range between the largest record of Stream 3 and the smallest record of
Stream 2.

Additionally, the victim buffer performs a second task in the beginning of
the algorithm. Since the victim buffer is empty in the beginning, 2WRS writes
temporarily the output records to the victim buffer instead of to Streams 1
and 4. When the victim buffer is full, 2WRS finds the largest gap in the buffer,
which will be the valid range of the victim buffer, and flushes the records to
Streams 1 and 4. This allows to choose a valid range different from the first gap
between the top records of both heaps. Choosing a larger valid range makes
the victim buffer more useful, since the probability of a record belonging to an
interval is larger when the interval is larger.

4.4 Pseudocode

Algorithm 2 shows the pseudocode for the main loop of 2WRS. The algorithm
first fills both heaps with records obtained from the input. This is done by
method doubleHeap.fill. When a record can be stored in both heaps, this func-
tion uses the input heuristic to decide which heap is used to store the record.

The main loop is executed while the two heaps are not empty. First, a
record is released to make room for a new one. This is done by method vic-
timBuffer.output, which pops the top record from either the TopHeap or Bot-
tomHeap using the output heuristic if necessary.

Next, a record is obtained from the input buffer. Method victimBuffer.fit
checks whether the current record is inside the gap currently processed by the
victim buffer and, if so, stores it and returns true. Otherwise, it does nothing
and returns false. Note that at the beginning of each run, while the victim
buffer has not been completely filled, this function always returns false. While
this method returns true, new records are read from the input buffer. When the
record read can not be put in the victim buffer, the method returns false and
the record is inserted into one heap by method doubleHeap.insert. This method
inserts the record into one of the heaps, using the first heuristic when necessary.

Finally, method doubleHeap.nextRun returns true when the top record of
both heaps belong to the next run, meaning that the current run reached an
end, since all records in memory also belong to the next run. In this case the
records stored in the victim buffer are written to disk and the next run starts,
with an empty victim buffer.

The main loop of this algorithm is very similar to the main loop of replace-
ment selection, shown in Section 3.4. The only difference is that 2WRS checks

4.5. EXAMPLE 37

Algorithm 2 2WRS(inputBuffer, heapSize, victimBufferSize)
Require: An input buffer inputBuffer, the maximum combined size of the

heaps heapSize and the victim buffer size victimBufferSize.
Ensure: The generation of several ordered runs.

1: let current a pair of integers containing a value for a record and the run to
which it belongs.

2: let doubleHeap a pair of heaps, a max heap and a min heap, of maximum
total size heapSize.

3: let victimBuffer a victim buffer of size victimBufferSize.
4: let currentRun an integer.
5: doubleHeap.fill(inputBuffer);
6: currentRun = 0;
7: while doubleHeap.size() > 0 do
8: output(doubleHeap);
9: if inputBuffer.read(current.value) then

10: current.run = currentRun;
11: while victimBuffer.fit(current.value) do
12: inputBuffer.read(current.value);
13: end while
14: doubleHeap.insert(current);
15: end if
16: if doubleHeap.nextRun(currentRun) then
17: currentRun = 1 + currentRun;
18: victimBuffer.flush();
19: end if
20: end while

whether the current record can be placed in the victim buffer and keeps reading
new records while this is the case.

4.5 Example

In order to show the general behavior of the algorithm, a small example is
presented here. In this example the system has enough memory to store 22
records, which are assigned to the 2WRS data structures as follows: 4 to the
input buffer, 4 to the victim buffer, and 14 to the heaps. We apply the Mean
input heuristic and the Random output heuristic. The input data is

{40, 50, 39, 51, 38, 52, 37, 53, 36, 54, 35, 55,

34, 56, 33, 57, 32, 58, 44, 39, 59, 60, 61, . . .}

This input data alternates records sorted with records sorted in reverse order,
leaving a gap for the victim buffer to use.

In the beginning, 2WRS fills the input buffer. Then, the buffer contains the
four first records of the input, {40, 50, 39, 51}. Now, the algorithm reads the
first record from the input buffer, which is 40. This record can go into either
heap, because both are empty. Since 40 is not greater than the mean of the
input buffer contents (45), it is pushed into the BottomHeap. A new record,

38 CHAPTER 4. TWO-WAY REPLACEMENT SELECTION

Victim Buffer

40

39 38

37 36 35 34

BottomHeap

50

51 52

53 54 55 56

TopHeap

Figure 4.6: The two heaps after they are filled. The victim buffer and the output
are still empty.

40

Victim Buffer

39

37 38

34 36 35 33

BottomHeap

50

51 52

53 54 55 56

TopHeap

Figure 4.7: The two heaps after the first record is put in the victim buffer.

38, is inserted into the input buffer FIFO and we pop the head, 50. This time,
50 greater than the mean (44.5), so it is inserted into the TopHeap. The next
record is 39, which goes to the BottomHeap because it is smaller than the top
record of the BottomHeap, 40. This process is iterated until the heaps are full.
In Figure 4.6 we show the content of the heaps at this point.

When the two heaps are full, the Random output heuristic selects one of the
heaps, the BottomHeap, and its top record is put in the victim buffer. Then a
new record is inserted into one of the heaps. The top of the BottomHeap is 40,
which it is inserted into the victim buffer. The next record is 33, which goes to
the BottomHeap. The content of the heaps is shown in Figure 4.7. This process
is repeated until the victim buffer is full.

Once the victim buffer is full, it is sorted, as shown in Figure 4.8. The largest
gap in the victim buffer is that between 40 and 50, so records that are smaller
than (or equal to) 40, i.e. 39 and 40, are written to the output stream 3. The

4.5. EXAMPLE 39

40 50 5139

Victim Buffer

38

37 35

34 36 33 32

BottomHeap

52

53 55

56 54 57 58

TopHeap

Figure 4.8: The two heaps after the victim buffer is full. The four streams are
still empty.

rest of the records (50 and 51) are written to the output stream 2. The victim
buffer is now empty, and accepts records between 40 and 50.

Next, the Random output heuristic selects one of the heaps, the BottomHeap,
and its top record, 38, is written to Stream 4. The next record in the input
buffer is 44. It can not be inserted into either heap, but since it is between 40
and 50, it is inserted into the victim buffer. The next record is 39. It is not
possible to use it in the current run, but since it is not between 40 and 50, it can
not be put in the victim buffer. In this case, it is marked as belonging to the
next run and inserted into the BottomHeap, because 39 is not larger than the
mean of the contents of the input buffer, which are now {39, 59, 60, 61}. The
content of the heaps now is shown in Figure 4.9. Given that 39 belongs to the
next run, it is considered smaller than any other record in the BottomHeap for
the current run.

The algorithm continues until all record in both heaps are marked. Then,
the current run is finished and the next one is started.

40 CHAPTER 4. TWO-WAY REPLACEMENT SELECTION

44

Victim Buffer

37

36 35

34 32 33

BottomHeap

52

53 55

56 54 57 58

TopHeap

51 50

39 40

38stream 4

stream 3

stream 2

stream 1

Figure 4.9: The two heaps at the end of this example and the contents of the
victim buffer and the four streams. The asterisk next to 39 marks it as belonging
to the next run and, as such, it is considered to be smaller than any record in
the current run.

Chapter 5

Analysis

In this section we first prove some relevant properties of RS and 2WRS formally,
for different characteristic data distributions. This way, we show that 2WRS is
able to sort incoming data, generating runs which are, at least, as long as those
generated by RS for sorted data (Theorem 2) and longer than RS for other data
inputs (Theorems 5 and 6).

Later, in Section 5.2, we analyze the number of runs generated by RS and
2WRS. We study the different combinations of configurations for 2WRS with
the aid of statistical models based on the analysis of variance (ANOVA). Since
the quality of the models is high, we give recommendations on the best con-
figurations based on these models. In Chapter 6, we pick this recommended
configuration and we perform a timing benchmark.

5.1 Theoretical Analysis

Theorem 1. For inputs already sorted in ascending order, RS generates one
run containing all the input records.

Proof. Since the input records are already sorted, each new record will be larger
than all the values in the heap and, thus, it will be possible to insert it into the
heap as belonging to the present run. No record will be marked as belonging to
the next run.

Theorem 2. For inputs already sorted in ascending order, 2WRS generates
one run containing all the input records.

Proof. This proof is the same proof as for Theorem 1. All records obtained from
the input are larger than those stored in memory. All the records are stored in
the TopHeap, and all they belong to the same run.

Theorem 3. For inputs sorted in reverse order, RS generates runs with length
equal to the size of the memory.

Proof. Since the input records are sorted in reverse order, the next record ob-
tained form the input is smaller than all the previous records. Thus, it is not
possible to include the new record in the current run when the heap is full. So,
the new record is marked as belonging to the next run. When the heap is full

41

42 CHAPTER 5. ANALYSIS

every new record belongs to the next run. Once the records belonging to the
present run are released, a new run starts and the size of the run is equal to the
available memory.

Theorem 4. For inputs sorted in reverse order, 2WRS generates one run con-
taining all the input records.

Proof. The records obtained from the input are smaller than all the records
in memory. However, in contrast to RS, those records are inserted in the Bot-
tomHeap. Since all the records from the BottomHeap can be used in the current
run, all the stream is released in a single run through the BottomHeap.

Theorem 5. For inputs consisting of alternating chunks of length k records
sorted in ascending order and k records sorted in descending order repeatedly,
RS generates runs with an average length around twice the size of the memory
m (m << k).

Proof. Let m be the size of the memory. Every chunk of k records sorted in
ascending order is placed in the same run, as per Theorem 1.

When the algorithm starts reading records sorted in reverse order, only the
first m/2 will be included in the current run. The rest of the records sorted in
reverse order are put in runs of length m, as per Theorem 2. Therefore, the
number of runs generated in a descending section is

⌊
k−m

2
m

⌋
=

⌊
k
m − 1

2

⌋
.

The last m records of a chunk of k records sorted in reverse order ((k − m
2)

mod m) are placed in the same run as the following k records sorted in ascending
order.

So every chunk of k records sorted in ascending order is included in a run
together with m/2 records from the next chunk of k records sorted in descending
order, plus the last records from the previous run (k − m

2) mod m.
The average run length is then the total number of records divided by the

number of generated runs,
2k

1 +
⌊

k
m − 1

2

⌋
The denominator of this formula can take the values

⌊
k
m

⌋
and

⌊
k
m + 1

⌋
. The

formula achieves maximum value when the denominator is minimum. The max-
imum average run length is then

2k⌊
k
m

⌋ ≈ 2m

Theorem 6. For inputs consisting of alternating chunks of length k records
sorted in the reverse order, two-way replacement selection generates runs with
an average length equal to k (with an appropriate heuristic1).

Proof. 2WRS behaves identically to RS for the chunks sorted sorted in ascending
order, thanks to the TopHeap. For the chunks with records sorted in reverse
order, 2WRS captures the trend with the BottomHeap, generating runs of k
records, as well. Thus, the average run length is k.

1An appropriate heuristic is one that uses the TopHeap for sorted inputs and the Bot-
tomHeap for reverse sorted inputs.

5.2. RUN LENGTH ANALYSIS 43

Theorem 7. There is an input heuristics that makes 2WRS perform at least
as good as RS.

Proof. The heuristic consists on choosing always the TopHeap.

5.2 Run length analysis

In this section, we design experiments to test the configuration parameters of
2WRS following the analysis of variance (ANOVA) techniques. Through the
rest of this chapter we use the conventional statistics nomenclature, where cat-
egorical variables are named factors and the values they can take are named
levels.The ANOVA detects which factors are more relevant and it is used to
select the optimal configuration for a set of factors. For further details about
ANOVA, see Appendix B.

In these experiments, the memory size allocated to the algorithm is fixed to
100K records and the input length is 100MB. Each record is formed by a 4B
integer, which means that the input consists of 25 million records. The number
of runs and the average run length verify the formula

#runs · avg.runlength = memorysize

Since the memory size is fixed to 100K records, it is equivalent to optimize the
average run length and minimize the number of runs generated. We selected the
number of runs as the response variable because the generated models are better
than the ones generated with the average run length as the response variable.

The observations are obtained as a crossed factorial experiment with five
factors:

• Buffer setup: Three levels are tested: only the input buffer is used, only
the victim buffer, and both the input and victim buffers are used.

• Size of buffer : There are four levels: 0.02%, 0.2%, 2% and 20% of the avail-
able memory is dedicated to the buffers and the rest to the heaps. Note
that in all the configurations, the total allocated memory (the addition of
the heap and buffer sizes) for 2WRS is always constant.

• Input heuristic: We test six levels for the heuristic of the input buffer:
Random, Alternate, Mean, Median, Useful and Balancing.

• Output heuristic: We test five levels for the output heuristic: Random,
Alternate, Useful, Balancing and Min distance.

• Data distribution: We test six different data input distributions. (1)
Sorted: The records are already sorted. (2) Reverse sorted: the inputs
are sorted in reverse order. (3) Alternating: This dataset is a sequence
of increasing intervals followed by decreasing intervals. The number of
intervals is set to 50, with 25 increasing and 25 decreasing interleaved
intervals. (4) Random: The records are generated following a uniformly
random distribution. (5) Mixed: This dataset alternates one record from
a sequence of increasing records, with another record of a sequence of
decreasing records. (6) Mixed imbalanced: This dataset alternates one
record from a sequence of increasing records, with three records of a se-
quence of decreasing records. We depict these datasets in Figure 5.1.

44 CHAPTER 5. ANALYSIS

(a) Sorted input (b) Reverse sorted input (c) Alternating input

(d) Random input (e) Mixed input (f) Mixed imbalanced input

Figure 5.1: Samples of all data inputs used.

These data distributions are presented as basic distributions which can be
combined to build more complicated distributions are combinations and con-
catenations of these basic distributions. For example, a table in a database
with two columns, A and B, where the data in A is anticorrelated with B, and
sorted by A, would result in a reverse sorted input (Figure 5.1 (b)) when sort-
ing by B. Another example is to have a bidimensional attribute stored as two
attributes, A and B. When sorting data by B, the input is a concatenation of
sorted inputs (Figure 5.1 (a)).

In our experimental setup, there is a total of 2160 different configurations.
In order for the results to have variance, each configuration is tested five times,
using five different seeds for the random number generator. Thus, there is a
total of 10800 executions of the 2WRS algorithm. If we execute 2WRS with
the same input data five times, the result is the same, as it is a deterministic
algorithm. Because of this, a uniformly distributed random value is added to
each input record. These random values range from 1 to 1000 for a total range
of values sorted from 1 to 109.

We executed the algorithm in a computer equipped with an Intel Core 2
Duo processor running at 2.40GHz. Each core has 4KB of L2 cache memory
and the system has a total of 2GB of RAM. The hard disk is a SATA drive with
a capacity of 60GB. The OS of the system is Debian GNU/Linux. A shell script
executed each configuration sequentially and saved the results in a disk file, as
described in Appendix A.2. The results were imported into the SPSS statistics
software.

We observed that the hypothesis of homoscedasticity (homogeneity of vari-
ances) is not met. Figure 5.2 shows all the results for each input dataset. It is
clear that it is not true that all levels have the same variance, so we decided to
split the results in six groups, according to the input dataset used, and construct
six different models using the remaining four factors instead of five. Table 5.1
summarizes the factors and their levels. We observed no outliers in any of the
six groups. The significance level of all tests performed is 0.05. Each of the
following subsections discusses the six models.

5.2. RUN LENGTH ANALYSIS 45

input dataset

reverse sortedsortedmixed
imbalanced

mixedalternatingrandom

n
u

m
b

e
r

o
f

ru
n

s
400

300

200

100

0

Figure 5.2: Number of runs generated as a function of the input dataset.

5.2.1 Sorted

In accordance to Theorems 1 and 2. When the input is already sorted, both
RS and all configurations of 2WRS behave identically, generating a unique run
containing all records. This is the optimal behavior of the algorithms. The
model is y = µ = 1, since the response variable is constant and independent of
any factor. The residuals are all zero and the residual variance is also zero.

5.2.2 Reverse Sorted

When the input is sorted in reverse order, RS has the worst performance pos-
sible, generating runs of length equal to the available memory, as we proved in
Theorem 3. However, as shown by Theorem 4, all configurations of 2WRS gen-
erate a unique run containing all records. The model for 2WRS is identical to
the model for sorted input, y = µ = 1. For RS, y = 100K

1 = 105, as Theorem 3
proves. There is no dependence on any factor and the residuals are all zero.
With this input, 2WRS is a big improvement over RS in terms of average run
length, because we jump from worst-case performance to optimal performance
for any configuration.

5.2.3 Alternating

With the alternating input, as found in Theorem 6, all configurations of 2WRS
build 50 runs with average length 5 times the memory size. As with the sorted
and reverse sorted input datasets, the residual variance is zero and the model
y = µ = 50 accurately predicts the average run length with this input.

With this input dataset, RS generates runs of length 1.94 times the available
memory, which is close to 2.0 as Theorem 5 states. This shows that when

46 CHAPTER 5. ANALYSIS

Factor Level Description

αi i = 0 Only the input buffer is used
Buffer setup i = 1 Both buffers are used

i = 2 Only the victim buffer is used

βj j = 0 0.02% of memory is used for buffers
Size of buffers j = 1 0.2% of memory is used for buffers

j = 2 2% of memory is used for buffers
j = 3 20% of memory is used for buffers

γk k = 0 Random input heuristic is used
Input heuristic k = 1 Alternate input heuristic is used

k = 2 Mean input heuristic is used
k = 3 Median input heuristic is used
k = 4 Useful input heuristic is used
k = 5 Balancing input heuristic is used

πl l = 0 Random output heuristic is used
Output heuristic l = 1 Alternate output heuristic is used

l = 2 Useful output heuristic is used
l = 3 Balancing output heuristic is used
l = 4 Min distance output heuristic is used

Table 5.1: Factors and their levels.

Factor SS D.F. MSS F Sig. Power

αi 1.028 2 0.514 6.713 0.001 0.917

βj 344166.646 3 114722.215 1498694.762 0.000 1.000

γk 3.396 5 0.679 8.873 0.000 1.000

πl 30.491 4 7.623 99.582 0.000 1.000

R2 = 1.0 σ = 0.277 CV = 0.2%

Table 5.2: Summary of the model yijklm = µ + αi + βj + γk + πl + ϵijklm with
random input.

datasets are ordered or partially ordered 2WRS is more effective than RS.

5.2.4 Random

Using a simple model with all the factors and no interactions, yijklm = µ+αi +
βj + γk + πl + ϵijklm, the analysis shows that all factors are significant. The
result of the analysis of this model is summarized in Table 5.2. The second and
third columns are the sums of squares and the number of degrees of freedom.
The fourth column, MSS, is the mean of sums of squares, that corresponds to SS
divided by the degrees of freedom. The fifth column is the F value necessary to
test the significance of the factor. The significance value tells us if the factor is
significant, if this values is less than 0.05 it means that the factor is statistically
significant in the model. The last column is the power of the hypothesis test
obtained.

In this case, the analysis tells us that the model is accurate, since it explains
99.9% of the variance in the response variable, and the coefficient of variability is
much less than 5%. The most relevant factor is the size of the buffer, since it has
an F value several orders of magnitude higher than the other factors. Because
of this, we analyze a simpler model with only this factor, yij = µ + βi + ϵij .

5.2. RUN LENGTH ANALYSIS 47

Factor SS D.F. MSS F Sig. Power

βj 344166.646 3 114722.215 1201032.325 0.000 1.000

R2 = 1.0 σ = 0.310 CV = 0.2%

Table 5.3: Summary of the model yij = µ + βi + ϵij with random input.

observed value

170160150140130

p
re

d
ic

te
d

 v
a

lu
e

170,00

160,00

150,00

140,00

130,00

Figure 5.3: Predicted vs. observed values for the model yij = µ + βi + ϵij .

The ANOVA of this model is summarized in Table 5.3. The model is still very
accurate, the values of R2 and CV have not changed. Therefore, the accepted
model for random input is yij = µ + βi + ϵij .

Figure 5.3 depicts the predicted values versus the observed values of the
response variable. There is an accurate match between the two variables, and
as a result the value of R2 is very close to one. Thus, the model with only one
factor, the size of the buffer, accurately predicts the average length of the runs
generated by 2WRS with random input data.

Since the analysis found that the most important factor is β, the size of
the buffers, Figure 5.4 represents the average run length as a function of the
size of the buffers. It is observed that there is a linear correlation between the
buffer size and the run length. If buffers are allocated, the memory dedicated
to the heap diminishes by the percentage of memory dedicated to them. Thus,
a configuration with 2% of the memory dedicated to buffers, reduces the run
length by just 2%. Furthermore, in our experiments, we measured a very small
difference in the length of the runs generated by the configurations with 0.2%
and 2% allocated to the buffers, but larger between 2% and 20%.

With random inputs, replacement selection generates runs of length equal
to twice the available memory, as it is proved in Section 3.5. The statistical
model shows that 2WRS also generates runs with length relative to the available
memory close to 2.0. This is to be expected since 2WRS is similar to RS, but

48 CHAPTER 5. ANALYSIS

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20

ru
n

le
ng

th
 /

av
ai

la
bl

e
m

em
or

y

buffer size (% of available memory)

Figure 5.4: Length of runs relative to memory size as function of buffer size for
random inputs.

working with two heaps instead of one. Also, since the behavior of random
input can not be predicted, the input and victim buffers are of no use, as the
statistical analysis shows.

As a conclusion, if the input follows a random uniform distribution and no
input or victim buffers are used, 2WRS and RS perform identically in terms of
number of runs generated.

5.2.5 Mixed balanced

The number of runs generated by RS with mixed datasets is approximately the
same as with random data, around 50. With some of the configurations, 2WRS
greatly outperforms RS, generating as few as two runs.

When using a model with no interactions, yijklm = µ + αi + βj + γk + πl +
ϵijklm, the value of R2 is 0.5, which is very low. The next model tested is one
with all interactions of first order. The analysis shows an acceptable value of R2,
0.882, but a very high value of the coefficient CV, greater than 20%. Further
analysis reveals that the variance of the response variable is not equal for each
level of the factor α, the buffer configuration. Specifically, if the victim buffer is
not used, the behavior of the algorithm is very different and exhibits, a larger
variance, the runs generated have a length smaller than two times the available
memory and a high number of runs are generated. This is shown in Figure 5.5.

In order to obtain a better model, the results corresponding to configurations
not using the victim buffer are removed. This does not affect finding an optimal
configuration because the configurations removed have bad performance, gen-
erating runs with an average length below two times the size of the available
memory. After removing the corresponding results, a model with all factors and
their first order interactions is analyzed. One of the factors, α, and its interac-
tions is much less significant than the others, having a value of F at least two
orders of magnitude smaller than the other factors, as shown in Table 5.4. Also,
one of the interactions is not statistically significant. In order to simplify the
model, this factor, α, and all of its interactions are removed from the model.

5.2. RUN LENGTH ANALYSIS 49

Buffer setup

210

N
u

m
b

e
r

o
f

ru
n

s

400

300

200

100

0

Figure 5.5: Number of runs generated as function of buffer setup (factor α) for
mixed balanced input.

Factor F Sig. Power

αi (Buffer setup) 5.751 0.017 0.669

βj (Size of buffers) 253.852 0.000 1.000

γk (Input heuristic) 10506.618 0.000 1.000

πl (Output heuristic) 6499.640 0.000 1.000

(αβ)ij 4.081 0.007 0.847

(αγ)ik 1.931 0.087 0.657

(απ)il 7.902 0.000 0.998

(βγ)jk 65.683 0.000 1.000

(βπ)jl 79.974 0.000 1.000

(γπ)kl 1158.751 0.000 1.000

R2 = 0.990 σ = 7.16 CV = 9.7%

Table 5.4: Summary of the model with all factors and first order interactions
with mixed balanced input.

Factor SS D.F. MSS F Sig. Power

βj 40051.463 3 13350.488 247.843 0.000 1.000

γk 2732713.714 5 546542.743 10146.196 0.000 1.000

πl 1419558.687 4 354889.672 6588.287 0.000 1.000

(βγ)jk 52148.003 15 3476.534 64.539 0.000 1.000

(βπ)jl 54937.100 12 4578.092 84.989 0.000 1.000

(γπ)kl 1214436.523 20 60721.826 1127.260 0.000 1.000

R2 = 0.989 σ = 7.34 CV = 9.8%

Table 5.5: Summary of the model with factors β, γ, π and their first order
interactions with mixed balanced input.

50 CHAPTER 5. ANALYSIS

Buffer size

3210

V
a

r
ia

n
c

e
 o

f
r
u

n
s

6.000,000

4.000,000

2.000,000

0,000

Figure 5.6: Variance of the number of runs generated as function of buffer size
(factor β) for mixed balanced input.

Factor SS D.F. MSS F Sig. Power

βj 7.089 3 2.363 192.961 0.000 1.000

γk 590.462 5 118.092 9643.895 0.000 1.000

πl 306.726 4 76.682 6262.125 0.000 1.000

(βγ)jk 9.645 15 0.643 52.509 0.000 1.000

(βπ)jl 11.501 12 0.958 78.271 0.000 1.000

(γπ)kl 266.128 20 13.306 1086.655 0.000 1.000

R2 = 0.988 σ = 0.11 CV = 0.15%

Table 5.6: Summary of the model with factors β, γ, π and their first order
interactions with mixed balanced input and WLS weighting.

The analysis of the model that results from removing the buffer setup and its
interactions is summarized in Table 5.5. The model can not be simplified, as all
factors are significant and the removal of any of the interactions yields residue
distributions far from normal. The coefficient of variance is a little higher than
desired, 9.8%, so we try to improve this model.

In order to improve the model, we construct another model applying Weighted
Least Squares (WLS) instead of the Minimum Least Squares (MLS) applied as
the parameter estimation method. The WLS sets a weight for each configura-
tion so that configurations with lower variance contribute more to the parameter
estimation. Figure 5.6 shows that the variance for the number of runs is not
constant for every level of the factor β, the size of the buffers. The WLS weights
are defined as wi = 1/σ2

i , where σi is the variance of the number of runs restricted
to the i-th level of factor β, as shown in Figure 5.6.

The resulting model using WLS is summarized in Table 5.6. The value R2

is as good as with the model in Table 5.5, and the coefficient of variability is
much better, 0.15%. Figure 5.7 shows that the standardized residuals follow a
gaussian distribution. The most important factors of the model in Table 5.6 are

5.2. RUN LENGTH ANALYSIS 51

Standardized residual

5,002,500,00-2,50-5,00

F
re

q
u

e
n

c
y

400

300

200

100

0

Figure 5.7: Histograms of the residuals of the model in Table 5.6.

γ0 γ1 γ2 γ3 γ4 γ5

γ0 - 0.000 0.000 0.000 1.000 0.000

γ1 0.000 - 0.693 0.693 0.000 0.000

γ2 0.000 0.693 - 1.000 0.000 0.000

γ3 0.000 0.693 1.000 - 0.000 0.000

γ4 1.000 0.000 0.000 0.000 - 0.000

γ5 0.000 0.000 0.000 0.000 0.000 -

Table 5.7: Significance of the pairwise comparison of input heuristics. Signifi-
cance level is 0.05.

the two heuristics, γ and π, and their interaction, (γπ)kl.
We performed Tukey’s tests for each of the factors in order to compare

the mean of the result when grouped according to each level of the factors.
The input heuristic has six different levels, and each level is compared to the
other five levels, so there is a total of

(
6
2

)
= 15 pairwise comparisons. For

each of pairs of input heuristics, the null hypothesis states that the mean of
the response variable grouped by each heuristic is equal. The test rejects the
null hypothesis for all comparisons except for the three comparisons between
the Alternate (γ1), Mean (γ2) and Median (γ3) heuristics, and the comparison
between Random (γ0) and Useful (γ4). The significance obtained by the test
for each pair being compared is shown in Table 5.7. The best performing levels
are marked in boldface. The mean of the number of runs generated by each
one of the three heuristics Alternate, Mean and Median is less than the same
measure for any other heuristic, and the difference of the means is statistically
significant. Also, these heuristics achieve the minimum number of generated
runs, and according to Table 5.7 γ1, γ2 and γ3 are not statistically different.
Thus, optimal configurations for the mixed input dataset use one of these three
input heuristics.

Similarly, for the output heuristics, the Tukey test rejects the null hypothesis

52 CHAPTER 5. ANALYSIS

π0 π1 π2 π3 π4

π0 - 0.000 0.000 0.761 0.000

π1 0.000 - 0.000 0.000 0.000

π2 0.000 0.000 - 0.000 0.000

π3 0.761 0.000 0.000 - 0.000

π4 0.000 0.000 0.000 0.000 -

Table 5.8: Significance of the pairwise comparison of output heuristics. Signifi-
cance level is 0.05.

(γπ)10 (γπ)13 (γπ)20 (γπ)23 (γπ)30 (γπ)33

(γπ)10 - 0.792 0.442 0.321 0.442 0.321

(γπ)13 0.792 - 0.615 0.464 0.615 0.464

(γπ)20 0.442 0.615 - 0.820 1.000 0.821

(γπ)23 0.321 0.464 0.820 - 0.821 1.000

(γπ)30 0.442 0.615 1.000 0.821 - 0.820

(γπ)33 0.321 0.464 0.821 1.000 0.820 -

Table 5.9: Significance of the pairwise comparison of the interaction between
input and output heuristics using only the best input and output heuristics.
Significance level is 0.05.

for all pairs of output heuristics except for the Random (π0) and Balancing (π3)
heuristics. The significance obtained by the test for each pair is summarized in
Table 5.8. Again, these two heuristics have a mean number of runs less than
the other heuristics and achieve the minimum number of runs generated for this
input dataset.

In order to find the best combination of heuristics, we analyze the interaction
γπ, which corresponds to the interaction of the input and output heuristics.
Table 5.9 shows the significance obtained by the test comparing each pair of
levels, only for the input and output heuristics found to be the best. All values
are greater than the significance level, 0.05, which means that the test fails to
reject the null hypothesis, which states that the mean of the number of runs
grouped by each level is equal. Thus, there is no statistical evidence that one of
these levels is better among them, so any of these combinations of heuristics can
be considered optimal. Figure 5.8 depicts the mean number of runs generated
by 2WRS for each pair of input and output heuristics. In this figure we see
how, when using π1, π2, π3 or π5 as the input heuristics, the choice of a specific
output heuristic can significantly improve the performance of the algorithm in
terms of number of runs generated.

The minimum number of runs generated with this input dataset is two,
which corresponds to an average run length of 125 times the size of the available
memory. There are several optimal configurations that generate only two runs
when this input dataset is used. These configurations use the Mean, Median
and Balancing input heuristics, the Random or Balancing output heuristics and
more than 0.2% of memory for buffers.

5.2. RUN LENGTH ANALYSIS 53

Input heuristic

543210

M
e

a
n

 r
u

n
s

150

100

50

0

4

3

2

1

0

Output heuristic

Figure 5.8: Mean of the number of runs generated for each pair of input and
output heuristics with mixed input.

Factor SS D.F. MSS F Sig. Power

αi 2393189.684 2 196594.842 1842,204 0.000 1.000

βj 100285.913 3 33428.638 313,245 0.000 1.000

γk 207097,324 5 41419.465 388.124 0.000 1.000

πl 370667.639 4 92666.910 868.341 0.000 1.000

(αγ)ik 786379.369 10 78637.937 736.881 0.000 1.000

(απ)il 341176.404 8 42647.051 399.627 0.000 1.000

(γπ)kl 381931.848 20 19096.592 178.946 0.000 1.000

(αγπ)ikl 682352.809 40 17058.820 159.851 0.000 1.000

R2 = 0.947 σ = 10.33 CV = 12.36%

Table 5.10: Summary of the model with all factors and interactions of first and
second order of factors α, γ and π and mixed imbalanced input.

5.2.6 Mixed imbalanced

With the mixed imbalanced input, the number of runs generated strongly de-
pends on the levels chosen for each factor of the configuration of 2WRS, as it
happens with the mixed balanced input dataset.

With this input dataset, we found that it is necessary to have second order
interactions in order to have reasonably good models. A model with all factors
and interactions of first and second order showed that interactions that involve
the factor β are much less significant, so these interactions are removed in order
to have a simpler model. Table 5.10 summarizes this simpler model. This model
has a high coefficient of variability, 12.36%.

As with the mixed balanced input, we construct another model applying
WLS instead of MLS in oder to improve the model. Figure 5.9 shows that the
variance for the number of runs is not constant for every level of the factor
β, the size of the buffers. As with mixed balanced input, we define σi as the
variance of the number of runs restricted to the i-th level of factor β, as shown

54 CHAPTER 5. ANALYSIS

Buffer size

3210

V
a

r
ia

n
c

e
 o

f
r
u

n
s

3.000,000

2.000,000

1.000,000

0,000

Figure 5.9: Variance of the number of runs generated as function of buffer size
(factor β) for mixed imbalanced input.

Factor SS D.F. MSS F Sig. Power

αi 208.897 2 104.448 1778.920 0.000 1.000

βj 43.597 3 14.532 247.507 0.000 1.000

γk 113.381 5 22.676 386.211 0.000 1.000

πl 204.340 4 51.085 870.058 0.000 1.000

(αγ)ik 417.793 10 41.779 711.568 0.000 1.000

(απ)il 180.412 8 22.552 384.088 0.000 1.000

(γπ)kl 210.125 20 10.506 178.938 0.000 1.000

(αγπ)ikl 360.825 40 9.021 153.635 0.000 1.000

R2 = 0.946 σ = 0.24 CV = 0.29%

Table 5.11: Summary of the model with all factors and interactions of first and
second order of factors α, γ and π and mixed imbalanced input using WLS.

in Figure 5.9.
Table 5.11 summarizes the model using WLS. The value of R2 is as good as

with the model in Table 5.10, but the coefficient of variability is much better,
0.29%. Figure 5.10 shows the histogram of the residuals of this model. There is
a bar centered at nine. This bar corresponds to two specific configurations with
a high error, meaning that the model is not able to accurately predict the result
for them. These two configurations use 0.02% of the memory for buffers. Having
very small buffers is similar to having no buffers, but sometimes the algorithm
is capable of profiting from the existence of the buffers, albeit very small. Thus,
similar configurations having small buffers may perform very differently. We
cannot draw any conclusions from the model about these two configurations,
so they are not considered when finding optimal configurations. This is not a
problem because the performance of these configurations is bad.

The most important factor is α, the buffer setup. The best average of the
number of runs generated corresponds to the level where both buffers are used.

5.2. RUN LENGTH ANALYSIS 55

Standardized residual

10,005,000,00-5,00-10,00

F
re

q
u

e
n

c
y

1.000

800

600

400

200

0

Figure 5.10: Histograms of the residuals of the model in Table 5.11.

Buffer setup

210

M
e
a
n

 o
f

ru
n

s

120

100

80

60

40

20

0

Figure 5.11: Mean of the number of runs generated as a function of buffer setup
for mixed imbalanced input.

The analysis shows that there is a statistically significant difference between
these value and the values corresponding to using only the input or the victim
buffer. These values are depicted in Figure 5.11.

For the size of the buffers, βj , the best results correspond to using 0.2 and
2% of the memory for them, and this result is better than the one obtained if
using 0.02 or 20% of the memory. However, the test does not reject the null
hypothesis that the mean of the results obtained when using 0.2 and 2% of
memory for buffers are equal.

The input heuristics that achieve the beast average number of runs are Al-
ternate (γ1) and Useful (γ4). The tests confirm that these two levels are statis-
tically different from all the others, but are not able to confirm that these two
heuristics are different. However, when looking at the results for the interac-
tion between α and γ, the buffer setup and the input heuristic used, the best
configurations are the Mean and Median heuristics when using both buffers.
The tests show that there is statistically significant evidence that these two
combinations, (αγ)12 and (αγ)13, perform better than any other combination
for this interaction. Again, the tests do not reject the null hypothesis that the

56 CHAPTER 5. ANALYSIS

Input heuristic

543210

M
e

a
n

 r
u

n
s

200

150

100

50

0

2

1

0

Buffer setup

Figure 5.12: Mean of the number of runs generated as a function of input
heuristic for each buffer setup for mixed imbalanced input.

(αγπ)120 (αγπ)121 (αγπ)130 (αγπ)131

(αγπ)120 - 0.937 1.000 0.937

(αγπ)121 0.937 - 0.937 1.000

(αγπ)130 1.000 0.937 - 0.937

(αγπ)131 0.937 1.000 0.937 -

Table 5.12: Significance of the pairwise comparison of the best levels of the
interaction between buffer setup, input and output heuristics. Significance level
is 0.05.

average number of runs generated by these two combinations is equal. The fact
that this interaction is significant is interpreted means that some heuristics take
advantage of the presence of the buffers. Figure 5.12 represents the mean of the
number of runs generated as a function of input heuristic for each buffer setup.
In the figure we see that input heuristics π0, π1, π4 and π5 have the same average
performance for all buffer setups. However, The performance of input heuristics
π2 and π3 is very different for each buffer setup. If only the input buffer is used,
the performance is the worst, but if both buffers are present, the performance
of these heuristics increases significantly. This means that these two heuristics
profit from the presence of both buffers and increase the performance of 2WRS.

The best output heuristics are Random (π0), Alternate (π1) and Min distance
(γ4). The test does not reject the null hypothesis that the performance of each
of these three heuristics is equal when compared pairwise, but they are better
than any of the other two output heuristics. When looking at the interaction
between the buffer setup and the output heuristic, απ, the best level is Random
and Alternate with using both buffers, that is, (απ)01 and (απ)11. Again, the
ANOVA test finds no significant difference between these two levels.

5.3. CONCLUSIONS 57

Analyzing the interaction between the input and output heuristics, (γπ)kl,
shows that there is a large number of levels that achieve the best average number
of runs. Specifically using any input heuristic with the Random, Alternate or
Useful output heuristics. The interaction of second order between the buffer
setup, the input and the output heuristics, (αγπ)ikl, has four levels that achieve
the minimum average of number of runs generated. These levels correspond to
using both buffers, the Mean or Median input heuristic, and the Random or
Alternate output heuristics.

The best configurations generate only two runs, which correspond to an
average run length of 125 times the size of the memory. There are several of
these optimal configurations. These configuration correspond to those found
by the statistical analysis of the interaction between the buffer setup and the
input and output heuristics, using the Mean or Median input heuristics, and the
Random or Alternate output heuristics and using more than 0.2% of memory
for buffers.

5.3 Conclusions

In order to find a configuration that works well with all inputs, we interpret
the results obtained with the models for each input data distribution. The
performance of 2WRS for sorted, reverse sorted and alternating datasets does
not depend on the configuration. For random inputs, the performance only
depends on the percentage of memory dedicated to buffers: the less, the better.
The selected recommended configuration is:

• α: use both buffers. There are optimal configurations for each input
dataset using both buffers.

• β: use 2% of the memory for buffers. The mixed balanced and mixed
imbalanced datasets need this value to be high, but with random inputs,
the average length of the run diminishes by the same percentage. 2%
is chosen as a value which is not very large, so with random inputs the
performance is only slightly worse, but large enough so that performance
with mixed and mixed imbalanced is near optimal.

• γ: Mean is chosen as the input heuristic. Optimal configurations for
sorted, reverse sorted, alternating and random input do not depend on the
input heuristic. Optimal configurations for mixed and mixed imbalanced
inputs use Mean or Median.The complexity of calculating the new mean
is O(1), and the complexity is O(log n) for the median. Thus, we prefer
the Mean input heuristic.

• π: Random is selected as the output heuristic. Optimal configurations for
sorted, reverse sorted, alternating and random input do not depend on
the output heuristic. Optimal configurations for mixed balanced inputs
use Random or Balancing, while for mixed imbalanced inputs the opti-
mal configurations use Random or Alternate. Random is the only output
heuristic common to optimal configurations of all input datasets. We note
that no output heuristic is able to outperform Random, and we consider
it to be the simplest output heuristic.

58 CHAPTER 5. ANALYSIS

Input RS
2WRS 2WRS 2WRS
cfg 1 cfg 2 cfg 3

Sorted inf inf inf inf

Reverse sorted 1.0 inf inf inf

Alternating 1.94 50 50 50

Random 2.0 2.0 1.6 1.96

Mixed balanced 2.0 1.2 125 63

Mixed imbalanced 2.0 1.2 125 63

Table 5.13: Average run length relative to memory size. All three 2WRS con-
figurations use the Mean input heuristic and the Random output heuristic. The
first configuration sets the buffer size to 0.02% and allocates the input buffer.
The second and third configurations use both buffers with size 20% and 2%
respectively.

In Table 5.13, we have summarized the average run length for all the input
sets. In this table, the run length of RS is compared to the best three parame-
terizations of 2WRS. Two of the 2WRS configurations minimize the number of
runs generated for the mixed and random datasets, and the third configuration
works reasonably well for all inputs. This last configuration is the one used in
all the experiments in Chapter 6.

All in all, the run length analysis concludes that 2WRS creates runs of a
length at least equal to RS or better. 2WRS is able to capture partially sorted
data such as those in the alternating and mixed datasets, and is optimal with
totally sorted data either increasingly or decreasingly.

Chapter 6

Time Performance Analysis

In this section, we test experimentally the performance of 2WRS with respect
to RS. In the experiments, we measure the time to generate the runs, as well
as the subsequent merge phase. The input datasets are generated following the
random, mixed, alternating and decreasing patterns and the sorting time for
each strategy is measured. With sorted inputs both algorithms are equivalent
so no results are shown for that dataset.

6.1 Experimental setup

All the 2WRS configurations used in the experiments analyzed in this chapter
use the Mean input heuristic, since this combination generates longer runs over-
all for all the inputs analyzed as we have seen in Chapter 5. According to the
results presented in that chapter, a large buffer benefits mixed datasets, and
a tiny buffer benefits random inputs. Therefore, the available memory for the
buffers is set to an intermediate value, 2%.

We perform two experiments varying the input length and the memory allo-
cated to the sorting algorithm. In the first experiment, the input is fixed to 1GB
and the memory varies from 1k to 1M. Therefore, these tests aim at systems
with large inputs (between 3 and 6 orders of magnitude larger) with respect to
the memory available. In the second experiment, the memory is fixed to 10k
and the input varies from 100MB to 1GB. The fan-in is set to 10 in accordance
to 6.1.1.

Setup: We executed the algorithms in a computer equipped with an Intel Core
2 Duo processor running at 2.40GHz. Each core has 4KB of L2 cache memory
and the system has a total of 2GB of RAM. The hard disk is a SATA drive with
a capacity of 60GB. The OS of the system is Debian GNU/Linux. Given that
we want to limit the available memory dedicated to sorting, all files are opened
using direct I/O, which bypasses the operating system cache.

6.1.1 Fan in Analysis

The merge phase is computed as a tree of run merges. Depending on the num-
ber of files merged simultaneously (i.e. the fan in), the performance of the
algorithm varies. In this experiment, we measure the fan in that achieves the

59

60 CHAPTER 6. TIME PERFORMANCE ANALYSIS

 50

 75

 100

 125

 150

 0 2 4 6 8 10 12 14 16 18

m
in

ut
es

fan in

merge time

Figure 6.1: Merge time for different values of fan-in.

best performance in the computer used to run the experiments. We generate
400 files, each one of size 16MB, containing integers already sorted following a
uniform distribution (i.e. 400 runs), and we merge them. This experiment is
independent of the algorithm that generates the runs, and thus is valid for RS
and 2WRS.

The fan in is a compromise between two characteristics: (a) the smaller the
fan in, the more sequential is the access to the files from disk, but (b) the larger
the fan in, the less merge operations are required to end the task.

We observe this tradeoff between the two benefits in Figure 6.1. If the fan in
is too small, the algorithm takes more time because it must perform more merge
steps. However, if the fan in is too large, the head of the disk performs more
seeks and the bandwidth obtained from the disk is smaller. In this experiment,
the minimum time is observed for a fan in 10, which means that in each merge
step 10 different files are simultaneously merged. That is, during the merge
phase, we perform a 10-way merge as explained in Chapter 2.

6.1.2 Storing decreasing records

Due to the way 2WRS works, it generates two streams of sorted records and
two streams of reverse sorted records, as detailed in Chapter 4. The latter need
to be stored in disk already sorted in order to allow the merge phase to read
files sequentially. It is possible to store these stream in disk already sorted, so
no modification to the merge phase is needed, as all files read by the merge
phase contain records sorted in the order needed. Appendix A.2 details how
these decreasing streams are stored in disk files.

6.2 Random

In Figure 6.2, we plot the performance with respect to the memory buffer size.
The time spent generating the runs is detailed with empty circles and squares
for RS and 2WRS, respectively, and the total time needed to sort the records is
depicted with solid circles and squares. The same applies to the rest of the plots
in this chapter. We observe that the total time needed by the two algorithms is

6.3. MIXED 61

 1

 2.5

 5

 10

 1 10 100 1000

m
in

ut
es

allocated memory (k)

RS run
RS total

2WRS run
2WRS total

Figure 6.2: Run generation and total sorting times for random input as a func-
tion of available memory.

 0.1

 0.25

 0.5

 1

 2.5

 5

 10

 100 250 500 1000

m
in

ut
es

input size (Mb)

RS run
RS total

2WRS run
2WRS total

Figure 6.3: Run generation and total sorting times for random input as a func-
tion of input size.

very similar. This is due to the fact that it is not possible to predict the behavior
of random input data. 2WRS has slightly worse performance during the run
building phase for some configurations because the logic of 2WRS is slightly
more complex than for RS, due to the two heaps and the multiple streams.
However, the difference between both algorithms is tiny, and thus the use of
either RS or 2WRS is equivalent for random inputs.

We plot the scalability of the algorithms with respect to the input length in
Figure 6.3. Here, we observe a similar pattern to that described for the previous
plot, where both algorithms consume a similar time. Furthermore, we observe
that both algorithms scale identically when the input size grows.

62 CHAPTER 6. TIME PERFORMANCE ANALYSIS

 1

 2.5

 5

 10

 25

 1 10 100 1000

m
in

ut
es

allocated memory (k)

RS run
RS total

2WRS run
2WRS total

Figure 6.4: Run generation and total sorting times for mixed input as a function
of available memory.

 0.1

 0.25

 0.5

 1

 2.5

 5

 10

 100 250 500 1000

m
in

ut
es

input size (Mb)

RS run
RS total

2WRS run
2WRS total

Figure 6.5: Run generation and total sorting times for mixed input as a function
of input size.

6.3 Mixed

In the run length section, we found that 2WRS creates runs significantly larger
than RS for mixed datasets. Figure 6.4 confirms it, because independently of
the memory size, 2WRS is approximately three times faster than RS. This is
because 2WRS generates less runs for the mixed dataset, and so the merge
phase is much faster than with RS. We also see that, as the amount of allocated
memory increases, both algorithms need less time to sort the data, since the
runs generated are longer, and thus less merge phases are needed.

In Figure 6.5, we represent the scalability of both algorithms with the input.
The advantage of 2WRS over RS for mixed data is sustained as the input data
grows, and for all input sizes an approximate speedup of 3 is maintained. We
note that for this dataset even the run generation of 2WRS is faster. This is
because the heaps are not used and most of the computational time is spent
sorting the victim buffer. Since the victim buffer uses a standard library sort,

6.4. ALTERNATING 63

 1

 2.5

 5

 7.5

 10

 1 2 5 10 25 50 100 200 500

m
in

ut
es

number of sorted sections

RS run
RS total

2WRS run
2WRS total

Figure 6.6: Run generation and total sorting times for alternating input as a
function of the number of sorted and reverse sorted sections.

which is optimized for efficient in memory sorting, it is faster than RS that
applies a heapsort.

6.4 Alternating

The complexity to sort the alternating dataset is dependent on the number of
increasing and decreasing intervals for a fixed input size. If there are very few
intervals, the dataset is similar to the sorted dataset, but if there are many
intervals then it becomes closer to the random dataset. In this experiment, we
fix the memory allocated to the algorithms to 10k and the input size to 1GB,
and we vary the number of increasing and decreasing sections. In Figure 6.6,
we depict the sorting time for both algorithms.

For a small number of sorted sections, 2WRS performs much better than RS,
achieving up to an approximate speedup of 3. We observe that although the run
phase takes the same time for both algorithms, the merge phase is significantly
shorter for 2WRS because of the fewer number of runs. 2WRS is able to include
the sections sorted in a single run in reverse order, whereas RS creates multiple
runs for these sections. As the number of peaks increases, the sorted sections are
shorter. Then, both algorithms asymptotically tend to need the same amount of
time for sorting the data, although 2WRS still performs better. In the extreme
case, if the number of peaks tends to infinite, the dataset would resemble a
random input and both algorithms would spend the same execution time.

6.5 Reverse Sorted

In Figure 6.7, we plot the time spent by both algorithms to order reverse sorted
data, as the size of the input grows. We observe that the run generation time is
similar for both algorithms, but overall 2WRS gets a better performance than
RS for all input sizes. This is because the run generation phase of 2WRS needs
the same time as the same phase of RS but generates more runs, and the merge

64 CHAPTER 6. TIME PERFORMANCE ANALYSIS

 0.1

 0.25

 0.5

 1

 2.5

 5

 10

 25

 100 250 500 1000

m
in

ut
es

input size (Mb)

RS run
RS total

2WRS run
2WRS total

Figure 6.7: Run generation and total sorting times for reverse sorted input as
a function of input size.

phase that is much faster when using 2WRS because it has to merge less runs
than RS.

With this input data, replacement selection generates runs of length equal
to the size of the memory, which is the worst possible performance for RS in
terms of run length. 2WRS generates a unique run containing all records, as
with sorted input. The result is that the merge phase is immediate with 2WRS,
and much faster to finish.

The scalability of both algorithms is similar, showing parallel trends, that
indicate a constant speedup, which is in this case 2.5.

6.6 Conclusions

In this chapter we found that the optimal fan-in of the merge phase in the
machine used to execute the algorithms has a value of 10, independent of the
algorithm used in the run generation phase. The performance of each value of
the fan-in is depicted in Figure 6.1.

From the experiments performed we conclude that 2WRS works as well as RS
with random input, as seen in Figures 6.2 and 6.3. With mixed input, Figures 6.4
and 6.5 show that 2WRS is about three times faster than RS. With alternating
input, the performance of 2WRS depends on the number of alternating sections,
as Figure 6.6 shows. When this number is low, 2WRS is up to three times faster
than RS, and the performance decreases as the number of alternating sections
increases, approaching the performance of RS. When the input is sorted in
reverse order, we found that 2WRS is 2.5 times faster than RS, as depicted in
Figure 6.7.

Chapter 7

Summary, Conclusions and
Future Work

This document presents a new external sorting algorithm named two-way re-
placement selection. External sorting refers to the problem of sorting amounts
of data large enough so that do not fit into the main memory of the computing
device used to sort it. Therefore, external sorting algorithms are forced to used
storage devices, usually hard disks, that have slower access times than internal
memory.

In Chapter 3, we thoroughly present one of the most widely used external
sorting algorithms, replacement selection. Replacement selection stores records
being sorted in a heap. At each step the smallest record in the heap is output
and another record is read from the input and inserted into the heap. If the
new record is smaller than the last output record, it cannot be used as part of
the current run and is marked as belonging to the next run. The generation of
a run finishes when all records in memory are marked as belonging to the next
run.

We proposed a mathematical model of RS in the form of a system of differ-
ential equations. With the aid of this model we proved that there is a stable
situation when the input data follows a uniform random distribution, corre-
sponding to a periodic solution of this system. The model confirms that when
starting with the memory filled with uniformly distributed data, the solution
approaches the previous stable solution as the time increases.

Replacement selection has an important drawback: when the input is sorted
it generates only one run, but if the input is sorted in reverse order the perfor-
mance is the worst, generating runs with length equal to the available memory.
In order to solve this, we introduce two-way replacement selection in Chapter 4.
This algorithm uses two heaps instead of one. This second heap solves the prob-
lem of replacement selection: 2WRS generates only one run when the input is
sorted as well as when it is sorted in reverse order.

2WRS also has an input and a victim buffer, and an input and an output
heuristic. The input buffer stored records from the input in the same order as
they are read. The contents of this buffer are used by the input heuristic to
decide which of the two heaps stores each input record when it can be stored
in both. The output heuristic choses at each step from which heap is the next

65

66 CHAPTER 7. SUMMARY, CONCLUSIONS AND FUTURE WORK

output record removed. The victim buffer stores records that can not be stored
by either heap as part of the current run but belong to a specific range of values
which can be part of the current run.

In Chapter 5, our formal analysis proves that 2WRS is able to generate
runs at least as large as the runs generated by RS. We also proved that with
structured input distributions, 2WRS generates runs of a length much larger
than that of the runs generated by RS.

We performed experiments with six different input distributions: sorted,
reverse sorted, alternating, random, mixed balanced and mixed imbalanced.
These basic input distributions are analyzed as the basic building blocks of
more complicated real distributions. For example, a table in a database with
two columns A and B which have anticorrelated distributions, results in a reverse
sorted input when sorting both columns by B. Also, if two columns store the flat
and door numbers of addresses sorted by flat number and then by door number,
the input distribution when sorting all data by door number is a concatenation
of sorted inputs.

Aside from the input data distribution, the 2WRS algorithm can be parametrized
to adapt to different input distributions. The four parameters are the buffer
setup, the percentage of memory used by the buffers and which input and out-
put heuristics are used. We executed each configuration of 2WRS with each
input data distribution and analyzed statistical models of 2WRS from the ex-
periments. Statistical analysis allows studying heuristics that are difficult to
analyze formally, and allows analyzing configurations of the algorithm which
are also difficult to formalize. With the aid of the statistical analysis we found
optimal configurations for each input dataset. We also find a configuration that
is not optimal but the performance is very good for all input datasets: using
both buffers, Mean as the input heuristic, Random as the output heuristic, and
2% of the memory for buffers.

Regarding the individual analysis of the optimal configuration for each in-
put distribution, we found that for the sorted, reverse sorted and alternating
input datasets, the number of runs generated is independent of the 2WRS con-
figuration. For the random input distribution, the number of runs generated
depends only on the percentage of memory reserved for the buffers, the lower
the better. We also found a configuration that is optimal for the mixed balanced
and mixed imbalanced input datasets: using both buffers, Mean as the input
heuristic, Random as the output heuristic, and 20% of the memory for buffers.

Chapter 6 uses the recommended configuration of 2WRS and compares the
time performance of RS and 2WRS for different inputs, concluding that 2WRS
performs similarly to RS with random input, and better with structured inputs,
achieving speedups between 2.5 and 3.0.

We conclude that the addition of another heap along with the input and
victim buffers consistently improves the performance of replacement selection,
both in terms of number of runs generated and total time needed to sort data.
This improvement is especially significant when the input is sorted in reverse
order or when it is a combination of reverse sorted data with other distributions,
such as the alternating and the mixed input datasets.

In Section 3.7 we present some modifications and improvements of replace-
ment selection that have been proposed over the years. These modifications,
such as the compressing of records or the new reading strategy can be readily
applied to 2WRS in order to further improve its performance.

7.1. FUTURE WORK 67

2WRS may be used in any application requiring external sorting, and partic-
ularly everywhere where RS is currently used. The most prominent application
of external sorting is database management systems. Databases usually use
several processes to perform concurrent operations. As a result, each of these
processes operate with a low amount of memory. Also, several operations that
are usually performed in databases require sorting of data. For example, the re-
moval of duplicate entries, joining two or more tables, or intersections of tables.
With our proposals, these operations can be performed in less than a third of
the time that replacement selection needs.

7.1 Future work

There are two paths which can be explored to improve two-way replacement
selection, one being theoretical and the other one experimental.

It would be interesting to obtain analytical solutions to the system of differ-
ential equations presented in Section 3.6 for other input distributions, and to
find general analytic solutions, if possible.

Mathematical models are interesting because they are a tool used to find and
prove properties of the algorithm. For example, they can be used to test the
suitability of 2WRS for a task that knows the input distributions. In our case,
there is the possibility to prove of the results without finding specific solutions to
the system of differential equations. For example, finding bounds to the length
of the runs for certain families of distributions. The run length is the path
integral of m(x, t) along the path defined by (p(t), t). If this value is common
to several solutions, it may not be necessary to find m(x, t) or p(t) explicitly for
all initial solutions in order to compute the value of this integral.

Experimentally, it is interesting to find new heuristics that can improve per-
formance of 2WRS, both with general and with specific input distributions. If
the input distribution is unknown, an adaptive heuristic that tries to determine
the distribution that the input data is following and adapts the decisions accord-
ingly may improve significantly the average run length. Also, this heuristic may
adjust itself according to the changes detected on the input data distribution.
We note that this heuristic could take advantage of the model that we present
in this project in order to switch dynamically its behavior.

From a practical perspective, the results derived from the work can be readily
applied to autonomic computing procedures. Autonomic computing refers to
those systems that are able to monitor the state of the system and react to the
changes in order to improve the performance. This type of systems are used by
databases that use query optimizers to find the best execution plan for a query.
In our case, the query optimizer knows the distribution of the data at certain
intermediate nodes of the execution tree, and can fix the parameters of 2WRS
to minimize the execution time of the sorting processes involving those nodes.

68 CHAPTER 7. SUMMARY, CONCLUSIONS AND FUTURE WORK

Bibliography

[1] B. Bollobás. Modern graph theory. Springer Verlag, 1998.

[2] RL Gilstad. Polyphase merge sorting: an advanced technique. AFIPS Joint
Computer Conferences, pages 143–148, 1960.

[3] M. Goetz. Internal and tape sorting using the replacement-selection tech-
nique. Communications of the ACM, 6(5):201–206, 1963.

[4] G. Graefe. Implementing sorting in database systems. ACM Computing
Surveys (CSUR), 38(3), 2006.

[5] CAR Hoare. Quicksort. The Computer Journal, 5(1):10, 1962.

[6] D. Knuth. The Art of Computer Programming, volume 3 Sorting and
Searching. Addison-Wesley, 2nd edition, 1998.

[7] I. Koltsidas, H. Müller, and S.D. Viglas. Sorting hierarchical data in exter-
nal memory for archiving. Proceedings of the VLDB Endowment archive,
1(1):1205–1216, 2008.

[8] J. D. Lambert. Numerical methods for ordinary differential systems: the
initial value problem. John Wiley & Sons, Inc., New York, NY, USA, 1991.

[9] P. Larson and G. Graefe. Memory management during Run Generation in
external Sorting. In SIGMOD, pages 472–483. ACM, 1998.

[10] P.A. Larson. External sorting: run formation revisited. IEEE TKDE,
15(4):961–972, 2003.

[11] D. Mongomery. Design and Analysis of Experiments. Wiley, 5th edition
edition, 2000.

[12] T.K. Moon. Error correction coding: mathematical methods and algorithms.
Wiley-Blackwell, 2005.

[13] B. Salzberg. Merging sorted runs using large main memory. Acta Infor-
matica, 27(3):195–215, 1989.

[14] J.S. Vitter. Algorithms and data structures for external memory. Founda-
tions and Trends R⃝ in Theoretical Computer Science, 2(4):305–474, 2008.

[15] S.B. Wicker and V.K. Bhargava. Reed-Solomon codes and their applica-
tions. IEEE, 1999.

69

70 BIBLIOGRAPHY

[16] J. Yiannis and J. Zobel. Compression techniques for fast external sorting.
The VLDB Journal, 16(2):269–291, 2007.

[17] W. Zhang and P. Larson. Dynamic memory adjustment for external merge-
sort. In VLDB, pages 376–385, 1997.

[18] L. Zheng and P. Larson. Speeding up external mergesort. IEEE TKDE,
8(2):322, 1996.

Appendix A

Files storing decreasing
records

As seen in Chapter 4, 2WRS stores streams of records in decreasing order. That
means that if records need to be sorted in the usual order, from smallest to
greatest, two of the streams generated by 2WRS will have records ordered from
greatest to smallest. For performance reasons, reading backwards the stream is
not convenient because the hardware of disks is optimized to read data forward.
On the other hand, the impact of writing backwards is less severe because the
operating system uses the disk cache and does not need to flush synchronizedly
the write operations.

In order to allow the merge phase to read all streams forward, streams with
records in decreasing order are written to disk in a special way. In this appendix,
we describe this strategy along with the internal workings of hard disks and files.

A.1 Hard disks

A hard disk drive, usually called hard disk, hard drive or HDD, is a non-volatile
storage device. This means that data stored in a hard disk will not be erased
if the power supply to the drive is interrupted. In a hard disk, data is digitally
encoded in rotating rigid plates with magnetic surfaces. These plates rotate at
a speed typically between 5400 and 15000 rpm. The data stored in a hard disk
is encoded with an error correcting code, usually a Reed-Solomon code [15] or
a low-density parity-check code (LDPC) [12], depending on the manufacturer.

Each of the platters of a hard disk is separated in concentric circular strips,
called tracks. Each track is divided in smaller parts called sectors. This organi-
zation of platters is shown in Figure A.1. Each sector of a hard disk can store
the same number of bits, most commonly 512. A sector is the smallest storage
unit in a hard disk. This means that when reading (or writing) data from (to)
a hard disk, the data read (or written) must be a multiple of the sector size.

In order to provide access to the hard disk, operating systems provide file
systems. A file system is a set of data structures and an API1 for applications

1Application Programming Interface, an interface implemented by software to be able to
interact with hard disks

71

72 APPENDIX A. FILES STORING DECREASING RECORDS

track

sector

Figure A.1: Organization of a hard disk platter.

to store, organize, manipulate and retrieve data in a storage device. A page is
the minimum amount of data that the file system can read or write. The size
of a page depends on the file system being used, and when using hard disks,
it is an integer multiple of the sector size. The default file system in Linux-
based operating system, like the Debian GNU/Linux distribution used in our
experiments, is the third extended file system, or ext3. This file system defines
the default page size to be 4 kbytes.

When the hard disk need to read a page, it does so following three steps:

1. The read/write head of the disk is moved to the corresponding track.

2. The head waits for the sector to pass below it.

3. The head reads the sector.

If the operating system wants to read several contiguous sectors, Steps 1
and 2 are performed only once, because sequential sector can be read as they
pass below the head. However, if the pages need to be read in reverse order,
the head need to wait for the platter to do a full revolution until the previous
sector passes under it. Thus, the throughput of the hard disk is maximized
when performing sequential readings.

A.2 File format specification

In order to store the data supplied by a stream while reversing the order of the
records, a file is created with a fixed size of k pages. The data records read from
the stream are written to the file starting at the end, that is, the last position of
the last page, and continuing backwards until the first page is reached. When
the file is full, a new one is created in the same manner.

In order to minimize the number of input/output operations with the hard
disk, a special output buffer is used with each file. This buffer has the same
size as a disk page. When a record from a stream is output, it is written to this
buffer instead immediately to the file. When the buffer is full, its contents are
flushed to the corresponding page of the file. The memory space needed to store
the buffer is taken from the memory dedicated to the 2WRS algorithm, but the
performance of the algorithm is not affected because, typically, the amount of
memory available to a sorting algorithm is several orders of magnitude larger
than the size of a file page.

A.2. FILE FORMAT SPECIFICATION 73

The first page of each file does not contain any data coming from the stream.
Instead, it has a header with the following information:

• Number of files: the number of files that have been created to store all
records from the stream.

• Number of pages: the number k of pages that each file has.

• Starting page and position: the page and the position within that page
where the data begins. This should be page number two and first position
for all files except possibly the last one.

Only a small percentage of the first page is used, but if the value of k is
large, the amount of unused space is insignificant when compared to the total
file size.

In order to know the order in which the files have been created, we use
a naming system that assigns each file the same name followed by a different
number. With this naming system, it is possible to open directly any of the files
created to store the stream, and read the whole sequence in the desired order.

Once all the files have been created, the records can be read in non decreasing
order starting at the last file created and ending at the first one.

The value of k should be chosen large enough so that not a large number
of files are created, since closing and opening files adds an unnecessary time
overhead. But if the value of k is chosen to be very large, it is possible that
most runs fill only a small portion of the file, and lots of hard disk space will
be wasted containing huge temporary files. Thus, when deciding the value of k,
one must consider the number of records to be sorted, the expected run length,
and the hard disk space available. This value can also be adapted during the
execution of the 2WRS algorithm and it can change between runs. We use a
value of k = 1000 to ensure that few files are created each run, which corresponds
to 40MB files.

74 APPENDIX A. FILES STORING DECREASING RECORDS

Appendix B

ANOVA

This Appendix briefly summarizes the ANOVA techniques used in Chapter 5.
For a more extensive and comprehensive introduction to ANOVA, see [11].

The Analysis of Variance (ANOVA) is a collection of statistical models used
to analyze the effect of different factors in the variance of a result or measure,
called response variable. A factor is a categorical variable, that is, the values
that can be assigned to it are labels. For example, a rock can be categorized
as igneous, sedimentary or metamorphic. Each possible label is called level in
statistics. The ANOVA technique used with categorical variables is the equiva-
lent of linear regression used with continuous variables.

There are several types of ANOVA, depending on the experiment being
analyzed. We use the factorial ANOVA. In a factorial ANOVA, there are two
or more factors, each with its own levels. The experiment is repeated for all the
combinations of levels multiple times, generating a fixed number of observations
for each configuration. This type of experiment is known as full crossed factorial
experiment.

ANOVA partitions the variance observed in the response variable into com-
ponents due to the different factors, and estimates the contribution of each level
of each factor, indicating which are significant. The generated model allows
the experimenter to draw conclusions on the influence of each factor and its
interactions in the system outcome.

B.1 Factors

In statistics, a factor is a categorical variable. A level is each of the values that a
factor can take. In ANOVA, the factors are the explanatory variables. The term
explanatory variable is preferred over independent variable to avoid confusion
with statistically independent variables. Likewise, the response variable is not
referred to as the dependent variable.

If the levels of a factor are fixed, they are considered constants, and the
factor is called a fixed effects factor. In contrast, if the levels of a factor are
selected at random, they are considered observations of a random variable and
the factor is called a random effects factor. Random effects factors are used
when the number of levels of a factors is too large to perform an experiment
for each level. In this case, the levels are selected following a uniform random

75

76 APPENDIX B. ANOVA

distribution.
A model where all factors are of the same type is called a fixed effects model,

if the factors are fixed effects factors, or a random effects model, if the factors are
random effects factors. A model that has both types of factors is called a mixed
effects model. All the models discussed in Chapter 5 are fixed effects models,
since we decide the levels of each factor. Fixed effects models are preferred
because they are more robust than random effects models.

Given two factors, A and B, they can be crossed or nested. The two factors
are crossed if every level of A occurs with every level of B in the experiment.
The factor A is nested within B when the levels of A are different for each
level of B. Given two crossed factors, it is possible to quantify the interaction
between them. Two factors interact when the effect of at least one level of A
on the response variable is dependent on at least a level of B. Note that it does
not make sense to talk about interactions between nested factors.

Two of the most commonly used ANOVA models are the one-way ANOVA,
where there is only one factor, and the n-way ANOVA, which is a generalization
he one-way ANOVA for multiple factors.

B.2 One-way ANOVA

The One-way ANOVA is the simplest of the ANOVA models. It is used when
there is only one factor, A with a different levels. The model is the following:

yij = µ + αi + ϵij

where 0 ≤ i < a and 0 ≤ j < n, n being the number of experiments performed
for each level, yij is the response variable for the j-th experiment when the
factor A takes the level αj , µ is the expected value of y if no information about
the level of the factor is known, αi is the effect of the i-th level of the factor A,
and ϵij is the error, and corresponds to the effect of the variables not included
in the model.

The parameters of the model are µ and αi, 1 ≤ i ≤ a. The objective is to
estimate the parameters and find an estimator for y, ŷi = µ̂ + α̂i, and thus be
able to predict the outcome of the system for any level of the factor.

The raw residuals are the estimated values of the errors,

ϵ̂ij = yij − ŷi = y − (µ̂ + α̂i)

In order to be able to compare the residuals of different models, the standardized
residuals are defined as the raw residuals divided by the square root of the
estimated variance:

ϵ̂std
ij =

ϵij√
σ̂2

The variance of the raw residuals is estimated using the following estimator:

σ̂2 =

∑a−1
i=0

∑n−1
j=0 (yij − ŷij)

2

N − a

The coefficient of determination, denoted by R2, is the proportion of vari-
ability in the explanatory variable that is accounted for in the model, and thus

B.3. HYPOTHESES 77

0 ≤ R2 ≤ 1. Usually, a model is considered good when this coefficient is greater
than 0.7, which means that more than 70% of the variability in the data is ex-
plained by the model. This coefficient is calculated using the following formula:

R2 =
n ·

∑a−1
i=0 (ȳi. − ȳ..)

2∑a−1
i=0

∑n−1
j=0 (yij − ȳi.)

Another important coefficient of the model is the coefficient of variation,
CV, that is a normalized measure of the dispersion of a random variable. It is
defined as the ratio of the standard deviation to the mean, and is usually given
as a percentage:

CV(%) = 100 · σ

µ

In the ANOVA model it is applied to the response variable, and calculated as

CV = 100 ·
√

σ̂2

µ̂

A good value of this coefficient is considered to be below 5%.
The ANOVA model tests if a factor contributes to the response variable. If

that is the case, the factor is said to be a significant factor, and otherwise, it is
immediately removed from the model. A factor is significant if the parameter of
any of its levels is proven to be statistically different from zero, that is, if αi ̸= 0
for any i. This is verified using an F-test to decide whether α̂i is statistically
different from zero.

Additionally, it is also possible to check if two levels of a significant factor
are equivalent, which means that their contribution to the outcome is not sta-
tistically different. This can be achieved with a Student’s t-test or a Tukey’s
test over the different levels of the factor.

B.3 Hypotheses

The ANOVA models assumes some hypotheses that must be met in order to
build a reliable model. There are three such hypotheses:

• Independence: the residuals must be statistically independent. If the resid-
uals are not statistically independent, it means that the model is biased
for certain configurations of factors and thus it is not reliable. This hy-
pothesis is verified plotting the standardized residuals as a function of the
response variable or the predicted values. If any pattern is observed, it
means that the residuals are not independent. Besides, the experiments
are performed in a way that ensures that observations constitute a real
sample of the response variable.

• Normality : the distribution of the residuals is normal. This is verified
plotting an histogram of the residuals and checking if they follow a bell
curve. On a fixed effects model, moderate departures from normality are
of little concern.

78 APPENDIX B. ANOVA

• Homoscedasticity (equality of variance): If the response variable is grouped
according to the levels of one factor, the variances of each group are all
equal. This is tested graphically plotting the response variable with re-
spect to each one of the factors, which shows that the variance is equal
for all levels of the factors.

Usually, the model is constructed and then the hypothesis are verified, vali-
dating the model.

These assumptions imply that the standardized residuals are independently,
identically and normally distributed in a fixed effects model, and follow a N(0, 1)
distribution.

B.4 Significance of a factor

A factor A is significant if at least one of its levels contributes to the response
variable, i.e., if there is at least one i such that αi ̸= 0. The significance of
a factor is verified using a statistical hypothesis test, concretely an F-test. A
hypothesis test has two hypotheses: the null hypothesis, H0, and the alternative
hypothesis, H1, which is the negation of H0 and the hypothesis one tries to
prove. Thus, in the case of the significance of a factor, the hypotheses are:

H0 : ∀i, αi = 0
H1 : ∃i, αi ̸= 0

Performing the hypothesis test consists on trying to reject the null hypoth-
esis. The null hypothesis is rejected when there is enough statistical evidence
that it is false. If a test fails to reject the null hypothesis it does not mean
that there is statistical evidence of its validity. In order to perform the test,
it is necessary to know the distribution that a particular statistic, called test
statistic follows when H0 is true.

The error of the first kind is defined as rejecting the null hypothesis when
it is true. When performing a hypothesis test, it is asked that the probabil-
ity of making an error of the first kind is less than a parameter, called sig-
nificance level, and denoted usually by the letter α. This parameter verifies
P (reject H0|H0 is valid) ≤ α.

An observation of the test statistic is obtained from the data obtained during
the experiment. If the observation falls within the central part containing (1 −
α)% of the distribution, the null hypothesis is accepted, else, it is rejected.

The error of the second kind is defined as accepting the null hypothesis when
it is false. The power of a test is the probability of rejecting the null hypothesis
when it is false, which is the same as the probability of not making an error of
the second kind. Of all the tests available, the one with the highest power is
preferred.

In order to decide if the null hypothesis is accepted or rejected, the variability
due to the factor A is compared with the residual variability. If these variabilities
are statistically different, we conclude that factor A is significant and the null
hypothesis is rejected.

The total variability is defined as the sum of squares of deviations, usually
named total sum of squares and denoted by SST . This sum of squares is de-
composed in two components, the sum of squares associated to the factor A,

B.5. PARAMETER ESTIMATION 79

SSA, and the sum of squares not explained by the model and associated to the
error, SSE , as follows:

SST =
a−1∑
i=0

n−1∑
j=0

(yij − ȳ..)
2 = n·

a−1∑
i=0

(ȳi. − ȳ..)
2+

a−1∑
j=0

n−1∑
i=0

(yij − ȳi.)
2 = SSa+SSE

These two components can be compared if they are divided by their degrees
of freedom, which are a− 1 for SSA and N − a for SSE . Thus, the mean sums
of squares (MSS) are defined as

MSSA =
SSA

a − 1

MSSE =
SSE

N − a

Due to the hypotheses of the ANOVA model, and in particular due to the
normality hypothesis, MSSE is a sum of squares of standardized independent
normal variables, and thus MSSE follows a χ2 distribution with N − a degrees
of freedom, MSSE ∼ χ2

N−a. Moreover, if H0 is true, MSSA is also the sum
of standardized independent normal variables, and thus MSSA follows a χ2

distribution with a − 1 degrees of freedom, MSSA ∼ χ2
a−1. Also, the quotient

of MSSA and MSSE follows a Fisher-Snedecor distribution,

F0 =
MSSA

MSSE
∼ Fa−1,N−a

We define Fα,a−1,N−a as the value for with the distribution Fa−1,N−a leaves
(1 − α)% of the observations to the left, that is,

Fα,a−1,N−a∫
0

Fa−1,N−a(k)dk = 1 − α

Thus, if the calculated value F0 is greater than Fα,a−1,N−a the null hypoth-
esis is rejected and the factor A is considered to be significant.

B.5 Parameter estimation

The one-way ANOVA mode, yij = µ+αi + ϵij , has a+1 parameter to estimate:
µ, αi, 0 ≤ i < a. The µ term is common for all configurations and corresponds
to the expected outcome of the system if no information about the configuration
is available. Thus, this term is the average of all observations µ = ȳ...

The rest of the parameter can be estimated using one of various techniques.
One of the most commonly used techniques is the Minimum Least Squares
(MLS), which minimizes the sum of the squares of the error terms, which is

a−1∑
i=0

n−1∑
j=0

ϵ2ij =
a−1∑
i=0

n−1∑
j=0

(yij − µ − αi)
2

The solutions to this optimization problem correspond to the solutions of a
system of linear equations. This system has one degree of freedom, so an addi-
tional equation, consistent with the system, is needed. Usually the constraint

80 APPENDIX B. ANOVA

∑
αi = 0 is added, which leads to the solution µ̂ = ȳ.., α̂i = ȳi. − ȳ... This

condition states that the deviations around the mean due to factor A add to
zero. Another possible condition, used by the SPSS software is to set one of
the parameters equal to zero. The specific choice of the additional constraint
is not important, because the fundamental values analyzed by ANOVA are the
differences among the levels of each factor, αi −αj . These values do not depend
on the added condition.

If the response variable has different variance when restricted to each level of
a factor, i.e., if the hypothesis of homoscedasticity does not hold for one factor, it
is possible to use the ANOVA analysis, using the Weighted Least Squares (WLS)
instead of the MLS. WLS weights each configuration so that configurations that
exhibit greater variance contribute less to the estimation of the parameters, and
vice versa. This is justified because observations with less variance are more
accurate. The function to be minimized when using WLS is

a−1∑
i=0

n−1∑
j=0

ϵ2ij · wi =
a−1∑
i=0

n−1∑
j=0

(yij − µ − αi)
2 · wi

where wi is defined as the inverse of the variance of the response variable for the
i-th level of the factor A, wi = 1/σ2

i . The method used to find the estimations
of the parameters is analogous to the one used in the MLS case.

B.6 N-way ANOVA

The n-way ANOVA is a generalization of the one-way ANOVA model, used when
there is more than one factor influencing the outcome of the experiment, as it
is usually the case. The n-way ANOVA model allows to estimate the influence
of each of the factors and the relation between them. This model also allows to
find a configuration that leads to an optimal value of the response variable.

An example of a complete model with three factors, A, B and C, with a, b
and c levels respectively, is:

yijkl = µ + αi + βj + γk + (αβ)ij + (αγ)ik + (βγ)jk + (αβγ)ijk + ϵijkl

where 1 ≤ i ≤ a, a ≤ j ≤ b, 1 ≤ k ≤ c and 1 ≤ l ≤ n. In ANOVA models
with more than one factor there is a new type of parameter, called interaction.
This new parameter corresponds to the joint effect on the response variable of
two or more factors. For example, (αβ)ij corresponds t the interaction between
the i-th level of the factor A and the j-th level of the factor B. An interaction
between two levels A and B indicates that the effects of the levels of A depend
on the levels of B. Interactions with more than two factors are usually avoided
in models because they are difficult to interpret.

The residuals in an n-way ANOVA model are defined analogously as they
are defined in a one-way ANOVA. The coefficients of determination and vari-
ation are also calculated for these models. The tests that check for statistical
significance of a factor are also generalized to work with n-way ANOVA models.
Factors and interactions that are not statistically significant are always removed
from the model. If the contribution to the response variable of a significant fac-
tor or interaction is small in comparison with other contributions, it is possible
to remove the term with a small influence from the model, if the model still

B.6. N-WAY ANOVA 81

verifies the assumptions and scores a good enough value of R2. This is done
because if two different models explain the data, the simplest one is preferred.
This is known as principle of parsimony.

82 APPENDIX B. ANOVA

Appendix C

Conference paper

As a result of this work, a research article has been written and submitted to
the 36th International Conference on Very Large Data Bases (VLDB2010), and
is pending approval at the time of writing. The VLBD conference is a top tier
conference, equivalent in impact and prestige to reputable journals. The full
article text is included in this appendix.

83

Twoway Replacement Selection

Xavier MartinezPalau, David DominguezSal, Josep Lluis LarribaPey
DAMAUPC

{xmartine,ddomings,larri}@ac.upc.edu

ABSTRACT
The performance of external sorting is highly dependant on
the length of the runs generated. One of the most commonly
used run generation strategies is Replacement Selection (RS)
because, on average, it generates runs that are twice the
size of the memory available. However, the length of the
runs generated by RS is downsized for data with certain
characteristics, like inputs sorted inversely with respect to
the desired output order.

The goal of this paper is to propose and analyze two-way
replacement selection (2WRS), which is a generalization of
RS obtained by implementing two heaps instead of the sin-
gle heap implemented by RS. The appropriate management
of these two heaps allows generating runs larger than the
memory available in a stable way, i.e. independent from the
characteristics of the datasets. Depending on the changing
characteristics of the input dataset, 2WRS assigns a new
data record to one or the other heap, and grows or shrinks
each heap, accommodating to the growing or decreasing ten-
dency of the dataset. On average, 2WRS creates runs of at
least the length generated by RS, and longer for datasets
that combine increasing and decreasing data subsets. We
tested both algorithms on large datasets with different char-
acteristics and 2WRS achieves speedups at least similar to
RS, and over 2.5 when RS fails to generate large runs.

1. INTRODUCTION
Sorting is in the heart of many high performance pro-

cesses [5]. Some of those processes require a sorted dataset
as their final output (e.g. sort names alphabetically) or as
a partial computational step (e.g. a sort merge-join). Since
datasets are typically large, the selection of a good out of
core sorting algorithm has an important impact on the per-
formance of the final application. This motivates that many
benchmarks emphasize a good performance of the out of
core sorting operation. For example, in the 80’s Anon et
al. proposed a 100MB sort benchmark, which focused on
the objective to sort the dataset in the minimum time pos-

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘10, September 1317, 2010, Singapore
Copyright 2010 VLDB Endowment, ACM 0000000000000/00/00.

sible[1]. Even though the computer growth has outdated
this particular benchmark, the sorting operation has been
popular as a benchmark along the years and it is still evalu-
ated nowadays, for instance, sorting up to 100 TB of data or
sorting the maximum number of records in one minute [9].

In the context of database management systems, the data
to be sorted is often generated by other operators in a strea-
med fashion at irregular moments of time. This is the case
for database workloads, where join operators keep generat-
ing tuples irregularly in time feeding sometimes a final sort
[4].

In addition, database management systems (DBMSs) as-
sign a memory quantum to each operation involved in a
query, limiting the amount of global memory that a sort op-
eration may use to process the whole dataset to be sorted.
This raises two more issues: first, sorting becomes frequently
out of core in DBMSs; and second, sorting must take advan-
tage of the limited memory assigned by the DBMS. Out of
core sorting implies that during the process, sorted runs are
generated and stored in disk. It is not until all the runs are
created, that they can be read again and merged to generate
the final sorted dataset [5].

In summary, three features are desirable for a external
sort operation in a DBMS: (a) it should be able to start
sorting data before all the input is generated; (b) it should
be efficient with already sorted data because a previous op-
eration may have already sorted or partially sorted the in-
coming data; and (c) the memory consumption should be
predictable.

Replacement Selection (RS) has played a prominent role
in these complex situations because it fulfills most of the
stated features. First, unlike other sorting methods, it is
able to sort data in a streamed fashion, using one heap to
perform the job. Second, it generates runs which double the
size of the memory available for random data, and infinite
runs for already sorted data. This reduces the number of
runs, allowing the merge process to reduce its fan in, and
the chances to perform multiple I/O passes during the merge
phase. Finally, although it is not the fastest in-memory
sorting strategy, it offers a good trade off for its value: it
generates smaller I/O by creating larger runs at the cost
of possibly more in-core computational effort, compared to
other faster in-core methods[3].

Replacement Selection, however, has one important draw-
back: it is not able to generate runs larger than the memory
available for inversely sorted input data. This creates un-
predictable situations and leads to low performance in unde-
sired cases. This paper solves this problem, proposing Two-

way Replacement Selection, a general strategy that allows
to obtain runs which are at least the size of those gener-
ated by RS and, in many cases, more than double the size
of the memory available for sorting no matter the dataset,
improving the good features mentioned above for RS.

Two-way replacement selection (2WRS) implements two
heaps that adapt to the data characteristics, one intends
to capture the growing values and the other one intends to
capture the decreasing values. The strategy is to place each
newly arrived record in the correct heap. But not only that,
the heaps grow or shrink depending on the nature of the
data. So, in case there are more growing than decreasing
data, it grows the growing data heap, and shrinks the de-
creasing data heap, and conversely. We set two heuristics,
random and the mean average of the input heap records, for
the decision of which heap should store the new record, and
grow or shrink.

We also study the effect of buffering before and after the
heaps without changing the total size of the memory used
for 2WRS. Our study shows that the use of buffers before
the insertion of data in the heaps, and the use of buffers after
a decision is taken to store a data record in disk, is benefi-
cial performance-wise. Also, we show that 2WRS scales for
growing datasets, and improves RS no matter the charac-
teristics of the dataset. The reason for the general improve-
ment of 2WRS is the larger runs generated, and the small
complexity added compared to RS.

The paper is organized as follows. In Section 2 we ex-
plain Replacement Selection, in Section 3 we introduce Two-
way Replacement Selection, in Section 4 we formally prove
the performance of 2WRS, in Section 5 we analyze the run
length obtained for different configurations of 2WRS, in Sec-
tion 6 we analyze the time performance of RS and 2WRS
with the best configuration obtained from the previous sec-
tion and in Section 7 we give an overview of the methods
used to improve external sorting and in particular the per-
formance of RS. Section 8 ends the paper with some conclu-
sions and future work.

2. REPLACEMENT SELECTION
Replacement Selection (RS) is an external sorting algo-

rithm introduced by Goetz in [2]. The objective of RS is
to sort a stream of records as they come (usually from sec-
ondary storage), producing another stream of released data
records called “run”, which is sorted. The algorithm al-
locates memory that works as an intermediate buffer and
stores a window of streamed data. This buffer is managed
as a heap: upon the arrival of a new record, RS releases the
first record in the sorting order, and stores the new record
in the heap in sorted order.

This strategy has an important drawback due to the lim-
ited memory in computers. For example, when sorting in as-
cending order, any new record introduced in the heap that is
smaller than the last flushed record to the stream of released
records cannot be included in the active run: it would not
be possible to place such record among the already flushed
records. These records are kept at the bottom of the heap,
marked as “next run” records, until they fill all the heap.
Note that those records preserve an order for the next run
but are smaller than all the values in the present run.

When the algorithm closes the current run, it starts a new
run which contains all the records that could not be included
in the closed run. This breaks the incoming flow of data into

input buffer

Top

Heap

Bottom

Heap

victim buffer

ouput stream 1

ouput stream 2

ouput stream 3

ouput stream 4

Figure 1: Functional diagram of 2WRS.

multiple runs that are merged in a final phase to create a
final single run.

The merge phase is strongly dependent on how many runs
have been generated before. Runs are stored sequentially
in disk, and in order to improve the merging speed it is
desirable to have the longest possible runs. Thus, the ideal
situation would be when a single run is generated, which,
for instance, occurs when the input is already sorted.

The theoretical analysis of RS found that, for input streams
following a uniform distribution, the average run length is
twice the size of the available memory [5]. However, for
some entries such as when the values of the record set are
sorted inversely, the runs are the same size of the available
memory, generating the largest amount of I/O possible for
the memory assigned.

The objective of this paper is to get the most out of RS,
i.e. generate runs above double the size of the memory avail-
able, no matter the incoming dataset characteristics. This
is achieved with two-way replacement selection which is ex-
plained below.

2.1 Pseudocode
Algorithm 1 shows the pseudocode for the main loop of

RS. In the first phase, method heap.fill loads the first records
from the input into the heap.

Then, the main loop is executed while the heap is not
empty. First, a record is output to make room for a new
one. This is done by method output. Next, a record is
read from the input. If the record is smaller than the last
output record, it is marked as belonging to the next run,
else it is marked as belonging to the current run. Next,
the top record of the heap is removed with heap.pop and
the record read from the input is inserted in the buffer with
heap.insert(current).

Finally, when the top record of the heap belongs to the
next run, i.e. it is too small to be part of the current run,
the current run ends. The process starts again, and a new
run is generated until the input is fully read.

3. TWOWAY REPLACEMENT SELECTION
Two-way replacement selection (2WRS) implements two

heaps that we call TopHeap and BottomHeap, instead of one
as in RS. The objective of the two heaps is that they coop-
erate to obtain longer runs: the TopHeap and BottomHeap
capture increasing and decreasing sequences of values re-
spectively. This architecture resembles two cooperating RS
algorithms working together, which output their result into
streams 1 and 4, as depicted in Figure 1. Therefore, stream 1
is a sequence of increasing values and stream 4 is a sequence
of decreasing values that do not overlap.

Algorithm 1 RS(heapSize)

Require: The maximum size of the heap heapSize.
Ensure: Each run is sorted.

1: let current a pair of integers containing a value for a
record and the run to which it belongs.

2: let heap a minheap, of maximum size heapSize.
3: let currentRun an integer.
4: let nextOutput an integer.
5: heap.fill(inputBuffer);
6: currentRun = 0;
7: while heap.size() > 0 do
8: nextOutput = heap.pop()
9: output(nextOutput);

10: //Read next value

11: if input.read(current.value) then
12: if current.value < nextOutput then
13: current.run = currentRun + 1;
14: else
15: current.run = currentRun;
16: end if
17: heap.insert(current);
18: end if
19: //Start next run?

20: if heap.top().run > currentRun then
21: currentRun = 1 + currentRun;
22: end if
23: end while

In order to decide which heap should be populated with
every new input record, we take a decision based on an in-
put buffer and a heuristic. The input buffer is an array of
records that acts as a regular I/O buffer, which loads data
items from disk and releases them like a FIFO. When a
new record has to be inserted in one of the heaps, 2WRS
chooses one of the two heaps at random, and the top record
is released to the corresponding stream. In an independent
decision, the heuristic samples the input buffer and selects
which heap, either the TopHeap or the BottomHeap, will
store the record chosen by the FIFO structure. If the heuris-
tic chooses the heap that released the top record, then the
two heaps preserve their size. Otherwise, one heap grows
and the other one shrinks.

We propose and compare the following two heuristics:

Random Every record is pushed into a heap selected at
random. With this heuristic, the expected size of the
heaps is the same.

Mean If the record to be pushed is larger than the mean
of the records in the buffer then it is inserted into
the TopHeap. Otherwise, it is inserted into the Bot-
tomHeap. This heuristic captures a rough approxima-
tion of the data distribution and balances the heaps
according to the distribution.

By the nature of streams 1 and 4, the smallest value in
the increasing stream and the largest value in the decreas-
ing stream, create a gap between them. If the input stream
contains values which are in between these two, it is possi-
ble to sort them and keep them in another sorted sequence.
We solve this by using the victim buffer and creating two
streams, numbers 2 and 3. So, the victim buffer will be

a sorted window of records between the smallest value in
the increasing stream (stream 1) and largest value in the
decreasing stream (stream 4). Whenever an input record
is between the largest and the smallest value in the victim
buffer, it is stored in the victim buffer. When the victim
buffer is full, it is sorted and flushed to streams 2 and 3.
The distribution of records between those streams is such
that maximizes the gap between the last records inserted
in those streams. This way, as shown in Figure 1, streams
2 and 3 will grow until the largest and smallest values in
the victim buffer do not fit any input record among them.
The initialization of the victim buffer is done when the Bot-
tomHeap and TopHeap are just filled at the beginning of
the algorithm, taking the top records of both heaps. An
example is given in Appendix A.

Among other situations, the use of streams 2 and 3 and the
victim buffer are very beneficial for convergent series. The
output streams 1 and 4 define an interval of values (those
which fall among both streams) that cannot be released in
the current run. Therefore, the use of the victim buffer
captures this trend.

When a record cannot be inserted in the TopHeap, Bot-
tomHeap or the victim buffer, the record is marked as be-
longing to the next run and it is inserted in the correspond-
ing heap with a special mark indicating that it belongs to the
next run, similarly to RS. The records marked as belonging
to the next run are considered to be larger (smaller) than
all the records belonging to the current run in the TopHeap
(BottomHeap).

When the available space for the heaps is full, the algo-
rithm removes one record at random from either the TopHeap
or the BottomHeap, and writes the record to stream 1 or 4,
respectively. This procedure does not affect the relative size
of the heaps, since on average each heap will be selected half
of the time. The process is iterated until no more records
can be removed from none of the heaps (because all the
records are marked as belonging to the next run) and then
the whole algorithm is restarted with a new run.

The algorithm creates its result in four different output
streams, as opposed to RS, which only uses one stream.
However, those four streams are consecutive and non over-
lapping among them: (1) streams 1 and 3 are sorted in as-
cending order, (2) streams 2 and 4 are sorted in descending
order; (3) any four records x, y, z, w from streams 1, 2, 3
and 4 respectively hold: x ≤ y ≤ z ≤ w. Therefore, it is
immediate to generate the final run as the sequence of the
data generated by streams 4, 3, 2 and 1 in this order.

2WRS behaves identically when the input is already sorted
as well as when it is sorted in reverse order because it takes
advantage of the TopHeap or the BottomHeap, respectively.
In both cases, the runs are of infinite size. Furthermore, the
presence of the victim buffer also allows 2WRS to gener-
ate runs of infinite size for convergent series, which contain
sequences of values that keep approximating. In summary,
2WRS is able to detect structured increasing or decreas-
ing inputs and benefits from their regularity to build longer
runs.

3.1 Pseudocode
Algorithm 2 shows the pseudocode for the main loop of

2WRS. The algorithm, first fills both heaps with records
obtained from the input. This is done by method double-
Heap.fill. When a record can be stored in both heaps, this

Algorithm 2 2WRS(inputBuffer, heapSize, victimBuffer-
Size)

Require: An input buffer inputBuffer, the maximum com-
bined size of the heaps heapSize and the victim buffer
size victimBufferSize.

Ensure: The generation of several ordered runs.

1: let current a pair of integers containing a value for a
record and the run to which it belongs.

2: let doubleHeap a pair of heaps, a maxheap and a min-
heap, of maximum total size heapSize.

3: let victimBuffer a victim buffer of size victimBufferSize.
4: let currentRun an integer.
5: doubleHeap.fill(inputBuffer);
6: currentRun = 0;
7: while doubleHeap.size() > 0 do
8: output(doubleHeap);
9: if inputBuffer.read(current.value) then

10: current.run = currentRun;
11: while victimBuffer.fit(current.value) do
12: inputBuffer.read(current.value);
13: end while
14: doubleHeap.insert(current);
15: end if
16: if doubleHeap.nextRun(currentRun) then
17: currentRun = 1 + currentRun;
18: victimBuffer.flush();
19: end if
20: end while

function uses the heuristic to decide which heap is used to
store the record.

The main loop is executed while the two heaps are not
empty. First, a record is released to make room for a new
one. This is done by method victimBuffer.output, which
pops the top record from either the TopHeap or BottomHeap
at random.

Next, a record is obtained from the input buffer. Method
victimBuffer.fit checks whether the current record is inside
the gap currently processed by the victim buffer and, if so,
stores it and returns true. Otherwise, it does nothing and
returns false. Note that at the beginning of each run, while
the victim buffer has not been completely filled, this function
always returns false. While this method returns true, new
records are read from the input buffer. When the record
read can not be put in the victim buffer, the method returns
false and the record is inserted into one heap by method
doubleHeap.insert. This method inserts the record into one
of the heaps, using the first heuristic when necessary.

Finally, method doubleHeap.nextRun returns true when
the top record of both heaps belong to the next run, meaning
that the current run reached an end, since all records in
memory also belong to the next run. In this case the records
stored in the victim buffer are written to disk and the next
run starts, with an empty victim buffer.

The main loop of this algorithm is very similar to the
main loop of replacement selection, shown in Section 2.1.
The only difference is that 2WRS checks in the main loop
whether the current record can be placed in the victim buffer
and keeps reading new records while this is the case.

4. ANALYSIS

In this section we demonstrate the properties of RS and
2WRS. This way, we show that 2WRS is able to sort incom-
ing data, generating runs which are, at least as long as those
generated by RS for random data (Theorem 2) and longer
than RS for other data inputs (Theorems 4 and 6).

Theorem 1. For inputs already sorted in ascending or-
der, RS generates one run containing all the input records.

Proof. Since the input records are already sorted, each
new record will be larger than all the values in the heap
and, thus, it will be possible to insert it into the heap as
belonging to the present run. No record will be marked as
belonging to the next run.

Theorem 2. For inputs already sorted in ascending or-
der, 2WRS generates one run containing all the input records.

Proof. The same proof as for Theorem 1. All records
obtained from the input are larger than those stored in mem-
ory. All the records are stored in the TopHeap, and all they
belong to the same run.

Theorem 3. For inputs sorted in reverse order, RS gen-
erates runs with length equal to the size of the memory.

Proof. Since the input records are sorted in reverse or-
der, the next record obtained form the input is smaller than
all the previous records. Thus, it is not possible to include
the new record in the current run when the heap is full.
So, the new record is marked as belonging to the next run.
When the heap is full every new record belongs to the next
run. Once the records belonging to the present run are re-
leased, a new run starts and the size of the run is equal to
the available memory.

Theorem 4. For inputs sorted in reverse order, 2WRS
generates one run containing all the input records.

Proof. The records obtained from the input are smaller
than all the records in memory. However, in contrast to RS,
those records are inserted in the BottomHeap. Since all the
records from the BottomHeap can be used in the current
run, all the stream is released in a single run through the
BottomHeap.

Theorem 5. For inputs consisting of alternating chunks
of length k records sorted in ascending order and k records
sorted in descending order repeatedly, RS generates runs
with an average length around twice the size of the mem-
ory m (m << k).

Proof. Let m be the size of the memory. Every chunk
of k records sorted in ascending order is placed in the same
run, as per Theorem 1.

When the algorithm starts reading records sorted in re-
verse order, only the first m/2 will be included in the cur-
rent run. The rest of the records sorted in reverse order
are put in runs of length m, as per Theorem 3. There-
fore, the number of runs generated in a descending section

is
j

k− m
2

m

k

=
¨

k
m

− 1
2

˝

.

The last m records of a chunk of k records sorted in reverse
order ((k − m

2
)mod m) are placed in the same run as the

following k records sorted in ascending order.
So every chunk of k records sorted in ascending order is

included in a run together with m/2 records from the next

chunk of k records sorted in descending order, plus the last
records from the previous run (k − m

2
)mod m.

The average run length is then the total number of records
divided by the number of generated runs,

2k

1 +
¨

k
m

− 1
2

˝ (1)

The denominator of this formula can take the values
¨

k
m

˝

and
¨

k
m

+ 1
˝

. The formula achieves maximum value when
the denominator is minimum. The maximum average run
length is then

2k
¨

k
m

˝ ≈ 2m (2)

Theorem 6. For inputs consisting of alternating chunks
of length k records sorted in the reverse order, two-way re-
placement selection generates runs with an average length
equal to k (with an appropriate heuristic1).

Proof. 2WRS behaves identically to RS for the chunks
sorted sorted in ascending order, thanks to the TopHeap.
For the chunks with records sorted in reverse order, 2WRS
captures the trend with the BottomHeap, generating runs
of k records, as well. Thus, the average run length is k.

5. RUN LENGTH ANALYSIS
In this section, we test the configuration parameters of

2WRS following the analysis of variance (ANOVA). The
ANOVA detects which variables are more relevant and it
is used to select the optimal configuration for a set of vari-
ables (for further details about ANOVA, see [10]). Our out-
put variable will be the length of the runs, and hence, the
variable to be optimized. In these experiments, the mem-
ory size allocated to the algorithm is fixed to 100K records
and the input length is 1GB. Each record is formed by a 4B
integer.

The observations are obtained as a crossed factorial ex-
periment with four variables:

• Buffer setup: We test three configurations: only input
buffer, only victim buffer, and both input and victim
buffer.

• Size of buffer : We set three configurations: 0.2%, 2%
and 20% of the available memory are dedicated to the
buffers and the rest to the heaps. Note that in all the
configurations, the total allocated memory (the addi-
tion of the heap and buffer sizes) for 2WRS is always
constant.

• Heuristic: We test two configurations for the heuristic
of the input buffer: random and mean.

• Data distribution: We test five different data input dis-
tributions. (1) Sorted: The records are already sorted.
(2) Reverse sorted: the inputs are sorted in reverse or-
der. (3) Alternating: this dataset is a sequence of in-
creasing intervals followed by decreasing intervals. The

1An appropriate heuristic is one that uses the TopHeap for
sorted inputs and the BottomHeap for reverse sorted inputs.

Sorted input Reverse sorted input Alternating input

Random input Mixed input

Figure 2: Samples of all data inputs used.

Input RS
2WRS 2WRS 2WRS
cfg 1 cfg 2 cfg 3

Sorted inf inf inf inf
Reverse sorted 1.0 inf inf inf
Alternating 1.94 50 50 50
Random 2.0 2.0 1.6 1.96
Mixed 2.0 1.2 16.5 2.24

Table 1: Average run length relative to memory size.
All three 2WRS configurations use the mean heuris-
tic. The first configuration sets the buffer size to
0.02% and allocates the input buffer. The second
and third configurations use both buffers with size
20% and 2% respectively.

number of intervals is set to 50, with 25 increasing and
25 decreasing interleaved intervals. (4) Random: The
records are generated following a uniformly random
distribution. (5) Mixed: This dataset alternates one
record from a sequence of increasing records, with an-
other record of a sequence of decreasing records. We
depict these datasets in Figure 2. In order to add some
randomness to the experiments a uniformly distributed
random value is added to each input. These random
values range from 1 to 1000 for a total range of values
sorted from 1 to 109.

In Table 1, we summarize the average run length for all
the input sets. In this table, we show the run length of
RS compared to the best three parameterizations of 2WRS.
We report two of the configurations that maximize the run
length for the mixed and random datasets, and a third con-
figuration that works reasonably well for all inputs.

For the remaining configurations (sorted, reversed and al-
ternating), we have found that all configurations of 2WRS
are optimal independently of the configuration: 2WRS gen-
erates runs of infinite size for the sorted and the reverse
sorted datasets, and 2WRS builds runs of length 50 times
the memory size for alternating sequences of length 50. On
the other hand, RS is only able to generate runs of one
size equal to the memory available for the reverse sorted
and equal to approximately twice the memory for the al-
ternating data, as found in Theorems 5 and 6. This shows
that when datasets are ordered or partially ordered 2WRS
is more effective than RS.

The configuration parameters, and specially the buffers
and the heuristic, have an important effect on the mixed
datasets. Although not shown in Table 1, the configurations
without both the input and victim buffers show poor run
lengths. Additionally, we computed the average run length

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20

ru
n

le
ng

th
 /

av
ai

la
bl

e
m

em
or

y

buffer size (% of available memory)

Figure 3: Length of runs relative to memory size as
function of buffer size for random inputs.

with respect to the heuristic used, which were 3.0 for mean
and 1.85 for random. A t-student test confirmed that with
a significance level of 0.05, these two averages are different.
Therefore, we conclude that the mean heuristic is better
than the random one.

With respect to the random distribution, we found that
2WRS is as good as RS because none of them is able to
take advantage of any pattern in the distribution. In our
results, we observed that for random distributions, there
is a linear correlation between the buffer size and the run
length. If buffers are allocated, the memory dedicated to the
heap diminishes by this percentage. Thus, a configuration
with 2% of the memory dedicated to buffers, reduces the
run length by just 2% for random distributions, as shown
in Figure 3. Furthermore, in our experiments, we measured
a very small difference in the length of the runs generated
by the configurations with 0.2% and 2% allocated to the
buffers, but larger between 2% and 20%.

All in all, our run length analysis concludes that 2WRS
creates runs of a length at least equal to RS or significantly
better. 2WRS is able to capture partially sorted data such as
those in the alternating and mixed datasets, and is optimal
with totally sorted data either increasingly or decreasingly.
Regarding the configuration, we found that the presence of
buffers and the mean heuristic is very important because
they generate longer runs for the datasets with more com-
plex structures.

6. PERFORMANCE ANALYSIS
In this section, we test experimentally the performance

of 2WRS with respect to RS. In all our experiments, we
account for the time to generate the runs, as well as the
subsequent merge phase. We generate different datasets fol-
lowing the random, mixed, alternating and decreasing pat-
terns and we measure the sorting time for each strategy. We
do not show the results for the sorted dataset because RS
and 2WRS are equivalent.

All the 2WRS configurations used in the experiments an-
alyzed in this section use the mean heuristic, since this com-
bination generates longer runs overall for all the inputs an-
alyzed as we have seen in Section 5. According to the pre-
vious section, a large buffer benefits mixed datasets, and a
tiny buffer benefits random inputs. Therefore, we set the

 1

 2.5

 5

 10

 1 10 100 1000

m
in

ut
es

allocated memory (k)

RS run
RS total

2WRS run
2WRS total

Figure 4: Run generation and total sorting times for
random input as a function of available memory.

available memory for the buffers to an intermediate value,
which is 2%.

We perform two experiments varying the input length and
the memory allocated to the sort algorithm. In the first ex-
periment, we fix the input to 1GB and vary the memory
from 1k to 1M. Therefore, out tests aim at systems with
large inputs (between 3 and 6 orders of magnitude larger)
with respect to the memory available. In the second experi-
ment, we fix the memory to 10k and we vary the input from
100MB to 1GB.

Setup: We execute the algorithms in a computer equipped
with an Intel Core 2 Duo processor running at 2.40 GHz.
Each core has 4 KB of L2 cache memory and the system
has a total of 2 GB of RAM. The hard disk is a SATA drive
with a capacity of 60 GB. The OS of the system is De-
bian GNU/Linux. Given that we want to limit the available
memory dedicated to sorting, we open all files using direct
I/O, which bypasses the operating system cache. 2WRS
generates output streams containing decreasing sequences
of records.

Fan in analysis: The merge phase is computed as a tree of
run merges. Depending on the number of files merged simul-
taneously (i.e. the fan in), the performance of the algorithm
varies. In an experiment detailed in Appendix B, we mea-
sured the best fan in for merging runs in our experimental
setup, and we obtained that the optimal fan in is equal to
10 runs. Thus, in all the following experiments with RS and
2WRS, we use this fan in for the merge phase.

6.1 Random
In Figure 4, we plot the performance with respect to the

memory buffer size. The time spent generating the runs is
detailed with empty circles and squares for RS and 2WRS,
respectively, and the total time needed to sort the records
is depicted with solid circles and squares. The same applies
to the rest of the plots in this section. We observe that
the total time needed by the two algorithms is very similar.
This is due to the fact that it is not possible to predict the
behavior of random input data. 2WRS has slightly worse
performance during the run building phase for some config-
urations because the logic of 2WRS is slightly more complex
than for RS, due to the two heaps and the multiple streams.
However, the difference between both algorithms is tiny, and

 0.1

 0.25

 0.5

 1

 2.5

 5

 10

 100 250 500 1000

m
in

ut
es

input size (Mb)

RS run
RS total

2WRS run
2WRS total

Figure 5: Run generation and total sorting times for
random input as a function of input size.

 1

 2.5

 5

 10

 25

 1 10 100 1000

m
in

ut
es

allocated memory (k)

RS run
RS total

2WRS run
2WRS total

Figure 6: Run generation and total sorting times for
mixed input as a function of available memory.

thus the use of either RS or 2WRS is equivalent for random
inputs.

We plot the scalability of the algorithms with respect to
the input length in Figure 5. Here, we observe a similar
pattern to that described for the previous plot, where both
algorithms consume a similar time. Furthermore, we observe
that both algorithms scale identically when the input size
grows.

6.2 Mixed
In the run length section, we found that 2WRS creates

runs significantly larger than RS for mixed datasets. Fig-
ure 6 confirms it, because independently of the memory size,
2WRS is approximately three times faster than RS. This is
because 2WRS generates less runs for the mixed dataset,
and so the merge phase is much faster than with RS. We
also see that, as the amount of allocated memory increases,
both algorithms need less time to sort the data, since the
runs generated are longer, and thus less merge phases are
needed.

In Figure 7, we represent the scalability of both algorithms
with the input. The advantage of 2WRS over RS for mixed
data is sustained as the input data grows, and for all input
sizes an approximate speedup of 3 is maintained. We note
that for this dataset even the run generation of 2WRS is

 0.1

 0.25

 0.5

 1

 2.5

 5

 10

 100 250 500 1000

m
in

ut
es

input size (Mb)

RS run
RS total

2WRS run
2WRS total

Figure 7: Run generation and total sorting times for
mixed input as a function of input size.

 1

 2.5

 5

 7.5

 10

 1 2 5 10 25 50 100 200 500

m
in

ut
es

number of sorted sections

RS run
RS total

2WRS run
2WRS total

Figure 8: Run generation and total sorting times
for alternating input as a function of the number of
sorted and reverse sorted sections.

faster. This is because the heaps are not used and most of
the computational time is spent sorting the victim buffer.
Since the victim buffer uses a standard library sort, which
is optimized for efficient in memory sorting, it is faster than
RS that applies a heapsort.

6.3 Alternating
The complexity to sort the alternating dataset is depen-

dant on the number of increasing and decreasing intervals for
a fixed input size. If there are very few intervals, the dataset
is similar to the sorted dataset, but if there are many inter-
vals then it becomes closer to the random dataset. In this
experiment, we fix the memory allocated to the algorithms
to 10k and the input size to 1GB, and we vary the number
of increasing and decreasing sections. In Figure 8, we depict
the sorting time for both algorithms.

For a small number of sorted sections, 2WRS performs
much better than RS, achieving up to an approximate speedup
of 3. We observe that although the run phase takes the
same time for both algorithms, the merge phase is signif-
icantly shorter for 2WRS because of the fewer number of
runs. 2WRS is able to include the sections sorted in a single
run in reverse order, whereas RS creates multiple runs for
these sections. As the number of peaks increases, the sorted

 0.1

 0.25

 0.5

 1

 2.5

 5

 10

 25

 100 250 500 1000

m
in

ut
es

input size (Mb)

RS run
RS total

2WRS run
2WRS total

Figure 9: Run generation and total sorting times for
reverse sorted input as a function of input size.

sections are shorter. Then, both algorithms asymptotically
tend to need the same amount of time for sorting the data,
although 2WRS still performs better. In the extreme case,
if the number of peaks tends to infinite, the dataset would
resemble a random input and both algorithms would spend
the same execution time.

6.4 Reverse Sorted
In Figure 9, we plot the time spent by both algorithms to

order reverse sorted data, as the size of the input grows. We
observe that for all input sizes 2WRS gets a better perfor-
mance than RS. The scalability of both algorithms is similar,
showing parallel trends, that indicate a constant speedup,
which is in this case 2.5.

7. RELATED WORK
Sorting is a basic computing problem that has received

a lot of attention over the years. The basis of most exter-
nal sorting algorithms is a two step process that in the first
phase generates runs as long as possible, and in the second
phase it merges the runs. Often, the run generation phase is
based on some internal sorting algorithm. In particular, re-
placement selection is based on heapsort, which is analyzed
in [5].

In 1998, Larson and Graefe experimentally compared dif-
ferent memory management algorithms during run gener-
ation when ordering variable length inputs, showing that
replacement selection is a viable algorithm for commercial
database systems [8]. Moreover, a recent survey on sorting
in database systems pointed out that replacement selection
is one of the most used techniques for external sorting in
databases [3].

Replacement selection was introduced by Goetz in [2] and
since then several modifications and alternatives have been
proposed. For instance, Larson introduced a modified ver-
sion of RS called batched replacement selection, a cache con-
scious version that also works for variable length records [7].
More recently, Koltsidas, Müller and Viglas introduced a
new variation of replacement selection for sorting hierarchi-
cal data (e.g. XML files) [6].

There have been several proposals to improve the perfor-
mance of the merge phase, but no emphasis has been placed
on the generation of larger runs in the general case. Zheng
and Larson introduced a new reading strategy for exter-

nal mergesort that consistently performs better than double
buffering and forecasting [12]. This technique uses heuristics
to precompute the order in which data blocks will be read
during the merge phase.

Yiannis and Zobel studied the possibility of compressing
sets of records during the run generation phase in order to
reduce disk and transfer costs of external sorting by reducing
the number of runs generated, and proposed a new compres-
sion technique adapted to sets of records [11].

We should note that all modifications and improvements
of RS can be readily applied to 2WRS without change, so
2WRS also benefits from all these changes.

8. CONCLUSIONS
In this paper, we propose Two-way Replacement Selection

(2WRS), which is a generalization of Replacement Selection
(RS). 2WRS allows to deal with increasing, decreasing and
mixed inputs, obtaining runs of optimal size, and signif-
icantly longer than RS. Moreover, this improvement does
not penalize the length of the runs of 2WRS for random
distributions, the length of which is similar to those of RS.
Besides, the additional complexity generating the runs is
amortized by a faster merge phase, which turns into a much
faster total execution time.

Our results have been tested for different input sizes and
space dedicated to the sorting operation. We have been
able to sort datasets with strong memory limitations (6 or-
ders of magnitude larger) three times faster than the regular
RS. Furthermore, we obtain similar speedups with different
scaleups of the input.

Additionally, the amount of memory allocated to 2WRS
can be fixed beforehand as with RS, which makes our pro-
posal also suitable for DBMSs. Finally, 2WRS maintains
the heap and run generation architecture of RS that allows
for improvements already proposed in the literature for RS,
which include variable key support, read ahead strategies or
hierarchical data sorting among others.

9. REFERENCES
[1] Anon et al. A measure of transaction processing power.

Datamation, 31:112–118, 1985.
[2] M. Goetz. Internal and tape sorting using the

replacement-selection technique. Communications of the
ACM, 6(5):201–206, 1963.

[3] G. Graefe. Implementing sorting in database systems. ACM
Computing Surveys (CSUR), 38(3), 2006.

[4] J. Gray and A. Reuter. Transaction Processing: Concepts
and Techniques. Morgan Kaufmann, 1993.

[5] D. Knuth. The Art of Computer Programming, volume 3
Sorting and Searching. Addison-Wesley, 2nd edition, 1998.

[6] I. Koltsidas, H. Müller, and S. Viglas. Sorting hierarchical
data in external memory for archiving. Proceedings of the
VLDB Endowment archive, 1(1):1205–1216, 2008.

[7] P. Larson. External sorting: run formation revisited. IEEE
TKDE, 15(4):961–972, 2003.

[8] P. Larson and G. Graefe. Memory management during Run
Generation in external Sorting. In SIGMOD, pages
472–483. ACM, 1998.

[9] Minute sort web page. http://sortbenchmark.org.

[10] D. Mongomery. Design and Analysis of Experiments.
Wiley, 5th edition edition, 2000.

[11] J. Yiannis and J. Zobel. Compression techniques for fast
external sorting. The VLDB Journal, 16(2):269–291, 2007.

[12] L. Zheng and P. Larson. Speeding up external mergesort.
IEEE TKDE, 8(2):322, 1996.

Victim Buffer

40

39 38

37 36 35 34

BottomHeap

50

51 52

53 54 55 56

TopHeap

Figure 10: The two heaps after they are filled. The
victim buffer and the output are still empty.

APPENDIX
A. EXAMPLE

In order to see the general behavior of the algorithm, a
small example is presented here. Assume that we have an
input and a victim buffer of length 4 each, and 14 units of
memory for the heaps. The input data will be

{40, 50, 39, 51, 38, 52, 37, 53, 36, 54, 35, 55,

34, 56, 33, 57, 32, 58, 44, 39, 59, 60, 61, . . .}

This input data alternates records sorted with records
sorted in reverse order, leaving a gap for the victim buffer
to use.

At the start, the first thing to do is to fill the input buffer.
Then, the buffer contains the four first records of the input,
{40, 50, 39, 51}. Now, the algorithm reads the first record
from the input buffer, which is 40. This record can go into
either heap, because both are empty. Since 40 is not greater
than the mean of the input buffer contents (45), it is pushed
into the BottomHeap. A new record, 38, is inserted into
the input buffer FIFO and we pop the head, 50. This time,
50 greater than the mean (44.5), so it is inserted into the
TopHeap. The next record is 39, which can only go to the
BottomHeap because it is smaller than the top record of the
BottomHeap, 40. We iterate this process until the heaps are
full. In Figure 10 we show the content of the heaps at this
point.

When the two heaps are full, the top record of one of
the heaps is chosen at random (in this case we take the
BottomHeap) and put in the victim buffer. Then a new
record is inserted into one of the heaps. The top of the
BottomHeap is 40, which it is inserted into the victim buffer.
The next record is 33, which goes to the BottomHeap. The
content of the heaps is shown in Figure 11. This process is
repeated until the victim buffer is full.

Once the victim buffer is full, it is sorted, as shown in
Figure 12. The largest gap in the victim buffer is that be-
tween 40 and 50, so records that are smaller than (or equal
to) 40, i.e. 39 and 40, are written to the output stream 3.
The rest of the records (50 and 51) are written to the out-
put stream 2. The victim buffer is now empty, and accepts
records between 40 and 50.

Next, a new heap is selected randomly (in this case the

40

Victim Buffer

39

37 38

34 36 35 33

BottomHeap

50

51 52

53 54 55 56

TopHeap

Figure 11: The two heaps after the first record is
put in the victim buffer.

40 50 5139

Victim Buffer

38

37 35

34 36 33 32

BottomHeap

52

53 55

56 54 57 58

TopHeap

Figure 12: The two heaps after the victim buffer is
full.

BottomHeap) and its top, 38, is written to the output stream
4. The next record in the input buffer is 44. It can not be
inserted into either heap, but since it is between 40 and 50,
it is inserted into the victim buffer. The next record is 39.
It is not possible to use it in the current run, but since it
is not between 40 and 50, it can not be put in the victim
buffer. In this case, it is marked as belonging to the next run
and inserted into the BottomHeap, because 39 is not larger
than the mean of the contents of the input buffer, which are
now {39, 59, 60, 61}. The content of the heaps now is shown
in Figure 13. Given that 39 belongs to the next run, it is
considered smaller than any other record in the BottomHeap
for the current run.

The algorithm continues until all record in both heaps are
marked. Then, the current run is finished and the next one
is started.

B. FANIN ANALYSIS
In this experiment, we measure the fan in that achieves

the best performance in our computer. In our experiment,
we generate 400 files, each one with size 16MB, which con-
tain integers already sorted following a uniform distribution
(i.e. 400 runs), and we merge them. This experiment is in-
dependent of the algorithm that generates the runs, thus is
valid for RS and 2WRS.

The fan in is a compromise between two characteristics:

44

Victim Buffer

37

36 35

34 32 33

BottomHeap

52

53 55

56 54 57 58

TopHeap

Figure 13: The two heaps at the end of this example.
The asterisk next to 39 marks it as beloning to the
next run and, as such, it is considred to be smaller
than any record in the current run.

 50

 75

 100

 125

 150

 0 2 4 6 8 10 12 14 16 18

m
in

ut
es

fan in

merge time

Figure 14: Merge time for different values of fan-in.

(a) the smaller the fan in, the more sequential is the access
to the files from disk, but (b) the larger the fan in, the less
merge operations are required to end the task.

We observe this tradeoff between the two benefits in Fig-
ure 14. If the fan in is too small, the algorithm takes more
time because it must perform more merge steps. However,
if the fan in is too large, the head of the disk performs more
seeks and the bandwidth obtained from the disk is smaller.
In our experiments, the minimum time was observed for a
fan in 10, which means that in each merge step 10 different
files are simultaneously merged.

C. STORING DECREASING RECORDS
Due to the way 2WRS works, it generates two streams

of sorted records and two streams of reverse sorted records.
The latter need to be stored already sorted in order to allow
the merge phase to read files sequentially.

In order to do this, when the file is first created, a fixed
amount of pages is allocated on disk. The records are then
stored starting at the end of the file, one page at a time,
until the first page of the file is reached. When the first
page is reached, a new file is created and filled in the same
way. The first page of the file stores information, as where

does the data start and how many files have been generated
to store that run. Note that the generation of several files
does not affect negatively the fan-in, since they are read in
sequential order. The only overheads are the closing of one
file and opening of the next one, and possibly one seek in
the first file to go to the page where the data starts.

