

DJ Tool: A Mobile Phone Audio

Player Application

Oriol Boix Sancho

Supervisor: Roberto Bresin

Degree Project in Music Acoustics
KTH – School of Computer Science and Communication (CSC)

Department of Speech, Music and Hearing
100 44 Stockholm

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons

https://core.ac.uk/display/301208432?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Since listening to music using mobile phones has become a normal situation, companies

have started to think about developing new tools within the music field. Thereby, one of the

fields in what they are working on is to enable users to put effects on their music while

listening to it. One of the most popular techniques for manipulating recorded sounds is

scratching. To scratch is just a variation in speed and direction of a sound file. These

techniques are the presentation card of DJs, who implement them using a turntable and an

audio mixer.

The purpose of this project is to design and implement a system which enables users to

use their handset for manipulating the sound by using different tools, being one of them

adding DJ scratching sounds on top of their music while listening to it from their mobile

phones. The application is developed by using Python, and designed to be used on Nokia

mobile phones.

Acknowledgements

In the first place I would like to thank my supervisor Roberto Bresin for giving me the

opportunity to do my Degree project at KTH and for his invaluable guidance and help at

any time during its realization.

I am also in debt with Kjetil Falkenberg and Gäel Dubus who have been always ready to

give me a hand with many aspects of the work whenever I asked for it.

I have to thank as well all the people in the department of Speech Music and Hearing

whose warm hospitality really made me feel at home.

Finally, I express my warmest gratitude to my family for the continuous support and

encouragement they gave me to accomplish this job.

List of Abbreviations

DJ -- Disc-Jockey
SMS -- Short Message Service
PD -- Pure Data
GRiPD -- Graphical Interface for Pure Data
WAV -- Waveform Audio Format
PyS60 -- Python for S60
PyGTK -- Python for GTK

Table of Contents

1. INTRODUCTION... 9

2. DJs THEORY.. 11

 2.1 Brief Historical Introduction ... 11

 2.2 Equipment... 12

 2.2.1 Turntable ... 13

 2.2.2 Audio Mixer ... 14

 2.3 Scratching ... 16

 2.4 Techniques ... 16

 2.4.1 Baby ... 17

 2.4.2 Tear... 17

 2.4.3 Rolltear.. 18

 2.4.4 Chopshort.. 18

 2.4.5 Forward... 19

 2.4.6 Silent Backdraw... 19

 2.4.7 Scribble ... 20

 2.4.8 Uzi... 20

 2.4.9 Chirps.. 21

 2.4.10 Flare.. 21

 2.4.11 Crab .. 22

 2.4.12 Twiddle.. 22

3. SOFTWARE.. 23

 3.1 Skipproof... 23

 3.2 Python... 24

 3.3 Nokia S60 Emulator .. 25

4. IMPLEMENTATION .. 27

4.1 Functions... 27

4.2 Interface .. 29

4.3 Manipulation of the sound ... 32

 5. DISCUSSION ... 35

 6. FURTHER RESEARCH ... 37

References ... 39

Appendices... 41

 Appendix A. Audio mobile phone player script in Python 41

 Appendix B. Keys’ functions ... 52

- 9 -

1 Introduction

Mobile phones technology is growing quickly, as in almost all electronic devices.

Nowadays, a mobile phone is not only a device used to call or send short messages

(SMS), but it is also used to send e-mails, take pictures, record videos, listening to music

and a wide variety of other tools which turn this instrument into a kind of small laptop that

we can carry in our pocket. Accordingly, when we are going to an electronic store to buy a

mobile phone, we don’t ask about calling or messaging tools, but we ask about the

capacity to store data (i.e. pictures, music), the quality of the camera and the new tools

that this mobile phone offers us. Thus, companies are working on new tools to make

people feel attraction to its new devices.

One of the most important concepts in this field is music. Music, in some way, represents

our way of being, our character and even our mood in some moments. For this reason, it is

important for us to carry with our favorite music and be able to listen to it anywhere,

anyway and in any moment. Obviously, we are able to do it since many years ago. Hence,

the question for the companies is now: What can we offer new to our costumers within the

music listening tool?

There is an answer to this question. It seems that the next step to be followed by the

companies is to develop tools which permit users adding effects to the music while

listening to it. The number of effects that can be added to a sound file are infinite. Exist an

important variety of ways to manipulate a sound file, and one of the most popular and

seldom studied is the scratching effect. To scratch means “to drag a vinyl record forth and

back against the needle on an ordinary turntable along the grooves” [1].

- 10 -

This technique is developed and used by DJs. The introduction of digital means for

scratching introduced by electronic instrument manufacturers and computer programmers

during last years stems from the popularity that scratching achieved in the 1990’s [2].

Nevertheless, most of these new products have failed.

The aim of this project is to design and implement a system which enables users to use

their handset for manipulating the sound they are listening to on their mobile phones by

using different tools, being one of them adding DJ scratching sounds.

- 11 -

2 DJs Theory

Though some people think that “DJing1” is something that was born few years ago, this

way to create and play music is not precisely something new.

In the next paragraphs, a brief historical introduction is presented. We will see how “DJs

world” was born and how has evolved during the pass of the years. Furthermore, it is

explained the equipment used by a DJ to perform a session, to record an album,

etc…Finally, it is described in a wide way what scratching consists in and its different

techniques.

2.1 Brief Historical Introduction

Since a DJ is that person who plays recorded sound, it is possible to say that the first

stone was put in 1877, when Thomas Alva Edison invented the phonograph cylinder [3].

This device was the first one capable to play back recorded sound. However, was in 1935

when first appeared the term Disc-Jockey. The American commentator, Walter Winchell,

called the radio announcer Martin Block that way because he “was the first who created

the illusion that he was broadcasting from a ballroom while that nation’s top dance bands

performing live” [4]. Six years later, the Disc-Jockey term appeared in the American weekly

magazine Variety [5]. Since then, discotheques began to appear in the Unites States and

Europe with the consequent appearance of DJs around the world. Another important name

was Jimmy Savile. He became the first DJ who started using two turntables for continuous

1 For DJing is understood the action that a DJ carries out on his/her profession.

- 12 -

play [5]. But this phenomenon did not only take place in the discotheques of Europe or the

U.S.A. In the late 1950s appeared in Kingston (Jamaica) the so-called “sound systems”. It

was a new way of entertainment and partying on the streets of the city. The DJ, also called

“selector”, played music for hours using a rhythmic changing style. The success of these

parties was absolute as business quickly received the call and the promoters started to sell

admissions, food and alcohol. In fact, one of those “selectors” is known as the creator of

Hip-Hop music and the one who invented the scratching technique. His name is Clive

Campbell, also known as DJ Kool Herc. Clive, born in Kingston, moved when he was 15

years old to Bronx borough in NY. Thereby, he started to give parties on the streets as he

had done in his natal city. He realized that people became crazy when the rhythmical part

(brake) of James Brown’s songs sounded. Hence, to enlarge this part, he decided to take

the needle of the turntable back where the break started to repeat that part of the song as

many times as he wanted [5].

Since that time, the figure of the DJ was extended around new countries all around the

world. During the last decades equipment has been improved which has allowed DJs

create new techniques and sounds.

Nowadays, new digital interfaces are being designed and developed, fact that “old school”

DJs don’t agree due to these new interfaces don’t allow to have and show the skills that

the contact with the vinyl record and the needle permit. Nevertheless, these new

technologies can help to develop and experiment with new techniques in order to find new

sounds and effects.

2.2 Equipment

Although nowadays new DJ interfaces are going out to the market (i.e. compact disc

players or computer media players) in order to develop and experiment new techniques

and effects, there are two devices which have always been used in a DJ performance.

This “traditional” equipment consists of the turntable and the audio mixer. The first one is

- 13 -

where the vinyl record is put on. The audio mixer incorporates several features, the

crossfader being one of the most important and used by DJs.

Below, both the turntable and the audio mixer are described in a detailed way, paying

special attention to the vinyl record and the crossfader since their importance in a

scratching performance.

2.2.1 Turntable

The turntable (Figure 1) is the part of the DJ equipment used to reproduce recorded

sound. As has been said above, the main function of a turntable is to reproduce music, so

it is where the vinyl disc record (Figure 2) is placed. There are two types of turntable; the

direct-drive turntable and the belt-drive turntable. The difference between them is in the

model of motor used. Here, the first model is the one described since it is the most used

one by DJs. This type of turntable has the platter mounted on the motor. This has been the

most significant drawback that direct-drive turntables have always had on account of the

vibration of the motor on the vinyl record. However, the development of a shock-absorbing

material during the last years placed between the motor and the platter has reduced the

vibrations.

Figure 1. Turntable

- 14 -

The most important parts of a turntable besides the platter and the vinyl record are: the

needle, the pick up mechanism (Figure 3) and the pitch controller.

The needle is the part which contacts the vinyl record to read the signal and makes

possible the reproduction of the sound. It incorporates a little device known as the pick-up

mechanism specially designed “for scratching to prevent the diamond stylus (needle) from

skipping from one groove to another” [6]. Finally, the pitch controller is used by DJs “to

“tune” the sound sample to the tonality of the piece to which they are scratching “[7].

 Figure 2. Vinyl record Figure 3. Shure M44-7 cartridge

The functioning of a turntable is relatively easy. First, the motor drives at a continuous

speed the platter where the vinyl record is placed. Then, the needle converts the

mechanical movement into an electric signal which presents the same variations of the

groove. This electric signal is then first sent to the audio mixer and to the loudspeaker

later.

2.2.2 Audio Mixer

The audio mixer (Figure 4) is placed between the turntable and the loudspeaker. As

stated, the turntable sends the audio signal to the audio mixer, which deals the signal by

using its different controllers. Once the signal has been dealt, is sent to the loudspeaker

and reproduced for the audience.

- 15 -

An audio mixer has several controllers in order to deal with the signal and obtain the

desired result. Among these controllers, the most important are the crossfader, a

line/phono switch, a volume fader and one or more knobs for equalization [7].

 Figure 4. Audio mixer

As shown in Figure 4, the controllers are placed strategically to make things easier to the

DJ. Since the crossfader is the most used controller by DJs, it is also the nearest one to

their hands. The crossfader makes the DJ able to control the volume of both turntables

(right and left) at the same time. If the controller is completely on the left end, only the

sound of the left turntable is reproduced by the loudspeaker. Accordingly, if it is completely

on the right end, the sound of the left turntable is silenced and only the sound of the right

turntable is heard. Thus, when the controller is anywhere in the middle of the fader, one of

the two turntables will sound louder than the other unless the crossfader is absolutely in

the middle. For example, in Figure 4, as the crossfader is slightly placed on the left, it is

possible to approximate that the left turntable has a 70% of the total volume and the right

turntable a 30%. Nevertheless, as it is explained in more detail in 2.3, the crossfader is

mainly used to silence completely one of the two turntables.

To control with more accuracy the volume of each turntable, the volume faders are used.

Normally, an audio mixer has two or three volume faders, one for each turntable. The one

- 16 -

placed on the left (labeled channel 1), controls the left turntable volume and the one on the

right (labeled channel 2), controls the right one.

An audio mixer includes some knobs for equalization. There are many kinds of

equalization, and it is feasible to find audio mixers with different equalization controllers.

DJs use these controls to control and change the pitch shifting of the sound. This can be

done by adjusting the level (gain), amplitude, bandwidth and center frequency [8].

2.3 Scratching

Scratching is a technique used by DJs, also called turnablists, which consists in moving

back and forth a vinyl disc on the turntable. From an audio processing point of view, it just

means to vary the speed and the direction of an audio file. By using this technique, DJs

create an effect similar to scratch a disc, which well done, allows to create rhythms and

melodic phrases.

As it has been mentioned above, DJs use one or two turntables and an audio mixer to

perform their sessions. The most important in scratching is the physic contact between the

DJ hand and the vinyl record. Using his/her fingers in different positions, they are able to

create different scratching techniques.

The other important point is controlling the crossfader while scratching. By changing the

position of the crossfader, it is possible to create new and different scratching techniques.

For example, some effects are done by silencing the sound (moving the crossfader from

the left end to the right end) several times in a quick way. The crossfader is therefore used

as a switch used to turn the sound quickly on and off [7].

2.4 Techniques

There are lots of scratching techniques, which differ in the movement of the DJ’s hand on

the vinyl disc and the position of the crossfader. Thus, by moving back and forth the vinyl

disc at different speeds while opening and closing the crossfader (opened means that the

sound is audible and closed that the sound is inaudible) different effects are generated.

- 17 -

Below, twelve of the most important techniques are described and represented. In the

“record” figures is shown the distance that the vinyl disc is moved back or forth (y axis) and

the number of samples (x axis). In the “crossfader” figures the position of the crossfader (y

axis) and the number of samples (x axis) are shown. All figures are adapted from Skiproof

[9] software.

2.4.1 Baby

Baby scratch is the simplest scratch technique. It is performed by moving the vinyl disc

back and forth repeatedly while the crossfader is in the open position. In the picture is only

shown one back and forth movement.

BABY-Record

Number of samples

V
in

yl
 d

is
c

m
ov

em
en

t

BABY-Crossfader

Number of samples

C
ro

ss
fa

de
r

m
ov

em
en

t

Figure 5. Baby scratch

2.4.2 Tear

Tear scratch is another fundamental technique. It is

similar to baby scratch, but introduces a quick back and

forth movement during the main back and forth

movement.

Usually, as Figure 6 shows, it is introduced in the

backstroke. In this technique the crossfader is also in

open position.

 Figure 6. Tear scratch

TEAR-Record

Number of samples

V
in

yl
 d

is
c

m
ov

em
en

t

- 18 -

2.4.3 Rolltear

Rolltear scratch combines repeatedly back and forth movements of different distance.

While performing them, the crossfader is drastically moved from the closed position to the

open position and after some back and forth movements is turned to the closed position

again, usually when the last back and forth movement is in the backstroke.

ROLLTEAR-Record

Number of samples

V
in

yl
 d

is
c

m
ov

em
en

t

ROLLTEAR-Crossfader

Number of samples

C
ro

ss
fa

de
r

m
ov

em
en

t

Figure 7. Rolltear scratch

2.4.4 Chopshort

Chopshort scratch is a simple back and forth movement like baby scratch. However, in this

case, the crossfader is closed during the backstroke.

CHOPShort-Record

Number of samples

V
in

yl
 d

is
c

m
ov

em
en

t

CHOPShort-Crossfader

Number of samples

C
ro

ss
fa

de
r

m
ov

em
en

t

Figure 8. Chopshort scratch

- 19 -

2.4.5 Forward

Forward scratch is a baby scratch in which the crossfader is closed during the back

movement of the vinyl disc. When the record is moved forth, the crossfader is instantly

moved to the open position.

FORWARD-Record

Number of samples

V
in

yl
 d

is
c

m
ov

em
en

t

FORWARD-Crossfader

Number of samples

V
in

yl
 d

is
c

m
ov

em
en

t

Figure 9. Forward scratch

2.4.6 Silent Backdraw

As its name indicates, in silent backdraw scratch the back movement of the record is

silenced. The picture shows how in the first samples the crossfader is in the open position

and how it is closed when the backward pull is being done.

SILENTBACKDRAW-Record

Number of samples

V
in

yl
 d

is
c

m
ov

em
en

t

SILENTBACKDRAW-Crossfader

Number of samples

C
ro

ss
fa

de
r

m
ov

em
en

t

 Figure 10. Silent Backdraw scratch

- 20 -

2.4.7 Scribble

Scribble scratch is another technique in which the

crossfader is not used (open position all the time). It

is similar to the baby scratch technique, but in this

case the back and forth movements are shorter and

quicker. DJs are capable to achieve these quick

movements by tensing the muscles of the scratching

hand [10].

Figure 11. Scribble scratch

2.4.8 Uzi

Uzi scratch is one of the most dynamics techniques, where the DJ has both scratching and

crossfader hands in constant movement. The movement on the record is a repeatedly

back and forth pull and push, similar to the baby scratch. On the contrary in this technique

the crossfader plays an important role. While DJ is performing the back movement the

crossfader is instantly moved to the closed position and when is doing the forth movement

the crossfader is instantly moved to the open position.

UZI-Record

Number of samples

V
in

yl
 d

is
c

m
ov

em
en

t

UZI-Crossfader

Number of samples

C
ro

ss
fa

de
r

m
ov

em
en

t

 Figure 12. Uzi scratch

SCRIBBLE-Record

Number of samples

V
in

yl
 d

is
c

m
ov

em
en

t

- 21 -

2.4.9 Chirps

Chirps scratch is a difficult technique to perform due to it takes a good amount of

coordination. Firstly the record is moved forward while the crossfader is in open position.

Then, in the back movement of the vinyl disc the crossfader is moved to the close position,

getting there before the back movement is ending. By doing this in quick sequence DJs

achieve a sound similar to a chirp [11].

CHIRPS-Record

Number of samples

V
in

yl
 d

is
c

m
ov

em
en

t

CHIRPS-Crossfader

Number of samples

C
ro

ss
fa

de
r

m
ov

em
en

t

 Figure 13. Chirps scratch

2.4.10 Flare

Flare scratch begins with the crossfader in open position. Then, the DJ starts moving

forward the record, and until the direction has changed to backwards, the crossfader has

been moved several times from the open to the closed position, ending in the open

position. The same when the record is moved back, ending again in the open position.

FLARE-Record

Number of samples

V
in

yl
 d

is
c

m
ov

em
en

t

FLARE-Crossfader

Number of samples

C
ro

ss
fa

de
r

m
ov

em
en

t

 Figure 14. Flare scratch

- 22 -

2.4.11 Crab

This technique requires the fastest crossfader movement. While a simple forth and back

movement is being done on the record, the crossfader is moved from the open to the close

position even four times, standing on the initial position when the DJ is changing the

direction of the record.

CRAB-Record

Number of samples

V
in

yl
 d

is
c

m
ov

em
en

t

CRAB-Crossfader

Number of samples

C
ro

ss
fa

de
r

m
ov

em
en

t

 Figure 15. Crab scratch

2.4.12 Twiddle

This technique is very similar to Flare scratch. It only varies on the movement of the

crossfader.

TWIDDLE-Record

Number of samples

V
in

yl
 d

is
c

m
ov

em
en

t

TWIDDLE-Crossfader

Number of samples

C
ro

ss
fa

de
r

m
ov

em
en

t

 Figure 16. Twiddle scratch

- 23 -

3 Software

Different software tools have been used in order to obtain the desired result. In this

chapter the different tools are described.

3.1 Skiproof and Pure data

Skiproof2 is a software tool developed using PD3 (Pure Data, Puckette 1996) and GrIPD4

(Graphical Interface for Pure Data, Sarlo 2003), which allows the user to simulate around

20 different scratch techniques on the computer. Pure Data (Figure 17) is a graphic

programming language for sound and music computing applications. Its graphic

appearance, flexibility and simplicity convert it in a software fast of prototyping.

The main feature of Skipproof is to simulate the turntable and the audio mixer in only one

graphical interface (Figure 18). Thereby, Skipproof becomes a starting point and an

important tool to this project due to the aim of the project is to develop a tool capable of

doing the same as Skipproof but using other tools and being implemented in a mobile

phone.

 Figure 17. Script in PD (adapted from http://upload.wikimedia.org/wikipedia/en/0/0b/Pd-objects.png)

2 http://www.speech.kth.se/~kjetil/software.html
3 www.puredata.org
4 http://crca.ucsd.edu/~jsarlo/gripd/

- 24 -

Figure 18. Skipproof interface

3.2 Python

The programming language that has been used in this project has been Python5 (Guido

van Rossum 1991). Python is an interpreted programming language that permits the user

to understand easily and quickly the written code because of its minimalist syntax and

semantics. Since it is mainly used to develop new tools and applications for mobile

technology, it has been the programming language elected to work with. Indeed, the large

standard library and the great number of modules designed allow the programmer to

develop a high number of applications within audio, video and multimedia field (e.g.

Games).

Each script in Python does not need to be compiled. The software is available on the

official Python website and also on Nokia mobiles phones as an application.

5 www.python.org

- 25 -

Once the script is finished using a text editor (e.g. Microsoft Word), the user just have to

save the file as “namefile.py” and run the script on his/her mobile phone. It is also possible

to use a Nokia emulator to run a script on the computer as it is explained in the next point.

3.3 Nokia S60 Emulator (5th Edition)

The main function of the Nokia S60 Emulator6 is to simulate a Nokia mobile phone on the

computer, so the user is able to try his scripts written in Python without having a Nokia

mobile phone. As the Figure 19 shows, Python is installed on the applications menu and

ready to read a script.

 Figure 19. Nokia S60 Emulator interface

6 www.s60.com

- 26 -

- 27 -

4 Implementation

In this chapter the implementation of the project is described. It has been divided into three

main sections. Firstly, the different functions of the program are presented. Then it is

shown the design of the interface, and after that, it is explained how the sound has been

manipulated in order to acquire the desired effects. The code written in Python to develop

the application can be found on the “Appendix A” of this work.

4.1 Functions

As stated in previous chapters, the aim of this project is to develop an application which

enables the user of a mobile phone to simulate different effects being on of them different

scratching techniques while listening to the music. However, as a music reproducer, some

other basic tools and functionalities have to be implemented in order to be able to control

some necessary aspects of a sound reproduction.

The extra functions designed are the next:

 • Play a sound file

The application is able to reproduce any sound file (WAV format). From the option

“Select file” in the menu, the user has access to the music folder of his mobile

phone and can select any audio file from there. Once the file is selected is instantly

played.

- 28 -

 • Stop a sound file

The audio file that is being played can be stopped whenever the user wants from

the options menu.

 • Control the volume

The user is able to control de volume of the sound file. To turn the volume up is

used the right key and to turn it down is used the left key.

 • Mute

The audio file can be automatically silenced by using the mute option. If the audio

file is being played, it can be muted by pressing the “sharp” key (#). Then, if the

same key is pressed again, the sound is back.

 • Switch

This function allows the user to silence the audio during 0.1 seconds by pressing

the “star” key (*). After this time the volume is re-established. This tool acts like a

switch or a crossfader moved quickly from the open to the close position.

• Control of the sample rate

The sample rate of the audio file can be changed. The standard sample rate of

every audio file on the playlist is 44100Hz. By pressing the indicated keys, the

sample rate adopts the indicated values on the next table.

Since the changing of the sample rate is not in real time, once this function was

developed every time the sample rate was changed the audio file started from the

Fast - 60000 Hz (key 9)

Normal - 44100 Hz (key 8)

Slow - 22000 Hz (key 7)

- 29 -

beginning, fact that was not desired. To solve this setback, a function that keep the

position of the song before changing its sample rate in order to start there once it

has been changed was programmed (see Appendix A).

In this case these values can also be changed by the user by varying the script.

Not all the frequencies may work; it depends on the sound card of each device.

• Move the audio file forward

This functionality allows the user to move the audio file forward. By clicking the up

arrow on the keyboard, the song is moved a preset time (one second) forward.

 • Move the audio file backward

In this case, the audio file is rewind a preset time (one second) every time the down

arrow is pressed.

4.2 Interface

As the mobile phone application that it is, the interface of this project has been an

important point to have on count. It is essential that the software works correctly, but it is

also required, or should always be, to accompany a nice software application with an

attractive interface design. Appearance is always important in multimedia applications.

Python has some tools used to deal only with the graphical part of any application. One of

the most used is PyGTK7, which allows the programmer to create graphical interfaces with

Python language. However, this application is not able to work neither on the emulator nor

the mobile phones. Thus, the interface has been created by using the simplest tools and

options that PyS60 allows. Accordingly, the efforts have been put on to design an

attractive background and an easy and understandable handling of the options and

functionalities.

7 http://www.pygtk.org/

- 30 -

In this chapter a written tutorial of the functioning of the program is described, showing its

different menus and backgrounds.

Starting the application

The first touch with the application, once the script has been ran, it is a screen giving the

welcome to the application (Figure 20), which indicates to press the “green” key to jump to

the options menu.

 Figure 20. Welcoming screen

Once the “green” key has been pressed appears the menu that allows the user to select

the audio file to be played. From this menu the user can also leave the application by

choosing the “ESC-Exit” option. (Figures 21 and 22)

 Figure 21. Options menu Figure 22. Selection track menu

- 31 -

Main menu

Once a track has been selected, the application jumps to the main menu. From this menu

the user is able to use the different tools implemented to manipulate the audio (Figure 23).

This menu also offers the possibility to jump to an “Options” menu (Figure 24) by pressing

the green right key (see Appendix B. Keys’ function). From there the user can select a new

file, stop the sound, go back to the main menu or exit the application.

 Figure 23. Main menu Figure 24. Options menu

 Figure 25. Exit menu

- 32 -

4.3 Manipulation of the sound

Once the basic audio player tools had been implemented, the main concerning was how to

deal directly with the audio file. The manipulation of an audio file is always a difficult issue,

with mathematics and audio processing aspects behind. Python offers a wide number of

music, multimedia and audio modules which have a great number of functions that can

allow the programmer to manipulate the sound file. Unfortunately, almost all of them can’t

be used neither on the emulator nor the mobile phone. This has been an important

obstacle during the work, due to the inability to manipulate the signal in real time that it has

meant. Below the way how the sample rate is manipulated and how the scratching effects

are added when the application is used are described. In both cases, the code developed

in python to create these functions is shown (see all code in Appendix A. Audio mobile

phone player script in Python).

Sample Rate

An important parameter of an audio file is its sample rate. By changing the sample rate the

speed reproduction of the file is changed, which gives an interesting and even a funny

effect. For this reason, this has been the first aspect of manipulating the audio file that has

been dealt. All the audio files in this project are in “WAV” format, which presents the

following structure.

WAV FILE FORMAT

File offset
(bytes) Field name Field Size (bytes)

0

Chunk ID 4
4

Chunk Size 4
8

Format 4

The "RIFF" chunk
descriptor

The Format of concern is
"WAVE", which requires

two sub-chunks: "fmt" and
"data"

- 33 -

12
Subchunk1 ID 4

16
Subchunk1 Size 4

20
Audio Format 2

22
Num. Channels 2

24
Sample Rate 4

28
Byte Rate 4

32
Block Align 2

34
Bits Per Sample 2

The "fmt" sub- chunk
Describes the format of
the sound information in

the data sub-chunk

36
Subchunk2 ID 4

40
Subchunk2 Size 4

44

Data

The "data" sub- chunk
Indicates the size of the
sound information and
contains the raw sound

data

Figure. 26. WAV file format (adapted from http://69 .10.233.10/KB/audio-

video/Concatenation_Wave_Files/conca1.JPG)

As shown in the Figure 26, between the bytes 24 and 27 the sample rate is stored. Then,

by changing this parameter, has been possible to develop a tool in the application which

allows the user to change the reproduction speed (see 4.1 “Control of the sample rate”).

Code:

Increase the speed reproduction of the audio file #
def increase_speed(): #Name of the function (In this case, the function that increases the
sample rate)

global music, soundfile

b = music.current_volume() #The volume of the file before changing the sample
rate is saved
x = music.current_position() #The position of the file before changing the sample
rate is saved
newsamp = 60000 #New sample rate
f = open(soundfile, 'r+') #The file that is sounding is opened as a file
w = wave.open(soundfile, "r") #The file that is sounding is opened as a wave
a = w.getframerate() #To know the sample rate of the file before changing it
c = struct.pack('I', newsamp) #Converts newsap into binary
f.seek(24, 0) #The byte 24 of the file is searched
f.write(c) #The new sample rate is written in the searched position
f.flush()

- 34 -

music = audio.Sound.open(soundfile) #The new audio file with the new sample rate
is opened
music.play(audio.KMdaRepeatForever) #The new audio file with the new sample
rate is played
#Below, if the sample rate before the changing is the normal (44100 Hz) the
position is set using a different parameter than if the previous sample rate was the
slow (22000 Hz).
if a == 44100:

music.set_position(x/1.36)
music.set_volume(b)

else:
music.set_position(x/2.74)
music.set_volume(b)

f.close()

Scratching Effects

As stated in previous chapters, scratching means to change the reproduction speed and

the direction of an audio file. Since manipulate the audio directly has not been permitted by

the emulator and the mobile phone, other ways to simulate the scratching effects have had

to be thought.

Then, the idea has been to add different recorded scratching techniques while the audio

file is sounding.

Code:

Add different scratching techniques #
def effect1():

 global music, L

 a = music.current_volume() #The volume of the file sounding is saved
 music.set_volume(a-2) #The volume of the file sounding is turned down

L = audio.Sound.open("e:\python\DJTools\\baby.wav") #The scratching technique
is opened

 L.set_volume(a) #The scratching technique volume is set to parameter a
 L.play() #The scratching technique is played
 e32.ao_sleep(2)

music.set_volume(a) #Once the scratching technique is finished, the file volume is
set to a again

 L.stop()

- 35 -

5 Discussion

This has been the first attempt in developing an audio player for Nokia mobile phones with

the scratching tool. Nowadays, this application already exists in two devices; the iPhone

and the Samsung M7600 Beat DJ. In both cases, the scratching techniques are simulated

by dragging the fingers on the touch-screen. From my point of view, and after having

tested both devices, simulating scratching by using touch-screen it is not the best way to

develop this application.

During the project many problems have arose. Among them, the most important one has

been not being able to manipulate the audio file in real time. Anyway, this problem can be

solved in the future by creating new audio modules able to work on the emulator and the

mobile phone. Another important problem during the work has been not having a mobile

phone to be used only for the project. It has meant that I have not been able to try the

script on mobile phones as many times as I would have wanted. It would have been really

important due that in some cases the same script works different depending if it is tested

on the emulator or on the mobile phone. Because of that, many changes have had to be

done after trying the scripts on the mobile phone and realizing that the application did not

worked as it did on the emulator. This drawback has slowed down the work in some

moments.

In conclusion I consider that developing applications which enable users to manipulate the

sound they are listening to is a really interesting field to study and to work with. This work,

as a first attempt, can help further researches within this field.

- 36 -

- 37 -

6 Further Research

For what to the further work respects in the DJ audio mobile phone applications, in first

place would be important to find out the way to manipulate the sound file in real time. This

could be done by creating new audio, music or multimedia modules which would make the

programmer able to use them on the emulator, and so on Nokia mobile phones. Another

option would be the use of others programming software, and consequently, to develop

the application for others mobile phones brands. Once this application would be designed

and implemented satisfactorily, the next step would be how to use it and how to simulate

the scratching techniques. In the present work, each of the six techniques are simulated by

pressing a different key on the keyboard. In the future, and in order to make the application

more real, it would be interesting to design applications which enables users to simulate

these techniques by shaking the mobile phone (nowadays almost all mobile phones have

an accelerometer) or by using a touch screen, which have not been done on Nokia mobile

phones so far.

- 38 -

- 39 -

References

[1] Hansen, K. F. (2002). The Basics of Scratching. Journal of New Music

Research, 31(4), 357-365

[2] K. F. Hansen and R. Bresin. The Skiproof virtual turntable for high-level control of

scratching. Submitted, 2009

[3] http://en.wikipedia.org/wiki/Phonograph, 26 June 2009

[4] http://en.wikipedia.org/wiki/Martin_Block, 18 June 2009

[5] http://en.wikipedia.org/wiki/Disc_jockey, 26 June 2009

[6] Hansen, K. F. (2001). Playing the turntable: An introduction to scratching. TMH-QPSR,

42(1), 69-79.

[7] Hansen, K. F., & Bresin, R. (2006). Mapping strategies in DJ scratching. In NIME '06:

Proceedings of the 6th international conference on New interfaces for musical expression,

Paris, France, 188-191

[8] http://en.wikipedia.org/wiki/Equalization, 5 May 2009

[9] http://www.csc.kth.se/~kjetil/software.html

[10] http://en.wikipedia.org/wiki/Scratching, 26 June 2009

[11] http://en.wikipedia.org/wiki/Chirp_(scratch), 24 April 2008

- 40 -

- 41 -

Appendices

Appendix A. Audio mobile phone player script in Pyt hon

FIRST THE NECESSARY MODULES ARE IMPORTED ####

import appuifw
import e32
import key_codes
import audio
from audio import*
import graphics
from graphics import Image
import wave
import struct
import sys, urllib, urllib2, os

global music
music = None

INDICATOR OF THE VOLUME ####

def circles(n):

y = 250
 x = 120
 for i in range(n): #n is the number of green circles
 img.point((x,y), (0,255,0), width=7)
 x += 10
 for i in range(10-n): #the number of black circles
 img.point((x,y), (0,0,0), width=7)
 x += 10
 handle_redraw(())

- 42 -

WELCOMING SCREEN IMAGE ####

img = Image.open('e:\python\DJTools\\INTERFACE1FNOKIA.jpg')

def handle_redraw(rect):

canvas.blit(img)

appuifw.app.screen='full'
canvas = appuifw.Canvas(redraw_callback=handle_redraw)
appuifw.app.body = canvas

def quit():

app_lock.signal()

MAIN INTERFACE ####

def menu2():

 global img

img = Image.open('e:\python\DJTools\\INTERFACE2FNOKIA.jpg') #Replace the
welcome image with the main image

 handle_redraw(()) #Redraw the canvas so the second image is shown

L = audio.Sound.open("e:\python\DJTools\\baby.wav")

EXIT MENU --> FROM MAIN MENU ####

Listexit = [u"Yes", u"No"]

def menuexit():

index = appuifw.popup_menu(Listexit, u'Really quit?')
 if index == 0:
 quit() # Quit from the application
 if index == 1:
 menu() # Go back to the menu

- 43 -

EXIT MENU --> FROM MENU2 ####

def menuexit2():

index = appuifw.popup_menu(Listexit, u'Really quit?')
 if index == 0:
 quit()
 if index == 1:
 menuoptions()

OPTIONS MENU ####

Listopt = [u"1- Select File", u"2- Stop", u"3- Back", u"4- Exit"]

def menuoptions():

global music

 index = appuifw.popup_menu(Listopt,u'Menu Options')

 if index == 0:
 if music is not None:
 circles(music.current_volume())
 a = music.current_volume()
 else:
 a = 0
 open_audiofile(a)

 if index == 1:
 if music is not None:
 circles(music.current_volume())
 stopsong()
 menuoptions()

 if index == 2:
 if music is not None:
 circles(music.current_volume())
 menu2()

 if index == 3:
 if music is not None:
 circles(music.current_volume())
 stopsong()
 menuexit2()

- 44 -

TURN THE VOLUME UP ####

def VolUp():

global music

 music.set_volume(music.current_volume() + 1)
 n = music.current_volume()
 circles(n)

TURN THE VOLUME DOWN ####

def VolDown():

global music

 music.set_volume(music.current_volume() - 1)
 n = music.current_volume()
 circles(n)

FORWARD THE SONG ####
Forwards the position of the audio file 1 second #

def forward():

global music

 c = music.current_position()
 music.set_position(c+1000000)

REWIND THE SONG ####
Rewinds the position of the audio file 1 second #

def rewind():
 global music

 c = music.current_position()
 music.set_position(c-1000000)

- 45 -

SCRATCHING TECHNIQUES ####
Add different scratching techniques #

def effect1():

 global music, L

 a = music.current_volume()
 music.set_volume(a-2)

L = audio.Sound.open("e:\python\DJTools\\baby.wav") # Opens the scratching
technique

 L.set_volume(a)
 L.play() # Plays the scratching technique
 e32.ao_sleep(2)
 music.set_volume(a)
 L.stop()

def effect2():

 global music, L

 a = music.current_volume()
 music.set_volume(a-2)
 L = audio.Sound.open("e:\python\DJTools\\uzi.wav") # Opens the scratching

technique
 L.set_volume(a)
 L.play() # Plays the scratching technique
 e32.ao_sleep(0.6)
 music.set_volume(a)
 L.stop()

def effect3():

 global music, L

 a = music.current_volume()
 music.set_volume(a-2)

L = audio.Sound.open("e:\python\DJTools\\chirps.wav") # Opens the scratching
technique

 L.set_volume(a)
 L.play() # Plays the scratching technique
 e32.ao_sleep(2)
 music.set_volume(a)
 L.stop()

- 46 -

def effect4():

 global music, L

 a = music.current_volume()
 music.set_volume(a-2)

L = audio.Sound.open("e:\python\DJTools\\combo_23.wav") # Opens the
scratching technique

 L.set_volume(a)
 L.play() # Plays the scratching technique
 e32.ao_sleep(0.6)
 music.set_volume(a)
 L.stop()

def effect5():

 global music, L

 a = music.current_volume()
 music.set_volume(a-2)

L = audio.Sound.open("e:\python\DJTools\\crab_flare.wav") # Opens the scratching
technique

 L.set_volume(a)
 L.play() # Plays the scratching technique
 e32.ao_sleep(2)
 music.set_volume(a)
 L.stop()

def effect6():

 global music, L

 a = music.current_volume()
 music.set_volume(a-2)

L = audio.Sound.open("e:\python\DJTools\\sc2.wav") # Opens the scratching
technique

 L.set_volume(a)
 L.play() # Plays the scratching technique
 e32.ao_sleep(2)
 music.set_volume(a)
 L.stop()

- 47 -

CHANGE OF THE SAMPLE RATES ####
Increase the speed reprodutcion of the audio file #

def increase_speed():

global music, soundfile

 b = music.current_volume()
 x = music.current_position()
 newsamp = 60000
 f = open(soundfile, 'r+')
 w = wave.open(soundfile, "r")
 a = w.getframerate()
 c = struct.pack('I', newsamp)
 f.seek(24, 0)
 f.write(c)
 f.flush()
 music = audio.Sound.open(soundfile)
 music.play(audio.KMdaRepeatForever)
 if a == 44100:
 music.set_position(x/1.36)
 music.set_volume(b)
 else:
 music.set_position(x/2.74)
 music.set_volume(b)
 f.close()

Decrease the speed reprodutcion of the audio file #

def decrease_speed():

global music, soundfile, audiofile

 b = music.current_volume()
 x = music.current_position()
 newsamp = 22000
 f = open(soundfile, 'r+')
 w = wave.open(soundfile, "r")
 a = w.getframerate()
 c = struct.pack('I', newsamp)
 f.seek(24, 0)
 f.write(c)
 f.flush()
 music = audio.Sound.open(soundfile)
 music.play(audio.KMdaRepeatForever)
 if a == 44100:

- 48 -

 music.set_position(x*2)
 music.set_volume(b)
 else:
 music.set_position(x*2.74)
 music.set_volume(b)
 f.close()

Normalize the speed reproduction of the audio file #

def normal_speed():

global music, soundfile, audiofile

 b = music.current_volume()
 x = music.current_position()
 newsamp = 44100
 f = open(soundfile, 'r+')
 w = wave.open(soundfile, "r")
 a = w.getframerate()
 c = struct.pack('I', newsamp)
 f.seek(24, 0)
 f.write(c)
 f.flush()
 music = audio.Sound.open(soundfile)
 music.play(audio.KMdaRepeatForever)
 if a == 22000:
 music.set_position(x/2)
 music.set_volume(b)
 else:
 music.set_position(x*1.37)
 music.set_volume(b)
 f.close()

SELECT AUDIO FILE MENU ####

def menu():

global soundfile
 appuifw.app.menu = [((u"Choose the sound you want to hear!", open_audiofile))]

- 49 -

STOP AUDIO FILE ####

def stopsong():

global music

 a = music.current_volume()
 circles(a)
 music.stop()
 normal_speed()
 music.stop()
 menu2()

def select_audiofile():

 global audiofile
 path = "e:\python\DJTools\\Music\\"
 index = None
 filelist = os.listdir(path)
 ll = []
 for file in filelist:
 ll.append(unicode(file))
 index = appuifw.selection_list(choices=ll , search_field=1)
 if index is not None:
 audiofile = path + ll[index]
 return audiofile
 else:
 return None

def open_audiofile(currentvolume):

global soundfile, music
 soundfile = select_audiofile()

 if (soundfile is not None):

 menu2() # upgrade the background picture
 music = audio.Sound.open(soundfile)
 if currentvolume == 0:
 currentvolume = music.current_volume()

 circles(currentvolume)

 music.set_volume(currentvolume)
 music.play(audio.KMdaRepeatForever)
 normal_speed()

- 50 -

MUTE FUNCTION ####
If the volume is more than 0 sets the volume to 0 #
If the volume is 0 sets the volume to the current volume #

def mute():

global previous, music

 current = music.current_volume()
 if music.current_volume() == 0:
 circles(previous)
 music.set_volume(previous)
 else:
 circles(0)
 previous = current
 music.set_volume(0)

SWITCH FUNCTION ####
The sound is silenced during 0.1 seconds #

def switch():

global music, L

 current = music.current_volume()
 L.set_volume(0)
 music.set_volume(0)
 e32.ao_sleep(0.1)
 L.set_volume(current)
 music.set_volume(current)

ASSIGN OF THE DIFFERENT FUNCTIONS TO THE KEYS ####

canvas.bind(key_codes.EKeyHash, mute)
canvas.bind(key_codes.EKeyStar, switch)
canvas.bind(key_codes.EKeyRightArrow, VolUp)
canvas.bind(key_codes.EKeyLeftArrow, VolDown)
canvas.bind(key_codes.EKeyUpArrow, forward)
canvas.bind(key_codes.EKeyDownArrow, rewind)
canvas.bind(key_codes.EKeyYes, menuoptions)
canvas.bind(key_codes.EScancodeSelect, menuoptions)
canvas.bind(key_codes.EKey1, effect1)
canvas.bind(key_codes.EKey2, effect2)
canvas.bind(key_codes.EKey3, effect3)
canvas.bind(key_codes.EKey4, effect4)

- 51 -

canvas.bind(key_codes.EKey5, effect5)
canvas.bind(key_codes.EKey6, effect6)
canvas.bind(key_codes.EKey7, decrease_speed)
canvas.bind(key_codes.EKey8, normal_speed)
canvas.bind(key_codes.EKey9, increase_speed)

appuifw.app.exit_key_handle = quit
app_lock = e32.Ao_lock()
app_lock.wait()

- 52 -

Appendix B. Keys’ function

Figure 27. Keys’ functions

