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Resumen 
 

Asegurar la fiabilidad de un UAS en vuelo forma parte de uno de los temas 
más complicados que rodean al mundo de los aviones no tripulados. El motivo 
principal de esta preocupación es la cantidad de factores externos e internos 
del avión que entran en juego.  

La pérdida de control del UAS causada, por ejemplo, por una lluvia intensa, un 
fuerte viento o, simplemente, un fallo del propio motor o del sistema eléctrico 
del avión, seria evitable si un gestor de contingencias estuviera disponible. Un 
gestor de contingencias se activa cuando un problema es detectado con el 
objetivo de garantizar la fiabilidad del sistema. 

El objetivo principal de nuestro proyecto es realizar un gestor de contingencias 
para poder integrarlo en el ISIS (ICARUS Simulated Integrated Scenario). En 
esta plataforma existen proyectos dedicados al desarrollo del software de un 
UAS, pero ninguno de ellos desarrolla un gestor de contingencias.  

Para poder implementar el gestor de contingencias, necesitamos desarrollar 
previamente simuladores que nos proporcionen los datos de los componentes 
que forman un UAS. Los simuladores que se van a implementar son los 
siguientes: uno de condiciones climáticas, otro del motor del avión y un último 
del sistema eléctrico del UAS.  

Estas tres aplicaciones nos permitirán simular situaciones de emergencia; 
además de gestionar datos eléctricos, mecánicos y climáticos dentro de la 
plataforma de simulación del grupo ICARUS. Dependiendo de las alarmas que 
se recojan por el gestor de contingencias, de forma totalmente independiente, 
clasificará las contingencias y determinará la acción a realizar por el UAS. De 
este modo, garantizará en todo momento la seguridad del avión.     
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Overview 
 
 

Ensuring the reliability of a UAS in flight is part of one of the most complicated 
issues surrounding the world of unmanned aircraft. The main reason for this 
concern is the amount of external and internal factors of the aircraft involved. 

The loss of control of the UAS caused, for example, due to heavy rain, strong 
wind or simply a failure of the engine itself or the airplane's electrical system, 
would be avoidable if a contingency manager was available. A contingency 
manager is activated when a problem is detected with the objective of ensuring 
system reliability. 

The main goal of our project is to make a contingency manager to integrate it 
into the ISIS (Integrated Scenario Simulated ICARUS). There are projects on 
this platform dedicated to software development of a UAS, but none of them 
develops a contingency manager. 

In order to implement the contingency manager, we need to develop previously 
simulators that provide us with information of the components that form a UAS. 
The simulators that are being implemented are: one of weather, other of the 
aircraft engine and the last is a simulator of the electric system of the UAS. 
 
These three applications will allow us to simulate emergency situations in 
addition to managing data electrical, mechanical and climatic within the 
simulation platform of ICARUS group. Depending on the alarms collected by 
the Contingency Manager, completely independently,   will classify the 
contingencies and will determine the action to be performed by the UAS. Thus, 
at all times will ensure the safety of the aircraft. 
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SECTION 1. INTRODUCTION 
 

Ensuring the reliability of a UAS in flight is part of one of the most complicated 
issues surrounding the world of unmanned aircraft. The main reason for this 
concern is the amount of external and internal factors of the aircraft involved. 

The loss of control of the UAS caused, for example, due to heavy rain, strong 
wind or simply a failure of the engine itself or the airplane's electrical system, 
would be avoidable if a contingency manager was available. A contingency 
manager is activated when a problem is detected with the objective of ensuring 
system reliability. 

The main goal of our project is to make a contingency manager to integrate it 
into the ISIS (ICARUS Simulation Integrated Scenario). There are projects on 
this platform dedicated to software development of a UAS, but none of them 
develops a contingency manager. 

In order to implement the contingency manager, we need to develop previously 
simulators that provide us with information of the components that form a UAS. 
The simulators that are being implemented are: one of weather, other of the 
aircraft engine and the last is a simulator of the electric system of the UAS. 
 
These three applications will allow us to simulate emergency situations in 
addition to managing data electrical, mechanical and climatic within the 
simulation platform of ICARUS group. Depending on the alarms collected by the 
Contingency Manager, completely independently,   will classify the 
contingencies and will determine the action to be performed by the UAS. Thus, 
at all times will ensure the safety of the aircraft. 
 
Therefore, we can define as primary objectives of our project: 
 

• Design, implement and integrate into the ISIS a Contingency Manager 
that can collect the UAS alarms, classify these contingencies and 
determine the action to be performed by the UAS. 
 

• Design, implement and integrate into the ISIS, different simulators that 
are able to receive data from the components of a UAS. 

 
This project presents several personal motivations. While we were coursing 
several subjects of the career, we center our attention on the programming, the 
computing architecture, data transmission, and the hardware and software 
manipulation.  We wanted to work on a group that accomplishes all these 
requirements. For this reason, we decided to work at the ICARUS research 
group. 

We find very interesting to be involved inside a research group. We can learn 
how they work, see how it develops a large project which is composed of many 
parts implemented by different people.  
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We also consider the important fact to learn to write a formal document in 
English. Learn to do this kind of documents will be very useful in our future 
careers.  

We consider that design and implement a contingency manager for unmanned 
aircraft is an interesting, and complete project to end our career. 
 
We have considered that to achieve complete the project in an organized way 
and in a time not too long, it was necessary to perform a task planning. To 
achieve this, we made the following Gantt diagram that shows the project 
timing. 
 

 

Fig.1.1  Project Timing. 

During the first few weeks we will be devoted to collect information about all that 
surrounds our TFC. We collect information about the UAS, about the ISIS 
platform and about MAREA works. 

Once these tasks will be finished, we are going to develop the first simulator. 

To develop the Weather Simulator, first we collect information and later we 
design and implement the simulator. 

This procedure is which we will follow to develop the Electrical Simulator, the 
Engine Simulator and the Contingency Manager. 

Finally, to finish de TFC, we are going to prepare the presentation. 
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Then to finish this section we are going to talk about the document organization. 
The document is organized as follows.  

Section II provides an overview about the previous work in the ISIS platform. It 
also explains what is a UAS and defines the middleware over we are going to 
work. 

In Section III, IV and V present the three simulators: Weather Simulator, Engine 
Simulator and Electrical Simulator respectively. In these sections are explained 
which are the goals of these simulators, which requirements must reach and 
finally they also show the program results. 

Section VI presents the Contingency Manager. In this section is described: 
which are the goals, requirements and architecture of the CM. Finally it also 
shows the program results. 

Finally, Section VII concludes the document and proposes future work. 
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SECTION 2. PREVIOUS WORK 

 

In this section we are going to describe how the ISIS platform is composed and 
how to we are going to integrate our project into it. 
 

2.1 ICARUS Simulated Integrated Scenario (ISIS) 

Definition and Overview 

UAS are becoming one of the main assets to be employed in remote sensing 
applications both in civil and scientific environments. However, the current 
limitations when using non-segregated airspace makes extremely difficult to 
have available flight time to extensively test all subsystems required to achieve 
a specific mission. 

Using real flights to test the complete UAS mission infrastructure involves high 
costs and risks. Current legislation requires an area of controlled and 
segregated airspace to perform the test flights. The UAS, its associated 
maintenance systems and the ground station need to be moved to the assigned 
airspace. Except for the smaller UAS, lots of personnel involved in the UAS 
mission also need to be mobilized. In addition, government permissions and 
adequate insurance coverage for the UAS operation has to be obtained. Finally, 
the possibility of damaging or completely losing the UAS should be considered, 
especially when testing new components or subsystems. Obviously, all of these 
restrictions and their associated logistic costs in both time and money make real 
UAS flight a bad option for experimentation. 

Then, simulation is a pushing requirement previous to the real flight campaigns. 
Extensive research and experimentation is available in the area of aircraft and 
autopilot simulation, software in the loop and even hardware in the loop. 
However, little or no research is available in the area of “mission” simulation or 
in the area of multi-vehicle simulation. Modeling such scenarios is becoming 
mandatory because the operation of UAS will become correlated to different 
types of aerial vehicles and even ground vehicles. 

For all these previous reasons, it is needed a simulation platform able to cope 
with a variety of civil UAS missions with little reconfiguration time and overhead. 
This platform has to be capable of, not only simulate the behavior of the UAS 
from the mission point of view, but it has to be able to include additional 
vehicles each one modeled with different levels of granularity. However, not 
only vehicles but their mutual interaction and the interaction with their 
surrounding environment have to be available to simulation. 

To accomplish this objective they have implemented a distributed simulation 
architecture in which vehicles and environment is simulated trough specialized 
pieces of software. An underlying service-oriented communication middleware 
provides the underlying infrastructure to easily implement the inter-vehicle 
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coordination and even the coordination with third party applications providing 
additional simulated vehicles or simulated environment. They called this 
platform ICARUS Simulation Integrated Scenario (ISIS). 

The idea of ISIS is to minimize both the test development and validation cost, 
as well as to provide an easy migration of the software from the tested platform 
to the real flight platform. 

The general goals of the ISIS are: 

• First, ISIS provides an environment in which the USAL components or 
services already designed can interact with others being designed. 

• Second, it provides an easier and safer way to test the mission 
application. 

• Third goal is related to the testing of system with complex scenarios. 
• Fourth, ISIS offers multiple level of detail simulation. 

Architecture and Design  

The key idea here is to have a component capable to simulate the aircraft flight. 
In order to achieve this goal, they need a “Flight Simulator” with a simulated 
autopilot capable of interacting with the USAL. The “Flight Simulator” selected 
was the “FlightGear”. 

 

 

Fig.2.1  ISIS architecture. 

In Figure 2.1 is showed one possible example of the ISIS architecture.  

The UAS is composed by several services. The service composition depends 
on which sort of services or mission they want to test. In this example, we can 
see the Virtual Autopilot System (VAS), the Flight Plan Monitor (FPM) and the 
services that we are going to implement: the Contingency Manager (CM), the 
Electrical Manager (ELM), the Engine and Fuel Manager System (EFMS) and 
the Weather Manager (WM). The simulation versions of the ELM, EFMS and 
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WM are different from the full service version. The main difference is the source 
of the data. In this case, the data are provided by a simulator. In the full version, 
these data are supplied by the batteries sensors and the engine sensors 
respectively. 

We will develop services CM, ELM, EFMS and WM. The latter three services 
will be simulators with the goal of creating emergency situations in the form of 
alarms. The CM will be responsible for categorizing these alarms to be 
processed correctly. There by achieving the stability of the UAV as far as 
possible. All these services belong to the MAREA middleware. For this reason 
can connect to other services if necessary. 

One of the basic ideas of USAL architecture is the freedom to add or remove 
services from the final solution. Depending on which mission the UAS is going 
to deal, there are some service’s blocks or others. Some are basic services, 
always needed. But others may differ depending on the mission objectives. 

 
2.2 Middleware System Architecture (MAREA) 

Middleware-based software systems consist of a network of cooperating 
components, in our case the services, which implement the business logic of 
the application and an integrating middleware layer that abstracts the execution 
environment and implements common functionalities and communication 
channels. In this view, the services are semantic units that behave as producers 
of data and as consumers of data coming from other services. The localization 
of the other services is not important because the middleware manages their 
discovery. The middleware also handles all the transfer chores: message 
addressing, data marshaling (so subscriber services can be on different 
platforms than the publisher service), delivery, flow control, retries, etc. Any 
service can be a publisher, subscriber, or both simultaneously. This publish-
subscribe model virtually eliminates complex network programming for 
distributed applications.  

 

Fig.2.2  Middleware view of the UAV application 
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Each service of the middleware is able to publish variables and networking 
events, do a remote invocation and transfer files. The others MAREA’s services 
can subscribe to these published items. Then we explain the differences 
between the two modes of publishing data, the remote invocation and files 
transmission. 

As variables, we mean the transmission of structured, and generally short, 
information from a service to one or more additional services of the distributed 
system.  

Events are similar to variables in the sense that both work following the 
publication-subscription paradigm. The main difference is that events, opposite 
to variables, guarantee the reception of the sent information to all the 
subscribed services. The utility of events is to inform of punctual and important 
facts to all the services that care about.  

Remote invocation is an intuitive way to model some sort of interactions 
between services. Some examples can be the activation and deactivation of 
actuators, or calling a service for some form of calculation. Thus, in addition to 
variables and events, the services can expose a set of functions that other 
services can invoke or call remotely. 

In some cases, there is the need to transfer with safety continuous media. This 
continuous media includes generated photography images, configuration files or 
services program code to be uploaded to the service containers. 

Implementation of our project in MAREA  

For the implementation of our project we created four MAREA network services. 
The first three services correspond to each of the simulators that are planned. 
With them we have the possibility of publishing in the middleware all the 
simulated variables and the corresponding alarm events. When talking about 
alarms we refer to a notification to other services when variables of our aircraft 
are out of safety range and may pose a risk the aircraft airworthiness.  

The last service implemented corresponds for the Contingency Manager. This 
service will be subscribed to three services listed above in order to assess the 
situation and make a decision. Once reached this point, we will be able to 
publish all other network services such decision 

 
2.3 Unmanned Aerial Vehicle 

An Unmanned Aerial Vehicle is an autonomous aerial vehicle capable of flying 
without any human pilot through a system of autonomous driving. It is called so 
(UAV) by the military of the United States, as it was the name given to the latest 
generations of aircraft capable of flying without a pilot on board.  
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The U.S is the country that has more applications and more of UAVs operating 
today. Is presumably as the power of board systems is increasing, the functions 
that will make the robots also grow. The use of UAVs today focuses on 
reconnaissance and surveillance missions.  

The earliest example was developed after the First World War, and it was used 
during the Second World War to train operators of aircraft guns. However, until 
the late twentieth century was when operating the 'radio-controlled UAV through 
all the features of autonomy. 

The unmanned aircraft may do works as important as the detection and 
monitoring of forest fires, disasters, whether natural or otherwise, and so on. It 
can also be applied in environments with high chemical toxicity and radiological 
type disaster Chernobyl, where it is necessary to sample at high risk of life and 
carry out environmental control. Aircraft comply with regulatory standards set 
forth in the Open Skies Treaty of 1992 that allow UAVs flying over the airspace 
of its signatories. They can cooperate in mission control drug trafficking and 
against terrorism. They could also record videos high quality to be used as 
evidence in an international trial.  

The EPSC owns two UAV Shadow MK.1. This type of UAV can be seen in 
Figure 2.3. The Shadow MK.1 structure is made by Integrated Dynamics, and is 
a medium sized UAV. It is based on a classical twin-boom with engine in 
“pusher” position. Its stock engine is a 250cc boxer featuring about 22CV, which 
allows a maximum take-off weight (MTOW) of about 90kg. 

The most likely application for MK.1 will be real-time detection, control and 
analysis of forest fires. Another possible application for it will probably be the 
calibration and supervision of VOR stations1. 

 

 

Fig.2.3  Shadow MK. 1 

                                            
1 VOR station: short of VHF Omni-directional Radio Range is one of the most used radio navigation aid for 
aircrafts and provides directional and range signal. 
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SECTION 3. WEATHER SIMULATOR 

 

In this section we are going to explain all the features of the Weather Simulator 
and all the steps followed for its preparation. 

This section starts with the Weather Simulator introduction. In this subsection, 
explains the definition of the application and its objectives.  

This section follows with the Weather Simulator specification that it presents the 
functional goals of the service. Also, this subsection provides an overview of 
what we need to get a good simulator.  

Next, the definition of the architecture and design of the Weather Simulator are 
discussed. It offers an explanation of the programming code and an outline of 
the structure of this program. It also presents an outline of the criteria for the 
design of the simulator. 

The implementation of our project and the program results are depicted in the 
last subsection. This subsection details the implementation of the architecture 
and the design of the Weather Simulator. 

 

3.1 Introduction 

The Weather Simulator is a service capable of simulating weather conditions in 
the FlightGear (FG) and publishes all of them to the rest of the services. It is a 
service that lets you interact with the flight simulator through the exchange of 
data. Therefore, the user can modify the weather parameters that are simulated 
in the FG. 

Weather conditions can be decisive in a real flight plan. A strong wind or an 
intense rain can cause serious problems to a UAS. The behavior of an UAS 
may vary significantly if weather conditions are not favorable. 

In the ICARUS research group there is no service that considers the weather 
conditions. For this reason and to avoid all the problems explained in the 
previous paragraph, we need to create a Weather Simulator. 

The goals of the Weather Simulator are the following: 

• Simulate weather conditions at the flight simulator for that the user to 
perform a study of the UAS.  
 

• Publish all weather conditions simulated to the rest of services of the ISIS 
platform. If some service of the platform needs some weather parameter 
may subscribe without problem. 
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• Generate and publish alarms to the rest of services when dangerous 

situations are simulated for the UAS. Some services will need these 
alarms to perform their tasks.  

 
• Integrate the Weather Simulator in the ISIS platform. With this service, 

we increase the possibilities offered by the ISIS.  
 
 

3.2 Specification 

The Weather Simulator must be a service that allows the user: 

• Alter all weather conditions  simulated in the FG. These weather 
parameters are: wind, rain, snow, clouds, turbulences, visibility, 
temperature, dew point2 and pressure. Among them we highlight those 
that directly affect the flight of a UAS. The highlights include: wind, rain / 
snow, turbulences and temperature. 
 

• Determine the elevation  at which we simulate the weather conditions. All 
parameters must be simulated within the elevation established. Elevation 
is important because not all UAS can fly to the same heights. 

 
• Simulate weather conditions on different atmospheric layers . The user 

can simulate many weather conditions on the same stage if he is able to 
split the sky in layers. Thus, can be get a much closer simulation of 
reality. 

 
• Choose the reference level  for our simulation. The elevation, explained 

in the second point, can have the sea or the ground as reference level. 
Modify this information is important because the FG allows to simulate 
different atmospheric layers for each of them. If the user simulates with 
the sea as a reference level, the FG allows to the user to simulate five 
atmospheric layers. If the user simulates with the ground as a reference 
level, the FG allows to the user to simulate three atmospheric layers. 

 
• Create an easy  simulator and friendly  to the user. Thus, the user can 

simulate weather conditions without being an expert in the field. 

Finally, there is a graphic representation of the parameters simulated by the 
Weather Simulator. This representation can observe in Figure 3.1. 

                                            
2 Dew point: is the temperature to which a given parcel of air must be cooled, at constant barometric 
pressure, for water vapor to condense into water. The condensed water is called dew. The dew point is a 
saturation point. 
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Fig.3.1  Parameters of Weather Simulator. 

 

3.3 Architecture and Design 

In the first part of the subsection will be referred to the program structure. It 
presents an overview of the architecture of the simulator. 

The second part will be referred to the design of the Weather Simulator and all 
classes used for programming the service. 

Architecture 

Figure 3.2 shows the architecture of the programmed code of the Weather 
System. It can be seen that the simulator is divided into two layers. 

The first layer, called FG Weather Simulator, consists of all classes relating to 
the graphical interface of the simulator. This group is composed by the 
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configuration forms. Also, it can be seen all those classes that allow 
communication with the FG.  

The second layer, called Weather Manager (WM), consists of classes that allow 
publish data to other services. All classes of the WM will depend on a 
completely separate project called WeatherInterface. The interface is created to 
have a common definition of the classes. It is one way of sharing the definition 
of an object. 

Specific definition of all classes that make up our project can be finding in the 
design subsection. 

 

Fig.3.2  Weather Simulator Architecture. 

The Weather System will modify when the hardware of the UAS of the ICARUS 
is finalized. From that moment, all weather conditions will detected by sensors. 
The UAS in flight will provide the necessary weather information. Thus, the 
Weather Simulator no will longer necessary. For this reason, we divided the 
Weather System in two layers. The FG Weather Simulator layer will be replaced 
by the layer of sensors. The WM is the only layer that could reused in the future. 
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Design 

We have divided the section into two groups for explanation of the design of the 
simulator. The first, called code design, is responsible for explaining in detail 
each of the classes that have been used for programming the simulator code. 
The second, called graphic interfaces design, presents a general overview of 
the two designs that it has been used to create the graphical portion of the 
Weather Simulator. 

Code Design 

Next, we are going to explain in more detail each of the classes of the Weather 
System. 

The FG Weather Simulator has the following classes: 

• Connection_Socket.cs : This class establishes the socket connection 
between the Weather Simulator and the FG. It consists of two main 
methods. The first, called send, sends any type of string for a given port.  
This method is responsible for transmitting data from the Weather 
Simulator to the FG. The second method, called reception, receives the 
data that the FG sends through a configurable port. 

The sockets that connected to FG can send data using two protocols, 
UDP and TCP.  

The UDP protocol allows our simulator to run without the need of having 
established a previous connection to the FG. That is why this protocol 
has been chosen for all the sockets in our applications. The 
disadvantage of the UDP protocol is that it does not guarantee the arrival 
of all packets of the transmission. Information can be lost in shipping. 

• FGMessage.cs: This class create the message to send to FG with the 
correct estructure. The FG needs that the messages, that it receives, 
follow a certain structure. Otherwise the flight simulator can not process 
the information transmitted. The message that the Weather Simulator 
sends with this class follows the following structure: 

41.288377 \t 53.78788878 \t 2.78878888\n 

As shown in the message example above, the values separated by \t 
represent values of different parameters of the flight simulator. The FG 
indicates that the message is finished with character \n. 

XML files are needed for that the connection between the Weather 
Simulator and the FG through messages be successful. The XML files 
relate the values of the message with the parameters of the flight 
simulator. The XML files can be input or output of information to the FG. 
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For the Weather Simulator we need two inputs XML files to enable us 
send to the flight simulator the information we want to modify. The first is 
called Weather_Aloft.xml and is responsible for relating the parameters 
with the FG when the sea is the reference level. The second is called 
Weather_Boundary.xml and, in this case, relates the parameters when 
the ground is the reference level. Both documents follow a structure like 
the one shown at Figure 3.3.  

 

 

 

 

 

 

Fig.3.3  XML code of Weather Simulator.  

As we can see in this XML code relates the Elevation variable of weather 
with the path simulator for the FG server. The flight simulator has a 
server where the user can observe the paths of all its parameters. Thus, 
with the XML file the user can relate the new values with the parameters 
of the FG. In the case of the Figure 3.3, we assign the variable elevation 
to the variable elevation-ft of the path /environment/config/aloft/entry. We 
also determined <type> labeled the type of variable we are sending. This 
process is continuous for all variables submitted. The Weather Simulator 
sends two messages that are totally different. For this reason, we need 
two XML, each for a different reference level. The message we send is 
directly related to the XML used in transmission. For that we need to 
create two separate sockets, one for each of the messages.  

• WeatherParams.cs: This class prepare the message of the FGMessage 
class with a given data. WeatherParams.cs determines with that values 
are going to create the message of the FGMesaage class. The values 
will be determined by WeatherSimulatorPanel class or  AdvancedOptions 
class. This new class needs to reference constantly the FGMessage.cs 
class. 

The WetaherParams.cs consists of two methods. Each creates a 
different message. The first message is created when the user simulates 
weather situations with the ground as reference level. The second 
message is created when the user simulates weather conditions with the 
sea as reference level. 

• WeatherSimulatorPanel.cs: This class is the main form throughout the 
application. It is the main graphic interfaces of the simulator. With this 

<?xml version = "1.0"? 
   <PropertyList>  
     <generic>  
        <input>  
            <! - Set autopilot control properties ->  
               <line_separator> newline </ line_separator>  
               <var_separator> tab </ var_separator>  
                  <chunk>  
                     <name> Elevation (ft) </ name>  
                     <type> float </ type>  
                     <node> / environment / config / aloft / entry / elevation-ft </ node>  
                 </ chunk>  
 
XML cod e for connection between FG and Weather Simulator . 
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class the user can interact with the Weather Simulator. In the 
implementation subsection is a more detailed explanation of this class. 
 

• AdvancedOptions .cs: This class introduces the second form of the 
Weather Simulator. It is a graphic interfaces that allows users to create 
weather conditions much more concrete or specific. In the 
implementation subsection is a more detailed explanation of this class. 

The Weather Manager (WM) has the following classes: 

• WeatherService.cs: This class determines all the variables and events 
published by the weather system. If it is necessary, the user would have 
the posibility to subscribe to other services with this class. The 
WetaherService.cs also is responsible for initialize the 
WeatherSimulatorPanel.cs. 
 

• GlobalArea_WS.cs: This class is like a box where there are all the 
values of variables and events to be publish. When the user simulates 
weather conditions, all parameters are stored in this new class. Thus, it 
will be take the values of the GlobalArea_WS.cs when it is necessary to 
publish data to the other services. 

 
• Publisher.cs: This class is responsible for collecting the values of 

GlobalArea_WS.cs for publication in middleware. Thus, all services can 
use the parameters simulated by the weather simulator. 

Graphic Interfaces Design 

We used two designs for creating the Weather Simulator. The first design 
developed for this simulator was based on the way to represent the values of 
the FG weather panel (see Figure 3.4). The flight simulator shows values of 
wind, turbulence, visibility, among layers defined at different altitudes. 

Fig. 3.4  Layer design FG 

FG offers the possibility of splitting the sky in five layers from sea level and 
three from ground level. In each of these divisions we can determine a height 
and a series of meteorological parameters to choose. It allows to reflect the 
situation that we want to simulate accurately.  

For proper operation of our first design, we must specify values for wind speed 
and direction, altitude, turbulence, visibility, temperature and pressure for each 
of the layers. To ensure a good simulation, the user should know exactly all the 
characteristics of the parameters that represent the simulator. Thus, we realized 
that it was not a fast and easy to use. It was a program where too many 
parameters to be modified to achieve a desired simulation. 
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Once this problem was noticed, we decided to rethink the simulator again and 
deploy it in a much more intuitive way. We would do much more visual simulator 
capable of recreating a real situation with a few mouse clicks, a precise direct 
application at a time. Thus we decided to implement a program where the main 
elements were the buttons.  

The parameters of the wind direction and wind speed were reduced to a single 
group, wind. Thus, from three general conditions as long, medium or little we 
are able to represent the two characteristics of wind with a single button. These 
three conditions have also been applied to the parameters of turbulence and 
visibility.  

The initial design has not been wasted but has been used as advanced options. 
Thus we can specify exact values for each of the parameters that are simulated.  

 

3.4 Implementation 

As a result we may find a simulator with two configuration panels: Weather 
Simulator Panel and Advanced Options. In this way we satisfy all user needs. 

The Weather Simulator Panel is the main form of the Weather Simulator. With 
it, the user can simulate weather conditions quickly and accurately. The 
Advanced Options is the secondary form of the Weather Simulator. With it, the 
user can simulate much more specific weather conditions. 

The following explains in greater detail the features and the functionalities of 
each of the forms. 
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3.4.1 Weather Simulator Panel 
 
We represent the final implementation of Weather Simulator Panel in the Figure 
3.5. 

 

Fig.3.5  Weather Simulator Panel. 

As it is shown in Figure 3.5, the Weather Simulator Panel is divided into 
different sections. Each section belongs to each parameters group that is 
simulated: wind, turbulence, temperature, reference level, altitude, clouds and 
rain or snow. The sections are clearly differentiated from each other. Every 
section is formed by their corresponding buttons. 

Next, we are going to describe each weather sections from left to right of the 
Figure 3.5. 

The first section that we are going to describe is the elevation  section. By 
means this group, we specify the height at which we want to simulate a 
particular meteorological situation in one altitude layer. The limit or end values 
of this layer is determined by the values entered in the elevation section. All 
parameters of wind, turbulence, clouds and temperature that the user wants to 
represent are simulated in the range of altitudes of the layer. 

The three sections that are explained below have three configuration buttons. 
These sections are those that are below the elevation section in Figure 3.5. 
With the three buttons that the sections have, the user can simulate three 
conditions for each section; short, medium and long. The values each section 
will depend on the condition to which they belong.  
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One of these three sections is the wind section. This value includes two 
characteristic parameters of the wind, the direction and the speed. 

The wind direction parameter is important because the effects caused by the 
impact of wind in a certain direction are directly related to the orientation of the 
plane. The wind will affect the plane differently if the orientation of the plane and 
wind are the same or not. For the three conditions of this parameter a single 
value of direction is used. Sixty degrees has been used as a general value.  

The velocity is a variable value. FG presents this parameter in kilometers per 
hour (km/h). Thus, we believe that 100 km/h was an appropriate maximum 
value for the simulation of the wind because the aircraft have important 
variations in their trajectories. Minimum value determined as 20 km/h, a value 
that does not affect the behavior of the aircraft-  

Another section of the Weather Simulator Panel which involves setting three 
conditions is the section of turbulence . The turbulence section is to the right of 
the wind section in the Figure 3.5. The buttons of this section represent a value 
with range between 0 and 1. With the maximum value, we observe that the 
simulation results in a continuous drift of the aircraft even to lose all control over 
it.  

The last section of the three sections is the temperature . The temperature 
section is to the right of the turbulence section in the Figure 3.5. This parameter 
allows the user to simulate a high temperature like a fire or a low temperature 
like the upper layers of the sky. 

Next, can be seen the rain/snow  section at top of the turbulences section and 
to the right of the elevation section in Figure 3.5. This section does not follow 
the pattern of previously explained. In this case, the section is formed by two 
buttons. 

The section of rain/snow has been designed to simulate the raining or snowing. 
A heavy rain or snowfall affects the flight of the plane. It will rain with great 
intensity if the user selects the button rain. With the same intensity it will snow if 
the snow button is pressed.  

Then, can be seen the clouds  section to the right of the rain/snow section in the 
Figure 3.5. This section follows the pattern of the rain/snow section. In the 
section of clouds, we are able to simulate a clear or cloudy sky. In the Weather 
Simulator Panel are represented two types of clouds in the first layer of the 
atmosphere. This layer will be limited between the chosen reference level and 
the altitude selected in section elevation. 

The last section to configure parameters is the reference level  section. This 
section is to the right of the clouds section in the Figure 3.5. This value is very 
important in our simulator as it has the responsibility for determining the 
beginning of our atmosphere layer, where we represent all weather conditions 
chosen. 
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Finally, can be seen the buttons  section under the reference level section in 
the Figure 3.5. The buttons of this section are: send data to FG, clear all, 
advanced options and exit.  

With the first button, the Send data to FG, we initialize the data transmission. 
This data transmission is made through a socket UDP. For more information 
about the transmission see Appendix Section 1. With the reset all button, reset 
all the parameters previously set in the simulator. Thus, we can create new 
weather situations more quickly than restart the application. Using the advanced 
options button opens the panel that explained in the next section (see Figure 
3.6). 

 

3.4.2 Advanced Options 
 
We represent the final implementation of Advanced Options of Weather 
Simulator in the Figure 3.6. 

 

Fig.3.6 Advanced Options of Weather. 

The Advanced Options is a form of the application created to achieve specific 
situations. With this new form, we are able to simulate climatic parameters 
much more concrete. This new panel allows the user to recreate a weather 
situation through layers of altitude. Now we are able to simulate all the 
parameters with the same configuration that offers the FG. Five atmospheric 
layers may be represented. The fact of adding this new feature will create a 
much more complete and detailed simulator. The new panel sends the 
information with the sea level as reference. This is because FG that it only 
provides the ability to simulate five layers with that reference level. 



20 Contingency Manager for ICARUS Simulated Integrated Scenario 
 
 

 
 

The Advanced Options consists mainly of four sections. All of which are 
interrelated to achieve the same goal, extend the simulator capabilities. Next, 
we are going to describe each advanced options sections from left to right of the 
Figure 3.6. 

The first section that we are going to describe is the scrolls section. This 
section is comprised of eight scrolls and eight textbox. The eight scrolls are able 
to assign values to all parameters that are simulated. These parameters are: 
height, direction and wind speed, temperature, pressure, dew point and 
visibility. The eight textbox represent the values of the eight scrolls. These 
values are represented numerically and their corresponding unit. 

Next, can be seen the layers section at top of the scrolls section in Figure 3.6. 
This section is comprised of five radiobuttons that allow us to select of which 
layer we want to send data. Thus, we can represent all the parameters listed 
above in all layers of existing elevation in FG.  

Then, can be seen the types of clouds section to the right of the scrolls section 
in Figure 3.6. This section is comprised of six radiobuttons. Each of these 
radiobuttons represents a different type of cloud. The possibilities we have are 
the following: clear, few, scattered, broken, overcast, and cirrus. For each layer 
selected can simulate a different type of cloud.  

The few option and the scattered option represent stratus type clouds. The 
broken option and the overcast option represent nimbostratus type clouds. The 
cirrus option represent cirrus type of clouds. For more information about clouds 
see Appendix Section 2. 

The last section that can be seen in Figure 3.6 is the buttons section. This 
section is under the types of clouds section. The buttons that this section 
represents are: Send Data to FG, reset all and return. With the send data to FG 
button sends the information as the Weather Simulator Panel. With the reset all 
button reset the parameters configured. Finally, with the return button back to 
the main panel and saving the data set.  
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SECTION 4. ENGINE SIMULATOR  

 

In this section we are going to explain all the features of the Engine Simulator 
and all the steps followed for its development.  

This section starts with the Engine Simulator introduction. In this subsection, it 
is explained the definition of the application and its objectives.  

This section follows with the Engine Simulator specification that it presents the 
functional goals of the service. Also, this section provides an overview of what 
we need to get a good simulator.  

Next, the definition of the architecture and design of the Engine Simulator are 
discussed. It offers an explanation of the programming code and an outline of 
the structure of this program. It also presents an outline of the criteria for the 
design of the simulator. 

The implementation of our project and the program results are depicted in the 
last subsection. This subsection details the implementation of the architecture 
and the design of the Engine Simulator. 

 

4.1 Introduction 

The engine simulator is an application that can emulate the engine system of a 
UAS. The user has the ability to visualize engine parameters of a UAS that are 
simulated in the FG. The Engine Simulator receives constantly the telemetry of 
the FG. Also, the user has the ability to recreate situations of failure of the 
parameters named above. 

We need to create the Engine Simulator because the procedure of turning on 
the engine for each test of the simulation in a laboratory setting is an 
inappropriate option for experimentation. Also, the Engine Simulator is 
necessary because it provides the possibility of simulating engine alarms 
without compromising the real engine system. 

The goals of the Engine Simulator are the following: 

• Simulate the engine system in order to perform a study of the engine of 
the UAS.  
 

• Publish all engine parameters simulated to the rest of services of the ISIS 
platform. If some service of the platform needs some engine parameter 
may subscribe without problem. 
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• Generate and publish alarms to the rest of services when dangerous 
situations are simulated for the UAS. Some services will need these 
alarms to perform their tasks. 

 
• Integrate the Engine Simulator in the ISIS platform. With the Engine 

Simulator service, we increase the possibilities offered the services of the 
ISIS. 

 
 

4.2 Specification  

The Engine Simulator must be a service that allows the user: 

• Emulate the most characteristic parameters of an engine system. These 
engine parameters are: RPM (Revolutions per minute), CHT (Cylinder 
Head Temperature), EGT (Exhaust Gas Temperature), oil pressure, oil 
temperature, fuel flow and fuel level. 
 

• Visualize the parameters of the UAS engine of the FG. In this way, the 
user will know the actual data of the aircraft. These parameters will help 
the user to conduct the study of the UAS engine. 

 
• Choose different values for the parameters that we are going to simulate. 

Thus, the application will simulate different types of alarms. 
 

• Visualize what is happening. A graph for each of the simulated 
parameters can help the user to understand the simulation. Thus it is 
clearly differentiated the FG values and the new values of the Engine 
Simulator. 

 
• Configure the application to any UAS. The user should be able to modify 

the values of the parameters that are simulated on the Engine Simulator. 
Thus, the simulator will be flexible for any type of aircraft. 

 
• Create an easy  simulator and friendly to the user. Thus, the user can 

simulate engine conditions without being an expert in the field. 
 

Finally, there is a graphic representation of the parameters simulated by the 
Engine Simulator. This representation can observe in Figure 4.1. 

These values refer to the engine of a Cessna 172. For more information about 
the Cessna see Appendix Section 3. 
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Fig.4.1  Parameters of Engine Simulator. 

 

4.3 Architecture and Design 

The first part of the subsection will be referred to the program structure. It 
presents an overview of the architecture of the simulator. 

The second part will be referred to the design of the Engine Simulator and all 
classes used for programming the service.  

Architecture 

Figure 4.2 shows the architecture of the programmed code of the Weather 
System. It can be seen that the simulator is divided into two layers. 

The first layer, called FG Engine Simulator, consists of all classes relating to the 
graphical interface of the simulator. This group is composed by the 
configuration forms of the simulator. It can also be seen all those classes that 
allow communication with the FG.  

The second layer, called Engine Manager (EM), consists of classes that allow 
publish data to other services. All classes of the EM will depend on a completely 
separate project called EngineInterface. The interface is created to have a 
common definition of the classes. It is one way of sharing the definition of an 
object. 



24 Contingency Manager for ICARUS Simulated Integrated Scenario 
 
 

 
 

Specific definition of all classes that make up our project can be finding in the 
design subsection. 

 

Fig.4.2  Engine Simulator Architecture. 

As the previous simulator, the FG Engine Simulator layer will be replaced by 
sensors of the engine system of real UAS. For this reason, we divide the Engine 
System in two layers. The EM is the only layer that could reused in the future. 

Design 

We have divided the section into two groups for explanation of the design of the 
simulator. The first, called code design has the explanation in detail of each of 
the classes that have been used for programming the simulator code. The 
second, called graphic interfaces design, presents a general overview of the 
graphical design of the Engine Simulator. 
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Code Design 

Next, we are going to explain more detail each of the classes of the Engine 
System. 

The FG Engine Simulator has the following classes: 

• Connection_Socket.cs : This class establishes the socket connection 
between the Engine Simulator and the FG. Is the same class that is 
explained in the Weather Simulator. 

• EngineSimulatorPanel.cs: This class is the main form throughout the 
application. It is the main graphic interfaces of the simulator. With this 
class the user can interact with the Engine Simulator. In the 
implementation subsection there is a more detailed explanation of this 
class. 
 

• General Behaviour.cs: This class allows to visualize all the graphics of 
the Engine Simulator in a new windows form. 

 

The Engine Manager (EM) has the following classes: 

• EngineSimulatorService.cs: This class determines all the variables and 
events published by the engine system. If it is necessary, the user would 
have the posibility to subscribe to other services with this class. The 
EngineSimulatorService.cs also is responsible for initialize the 
EngineSimulatorPanel.cs. 
 

• GlobalArea_ES.cs: This class is like a box where there are all the 
values of variables and events to be publish. When the user simulates 
engine conditions, all parameters are stored in this new class. Thus, it 
will be take the values of the GlobalArea_ES.cs when it is necessary to 
publish data to the other services. 

 
• Publisher.cs: This class is in charge of collecting the values of 

GlobalArea_ES.cs in order of publicating them on middleware. Thus, all 
services can use the parameters simulated by the Engine Simulator. 

Graphic Interface Design 

From the beginning, we knew that in order to make an efficient engine 
simulator, we needed to create a very intuitive service for the user. To achieve 
this, we need a simulator based in graphics and buttons. 

All parameters of the Engine Simulator need a graph. Thus, the user sees 
clearly the evolution of parameter values. All graphs of the parameters in the 
same panel do not offer a good interpretation of what is happening. 
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To get a clear distribution of all parameters, we have based the design of the 
simulator on a tabs system. In each tab the user can see represented different 
engine parameter. In the last tab the user can access to the advanced options. 

 

4.4 Implementation 

We have designed a simulator with a panel of seven tabs. Six of the tabs are 
related to engine parameters and the last tab contains the advanced options. 
The panel is named Engine Simulator Panel. 

The following explains in greater detail the features and the functionalities of 
each of the tabs. We represent the final implementation of Engine Simulator 
Panel in the Figure 4.3. 

 
 

Fig.4.3  Engine Simulator Panel 

Each tab of the Engine Simulator Panel belongs to a parameter that is 
simulated: CHT, EGT, RPM, oil pressure, oil temperature and fuel flow. Every 
tab is formed by their corresponding buttons. 

Among all the tabs that are explained above we must emphasize one: the fuel 
flow tab is different from the others. In this tab we find a new box where we 
observe the value of the UAS tank. Also, the user has the possibility to simulate 
a failure of fuel tanks. With the Cause failure button the user simulates that the 
UAS does not have enough fuel. 
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For each of the parameters, the user has a group of 3 buttons. As it can be 
seen in Figure 4.3 the buttons are:  Low RPM button, Medium RPM button and 
High RPM button, with this buttons the user can modify in greater or lesser 
degree the normal behavior of each parameter. This value increases or 
decreases progressively until it reaches its final value. 

The value that is simulated will be consistently accounted on a graph. Each tab 
has its corresponding graph. We can see an example of graphics in the middle 
of the Figure 4.3. To plot the behavior of each parameter, we loaded into our 
project library, the dll of ZedGraph (www.zedgraph.org). It has allowed us to set 
up the visual appearance of the graphs and represent the evolution of each 
parameter.  

All of the tabs share four general buttons: Send Data to MAREA, Clear All, 
General Behaviour and Exit. The first one is responsible for publishing the 
parameters simulated in the middleware. With the Reset All button, the user 
restarts the simulator parameters to their default values. With the General 
Behaviour button, the user can be seen the all graphs of the parameters in a 
new form. These buttons can be visualized at the bottom of Figure 4.3. 

Our simulator publishes constantly to MAREA the instant parameters of the 
engine that receives of FG. If at any time any of the buttons of each tab is 
selected, pressing the Send Data to MAREA button, the parameter received of 
FG will be amended by a new value. This value depends on the button the user 
has selected. Thus, we can see the new simulated value in the box changed 
value, and the value received of FG in the box FlightGear value. The evolution 
of the value of each parameter can be seen at the graphic of each tab. The box 
Changed value and the box FlightGear value can be visualized to the right of 
the graph in Figure 4.3. 

There is a relationship between each button and a maximum value and a 
minimum of that parameter of the engine. The maximum and minimum value 
can be modified in the advanced options in order to get a simulator more 
flexible and that it can adapts to different engine types.  

Finally there is the Engine Simulator Panel. This tab is named Advanced 
Options (see Figure 4.4). 
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Fig.4.4  Advanced Options of Engine 

 
The advanced options allow us to specify a determinate value of any parameter 
of the engine we want to modify. Thus, the user can simulate the engine with 
greater accuracy. As shown in Figure 4.4, this tab is divided into seven different 
sections. The first six refer to the engine parameters. Each one provides a 
specific value via a scrollbar.  

The last section of this tab lets you select the maximum and minimum value 
among which oscillate every aspect configurable of the engine. Thus, the user 
can simulate any type of engine by introducing the maximum and minimum 
values for each parameter.  
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SECTION 5. ELECTRICAL SIMULATOR 

 

In this section we are going to explain the all features of the Electrical Simulator 
and all the steps followed for its preparation.  

This section starts with the Electrical Simulator introduction that explains the 
definition of the application and its objectives. 

Next, it can be found the Electrical Simulator specification. It presents the 
functional goals of the Electrical Simulator and displays an overview of all the 
Electrical Simulator requirements. 

This section follows with the architecture and design of the Electrical Simulator. 
It offers an explanation of the programming code and an outline of the structure 
of this program. It also presents an outline of the criteria for the design of the 
simulator. 

The implementation of our project and the program results are depicted in the 
next subsection. This subsection details the implementation of the architecture 
and the design of the Electrical Simulator.  

 

5.1 Introduction 

The working of the electrical system of a UAS is decisive in a flight plan. A fault 
in the battery or in the alternator may cause irreparable damage in the UAS. 
The behavior of an aircraft may vary considerably if the working of the electrical 
system is not favorable. 

At the ICARUS research group there is no service that considers the electrical 
system of a UAS. For this reason and in order to avoid all the problems 
explained in the previous paragraph, we need to create an Electrical Simulator. 

The electrical simulator is an application that can emulate the electrical system 
of a UAS. The user has the option of adding to the UAV a number of devices 
and recreate situations of failure of these devices. 

The goals of the electrical simulator are the following: 
 

• Simulate an electrical system for the user to perform a study of the 
payload of the UAS.  
 

• Publish all electrical parameters simulated to the rest of services of the 
ISIS platform. If some service of the platform needs some electrical 
parameter may subscribe without problem. 
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• Generate and publish alarms to the rest of services when dangerous 
situations are simulated on the UAS. Some services will need these 
alarms to perform their tasks and responses. 

 
• Integrate Electrical Simulator in the ISIS platform. With the Electrical 

Simulator service, we increase the possibilities offered the services of the 
ISIS.  
 
 

5.2 Specification  

The Electrical Simulator must be a service that allows the user: 

• Configure a large number of electrical devices. The devices that have to 
be taken into account are: video cameras, photo cameras, thermal 
cameras, gps, video transmitters, batteries, alternators, servos and 
autopilot. 
 

• Activate or disable each of the simulated devices. Thus, the user can 
keep track of the consumption of the payload. 

 
• View the remaining flight time with illustrations or graphics. Thus, the 

user can know if there is time to end the alleged mission of a UAS. 
 

• Visualize how much energy is left for the battery. The user can control 
the energy level of the system. 

 
• Visualize specific information to each device. The application must also 

show the consumption of each device. Thus, the user can determine 
which devices are useful at this time.  

 
• Create an easy  simulator and simple usability . Thus, the user can 

simulate an electrical system without being an expert in the field. 
 

Finally, there is a graphic representation of the devices simulated by the 
Electrical Simulator. This representation can observe in Figure 5.1. 
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Fig.5.1  Parameters of Electrical Simulator. 

 

5.3 Architecture and Design 

The first part of the subsection will be referred to the program structure. It 
presents an overview of the architecture of the simulator. 

The second part refers to all classes used for programming the simulator. 

Architecture 

Figure 5.2 shows the architecture of the programmed code of the Electrical 
System. It can be seen that the simulator is divided into two layers. 

The first layer, called UAS Electrical Simulator, consists of all classes related to 
the graphical interface of the simulator. This layer is composed by the 
configuration forms of the simulator and by the information forms of the devices.  

The second layer, called Electrical Manager (ELM), consists of classes that 
publish data to other services. All classes of the ELM will depend on a 
completely separate project called ElectricalSimulatorInterface. The interface is 
created to have a common definition of the classes. It is one way of sharing the 
definition of an object. 
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Specific definition of all classes that make up our project can be finding in the 
design subsection. 

 

Fig.5.2  Electrical Simulator Architecture. 

As the previous simulator, the UAS Electrical Simulator layer will be replaced by 
sensors of the electrical system of real UAS. For this reason, we divided the 
Electrical System in two layers. The ELM is the only layer that will be reused in 
the future. 
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Design 

We have divided the section into two groups. The first, called code design is 
responsible for explaining in detail each of the classes that have been used for 
programming the simulator code. The second, called graphic interfaces design, 
presents a general overview of the graphical design of the Electrical Simulator. 

Code Design 

Next, we are going to explain more in detail each of the classes of the Electrical 
System. 

The UAS Electrical Simulator has the following classes: 

• Configuration.cs: This class is the first configuration panel that it 
initializes when the simulator is started. It allows us to configure how 
many devices we want to simulate. These devices are: photo cameras, 
video cameras, thermal cameras and batteries. The other devices, that 
cannot be set, are simulated by default when the user closes the 
configuration.cs class. 
 

• Configure_devices.cs: The Electrical Simulator is programmed with 
specific models for each of the devices that are simulated. The 
application determines by default specific consumption for each device. 
This new class allows us to modify the devices configured by the 
simulator. Thus, the user will be able to modify patterns of the devices 
that he wants. 
 

 
• ElectricalSimulatorPanel.cs: This class is the main form throughout the 

application. It is the main graphic interface of the simulator. With this 
class the user can interact with the Electrical Simulator. In the 
implementation subsection is a more detailed explanation of this class. 
 

 
• Classes of the devices: UAS Electrical Simulator layer has eight 

classes dedicated to each of the devices. In each of these classes, the 
user can find the consumption of the device and detailed information of it. 
 

The Electrical Manager (ELM) has the following classes: 

• ElectricalSimulatorService.cs: This class determines all the variables 
and events published by the electrical system. In the case of being 
necessary, the user would have the posibility to subscribe to other 
services with this class. The ElectricalSimulatorService.cs also is 
responsible for initialize the ElectricalSimulatorPanel.cs. 
 

• GlobalArea_ES.cs: This class stores all the values of variables and 
events to be publish. When the user simulates an electrical system, all 
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parameters are stored in this new class. Thus, it will be take the values of 
the GlobalArea_ES.cs when necessary to publish data to the other 
services. 
 

 
• Publisher.cs: This class is responsible for collecting the values of 

GlobalArea_ES.cs and publish them to the middleware. Thus, all 
services can use the parameters simulated by the Electrical Simulator. 

Graphic Interface Design 

From the beginning, we knew that in order to design an efficient electrical 
simulator, we needed to create a very intuitive simulator for the user. The 
program must be able to collect the most important data on the same screen. 
So the user can see at any moment what is happening. For this reason, we 
decided to create a simulator based on graphs and illustrations. 

Through a graph we can interpret on a fast and visual way how much estimated 
time we have flown. It is very important for the user to have always clear view of 
the status of the plane. For this reason we consider important the 
representation of a graph showing the time remaining before the batteries are 
discharged, with the devices currently enabled. This graphic is updated if a 
device is connected or disconnected.  

It is also necessary that the user know at all times the consumption of each 
device. For this reason we have set graphs for each of these devices. Thus, the 
user may decide to consider whether or not activate a device. Also, we knew 
that the pictures in the main panel would help the user to understand the 
simulation. For this reason, we have included illustrations of each of the devices 
that are simulated. So, the user understands the simulation that is created. 

The buttons are very useful tools for creating simulators that are quick and easy 
to use. The Electrical Simulator needs these buttons. They provide a lot of 
different utilities.   

Finally, we consider that the representation of the charge value of the UAV is 
important. Monitoring the weight of the UAV is an important safety measure. Not 
all aircraft can withstand the same load. So the user must keep a tight check to 
not cause a loss of control of the plane. For all these reasons we decided to 
implement a TextBox in the main screen that is constantly showing the total 
payload of the aircraft. Thus we guarantee that the user can visualized this 
parameter.  
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5.4 Implementation 

We have obtained a simulator with a main panel (Electrical Simulator Panel), a 
configuration panel  (Configuration), eight panels concerning the devices 
installed on the UAV and an additional panel (Configure Devices) which allows 
us to change consumption and weight devices and batteries.  

The following explains in greater detail the features and the functionalities of 
each of the forms. 

Configuration 
 
We represent the final design of Configuration panel of Electrical Simulator in 
the Figure 5.3. 
 

 
 

Fig.5.3  Configuration panel of electrical simulator. 
 
The Configuration panel lets the user to select the desired quantity of devices to 
incorporate at the UAS. As shown in the Figure 5.3, the user can add to the 
payload: photo cameras, video cameras, thermal cameras, lead batteries and 
lipo batteries. 
 
It will install five photo cameras, three video cameras, three thermal cameras 
and four batteries of both types. To choose the number of batteries possible we 
have relied on the document “Engine and Fuel Manager System for Unmanned 
Aerial Vehicles” being done by July Sagardoy Perez in the ICARUS group. On 
this document there is explained the implementation of the hardware of the 
plane and a proposal of a system capable of incorporating four batteries of each 
type. 
 
Once the desired configuration devices were established, we will go to the main 
panel by clicking the Accept button. 
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Electrical Simulator Panel 
 
We represent the final implementation of Electrical Simulator Panel in the 
Figure 5.4. 
 
 

 
 

Fig.5.4  Electrical Simulator Panel. 

The Electrical Simulator Panel is the main menu of our simulator and it is 
composed for five different sections. These five sections are: devices section, 
system information section, the plane section, graphical section and buttons 
section. Next, we are going to describe each electrical section from left to right 
of the Figure 5.4.  

The first section that we are going to describe is the devices  sections. The 
devices that can be incorporated into the UAVs are divided into two groups. The 
first group, to the left of the plane in Figure 5.4, is supplied from a lead battery. 
The second group, to the right of the plane in Figure 5.4, is supplied from Lipo 
batteries. In both sections the user can see which devices are activated (green 
light) or deactivated (red light). The user has the possibility to access to extra 
information about each device (see Figure 5.5) with the blue information button. 
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Fig.5.5  Devices information. 
 
In this extra information, the user can see a picture and general characteristics 
of the device that is being simulated. Also, the user can see a graph showing 
the consumption of the device at all times. 

Also, the user can simulate different types of device failures through a 
Combobox and a button. These are located at the bottom of Figure 5.5. The 
electrical simulator publishes an alarm in the middleware of this error with the 
button named above. Thus, the system of contingency knows that particular 
device has an error in its operation which, at that time, it is not operating. 

With the info button on the video cameras the user also has the possibility to 
activate the record mode (Rec button) that consumes more current. With the 
info button on the photo cameras the user also has the possibility to activate the 
zoom mode and the photo mode. Both actions will produce an increase in 
consumption of the camera. These changes in consumption will be reflected in 
their corresponding graphs. The info button of lead batteries and Lipo batteries 
has a particularity. In both cases, we obtain a form with a representation of the 
energy that is left for each battery. Thus, users can take a visual check of the 
energy available for the flight. 

Next, it can be seen the graphic  sections at top of the devices sections in 
Figure 5.4. This section shows a visual representation of the estimated time that 
remains of flight. From the graph the user has the information of the volts 
delivered by the battery in function of time. Thus, the user ensures that during 
that time the system will work without the batteries run out completely. 
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As in the case of the engine simulator, these plots have been designed through 
the bookstore Zedgraph (see http://www.zedgraph.org/). The graph represents 
a vertical yellow line. This line shows the user the time it takes flight. This allows 
the user to identify where we are and how long it is estimated flight. 

It can be seen the plane  section to the right of the first device section in the 
Figure 5.4. This section is characterized for representing all the selected 
devices on a plane. Each device is represented by a green or red light on the 
silhouette of a UAS. The user can enable or disable all devices just by pressing 
the corresponding light. The user can get some little information on each device 
if the user holds your mouse over any of the lights of the plane.  

The next section that we are going to describe is the system information  
section. It is located below the second devices section in Figure 5.4. In the 
system information section we can see two representations of the battery level 
and a display of the aircraft payload. 

We see two levels of battery; the first is the lead battery and the second 
represents the remaining battery level of Lipo Battery. The representation of the 
payload of the UAS is directly dependent on the selected devices in the 
Configuration form (see Figure 5.3). The simulator adds to the variable payload, 
the weights of all embedded devices on the plane. Knowing the maximum load 
carried by the aircraft may determine whether the choice of devices is correct or 
not. 

Finally, it can be seen the buttons  section under the system information section 
in the Figure 5.4.In this final section are three different buttons: enable devices, 
disable devices, configure devices and exit.  

With the first button, the user has the possibility to activate all the devices that 
are incorporated into the aircraft. With the second button, the user has the 
possibility of disabling all devices that are incorporated into the UAS. For 
security aspects, when the user presses the button to disable devices, batteries 
and alternators of the system are not deactivated. This ensures the safety of all 
system devices. Autopilot and servo devices also are not turned off with the 
disable devices button because are not configurable devices. With the configure 
devices button, we can see a supplementary form, which allows us to specify 
new models of devices or batteries (see Figure 5.6). 
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Fig.5.6  Configuration devices panel. 

 
The user can replace batteries and devices installed by other different on the 
UAV. In order to configure this task, the user has to specify the weight and 
consumption of the new devices. Once the changes are done, the simulator 
modifies these parameters and emulates new elements. With this panel we 
obtain a simulator much more flexible because a small change the simulator is 
adapted to any type of device or battery.  
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SECTION 6. CONTINGENCY MANAGER 

 
In this section we are going to explain the Contingency Manager (CM), all the 
features of the CM and the steps followed for its implementation. This section 
starts with the CM introduction which explains the CM definition and their 
objectives. Following we are going to describe the CM architecture, the CM 
design and implementation. To finish this section, we are going to present 
different use cases of the CM. 
 
 
6.1   Introduction 

The CM is the USAL service which centralizes all the alarms and contingencies 
of the system. The CM acquires and processes all the possible hazard 
situations to recover the correct status of the system. In order to design a robust 
system to manage UAS civil missions, contingency situations have to be taken 
in account. Any little failure of the system can achieve success of the mission in 
dangerous. All this warning, alarms, failures have to be treated to offer an 
intelligent response. The CM objectives are: 

• To manage and centralize all the alarms and contingency situations. 
 

• To find possible future UAS failures. 
 

• To propose responses from contingency situation. 

The CM is responsible for collecting status information related to multiple 
sources as: autopilot, engine, electrical, fuel, communications, etc. and 
identifying contingency situations. It is understood as contingency those 
situations which the UAS integrity is or will be in danger. If a contingency 
occurs, all involved services will be alerted and proper reaction will be taken 
according to the sort of contingency.  

• Flight Contingencies: in case of weather changes we may force certain 
areas to be excluded from the operative flight plan. Other possible 
causes are that the expected performance of the UAS does not satisfy 
certain minimums or power sources do not provide the required levels of 
electrical energy, or fuel consumption does not behave as expected. 
 

• Payload Contingencies: in case a given payload element fails some 
predefined actions need to be taken. If the payload element is critical for 
the flight, the flight plan needs to be terminated as soon as possible; if 
the contingency is critical for the mission, the mission is canceled or its 
objectives are reduced. If the contingency only affects the operation 
partially, the degraded conditions are annotated for further failures. 
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• Mission Contingencies: in case the expected mission results are not 
achieved due to any unexpected situation, mission objectives may be 
reduced or totally canceled. 

 
• Awareness Contingencies: in case the airspace is not segregated 

another aircrafts can force flight plan changes or mission deviations. 

 

6.2   Contingency Manager Architecture 

The CM is composed by two pieces of software: the Health Monitor (HM) and 
the Contingency Intelligent Control (CIC). The first one is in charge of gathering 
and pre-processing all the information required to evaluate the UAS status. The 
second one provides the CM intelligence to evaluate all UAS pre-processed 
information and generate an intelligent response in front of any contingency.  

 

 
 

Fig. 6.1 Contingency Manager Architecture.  

 
The HM process and gathers all the information needed to take a contingency 
decision. It is subscribed to the most relevant UAS information. This information 
is stored periodically, the CM information repository in order to be checked in 
that way to find any future contingency. To search UAS contingencies, the 
service will occasionally need mission or flight plan information. For example 
the mission time has to be compared with energy time or fuel time. This 
information will be achieved on demand to reduce network traffic. To sum up; 
the HM gathers all the information needed by the service to look for any 
contingency. This information can arrive periodically or on demand. When the 
HM finds a contingency, it is sent to the CIC in order to be classified. 
 
The CIC gives the system intelligence and basically, it is in charge of 
responding or proposing different responses in front of any contingency 
preserving the UAS integrity. The CIC classifies the contingency in three 
categories: minor, hazardous and catastrophic. Each category has different 
responses as it is shown in the Figure 6.2. 
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Fig.6.2 Contingency Intelligent Control Overview Architecture. 

 
In the Figure 6.2 is depicted the contingency reactions for each category. 
 

• The most important and restrictive category is the Catastrophic 
Contingency. The system enters in this state when the UAS cannot be 
recovered. Therefore, the mission has to be terminated ensuring enough 
safety. The Catastrophic Contingency module actives the Flight 
Termination System (FTS). The FTS commonly will be composed by 
parachute system to ensure the system safety and reduces ground crash 
risk. 

 
• Next to the Catastrophic Contingency module it is found the Hazardous 

Contingency module. With this component we manage any contingency 
which interrupts or will interrupt the normal mission development. It is 
very important to prevent this type of contingencies because they might 
finish as a Catastrophic Contingency. On the other side; a proper and 
quick contingency detection can save the UAS platform. 

 
• Finally the Minor Contingency component is shown in the left of the 

Figure 6.2 Minor Contingency treats any little anomaly or failure which 
can be recovery. This module establishes a contingency hypothesis and 
it plans and executes a response. After that the module monitor the 
system response until the contingency disappears. 
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As it is shown in Figure 6.2, the CM has a protocol to look the cause up and 
response in front of the Minor Contingencies. In order to response in a correct 
way the CIC is divided in three different pieces: 
 

• Hypothesis: During this phase the CIC searches the cause of the alarm. 
The CIC studies all the information gathered by the Health Monitor. The 
result of this study is the hypothesis of the warning. Sometimes the CIC 
may find several hypotheses. In these cases the operator will have to 
choose the correct cause of the warning. The CIC, through a probabilistic 
method, will propose the origin of the failure. To sum up; in this phase we 
establish and validate the contingency hypothesis. 
 

• Contingency Response: When is the contingency located, the CIC has to 
plan and execute the contingency hypothesis responses. This phase has 
pre-defined responses which have been pre-loaded during the dispatch 
process. The CIC can present different responses in priority order to the 
operator. 

 
• Evaluation Response: When the operator has taken the decision, the CIC 

starts a new process to evaluate the response. This phase has to check 
that the contingency has terminated. In other case, and after a timeout, 
all the process has to be repeated again. 
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6.3   Design 

In the Figure 6.3 we can see the different classes of the CM, which are divided 
in two different groups: HM Layer Classes and CIC Layer Classes.  

 

Fig.6.3  Contingency classes 

Next, we are going to explain in more detail each of the classes of the CM: 

• ContingencyManager_Panel.cs: This class is the main form throughout 
the application. It is the main graphic interfaces of the CM. With this class 
the user can see the alarms received by the HM. In the implementation 
subsection is a more detailed explanation of this class. 

 
• HealthMonitor.cs: This class implements the HM, that we have 

explained previously. 
 

• ContingencyIntelligentControl.cs: This class implements the CIC, that 
we have explained previously. 
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• Alarm.cs: This class define the structure of the object that the HM sends 
to the CIC. 

 
• ContingencyService.cs: This class determines all the variables and 

events published by the CM. If it is necessary, the user would have the 
posibility to subscribe to other services with this class. The 
ContingencyService.cs also is responsible for initialize the 
ContingencyManager_Panel.cs. 
 

• GlobalArea_Contingency.cs: This class is like a box where there are all 
the values of variables and events to be publish. When the CIC proposes 
a solution, all parameters are stored in this new class. Thus, it will be 
take the values of the GlobalArea_Contingency.cs when it is necessary 
to publish data to the other services. 

 
• Publisher.cs: This class is responsible for collecting the values of 

GlobalArea_Contingency.cs for publication in middleware.  
 
 

6.4   Implementation 

The CM implementation is divided in three pieces of software, the HM, the CIC 
and the Contingency Manager Panel (CMP). 

In the CMP (see Figure 6.4) we can see all the alarms received by the HM. 
When an alarm arrives to the HM, the CMP illuminate the button that 
corresponds to the type of alarm that the HM has received. The behavior of the 
HM and the CIC we have explained previously. 

 

Fig.6.4  Contingency Manager Panel 
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The alarms are classified as follows: 
 

• Electrical Alarms : collects the alarms caused by the devices of the 
electrical system of the UAS. 

 
• Engine Alarms : collects the alarms caused by the engine of the UAS. 

 
• Weather Alarms : collects the alarms caused by the weather effects that 

affect to the UAS behavior. 
 
 

6.5   Contingency Manager Use Cases 
 
This subsection describes the CM use cases from the different contingency 
areas. The objective of this section is to validate, through examples, the CM 
architecture. Emergency procedures need experience statistics in order to tune 
in the UAS responses, these responses are predefined during the dispatcher 
phase. Therefore, the CM will be continuously growing with the UAS flight 
experiences.   

 
Weather Contingencies Use Case 
 
In the Figure 6.5 we can see a wind contingency and how the HM and the CIC 
solves this problem. The CM solves more weather contingencies; we can see it 
in the section 7 of the appendix. 
 
 

 
 

Fig.6.5  Weather use case 
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In this example the Weather Manager (WM) publishes a wind alarm which is 
detected by the HM of the CM. The HM classifies the alarm in a minor 
contingency or in a hazardous contingency. The CIC receives the classified 
contingency, in the case of the minor contingency it considers that the UAS has 
a bad flight altitude layer. Then the CIC proposes to the UAS to fly in a new 
altitude layer. If this solution isn’t effective the CIC, proposes to Go Home by 
Alternative.  
In the case of the hazardous contingency, the CIC proposes directly to Go 
Home by Alternative or Go Home as soon as possible. 
 
The solutions that the CIC proposes have been predefined in the dispatcher 
phase. 
 
Engine Contingencies Use Case 
 
Next figure show a fuel contingency and how the HM and the CIC solves this 
problem. The CM solves more engine contingencies; we can see it in the  
section 7 of the appendix. 
 
 

 
 

Fig.6.6  Engine use case  
 

In this example the Engine Manager (EM) publishes a fuel alarm which is 
detected by the HM of the CM. The HM classifies the alarm in a not enough fuel 
or no fuel flow. Both alarms are classified like a hazardous contingency. 
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The CIC receives the classified contingency, in the case of the not enough fuel 
it proposes to the UAS to Go Home, Go Alternative Runway, Flight Terminator 
Field, Go Closet Alternative Runway or Go Home by Alternative depending on 
the time of fuel remaining.  
In the case of no fuel flow, the CIC proposes directly Flight Terminator Field. 
 
Electrical Contingencies Use Case 
 
Next figure show an alternator contingency and how the HM and the CIC solves 
this problem. The CM solves more electrical contingencies; we can see it in the 
section 7 of the appendix. 
 

 
Fig.6.7 Electrical use case  

 
In this example the Electrical Manager (ELM) publishes a fuel alarm which is 
detected by the HM of the CM. The HM classifies the alarm in an internal fault 
or error connection. Both alarms are classified like a minor contingency. 
In both cases, the CIC proposes to the UAS to Go Home, Go Alternative 
Runway, Flight Terminator Field, Go Closet Alternative Runway or Go Home by 
Alternative depending on the time of fuel remaining and save power energy.  
 With this solution will turn off all the devices installed on the UAS that not affect 
to his normal behavior. 
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SECTION 7. FINAL BALANCE 

 

In this section provides a final analysis of the project. The conclusions are the 
final review for the project. It has to take into account the initial objectives and 
requirements in order to compare them with the final result. After that we 
describe the future work that must be done in the CM. Finally there is an 
environmental impact description for that project. 
 

7.1 Conclusions  

The main objective of this project was to design, implement and integrate into 
the ISIS a Contingency Manager that can collect the UAS alarms, classify these 
contingencies and determine the action to be performed by the UAS.  

For that the CM can act we had to design, implement and integrate into the 
ISIS, different simulators that are able to receive data from the components of a 
UAS. 

Weather Conclusions 

The Weather Simulator is able to simulate the parameters that give us the FG, 
with this application we can emulate different weather situations that are 
impossible to generate, without a simulator. 

This application allows us to generate and publish all types of weather alarms in 
MAREA, for this reason we think that the Weather Simulator improves the ISIS 
platform. 

Engine Conclusions 

The Engine Simulator is able to simulate the engine system of a UAS, with this 
application we can emulate different engine failures that are impossible to 
generate in a laboratory, without a simulator. 

The simulator allows us to generate and publish in MAREA, all types of engine 
alarms, thus the ISIS platform has been improved. 

Electrical Conclusions 

The Electrical Simulator is able to represent all the parameters needed to 
simulate an electrical system of a UAS; with this application we can emulate 
different failures in the electrical system of the UAS. These failures can’t be 
recreated in a laboratory because is not possible to repeat the action of turn on 
and turn off the electrical system, and generate failures of the different devices. 
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This application allows us to generate and publish all types of electrical alarms 
in MAREA, for this reason we think that the Electrical Simulator improves the 
ISIS platform. 

Contingency Conclusions 

The Contingency Manager centralizes all the alarms and contingencies of the 
system. The CM is an important piece of the USAL flight category that faces the 
complex problem of contingencies in simple and structured way. 
It works with the Flight Plan Manager (FPM) to offer alternative responses in 
front of contingency situations. With these two pieces of software the UAS can 
manage hazardous situation, guaranteeing the UAS integrity. Also the service is 
capable to recover from minor contingencies and remain the UAS mission. 
 

General Conclusions  

The implementation of the simulators and the CM, was supposed to have been 
a relatively easy and quick workout. However, while we develop the different 
simulators and the CM, different problems arose. If we wanted to design and 
implement good simulators and a good CM, we had to take into account 
multitude of situations and problems that may arise during the flight of UAS. For 
this reason, the design and implementation of our project has not been so quick 
and easy as expected. 

The integration of the simulators and the CM into the ISIS, have been done 
when we have finished the design and implementation of all simulators and the 
CM. It has been a difficult task because we didn’t made the other services of the 
ISIS platform and we have needed time to understand how functions. 

However, the general balance is excellent. A Contingency Manager has been 
designed, implemented and integrated into the ISIS. Also, the Weather 
Simulator, the Engine Simulator and the Electrical simulator have been 
designed, implemented and integrated into the ISIS. 
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7.2 Future lines of work  

The three simulators and the Contingency Manager are beta versions, for this 
reason we think that all of these applications are improvable. 

About the simulators can be implemented the following aspects: 

• Collect the data of any type of internet service about the real weather 
conditions. 
 

• Realize the simulators with another technology like WPF (Windows 
Presentation Foundation), thus the simulators will have a better visual 
aspect. 

 
• Realize a connections system between the devices and the batteries of 

the Electrical Simulator. This system should be flexible and totally 
configurable for the user. 

 
• The distribution of the Electrical Simulator devices in the UAS should be 

configurable for the user. 

The future work of the CM will be addressed to improve the service intelligent 
response in front of hazardous and minor contingencies. All the contingencies 
have to be studied in order to offer several responses and help the operator in 
her decision. Another research line is to integrate and coordinate contingency 
responses with all the USAL services. A coordinated response will be more 
effective than a CM service response.   

 

7.3 Environmental care  

By the time the ICARUS UAS Platform gets ready to fly, its main application will 
be the detection and control of forest fires. Catalonia countryside is a hot-spot 
for these fires, as it has a warm, hot climate, especially in those summer 
months. ICARUS UAS Platform comes to replace the manned helicopters and 
airplanes that are currently used for fire-awareness purposes. These are high 
fuel consumers when compared to the fuel consumed by a small UAV engine, 
and its propellers are far noisier.  
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SECTION 1. DATA TRANSMISSION PROTOCOLS 
 

In this section, the basis of the transmission protocols will be studied. It is 
interesting to know how it performs the data transmission between the 
simulators and the FG. 

1.1 Transmission Control Protocol (TCP) 

The TCP is one of the fundamental protocols in the Internet. TCP is one of the 
two original components of the suite (the other being Internet Protocol, or IP), 
so the entire suite is commonly referred to as TCP/IP. Many programs within a 
data network comprised of computers can use TCP to establish connections 
between them through which you can send a data stream. The protocol 
guarantees that data will be delivered to its destination without errors and in the 
same order they were transmitted. It also provides a mechanism for 
distinguishing different applications within a single machine, through the 
concept of port. This protocol needs to establish a prior connection between 
sender and receiver before data transmission. 

A TCP segment consists of a segment header and a data section. The TCP 
header contains 10 mandatory fields, and an optional extension field (Options, 
pink background in table). The data section follows the header. Its contents are 
the payload data carried for the application. 

 

Fig.1.1 TCP segment structure. 

 

1.2 User Datagram Protocol (UDP) 

The UDP is one of the core members of the Internet Protocol Suite, the set of 
network protocols used for the Internet. With UDP, computer applications can 
send messages, in this case referred to as datagram, to other hosts on an 
Internet Protocol (IP) network without requiring prior communications to set up 
special transmission channels or data paths. UDP is sometimes called the 
Universal Datagram Protocol. The protocol was designed by David P. Reed in 
1980 and formally defined in RFC 768.  
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UDP uses a simple transmission model without implicit hand-shaking dialogues 
for guaranteeing reliability, ordering, or data integrity. Thus, UDP provides an 
unreliable service and datagram may arrive out of order, appear duplicated, or 
go missing without notice. UDP assumes that error checking and correction is 
either not necessary or performed in the application, avoiding the overhead of 
such processing at the network interface level. Time-sensitive applications often 
use UDP because dropping packets is preferable to waiting for delayed 
packets, which may not be an option in a real-time system. If error correction 
facilities are needed at the network interface level, an application may use the 
Transmission Control Protocol (TCP) or Stream Control Transmission Protocol 
(SCTP) which are designed for this purpose. 

UDP's stateless nature is also useful for servers that answer small queries from 
huge numbers of clients. Unlike TCP, UDP is compatible with packet broadcast 
(sending to all on local network) and multicasting (send to all subscribers). 

Common network applications that use UDP include: the Domain Name System 
(DNS), streaming media applications such as IPTV, Voice over IP (VoIP), Trivial 
File Transfer Protocol (TFTP) and many online games. 

 

Fig.1.2 UDP packet structure. 

 

1.3 Comparison of UDP and TCP 

TCP is a connection-oriented protocol, which means that it requires 
handshaking to set up end-to-end communications. Once a connection is set up 
user data may be sent bi-directionally over the connection. 

• Reliable: TCP manages message acknowledgment, retransmission and 
timeout. Multiple attempts to deliver the message are made. If it gets lost 
along the way, the server will re-request the lost part. In TCP, there's 
either no missing data, or, in case of multiple timeouts, the connection is 
dropped. 
 

• Ordered: if two messages are sent over a connection in sequence, the 
first message will reach the receiving application first. When data 
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segments arrive in the wrong order, TCP buffers the out-of-order data 
until all data can be properly re-ordered and delivered to the application. 

 
• Heavyweight : TCP requires three packets to set up a socket connection, 

before any user data can be sent. TCP handles reliability and congestion 
control. 
 

• Streaming : Data is read as a byte stream, no distinguishing indications 
are transmitted to signal message (segment) boundaries. 

UDP is a simpler message-based connectionless protocol. Connectionless 
protocols do not set up a dedicated end-to-end connection. Communication is 
achieved by transmitting information in one direction from source to destination 
without verifying the readiness or state of the receiver. 

• Unreliable : When a message is sent, it cannot be known if it will reach 
its destination; it could get lost along the way. There is no concept of 
acknowledgment, retransmission or timeout. 
 

• Not ordered : If two messages are sent to the same recipient, the order 
in which they arrive cannot be predicted. 

 
• Lightweight: There is no ordering of messages, no tracking 

connections, etc. It is a small transport layer designed on top of IP. 
 

• Datagram: Packets are sent individually and are checked for integrity 
only if they arrive. Packets have definite boundaries which are honored 
upon receipt, meaning a read operation at the receiver socket will yield 
an entire message as it was originally sent. 

 
 

1.4 Protocols and Ports used in the transmissions 

The UDP protocol allows our simulator to run without the need of having 
established a previous connection to the FG. That is why this protocol has been 
chosen for all the sockets in our applications. 

The ports of the sockets in our applications are used with the 550X series 
following the FG transmission protocol. The flight simulator uses these ports to 
show all of its parameters through the network. Those used by the FG are: 5500 
for https, 5501 for props and 5502 for jpg-httpd. The choice of our ports has 
been totally random. 

Next, we are going to explain the ports that are used for the transmissions 
between simulators. The ports are: 

• 5506: This port is used for input socket. The input sockets are those that 
transmit information from the simulators created to the FG. This socket 
uses UDP protocol and it is used for sending information with the sea as 
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reference level. The 5506 port is used by the Weather Simulator to send 
the simulated data. Data transmission is accomplished via an XML file 
called Weather_Aloft.xml. 
 

• 5507: This port is used for output socket. The output sockets are those 
that transmit information from the FG to the simulators created. This 
socket uses UDP protocol and it is used for receiving the telemetry of the 
FG. The 5507 port is used by all simulators to send the simulated data. 
Data transmission is accomplished via an XML file called 
EngineTelemetry.xml. 

 
• 5508: This port is used for input socket. This socket uses UDP protocol 

and it is used for sending information with the ground as reference level. 
The 5508 port is used by the Weather Simulator to send the simulated 
data. Data transmission is accomplished via an XML file called 
Weather_Boundary.xml. 
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SECTION 2. TYPES OF CLOUDS 
 

This section presents the different types of clouds that exist. With this study, the 
user can better understand what are the conditions that are simulated on the 
Weather Simulator. 

Next, we are going to explain with more details each of types of clouds: 

� Cumulus : clouds of vertical 
development. They have great size 
with a massive appearance of 
shadows when they are very 
marked between the Sun and the 
observer, namely, they are gray 
clouds. The clusters are for the good 
weather in low humidity and little 
vertical air movement. They can 
become large rise reaching intense 
storms and downpours. 

 

� Stratus : stratified clouds. They look 
like a gray fog bank without being 
able to observe a definite structure 
or regular. They have patches of 
different degrees of opacity and 
color variations of gray. During the 
fall and winter stratus can stay in 
the sky throughout the day giving a 
sad look at the sky.   
     
  

 

� Nimbostratus : capable of forming 
rain clouds. They look like a regular 
layer of dark gray with varying 
degrees of opacity. Not infrequently 
one can see a slightly striated 
appearance which corresponds to 
different degrees of opacity and 
color variations of gray. Clouds are 
typical of spring and summer rain 
and snow during winter.  
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� Cirrus : clouds of ice crystals. They 
are white clouds, transparent and 
without internal shadows present an 
appearance of long thin filaments. 
These filaments may have an even 
distribution in the form of parallel 
lines, either straight or sinuous. The 
overall appearance is as if the sky 
had been covered by the brush 
strokes.            
      

We found 16 different types if we make a specific study of clouds. 
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SECTION 3. ATMOSPHERIC LAYERS 

 

In this section, the basis of the atmospheric layers will be studied. It is 
interesting to know why the FG simulates weather conditions with five layers. 

We are going to explain how many layers the atmosphere has and what its 
functions are. 

The altitudes of the FG represent the seven layers that divide the Earth's 
atmosphere (see Figure 3.1). Each layer has a particular function:  

• Troposphere: The first one, called the troposphere, produces weather 
events like rain and wind. 
 

• Stratosphere: The second one, called the stratosphere, absorbs harmful 
shortwave radiation through the ozone. 

 
• Mesosphere: The third one, called the mesosphere, is important for the 

ionization and chemical reactions that occur in it. 
 

• Thermosphere: In the fourth one, called the thermosphere, the air is 
very dim and the temperature changes with solar activity. 

 
• Ionosphere: The fifth one, called the ionosphere, causes the 

phenomenon of the aurora and reflects long-wave radio waves. 
 

• Exosphere: The sixth, called the exosphere, is the outer limit of the 
atmosphere.  

 
• Magnetosphere: The last one, called the magnetosphere, is where the 

planet's magnetic field dominates the interplanetary magnetic field 
environment. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

        Fig.3.1 Atmospheric layers. 



62 Contingency Manager for ICARUS Simulated Integrated Scenario 
 
 

 
 

SECTION 4. CESSNA 172 

 

This section presents the characteristics of a CESSNA 172 engine.  

The values that Engine Simulator simulates refer to the engine of a Cessna 
172. We have simulated this engine because it is a similar engine to the aircraft 
uses that is being built at the ICARUS group. 

The Cessna 172 started life as a tricycle landing gear variant of the tail dragger 
Cessna 170, with a basic level of standard equipment. The first flight of the 
prototype was in November 1955. The 172 became an overnight sales success 
and over 1.400 were built in 1956, its first full year of production.  

Early 172S were similar in appearance to the 170, with the same straight aft 
fuselage and tall gear legs, although the 172 had a straight vertical tail while the 
170 had a rounded fin and rudder. Later 172 versions incorporated revised 
landing gear and the tail sweptback which is still in use today. The final 
aesthetic development in the mid-1960s was a lowered rear deck that allowed 
an aft window. Cessna advertised this added rear visibility as "Omni-Vision". 
This airframe configuration has Remained almost unchanged since then, except 
for updates in avionics and engines, including the Garmin G1000 glass cockpit 
in 2005. Production had been halted in the mid-1980s, but was Resumed in 
1996 with the 160 hp (120 kW) Cessna 172R Skyhawk  and was supplemented 
in 1998 by the 180 hp (135 kW) Cessna 172S Skyhawk SP.   

Below are two tables which represent the general characteristics of this aircraft 
and its performance.  

 

Performance Values 
Never exceed 
speed 

163 knots (187 mph, 302 km/h) 

Maximum speed 123 knots (141 mph, 228 km/h) at sea level 
Cruise speed 122 knots (140mph, 226 km/h) 

Range  

610 nm (790 mi, 1,272 km) at 55% power at 12,000 ft 
(3,040 m) 

Service ceiling 13,500 ft (4,116 m) 
Rate of climb 720 ft/min (3.7 m/s) 

Table 4.1  Performance of Cessna 172 
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Table 4.2  General Characteristics of Cessna 172 

 

 

 

 

 

 

 

 

 

 
 

General 
Characteristics Values 

Crew 1 
Capacity 3 passengers 
Length 27 ft 2 in (8.28 m) 
Wingspan 36 ft 1 in (11.0 m) 
Height 8 ft 11 in (2.72 m) 
Wing area 174 ft² (16.2 m²) 
Airfoil NACA 2412 (modified) 

Empty weight 1,620 lb (736 kg) 
Useful load 830 lb (376 kg) 
Max takeoff weight 2,450 lb (1,113 kg) 

Powerplant 
1× Lycoming IO-360-L2A flat-4 engine, 160 hp (120 
kW) at 2,400 rpm 

Zero-lift drag 
coefficient 

0.0319 

Drag area 5.58 ft² (0.52 m²) 
Aspect ratio 7.32 
Lift-to-drag ratio 11.6 
Wing loading 14.1 lb/ft² (68.8 kg/m²) 
Power/mass 15.3 lb/hp (9.25 kg/kW) 
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SECTION 5. ENGINE SIMULATOR PARAMETERS 

 

This section explains the function of all that the user will see in the Engine 
Simulator Panel. It will be explained each of the values that we have in our 
Engine Simulator. 

CHT: Indicates the temperature of all cylinder heads or on a single CHT system, 
the hottest head. A Cylinder Head Temperature Gauge has a much shorter 
response time than the oil temperature gauge, so it can alert the pilot to issue a 
developing cooling more quickly. Engine overheating may be caused by:  

� Running too long at a high power setting.  
� Poor leaning technique  
� Restricting the volume of cooling airflow too much.  
� Insufficient delivery of lubricating oil to the engine's moving parts.  

EGT: Indicates the temperature of the exhaust gas just after combustion. Used 
to set the fuel / air mixture (leaning) correctly.  

CHT and EGT are measured in ° C and we can see the values between they 
moves in the table (see Table 5.1). 

 

 Range Alarms  Unit  
 Min Typ Max Warning Severe Critical  
CHT 
(Cylinder Head 
Temperature) 

80 90 100 >100 
<80 

>300 >400 ºC 

EGT 
(Exhaust Gas 
Temperature) 

80 90 100 >100 
<80 

>300 >400 ºC 

 
Table 5.1  CHT and EGT values 

 

RPM: Is a unit of frequency of rotation: the number of full rotations completed in 
one minute around a fixed axis. It is used as a measure of rotational speed of a 
mechanical component. 

Standards organizations generally recommend the symbol r/min , which is more 
consistent with the general use of unit symbols. This is not enforced as an 
international standard. 
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The corresponding unit in the International System of Units (SI) is hertz (symbol 
Hz) or s-1 (1/second). Revolutions per minute are converted to hertz through 
division by 60. Conversion from hertz to RPM is by multiplication with 60. 

(5.1) 

 

Another related unit is the SI unit for angular velocity, radian per second 
(rad·s−1): 

(5.2) 

 

 
In the Table 5.2 we can see  the values between it moves. 
 
 Min Typ Max Warning Severe Critical Unit 

RPM 1000 - 7000 

<1000  
(depends 
on 
whether it 
is in the 
air, if it is 
no alarm) 

>7000 

>12000  
<100  
(<100: 
depends on 
whether it is 
in the air, if 
it is no 
alarm) 

min-1 

 
Table 5.2  RPM values 

 
 

OLP (Oil Pressure): Indicates the supply pressure of the engine lubricant. Oil 
pressure is measured in PSI (Pounds per Square Inch), a unit whose value is 
equal to 1 pounds per inch square. Thus, the system of equivalents with respect 
to the international system would be as follows:  

(5.3) 

1 pound / square inch (psi) = 6894.75 Pascal 

 

OLT (Oil Temperature): Indicates the engine oil temperature and is measured in 
ºC. 

FL (Fuel Flow): It indicates the fuel consumption per unit of time. In this case, it 
is used Pounds per hour as the measurement unit. Its equivalence with the 
international system is:  
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(5.4) 

1 pound per hour [lb / h] = 0.000125998 kilogram per second [kg / s] 

We can see the values in the Table 5.3. 

 

 Min Typ Max Warning Severe Critical Unit 
Oil pressure  10 15 20 <20 <15 <10 PSI 
Oil 
Temperature  Ambient 50 150 >40 >60 >100 ºC 

Fuel flow  0 - 16000 >16000 >18000 >20000 Pound/hour 
 

Table 5.3  Oil pressure, oil temperature and fuel flow values. 
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SECTION 6. ELECTRICAL SIMULATOR DEVICES 

 

This section explains what devices are used in the Electrical Simulator. 

6.1 Electrical devices 

First, we consider the most important parameters that can be found in the 
electrical system of a UAV to represent them in the main panel of the simulator. 

We decided to divide the electrical system in two groups. 

• The first group consists of all electrical devices of acquisition and data 
emission, i.e., digital cameras, video cameras, thermal cameras, video 
transmitters and GPS. 

• The second group is the autopilot and all servos that allow the UAV can 
fly. 

We have considered interesting that the user can manually enable and disable 
any device, thereby achieving generate emergencies. 

Then, it can be see the devices that have been used. 

Photo Cameras 

Have been installed cameras, as it is interesting to take pictures at certain times 
in a mission. For example, it would be interesting to take a picture of the 
situation from an objective of the mission or any problem encountered during 
flight. 

The camera that we used for the simulation is as follows, this camera allows us 
to take images with great accuracy and his weight is quite low, which helps us 
not to increase the payload of the UAV: 

 
 

 

 
        Fig.6.1  Sony DSC-S930.         Table 6.1  Specifications of photo camera 

 
 

Parameters  Values  
Field of view 75º-32º (diag) 
Focal length 28-75 mm 
F-number 1-2.8 
Resolution 4000 x 2656 pixel 
Frame rate 3 fps 
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Video Cameras 

It has been implemented video cameras in the UAV, as it is interesting that we 
can make recordings of situations that can be seen from the plane. 

As visual camera, we used the Lumenera Le11059c 11 Megapixel network 
camera with Tamron A09 zoom lens. Table A summarizes the relevant 
specifications of the cameras. 

 
 

 

 

   Fig.6.2  Lumenera Le11059c.         Table 6.2  Specifications of video camera. 

Thermal Cameras 

Have been implemented thermal cameras in the UAV, as it is interesting to 
detect points where the temperature is higher. For example, points where it's 
starting a fire. If we know these points, we can prevent the fire.  
 
As thermal camera, we used the FLIR A320 camera, a radiometric thermal 
camera working in the wavelength range from 7.5 o 13.0 µm and in the thermal 
range from 0 to 350ºC. It provides 320 x 240 pixel images of 32 bit floating point 
absolute temperature values. 
 
 

 

 

   Fig.6.3  ThermoVision A320.     Table 6.3  Specifications of thermal camera. 

 

Parameters  Values  
Field of view 75º-32º (diag) 
Focal length 28-75 mm 
F-number 1-2.8 
Resolution 4000 x 2656 pixel 
Frame rate 3 fps 

Parameters  Values  
Spectral range 7.5 to 13 µm 
Temp. range 0 to 350ºC (±2ºC) 
Field of view 25.0º x 18.8º 
Focal length 18 mm 
F-number 1.3 
Resolution 320 x 240 pixel 
Frame rate 9 fps 
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Video Transmitters 

The transmitters can receive audio and video images captured by the cameras 
of our plane. This is the best way to send the signal wirelessly and with all the 
quality offered by the 2.4 GHz band. 

The transmitters that we used for the simulation is as follows: 

 

 

         Fig.6.4  Video Transmitters.          Table 6.4  Specifications of transmitters. 

 
GPS 

The Global Positioning System (GPS) (although its correct name is NAVSTAR-
GPS) is a global navigation satellite system (GNSS) which allows knowing the 
position of a moving object through the reception of signals from a satellite 
network. GPS works through a network of 27 satellites (24 operational and 3 
back) in orbit above the earth, at 20,200 km, with trajectories synchronized to 
cover the entire surface of the Earth. 

The gps that we used for the simulation is as follows: 

 

 

         Fig.6.5  Mini Gps.                          Table 6.5  Specifications of gps. 

 
Autopilot 
 
An autopilot is a mechanical, electrical, or hydraulic system used to guide a 
vehicle without assistance from a human being. 

Parameters  Values  
Frequency Band 2400MHz 
Available Channel 8 Ch 
Consumption Current 500 mA 
Output Power 1000 mW 
Power Supply 12V / 500mA 
Weight 20 g 

Parameters  Values  
Receptor 66 Channels 
Sensitivity -159 dBm 
Exact position 2,5 - 3,1 meters 
Voltage 3,3 V 
Consumption 32 mA 
Weight 13 g 
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Servos 

A servo motor is basically a mechanical actuator based on an engine and a set 
of gears that can multiply the torque of the final system, which has control 
elements to consistently monitor the position of a mechanical element that will 
be the liaison with the outside world. 

 

 

 

 

 

 

Fig.6.6  Servomotor. 
 

 
6.2 Batteries 

Battery or accumulator is the device that stores electrical energy using 
electrochemical methods and that subsequently returns almost in its entirety. 
This cycle can be repeated by a specified number of times. This is a secondary 
electric generator, is a generator that cannot operate without being supplied 
electricity previously through what is called charging. 

The battery management is essential in a flight simulator. It always needs to 
have a simulation of the remaining battery level and stimulation of flight time 
remaining to us. Battery depletion would produce irreparable damage to the 
aircraft. For all this, we consider that the representation of the aircraft battery is 
essential on the main screen of the simulator. 

We determine the batteries we are representing at the Electrical Simulator with 
the help of all members of the ICARUS project.  

For the first group of devices previously established we use a lead battery(GP 
12120), because it is a higher capacity battery, and can feed a larger number of 
devices. If the battery is being finished may be charged by the alternator.  

For the second group we use a Lipo battery (V-MAXX 35c), because it is a 
smaller capacity battery, and not have to feed so many devices. Moreover, this 
battery will be charged from the ground. 
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Lead Battery 

 
 

 

            Fig.6.7  GP 12120.                      Table 6.6  Specifications of lead battery. 

 

The lead-acid battery is a type of electrical energy accumulator, which consists 
of lead plates alternating with lead dioxide, which are separated by an element 
in dilute sulfuric acid soaked in distilled water, called an electrolyte. Each pair of 
these plates generates a voltage of 2 volts. As the typical configuration is 12 
volts, is required above 6 pairs of plates to achieve the voltage of 12 volts. 
Depending on the total area of the plates, the battery will reach a certain 
capacity, whose unit is Ampere-Hour (Ah). 

 
Fig.6.8  Lead Battery. 

This type of battery will be able to recharge in flight due to an alternator. This 
ensures that all devices are always working.  

 

Parameters  Values  
Cells per Unit 6 
Voltage per unit 12 V 
Capacity 12 Ah � 25ºC 
Internal Resistance 14 mΩ 
Weight 3,84 kg 
Charging current limit 3,60 A 
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Lipo Battery 

 

 

            Fig.6.9  V-MAXX 35c.          Table 6.7  Specifications of lipo battery. 

Lipo batteries are composed of lithium and polymer, which gives them look 
"soft" and somewhat ungainly, though rather thin and lightweight. These 
batteries have a smaller size compared to the lead battery. Its size and weight 
make them very useful for small teams that require strength and durability. 

Such batteries are a variation of the lithium-ion batteries (Li-ion). Its 
characteristics are very similar, but allow a higher energy density and a 
significantly higher discharge rate. 

Normally these batteries are used to fuel helicopters, radio controlled planes 
and cars as they are able to deliver high doses of power consumption in large 
schemes. 

In the simulation of the electrical system, these batteries are charged from the 
ground and will not be recharged during the flight. We will need to know how 
many batteries are needed to feed all the devices of the second group. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Parameters  Values  
Cells per Unit 6 
Voltage per unit 12 V 
Capacity 12 Ah � 25ºC 
Internal Resistance 14 mΩ 
Weight 3,84 kg 
Charging current limit 3,60 A 
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SECTION 7. CONTINGENCY MANAGER USE CASES 

 
This section describes more deeply the CM use cases from the different 
contingency areas. The objective of this section is to validate, through 
examples, the CM architecture. Emergency procedures need experience 
statistics in order to tune in the UAS responses. Therefore, the CM will be 
continuously growing with the UAS flight experiences.   

 
Weather Use Cases 

 
Weather is an important factor to achieve mission success. Each aircraft has 
different flight performances. So weather conditions affect the each airframe in 
a different way. The weather conditions are changeable during the mission flight 
plan. In dispatcher phase we know the weather forecast for the flight plan. 
However, what happened if these weather conditions change or just if the 
weather forecast is not enough suitable?. In this case the UAS flight plan has to 
be changed taken in account the new weather conditions. 
 
In the Figure 7.1 and 7.2 we can see the different weather contingencies that 
we can find and how the HM and the CIC solves these problems. 
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Fig.7.1  Weather use case I 
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Fig.7.2 Weather use case II 
 
 
 

Figure 7.1 and 7.2 shows the different contingencies that we can detect with the 
Weather Manager. In this example the Weather Manager service publishes 
different alarms which are detected by itself. On the other hand, through its 
variables as the temperature or the wind, the CM might find future contingency 
situations. When the temperature outside the aircraft is over a threshold, the 
HM raises a minor contingency. This concept is very similar for the wind or 
when the temperature falls down. To solve this problem the CIC will propose 
different responses for each minor contingency. These responses are based in 
a little flight plan change. For example, we might find a lot of wind in a flight plan 
altitude layer. Changing the flight plan altitude we can solve this contingency. If 
we have changed the altitude several times and the wind is over the threshold, 
the CIC will propose go back home. All these decisions will be supervised by 
the pilot in command on the USAL flight monitor. 
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Engine Use Cases 
 
 

The UAS engine is managed by the USAL engine manager. This service 
controls all the engine parameters involved with the engine, such as 
temperature, oil, fuel, etc. The service manages the correct range of each 
parameter; these ranges can be configurated for each engine. When the engine 
manager detects any parameter out of range, an event is raised to inform the 
CM. 
Next figures show the engine use case. It described the CM responses in front 
of engine paramount mishaps. 
 
 

 
 

Fig.7.3  Engine use case I 
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Fig.7.4  Engine use case II 
 

Figure 7.3 and 7.4 shows several engine contingencies. In order to manage 
some engine contingencies it is needed mission or flight plan information. For 
example in the “No enough fuel” contingency; we need mission information to 
provide an intelligent response. If we are near home, maybe it is suitable to land 
over there. However, if we do not have enough fuel time to arrive home maybe 
the correct response is looked for the closest runway to land. The other 
contingencies are addressed to the engine parameters. For example when the 
CHT or EGT are out of range the probabilities of the engine crash are so high. 
Therefore, we must prepare the UAS to this crash. The same case is for the “No 
fuel flow” or “Main fold pressure out of range” of “RPM”.    
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Electrical Use Cases 
 
In the USAL, the UAS energy is managed by the Electrical Manager Service 
(ELM). It is an on-board system in charge of offering a flexible power supply 
architecture that supports minimal reconfiguration overhead for a wide variety of 
UAS missions. The ELM is designed to offer a continuous monitoring of the 
state of the power network, and a coherent and controlled response in front of 
power supply contingencies. 
 
The ELM will monitor the batteries and generator status, the power 
consumption of the avionics and other systems, manage the 
connection/disconnections of systems, and provide power availability 
estimations. However, what happen when the power forecast does not satisfy 
mission minimums power. In this case the UAS integrity is in danger. The CM 
always must to preserve the UAS safety and reliability. Therefore, it will monitor 
the time power forecast and the flight plan/mission time to ensure achievement 
the mission goals. 
 
One most common contingency is the lack of electrical power. This lack of 
power can have different responses. These responses depend on the electrical 
time available in the batteries and the mission phase. If we have time to go back 
home, we would have to land there. On the other hand, maybe we only have 
enough time to go the closest runway or search a flight termination field in the 
worst case. Therefore, the CM needs flight plan/mission information. This 
paramount information will be very useful in order to take any decision. Next 
figures show the electrical use case. 
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Fig.7.5  Electrical use case I 
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Fig.7.6  Electrical use case II 
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As it is shown in the figure 7.5 and 7.6 with the “energy time” and flight plan 
information the CM should provide an intelligent response in front of no enough 
energy contingency. The CM will know if the aircraft might arrive home, or if it 
has to land in the closest runway. When the battery is terminated, the ELM will 
charge it. In this way the CM knows the batteries status and if something is 
wrong the CM can command the batter charging. On the other hand, the ELM 
manages different electrical alarms related with devices. Alarms as “No Payload 
Consumption” or “payload over/under consumption” show failure in any device. 
Depends on how important is each device, this type of contingency needs 
different responses. For example, if we need this payload for the mission, then 
the mission has to be canceled. However, if the payload is not critical for the 
mission, it might be turned off. Finally, when the UAS has a lack of energy 
contingency, it has to be treated in the “save power energy” way. In this mode 
the UAS treats to provide energy the critical devices, as for example the 
autopilot, turning off the rest of devices. 
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SECTION 8. VARIABLES AND EVENTS PUBLISHED 

 

This section is going to explain the all variables and events that are published in 
the middleware. The first three subsections explain the variables and events 
that have published each of the simulators. They also show that service is 
subscribed to each of the variables published. The last subsection explains the 
events and the variables published by the Contingency System. 

8.1 Variables and Events of the Weather Simulator 

This section explains the all variables and events that are published by the 
Weather Simulator. The variables are represented in the Table 8.1 and the 
events are represented in the Table 8.2. As shown in the both tables, the right 
column shows the services that have subscribed to variables or events of the 
Weather Simulator. 
 
 

 
Weather 

Simulator  

Variables Subscribed Service 

Wind Contingency System 

Elevation Contingency System 

Turbulences Contingency System 

Visibility Contingency System 

Rain Contingency System 

Snow Contingency System 

Clouds Contingency System 

Dew point Contingency System 

Temperature Contingency System 

Pressure Contingency System 

 
Table 8.1 Variables published by the Weather Simulator. 
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Weather 

Simulator  

Events Subscribed Service 

Alarm_Wind Contingency System 

Alarm_Dewpoint Contingency System 

Alarm_Turbulences Contingency System 

Alarm_Visibility Contingency System 

Alarm_Rain Contingency System 

Alarm_Snow Contingency System 

Alarm_Cloudy Contingency System 

Alarm_Temperature Contingency System 

Alarm_Pressure Contingency System 

 
Table 8.2 Events published by the Weather Simulator. 

 
 

In the two tables above, we can see that the Contingency System is the only 
service subscribed to the variables and events of the Weather Simulator. The 
Contingency System needs these values to classify the alarms and determine a 
solution to the UAS. 
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8.2 Variables and Events of the Engine Simulator 

This section explains the all variables and events that are published by the 
Engine Simulator. The variables are represented in the Table 8.3 and the 
events are represented in the Table 8.4. As shown in the both tables, the right 
column shows the services that have subscribed to variables or events of the 
Engine Simulator. 
 
 

 
Engine 

Simulator  

Variables Subscribed Service 

RPM Contingency System 

CHT Contingency System 

EGT Contingency System 

Oil Pressure Contingency System 

Oil_Temperature Contingency System 

Fuel_Flow Contingency System 

 
Table 8.3 Variables published by the Engine Simulator. 

 
 

 
Engine 

Simulator  

Events Subscribed Service 

Alarm_RPM Contingency System 

Alarm_CHT Contingency System 

Alarm_OilTemperature Contingency System 

Alarm_OilPressure Contingency System 

Alarm_FuelFlow Contingency System 

Alarm_Fuel Contingency System 

 
Table 8.4 Events published by the Engine Simulator. 

 

In this subsection occurs as in the previous subsection, the Contingency 
System is the only service subscribed to the variables and events of the Engine 
Simulator. 
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8.3 Variables and Events of the Electrical Simulato r 

This section explains the all variables and events that are published by the 
Electrical Simulator. The variables are represented in the Table 8.5 and the 
events are represented in the Table 8.6. As shown in the both tables, the right 
column shows the services that have subscribed to variables or events of the 
Electrical Simulator. 

 

 
Electrical 
Simulator  

Variables Subscribed Service 

Alternator Contingency System 

LeadBattery Contingency System 

GPS Contingency System 

PhotoCamera Contingency System 

VideoCamera Contingency System 

VideoTrans Contingency System 

ThermalCamera Contingency System 

LipoBattery Contingency System 

Autopilot Contingency System 

Servos Contingency System 

 
Table 8.5 Variables published by the Electrical Simulator. 

 
 

 
Electrical 
Simulator  

Events Subscribed Service 

Alarm_Photo Contingency System 

Alarm_Video Contingency System 

Alarm_Thermal Contingency System 

Alarm_Trans Contingency System 

Alarm_Gps Contingency System 

Alarm_Auto Contingency System 

Alarm_Servos Contingency System 
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Alarm_LeadBattery Contingency System 

Alarm_LipoBattery Contingency System 

Alarm_Alternator Contingency System 

 
Table 8.6 Events published by the Electrical Simulator. 

In this subsection occurs as in the previous subsection, the Contingency 
System is the only service subscribed to the variables and events of the 
Electrical Simulator. 

 

8.4 Variables and Events of the Contingency System 

This section explains the all variables and events that are published by the 
Contingency System. The variables are represented in the Table 8.7 and the 
events are represented in the Table 8.8. As shown in the both tables, the right 
column shows the services that have subscribed to variables or events of the 
Contingency System. 

 

 
Contingency  

System  

Variables Subscribed Service 

Alternator_Contingency Electrical Simulator 

LeadBattery_Contingency Electrical Simulator 

GPS_Contingency Electrical Simulator 

PhotoCamera_Contingency Electrical Simulator 

VideoCamera_Contingency Electrical Simulator 

VideoTrans_Contingency Electrical Simulator 

ThermalCamera_Contingency Electrical Simulator 

LipoBattery_Contingency Electrical Simulator 

Autopilot_Contingency Electrical Simulator 

Servos_Contingency Electrical Simulator 

New_altitude_layer 
Flight Plan Manager 

Simulated 

reset_boton_fuel Engine Simulator 

 
Table 8.7 Variables published by the Contingency System. 
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Contingency  

System  

Events Subscribed 
Service 

Alarm_GoHome 
Flight Plan 
Manager 
Simulated 

Alarm_FlightTerminatorField 
Flight Plan 
Manager 
Simulated 

Alarm_GoClosetAlternativeRunway 
Flight Plan 
Manager 
Simulated 

Alarm_GoHomeByAlternative 
Flight Plan 
Manager 
Simulated 

Alarm_GoAlternativeTunway 
Flight Plan 
Manager 
Simulated 

 
Table 8.8 Events published by the Contingency System. 

The variables published by the Contingency System are used to turn off the 
alarms of the simulators. They will know that the problem is resolved through 
the variables that publish the Contingency System. 

The events published by the Contingency System are used to determine the 
action that the UAS has to take. The Contingency System decides to publish a 
particular event when a particular hazardous alarm is produced. 
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8.5 Variables of the Flight Plan Manager Simulated 

This section explains the new variables that are published by the Flight Plan 
Manager Simulated. We have not create this service, FPMS is already existed.  
We needed to expand the FPMS code to make the integration of our services in 
the ISIS. This has led to publish new variables. 

The variables are represented in the Table 8.9. As shown in the Table 8.9, the 
right column shows the services that have subscribed to variables of the FPMS. 

 

 
FPMS 

Variables Subscribed 
Service 

Reset_altitude_layer Contingency 
System 

Times Contingency 
System 

Reset_Alarm_FlightTerminatorField 
Contingency 

System 

Reset_Alarm_GoAlternativeRunway 
Contingency 

System 

Reset_Alarm_GoClosetAlternativeRunway 
Contingency 

System 

Reset_Alarm_GoHome 
Contingency 

System 

Reset_Alarm_GoHomeByAlternative Contingency 
System 

 
Table 8.9 Variables published by the FPMS. 

In this subsection occurs as in the Electrical Simulator subsection, the 
Contingency System is the only service subscribed to the variables of the 
FPMS. 

 

 


