
Master’s Project:

Micropayments Platform

Jose M. del Barco

September 30, 2009

EPFL-LBD Database Laboratory

Professor:
Stefano Spaccapietra

Assistant:
David Portabella

Abstract

Current web payment systems are not suitable for transferring very small amounts of
money, such as 0.001 Euros. Because of that it is currently not possible to ask users to pay
little prices for small services, such as searching once in an online catalog. In addition, current
payment procedures require a large number of steps to be performed. This project consists in
(1) designing and developing a platform targeted to micropayments, with the corresponding
website and web API, and (2) create a user-friendly, fast and reliable payment procedure,
easy to implement for merchants.

1

Contents

1 Introduction 4
1.1 Definitions . 4

2 Micropayments 5

I The MicroPayments Platform (MPP) 6

3 Current Payment Platforms 6
3.1 PayPal . 6
3.2 Google Checkount . 6
3.3 MoneyBookers . 6
3.4 VirtueMart . 7
3.5 Others . 7

4 Features of the MPP 8
4.1 PayPal Funding . 8
4.2 Payment Services . 10

4.2.1 E-shop Model: www.buyflowers.com . 10
4.2.2 Web Game Model: www.trivia.com . 10

4.3 Currency Handling . 11
4.4 Price Optimizer . 11
4.5 Oneclick Payments . 12

4.5.1 Express Oneclick . 12
4.5.2 Normal Oneclick . 12

4.6 Anonymous Payments . 13
4.7 MPP User Panel . 13
4.8 User and Merchant Areas . 14

5 Payment Authorization Modes 15
5.1 Redirect Mode . 16
5.2 OAuth Mode . 16

5.2.1 OAuth Specification . 16
5.2.2 Notation and Conventions . 17
5.2.3 Basic Schema . 18
5.2.4 MPP OAuth . 19
5.2.5 OAuth Oneclick . 20

5.3 User Panel Mode . 20
5.3.1 The iFrame Cross-Domain AJAX (XDA) Technique 20
5.3.2 AJAX . 20
5.3.3 Bypassing the Same Origin Policy . 20
5.3.4 Merchant Phishing Attack . 22

6 Web Interface 23
6.1 Micropayments Web Page . 23

6.1.1 Signup . 23
6.1.2 User Area . 25
6.1.3 Merchant Area . 26

II Technical Implementation 28

7 OAuth Implementation 29
7.1 OAuth Package . 29
7.2 MPPOAuth Class . 29
7.3 MPPOAuth API . 30
7.4 Merchant OAuth Integration . 31
7.5 OAuth Token Servers . 33
7.6 OAuth Authorizations . 33

8 XDA & User Panel Implementation 34

9 JavaScript Public API 37
9.1 Prototype JavaScript Framework . 37
9.2 PaymentService Pseudo-Class . 37

9.2.1 Attribute List . 37
9.2.2 Method List . 38

9.3 API Loading . 40

10 Transaction Processing 41
10.1 Redirect Mode . 41
10.2 OAuth Mode . 41
10.3 User Panel Mode . 43
10.4 MPP Transaction Server . 46

11 PayPal Integration 47
11.1 PayPal Services . 47
11.2 The SANDBOX Testing Environment . 47
11.3 The PayPal API . 48
11.4 Callback Handling . 49
11.5 Currency Handling . 49
11.6 MPP Virtual Account Handling . 50
11.7 Fees in Production Environment . 52

12 Database Management 54

13 Merchant Integration 56
13.1 Integration Steps . 56
13.2 Test Examples . 57

13.2.1 e-Shop Example . 57
13.2.2 Web Game Example . 58

III Conclusion 61

References 63

1 INTRODUCTION

1 Introduction

It is undeniable that Internet has become one of the best human inventions. At the beginning of
its life it was used mostly as a way of communication and information retrieval, but it has quickly
evolved to become an all-mighty tool, something humans need to satisfy their social needs, and
from not that long ago, even their consuming needs. As the rate of Internet utilization among
the global population increases, also does the amount of business and markets around it. With
the power of Internet to spread information, companies are starting to look at it as the best way
to get new consumers, and so they create websites to get their attention and be able to multiply
their benefits.

Using Internet as a selling tool is not that easy, though. People still do not trust Internet as a
way of payment, due to the amount of hacking and the apparent fragility of their security methods.
In addition, it is very difficult to make people trust a payment not performed with a human seller,
where they can actually see the exchange of goods by money. On Internet there are no human
sellers. All the process is performed by a computer program, bound to failures and bugs, making
the consumer feel insecure and unprotected against those potentially wrong purchases.

Even overcoming those fears and using Internet as a tool to purchase goods, there are cases
when it is very difficult to perform a sale. To perform a transaction over Internet merchants use
”payment gateways”, which are softwares (from separate companies or banks) that understand
the language that real bank transaction servers speak so they can transform any payment data
(a credit card number and the user data, for example) into real bank transactions. However,
as a part of the payment business, both gateways and banks charge a fee for being used, which
translates into a fixed cost per on-line transaction. This leads to a huge problem, because... What
happens if the cost of the product is lower than its fixed cost? This is known as the micropayment
problematic. Solving it can create new conceptions of Internet payments, and this is the goal of
this project.

1.1 Definitions

The following are the definitions of the terminology used in this report regarding the different
levels of interaction between human beings and the Internet application described in it.

MicroPayments Platform (MPP):
The subject of this thesis project. It can be referred by its capital letters or as the Service
Provider in the OAuth scheme.

Merchant:
An e-commerce business that uses the MPP to charge its Users for using his services.

User:
A physical person who access Internet to use the Merchant e-commerce services, resulting
in performing transactions in the MPP system. Note that for the MPP, merchants are also
users.

Payment Service:
Services on which the Merchant bases his sales, used to charge Users to get a benefit.

Jose M. del Barco 4

2 MICROPAYMENTS

2 Micropayments

Micropayments are generally defined as payments lower than 10$. Products or services with
lower prices are much harder to exploit as the benefit per product is too low, even producing a cost
instead of benefit, making the transaction not affordable. That is why this kind of payments are
still not very implemented in actual e-commerce based services, and it is still a subject of study
and research.

By reading different research papers [5][3][4], I observed that the actual efforts to solve the
micropayment problematic were either by aggregating a specific amount of transactions into a
single one to condense the transaction fees, or creating a virtual currency to work with. After
investigating already existing Internet payment services such as PayPal, I concluded that a good
approximation to solve the micropayment problematic could be combining those micropayments
to a virtual account model, thus creating a virtual accounting system which would have to be used
by both users and merchants. This is the way the MicroPayments Platform, the subject of this
project, was born.

The MPP will act as an intermediary between users and merchants. It will create virtual
accounts with which users will perform transactions in the accepted merchants. To do so, it will
make users charge their MPP accounts with real money using a third service (for the moment
PayPal), and it will make merchants accept transactions from the MPP accounts. Instead of
performing real bank transactions between them, MPP will simply update their virtual accounts
balance.

Figure 1: MPP interactions

The first part of this report makes a small overview of the most successfull payment platforms
on Internet and explains the desired requirements to transform the MPP into a true competitor:
its features, its effort for provide secured transactions and the web interface associated to it. The
second part provides a detailed description of the technical implementation of those techniques
and presents two examples of implementation. Finally the third part concludes the report with
the results obtained and some thoughts about how to enhance the platform.

Jose M. del Barco 5

3 CURRENT PAYMENT PLATFORMS

Part I

The MicroPayments Platform (MPP)

3 Current Payment Platforms

There are plenty of payment platforms currently working on Internet, some of them already
famous and commonly used. To design another payment platform that could compete with the
existent ones, or at least get a share of the market, we need to know all the features of the
competence, enhance them and/or create new ones. In this section I present this brief study,
which will establish the basic features to implement in the MPP platform.

3.1 PayPal

Without a doubt, Paypal (http://www.paypal.com) is the most used of the current Internet
payment platforms. Millions of people are purchasing goods every day with their services thanks
to its integration with eBay, the most known auction service on Internet, and its wide use and
easiness to use (the transactions are triggered by embedded buttons) makes it a reliable way to
perform transactions for most users.

By creating a PayPal account the system offers a virtual account system from which the user
is able to perform a variety of transactions. There are three different types of accounts, depending
on the level of complexity of the transactions to perform:

Personal : for users seeking simple checkout processes and basic transfers of money;

Premier : for more advance users who seek to buy and sell goods over Internet;

Business: for companies that want to integrate PayPal as the payment processor for their com-
merces;

To integrate their services, PayPal offers different API packages depending on the level or
complexity of the transactions to perform. The basic package, called Website Payments Standard
is a free API to create personalized buttons and perform basic transfers between PayPal accounts.
The Website Payments Pro is a pay access that offers merchants capable of making credit card
payments (PCI compliants) a variety of services to integrate PayPal accounts into their payment
system. Finally, PayPal also offers a pure gateway service called PayFlow.

All those features together with its wide use makes PayPal the reference of how users want to
purchase their goods, and thus one of the main references for this project.

3.2 Google Checkount

Inside the politic of Google to conquer all the possible markets on Internet, a payment system
couldn’t be let appart. Google Checkout (http://checkout.google.com) tries to be a direct com-
petitor of PayPal in the Internet payments market, but it’s limited to a checkout system. However,
the integration with their OpenID system adds anonymity to the transactions, a really important
feature nowadays. Unfortunatelly, Google Checkout is currently limited to the United States, and
does not provide bank interfaces or any kind of virtual accounts, but just credit card payments.

3.3 MoneyBookers

MoneyBookers (http://www.moneybookers.com) is a clear example of complementing the Pay-
Pal services while trying to get a market share in the checkout and auction services. Also under
a virtual account system it offers mobile messaging and fax services, but most importantly it
implements a mobile payment system. It also offers auction and checkout services similar to
PayPal.

Jose M. del Barco 6

3 CURRENT PAYMENT PLATFORMS

3.4 VirtueMart

VirtueMart (http://virtuemart.net/) is a different concept of payment processor specially de-
signed for the Joomla and Mambo Content Management Systems (CMS). Instead of limiting their
services to offer Internet payments, they provide a full payment system to be easily integrated into
the CMS as a plugin, with a complete backend to configure all aspects of the payment process
including a product catalog manager. VirtueMart uses other third party services for performing
the transactions, such as PayPal, but it can transform any website made by the supported CMS
to a full chekout-based e-shop in a short amount of time.

3.5 Others

There are a high amount of other payment processors and gateways working nowadays. Most of
them offer similar services as the ones presented here, others try to offer different, more advanced
and specific services. Other payment processors to have into consideration could be CCAvenue
(http://www.ccavenue.com) and regSoft (http://www.regsoft.com), overall payment processors
with multiple services, or 2Checkout (http://www.2checkout.com), based in checkout processes.

Jose M. del Barco 7

4 FEATURES OF THE MPP

4 Features of the MPP

Now that we know the general features expected for a payment processor, we can start talking
about what we want to achieve with the MicroPayment Platform. The MPP is intended to
be an advanced Internet payment system, with the main goal of being user-friendly and highly
automated for users while being really easy to implement for merchants. The project was designed
to integrate most of the already existing features in payment processors while adding some new,
advance ones. Those features are:

• Uses PayPal accounts as the way to deposit and/or withdraw money in the MPP virtual
accounts;

• Allows different kinds of payment services, without any amount restriction:

– e-shop: payment links and buttons, shop carts, etc;

– Pay-Per-Service: pay-per-time, pay-per-bandwidth, pay-per-token;

– Custom Payments: fully configurable (e.g. combination of various services);

• Handles different currencies;

• Lets the user set up automation behaviors to get agile payments;

• Performs anonymous payments (merchants do not have access to user’s payment data);

• Provides user and merchant configuration back-ends in the MPP website;

• Provides a new in-site, real-time, merchant-independent control panel for users.

4.1 PayPal Funding

To become a payment platform the MPP needs a way to interact with real money from both
users and merchants. As I have explained before, banks use specific protocols to perform transac-
tions over Internet, so the first thing to do is being able to use those protocols. The easiest way to
do that is by using Payment Gateways, which are computer programs that are able to use those
protocols to send user and credit card data, i.e. they are able to order money transfers from one
bank account to another by using just the credit card information (among other functionalities).

Figure 2: Payment Gateways

However, allowing users to pay directly by introducing their credit card information in an web
requires a high level of security. Because of the vulnerability of Internet to hacking attacks, which
in this case would translate into potential money robbery, the Payment Card Industry Security
Standards Council, or PCI-SC, formed by the main credit card companies (Visa, MasterCard,
American Express, JCB and Discover Network) created the PCI - Data Security Standard or
PCI-DSS, which is a set of 12 mandatory rules regarding all the aspects of the electronic card

Jose M. del Barco 8

4 FEATURES OF THE MPP

Figure 3: PCI-DSS Requirements

transaction handling (see figure 3). Every business that wants to handle any credit card from the
PCI-SC companies on Internet must follow these rules.

To get the PCI-DSS compliance certificate the business has to audit all those rules with a
supported auditing company. Unfortunatelly, this makes the direct credit card handling out of
the scope of this project, although it should definitely be considered when using the application
in a real production environment. The consequence of this is that to be able to handle real money
from users and merchants the MPP has to use the services of another company. It must be able to
perform transactions by itself, with reduced cost, with a public API to automate them and that
is trusted enough by Internet users to be used as the main resource for money transfers. For its
widely utilization and trust among Internet users, we decided to use the PayPal services.

PayPal is a PCI-DSS compliant company that allows business to use its public API to perform
any kind of transactions over Internet. Although advanced functionalities of that API are only
available by paying monthly fees, the basic functionalities are free and enough for the scope of this
project.

The way to proceed is simple. The MPP acts as a business (merchant) in PayPal, owning
different accounts with different currencies and having access to a limited part of their API. A
user that wants to use the MPP is asked to use PayPal to charge their MPP Virtual Account in
the currency he wants by clicking on the respective button in their user area in the MPP website.
This redirects them to the PayPal site, which asks them the amount to charge and the payment
method (credit card or using their own PayPal account). Once the user has charged his MPP
Virtual Account, he will be able to use all the features of the MPP system explained in this
section. If the user wants to retrieve back his money from the MPP Virtual Account he will need
to have a PayPal account, where the MPP will transfer the amount he desires.

This way, the MPP handles the money of both users and merchants by saving it in its own
PayPal account and then performing virtual transactions between them (figure 4). No real money
is transferred between users and merchants, so the transactions do not have a fixed cost and thus
the amount has no limits, solving the micropayment problematic. So, by paying a small fee to
PayPal for performing the real transactions, the MPP becomes a payment platform.

Jose M. del Barco 9

4 FEATURES OF THE MPP

Figure 4: MPP Account Model

4.2 Payment Services

The Virtual Account system used in the MPP, together with the micropayments capabilities
and the zero cost of the virtual transactions allows almost unlimited ways of charging users for
using merchant services. Not to say that this is a really powerful marketing weapon to attract
merchants to use the MPP system, as its versatility makes it able to scope almost every Internet
business in the actual e-commerce market.

For the prototype of the MPP system presented in this project two different payment models
have been implemented: a basic e-shop (without checkout) and a web-based trivia game. However
other models such as charging for time, bandwidth or any specific service could be easily imple-
mented by doing small modifications and/or additions to the MPP API, or even in the merchant
side by using the actual API in a convenient way (for instance, instead of having an API call for
doing periodical payments, a merchant could program the periodicity in his server and call the
payment function every period).

The Payment Service is configured during the signup process of the merchant or in its personal
area in the MPP website. It allows to select the basic behavior of the system from the different
payment models available, and then it lets the merchant specify a list of currency-dependant prices
for the products or services the Payment Service will cover.

The following is a small description of the example models. The technical implementation is
explained in detail in the section 13.2.

4.2.1 E-shop Model: www.buyflowers.com

It is a basic e-commerce shop that sells flowers. It has an HTML structure with PHP only for
retrieving data from a small database with the product information. It allows different payment
options depending on the currency, which can be modified in the database as well. In this case
prices are around the micropayment definition, but can be whatever. The scope is to show the
behavior of the MPP system under a low number of more expensive transactions.

4.2.2 Web Game Model: www.trivia.com

A PHP web game consisting in answering a series of questions about general or specific topics.
It is based in the “PHP Dynamic Trivia” code from Robin van de Vusse (r.vandevusse@rogers.com)
and published under the GNU General Public license. The MPP system has been integrated to
charge the user in real-time for every formulated question and reward him in case the answer is
correct. As the rate of the transactions is higher, a Oneclick transaction automation (see 4.5) is

Jose M. del Barco 10

4 FEATURES OF THE MPP

suggested. Other examples with the same implementation than this model could be a gambling
website or a flash web videogame.

4.3 Currency Handling

It is obvious that one of the main characteristics of Internet is to be able to access any service
from any country in the world. Currency handling is, for that reason, a must for not limiting the
amount of users to access a given service.

The MPP implements an advanced currency handling that allows users to purchase in the
currency they prefer and also provides the merchants with an easy way of setting up the prices of
their products or services depending on the currency the user wants to pay with.

As the real money accounts are based in PayPal, the MPP system has one PayPal account
for every possible currency it can handle. Users and merchants are not forced to have a specific
currency in their PayPal account, but it is suggested to have at least the same currencies in both
PayPal and MPP, as the PayPal system forces the exchange of the currency if it does not match
the transaction’s.

Despite using a currency-based platform such as PayPal, the currency handling is not problem-
free: PayPal has a limited behavior when managing currencies from the public API. In addition,
the MPP has to take into account that the transactions between users and merchants are virtual.
Users and merchants only get real money when they decide to transfer it from their virtual
accounts to their PayPal accounts, and this transfer is performed in the currency of the account
they are using for it. The PayPal API does not let forcing a currency in a transaction nor knowing
beforehand the exchange rate it will apply in case of currency exchange, so an alternative way to
handle currencies had to be implemented.

Having that limited currency behavior, it was decided that for the prototype model of the MPP
the currency handling would be internal, meaning that the MPP system would use a FOREX table
to get the exchange rates of the currencies it can handle and perform the exchange between the
virtual accounts. However, there are two factors that make this a potentially dangerous behavior
which could even translate into an undesired cost:

1. The exchange rate PayPal is applying does not have to be the same than the MPP’s (and it
is not, as they apply a fee in it);

2. The FOREX table fluctuates every day. The exchange rates applied when doing virtual
transfers can vary from one day to another, and transferring money from MPP Virtual
Accounts to PayPal accounts can use a much lower exchange rate than the one applied when
the user did the transactions, so the MPP system can lose (or even win) money just by
allowing those exchanges. The only solution could be knowing a-priori the exchange rates
that PayPal applies at a given moment, but this data is not directly available using the API.
However, there is one way to manually create the forex table PayPal is using: as the MPP
system has different accounts for every currency, it could perform a transaction between
all its accounts (all the possible combinations of them) and check the exchange rate and
fee applied in every transaction, thus constructing the PayPal forex table. However, every
transaction has a fixed cost associated to it, so this method should be used weekly or daily as
much. In addition, depending on the number of currencies the system handles this method
can be very slow, limiting even more the update process and even avoiding it to be real-time.

4.4 Price Optimizer

The internal currency management allows a more precise handling of transactions. For instance,
as the exchange is DB based and the transactions are virtual a currency optimizer could be easily
implemented. The idea is using the fact that merchants can specify different prices for their
products or services depending on the currency used to pay. The payment control system (called
User Panel) could let the user click on an option to calculate all the possible currency exchange
combinations between his accounts and the payment options the merchant gives and automatically

Jose M. del Barco 11

4 FEATURES OF THE MPP

select the one that provides the minimum price to pay. This allows the user to pay the amount the
merchant specifies while ensuring that it is the lowest price, avoiding for example abusive exchange
rates or, why not, making profit of a favorable exchange rate in a specific period of time.

4.5 Oneclick Payments

Most of the actual Internet payment platforms, such as PayPal or Google Checkout, have slow
step-by-step procedures to perform Internet transactions. Most of the times those procedures
are favorable for the user, as they give him confidence about the whole process, but if the user
trusts the Service Provider and the Merchant it seems logical to speed up the whole process by
automating most of the payment steps.

The MPP system, thanks to the virtualization of the transactions, allows the user to configure
certain parameters to do that. This feature is called Oneclick payment, as the user only has to
trigger the purchase (or transaction) from the merchant website to automatically perform it. The
name “oneclick” is well known in the Internet payment industry: Amazon.com had the full patent
(sub-licensed to Apple), i.e. the idea and its implementations, until in 2008 was narrowed to
Amazons specific implementation (in a shopping cart) because the patent included so many broad
definitions that although that functionality seemed a logical evolution of any e-commerce system,
no one could implement it.

The MPP Oneclick payment concept differs from the others (such as the Amazon’s) in that
the user does not need to register in the merchant’s website to make a payment. Moreover, the
merchant does not get the identity of the user, making oneclick anonymous payments possible (see
section 4.6).

The generic MPP Oneclick setting has two different sets of parameters: the first set establishes
the type of oneclick, as it sets the trigger for the automation, while the second set establishes the
duration of the oneclick by different parameters.

The user can set the validity of the oneclick according to three different parameters:

1. By time: The Oneclick will be valid during that session, a fixed amount of time (from
minutes to one month), always or during a custom amount of time set by the user;

2. By number of transactions: The Oneclick will be valid for a fixed or custom number of
transactions;

3. By maximum amount to spend: The system monitorizes the amount spent during a
specific time window and compares it with the selected threshold, which can also be user-
defined.

As fully automating a payment process is a delicate matter for the user, the MPP system
gives a way to cancel the procedure. When the user triggers a transaction matching the Oneclick
configuration, the MPP control panel (see 4.7) shows a countdown of five seconds. This countdown
is in fact a button where the user can click to cancel that specific automatic transaction, while
keeping active the Oneclick setting.

The following is a description of the types of Oneclick depending on the trigger (subject to the
duration explained before).

4.5.1 Express Oneclick

This method consists in saving in the MPP database the account and currency used in the last
transaction performed and automatically set those parameters as the default ones for the following
transactions while the Oneclick setting is active.

4.5.2 Normal Oneclick

This method consists in letting the user chose between different “payment behaviors”. The
MPP system asks the user for what to do if:

Jose M. del Barco 12

4 FEATURES OF THE MPP

1. The merchant specifies different payment options based on the currency:

(a) Use the same currency than the default user account;

(b) Use the price optimization engine to get the lowest price/account combination.

2. If the previous behavior fail (due to lack of funds or currency mismatch):

(a) Use the best next valid account

(b) Use the account with more funds

(c) Use a specific account (lets the user choose it)

(d) Cancel the transaction

4.6 Anonymous Payments

The main concern for users in an Internet payment system is obviously security. When per-
forming transactions over Internet, the identity of the user and his data has to be completely
obfuscated, only used when strictly necessary and subject to as many security layers as possible.
Users do not necessarily have to trust all the on-line services they find on Internet, but they may
want to be able to use them without giving any information to the merchant behind it, not to
speak about giving credit card information even to merchants they may trust. In addition, the
user has to be sure that only him can access to his data, or grant access to it to a third party, and
that the data is secured so they are the only ones that can view it.

For e-shop models anonymity it is not that important, as most of them require shipping
information that forces the user to give personal information (and even they may require a signup
process to save it), but for other payment models such as on-line games, gambling, etc. it may be
of great importance.

The MPP system uses two different techniques to ensure the anonymity of their users while
using it, both based in the use of an API to encapsulate all the transaction processes. This way
the system is able to retrieve both the user and the merchant information needed to perform
the transaction separately, directly from each one of the parts, without exchanging any personal
information. The two different techniques are OAuth and iFrame Cross-Domain AJAX (XDA in
short), and both are explained with plenty of detail in the sections 5.2 and 5.3 of this report.

4.7 MPP User Panel

The MPP User Panel was born as a logical consequence of deciding to create an agile payment
platform. The idea is to eliminate the part that makes most of the common Internet payment
procedures so slow: the redirections. A way to do that could be to have a window integrated to the
merchant web (not a pop-up window, mostly captured by anti-spam filters) which could present
all the steps of a normal transaction, and some additional options. That simple idea has become
the most important feature of the MPP system and also the most challenging part of the whole
project. Moreover, it brings Internet payments to a new level of speed, versatility and usability,
becoming the main marketing tool for the MicroPayment Platform.

As a result of the investigation on real-time data retrieval, the MPP User Panel has become the
tool for implementing the iFrame Cross-Domain AJAX technique, explained in detail in section
5.3, allowing advanced usability. Its features are:

• It is JavaScript based, so it is compatible with most of the current web browsers (tested in
Firefox 2 & 3, Internet Explorer 7 & 8, Google Chrome and Opera);

• It is merchant-independent, meaning that can be loaded in different merchants at the same
time;

• It intrinsically provides anonymous payments, not giving any user information to merchants;

Jose M. del Barco 13

4 FEATURES OF THE MPP

• Allows the user to:

– See the balance of all his accounts in real-time;

– See the transactions he is performing, confirming or canceling them, in real-time;

– Set up (create, edit, delete and real-time cancel) oneclick configurations for the next
transactions the user will perform in that specific merchant website;

– See the history of transactions performed.

The technical implementation of the User Panel can be reviewed in section 8, while concrete
examples in the testing models can be observed in section 13.2.

4.8 User and Merchant Areas

As most of the payment platforms over Internet, the MPP website has a specific area for users
and merchants to configure all their settings, like their personal information, currency handling
and Normal Oneclicks. It also allows them to view their account balances, perform transfers
between MPP and PayPal accounts and view the history of transactions performed. To give the
users a familiar interface the user area has also a similar look & feel than the user panel.

Merchants on the other hand do not have something like the user panel, but their area lets
them have the same functionalities as a user have, not including Oneclick configurations obviously,
but adding the specification of the currency-based payment options for their products or creating
new payment services.

User area is explained with detail in section 6.1.2. Due to time constraints the Merchant area
actually implemented in the system does not include the functionalities mentioned, although they
can be activated directly from the MPP database.

Jose M. del Barco 14

5 PAYMENT AUTHORIZATION MODES

5 Payment Authorization Modes

As described in section 4.6, one of the main concerns for an Internet user when performing
on-line transactions is security. User authentication takes an important role to make the user feel
secure while protecting him from impersonating attacks, so a lot of investigation and effort was
needed in this project to provide the best authentication and third-party access (authorization)
capabilities.

The basic way of performing transactions securely is by redirecting the user to the payment
processor website, perform the transaction, and then redirect him back to the merchant website.
In this case no authorization is needed from the user, as it is him who triggers the transaction
and performs it in the website he trusts. This is the way PayPal and Google Checkout act, for
example. However, this method is slow and assumes that the user does not trust the merchant.
If he does, the logical procedure could be to let the merchant trigger transactions in the name of
the user.

With the exponential proliferation of the social networks, based on accessing other people’s
content, it seems logical to point their authentication methods as the possible way to implement
this kind of authorizations. After some investigation we found an emerging open protocol that
is starting to be used, in its pure form or just based on it, on most of the main social networks
such as Facebook, Twitter, Yahoo or Google Apps: the OAuth protocol. The companies behind
those social networks have specific teams dedicated to implement and improve OAuth, websites
dedicated to discuss about it, and plenty of examples of integration and implementation.

OAuth is a token-based authentication method used to allow users granting access to their
data to third-party websites or services. It is simple, robust, and the amount of documentation
related makes it reasonable easy to implement. Translated to the MPP case, it allows merchants
to trigger transactions in the name of the users without having to redirect them every time they
need to perform a transaction.

The first versions of the MPP, prior to the integration of the real-time user panel, relied on
OAuth as the authentication method by using a PHP implementation based on the TwitterOAuth
code by Abraham Williams[8], found in the OAuth website. However, the necessity to provide
the user with real-time transaction capabilities and the implementation of the iFrame Cross-
Domain AJAX technique modified the whole transaction flow, making specific authentication
methods no more needed and thus limiting OAuth to situations in which the new technique is not
implementable.

Therefore, as a result of the investigations on authorization schemes, the MPP system imple-
ments three different authorization modes, easily set up using the MPP API. Assuming that the
user triggers a transaction (for example clicks on a ”purchase” button) in any merchant website,
the modes are:

Redirect Mode: The user is redirected to the MPP website, where he is presented all the infor-
mation related to the transaction and has to choose whether to accept it or not. After the
transaction is performed the user is redirected back to the merchant website. As it is the
user who controls the transaction flow, no specific authorization has to be provided.

OAuth Mode: The MPP system starts the OAuth authentication process and checks if the
user has a Oneclick configured for that merchant (meaning he trusts him). If he does it
automatically lets the merchant perform the transaction using the required token. If he does
not, it redirects the user to the MPP website and asks for authorization to let the merchant
perform that transaction in the user name, giving the option to automatize further payments.

User Panel Mode: The user uses the MPP interactive User Panel (that uses the iFrame Cross-
Domain AJAX technique) to confirm the transactions, not having to be redirected to any
website (if he is logged into the MPP system) and performing the transactions directly in
the MPP system without any merchant interaction (thus no authorization is needed).

The following sections will explain those modes in general terms. The technical implementation
in the MPP system is explained in Part II of this report.

Jose M. del Barco 15

5 PAYMENT AUTHORIZATION MODES

5.1 Redirect Mode

The Redirect authorization mode is no more than a direct redirection to the MPP website.
When the user triggers a transaction, the merchant redirects him to a specific website in the MPP
domain, including all the required data from the transaction. From that point, all the process
is performed in the MPP website. The user is presented all the transaction data and asked to
confirm it. Once done, the MPP system confirms the state of the transaction to the user and
redirects him to the merchant website (even if the user canceled it), including the state of the
transaction for further processing (shipping, for instance).

5.2 OAuth Mode

5.2.1 OAuth Specification

OAuth is the first feature that distinguishes the MPP payment system from the typical con-
ception of an Internet payment. The specification allows users to share their private resources
(photos, videos, contact list, bank accounts, etc.) stored on one site with another site without
having to hand out their username and password credentials. To understand the problem clearly,
giving an email account password to a social network site so they can look up the friends associated
to it could be the same as going to a restaurant and giving the ATM card and PIN code to the
waiter when it is time to pay. Any restaurant asking for a PIN code will go out of business, but
when it comes to the web, users put themselves at risk sharing the same private information.

The ATM card is a good metaphor for OAuth from a user perspective. Instead of giving his
ATM card and PIN code, the card can be used as a credit card with a signature authorization.
Just like a username and password provide full access to the user resources, an ATM card and PIN
code provide great control over his bank accounts, usually much more than just charging goods.
But when the PIN code is replaced with the user’s signature, the card becomes very limited and
can only be used for limited access.

Instead of using a single site for all their online needs, users use one site for their photos,
another for videos, another for email, and so on. In order to enable this kind of integration, sites
need to access the user resources from other sites, and those are many times protects (private
family photos, work documents, bank records), so they need a key to get in.

The key used by users is normally a combination of username and password, but this is too
powerful and unrestrictive to share around. It also cannot be unshared once handed out except
for changing it which will void access to every site, not just the one the user intends to block.
OAuth addresses that by allowing users to hand out tokens instead. Each token grants access to
a specific site (a video editing site) for specific resources (just videos from last weekend) and for
a defined duration (the next 2 hours).

One of the best features of OAuth is that it is completely transparent to the users. In many
cases the end-user will not know anything about OAuth, what it is or how it works. The user
experience will be specific to the implementation of both the site requesting access and the one
storing the resources, and adjusted to the device being used (web browser, mobile phone, PDA,
set-top box).

A typical example is when a user wants to print a photo stored on another site. The interaction
goes something like this: the user signs into the printer website and place an order for prints. The
printer website asks which photos to print and the user chooses the name of the site where her
photos are stored (from the list of sites supported by the printer). The printer website sends the
user to the photo site to grant access. At the photo site the user signs into her account and is
asked if she really wants to share her photos with the printer. If she agrees, she is sent back to
the printer site which can now access the photos. At no point did the user share her username
and password with the printer site.

It is important to understand that security and privacy are not guaranteed by the protocol.
In fact, OAuth by itself provides no privacy at all and depends on other protocols to accomplish
that (such as SSL). With that said, OAuth can be implemented in a very secure manner and
the specification includes a good amount of security considerations to take include account when

Jose M. del Barco 16

5 PAYMENT AUTHORIZATION MODES

working with sensitive resources. Just like using passwords together with usernames to gain access,
sites will use tokens together with secrets to access resources. And just like passwords, secrets
must be protected.

5.2.2 Notation and Conventions

Service Provider:
A web application that allows access via OAuth.

User:
An individual who has an account with the Service Provider.

Consumer:
A website or application that uses OAuth to access the Service Provider on behalf of the
User.

Protected Resource(s):
Data controlled by the Service Provider, which the Consumer can access through authenti-
cation.

Consumer Key:
A value used by the Consumer to identify itself to the Service Provider.

Consumer Secret:
A secret used by the Consumer to establish ownership of the Consumer Key.

Tokens:
A Token is generally a random string of letters and numbers (but not limited to) that is
unique, hard to guess, and paired with a Secret to protect the Token from being abused.
Tokens are used instead of User credentials to access resources. OAuth defines two different
types of Tokens: Request and Access.

Request Token:
A value used by the Consumer to obtain authorization from the User, and exchanged for an
Access Token.

Access Token:
A value used by the Consumer to gain access to the Protected Resources on behalf of the
User, instead of using the Users Service Provider credentials.

Token Secret:
A secret used by the Consumer to establish ownership of a given Token.

OAuth Protocol Parameters:
Parameters with names beginning with oauth.

Timestamp:
Unless otherwise specified by the Service Provider, the timestamp is expressed in the number
of seconds since January 1, 1970 00:00:00 GMT. The timestamp value MUST be a positive
integer and MUST be equal or greater than the timestamp used in previous requests.

Nonce:
A random string uniquely generated for each request. The nonce allows the Service Provider
to verify that a request has never been made before and helps prevent replay attacks when
requests are made over a non-secure channel (such as HTTP).

Jose M. del Barco 17

5 PAYMENT AUTHORIZATION MODES

5.2.3 Basic Schema

The basic schema, also called “Authentication Flow”, has the following steps:

Obtaining a Request Token Phase

Step 1: A merchant (Consumer in the OAuth specification) registers to the Service Provider
(from now on SP), who gives him a unique Consumer Key and Consumer Secret strings.

Step 2: When the Consumer wants to use the account from that User, it has to request to
the SP a Request Token (no user-specific).

Obtaining User Authorization Phase

Step 3: When the Consumer receives the Request Token, it redirects the User to the SP
login page with the Request Token and the callback URL.

Step 4: Once the User logs in the SP, he is asked to grant access to his account to the
Consumer.

Step 5: If the user accepts to grant access, the SP marks the Request Token as User-
authorized by that user.

Step 6: The SP redirects the browser back to the Consumer page, together with the Au-
thorized Request Token.

Obtaining an Access Token Phase

Step 7: When the Consumer wants to have access to the User data, it asks the SP to
exchange the Authorized Request Token for an Access Token. The SP checks all the
data and returns the Access Token.

Accessing Protected Resources Phase

Step 8: Finally, the Consumer uses the Access Token to access the User data, without
knowing his identity.

Figure 5: OAuth authentication flow

Jose M. del Barco 18

5 PAYMENT AUTHORIZATION MODES

5.2.4 MPP OAuth

One of the main characteristics of the OAuth process when applied to the MPP is that as the
content to access is always the same -the user account information- the implementation is exactly
the same for every merchant, making it really easy to integrate. This procedure is explained with
detail in section 7.

The following is a basic explanation on the specific implementation of OAuth in the MPP
system. To make it easier to understand, the explanation has been personalized to the use of the
web trivia game model.

Step 1: To be able to have access to a user account, www.trivia.com has to send a signed request
to the MPP’s Request Token server by using the public API (this is automatically done at
the beginning of the user session, but can also be manually triggered). The API uses cURL
calls to send the information to MicroPayments and waits for a response in JSON1format.

e.g.: http://micropayments.com/oauth/requestTokenServer.php?oauth consumer key=dpf4
3f3p2l4k3l03&oauth signature method=PLAINTEXT&oauth signature=kd94hf93k423kf44%
26&oauth timestamp=1191242090&oauth nonce=hsu94j3884jdopsl&oauth version=1.0

Step 2: The MicroPayments’ OAuth Server receives the request, checks the signature and the
data in it, and returns the Unauthorized Request Token to www.php-trivia.com in JSON
format.

e.g.: {oauth token: “hh5s93j4hdidpola”, oauth token secret: “hdhd0244k9j7ao03”}
The MicroPayments API retrieves the token information for www.php-trivia.com and saves
it in the session cookie for further use (because it expires).

Step 3: When www.php-trivia.com wants to access a user account, he redirects the user to the
MicroPayments authorization URL including the Unauthorized Request Token in the mes-
sage.

e.g.: http://micropayments.com/oauth/authorize.php?oauth token=hh5s93j4hdidpola

Step 4: MicroPayments authorization page checks the token and asks the user for granting access
to his account to www.php-trivia.com, giving the possibility to add this merchant to his
oneclick list (and so modifying the expiration of its tokens).

Steps 5 & 6: If the user grants access, MicroPayments returns the same Request Token than
before, now considered Authorized.

e.g.: http://www.trivia.com/index.php?oauth token=hh5s93j4hdidpola

Step 7: www.php-trivia.com request MicroPayments to exchange the request token for an access
token. MicroPayments checks the request token and responds with the access token if valid.

e.g.: http://micropayments.com/oauth/accessTokenServer.php?oauth consumer key=
dpf43f3p2l4k3l03&oauth token=hh5s93j4hdidpola&oauth signature method=PLAINTEXT
&oauth signature=kd94hf93k423kf44%26hdhd0244k9j7ao03&oauth timestamp=
1191242092&oauth nonce=dji430splmx33448&oauth version=1.0

response: {oauth token: “nnch734d00sl2jdk”, oauth token secret: “pfkkdhi9sl3r4s00”}

Step 8: Now php-trivia can use the access token to request user data, by adding the required
parameters to that request. In this case, the parameters are included as POST parameters
in a cURL call to perform the transaction.

1JSON, short for JavaScript Object Notation, is a lightweight computer data interchange format. It is a text-
based, human-readable format for representing simple data structures and associative arrays (called objects).
Example: {“firstName”: “John”, “lastName”: “Smith”, “address”: { “streetAddress”: “21 2nd Street”, ”city“:
”New York“, “state”: “NY”, ”postalCode“: ”10021“ }, ”phoneNumbers“: [{ ”type“: ”home“, ”number“: ”212
555-1234“ }, { ”type“: ”fax“, ”number“: ”646 555-4567“ }] }

Jose M. del Barco 19

5 PAYMENT AUTHORIZATION MODES

e.g.:product=question&amount=0.2&oauth consumer key=dpf43f3p2l4k3l03&oauth token=
nnch734d00sl2jdk&oauth signature method=HMAC-SHA1&oauth signature=tR3
%2BTy81lMeYAr%2FFid0kMTYa%2FWM%3D&oauth timestamp=1191242096
&oauth nonce=kllo9940pd9333jh&oauth version=1.0

5.2.5 OAuth Oneclick

OAuth allows the merchant to perform transactions in the name of the user. The OAuth
specification includes a user authorization step, which grants that permission to the merchant by
using the Access Token, but most importantly it allows to set a specific validity to that token.
Knowing that, the MPP system allows the user to set that validity to a specific time. This feature
is called OAuth Oneclick and it is available during the authorization process in the OAuth flow.

If using OAuth Mode, when receiving a OAuth transaction the MPP system will check the
OAuth Oneclick options for that user. If they are still valid the transaction will be performed
automatically, but if not the system will proceed to the authorization phase of the OAuth flow.

5.3 User Panel Mode

The User Panel is the main result of all the investigation and effort in this project. It is in this
mode where the MicroPayments Platform shows its full potential, bringing the typical redirection
scheme to a new level of realtime experience and creating a new conception of agile payments.

5.3.1 The iFrame Cross-Domain AJAX (XDA) Technique

OAuth allows users to grant permission to third parties to their content. In the MPP case, it
allows merchants to trigger transactions in the name of the users. Depending on the level of security
to implement, the access token may have a shorter or longer expiration. As the Authentication
Flow explained, every time a merchant needs to perform a transaction it needs that access token,
so depending on its expiration the full OAuth process will need to be executed.

OAuth can be, then, a slow process. While implementing the first version of the MPP (which
only contemplated the e-shop model) it was a great way to authenticate the merchant, but when
implementing the web game model, with much more quantity of transactions, the desirability of
real-time transaction triggering emerged.

5.3.2 AJAX

From just some years ago, talking about real-time content access in Internet means one word:
AJAX. The core of the so called Web 2.0, AJAX stands for Asynchronous JavaScript and XML,
and it is a group of interrelated web development techniques used on the client side to create
interactive web applications or rich Internet applications. The main characteristic is that using
Ajax web applications can retrieve data from the server asynchronously in the background without
interfering with the display and behavior of the existing page. Its capabilities were demonstrated
widely when Google implemented it in its mail and maps applications, and since then its use has
grown exponentially.

However, Ajax is bound to the same origin policy, which prevents scripting languages the access
to most methods and properties across pages on different sites, meaning that a web cannot perform
Ajax calls to a server in another domain, and that was exactly what I needed for implementing
the real-time transaction triggering. To be able to use Ajax functionalities I had to overcome the
same origin policy, and after some investigation I found the solution in the iFrame Cross-Domain
AJAX technique[6].

5.3.3 Bypassing the Same Origin Policy

An iFrame is an HTML element that can embed an HTML document inside another one. The
source of the embedded page can be on another domain, although because of the same origin

Jose M. del Barco 20

5 PAYMENT AUTHORIZATION MODES

policy the content of the page in an iFrame can be accessed by another one only if the two pages
are on the same domain. However, in any case the parent of an iFrame (the page that contains it)
has access to the URL of the iFrame, and more particularly to the fragment identifier (the string
at the end of the URL starting by #). One of the particularities of the fragment identifier is that
when changing it the page does not reload its contents.

Knowing this, the way to bypass the same origin policy starts by using an iFrame on the domain
of the MPP server. This iFrame is by definition able to do AJAX requests to the MPP server,
as it is in the same domain. The result of those requests can then be forwarded to the fragment
identifier of a child iFrame on the domain of the merchant. This iFrame will be periodically
looking at its fragment identifier to see if changes have been made, and as soon as a new message
is received it will forward it to a callback function described in the merchant’s page (which is
possible because the iFrame is in the same domain as the main page of the merchant).

The following is a schema summarizing this mechanism:

Figure 6: XDA Messaging scheme

By transforming the iFrame pointing to the MPP system to a draggable JavaScript window
and creating a messaging protocol encapsulated in JavaScript API functions we could create an
interactive control panel. This way the most interesting and powerful functionality of this project
was born: the real-time User Panel. The nature of the technique makes the real-time interaction
possibilities between merchants and the MPP system unlimited, becoming one of the most versatile
and usable Internet payment methods. Moreover, it could be easily applicable to other Internet
services: social networks, mailing systems, organizers. . . The options are enormous.

But the advantages of using this technique in the MPP system are not limited to the real-time
triggering of transactions, or the new User Panel. One really amazing consequence of using this
technique is that there is no more need to grant permission to the merchant. As it will be explained
in section 8, the iFrame in the figure above pointing to the MPP’s “ifdajax.php” will become the
User Panel, and it basically load user data from the MPP server. For doing that the user will
need to be logged in the MPP system, meaning that the iFrame will contain all the information
the MPP system needs to perform transactions without letting the merchant know any of it, as it
is only loaded in the web browser of the user. In addition, the MPP system will load the payment
service data for the merchant that is embedding the user panel, so there is no way to create fake
data.

However, the nature of the XDA messaging together with the public API utilization creates a
possible security flaw in the MPP system: a merchant phishing. It was detected in the designing
phase and solved with a three-step initialization phase. Its explanation and the way to overcome
it are explained in the next subsection.

Jose M. del Barco 21

5 PAYMENT AUTHORIZATION MODES

5.3.4 Merchant Phishing Attack

EXAMPLE:

A malicious person wishes to compromise the reputation of a public figure (e.g. a politician) by
making him purchase a doubtful item (e.g. a porno film from his workplace) without him realizing
it, and show it to the press.

The malicious person sets up a website that looks like a e-commerce site where people can buy
flowers. He manages to ”attract” the politician guy to this website during working hours, maybe
with a very special promotion. The fake e-commerce site loads the MPP user panel in its iframe.
However, the user panel is loaded with the merchant id and payment service id of a porno
website (for more details about how the public API works see section 9). If the politician does not
pay attention to this, he may browse the fake e-commerce website and select to buy some flowers.
The fake e-commerce website will inform the MPP user panel that the customer wants to buy a
porno item. Then the MPP panel will ask the politician if he agrees with the purchase. If the
politician does so without paying attention, he will have bought the doubtful item. The malicious
person will then be able to show to the press that the politician guy bought a doubtful item from
his workplace.

PROTECTION:

The problem is that a fake website can load in its iframe the MPP user panel of any merchant.
To protect the system from the attack, we need to enforce that a MPP user panel can be loaded
only in it’s vendor website.

Because of the web browser cross-domain protection, in theory the MPP user panel cannot
know the URL of the parent frame where it is loaded. However, a simple way to achieve this, and
making use of the already framework, is to send a ”testVendorIdentity” message with a random
code to the parent frame trough the panel’s sendMessage function. If the parent frame belongs
to the announced vendor, the iframe in the user panel will be allowed to transmit the message
and the parent frame will receive it. The parent frame needs to forward this message again to the
user panel. If the user panel receives back the message with the same code, it has successfully
determined that the parent frame corresponds to its vendor. This test needs to be done only once
at the beginning, when the panel is loaded, and it successfully protects from the phishing attack.

Jose M. del Barco 22

6 WEB INTERFACE

6 Web Interface

Although constructing a professional-looking website was not in the scope of the project, the
MPP needed at least a very basic web interface to test all the system capabilities, including a
simple signup and a specific area where users and merchants could configure the functionalities.
However, it was when the XDA messaging was adopted and the User Panel was born that we
spent some more time trying to get at least an approximation on what we thought if should be
its interface.

The next subsections will show the idea of what each part of the MPP website should be, as
well as the simplified prototypes I created.

6.1 Micropayments Web Page

As a e-commerce business centered in the payment area, the Micropayments webpage should
be informative but always concise, clear and usable. The home website should give information on
the main functionalities the system offers, have a signup area where new users and merchants can
register to use the MPP services, and a login area where registered users can access their personal
area.

Figure 7: Micropayments main web page

6.1.1 Signup

The MPP signup is a wizard-like registration form that separates into two different processes
depending on what kind of user wants to register: a basic user or a merchant (see fig 8).

Jose M. del Barco 23

6 WEB INTERFACE

Figure 8: Signup - Step 1

The next step will be to collect the user or merchant information, save it and provide the
required information to the user.

(a) Step 2 - Personal Information (b) Data validation

(c) Step 3 - Account settings

Figure 9: Basic User Signup

Jose M. del Barco 24

6 WEB INTERFACE

(a) Step 2 - Merchant Information (b) Step 3 - Owner Information

(c) Step 4 - Owner Address

Figure 10: Merchant Signup

The last step implies providing the user or merchant with information about how to use the
system. In the case of merchants, it also provides the parameters and files required for the system
integration.

6.1.2 User Area

The user area is intended to provide the same functionalities as the User Panel and some
additional ones. It has a similar look & feel to ensure the user understands how to use it.

As the following pictures show, it has a left side menu with the different options and configu-
rations that the user can set up:

(a) User Area panel (b) User Info & Setup

Jose M. del Barco 25

6 WEB INTERFACE

(a) Account Info & Money Transfers (b) Transaction History Log

(c) Oneclick Setup

Figure 11: User Area options

The User Info & Setup option lets the user view and modify his personal information. The
Account Info & Money Transfers provides the user his account numbers and balances, as well as a
way to transfer money between the PayPal accounts and the MPP Virtual Accounts. The Account
History Log option shows a history of all the transactions that the user has performed and their
state (the user can specify the time window of the history). The Oneclick Setup option lets the
user configure Normal Oneclicks as explained in section 4.5. The last options, called User Panel
Setup, Other Services and Help are meant for future features of the MPP system and thus are not
implemented yet. Finally, the Close Session option lets the user log out from the MPP website
safely.

6.1.3 Merchant Area

As explained before, the merchant area is not fully implemented due to time constraints of the
project. However, the basic features it should include are shown in the following capture:

Figure 12: Merchant Area Options (prototype)

The option differing from the User Area is the Payment Service Setup, where the merchant

Jose M. del Barco 26

6 WEB INTERFACE

is able to configure new Payment Services, edit or delete the existing ones, and configure the
payment options for them.

Jose M. del Barco 27

Part II

Technical Implementation
The MPP is intended to be a service to be used by users, but more importantly, by third-parties

or merchants. To make merchants attracted to using the MPP it has to be as simple and fast as
possible. The way to achieve this is by using public APIs (Application Programming Interface),
which encapsulate internal functionalities into simple, argument-based functions, as well as using
a given set of files that include all the code needed to make everything work.

A lot of effort has been made in this project to make the MPP integration as simple as possible.
A combination of PHP and JavaScript has been chosen as the programming languages, as they
are probably the most used technologies in Internet and thus most merchant’s developers will have
the knowledge required to use them. However, for reaching as many merchants as possible further
implementations in other languages are proposed as future enhancements, out of the scope of this
project.

The first step in the early implementation of the MPP was to implement the OAuth protocol,
which is explained in section 7. However, as explained before, the main functionalities of the
project were born after applying the XDA technique, which is explained in section 8. The MPP
integration in merchant websites by using the public JS API is explained in section 9, while the
internal transaction server is explained in section 10, together with the PayPal integration in
section 11. Section 12 shows a brief explanation on the database structure used by the system.
Finally, section 13 describes the integration process of the MPP system as well as the e-commerce
models used to test it.

Jose M. del Barco 28

7 OAUTH IMPLEMENTATION

7 OAuth Implementation

As explained before, OAuth is a well documented, easy to implement protocol. The specifica-
tion gives plenty of hints on how to get the best results of it, even about how to add a security
layer to the protocol communication. In addition, the website offers a variety of implementation
examples in almost every programming language, providing a good starting point for integration.

From those examples I based my implementation on the TwitterOAuth PHP classes [8], as
PHP is the language I am more familiar with, and because the core of the MPP server is also
written in it. The following is a detailed explanation on the classes involved and the modifications
made in the original ones.

7.1 OAuth Package

The OAuth package defines the main classes to request and process OAuth tokens. As the client
side (merchant) does not need to process the tokens, only the OAuth package in the MPP server
includes those classes, and will be explained in the subsection 7.5. For differentiation purposes
the OAuth package for the merchant has been renamed to OAuthMerchant, while the package for
the MPP server is still named OAuth. Here is a description of the classes in the OAuthMerchant
package:

• OAuthConsumer
Defines a consumer by its key and secret strings.

• OAuthToken
Defines a token by its key and secret strings, and provides a way to format them following
the OAuth specifications.

• OAuthSignatureMethod (OauthSignatureMethod PLAINTEXT, OAuthSigna-
tureMethod HMAC SHA1 and OauthSignatureMethod RSA SHA1)
Defines the signature method for the OAuth signature parameter. The first one provides a
general checker. The other ones implements the different signature methods the specification
allows.

• OAuthRequest
Retrieves (from header data or by passed variables) and prepares all the parameters needed
for performing an OAuth request to an OAuth server.

• OAuthException
An implementation of a basic Exception interface.

• OAuthUtil
Basically a codec for the rfc3986 coding standard that the OAuth specification uses for
transmitting its parameters.

7.2 MPPOAuth Class

The MPPOAuth class uses the OAuthMerchant package to provide the tools to implement the
OAuth flow. Its methods are:

construct ($consumer key, $consumer secret, [$oauth token = NULL], [$oauth token secret
= NULL])
Constructor. If the consumer data is passed it means the goal is to get an access token, if
not means getting a request token.

void requestTokenURL()
URL to the request token server.

Jose M. del Barco 29

7 OAUTH IMPLEMENTATION

void accessTokenURL()
URL to the access token server.

void authorizeURL()
URL to the authorizations server.

string getAuthorizeURL($token, [$callback = NULL])
Accessor for the authorizeURL parameter.

array getRequestToken()
Retrieves a request token from the MPP request token server.

array getAccessToken()
Retrieves an access token from the MPP access token server by exchanging the previously
authorized request token for it.

string oAuthRequest($url, [$args = array()], [$method = NULL])
Method used by getRequestToken and getAccessToken to retrieve the tokens from the MPP
servers. It uses cURL calls with the oauth parameters passed by GET or POST (preferred).
The actual implementation uses POST.

7.3 MPPOAuth API

As it can be observed, the code as found in the OAuthMerchant and MPPOAuth classes is
still too low level to be used easily. For this reason I created the MPPOAuth API file, which
encapsulates most of the OAuth process into simple functions, making it able to easily implement
the whole OAuth request flow. Moreover, with the MPPOAuth API I transformed this request
flow into a pseudo-state machine, much easier to handle. By monitoring a self-created variable
called oauth state, the whole OAuth process can be performed almost automatically and just using
a few lines of code.

The following is a brief explanation of the MPPOAuth API:

CONSTANTS
CONSUMER KEY
CONSUMER SECRET

FUNCTIONS

getMpOAuthState()
Gets the oauth state variable, i.e. the current state of the OAuth process. Can be:

“start”: implies asking for a request token;

”authorized“: implies the user has authorized the operation (the request token has been
authorized);

“ready”: implies the access token has been retrieved and it’s prepared to make transac-
tions;

”error“: implies an error in the process.

mpOAuthRequest()
Gets the Request Token from MicroPayments. It returns an array with the request token
key and authorization link (link that the user has to follow to grant access to his contents).
It also saves in the session cookie the token values, as well modify the state of the OAuth
process.

Jose M. del Barco 30

7 OAUTH IMPLEMENTATION

mpOAuthAccess()
Checks the session cookie for information on the access token. If it doesn’t find any
it tries to retrieve the access token from MicroPayments. It returns an array with the
oauth access token key and secret.

getAuthorization($link)
Redirects the user to the link $link, which is the link generated by mpOAuthRequest to ask
the user for granting access.

clearMpOAuthSession()
Clears the OAuth session correctly.

transaction($type, $product=’’Not Specified‘‘, $amount)
Makes an OAuth authorized call to the user account and performs transaction for the passed
amount. Valid values for $type are ”deposit“ and ”withdraw“.

7.4 Merchant OAuth Integration

Once the MPP OAuth process is encapsulated in its own API the only thing left is to implement
the OAuth request flow for a given merchant. As explained in the previous subsections, the OAuth
process has been implemented using the oauth state parameter as the trigger for the retrieval
of the tokens. This way the full schema of the OAuth process can be easily implemented by
monitoring that oauth state.

To limit the number of files the MPP integration needs the OAuthMerchant package,
the MPPOAuth class and the MPPOAuth API have been included in a single file named
Micropayments.php.

The following is an example of integration. By loading this file the merchant can start the
OAuth request flow, which will finally get in the ’ready’ oauth state. Once the process is fin-
ished and the user is returned back to the merchant’s page, the merchant can call the specific
API function to perform a transaction (see section 10.2), which will call this file and pass the
required type, product and currencyOptions variables. For the record, this file is known always
as micropayments.php.

<?php

r e q u i r e o n c e ’ c l a s s e s /Micropayments . php ’ ;

// ge t r eque s t v a r i a b l e s
$oauth s ta t e = i s set ($ REQUEST[’ oau th s ta t e ’]) ?$ REQUEST[’ oau th s ta t e ’] : ’ s t a r t ’ ;
$type = i s set ($ REQUEST[’ type ’]) ?$ REQUEST[’ type ’] : ”” ;
$product = i s set ($ REQUEST[’ product ’]) ?$ REQUEST[’ product ’] : ”” ;
$currencyOptions =

i s set ($ REQUEST[’ currencyOptions ’]) ?$ REQUEST[’ currencyOptions ’] : ”” ;
$ ca l l ba ck = i s set ($ REQUEST[’ c a l l b a c k ’]) ?$ REQUEST[’ c a l l b a c k ’] : ”” ;

switch ($oauth s ta t e) {
case ’ s t a r t ’ :
$ r eques t = mpOAuthRequest ($ ca l l ba ck) ;

i f (\ $reques t [’ a u t h o r i z a t i o n l i n k ’] != ””) {
getAuthor i za t i on ($reques t [’ a u t h o r i z a t i o n l i n k ’]) ;

}
break ;

case ’ author i zed ’ :
$a c c e s s t oken = mpOAuthAccess () ;
i f ($oauth s ta t e != ’ ready ’) {

break ;
}

case ’ ready ’ :
i f ($type != ”” && $currencyOptions != ””) {

t r a n s a c t i o n ($type , $product , $currencyOptions) ;
}

Jose M. del Barco 31

7 OAUTH IMPLEMENTATION

break ;
case ’ e r r o r ’ :

echo ’ e r r o r ’ ;
break ;

}
?>

Here is an explanation following the OAuth flow explained in section 5.2.4:

Obtaining a Request Token
Steps 1 & 2:
The first check to perform when the file loads is the current state of the process. The first state is
”start“, which means that the merchant server will try to fetch a Request Token from the MPP
server.

$reques t = mpOAuthRequest ($ ca l l back) ;

This creates the MPPOAuth object and calls the method getRequestToken. This method makes a
cURL call to MicroPayment’s requestTokenServer.php with all the required oauth parameters.
The server, after authenticating that the request really comes from the merchant, will generate
and return the Unauthorized Request Token in JSON format.

Obtaining User Authorization
Steps 3 & 4:
When the merchant receives a valid request token he can generate the URL for asking user
authorization to MicroPayments and redirect the user:

i f ($ r eques t [’ a u t h o r i z a t i o n l i n k ’] != ””) {
getAuthor i za t i on ($reques t [’ a u t h o r i z a t i o n l i n k ’]) ;

}

Following the OAuth specifications, the authorization request must include the oauth token
and optionally the callback URL. All this data is available at the moment the URL is constructed.

When the link is generated, the merchant is able to redirect automatically the User to that
link. As it needs access from the beginning, he does it automatically once the link is available.

The MicroPayments authorization server checks the validity of the request token by:

1. Checking the signature of the request;

2. Checking the nonce parameter for that token in its database.

If the nonce is found it means the request token has already been used, so it is not valid (and
probably is a wrong reply or even a ”reply attack“). If everything is ok, it asks the user to:

1. Login (if it does not find his information in the session cookie);

2. Grant or Decline access to his account to the merchant.

Steps 5 & 6:
If the user grants access, MicroPayments marks this token as ”authorized“. This marking is
implicit by simply returning to micropayments.php in the merchant server, as if the user declines
the access the OAuth protocol does not allow to let go back to the merchant. The MicroPayments
server also sets the parameter oauth state to ”authorized“ and redirects the User back to the
merchant’s micropayments.php page.

Obtaining an Access Token
Step 7:
The micropayments.php page from the merchant creates another request, this time including the
request token:

Jose M. del Barco 32

7 OAUTH IMPLEMENTATION

$acc e s s t oken = mpOAuthAccess () ;

This generates a request call to MicroPayments’ accessTokenServer.php with all the required
parameters (see fig. 5). MicroPayments checks the signature of the token and its timestamp value
(to see if it has expired), and if everything is correct it generates an access token and returns it
to the merchant, who saves it in the session cookie or in a database for further use.

Step 8:
From this point the merchant can trigger transactions in the name of the user. For doing that he
has to call the specific function of the API, that will call the merchant’s micropayments.php to
build a signed request using the access token, the type of transaction to perform and the amount
to charge, the product information and the payment options:

i f ($type != ”” && $currencyOptions != ””) {
t r a n s a c t i o n ($type , $product , $currencyOptions) ;

}

7.5 OAuth Token Servers

To be able to process tokens, the MPP server has to be able to retrieve the parameters from
the calls performed from the micropayments.php file (using the API), check they are correct, and
create the tokens. This is easily achieved by using the full OAuth package, as it includes the classes
needed to create a token server. The classes are:

• MySQLDataStore
Is a MySQL connector to retrieve tokens from and save tokens to the MPP database.

• OAuthServer
Has all the methods needed to verify OAuth requests, meaning checking parameters, and
comparing signatures. It uses the previous MySQL connector to get and put all the data.

7.6 OAuth Authorizations

The final part of the OAuth process is the authorization. The authorization server from MPP is
a basic web interface that uses an OAuthServer object to check the authorization request from the
merchant’s micropayments.php (the same way the token server do), check if the user is logged into
the MPP system (allowing him to do it if he is not), and show him a message asking to grant the
merchant permission to perform transactions with his account. The user can then grant or decline
access, being redirected to the same merchant’s website he was before if he grants permission, or
staying in the MPP website if he declines.

Jose M. del Barco 33

8 XDA & USER PANEL IMPLEMENTATION

8 XDA & User Panel Implementation

In section 5.3 the XDA technique is presented and explained, including an overview of the
implementation, as it is needed to completely understand how it works. Here I will show how
the MPP combines the XDA technique with an attractive interactive User Panel, transforming
the MPP payment system in a real-time, configurable, fast and reliable platform, unique in its
conception.

As explained before, XDA relies in iFrames and hash queries to be able to bypass the same
origin policy. The following is a technical explanation on how to implement XDA using them.

First of all, for easiness of the explanation I will specify some definitions:

• The specific website of the merchant, in the domain www.merchant.com, that needs to send
XDA messages will be known as ”XDATop“;

• The specific website of the MPP server, in the domain www.micropayments.com, that will
receive the XDA messages will be known as ”XDAFrame“;

MERCHANT DOMAIN SIDE
To implement XDA, the XDATop website needs:

1. An HTML iFrame pointing to the XDAFrame website. ex:

<iframe id=’ micropayments ’
src=’ http ://www. micropayments . com/xdampp . php ’></ iframe>

2. A JavaScript function to send XDA messages to the XDAFrame website and identify them
by the message count. ex:

sendMessageToMPPUserPanel : f unc t i on (msg) {
$ (’ micropayments ’) . s r c =

” http ://www. micropayments . com/xdampp . php#messageId=” +
(++t h i s . l a s tMessageId) + ”&message=” + encodeURIComponent (msg) ;

}

To establish a bidirectional communication, the merchant needs a separated HTML file, which I
will call XDAMerchantReceiver, with:

1. A JavaScript function that periodically checks the hash of its URL to look for new XDA
messages;

2. A JavaScript function to process the XDA messages. ex:

<html>
<head></head>
<body>

<script type=” text / j a v a s c r i p t ”>
// v a r i a b l e t ha t s t o r e the l a s t message id
var prev ious Id = −1;

// regexp to e x t r a c t the message and message id from the hash
var reg = /ˆ#messageId=(.+)&message=(.∗)$ / ;

window . s e t I n t e r v a l (func t i on () {
// ge t the message in the hash o f the URL
var idAndMessage = decodeURIComponent (window . l o c a t i o n . hash) ;

// e x t r a c t the id and the message

Jose M. del Barco 34

8 XDA & USER PANEL IMPLEMENTATION

var id = idAndMessage . r e p l a c e (reg , ’ $1 ’) ;
var message = idAndMessage . r e p l a c e (reg , ’ $2 ’) ;

//make sure i t i s a new message
i f (p r ev ious Id != id) {

// change the prev ious id
prev ious Id = id ;

// forward the new message to the c a l l b a c k func t i on
window . top . ps . c a l l b a c k (message) ;

}
} , 50) ; // check f o r new message every 50ms
</ script>
</body>
</html>

MPP DOMAIN SIDE
The XDAFrame website needs:

1. A JavaScript function that periodically checks the hash of its URL to look for new XDA
messages (same as the merchant side);

2. A JavaScript function to process the XDA messages;

And to establish a bidirectional communication:

1. An HTML iFrame pointing to the XDAMerchantReceiver website. ex:

<iframe id=”getMessageFromMicropaymentsIframe”
src=” http ://www. merchant . com/ xdaMerchantReceiver . php” style=” he ight : 0 ;
width : 0 ; p o s i t i o n : abso lu t e ; top : 0 ; l e f t : 0 ; ”></ iframe>

2. A JavaScript function to send XDA messages to the XDAMerchantReceiver website (and
identify them by the message count). ex:

sendMessageToMPPUserPanel : f unc t i on (msg) {
$ (’ micropayments ’) . s r c =

” http ://www. micropayments . com/ xdaMerchantReceiver . php#messageId=”
+ (++t h i s . l a s tMessage Id) + ”&message=” + encodeURIComponent (msg) ;

}

As it can be observed in the figure 13, this combination of iFrames closes a loop between the
merchant side and the MPP side, creating a bidirectional communication.

If we take a deeper look to the figure we can easily realize that both XDATop.html and
XDAFrame.html could be any website inside their respective domains, always as long as they
meet the requirements imposed by the XDA technique. Another conclusion is that the interaction
between both domains is limited exclusively to XDA messages (which are specified by the MPP
system), making it secure and potentially anonymous for the user.

Now, if we create specific XDA messages for triggering actions in the XDAMPP iFrame, like for
modifying its content to show specific information, we can establish a pseudo-interactive API for
giving merchants the capability of interact with the user that it is using the system without knowing
any information about him, while being the MPP system the one controlling the communication
between both.

By adding a very usable interface, transforming a normal iFrame in a draggable window, and
giving the user some extra configurations, like the ability to configure automatic transactions, the
XDAMPP iFrame becomes the best feature of the MPP system: the User Panel. A complete
example of utilization of the User Panel will be introduced in sections 10.3 and 13 of this report.

Jose M. del Barco 35

8 XDA & USER PANEL IMPLEMENTATION

Figure 13: Scheme of the XDA iFrame configuration

Jose M. del Barco 36

9 JAVASCRIPT PUBLIC API

9 JavaScript Public API

To understand the main capabilities of the MPP system, in particular the merchant integration
using the XDA/User Panel combination, it is first needed to understand the MPP public API.

The use of JavaScript for the public API is explained by the necessity to provide users with
a highly usable environment, with pseudo-real-time information retrieval, and without having to
reload constantly the webpage they are viewing. All this reasons point to Ajax scripting, and thus
to the use of JS.

9.1 Prototype JavaScript Framework

While researching some easy ways to perform Ajax calls I came up with the Prototype
JavaScript Framework. This JS package provides not only an easy way to encapsulate Ajax
requests and responses, but also a simplified DOM access and a pseudo-class system (JavaScript
is not Object Oriented), together with some other useful accessors and functions. By using Pro-
totype the public MPP API became Object Oriented, and thus more intuitive, while the internal
programming of the API was simplified.

9.2 PaymentService Pseudo-Class

The PaymentService is a prototype pseudo-class which contains the core of the MPP public
API. It encapsulates all the functionalities merchants can integrate in their websites: OAuth,
XDA/User Panel, currency payment options, the MPP button and obviously transaction trigger-
ing.

The class constructor retrieves from the MPP server the payment service data associated to
that merchant and payment service id provided, and transforms it into class attributes.

9.2.1 Attribute List

• Retrieved from the MPP Database:

psid: id of the payment service.

merchantId: id of the merchant associated to that payment service.

merchantName: name of the merchant as it is in the MPP database.

typeId: id of the type of payment service (1 = ’game’, 2 = ’e-shop’, 3 = ’token-time’, 4 =
’token-bw’, 5 = ’custom’).

descriptor: description of the payment service (by the merchant).

acceptedCurrencies: ’CHF’,’EUR’,’USD’,’GBP’ or combination of them.

priceCurrencyList: custom equivalences for currency-dependent prices, in JSON format.

baseURL: root of the URL of the merchant.

userPanelContainerName: name of the HTML element (typically a DIV) that will contain
the User Panel.

userPanelFloat: flag to indicates if the User Panel can be moved in-site like a window.

• Generated by the constructor:

userPanel: object containing the user panel.

lastMessageId: message checker for the XDA technique.

merchantCallbackName: name of the merchant-defined callback function associated to re-
ceiving an XDA message.

callbackURL: URL from where the API is accessed. Passed by the merchant.

Jose M. del Barco 37

9 JAVASCRIPT PUBLIC API

authorizeURL (private): URL pointing to the MPP authorize server, adding the
merchantid and the psid parameters.

userPanelURL (private): URL pointing to the MPP’s userpanel.php file, adding the
merchantid, the psid and the callbackURL parameters.

9.2.2 Method List

INITIALIZATION

• initialize(userPanel, paymentServiceId, merchantCallbackName, callbackURL)
Constructor. As the PaymentService object is generated externally to the MPP server, Ajax
is bound to the same origin policy, and XDA still cannot be used. Then, to retrieve the data
the constructor:

1. Uses Ajax to call the file micropayments.php in the merchant server, passing the psid
that the merchant wants to load;

2. micropayments.php performs a cURL call to loader.php in the MPP server, telling it
to load the PaymentService data associated to the psid passed. The server responds
with a JSON string containing all the data;

3. micropayments.php echoes the JSON response;

4. The constructor gets the response from micropayments and processes it, initializing the
class attributes fetched from the MPP server and generating the rest.

• initService(type)
Gets the type of payment service and acts accordingly. This function is a helper for the
different payment services that the MPP system should be able to handle. For instance, if
the payment service is a web game, the cadence of transactions is supposed to be higher. If
the user has to confirm every transaction the pace of the game can be broken, so a Oneclick
configuration is recommended. Then, in the webgame case this function will check if a
oneclick configuration is being used, and suggest the user (by a message in the User Panel)
to create it if it is not.

• showMicropaymentsButton(htmlElementID)
Allows the merchant to specify the HTML element which will contain the MPP button to
initialize the MPP payment system (explained in section 10), and creates it.

XDA HANDLING

• sendMessageToMPPUserPanel(message)
Internal function used to send XDA messages to the MPP User Panel. The messages are
intended to trigger events such as transaction confirmation. They are JSON formatted and
API specific.

• callback(message)
Internal function called when the merchant receives a XDA message from the User Panel.
Basically passes the message to the merchant-defined callback function.

USER PANEL HANDLING

• initUserPanel()
If the merchant decides to use the User Panel feature, it must be shown when the user comes
back from authorization. This function retrieves the GET variable that indicates that and
loads the User Panel window.

Jose M. del Barco 38

9 JAVASCRIPT PUBLIC API

• loadUserPanel()
It transforms the userPanelContainerName HTML container into an interactive window by
using the code from Sebastien Gruhier [2], based also on the Prototype framework and a
visual effects extension called Script.aculo.us [1]. The same function is used to toggle the
visualization of the User Panel when clicking on the MPP button in the merchant website.

• showUserPanel()
Shows the user panel.

• hideUserPanel()
Hides the user panel.

• forcePanelShow()
Checks if the User Panel is visible (not minimized, closed or hidden by other windows). If
not if shows it. Useful when triggering transactions, as the user has to know it.

TRANSACTION TRIGGERING

• setPriceList(priceList)
Lets the merchant specify a JSON formatted list of equivalent prices in different currencies.
I also allows to specify the preferred currency for the payment.

Example:

var newList = ’ {
” l i s t ” : [

{” currency ” : ”EUR” , ” p r i c e ” : ”10” , ” d e f a u l t ” : ”0”} ,
{” currency ” : ”USD” , ” p r i c e ” : ”15” , ” d e f a u l t ” : ”1”} ,
{” currency ” : ”CHF” , ” p r i c e ” : ”15” , ” d e f a u l t ” : ”0”}

]
} ’ ;

• confirm(product, priceList)
This is the main function for triggering purchase-related transactions. If the merchant
specified to use OAuth it will trigger the internal function buy. If not, it ensures that the
User Panel is loaded. If it is, it sends the specific message to the User Panel to make the user
confirm a purchase of the product with the price options specified in either the priceList
parameter passed or the default price list that the merchant specified when creating the
payment service.

• deposit(amount)
Internal function that will trigger an OAuth deposit transaction, i.e., that the merchant will
transfer money to the user.

• buy(product, priceList)
Internal function that will trigger an OAuth purchase transaction, basically passing the
required parameters to the micropayments.php file.

OAUTH HANDLING

• loadOAuth()
Starts the OAuth process by redirecting the user to the merchant’s micropayments.php,
which as it has been explained in section 7.4 will start the OAuth request flow.

• ClearOAuthSession()
Clears the session data specific to the OAuth process. Once done, the whole OAuth request
flow will have to be run in order to be able to trigger OAuth-based transactions again.

Jose M. del Barco 39

9 JAVASCRIPT PUBLIC API

9.3 API Loading

To be able to use the MPP API the merchant needs to include the file micropayments.js
and micropayments.css from the MPP server in the HTML head. Once done, a simple
call to create the PaymentService pseudo-class with its initial parameters (OAuthEnabled,
paymentServiceId, merchantCallbackName, and callbackURL) will load all the required data
to be able to use all the MPP functionalities, including OAuth, the User Panel handling and the
transaction triggering. If he wants, the merchant can also specify a callback function in JavaScript
for the XDA messages received from the MPP User Panel. If he does not, the system will use a
void function instead (”do nothing“).

Example:

<script type=” text / j a v a s c r i p t ”
src=” http ://www. micropayments . com/ j s /micropayments . j s ”></ script>

<l ink href=” http ://www. micropayments . com/ c s s /micropayments . c s s ” rel=” s t y l e s h e e t ”
type=” text / c s s ” />

<script type=” text / j a v a s c r i p t ”>

//Merchant de f ined c a l l b a c k
f unc t i on c a l l b a c k (message) {

switch (message . a c t i on) {
case ’ t r a n s a c t i o n o k ’ :

$ (’ conf i rm ’) . s r c = ’ conf i rm . php? ac t i on=TRANSACTION OK&amount=’+m. amount ;
$ (’ conf i rm ’) . s r c += ’¤cy=’+m. currency+’&product=’+m. product ;
$ (’ conf i rm ’) . show () ;
setTimeout (’ $ (” conf i rm ”) . h ide () ’ ,5000) ;
break ;

}
}

// I n i t i a l i c e Micropayments System
var callbackURL = ’ http ://www. merchant . com/ show product . php? product=<?php echo

$product [’ id ’] ; ?> ’ ;
var ps = new PaymentService (true , ” t e s t 2 ” , ca l lback , callbackURL) ;

</ script>

From this point, the merchant can use the API functions by using the pseudo-object ps.

Example:

// de f ine currency opt ion l i s t
var p r i c e L i s t = ’ { l i s t : [{

c u r r e n c y : E U R ,
p r i c e : 1 0 ,
d e f a u l t : 0

}]} ’ ;
ps . s e t P r i c e L i s t (p r i c e L i s t) ;

Example 2:

//Load the MP but ton when the DOM i s loaded
window . onload = func t i on () {

ps . showMicropaymentsButton (’ mpButtonLoad ’) ;
}

Jose M. del Barco 40

10 TRANSACTION PROCESSING

10 Transaction Processing

As explained in the previous sections, the MPP system uses Virtual Accounts to perform
transactions between users and merchants. Depending if the system is using OAuth or not,
the processing of the transactions implies more or less check filters, although they end in the
same transaction server. The following is an explanation of the two different ways of handling
transactions that the MPP offers: OAuth and User Panel (XDA). In both, it is assumed that the
MPP’s PaymentService pseudo-object has been properly initialized.

10.1 Redirect Mode

The basic transaction process is similar to the one used by most of the actual payment proces-
sors (like PayPal). It redirects the user to the MicroPayments website adding the payment options
of the product selected.

(a) User clicks on the ”Buy” button in the merchant web-
site

(b) User is redirected to the MPP website, where is
asked to login if he is not

(c) Once logged in, the user area is shown, with a new panel
showing the transaction details and the confirmation button

(d) The MPP performs the transaction and
redirects the user back to the merchant web-
site, where it is confirmed

Figure 14: Redirect Mode transaction flow

10.2 OAuth Mode

While using OAuth, transactions are triggered by the micropayments.php file in the merchant
server. This file redirects the user to the website process.php in the MPP server, while adding
the OAuth parameters required as GET variables. Process.php creates an OAuthServer object to

Jose M. del Barco 41

10 TRANSACTION PROCESSING

validate the request, and if valid it presents the information of the transaction to the user, who
has to accept or deny the transaction. At this point the user is able to configure an automatic
granting of transactions, which will allow the full potential of the OAuth as the system will not
need to redirect the user to the MPP website, but only check the validity of the OAuth data and
perform the transaction without asking the user.

The following pictures show the OAuth transaction handling in the e-shop model:

(a) User clicks on the ”Buy” button in the merchant web-
site

(b) User is redirected to the MPP website, where
is asked to login if he is not

(c) Once logged in, the user is asked to grant
access to www.buyflowers.com. He can also set
up an OAuth Oneclick.

(d) The user clicks in the ”Grant” button and is
redirected back to the merchant’s website after 3
seconds

Jose M. del Barco 42

10 TRANSACTION PROCESSING

Figure 15: (e) The transaction is performed. From that moment every time the user clicks on
”Buy” again the process repeats from step (c). If the user sets up an OAuth Oneclick the process
goes directly to step (e) (no redirection).

10.3 User Panel Mode

If the system uses XDA messages as transaction triggers the flow is completely different, as it
is completely handled by the MPP API.

Obviously, for the XDA to work the User Panel has to be loaded in the user web browser. To
do that a specific MicroPayments button is shown in the merchant website. Clicking on it triggers
an MPP API call to check if the user is logged in the MPP server. If not, the user is automatically
redirected to a specific MPP login area where he is alerted about the steps to follow and, once
logged in, he is redirected back to the same merchant page he was before. The User Panel is then
automatically loaded and shown, and the user can start using the MPP payment system. Note
that if the user was already logged in the MPP server, clicking on the MPP button in the merchant
website will directly load and show the User Panel, without the necessity to redirect him to the
MPP website.

Whenever the merchant wants to trigger a transaction (usually when the user clicks on an
specific button or link) he has to call the confirm API function and pass to it the product
parameter and optionally the priceList parameter. This function creates the XDA message
to alert the User Panel of a new transaction. From that point the User Panel takes control of
everything, showing the user the information related to the new transaction, letting him choose
whether to accept or cancel it and, if accepting it, which payment option should apply from the
ones that the merchant has specified. The user has unlimited time to choose those options and
finish the transaction procedure, although for security reasons the User Panel only handles one
transaction at a time, alerting the user in case other transactions are trying to be performed
before finishing the current one. All the rest of functionalities of the User Panel are available
while the transaction is still pending, but any new Oneclick configuration will apply after the
current transaction has been finished, and not on it. Also while confirming the transaction, the
User Panel gives the user the chance to configure an Express Oneclick, as explained in section 4.5.

Once the user has confirmed the transaction, the User Panel sends an XDA confirmation
message to the merchant. As those messages are standard, the merchant can set up his own
callback functions to act accordingly to the transaction confirmation message. If so, he must have
included the name of the callback function when initializing the MPP Payment Service (view
section 9.3). If no callback function was specified then, the MPP system will not do anything with
the transaction confirmation.

The following pictures show the XDA transaction handling in the same e-shop model than the
previous section:

Jose M. del Barco 43

10 TRANSACTION PROCESSING

(a) User clicks on the MPP button (b) If not logged in, user is redirected to the MPP
login area

(c) When logged in, user is redirected back to the
Merchant website

(d) The User Panel loads with all the user data

(e) If user clicks on ”Buy” the User Panel shows the
confirmation panel

(f) User can choose from the different payment op-
tions the Merchant offers

Jose M. del Barco 44

10 TRANSACTION PROCESSING

Figure 16: (g) User clicks on ”Proceed to pay“, the User Panel performs the transaction and
confirms the state to both user and merchant

XDA ONECLICK TRANSACTION FLOW:

(a) User clicks on ”Buy” button and selects the
”Oneclick This!” option

(b) User selects the validity of the Oneclick

(c) When he clicks on ”Save and Pay” he saves the
Oneclick option and performs the transaction.

(d) From that point, and for the validity selected in
the step (b), any other transaction performed will
show a countdown of 5 seconds in the User Panel

Jose M. del Barco 45

10 TRANSACTION PROCESSING

Figure 17: (e) If the user does not cancel the transaction in those 5 seconds, it is performed
automatically

10.4 MPP Transaction Server

As the MPP payment system relies on virtual accounts for performing transactions between
users and merchants, the transaction server only has to:

1. Add or subtract the amount of the transaction to the existent balance of the user and/or
merchant in the MPP database;

2. Save all the data of that transaction in the MPP database for future logging, and

3. Update the user data in the User Panel.

Points 1 and 2 are handled in the MPP server by the file transaction.php. It receives the
parameters needed (psid associated, if it is a cancellation or not, the type of transaction, the
amount, the user and merchant id’s and accounts and a flag that indicates if the user wants to
create an Express Oneclick with it), instances a Transaction class and uses its perform method
to do all the database procedures.

The Transaction class is prepared to perform any of the transactions the MPP system is able
to handle, and respond with a single string indicating the final state of the transaction. Depending
on the parameters passed to its constructor the type of transaction that it can perform varies.
For example, for performing a deposit in a user account the constructor needs the user id, the
user account id or the currency of the deposit, and the amount, while for performing a purchase it
needs all the parameters but the currency. If a parameter is missing, typically the currency of the
transaction, the constructor will try to get it from the parameters it has. If the constructor lacks
a parameter and it is not able to automatically guess it, it will report an error as the response of
the transaction and save it in the MPP database.

However, the Transaction class is obviously an internal tool. It can be instanced only in the
MPP server. Actually only the transaction.php file access it, so for security reasons it asks for
authentication credentials only the MPP server knows.

Point 3 is handled by the User Panel once it has retrieved the response from the transaction
server. It basically uses two JavaScript functions called confirmToUser and confirmToMerchant.
The first one changes the visualization of the User Panel to show a confirm message with the result
of the transaction, while the second one sends a XDA message to the merchant with the result of
the transaction, so the merchant can capture it with its callback function and act accordingly.

Jose M. del Barco 46

11 PAYPAL INTEGRATION

11 PayPal Integration

As explained in section 4.1. PayPal offers the MPP the external layer to transform virtual
money into real one. To make this process as transparent to the MPP users (merchants and
their users) as possible, the MPP system uses the public PayPal API, which is able to trigger
transfers between PayPal accounts and initiate checkout processes (which in the MPP case will
be transformed into MPP Virtual Account transfers).

In this section I will review all the PayPal tools needed for its implementation in the MPP
system: the services they provide, the testing environment, its API and callback system and the
currency handling. Then I will explain the integration process, and I will comment briefly their
fee policies in production environments.

11.1 PayPal Services

PayPal offers a variety of services for their customers to perform online transactions. Those
services are usually related to a checkout process triggered by a preset button, although they
provide businesses with more advanced functionalities, bundled in different packages.

The Website Payments Standard package provides the basic functionalities, which include the
creation of personalized buttons and the use of the basic API functions to perform transfers
between PayPal accounts.

The Website Payments Pro package provides advanced functionalities to businesses with a PCI
compliance certificate, meaning they already had implemented other payment options. The Direct
Payment allows the use of the API to perform payments using a credit card introduced in the
merchant website, so the user does not have to be redirected to the PayPal website. The Express
Checkout provides a fast checkout service for users with a PayPal account, independently of where
they are performing the purchase transaction (the merchant or the PayPal website). It requires
to pay a monthly fee of around 30 USD.

Finally, PayPal offers a gateway service called Payflow, which allows the merchant to commu-
nicate directly to the bank of its user. It uses a completely separated API and provides advanced
security options such as fraud protection and recurring billings. Right now the gateway is limited
to United States, New Zealand, Australia, Canada and Singapore, and its basic setup has an initial
fee of 250 USD with a monthly fee of around 50 USD.

As it can be observed, the PCI constraints for the Website Payments Pro and the country for
the Payflow, together with the fact that they are more expensive solutions, limited the choice of
the services to apply in the MPP system to the Website Payments Standard.

11.2 The SANDBOX Testing Environment

PayPal offers its users a testing environment called Sandbox. It is basically a mock-up of the
real PayPal for business to test their API implementations. For using the environment you must
signup in its webpage without using a real PayPal-assigned e-mail account. In sandbox, a user
can create any number of fake accounts (basic, premium or business), which will be associated to
him, and recreate its payment service, for example creating buttons or allowing the fake premium
account to use the API as it was a real account. It provides the credentials for every account, and
even a control panel from which the tester can trigger the login of the fake users. It also allows to
specify any balance for any fake accounts, as well as any number of currencies.

Jose M. del Barco 47

11 PAYPAL INTEGRATION

Figure 18: Sandbox control panel

(a) PayPal User mockup (b) PayPal API credentials

Figure 19: Sandbox user control panel

Obviously this environment is perfect for the scope of the MicroPayments project, as it allows
to recreate all possible situations without using real accounts with real money.

11.3 The PayPal API

For using the PayPal API a Premium or Business account has to be created. Any person can
have a Premium account, but the Business account has to be bound to the business information
(the Sandbox environment allows to create them by using fake data).

Once the account is activated, you have to ask for API credentials in the PayPal web. You
have to choose between ”signature“ or ”certificate“ credentials. The first one is a set of username,
password and encrypted signature parameters that have to be sent with the API call; the second
one is using an SSL certificate to send the API calls, without needing the signature parameters. For
easiness I choose the signature method, although in production environments the SSL certificate
is recommended.

PayPal has two different API technologies: Name-Value Pairs (NVP) and SOAP. The simplest
implementation is the NVP, based on HTML, scripting and cURL calls. The SOAP implemen-
tation has a much more complicated, Object Oriented programming overhead and it’s designed
specifically for securing the Direct Payments and Express Checkout calls (which can only be used
in the non-free Website Payments Pro package). Anyway, as the Express Checkout and Direct
Payments functionalities are out of the scope of the MicroPayments project, the only API functions

Jose M. del Barco 48

11 PAYPAL INTEGRATION

than can be used are:

GetBalance
Shows the balance of the account associated to the API credentials.

GetTransctionDetail
Shows all the data related to an already performed transaction.

MassPay
Transfers money between PayPal accounts.

RefundTransaction
Forces the payback of a previously performed transaction.

TransactionSearch
Uses multiple filters for searching already performed transactions.

11.4 Callback Handling

If you have a Premium or Business account PayPal lets you enable a functionality called ”Auto
Return“, which basically returns the user to the URL you set in the PayPal configuration or using
an API call. Then, to establish a real callback method PayPal supports different options:

Payment Data Transfer (PDT): provides merchants with the information on the transaction
performed (identified by a token), so he can use it to confirm the user. It uses a token system
and GET/POST variables to authorize the merchant to retrieve the information.

Instant Payment Notification (IPN): a messaging protocol that enables more advance func-
tionalities, such as triggering other API actions. It requires a listener script running in the
merchant server.

In the case of MicroPayments, PDT will provide all the information needed to confirm the user
of the payment, so there is no necessity of implementing the more complicated IPN messaging.
Note that this is only used when the user is redirected to the PayPal website. The rest is done by
cURL responses.

11.5 Currency Handling

A PayPal user can have only one account, but he can specify the currency or currencies to
use in it. If more than one, any transaction will automatically be charged to the account with
the same currency as the transaction. If the user has not that currency the transaction will be
stopped (pending) until the user manually decides what to do: exchange it or cancel it.

From the PayPal documentation: ”If your transaction involves a currency conversion, it will be
completed at a foreign exchange rate PayPal obtains from a financial institution, which is adjusted
regularly based on market conditions. This exchange rate includes a 2.5% processing fee above the
exchange rate, and the processing fee is retained by PayPal. The specific exchange rate that applies
to your multiple currency transaction will be displayed at the time of the transaction“.

There is no way of exchanging currencies between accounts from the same user using the API,
although it can be done manually using the PayPal web.

For all this reasons, the currency handling of the MPP system will not use the PayPal system,
but a self implementation of the forex exchange rate conversions. Concretely, the MPP prototype
uses the FoXRate XML-RPC API [citation], a free and simple forex table updated frequently:

RPC endpoint: http://foxrate.org/rpc/

Method name: foxrate.currencyConvert

Parameters: • from currency (eg: USD) = string

Jose M. del Barco 49

11 PAYPAL INTEGRATION

• to currency (eg: GBP) = string

• amount to convert (eg:100.0) = float

Response: foxrate xml-rpc interface will response with a Struct of 3 members:

• flerror (Boolean): 1 if there is an error , 0 if the call is successful

• amount (double) : converted amount

• message (string) : date of latest exchange rate. contains error message if flerror is 1

Example of Request:

POST / rpc / HTTP/1 .0
Host : f o x r a t e . org
User−Agent : xmlrpc l ib . py /1 .0 1 (by www. pythonware . com)
Content−Type : t ex t /xml
Content−Length : 270

<?xml v e r s i on=’ 1 .0 ’ ?>
<methodCall>

<methodName> f o x r a t e . currencyConvert </methodName>
<params>

<param><value> <string>USD</ string></value></param>
<param><value><string>GBP</ string></value></param>

<param><value><double>100</ double></value></param>
</params>

</methodCall>

Example of Response:

HTTP/1.1 200 OK
Date : Sun , 11 Feb 2007 14 : 47 : 14 GMT
Server : Apache / 2 . 0 . 5 4
X−Powered−By : PHP/ 5 . 1 . 2
Connection : c l o s e
Content−Length : 396
Vary : Accept−Encoding
Content−Type : t ex t /xml

<?xml v e r s i on=” 1 .0 ”?>
<methodResponse>

<params>
<param>

<value><s t r u c t>
<member>

<name> f l e r r o r</name>
<value>< i n t>0</ i n t></value>

</member>
<member>

<name>amount</name>
<value><double>50 .36</ double></value>

</member>
<member>

<name>message</name>
<value><string>” 2/9/2007 ”</ string></value>

</member>
</ s t r u c t></value>

</param>
</params>

</methodResponse>

11.6 MPP Virtual Account Handling

The MPP system uses personalized buttons to deposit and withdraw money from the PayPal
accounts to the MPP Virtual Accounts, making it really easy to use its users. Those buttons can

Jose M. del Barco 50

11 PAYPAL INTEGRATION

be found in the option ”Account Info & Money Transfers” of the User Area, in the MicroPayments
website.

The steps for depositing money in the MPP Virtual Accounts are shown in the following
pictures:

(a) User clicks on the ”Charge USD” button in the
User Area

(b) User is redirected to PayPal website, where he
writes the amount to deposit in the MPP Virtual
Account

(c) The same would happen by clicking on ”Charge
EUR” button in the second user account. Note that
now the PayPal currency is EUR.

(d) User clicks on ”Update Totals” and enters his
PayPal account e-mail and password

(e) Information on the payment is shown and user
clicks on ”Pay Now”

(f) User is redirected back to the MPP website and
is informed of the successful transaction. His balance
is automatically updated.

Figure 20: Using PayPal for depositing money in a MPP Virtual Account

The steps for withdrawing money from the MPP Virtual Accounts to the PayPal account are
shown in the following pictures:

Jose M. del Barco 51

11 PAYPAL INTEGRATION

(a) User clicks on the ”Get USD” button in the User
Area

(b) User confirms the PayPal account where to trans-
fer the money and inserts the amount

(c) The MPP system uses the PayPal API to transfer
the money without redirecting the user. A confirma-
tion message is shown and the balance is updated.

Figure 21: Using PayPal for withdrawing money from a MPP Virtual Account

11.7 Fees in Production Environment

PayPal charges its users with a fair amount of fees for using their services. For information
about them, please refer to the following links:

• General Fee overview:
https://www.paypal.com/ch/cgi-bin/webscr?cmd=p/gen/ua/policy fees-outside

• Normal Transaction Fees:
https://www.paypal.com/ch/cgi-bin/webscr?cmd= display-receiving-fees-outside

• Cross-border Transaction Fees (for receiving transactions from buyers outside Switzerland):
https://www.paypal.com/ch/cgi-bin/webscr?cmd= display-xborder-fees-
outside&countries=

• Withdrawal Fees (transfer from paypal to a real account):
https://www.paypal.com/ch/cgi-bin/webscr?cmd= display-withdrawal-fees-outside

Other characteristics of the PayPal fee system are:

• Receiving fees are assessed in the currency in which the funds were sent. Payments converted
to the user’s primary currency are converted at a frequently updated exchange rate with an
applied fee of 2.5%.

• The Mass Pay feature (needed for sending money to the merchants and user’s PayPal
accounts) charges a fee of 2% of the payment amount with the following cap will be assessed
on each payment:

Jose M. del Barco 52

11 PAYPAL INTEGRATION

Payment Currency Payment Cap
USD $1.00 USD
CAD $1.25 CAD
EUR 0.85 EUR
GBP 0.65 GBP
JPY 120 JPY
AUD $1.25 AUD
CHF 1.30 CHF
NOK 6.75 NOK
SEK 9.00 SEK
DKK 6.00 DKK
PLN 3.00 PLN
HUF 210 HUF
CZK 24.00 CZK
SGD $1.60 SGD
HKD $7.00 HKD
NZD $1.50 NZD
ILS 4.00 ILS

MXN $11.00 MXN

It seems obvious to think that to be able to maximize the benefits of the MPP system in a real
business environment, the amount of PayPal based transactions has to be reduced to a minimum,
as in the worst case they charge a fee for performing the transaction, another if it is a cross-border,
and even more if a currency exchange has to be done.

One of the scopes of future implementations should be, then, to make the necessary steps
to become a PCI compliance business, so to be able to use or even implement a direct gateway
system.

Jose M. del Barco 53

12 DATABASE MANAGEMENT

12 Database Management

The MPP server uses a MySQL database for saving the data. The database structure is the
following:

Figure 22: MPP Database structure

company industry
The industry of the merchant. Saved in the signup process.

country codes
The standard three capital letter codes of the main countries of the world.

currency code
The standard three capital letter codes of the main currencies of the world.

forex
A table with the exchange rates of all the currencies supported by the system, and the fee
that the MPP system will apply to an exchange between them. The information is retrieved
from the FoXRate public API. In production environments should be updated at least daily.

merchant accounts
The data related to the virtual accounts of the merchants with all the subsequent data
(balance, currency, etc.).

merchants
A list of the merchants that use the MPP system. It has all the data introduced by them
during the signup process.

mp account
The data related to the MPP virtual account with all the subsequent data (balance, currency,
etc.).

mp data
General data about the MPP (version, transaction server URL, base URL, etc.)

Jose M. del Barco 54

12 DATABASE MANAGEMENT

oneclick
All the information related to the Oneclick configurations of the users.

payment service type
Types of payment services that the MPP system handles.

payment services
All the data related to the payment services created by the merchants.

price currencies
List of default price/currency rates that the merchant can specify in the signup process or
in his control panel. If no price/currency information parameter is passed when triggering a
transaction, the system will retrieve and uses this one.

tokens
Placeholder for the tokens used by the OAuth protocol.

transaction type
All the transaction types the MPP system handles.

transactions last
It contains the last transaction performed by all the users of the system, in case they want
to create an Express Oneclick configuration.

transactions merchants
List of transactions where merchants are involved. This includes purchases from users as
well as PayPal transactions.

transactions users
List of transactions where users are involved. This includes purchases as well as PayPal
transactions.

user accounts
The data related to the virtual accounts of the users with all the subsequent data (balance,
currency, etc.).

users
A list of the users that use the MPP system. It has all the data introduced by them during
the signup process.

Jose M. del Barco 55

13 MERCHANT INTEGRATION

13 Merchant Integration

Now that the MicroPayments Platform has been explained in detail, the only step left is to
be able to integrate it in merchant websites. As the reader can see, one of the main concerns of
this project has been minimizing and simplifying the steps involving the integration and using
the MPP system. Thanks to this effort, the MPP integration is very simple no matter how the
merchant website is constructed and programmed. Moreover, it is compatible with all the main
web browsers. The MPP API can be loaded from any site in the merchant server, even a plain
HTML file, as it only needs JavaScript to work. The technical knowledge required to integrate it,
then, is very low. However, please note that the whole MPP system does require PHP to work,
as the current MPP library is only implemented in PHP.

In subsection 13.1 an integration guide is explained, while subsection 13.2 shows the test
examples that have been programmed along the MPP to test all its features.

13.1 Integration Steps

The MPP payment system needs only 2 files and a few lines of code to be fully functional, no
matter if the system is using OAuth or the XDA messaging options.

The steps for a basic integration (the one in the e-shop model explained in section 13.2.1) are:

1. If not done yet, create a merchant account by signing up in the MicroPayments webpage.
During the process, the merchant will be asked to create a Payment Service associated to him.
After finishing the signup process, the system will provide the merchant his consumer key,
consumer secret and all the account information. It also will give him a link to download the
required files for the MPP integration, which have to be downloaded and used as described
in the next steps.

2. Copy the file micropayments.php and Micropayments.php in the server where the website
is. The micropayments.php file is the central monitor of the XDA messaging and the
OAuth processor and it requires the file Micropayments.php, as it includes all its classes
and functions. The merchant has to ensure then to include those files in the php code of the
web page.

3. If the merchant wants to use the OAuth system he has to insert the CONSUMER KEY and
CONSUMER SECRET, that were provided to him when signing in the MPP website, in the file
Micropayments.php. For doing that, he must use the define("CONSUMER KEY","") and
define("CONSUMER SECRET","") PHP statements. For security reasons a hard-coding of
those variables is not recommended. For example:

$ l i n k = mysql connect (’ host ’ , ’ username ’ , ’ password ’) ;
$ s q l = ’ s e l e c t consumer key , consumer sec re t from p r i v a t e d a t a ’ ;
$ r e s u l t = mysql query ($sq l , $ l i n k) ;
$consumer data = m y s q l f e t c h a s s o c ($ r e s u l t) ;

// Consumer key and s e c r e t from MicroPayments (NOT MODIFY THIS VALUES)
d e f i n e (”CONSUMER KEY” , $consumer data [’ consumer key ’]) ;
d e f i n e (”CONSUMER SECRET” , $consumer data [’ consumer sec re t ’]) ;

4. Insert the following lines in the <head> section of every merchant web page that needs to
use the MPP functionality.

<script type=” text / j a v a s c r i p t ”
src=” http ://www. micropayments . com/ j s /micropayments . j s ”></ script>

<l ink href=” http ://www. micropayments . com/ c s s /micropayments . c s s ”
rel=” s t y l e s h e e t ” type=” text / c s s ” />

5. To initialize the Payment Service API, insert the following line in the <head> tag, after the
previous ones:

Jose M. del Barco 56

13 MERCHANT INTEGRATION

<script type=” text / j a v a s c r i p t ”>

var ps = new PaymentService (true , ” t e s t 2 ” , ca l lback ,
’ http ://www. merchant . com/ whateverur l . php ’) ;

</ script>

If the merchant has already other javascript code, the previous lines can be inserted anywhere
inside the <script> tag, but obviously before the using of any API function.

The first parameter in the PaymentService initialization indicates if the User Panel is acti-
vated or not. The second is the unique id of the payment service to load. This id is given
to the merchant when he creates that Payment Service in the MicroPayments website. The
third parameter is the name of the callback function the merchant wants to use (must be
JavaScript and loaded before the initialization of the PaymentService API). Finally the last
parameter is the URL to go back in case the user needs to authenticate to use the MPP
User Panel.

6. If the OAuth mode is not activated the MPP button must be loaded by inserting the following
code:

//Load the MP but ton when the DOM i s loaded
window . onload = func t i on () {

ps . showMicropaymentsButton (’ mpButtonLoad ’) ;
}

Where mpButtonLoad is the name of the HTML container of the button. If it is activated,
this step is not required.

And that’s it. From this point and with only 6 basic steps at much (4 if OAuth is not used,
which is the normal scenario) the MPP system is integrated and completely functional. Now the
merchant can use the MPP API as explained in section 9, and the user will be able to load the
User Panel and perform transactions in the MPP server.

13.2 Test Examples

As said before in this report, two different e-commerce models where created to test the im-
plementation system and the different payment authorization modes. The idea was to recreate in
a basic way real e-commerce sites and integrate the MPP platform in them. The following is a
description of those test sites.

13.2.1 e-Shop Example

The first example of integration is a basic and typical e-shop in the flower market. The scope
is to test the platform in situations where small amounts of more expensive transactions are
performed, as a substitutive of the normal checkout process.

The site provides a small catalog of flowers to sell, with their prices, and a ”Buy“ button. The
web interface has been fully explained as the integration example in the Transaction Processing
section (10). The files involved in it are:

index.php: The home of the website. It shows the catalog of flowers to purchase as images.
Clicking on any of them will load the respective data in the show product.php web.

show product.php: It displays the price of the specific flower selected in the index.php, and
provides a ”Buy“ button to start the purchase process. This website is where the MPP
system is loaded, so it is the subject of the merchant integration explained in section 13.1.

Jose M. del Barco 57

13 MERCHANT INTEGRATION

confirm.php This webpage, embedded as an iFrame in the show product.php, shows the re-
sults of the transactions after processing the callback messages sent by the MPP platform
(independently of the payment mode used).

css/flowers.css A basic Cascade Style Sheet file for the style of the HTML elements inside the
www.buyflowers.com website.

js/confirm.js The JavaScript file containing the callback function for processing the MPP call-
back messages.

The site also contains the files required by MPP as explained in section 13.1:
micropayments.php and classes/Micropayments.php.

13.2.2 Web Game Example

This second example of integration goes directly into the micropayment problematic by
presenting a web-based trivia game. For testing the integration capabilities of the MPP we
used a predefined, open-source package called “PHP Dynamic Trivia”, by Robin van de Vusse
(r.vandevusse@rogers.com). The base game includes a MySQL database with the system data
and trivia questions, a login area and the main game area, where the logged user can choose
between various topics to start the game. Once he chooses a topic, the user has to answer a
randomized series of questions, with the only hint of knowing how many words and letters the
answer has.

To integrate the MPP system and test all its features the code of the game has been changed
to:

• Allow an anonymous play (no login required) in addition to the account-based one;

• Charge the user in real-time for every formulated question;

• Reward the user in case the answer is correct;

• Show a panel (iFrame) with statistics about number of correct and wrong answers and the
maximum number of correct answers in a row;

• Forced OAuth or User Panel Mode (specialy the last one), to show the real capabilities of
the MPP system when applied to fast payments;

• For testing purposes, the system can show the correct answer in the “hint” area.

As the rate of the transactions is much higher (around 5 per minute), a Oneclick configuration
(see 4.5) is suggested to the user once he performs the first transaction (or loads the User Panel).
If activated, the game becomes much more playable and with fully automated payments.

The most relevant files involved in the website are:

index.php: The home of the website. It shows the login area and a new “Anonymous Play”
button, as well as a register link in case the user wants to create an account to save his data.
The login form calls the file login.php to process the database query. It is also the first
webpage with MPP integration, so the MPP button to load the system is here.

main.php: This webpage lets the user select the topic of the trivia to play. It also loads the MPP
User Panel. If the user does not have a Oneclick configuration activated for that site, the
User Panel suggests him to do so. This page also contains a score panel with real-time data
(not present in the original code).

question.php: This webpage shows the question for the selected topic. It also loads the User
Panel, and updates the amount if the question is correct.

Jose M. del Barco 58

13 MERCHANT INTEGRATION

questionproc.php: This file processes the answers introduced by the user and checks if they are
correct or not

As in the e-shop example, the files required for the MPP integration are also present
(micropayments.php and classes/Micropayments.php).

The following are a set of screenshots showing the web game and the MPP implementation:

(a) Main page. The MPP button is displayed. (b) When user clicks in ”Anonymous Play” and is
not logged in the MPP website, he is redirected to
it to do so

(c) User logs in and is redirected back to the trivia
website

(d) The User Panel detects the user does not have a
Oneclick configuration, and suggests to do so

(e) The user starts the Oneclick setup (f) The user selects the currency behavior

Figure 23: PHP-Trivia Web Game

Jose M. del Barco 59

13 MERCHANT INTEGRATION

(a) The user specifies that wants to automate all
transactions until 200$ are spent

(b) The Oneclick configuration is saved

(c) The user clicks on the first topic for playing the
quiz

(d) The user is charged 0.20, and answers the ques-
tion

(e) The answer is correct, so the user is paid 0.25
and is asked to select another question

Figure 24: PHP-Trivia Web Game (Part 2)

Jose M. del Barco 60

Part III

Conclusion
The MicroPayments Platform has become a prototype with the potential to become a successful

payment system in production environments: it provides plenty of benefits -including some never
seen before in a payment platform- with almost no integration effort from merchants, and no effort
is always a great marketing tool for itself. It is, at the end, a great conjunction of ideas from the
people involved in it, also web users, a response to the necessities we have found while trying to
purchase over Internet.

The Micropayments Platform, though fully functional, is still a prototype. A lot of new
functionalities and enhancements can be done with more time. Its possibilities to be integrated
in different payment services around Internet are unlimited.

Some of the enhancements that, in my opinion, should be done to transform the MPP project
into a real money maker are:

• Implement the EmbededOneclick payment method;

• Implement its own payment gateway system, or use and existent one (meaning getting the
PCI compliance);

• Add SSL encryption to the MPP server;

• Add fraud detection techniques;

• Implement the merchant MPP library in programming languages other than PHP;

• Add a Web browser plugin as an extended MPP User Panel;

• Add a financial strategy to manage currency conversions off-line;

• Integrate it in ”pay-per-x“ services: pay-per-time, pay-per-token, etc.;

• Add refund and chargeback features;

• Add User Panel interface personalization;

• Integrate it in Social Networks;

• Optimize the database usage;

• Optimize the code for faster execution and less requirements;

The XDA messaging system is a powerful tool to bypass the same origin policy. It can be used
(and it is starting to be) in plenty of applications. However, special attention has to be made to
the new proposition of the W3C called Cross-Origin Resource Sharing[7]. This will allow, in the
close future, a better and easier implementation of the Cross Domain messaging.

Finally, at the moment this report was written the MPP website was being redesigned to have
a more professional look & feel, able to meet real user expectations. The next capture shows just
as a taste of it.

Jose M. del Barco 61

Figure 25: New design for the MicroPayments Platform Home Website

About the Project

This project has been about challenges and learning. From the very beginning —coming from
the communications engineering branch and thus with no programming expertise— I knew that
designing and implementing a whole payment platform by myself would be a really hard work.
The path the MPP took presented technological challenges (Ajax, OAuth and finally the XDA
messaging) that forced me to learn a lot of web related technologies. Now, at the end of the
project, after giving birth to the prototype of the Micropayments Platform, I can recall that all
I though I knew when I started were mere basic concepts, the point of the iceberg in a world
based on user satisfaction, business and commerce, and thus I centered all my attention to satisfy
users and merchants, to make this project not a theoretical concept, but a real approximation to
a professional product that can be used in real websites.

In this project I learned to be wrong. I learned that when coding there is always, ALWAYS a
bug, the real problem is when you will find it. I learned all the steps involved in the creation of
a fully functional software, its design, the look for the technology needed for implementing it and
the long hours of coding. Despite the hard work, and in fact thanks to it, I really enjoyed this
project.

I must thank David Portabella for giving me the opportunity to do this project at EPFL; for
guiding me through this learning process and supporting me in all the technological doubts; for
giving so many ideas about how to solve the main technological problems of the project, such
as OAuth and the XDA technique, and spending hours with me trying to optimize them for the
project... And most importantly, for asking me the questions I needed to be asked to understand
by myself all the implications of what I was doing.

I must thank Pierre Tholence for his unlimited resource in coding techniques. Thanks to his
prior investigation I could implement the XDA messaging technique, which opened all the doors I
needed for the functionalities I wanted to give to the project. He also aided me in all the doubts
I had during the implementation phase.

I must thank my family (the farther and the closer) for their infinite support, not only in this
project but in the whole career.

Finally, but not least, I must thank my friends, specially the ones that helped me when I
needed it, and made this time something else.

Jose M. del Barco 62

REFERENCES

References

[1] Thomas Fuchs. http://script.aculo.us/.

[2] Sbastien Gruhier. http://prototype-window.xilinus.com/.

[3] IEEE. A Web Service Based Micro-payment System, 2006.

[4] Mahesh Tripunitara; Tom Messergers. Resolving the micropayment problem. 2007.

[5] Rbert Prhonyi; Lambert J.M. Nieuwenhuis; Aiko Pras. Second generation micropayment sys-
tems:lessons learned, 2005.

[6] Pierre Tholence. On demand proxy server and immortal sockets, 2009.

[7] W3C. Cross-origin resource sharing (w3c working draft 17 march 2009). W3C.
http://www.w3.org/TR/access-control/.

[8] Abraham Williams. https://docs.google.com/view?docid=dcf2dzzs 2339fzbfsf4.

Jose M. del Barco 63

	Introduction
	Definitions

	Micropayments
	I The MicroPayments Platform (MPP)
	Current Payment Platforms
	PayPal
	Google Checkount
	MoneyBookers
	VirtueMart
	Others

	Features of the MPP
	PayPal Funding
	Payment Services
	E-shop Model: www.buyflowers.com
	Web Game Model: www.trivia.com

	Currency Handling
	Price Optimizer
	Oneclick Payments
	Express Oneclick
	Normal Oneclick

	Anonymous Payments
	MPP User Panel
	User and Merchant Areas

	Payment Authorization Modes
	Redirect Mode
	OAuth Mode
	OAuth Specification
	Notation and Conventions
	Basic Schema
	MPP OAuth
	OAuth Oneclick

	User Panel Mode
	The iFrame Cross-Domain AJAX (XDA) Technique
	AJAX
	Bypassing the Same Origin Policy
	Merchant Phishing Attack

	Web Interface
	Micropayments Web Page
	Signup
	User Area
	Merchant Area

	II Technical Implementation
	OAuth Implementation
	OAuth Package
	MPPOAuth Class
	MPPOAuth API
	Merchant OAuth Integration
	OAuth Token Servers
	OAuth Authorizations

	XDA & User Panel Implementation
	JavaScript Public API
	Prototype JavaScript Framework
	PaymentService Pseudo-Class
	Attribute List
	Method List

	API Loading

	Transaction Processing
	Redirect Mode
	OAuth Mode
	User Panel Mode
	MPP Transaction Server

	PayPal Integration
	PayPal Services
	The SANDBOX Testing Environment
	The PayPal API
	Callback Handling
	Currency Handling
	MPP Virtual Account Handling
	Fees in Production Environment

	Database Management
	Merchant Integration
	Integration Steps
	Test Examples
	e-Shop Example
	Web Game Example

	III Conclusion
	References

