

TREBALL DE FI DE CARRERA

TÍTOL DEL TFC: Contingency Manager for ICARUS Simul ated Integrated
Scenario

TITULACIÓ: Enginyeria Tècnica de Telecomunicació, e specialitat
Sistemes de Telecomunicació

AUTORS: Oriol Caro Ignacio
 Juanjo Rodríguez Carvajal

DIRECTORS: Pablo Royo Chic i Juan Manuel Lema Rosas

DATA: 9 de març de 2010

Título: Contingency Manager for ICARUS Simulated Integrated Scenario

Autores: Juanjo Rodríguez y Oriol Caro Ignacio

Directores: Pablo Royo Chic y Juan Manuel Lema Rosas

Fecha: 9 de marzo de 2010

Resumen

Asegurar la fiabilidad de un UAS en vuelo forma parte de uno de los temas
más complicados que rodean al mundo de los aviones no tripulados. El motivo
principal de esta preocupación es la cantidad de factores externos e internos
del avión que entran en juego.

La pérdida de control del UAS causada, por ejemplo, por una lluvia intensa, un
fuerte viento o, simplemente, un fallo del propio motor o del sistema eléctrico
del avión, seria evitable si un gestor de contingencias estuviera disponible. Un
gestor de contingencias se activa cuando un problema es detectado con el
objetivo de garantizar la fiabilidad del sistema.

El objetivo principal de nuestro proyecto es realizar un gestor de contingencias
para poder integrarlo en el ISIS (ICARUS Simulated Integrated Scenario). En
esta plataforma existen proyectos dedicados al desarrollo del software de un
UAS, pero ninguno de ellos desarrolla un gestor de contingencias.

Para poder implementar el gestor de contingencias, necesitamos desarrollar
previamente simuladores que nos proporcionen los datos de los componentes
que forman un UAS. Los simuladores que se van a implementar son los
siguientes: uno de condiciones climáticas, otro del motor del avión y un último
del sistema eléctrico del UAS.

Estas tres aplicaciones nos permitirán simular situaciones de emergencia;
además de gestionar datos eléctricos, mecánicos y climáticos dentro de la
plataforma de simulación del grupo ICARUS. Dependiendo de las alarmas que
se recojan por el gestor de contingencias, de forma totalmente independiente,
clasificará las contingencias y determinará la acción a realizar por el UAS. De
este modo, garantizará en todo momento la seguridad del avión.

Title: Contingency Manager for ICARUS Simulated Integrated Scenario

Authors: Oriol Caro Ignacio and Juanjo Rodríguez Carvajal

Directors: Pablo Royo Chic and Juan Manuel Lema Rosas

Date: March, 9th 2010

Overview

Ensuring the reliability of a UAS in flight is part of one of the most complicated
issues surrounding the world of unmanned aircraft. The main reason for this
concern is the amount of external and internal factors of the aircraft involved.

The loss of control of the UAS caused, for example, due to heavy rain, strong
wind or simply a failure of the engine itself or the airplane's electrical system,
would be avoidable if a contingency manager was available. A contingency
manager is activated when a problem is detected with the objective of ensuring
system reliability.

The main goal of our project is to make a contingency manager to integrate it
into the ISIS (Integrated Scenario Simulated ICARUS). There are projects on
this platform dedicated to software development of a UAS, but none of them
develops a contingency manager.

In order to implement the contingency manager, we need to develop previously
simulators that provide us with information of the components that form a UAS.
The simulators that are being implemented are: one of weather, other of the
aircraft engine and the last is a simulator of the electric system of the UAS.

These three applications will allow us to simulate emergency situations in
addition to managing data electrical, mechanical and climatic within the
simulation platform of ICARUS group. Depending on the alarms collected by
the Contingency Manager, completely independently, will classify the
contingencies and will determine the action to be performed by the UAS. Thus,
at all times will ensure the safety of the aircraft.

INDEX

SECTION 1. INTRODUCTION ... 1

SECTION 2. PREVIOUS WORK ... 4

2.1 ICARUS Simulated Integrated Scenario (ISIS) 4

2.2 Middleware System Architecture (MAREA) 6

2.3 Unmanned Aerial Vehicle 7

SECTION 3. WEATHER SIMULATOR 9

3.1 Introduction 9

3.2 Specification 10

3.3 Architecture and Design 11

3.4 Implementation 16

 3.4.1 Weather Simulator Panel ... 17

 3.4.2 Advanced Options .. 19

SECTION 4. ENGINE SIMULATOR 21

4.1 Introduction 21

4.2 Specification 22

4.3 Architecture and Design 23

4.4 Implementation 26

SECTION 5. ELECTRICAL SIMULATOR 29

5.1 Introduction 29

5.2 Specification 30

5.3 Architecture and Design 31

5.4 Implementation 35

SECTION 6. CONTINGENCY MANAGER 40

6.1 Introduction 40

6.2 Contingency Manager Architecture 41

6.3 Design 44

6.4 Implementation 45

6.4 Contingency Manager Use Cases 46

SECTION 7. FINAL BALANCE 49

7.1 Conclusions 49

7.2 Future Lines of work 51

7.3 Environmental care 51

SECTION 8. BIBLIOGRAPHY 52

8.1 Books, articles and application notes 52

8.2 Web Pages 52

LIST OF FIGURES

Figure 1.1: Project Timing .. 2

Figure 2.1: ISIS architecture ... 5

Figure 2.2: Middleware view of the UAV application .. 6

Figure 2.3: Shadow MK. 1 .. 8

Figure 3.1: Parameters of Weather Simulator .. 11

Figure 3.2: Weather Simulator Architecture ... 12

Figure 3.3: XML code of Weather Simulator... 14

Figure 3.4: Layer design FG ... 15

Figure 3.5: Weather Simulator Panel ... 17

Figure 3.6: Advanced Options of Weather .. 19

Figure 4.1: Parameters of Engine Simulator .. 23

Figure 4.2: Engine Simulator Architecture .. 24

Figure 4.3: Engine Simulator Panel .. 26

Figure 4.4: Advanced Options of Engine ... 28

Figure 5.1: Parameters of Electrical Simulator ... 31

Figure 5.2: Electrical Simulator Architecture... 32

Figure 5.3: Configuration panel of electrical simulator 35

Figure 5.4: Electrical Simulator Panel .. 36

Figure 5.5: Devices information .. 37

Figure 5.6: Configuration devices panel ... 39

Figure 6.1: Contingency Manager Architecture .. 41

Figure 6.2: Contingency Intelligent Control Overview Architecture 42

Figure 6.3: Contingency Classes .. 44

Figure 6.4: Contingency Manager Panel .. 45

Figure 6.5: Weather use case ... 46

Figure 6.6: Engine use case ... 47

Figure 6.7: Electrical use case ... 48

NOMENCLATURE

FG FlightGear
OpenGL Open Graphics Library
API Application Programming Interface
ECMA European Computer Manufacturers Association
ISO International Organization for Standardization
POO u OOP Object-oriented Programming
UDP User Datagram Protocol
TCP Transmission-Control-Protocol
XML Extensible Markup Language
CHT Cylinder Head Temperature
EGT Exhaust Gas Temperature
RPM Revolutions per minute)
OLP Oil Pressure
OLT Oil Temperature
FL Fuel Flow
DNS Domain Name System
DHCP Dynamic Host Configuration Protocol
BOOTP Bootstrap Protocol
DLL Dynamic Link Library
UAV Unmanned Aerial Vehicle
USAL UAS Service Abstraction Layer
MAREA Middleware Architecture for Remote Embedded

Applications
UAS Unmanned Aerial System
ICARUS Intelligent Communications and Avionics for

Robust Unmanned Aerial Systems
CM Contingency Manager
HM Health Monitor
CIC Contingency Intelligent Control
CMP Contingency Manager Panel
FTS Flight Terminator System
ISIS ICARUS Simulation Integrated Scenario
VV Virtual Vehicle
VAS Virtual Autopilot System
FPM Flight Plan Monitor
ELM Electrical Manager
EFMS Engine and Fuel Manager System
WM Weather Manager
MMA Mission Manager
EM Engine Manager
ELM Electrical Manager
FPMS Flight Plan Manager Simulated

Introduction 1

SECTION 1. INTRODUCTION

Ensuring the reliability of a UAS in flight is part of one of the most complicated
issues surrounding the world of unmanned aircraft. The main reason for this
concern is the amount of external and internal factors of the aircraft involved.

The loss of control of the UAS caused, for example, due to heavy rain, strong
wind or simply a failure of the engine itself or the airplane's electrical system,
would be avoidable if a contingency manager was available. A contingency
manager is activated when a problem is detected with the objective of ensuring
system reliability.

The main goal of our project is to make a contingency manager to integrate it
into the ISIS (ICARUS Simulation Integrated Scenario). There are projects on
this platform dedicated to software development of a UAS, but none of them
develops a contingency manager.

In order to implement the contingency manager, we need to develop previously
simulators that provide us with information of the components that form a UAS.
The simulators that are being implemented are: one of weather, other of the
aircraft engine and the last is a simulator of the electric system of the UAS.

These three applications will allow us to simulate emergency situations in
addition to managing data electrical, mechanical and climatic within the
simulation platform of ICARUS group. Depending on the alarms collected by the
Contingency Manager, completely independently, will classify the
contingencies and will determine the action to be performed by the UAS. Thus,
at all times will ensure the safety of the aircraft.

Therefore, we can define as primary objectives of our project:

• Design, implement and integrate into the ISIS a Contingency Manager
that can collect the UAS alarms, classify these contingencies and
determine the action to be performed by the UAS.

• Design, implement and integrate into the ISIS, different simulators that
are able to receive data from the components of a UAS.

This project presents several personal motivations. While we were coursing
several subjects of the career, we center our attention on the programming, the
computing architecture, data transmission, and the hardware and software
manipulation. We wanted to work on a group that accomplishes all these
requirements. For this reason, we decided to work at the ICARUS research
group.

We find very interesting to be involved inside a research group. We can learn
how they work, see how it develops a large project which is composed of many
parts implemented by different people.

2 Contingency Manager for ICARUS Simulated Integrated Scenario

We also consider the important fact to learn to write a formal document in
English. Learn to do this kind of documents will be very useful in our future
careers.

We consider that design and implement a contingency manager for unmanned
aircraft is an interesting, and complete project to end our career.

We have considered that to achieve complete the project in an organized way
and in a time not too long, it was necessary to perform a task planning. To
achieve this, we made the following Gantt diagram that shows the project
timing.

Fig.1.1 Project Timing.

During the first few weeks we will be devoted to collect information about all that
surrounds our TFC. We collect information about the UAS, about the ISIS
platform and about MAREA works.

Once these tasks will be finished, we are going to develop the first simulator.

To develop the Weather Simulator, first we collect information and later we
design and implement the simulator.

This procedure is which we will follow to develop the Electrical Simulator, the
Engine Simulator and the Contingency Manager.

Finally, to finish de TFC, we are going to prepare the presentation.

Introduction 3

Then to finish this section we are going to talk about the document organization.
The document is organized as follows.

Section II provides an overview about the previous work in the ISIS platform. It
also explains what is a UAS and defines the middleware over we are going to
work.

In Section III, IV and V present the three simulators: Weather Simulator, Engine
Simulator and Electrical Simulator respectively. In these sections are explained
which are the goals of these simulators, which requirements must reach and
finally they also show the program results.

Section VI presents the Contingency Manager. In this section is described:
which are the goals, requirements and architecture of the CM. Finally it also
shows the program results.

Finally, Section VII concludes the document and proposes future work.

4 Contingency Manager for ICARUS Simulated Integrated Scenario

SECTION 2. PREVIOUS WORK

In this section we are going to describe how the ISIS platform is composed and
how to we are going to integrate our project into it.

2.1 ICARUS Simulated Integrated Scenario (ISIS)

Definition and Overview

UAS are becoming one of the main assets to be employed in remote sensing
applications both in civil and scientific environments. However, the current
limitations when using non-segregated airspace makes extremely difficult to
have available flight time to extensively test all subsystems required to achieve
a specific mission.

Using real flights to test the complete UAS mission infrastructure involves high
costs and risks. Current legislation requires an area of controlled and
segregated airspace to perform the test flights. The UAS, its associated
maintenance systems and the ground station need to be moved to the assigned
airspace. Except for the smaller UAS, lots of personnel involved in the UAS
mission also need to be mobilized. In addition, government permissions and
adequate insurance coverage for the UAS operation has to be obtained. Finally,
the possibility of damaging or completely losing the UAS should be considered,
especially when testing new components or subsystems. Obviously, all of these
restrictions and their associated logistic costs in both time and money make real
UAS flight a bad option for experimentation.

Then, simulation is a pushing requirement previous to the real flight campaigns.
Extensive research and experimentation is available in the area of aircraft and
autopilot simulation, software in the loop and even hardware in the loop.
However, little or no research is available in the area of “mission” simulation or
in the area of multi-vehicle simulation. Modeling such scenarios is becoming
mandatory because the operation of UAS will become correlated to different
types of aerial vehicles and even ground vehicles.

For all these previous reasons, it is needed a simulation platform able to cope
with a variety of civil UAS missions with little reconfiguration time and overhead.
This platform has to be capable of, not only simulate the behavior of the UAS
from the mission point of view, but it has to be able to include additional
vehicles each one modeled with different levels of granularity. However, not
only vehicles but their mutual interaction and the interaction with their
surrounding environment have to be available to simulation.

To accomplish this objective they have implemented a distributed simulation
architecture in which vehicles and environment is simulated trough specialized
pieces of software. An underlying service-oriented communication middleware
provides the underlying infrastructure to easily implement the inter-vehicle

Previous Work 5

coordination and even the coordination with third party applications providing
additional simulated vehicles or simulated environment. They called this
platform ICARUS Simulation Integrated Scenario (ISIS).

The idea of ISIS is to minimize both the test development and validation cost,
as well as to provide an easy migration of the software from the tested platform
to the real flight platform.

The general goals of the ISIS are:

• First, ISIS provides an environment in which the USAL components or
services already designed can interact with others being designed.

• Second, it provides an easier and safer way to test the mission
application.

• Third goal is related to the testing of system with complex scenarios.
• Fourth, ISIS offers multiple level of detail simulation.

Architecture and Design

The key idea here is to have a component capable to simulate the aircraft flight.
In order to achieve this goal, they need a “Flight Simulator” with a simulated
autopilot capable of interacting with the USAL. The “Flight Simulator” selected
was the “FlightGear”.

Fig.2.1 ISIS architecture.

In Figure 2.1 is showed one possible example of the ISIS architecture.

The UAS is composed by several services. The service composition depends
on which sort of services or mission they want to test. In this example, we can
see the Virtual Autopilot System (VAS), the Flight Plan Monitor (FPM) and the
services that we are going to implement: the Contingency Manager (CM), the
Electrical Manager (ELM), the Engine and Fuel Manager System (EFMS) and
the Weather Manager (WM). The simulation versions of the ELM, EFMS and

6 Contingency Manager for ICARUS Simulated Integrated Scenario

WM are different from the full service version. The main difference is the source
of the data. In this case, the data are provided by a simulator. In the full version,
these data are supplied by the batteries sensors and the engine sensors
respectively.

We will develop services CM, ELM, EFMS and WM. The latter three services
will be simulators with the goal of creating emergency situations in the form of
alarms. The CM will be responsible for categorizing these alarms to be
processed correctly. There by achieving the stability of the UAV as far as
possible. All these services belong to the MAREA middleware. For this reason
can connect to other services if necessary.

One of the basic ideas of USAL architecture is the freedom to add or remove
services from the final solution. Depending on which mission the UAS is going
to deal, there are some service’s blocks or others. Some are basic services,
always needed. But others may differ depending on the mission objectives.

2.2 Middleware System Architecture (MAREA)

Middleware-based software systems consist of a network of cooperating
components, in our case the services, which implement the business logic of
the application and an integrating middleware layer that abstracts the execution
environment and implements common functionalities and communication
channels. In this view, the services are semantic units that behave as producers
of data and as consumers of data coming from other services. The localization
of the other services is not important because the middleware manages their
discovery. The middleware also handles all the transfer chores: message
addressing, data marshaling (so subscriber services can be on different
platforms than the publisher service), delivery, flow control, retries, etc. Any
service can be a publisher, subscriber, or both simultaneously. This publish-
subscribe model virtually eliminates complex network programming for
distributed applications.

Fig.2.2 Middleware view of the UAV application

Previous Work 7

Each service of the middleware is able to publish variables and networking
events, do a remote invocation and transfer files. The others MAREA’s services
can subscribe to these published items. Then we explain the differences
between the two modes of publishing data, the remote invocation and files
transmission.

As variables, we mean the transmission of structured, and generally short,
information from a service to one or more additional services of the distributed
system.

Events are similar to variables in the sense that both work following the
publication-subscription paradigm. The main difference is that events, opposite
to variables, guarantee the reception of the sent information to all the
subscribed services. The utility of events is to inform of punctual and important
facts to all the services that care about.

Remote invocation is an intuitive way to model some sort of interactions
between services. Some examples can be the activation and deactivation of
actuators, or calling a service for some form of calculation. Thus, in addition to
variables and events, the services can expose a set of functions that other
services can invoke or call remotely.

In some cases, there is the need to transfer with safety continuous media. This
continuous media includes generated photography images, configuration files or
services program code to be uploaded to the service containers.

Implementation of our project in MAREA

For the implementation of our project we created four MAREA network services.
The first three services correspond to each of the simulators that are planned.
With them we have the possibility of publishing in the middleware all the
simulated variables and the corresponding alarm events. When talking about
alarms we refer to a notification to other services when variables of our aircraft
are out of safety range and may pose a risk the aircraft airworthiness.

The last service implemented corresponds for the Contingency Manager. This
service will be subscribed to three services listed above in order to assess the
situation and make a decision. Once reached this point, we will be able to
publish all other network services such decision

2.3 Unmanned Aerial Vehicle

An Unmanned Aerial Vehicle is an autonomous aerial vehicle capable of flying
without any human pilot through a system of autonomous driving. It is called so
(UAV) by the military of the United States, as it was the name given to the latest
generations of aircraft capable of flying without a pilot on board.

8 Contingency Manager for ICARUS Simulated Integrated Scenario

The U.S is the country that has more applications and more of UAVs operating
today. Is presumably as the power of board systems is increasing, the functions
that will make the robots also grow. The use of UAVs today focuses on
reconnaissance and surveillance missions.

The earliest example was developed after the First World War, and it was used
during the Second World War to train operators of aircraft guns. However, until
the late twentieth century was when operating the 'radio-controlled UAV through
all the features of autonomy.

The unmanned aircraft may do works as important as the detection and
monitoring of forest fires, disasters, whether natural or otherwise, and so on. It
can also be applied in environments with high chemical toxicity and radiological
type disaster Chernobyl, where it is necessary to sample at high risk of life and
carry out environmental control. Aircraft comply with regulatory standards set
forth in the Open Skies Treaty of 1992 that allow UAVs flying over the airspace
of its signatories. They can cooperate in mission control drug trafficking and
against terrorism. They could also record videos high quality to be used as
evidence in an international trial.

The EPSC owns two UAV Shadow MK.1. This type of UAV can be seen in
Figure 2.3. The Shadow MK.1 structure is made by Integrated Dynamics, and is
a medium sized UAV. It is based on a classical twin-boom with engine in
“pusher” position. Its stock engine is a 250cc boxer featuring about 22CV, which
allows a maximum take-off weight (MTOW) of about 90kg.

The most likely application for MK.1 will be real-time detection, control and
analysis of forest fires. Another possible application for it will probably be the
calibration and supervision of VOR stations1.

Fig.2.3 Shadow MK. 1

1 VOR station: short of VHF Omni-directional Radio Range is one of the most used radio navigation aid for
aircrafts and provides directional and range signal.

Weather Simulator 9

SECTION 3. WEATHER SIMULATOR

In this section we are going to explain all the features of the Weather Simulator
and all the steps followed for its preparation.

This section starts with the Weather Simulator introduction. In this subsection,
explains the definition of the application and its objectives.

This section follows with the Weather Simulator specification that it presents the
functional goals of the service. Also, this subsection provides an overview of
what we need to get a good simulator.

Next, the definition of the architecture and design of the Weather Simulator are
discussed. It offers an explanation of the programming code and an outline of
the structure of this program. It also presents an outline of the criteria for the
design of the simulator.

The implementation of our project and the program results are depicted in the
last subsection. This subsection details the implementation of the architecture
and the design of the Weather Simulator.

3.1 Introduction

The Weather Simulator is a service capable of simulating weather conditions in
the FlightGear (FG) and publishes all of them to the rest of the services. It is a
service that lets you interact with the flight simulator through the exchange of
data. Therefore, the user can modify the weather parameters that are simulated
in the FG.

Weather conditions can be decisive in a real flight plan. A strong wind or an
intense rain can cause serious problems to a UAS. The behavior of an UAS
may vary significantly if weather conditions are not favorable.

In the ICARUS research group there is no service that considers the weather
conditions. For this reason and to avoid all the problems explained in the
previous paragraph, we need to create a Weather Simulator.

The goals of the Weather Simulator are the following:

• Simulate weather conditions at the flight simulator for that the user to
perform a study of the UAS.

• Publish all weather conditions simulated to the rest of services of the ISIS
platform. If some service of the platform needs some weather parameter
may subscribe without problem.

10 Contingency Manager for ICARUS Simulated Integrated Scenario

• Generate and publish alarms to the rest of services when dangerous

situations are simulated for the UAS. Some services will need these
alarms to perform their tasks.

• Integrate the Weather Simulator in the ISIS platform. With this service,

we increase the possibilities offered by the ISIS.

3.2 Specification

The Weather Simulator must be a service that allows the user:

• Alter all weather conditions simulated in the FG. These weather
parameters are: wind, rain, snow, clouds, turbulences, visibility,
temperature, dew point2 and pressure. Among them we highlight those
that directly affect the flight of a UAS. The highlights include: wind, rain /
snow, turbulences and temperature.

• Determine the elevation at which we simulate the weather conditions. All
parameters must be simulated within the elevation established. Elevation
is important because not all UAS can fly to the same heights.

• Simulate weather conditions on different atmospheric layers . The user

can simulate many weather conditions on the same stage if he is able to
split the sky in layers. Thus, can be get a much closer simulation of
reality.

• Choose the reference level for our simulation. The elevation, explained

in the second point, can have the sea or the ground as reference level.
Modify this information is important because the FG allows to simulate
different atmospheric layers for each of them. If the user simulates with
the sea as a reference level, the FG allows to the user to simulate five
atmospheric layers. If the user simulates with the ground as a reference
level, the FG allows to the user to simulate three atmospheric layers.

• Create an easy simulator and friendly to the user. Thus, the user can

simulate weather conditions without being an expert in the field.

Finally, there is a graphic representation of the parameters simulated by the
Weather Simulator. This representation can observe in Figure 3.1.

2 Dew point: is the temperature to which a given parcel of air must be cooled, at constant barometric
pressure, for water vapor to condense into water. The condensed water is called dew. The dew point is a
saturation point.

Weather Simulator 11

Fig.3.1 Parameters of Weather Simulator.

3.3 Architecture and Design

In the first part of the subsection will be referred to the program structure. It
presents an overview of the architecture of the simulator.

The second part will be referred to the design of the Weather Simulator and all
classes used for programming the service.

Architecture

Figure 3.2 shows the architecture of the programmed code of the Weather
System. It can be seen that the simulator is divided into two layers.

The first layer, called FG Weather Simulator, consists of all classes relating to
the graphical interface of the simulator. This group is composed by the

12 Contingency Manager for ICARUS Simulated Integrated Scenario

configuration forms. Also, it can be seen all those classes that allow
communication with the FG.

The second layer, called Weather Manager (WM), consists of classes that allow
publish data to other services. All classes of the WM will depend on a
completely separate project called WeatherInterface. The interface is created to
have a common definition of the classes. It is one way of sharing the definition
of an object.

Specific definition of all classes that make up our project can be finding in the
design subsection.

Fig.3.2 Weather Simulator Architecture.

The Weather System will modify when the hardware of the UAS of the ICARUS
is finalized. From that moment, all weather conditions will detected by sensors.
The UAS in flight will provide the necessary weather information. Thus, the
Weather Simulator no will longer necessary. For this reason, we divided the
Weather System in two layers. The FG Weather Simulator layer will be replaced
by the layer of sensors. The WM is the only layer that could reused in the future.

Weather Simulator 13

Design

We have divided the section into two groups for explanation of the design of the
simulator. The first, called code design, is responsible for explaining in detail
each of the classes that have been used for programming the simulator code.
The second, called graphic interfaces design, presents a general overview of
the two designs that it has been used to create the graphical portion of the
Weather Simulator.

Code Design

Next, we are going to explain in more detail each of the classes of the Weather
System.

The FG Weather Simulator has the following classes:

• Connection_Socket.cs : This class establishes the socket connection
between the Weather Simulator and the FG. It consists of two main
methods. The first, called send, sends any type of string for a given port.
This method is responsible for transmitting data from the Weather
Simulator to the FG. The second method, called reception, receives the
data that the FG sends through a configurable port.

The sockets that connected to FG can send data using two protocols,
UDP and TCP.

The UDP protocol allows our simulator to run without the need of having
established a previous connection to the FG. That is why this protocol
has been chosen for all the sockets in our applications. The
disadvantage of the UDP protocol is that it does not guarantee the arrival
of all packets of the transmission. Information can be lost in shipping.

• FGMessage.cs: This class create the message to send to FG with the
correct estructure. The FG needs that the messages, that it receives,
follow a certain structure. Otherwise the flight simulator can not process
the information transmitted. The message that the Weather Simulator
sends with this class follows the following structure:

41.288377 \t 53.78788878 \t 2.78878888\n

As shown in the message example above, the values separated by \t
represent values of different parameters of the flight simulator. The FG
indicates that the message is finished with character \n.

XML files are needed for that the connection between the Weather
Simulator and the FG through messages be successful. The XML files
relate the values of the message with the parameters of the flight
simulator. The XML files can be input or output of information to the FG.

14 Contingency Manager for ICARUS Simulated Integrated Scenario

For the Weather Simulator we need two inputs XML files to enable us
send to the flight simulator the information we want to modify. The first is
called Weather_Aloft.xml and is responsible for relating the parameters
with the FG when the sea is the reference level. The second is called
Weather_Boundary.xml and, in this case, relates the parameters when
the ground is the reference level. Both documents follow a structure like
the one shown at Figure 3.3.

Fig.3.3 XML code of Weather Simulator.

As we can see in this XML code relates the Elevation variable of weather
with the path simulator for the FG server. The flight simulator has a
server where the user can observe the paths of all its parameters. Thus,
with the XML file the user can relate the new values with the parameters
of the FG. In the case of the Figure 3.3, we assign the variable elevation
to the variable elevation-ft of the path /environment/config/aloft/entry. We
also determined <type> labeled the type of variable we are sending. This
process is continuous for all variables submitted. The Weather Simulator
sends two messages that are totally different. For this reason, we need
two XML, each for a different reference level. The message we send is
directly related to the XML used in transmission. For that we need to
create two separate sockets, one for each of the messages.

• WeatherParams.cs: This class prepare the message of the FGMessage
class with a given data. WeatherParams.cs determines with that values
are going to create the message of the FGMesaage class. The values
will be determined by WeatherSimulatorPanel class or AdvancedOptions
class. This new class needs to reference constantly the FGMessage.cs
class.

The WetaherParams.cs consists of two methods. Each creates a
different message. The first message is created when the user simulates
weather situations with the ground as reference level. The second
message is created when the user simulates weather conditions with the
sea as reference level.

• WeatherSimulatorPanel.cs: This class is the main form throughout the
application. It is the main graphic interfaces of the simulator. With this

<?xml version = "1.0"?
 <PropertyList>
 <generic>
 <input>
 <! - Set autopilot control properties ->
 <line_separator> newline </ line_separator>
 <var_separator> tab </ var_separator>
 <chunk>
 <name> Elevation (ft) </ name>
 <type> float </ type>
 <node> / environment / config / aloft / entry / elevation-ft </ node>
 </ chunk>

XML cod e for connection between FG and Weather Simulator .

Weather Simulator 15

class the user can interact with the Weather Simulator. In the
implementation subsection is a more detailed explanation of this class.

• AdvancedOptions .cs: This class introduces the second form of the
Weather Simulator. It is a graphic interfaces that allows users to create
weather conditions much more concrete or specific. In the
implementation subsection is a more detailed explanation of this class.

The Weather Manager (WM) has the following classes:

• WeatherService.cs: This class determines all the variables and events
published by the weather system. If it is necessary, the user would have
the posibility to subscribe to other services with this class. The
WetaherService.cs also is responsible for initialize the
WeatherSimulatorPanel.cs.

• GlobalArea_WS.cs: This class is like a box where there are all the
values of variables and events to be publish. When the user simulates
weather conditions, all parameters are stored in this new class. Thus, it
will be take the values of the GlobalArea_WS.cs when it is necessary to
publish data to the other services.

• Publisher.cs: This class is responsible for collecting the values of

GlobalArea_WS.cs for publication in middleware. Thus, all services can
use the parameters simulated by the weather simulator.

Graphic Interfaces Design

We used two designs for creating the Weather Simulator. The first design
developed for this simulator was based on the way to represent the values of
the FG weather panel (see Figure 3.4). The flight simulator shows values of
wind, turbulence, visibility, among layers defined at different altitudes.

Fig. 3.4 Layer design FG

FG offers the possibility of splitting the sky in five layers from sea level and
three from ground level. In each of these divisions we can determine a height
and a series of meteorological parameters to choose. It allows to reflect the
situation that we want to simulate accurately.

For proper operation of our first design, we must specify values for wind speed
and direction, altitude, turbulence, visibility, temperature and pressure for each
of the layers. To ensure a good simulation, the user should know exactly all the
characteristics of the parameters that represent the simulator. Thus, we realized
that it was not a fast and easy to use. It was a program where too many
parameters to be modified to achieve a desired simulation.

16 Contingency Manager for ICARUS Simulated Integrated Scenario

Once this problem was noticed, we decided to rethink the simulator again and
deploy it in a much more intuitive way. We would do much more visual simulator
capable of recreating a real situation with a few mouse clicks, a precise direct
application at a time. Thus we decided to implement a program where the main
elements were the buttons.

The parameters of the wind direction and wind speed were reduced to a single
group, wind. Thus, from three general conditions as long, medium or little we
are able to represent the two characteristics of wind with a single button. These
three conditions have also been applied to the parameters of turbulence and
visibility.

The initial design has not been wasted but has been used as advanced options.
Thus we can specify exact values for each of the parameters that are simulated.

3.4 Implementation

As a result we may find a simulator with two configuration panels: Weather
Simulator Panel and Advanced Options. In this way we satisfy all user needs.

The Weather Simulator Panel is the main form of the Weather Simulator. With
it, the user can simulate weather conditions quickly and accurately. The
Advanced Options is the secondary form of the Weather Simulator. With it, the
user can simulate much more specific weather conditions.

The following explains in greater detail the features and the functionalities of
each of the forms.

Weather Simulator 17

3.4.1 Weather Simulator Panel

We represent the final implementation of Weather Simulator Panel in the Figure
3.5.

Fig.3.5 Weather Simulator Panel.

As it is shown in Figure 3.5, the Weather Simulator Panel is divided into
different sections. Each section belongs to each parameters group that is
simulated: wind, turbulence, temperature, reference level, altitude, clouds and
rain or snow. The sections are clearly differentiated from each other. Every
section is formed by their corresponding buttons.

Next, we are going to describe each weather sections from left to right of the
Figure 3.5.

The first section that we are going to describe is the elevation section. By
means this group, we specify the height at which we want to simulate a
particular meteorological situation in one altitude layer. The limit or end values
of this layer is determined by the values entered in the elevation section. All
parameters of wind, turbulence, clouds and temperature that the user wants to
represent are simulated in the range of altitudes of the layer.

The three sections that are explained below have three configuration buttons.
These sections are those that are below the elevation section in Figure 3.5.
With the three buttons that the sections have, the user can simulate three
conditions for each section; short, medium and long. The values each section
will depend on the condition to which they belong.

18 Contingency Manager for ICARUS Simulated Integrated Scenario

One of these three sections is the wind section. This value includes two
characteristic parameters of the wind, the direction and the speed.

The wind direction parameter is important because the effects caused by the
impact of wind in a certain direction are directly related to the orientation of the
plane. The wind will affect the plane differently if the orientation of the plane and
wind are the same or not. For the three conditions of this parameter a single
value of direction is used. Sixty degrees has been used as a general value.

The velocity is a variable value. FG presents this parameter in kilometers per
hour (km/h). Thus, we believe that 100 km/h was an appropriate maximum
value for the simulation of the wind because the aircraft have important
variations in their trajectories. Minimum value determined as 20 km/h, a value
that does not affect the behavior of the aircraft-

Another section of the Weather Simulator Panel which involves setting three
conditions is the section of turbulence . The turbulence section is to the right of
the wind section in the Figure 3.5. The buttons of this section represent a value
with range between 0 and 1. With the maximum value, we observe that the
simulation results in a continuous drift of the aircraft even to lose all control over
it.

The last section of the three sections is the temperature . The temperature
section is to the right of the turbulence section in the Figure 3.5. This parameter
allows the user to simulate a high temperature like a fire or a low temperature
like the upper layers of the sky.

Next, can be seen the rain/snow section at top of the turbulences section and
to the right of the elevation section in Figure 3.5. This section does not follow
the pattern of previously explained. In this case, the section is formed by two
buttons.

The section of rain/snow has been designed to simulate the raining or snowing.
A heavy rain or snowfall affects the flight of the plane. It will rain with great
intensity if the user selects the button rain. With the same intensity it will snow if
the snow button is pressed.

Then, can be seen the clouds section to the right of the rain/snow section in the
Figure 3.5. This section follows the pattern of the rain/snow section. In the
section of clouds, we are able to simulate a clear or cloudy sky. In the Weather
Simulator Panel are represented two types of clouds in the first layer of the
atmosphere. This layer will be limited between the chosen reference level and
the altitude selected in section elevation.

The last section to configure parameters is the reference level section. This
section is to the right of the clouds section in the Figure 3.5. This value is very
important in our simulator as it has the responsibility for determining the
beginning of our atmosphere layer, where we represent all weather conditions
chosen.

Weather Simulator 19

Finally, can be seen the buttons section under the reference level section in
the Figure 3.5. The buttons of this section are: send data to FG, clear all,
advanced options and exit.

With the first button, the Send data to FG, we initialize the data transmission.
This data transmission is made through a socket UDP. For more information
about the transmission see Appendix Section 1. With the reset all button, reset
all the parameters previously set in the simulator. Thus, we can create new
weather situations more quickly than restart the application. Using the advanced
options button opens the panel that explained in the next section (see Figure
3.6).

3.4.2 Advanced Options

We represent the final implementation of Advanced Options of Weather
Simulator in the Figure 3.6.

Fig.3.6 Advanced Options of Weather.

The Advanced Options is a form of the application created to achieve specific
situations. With this new form, we are able to simulate climatic parameters
much more concrete. This new panel allows the user to recreate a weather
situation through layers of altitude. Now we are able to simulate all the
parameters with the same configuration that offers the FG. Five atmospheric
layers may be represented. The fact of adding this new feature will create a
much more complete and detailed simulator. The new panel sends the
information with the sea level as reference. This is because FG that it only
provides the ability to simulate five layers with that reference level.

20 Contingency Manager for ICARUS Simulated Integrated Scenario

The Advanced Options consists mainly of four sections. All of which are
interrelated to achieve the same goal, extend the simulator capabilities. Next,
we are going to describe each advanced options sections from left to right of the
Figure 3.6.

The first section that we are going to describe is the scrolls section. This
section is comprised of eight scrolls and eight textbox. The eight scrolls are able
to assign values to all parameters that are simulated. These parameters are:
height, direction and wind speed, temperature, pressure, dew point and
visibility. The eight textbox represent the values of the eight scrolls. These
values are represented numerically and their corresponding unit.

Next, can be seen the layers section at top of the scrolls section in Figure 3.6.
This section is comprised of five radiobuttons that allow us to select of which
layer we want to send data. Thus, we can represent all the parameters listed
above in all layers of existing elevation in FG.

Then, can be seen the types of clouds section to the right of the scrolls section
in Figure 3.6. This section is comprised of six radiobuttons. Each of these
radiobuttons represents a different type of cloud. The possibilities we have are
the following: clear, few, scattered, broken, overcast, and cirrus. For each layer
selected can simulate a different type of cloud.

The few option and the scattered option represent stratus type clouds. The
broken option and the overcast option represent nimbostratus type clouds. The
cirrus option represent cirrus type of clouds. For more information about clouds
see Appendix Section 2.

The last section that can be seen in Figure 3.6 is the buttons section. This
section is under the types of clouds section. The buttons that this section
represents are: Send Data to FG, reset all and return. With the send data to FG
button sends the information as the Weather Simulator Panel. With the reset all
button reset the parameters configured. Finally, with the return button back to
the main panel and saving the data set.

Engine Simulator 21

SECTION 4. ENGINE SIMULATOR

In this section we are going to explain all the features of the Engine Simulator
and all the steps followed for its development.

This section starts with the Engine Simulator introduction. In this subsection, it
is explained the definition of the application and its objectives.

This section follows with the Engine Simulator specification that it presents the
functional goals of the service. Also, this section provides an overview of what
we need to get a good simulator.

Next, the definition of the architecture and design of the Engine Simulator are
discussed. It offers an explanation of the programming code and an outline of
the structure of this program. It also presents an outline of the criteria for the
design of the simulator.

The implementation of our project and the program results are depicted in the
last subsection. This subsection details the implementation of the architecture
and the design of the Engine Simulator.

4.1 Introduction

The engine simulator is an application that can emulate the engine system of a
UAS. The user has the ability to visualize engine parameters of a UAS that are
simulated in the FG. The Engine Simulator receives constantly the telemetry of
the FG. Also, the user has the ability to recreate situations of failure of the
parameters named above.

We need to create the Engine Simulator because the procedure of turning on
the engine for each test of the simulation in a laboratory setting is an
inappropriate option for experimentation. Also, the Engine Simulator is
necessary because it provides the possibility of simulating engine alarms
without compromising the real engine system.

The goals of the Engine Simulator are the following:

• Simulate the engine system in order to perform a study of the engine of
the UAS.

• Publish all engine parameters simulated to the rest of services of the ISIS
platform. If some service of the platform needs some engine parameter
may subscribe without problem.

22 Contingency Manager for ICARUS Simulated Integrated Scenario

• Generate and publish alarms to the rest of services when dangerous
situations are simulated for the UAS. Some services will need these
alarms to perform their tasks.

• Integrate the Engine Simulator in the ISIS platform. With the Engine

Simulator service, we increase the possibilities offered the services of the
ISIS.

4.2 Specification

The Engine Simulator must be a service that allows the user:

• Emulate the most characteristic parameters of an engine system. These
engine parameters are: RPM (Revolutions per minute), CHT (Cylinder
Head Temperature), EGT (Exhaust Gas Temperature), oil pressure, oil
temperature, fuel flow and fuel level.

• Visualize the parameters of the UAS engine of the FG. In this way, the
user will know the actual data of the aircraft. These parameters will help
the user to conduct the study of the UAS engine.

• Choose different values for the parameters that we are going to simulate.

Thus, the application will simulate different types of alarms.

• Visualize what is happening. A graph for each of the simulated
parameters can help the user to understand the simulation. Thus it is
clearly differentiated the FG values and the new values of the Engine
Simulator.

• Configure the application to any UAS. The user should be able to modify

the values of the parameters that are simulated on the Engine Simulator.
Thus, the simulator will be flexible for any type of aircraft.

• Create an easy simulator and friendly to the user. Thus, the user can

simulate engine conditions without being an expert in the field.

Finally, there is a graphic representation of the parameters simulated by the
Engine Simulator. This representation can observe in Figure 4.1.

These values refer to the engine of a Cessna 172. For more information about
the Cessna see Appendix Section 3.

Engine Simulator 23

Fig.4.1 Parameters of Engine Simulator.

4.3 Architecture and Design

The first part of the subsection will be referred to the program structure. It
presents an overview of the architecture of the simulator.

The second part will be referred to the design of the Engine Simulator and all
classes used for programming the service.

Architecture

Figure 4.2 shows the architecture of the programmed code of the Weather
System. It can be seen that the simulator is divided into two layers.

The first layer, called FG Engine Simulator, consists of all classes relating to the
graphical interface of the simulator. This group is composed by the
configuration forms of the simulator. It can also be seen all those classes that
allow communication with the FG.

The second layer, called Engine Manager (EM), consists of classes that allow
publish data to other services. All classes of the EM will depend on a completely
separate project called EngineInterface. The interface is created to have a
common definition of the classes. It is one way of sharing the definition of an
object.

24 Contingency Manager for ICARUS Simulated Integrated Scenario

Specific definition of all classes that make up our project can be finding in the
design subsection.

Fig.4.2 Engine Simulator Architecture.

As the previous simulator, the FG Engine Simulator layer will be replaced by
sensors of the engine system of real UAS. For this reason, we divide the Engine
System in two layers. The EM is the only layer that could reused in the future.

Design

We have divided the section into two groups for explanation of the design of the
simulator. The first, called code design has the explanation in detail of each of
the classes that have been used for programming the simulator code. The
second, called graphic interfaces design, presents a general overview of the
graphical design of the Engine Simulator.

Engine Simulator 25

Code Design

Next, we are going to explain more detail each of the classes of the Engine
System.

The FG Engine Simulator has the following classes:

• Connection_Socket.cs : This class establishes the socket connection
between the Engine Simulator and the FG. Is the same class that is
explained in the Weather Simulator.

• EngineSimulatorPanel.cs: This class is the main form throughout the
application. It is the main graphic interfaces of the simulator. With this
class the user can interact with the Engine Simulator. In the
implementation subsection there is a more detailed explanation of this
class.

• General Behaviour.cs: This class allows to visualize all the graphics of
the Engine Simulator in a new windows form.

The Engine Manager (EM) has the following classes:

• EngineSimulatorService.cs: This class determines all the variables and
events published by the engine system. If it is necessary, the user would
have the posibility to subscribe to other services with this class. The
EngineSimulatorService.cs also is responsible for initialize the
EngineSimulatorPanel.cs.

• GlobalArea_ES.cs: This class is like a box where there are all the
values of variables and events to be publish. When the user simulates
engine conditions, all parameters are stored in this new class. Thus, it
will be take the values of the GlobalArea_ES.cs when it is necessary to
publish data to the other services.

• Publisher.cs: This class is in charge of collecting the values of

GlobalArea_ES.cs in order of publicating them on middleware. Thus, all
services can use the parameters simulated by the Engine Simulator.

Graphic Interface Design

From the beginning, we knew that in order to make an efficient engine
simulator, we needed to create a very intuitive service for the user. To achieve
this, we need a simulator based in graphics and buttons.

All parameters of the Engine Simulator need a graph. Thus, the user sees
clearly the evolution of parameter values. All graphs of the parameters in the
same panel do not offer a good interpretation of what is happening.

26 Contingency Manager for ICARUS Simulated Integrated Scenario

To get a clear distribution of all parameters, we have based the design of the
simulator on a tabs system. In each tab the user can see represented different
engine parameter. In the last tab the user can access to the advanced options.

4.4 Implementation

We have designed a simulator with a panel of seven tabs. Six of the tabs are
related to engine parameters and the last tab contains the advanced options.
The panel is named Engine Simulator Panel.

The following explains in greater detail the features and the functionalities of
each of the tabs. We represent the final implementation of Engine Simulator
Panel in the Figure 4.3.

Fig.4.3 Engine Simulator Panel

Each tab of the Engine Simulator Panel belongs to a parameter that is
simulated: CHT, EGT, RPM, oil pressure, oil temperature and fuel flow. Every
tab is formed by their corresponding buttons.

Among all the tabs that are explained above we must emphasize one: the fuel
flow tab is different from the others. In this tab we find a new box where we
observe the value of the UAS tank. Also, the user has the possibility to simulate
a failure of fuel tanks. With the Cause failure button the user simulates that the
UAS does not have enough fuel.

Engine Simulator 27

For each of the parameters, the user has a group of 3 buttons. As it can be
seen in Figure 4.3 the buttons are: Low RPM button, Medium RPM button and
High RPM button, with this buttons the user can modify in greater or lesser
degree the normal behavior of each parameter. This value increases or
decreases progressively until it reaches its final value.

The value that is simulated will be consistently accounted on a graph. Each tab
has its corresponding graph. We can see an example of graphics in the middle
of the Figure 4.3. To plot the behavior of each parameter, we loaded into our
project library, the dll of ZedGraph (www.zedgraph.org). It has allowed us to set
up the visual appearance of the graphs and represent the evolution of each
parameter.

All of the tabs share four general buttons: Send Data to MAREA, Clear All,
General Behaviour and Exit. The first one is responsible for publishing the
parameters simulated in the middleware. With the Reset All button, the user
restarts the simulator parameters to their default values. With the General
Behaviour button, the user can be seen the all graphs of the parameters in a
new form. These buttons can be visualized at the bottom of Figure 4.3.

Our simulator publishes constantly to MAREA the instant parameters of the
engine that receives of FG. If at any time any of the buttons of each tab is
selected, pressing the Send Data to MAREA button, the parameter received of
FG will be amended by a new value. This value depends on the button the user
has selected. Thus, we can see the new simulated value in the box changed
value, and the value received of FG in the box FlightGear value. The evolution
of the value of each parameter can be seen at the graphic of each tab. The box
Changed value and the box FlightGear value can be visualized to the right of
the graph in Figure 4.3.

There is a relationship between each button and a maximum value and a
minimum of that parameter of the engine. The maximum and minimum value
can be modified in the advanced options in order to get a simulator more
flexible and that it can adapts to different engine types.

Finally there is the Engine Simulator Panel. This tab is named Advanced
Options (see Figure 4.4).

28 Contingency Manager for ICARUS Simulated Integrated Scenario

Fig.4.4 Advanced Options of Engine

The advanced options allow us to specify a determinate value of any parameter
of the engine we want to modify. Thus, the user can simulate the engine with
greater accuracy. As shown in Figure 4.4, this tab is divided into seven different
sections. The first six refer to the engine parameters. Each one provides a
specific value via a scrollbar.

The last section of this tab lets you select the maximum and minimum value
among which oscillate every aspect configurable of the engine. Thus, the user
can simulate any type of engine by introducing the maximum and minimum
values for each parameter.

Electrical Simulator 29

SECTION 5. ELECTRICAL SIMULATOR

In this section we are going to explain the all features of the Electrical Simulator
and all the steps followed for its preparation.

This section starts with the Electrical Simulator introduction that explains the
definition of the application and its objectives.

Next, it can be found the Electrical Simulator specification. It presents the
functional goals of the Electrical Simulator and displays an overview of all the
Electrical Simulator requirements.

This section follows with the architecture and design of the Electrical Simulator.
It offers an explanation of the programming code and an outline of the structure
of this program. It also presents an outline of the criteria for the design of the
simulator.

The implementation of our project and the program results are depicted in the
next subsection. This subsection details the implementation of the architecture
and the design of the Electrical Simulator.

5.1 Introduction

The working of the electrical system of a UAS is decisive in a flight plan. A fault
in the battery or in the alternator may cause irreparable damage in the UAS.
The behavior of an aircraft may vary considerably if the working of the electrical
system is not favorable.

At the ICARUS research group there is no service that considers the electrical
system of a UAS. For this reason and in order to avoid all the problems
explained in the previous paragraph, we need to create an Electrical Simulator.

The electrical simulator is an application that can emulate the electrical system
of a UAS. The user has the option of adding to the UAV a number of devices
and recreate situations of failure of these devices.

The goals of the electrical simulator are the following:

• Simulate an electrical system for the user to perform a study of the
payload of the UAS.

• Publish all electrical parameters simulated to the rest of services of the
ISIS platform. If some service of the platform needs some electrical
parameter may subscribe without problem.

30 Contingency Manager for ICARUS Simulated Integrated Scenario

• Generate and publish alarms to the rest of services when dangerous
situations are simulated on the UAS. Some services will need these
alarms to perform their tasks and responses.

• Integrate Electrical Simulator in the ISIS platform. With the Electrical

Simulator service, we increase the possibilities offered the services of the
ISIS.

5.2 Specification

The Electrical Simulator must be a service that allows the user:

• Configure a large number of electrical devices. The devices that have to
be taken into account are: video cameras, photo cameras, thermal
cameras, gps, video transmitters, batteries, alternators, servos and
autopilot.

• Activate or disable each of the simulated devices. Thus, the user can
keep track of the consumption of the payload.

• View the remaining flight time with illustrations or graphics. Thus, the

user can know if there is time to end the alleged mission of a UAS.

• Visualize how much energy is left for the battery. The user can control
the energy level of the system.

• Visualize specific information to each device. The application must also

show the consumption of each device. Thus, the user can determine
which devices are useful at this time.

• Create an easy simulator and simple usability . Thus, the user can

simulate an electrical system without being an expert in the field.

Finally, there is a graphic representation of the devices simulated by the
Electrical Simulator. This representation can observe in Figure 5.1.

Electrical Simulator 31

Fig.5.1 Parameters of Electrical Simulator.

5.3 Architecture and Design

The first part of the subsection will be referred to the program structure. It
presents an overview of the architecture of the simulator.

The second part refers to all classes used for programming the simulator.

Architecture

Figure 5.2 shows the architecture of the programmed code of the Electrical
System. It can be seen that the simulator is divided into two layers.

The first layer, called UAS Electrical Simulator, consists of all classes related to
the graphical interface of the simulator. This layer is composed by the
configuration forms of the simulator and by the information forms of the devices.

The second layer, called Electrical Manager (ELM), consists of classes that
publish data to other services. All classes of the ELM will depend on a
completely separate project called ElectricalSimulatorInterface. The interface is
created to have a common definition of the classes. It is one way of sharing the
definition of an object.

32 Contingency Manager for ICARUS Simulated Integrated Scenario

Specific definition of all classes that make up our project can be finding in the
design subsection.

Fig.5.2 Electrical Simulator Architecture.

As the previous simulator, the UAS Electrical Simulator layer will be replaced by
sensors of the electrical system of real UAS. For this reason, we divided the
Electrical System in two layers. The ELM is the only layer that will be reused in
the future.

Electrical Simulator 33

Design

We have divided the section into two groups. The first, called code design is
responsible for explaining in detail each of the classes that have been used for
programming the simulator code. The second, called graphic interfaces design,
presents a general overview of the graphical design of the Electrical Simulator.

Code Design

Next, we are going to explain more in detail each of the classes of the Electrical
System.

The UAS Electrical Simulator has the following classes:

• Configuration.cs: This class is the first configuration panel that it
initializes when the simulator is started. It allows us to configure how
many devices we want to simulate. These devices are: photo cameras,
video cameras, thermal cameras and batteries. The other devices, that
cannot be set, are simulated by default when the user closes the
configuration.cs class.

• Configure_devices.cs: The Electrical Simulator is programmed with
specific models for each of the devices that are simulated. The
application determines by default specific consumption for each device.
This new class allows us to modify the devices configured by the
simulator. Thus, the user will be able to modify patterns of the devices
that he wants.

• ElectricalSimulatorPanel.cs: This class is the main form throughout the

application. It is the main graphic interface of the simulator. With this
class the user can interact with the Electrical Simulator. In the
implementation subsection is a more detailed explanation of this class.

• Classes of the devices: UAS Electrical Simulator layer has eight

classes dedicated to each of the devices. In each of these classes, the
user can find the consumption of the device and detailed information of it.

The Electrical Manager (ELM) has the following classes:

• ElectricalSimulatorService.cs: This class determines all the variables
and events published by the electrical system. In the case of being
necessary, the user would have the posibility to subscribe to other
services with this class. The ElectricalSimulatorService.cs also is
responsible for initialize the ElectricalSimulatorPanel.cs.

• GlobalArea_ES.cs: This class stores all the values of variables and
events to be publish. When the user simulates an electrical system, all

34 Contingency Manager for ICARUS Simulated Integrated Scenario

parameters are stored in this new class. Thus, it will be take the values of
the GlobalArea_ES.cs when necessary to publish data to the other
services.

• Publisher.cs: This class is responsible for collecting the values of

GlobalArea_ES.cs and publish them to the middleware. Thus, all
services can use the parameters simulated by the Electrical Simulator.

Graphic Interface Design

From the beginning, we knew that in order to design an efficient electrical
simulator, we needed to create a very intuitive simulator for the user. The
program must be able to collect the most important data on the same screen.
So the user can see at any moment what is happening. For this reason, we
decided to create a simulator based on graphs and illustrations.

Through a graph we can interpret on a fast and visual way how much estimated
time we have flown. It is very important for the user to have always clear view of
the status of the plane. For this reason we consider important the
representation of a graph showing the time remaining before the batteries are
discharged, with the devices currently enabled. This graphic is updated if a
device is connected or disconnected.

It is also necessary that the user know at all times the consumption of each
device. For this reason we have set graphs for each of these devices. Thus, the
user may decide to consider whether or not activate a device. Also, we knew
that the pictures in the main panel would help the user to understand the
simulation. For this reason, we have included illustrations of each of the devices
that are simulated. So, the user understands the simulation that is created.

The buttons are very useful tools for creating simulators that are quick and easy
to use. The Electrical Simulator needs these buttons. They provide a lot of
different utilities.

Finally, we consider that the representation of the charge value of the UAV is
important. Monitoring the weight of the UAV is an important safety measure. Not
all aircraft can withstand the same load. So the user must keep a tight check to
not cause a loss of control of the plane. For all these reasons we decided to
implement a TextBox in the main screen that is constantly showing the total
payload of the aircraft. Thus we guarantee that the user can visualized this
parameter.

Electrical Simulator 35

5.4 Implementation

We have obtained a simulator with a main panel (Electrical Simulator Panel), a
configuration panel (Configuration), eight panels concerning the devices
installed on the UAV and an additional panel (Configure Devices) which allows
us to change consumption and weight devices and batteries.

The following explains in greater detail the features and the functionalities of
each of the forms.

Configuration

We represent the final design of Configuration panel of Electrical Simulator in
the Figure 5.3.

Fig.5.3 Configuration panel of electrical simulator.

The Configuration panel lets the user to select the desired quantity of devices to
incorporate at the UAS. As shown in the Figure 5.3, the user can add to the
payload: photo cameras, video cameras, thermal cameras, lead batteries and
lipo batteries.

It will install five photo cameras, three video cameras, three thermal cameras
and four batteries of both types. To choose the number of batteries possible we
have relied on the document “Engine and Fuel Manager System for Unmanned
Aerial Vehicles” being done by July Sagardoy Perez in the ICARUS group. On
this document there is explained the implementation of the hardware of the
plane and a proposal of a system capable of incorporating four batteries of each
type.

Once the desired configuration devices were established, we will go to the main
panel by clicking the Accept button.

36 Contingency Manager for ICARUS Simulated Integrated Scenario

Electrical Simulator Panel

We represent the final implementation of Electrical Simulator Panel in the
Figure 5.4.

Fig.5.4 Electrical Simulator Panel.

The Electrical Simulator Panel is the main menu of our simulator and it is
composed for five different sections. These five sections are: devices section,
system information section, the plane section, graphical section and buttons
section. Next, we are going to describe each electrical section from left to right
of the Figure 5.4.

The first section that we are going to describe is the devices sections. The
devices that can be incorporated into the UAVs are divided into two groups. The
first group, to the left of the plane in Figure 5.4, is supplied from a lead battery.
The second group, to the right of the plane in Figure 5.4, is supplied from Lipo
batteries. In both sections the user can see which devices are activated (green
light) or deactivated (red light). The user has the possibility to access to extra
information about each device (see Figure 5.5) with the blue information button.

Electrical Simulator 37

Fig.5.5 Devices information.

In this extra information, the user can see a picture and general characteristics
of the device that is being simulated. Also, the user can see a graph showing
the consumption of the device at all times.

Also, the user can simulate different types of device failures through a
Combobox and a button. These are located at the bottom of Figure 5.5. The
electrical simulator publishes an alarm in the middleware of this error with the
button named above. Thus, the system of contingency knows that particular
device has an error in its operation which, at that time, it is not operating.

With the info button on the video cameras the user also has the possibility to
activate the record mode (Rec button) that consumes more current. With the
info button on the photo cameras the user also has the possibility to activate the
zoom mode and the photo mode. Both actions will produce an increase in
consumption of the camera. These changes in consumption will be reflected in
their corresponding graphs. The info button of lead batteries and Lipo batteries
has a particularity. In both cases, we obtain a form with a representation of the
energy that is left for each battery. Thus, users can take a visual check of the
energy available for the flight.

Next, it can be seen the graphic sections at top of the devices sections in
Figure 5.4. This section shows a visual representation of the estimated time that
remains of flight. From the graph the user has the information of the volts
delivered by the battery in function of time. Thus, the user ensures that during
that time the system will work without the batteries run out completely.

38 Contingency Manager for ICARUS Simulated Integrated Scenario

As in the case of the engine simulator, these plots have been designed through
the bookstore Zedgraph (see http://www.zedgraph.org/). The graph represents
a vertical yellow line. This line shows the user the time it takes flight. This allows
the user to identify where we are and how long it is estimated flight.

It can be seen the plane section to the right of the first device section in the
Figure 5.4. This section is characterized for representing all the selected
devices on a plane. Each device is represented by a green or red light on the
silhouette of a UAS. The user can enable or disable all devices just by pressing
the corresponding light. The user can get some little information on each device
if the user holds your mouse over any of the lights of the plane.

The next section that we are going to describe is the system information
section. It is located below the second devices section in Figure 5.4. In the
system information section we can see two representations of the battery level
and a display of the aircraft payload.

We see two levels of battery; the first is the lead battery and the second
represents the remaining battery level of Lipo Battery. The representation of the
payload of the UAS is directly dependent on the selected devices in the
Configuration form (see Figure 5.3). The simulator adds to the variable payload,
the weights of all embedded devices on the plane. Knowing the maximum load
carried by the aircraft may determine whether the choice of devices is correct or
not.

Finally, it can be seen the buttons section under the system information section
in the Figure 5.4.In this final section are three different buttons: enable devices,
disable devices, configure devices and exit.

With the first button, the user has the possibility to activate all the devices that
are incorporated into the aircraft. With the second button, the user has the
possibility of disabling all devices that are incorporated into the UAS. For
security aspects, when the user presses the button to disable devices, batteries
and alternators of the system are not deactivated. This ensures the safety of all
system devices. Autopilot and servo devices also are not turned off with the
disable devices button because are not configurable devices. With the configure
devices button, we can see a supplementary form, which allows us to specify
new models of devices or batteries (see Figure 5.6).

Electrical Simulator 39

Fig.5.6 Configuration devices panel.

The user can replace batteries and devices installed by other different on the
UAV. In order to configure this task, the user has to specify the weight and
consumption of the new devices. Once the changes are done, the simulator
modifies these parameters and emulates new elements. With this panel we
obtain a simulator much more flexible because a small change the simulator is
adapted to any type of device or battery.

40 Contingency Manager for ICARUS Simulated Integrated Scenario

SECTION 6. CONTINGENCY MANAGER

In this section we are going to explain the Contingency Manager (CM), all the
features of the CM and the steps followed for its implementation. This section
starts with the CM introduction which explains the CM definition and their
objectives. Following we are going to describe the CM architecture, the CM
design and implementation. To finish this section, we are going to present
different use cases of the CM.

6.1 Introduction

The CM is the USAL service which centralizes all the alarms and contingencies
of the system. The CM acquires and processes all the possible hazard
situations to recover the correct status of the system. In order to design a robust
system to manage UAS civil missions, contingency situations have to be taken
in account. Any little failure of the system can achieve success of the mission in
dangerous. All this warning, alarms, failures have to be treated to offer an
intelligent response. The CM objectives are:

• To manage and centralize all the alarms and contingency situations.

• To find possible future UAS failures.

• To propose responses from contingency situation.

The CM is responsible for collecting status information related to multiple
sources as: autopilot, engine, electrical, fuel, communications, etc. and
identifying contingency situations. It is understood as contingency those
situations which the UAS integrity is or will be in danger. If a contingency
occurs, all involved services will be alerted and proper reaction will be taken
according to the sort of contingency.

• Flight Contingencies: in case of weather changes we may force certain
areas to be excluded from the operative flight plan. Other possible
causes are that the expected performance of the UAS does not satisfy
certain minimums or power sources do not provide the required levels of
electrical energy, or fuel consumption does not behave as expected.

• Payload Contingencies: in case a given payload element fails some
predefined actions need to be taken. If the payload element is critical for
the flight, the flight plan needs to be terminated as soon as possible; if
the contingency is critical for the mission, the mission is canceled or its
objectives are reduced. If the contingency only affects the operation
partially, the degraded conditions are annotated for further failures.

Contingency Manager 41

• Mission Contingencies: in case the expected mission results are not
achieved due to any unexpected situation, mission objectives may be
reduced or totally canceled.

• Awareness Contingencies: in case the airspace is not segregated

another aircrafts can force flight plan changes or mission deviations.

6.2 Contingency Manager Architecture

The CM is composed by two pieces of software: the Health Monitor (HM) and
the Contingency Intelligent Control (CIC). The first one is in charge of gathering
and pre-processing all the information required to evaluate the UAS status. The
second one provides the CM intelligence to evaluate all UAS pre-processed
information and generate an intelligent response in front of any contingency.

Fig. 6.1 Contingency Manager Architecture.

The HM process and gathers all the information needed to take a contingency
decision. It is subscribed to the most relevant UAS information. This information
is stored periodically, the CM information repository in order to be checked in
that way to find any future contingency. To search UAS contingencies, the
service will occasionally need mission or flight plan information. For example
the mission time has to be compared with energy time or fuel time. This
information will be achieved on demand to reduce network traffic. To sum up;
the HM gathers all the information needed by the service to look for any
contingency. This information can arrive periodically or on demand. When the
HM finds a contingency, it is sent to the CIC in order to be classified.

The CIC gives the system intelligence and basically, it is in charge of
responding or proposing different responses in front of any contingency
preserving the UAS integrity. The CIC classifies the contingency in three
categories: minor, hazardous and catastrophic. Each category has different
responses as it is shown in the Figure 6.2.

42 Contingency Manager for ICARUS Simulated Integrated Scenario

Fig.6.2 Contingency Intelligent Control Overview Architecture.

In the Figure 6.2 is depicted the contingency reactions for each category.

• The most important and restrictive category is the Catastrophic
Contingency. The system enters in this state when the UAS cannot be
recovered. Therefore, the mission has to be terminated ensuring enough
safety. The Catastrophic Contingency module actives the Flight
Termination System (FTS). The FTS commonly will be composed by
parachute system to ensure the system safety and reduces ground crash
risk.

• Next to the Catastrophic Contingency module it is found the Hazardous

Contingency module. With this component we manage any contingency
which interrupts or will interrupt the normal mission development. It is
very important to prevent this type of contingencies because they might
finish as a Catastrophic Contingency. On the other side; a proper and
quick contingency detection can save the UAS platform.

• Finally the Minor Contingency component is shown in the left of the

Figure 6.2 Minor Contingency treats any little anomaly or failure which
can be recovery. This module establishes a contingency hypothesis and
it plans and executes a response. After that the module monitor the
system response until the contingency disappears.

Contingency Manager 43

As it is shown in Figure 6.2, the CM has a protocol to look the cause up and
response in front of the Minor Contingencies. In order to response in a correct
way the CIC is divided in three different pieces:

• Hypothesis: During this phase the CIC searches the cause of the alarm.
The CIC studies all the information gathered by the Health Monitor. The
result of this study is the hypothesis of the warning. Sometimes the CIC
may find several hypotheses. In these cases the operator will have to
choose the correct cause of the warning. The CIC, through a probabilistic
method, will propose the origin of the failure. To sum up; in this phase we
establish and validate the contingency hypothesis.

• Contingency Response: When is the contingency located, the CIC has to
plan and execute the contingency hypothesis responses. This phase has
pre-defined responses which have been pre-loaded during the dispatch
process. The CIC can present different responses in priority order to the
operator.

• Evaluation Response: When the operator has taken the decision, the CIC

starts a new process to evaluate the response. This phase has to check
that the contingency has terminated. In other case, and after a timeout,
all the process has to be repeated again.

44 Contingency Manager for ICARUS Simulated Integrated Scenario

6.3 Design

In the Figure 6.3 we can see the different classes of the CM, which are divided
in two different groups: HM Layer Classes and CIC Layer Classes.

Fig.6.3 Contingency classes

Next, we are going to explain in more detail each of the classes of the CM:

• ContingencyManager_Panel.cs: This class is the main form throughout
the application. It is the main graphic interfaces of the CM. With this class
the user can see the alarms received by the HM. In the implementation
subsection is a more detailed explanation of this class.

• HealthMonitor.cs: This class implements the HM, that we have

explained previously.

• ContingencyIntelligentControl.cs: This class implements the CIC, that
we have explained previously.

Contingency Manager 45

• Alarm.cs: This class define the structure of the object that the HM sends
to the CIC.

• ContingencyService.cs: This class determines all the variables and

events published by the CM. If it is necessary, the user would have the
posibility to subscribe to other services with this class. The
ContingencyService.cs also is responsible for initialize the
ContingencyManager_Panel.cs.

• GlobalArea_Contingency.cs: This class is like a box where there are all
the values of variables and events to be publish. When the CIC proposes
a solution, all parameters are stored in this new class. Thus, it will be
take the values of the GlobalArea_Contingency.cs when it is necessary
to publish data to the other services.

• Publisher.cs: This class is responsible for collecting the values of

GlobalArea_Contingency.cs for publication in middleware.

6.4 Implementation

The CM implementation is divided in three pieces of software, the HM, the CIC
and the Contingency Manager Panel (CMP).

In the CMP (see Figure 6.4) we can see all the alarms received by the HM.
When an alarm arrives to the HM, the CMP illuminate the button that
corresponds to the type of alarm that the HM has received. The behavior of the
HM and the CIC we have explained previously.

Fig.6.4 Contingency Manager Panel

46 Contingency Manager for ICARUS Simulated Integrated Scenario

The alarms are classified as follows:

• Electrical Alarms : collects the alarms caused by the devices of the
electrical system of the UAS.

• Engine Alarms : collects the alarms caused by the engine of the UAS.

• Weather Alarms : collects the alarms caused by the weather effects that

affect to the UAS behavior.

6.5 Contingency Manager Use Cases

This subsection describes the CM use cases from the different contingency
areas. The objective of this section is to validate, through examples, the CM
architecture. Emergency procedures need experience statistics in order to tune
in the UAS responses, these responses are predefined during the dispatcher
phase. Therefore, the CM will be continuously growing with the UAS flight
experiences.

Weather Contingencies Use Case

In the Figure 6.5 we can see a wind contingency and how the HM and the CIC
solves this problem. The CM solves more weather contingencies; we can see it
in the section 7 of the appendix.

Fig.6.5 Weather use case

Contingency Manager 47

In this example the Weather Manager (WM) publishes a wind alarm which is
detected by the HM of the CM. The HM classifies the alarm in a minor
contingency or in a hazardous contingency. The CIC receives the classified
contingency, in the case of the minor contingency it considers that the UAS has
a bad flight altitude layer. Then the CIC proposes to the UAS to fly in a new
altitude layer. If this solution isn’t effective the CIC, proposes to Go Home by
Alternative.
In the case of the hazardous contingency, the CIC proposes directly to Go
Home by Alternative or Go Home as soon as possible.

The solutions that the CIC proposes have been predefined in the dispatcher
phase.

Engine Contingencies Use Case

Next figure show a fuel contingency and how the HM and the CIC solves this
problem. The CM solves more engine contingencies; we can see it in the
section 7 of the appendix.

Fig.6.6 Engine use case

In this example the Engine Manager (EM) publishes a fuel alarm which is
detected by the HM of the CM. The HM classifies the alarm in a not enough fuel
or no fuel flow. Both alarms are classified like a hazardous contingency.

48 Contingency Manager for ICARUS Simulated Integrated Scenario

The CIC receives the classified contingency, in the case of the not enough fuel
it proposes to the UAS to Go Home, Go Alternative Runway, Flight Terminator
Field, Go Closet Alternative Runway or Go Home by Alternative depending on
the time of fuel remaining.
In the case of no fuel flow, the CIC proposes directly Flight Terminator Field.

Electrical Contingencies Use Case

Next figure show an alternator contingency and how the HM and the CIC solves
this problem. The CM solves more electrical contingencies; we can see it in the
section 7 of the appendix.

Fig.6.7 Electrical use case

In this example the Electrical Manager (ELM) publishes a fuel alarm which is
detected by the HM of the CM. The HM classifies the alarm in an internal fault
or error connection. Both alarms are classified like a minor contingency.
In both cases, the CIC proposes to the UAS to Go Home, Go Alternative
Runway, Flight Terminator Field, Go Closet Alternative Runway or Go Home by
Alternative depending on the time of fuel remaining and save power energy.
 With this solution will turn off all the devices installed on the UAS that not affect
to his normal behavior.

Final Balance 49

SECTION 7. FINAL BALANCE

In this section provides a final analysis of the project. The conclusions are the
final review for the project. It has to take into account the initial objectives and
requirements in order to compare them with the final result. After that we
describe the future work that must be done in the CM. Finally there is an
environmental impact description for that project.

7.1 Conclusions

The main objective of this project was to design, implement and integrate into
the ISIS a Contingency Manager that can collect the UAS alarms, classify these
contingencies and determine the action to be performed by the UAS.

For that the CM can act we had to design, implement and integrate into the
ISIS, different simulators that are able to receive data from the components of a
UAS.

Weather Conclusions

The Weather Simulator is able to simulate the parameters that give us the FG,
with this application we can emulate different weather situations that are
impossible to generate, without a simulator.

This application allows us to generate and publish all types of weather alarms in
MAREA, for this reason we think that the Weather Simulator improves the ISIS
platform.

Engine Conclusions

The Engine Simulator is able to simulate the engine system of a UAS, with this
application we can emulate different engine failures that are impossible to
generate in a laboratory, without a simulator.

The simulator allows us to generate and publish in MAREA, all types of engine
alarms, thus the ISIS platform has been improved.

Electrical Conclusions

The Electrical Simulator is able to represent all the parameters needed to
simulate an electrical system of a UAS; with this application we can emulate
different failures in the electrical system of the UAS. These failures can’t be
recreated in a laboratory because is not possible to repeat the action of turn on
and turn off the electrical system, and generate failures of the different devices.

50 Contingency Manager for ICARUS Simulated Integrated Scenario

This application allows us to generate and publish all types of electrical alarms
in MAREA, for this reason we think that the Electrical Simulator improves the
ISIS platform.

Contingency Conclusions

The Contingency Manager centralizes all the alarms and contingencies of the
system. The CM is an important piece of the USAL flight category that faces the
complex problem of contingencies in simple and structured way.
It works with the Flight Plan Manager (FPM) to offer alternative responses in
front of contingency situations. With these two pieces of software the UAS can
manage hazardous situation, guaranteeing the UAS integrity. Also the service is
capable to recover from minor contingencies and remain the UAS mission.

General Conclusions

The implementation of the simulators and the CM, was supposed to have been
a relatively easy and quick workout. However, while we develop the different
simulators and the CM, different problems arose. If we wanted to design and
implement good simulators and a good CM, we had to take into account
multitude of situations and problems that may arise during the flight of UAS. For
this reason, the design and implementation of our project has not been so quick
and easy as expected.

The integration of the simulators and the CM into the ISIS, have been done
when we have finished the design and implementation of all simulators and the
CM. It has been a difficult task because we didn’t made the other services of the
ISIS platform and we have needed time to understand how functions.

However, the general balance is excellent. A Contingency Manager has been
designed, implemented and integrated into the ISIS. Also, the Weather
Simulator, the Engine Simulator and the Electrical simulator have been
designed, implemented and integrated into the ISIS.

Final Balance 51

7.2 Future lines of work

The three simulators and the Contingency Manager are beta versions, for this
reason we think that all of these applications are improvable.

About the simulators can be implemented the following aspects:

• Collect the data of any type of internet service about the real weather
conditions.

• Realize the simulators with another technology like WPF (Windows
Presentation Foundation), thus the simulators will have a better visual
aspect.

• Realize a connections system between the devices and the batteries of

the Electrical Simulator. This system should be flexible and totally
configurable for the user.

• The distribution of the Electrical Simulator devices in the UAS should be

configurable for the user.

The future work of the CM will be addressed to improve the service intelligent
response in front of hazardous and minor contingencies. All the contingencies
have to be studied in order to offer several responses and help the operator in
her decision. Another research line is to integrate and coordinate contingency
responses with all the USAL services. A coordinated response will be more
effective than a CM service response.

7.3 Environmental care

By the time the ICARUS UAS Platform gets ready to fly, its main application will
be the detection and control of forest fires. Catalonia countryside is a hot-spot
for these fires, as it has a warm, hot climate, especially in those summer
months. ICARUS UAS Platform comes to replace the manned helicopters and
airplanes that are currently used for fire-awareness purposes. These are high
fuel consumers when compared to the fuel consumed by a small UAV engine,
and its propellers are far noisier.

52 Contingency Manager for ICARUS Simulated Integrated Scenario

SECTION 8. BIBLIOGRAPHY

8.1 Books, articles and application notes

Royo, P., “Contingency Manager, Functional Specifications”, 23 pages, April
2009.

Tristancho, J., “Flight Manual”, 17 pages, May 2009.

Pastor, E.; Royo, P.; Santamaria, E.; Prats, X.; Barrado, C., “In-Flight
Contingency Management for Unmanned Aerial Vehicles”, 15 pages.

Sagardoy, J., “Engine and Fuel Manager System for Unmanned Aerial
Vehicles”, 75 pages, May 2009.

López, B., “Ground Control Station for UAS over ICARUS System”, 67 pages,
September 2009.

López, J.; Royo, P.; Pastor, E.; Barrado, C.; Santamaria, E., “A Middleware
Architecture for Unmanned Aircraft Avionics”, 20 pages.

Royo, P., “An Open Architecture for the Integration of UAS Civil Applications”,
Computer Science PhD Thesis, 140-160 pages, May 2009.

8.2 WebPages

[1] Astromía: http://www.astromia.com/tierraluna/nubes.htm

[2] Zedgraph: http://www.zedgraph.org/

[3] Neoteo: http://www.neoteo.com/

[4] LaFlecha: http://www.laflecha.net/canales/ciencia

[5] Wikipedia: http://www.wikipedia.com

[6] Direct Industry: http://www.directindustry.es/

[7] Sutelco: http://www.sutelco.com/

[8] Ukai: http://www.ukai.com/

[9] Datasheet Catalog: http://www.datasheetcatalog.net/

[10] Seguridad Plus: http://www.seguridadplus.com

Appendix 53

ANNEXOS

TÍTOL DEL TFC: Contingency Manager for ICARUS Simul ated Integrated
Scenario

TITULACIÓ: Enginyeria Tècnica de Telecomunicació, e specialitat
Sistemes de Telecomunicació

AUTORS: Oriol Caro Ignacio
 Juanjo Rodríguez Carvajal

DIRECTORS: Pablo Royo Chic i Juan Manuel Lema Rosas

DATA: 9 de març de 2010

54 Contingency Manager for ICARUS Simulated Integrated Scenario

INDEX

SECTION 1. DATA TRANSMISSION PROTOCOLS 55

1.1 Transmission Control Protocol (TCP) 55

1.2 User Datagram Protocol (UDP) 55

1.3 Comparison of UDP and TCP 56

1.4 Protocols and Ports used in the transmissions 57

SECTION 2. TYPES OF CLOUDS .. 59

SECTION 3. ATMOSPHERIC LAYERS 61

SECTION 4. CESSNA 172 .. 62

SECTION 5. ENGINE SIMULATOR PARAMETERS 64

SECTION 6. ELECTRICAL SIMULATOR DEVICES 67

6.1 Electrical devices 67

6.2 Batteries 70

SECTION 7. CONTINGENCY USE CASES .. 73

SECTION 8. VARIABLES AND EVENTS PUBLISHED 82

8.1 Variables and Events of the Weather Simulator 82

8.2 Variables and Events of the Engine Simulator 84

8.3 Variables and Events of the Electrical Simulato r .. 85

8.4 Variables and Events of the Contingency System .. 86

8.5 Variables and Events of the Flight Plan Manager Sim. ... 88

Appendix 55

SECTION 1. DATA TRANSMISSION PROTOCOLS

In this section, the basis of the transmission protocols will be studied. It is
interesting to know how it performs the data transmission between the
simulators and the FG.

1.1 Transmission Control Protocol (TCP)

The TCP is one of the fundamental protocols in the Internet. TCP is one of the
two original components of the suite (the other being Internet Protocol, or IP),
so the entire suite is commonly referred to as TCP/IP. Many programs within a
data network comprised of computers can use TCP to establish connections
between them through which you can send a data stream. The protocol
guarantees that data will be delivered to its destination without errors and in the
same order they were transmitted. It also provides a mechanism for
distinguishing different applications within a single machine, through the
concept of port. This protocol needs to establish a prior connection between
sender and receiver before data transmission.

A TCP segment consists of a segment header and a data section. The TCP
header contains 10 mandatory fields, and an optional extension field (Options,
pink background in table). The data section follows the header. Its contents are
the payload data carried for the application.

Fig.1.1 TCP segment structure.

1.2 User Datagram Protocol (UDP)

The UDP is one of the core members of the Internet Protocol Suite, the set of
network protocols used for the Internet. With UDP, computer applications can
send messages, in this case referred to as datagram, to other hosts on an
Internet Protocol (IP) network without requiring prior communications to set up
special transmission channels or data paths. UDP is sometimes called the
Universal Datagram Protocol. The protocol was designed by David P. Reed in
1980 and formally defined in RFC 768.

56 Contingency Manager for ICARUS Simulated Integrated Scenario

UDP uses a simple transmission model without implicit hand-shaking dialogues
for guaranteeing reliability, ordering, or data integrity. Thus, UDP provides an
unreliable service and datagram may arrive out of order, appear duplicated, or
go missing without notice. UDP assumes that error checking and correction is
either not necessary or performed in the application, avoiding the overhead of
such processing at the network interface level. Time-sensitive applications often
use UDP because dropping packets is preferable to waiting for delayed
packets, which may not be an option in a real-time system. If error correction
facilities are needed at the network interface level, an application may use the
Transmission Control Protocol (TCP) or Stream Control Transmission Protocol
(SCTP) which are designed for this purpose.

UDP's stateless nature is also useful for servers that answer small queries from
huge numbers of clients. Unlike TCP, UDP is compatible with packet broadcast
(sending to all on local network) and multicasting (send to all subscribers).

Common network applications that use UDP include: the Domain Name System
(DNS), streaming media applications such as IPTV, Voice over IP (VoIP), Trivial
File Transfer Protocol (TFTP) and many online games.

Fig.1.2 UDP packet structure.

1.3 Comparison of UDP and TCP

TCP is a connection-oriented protocol, which means that it requires
handshaking to set up end-to-end communications. Once a connection is set up
user data may be sent bi-directionally over the connection.

• Reliable: TCP manages message acknowledgment, retransmission and
timeout. Multiple attempts to deliver the message are made. If it gets lost
along the way, the server will re-request the lost part. In TCP, there's
either no missing data, or, in case of multiple timeouts, the connection is
dropped.

• Ordered: if two messages are sent over a connection in sequence, the
first message will reach the receiving application first. When data

Appendix 57

segments arrive in the wrong order, TCP buffers the out-of-order data
until all data can be properly re-ordered and delivered to the application.

• Heavyweight : TCP requires three packets to set up a socket connection,

before any user data can be sent. TCP handles reliability and congestion
control.

• Streaming : Data is read as a byte stream, no distinguishing indications
are transmitted to signal message (segment) boundaries.

UDP is a simpler message-based connectionless protocol. Connectionless
protocols do not set up a dedicated end-to-end connection. Communication is
achieved by transmitting information in one direction from source to destination
without verifying the readiness or state of the receiver.

• Unreliable : When a message is sent, it cannot be known if it will reach
its destination; it could get lost along the way. There is no concept of
acknowledgment, retransmission or timeout.

• Not ordered : If two messages are sent to the same recipient, the order
in which they arrive cannot be predicted.

• Lightweight: There is no ordering of messages, no tracking

connections, etc. It is a small transport layer designed on top of IP.

• Datagram: Packets are sent individually and are checked for integrity
only if they arrive. Packets have definite boundaries which are honored
upon receipt, meaning a read operation at the receiver socket will yield
an entire message as it was originally sent.

1.4 Protocols and Ports used in the transmissions

The UDP protocol allows our simulator to run without the need of having
established a previous connection to the FG. That is why this protocol has been
chosen for all the sockets in our applications.

The ports of the sockets in our applications are used with the 550X series
following the FG transmission protocol. The flight simulator uses these ports to
show all of its parameters through the network. Those used by the FG are: 5500
for https, 5501 for props and 5502 for jpg-httpd. The choice of our ports has
been totally random.

Next, we are going to explain the ports that are used for the transmissions
between simulators. The ports are:

• 5506: This port is used for input socket. The input sockets are those that
transmit information from the simulators created to the FG. This socket
uses UDP protocol and it is used for sending information with the sea as

58 Contingency Manager for ICARUS Simulated Integrated Scenario

reference level. The 5506 port is used by the Weather Simulator to send
the simulated data. Data transmission is accomplished via an XML file
called Weather_Aloft.xml.

• 5507: This port is used for output socket. The output sockets are those
that transmit information from the FG to the simulators created. This
socket uses UDP protocol and it is used for receiving the telemetry of the
FG. The 5507 port is used by all simulators to send the simulated data.
Data transmission is accomplished via an XML file called
EngineTelemetry.xml.

• 5508: This port is used for input socket. This socket uses UDP protocol

and it is used for sending information with the ground as reference level.
The 5508 port is used by the Weather Simulator to send the simulated
data. Data transmission is accomplished via an XML file called
Weather_Boundary.xml.

Appendix 59

SECTION 2. TYPES OF CLOUDS

This section presents the different types of clouds that exist. With this study, the
user can better understand what are the conditions that are simulated on the
Weather Simulator.

Next, we are going to explain with more details each of types of clouds:

� Cumulus : clouds of vertical
development. They have great size
with a massive appearance of
shadows when they are very
marked between the Sun and the
observer, namely, they are gray
clouds. The clusters are for the good
weather in low humidity and little
vertical air movement. They can
become large rise reaching intense
storms and downpours.

� Stratus : stratified clouds. They look
like a gray fog bank without being
able to observe a definite structure
or regular. They have patches of
different degrees of opacity and
color variations of gray. During the
fall and winter stratus can stay in
the sky throughout the day giving a
sad look at the sky.

� Nimbostratus : capable of forming
rain clouds. They look like a regular
layer of dark gray with varying
degrees of opacity. Not infrequently
one can see a slightly striated
appearance which corresponds to
different degrees of opacity and
color variations of gray. Clouds are
typical of spring and summer rain
and snow during winter.

60 Contingency Manager for ICARUS Simulated Integrated Scenario

� Cirrus : clouds of ice crystals. They
are white clouds, transparent and
without internal shadows present an
appearance of long thin filaments.
These filaments may have an even
distribution in the form of parallel
lines, either straight or sinuous. The
overall appearance is as if the sky
had been covered by the brush
strokes.

We found 16 different types if we make a specific study of clouds.

Appendix 61

SECTION 3. ATMOSPHERIC LAYERS

In this section, the basis of the atmospheric layers will be studied. It is
interesting to know why the FG simulates weather conditions with five layers.

We are going to explain how many layers the atmosphere has and what its
functions are.

The altitudes of the FG represent the seven layers that divide the Earth's
atmosphere (see Figure 3.1). Each layer has a particular function:

• Troposphere: The first one, called the troposphere, produces weather
events like rain and wind.

• Stratosphere: The second one, called the stratosphere, absorbs harmful
shortwave radiation through the ozone.

• Mesosphere: The third one, called the mesosphere, is important for the

ionization and chemical reactions that occur in it.

• Thermosphere: In the fourth one, called the thermosphere, the air is
very dim and the temperature changes with solar activity.

• Ionosphere: The fifth one, called the ionosphere, causes the

phenomenon of the aurora and reflects long-wave radio waves.

• Exosphere: The sixth, called the exosphere, is the outer limit of the
atmosphere.

• Magnetosphere: The last one, called the magnetosphere, is where the

planet's magnetic field dominates the interplanetary magnetic field
environment.

 Fig.3.1 Atmospheric layers.

62 Contingency Manager for ICARUS Simulated Integrated Scenario

SECTION 4. CESSNA 172

This section presents the characteristics of a CESSNA 172 engine.

The values that Engine Simulator simulates refer to the engine of a Cessna
172. We have simulated this engine because it is a similar engine to the aircraft
uses that is being built at the ICARUS group.

The Cessna 172 started life as a tricycle landing gear variant of the tail dragger
Cessna 170, with a basic level of standard equipment. The first flight of the
prototype was in November 1955. The 172 became an overnight sales success
and over 1.400 were built in 1956, its first full year of production.

Early 172S were similar in appearance to the 170, with the same straight aft
fuselage and tall gear legs, although the 172 had a straight vertical tail while the
170 had a rounded fin and rudder. Later 172 versions incorporated revised
landing gear and the tail sweptback which is still in use today. The final
aesthetic development in the mid-1960s was a lowered rear deck that allowed
an aft window. Cessna advertised this added rear visibility as "Omni-Vision".
This airframe configuration has Remained almost unchanged since then, except
for updates in avionics and engines, including the Garmin G1000 glass cockpit
in 2005. Production had been halted in the mid-1980s, but was Resumed in
1996 with the 160 hp (120 kW) Cessna 172R Skyhawk and was supplemented
in 1998 by the 180 hp (135 kW) Cessna 172S Skyhawk SP.

Below are two tables which represent the general characteristics of this aircraft
and its performance.

Performance Values
Never exceed
speed

163 knots (187 mph, 302 km/h)

Maximum speed 123 knots (141 mph, 228 km/h) at sea level
Cruise speed 122 knots (140mph, 226 km/h)

Range

610 nm (790 mi, 1,272 km) at 55% power at 12,000 ft
(3,040 m)

Service ceiling 13,500 ft (4,116 m)
Rate of climb 720 ft/min (3.7 m/s)

Table 4.1 Performance of Cessna 172

Appendix 63

Table 4.2 General Characteristics of Cessna 172

General
Characteristics Values

Crew 1
Capacity 3 passengers
Length 27 ft 2 in (8.28 m)
Wingspan 36 ft 1 in (11.0 m)
Height 8 ft 11 in (2.72 m)
Wing area 174 ft² (16.2 m²)
Airfoil NACA 2412 (modified)

Empty weight 1,620 lb (736 kg)
Useful load 830 lb (376 kg)
Max takeoff weight 2,450 lb (1,113 kg)

Powerplant
1× Lycoming IO-360-L2A flat-4 engine, 160 hp (120
kW) at 2,400 rpm

Zero-lift drag
coefficient

0.0319

Drag area 5.58 ft² (0.52 m²)
Aspect ratio 7.32
Lift-to-drag ratio 11.6
Wing loading 14.1 lb/ft² (68.8 kg/m²)
Power/mass 15.3 lb/hp (9.25 kg/kW)

64 Contingency Manager for ICARUS Simulated Integrated Scenario

SECTION 5. ENGINE SIMULATOR PARAMETERS

This section explains the function of all that the user will see in the Engine
Simulator Panel. It will be explained each of the values that we have in our
Engine Simulator.

CHT: Indicates the temperature of all cylinder heads or on a single CHT system,
the hottest head. A Cylinder Head Temperature Gauge has a much shorter
response time than the oil temperature gauge, so it can alert the pilot to issue a
developing cooling more quickly. Engine overheating may be caused by:

� Running too long at a high power setting.
� Poor leaning technique
� Restricting the volume of cooling airflow too much.
� Insufficient delivery of lubricating oil to the engine's moving parts.

EGT: Indicates the temperature of the exhaust gas just after combustion. Used
to set the fuel / air mixture (leaning) correctly.

CHT and EGT are measured in ° C and we can see the values between they
moves in the table (see Table 5.1).

 Range Alarms Unit
 Min Typ Max Warning Severe Critical
CHT
(Cylinder Head
Temperature)

80 90 100 >100
<80

>300 >400 ºC

EGT
(Exhaust Gas
Temperature)

80 90 100 >100
<80

>300 >400 ºC

Table 5.1 CHT and EGT values

RPM: Is a unit of frequency of rotation: the number of full rotations completed in
one minute around a fixed axis. It is used as a measure of rotational speed of a
mechanical component.

Standards organizations generally recommend the symbol r/min , which is more
consistent with the general use of unit symbols. This is not enforced as an
international standard.

Appendix 65

The corresponding unit in the International System of Units (SI) is hertz (symbol
Hz) or s-1 (1/second). Revolutions per minute are converted to hertz through
division by 60. Conversion from hertz to RPM is by multiplication with 60.

(5.1)

Another related unit is the SI unit for angular velocity, radian per second
(rad·s−1):

(5.2)

In the Table 5.2 we can see the values between it moves.

 Min Typ Max Warning Severe Critical Unit

RPM 1000 - 7000

<1000
(depends
on
whether it
is in the
air, if it is
no alarm)

>7000

>12000
<100
(<100:
depends on
whether it is
in the air, if
it is no
alarm)

min-1

Table 5.2 RPM values

OLP (Oil Pressure): Indicates the supply pressure of the engine lubricant. Oil
pressure is measured in PSI (Pounds per Square Inch), a unit whose value is
equal to 1 pounds per inch square. Thus, the system of equivalents with respect
to the international system would be as follows:

(5.3)

1 pound / square inch (psi) = 6894.75 Pascal

OLT (Oil Temperature): Indicates the engine oil temperature and is measured in
ºC.

FL (Fuel Flow): It indicates the fuel consumption per unit of time. In this case, it
is used Pounds per hour as the measurement unit. Its equivalence with the
international system is:

66 Contingency Manager for ICARUS Simulated Integrated Scenario

(5.4)

1 pound per hour [lb / h] = 0.000125998 kilogram per second [kg / s]

We can see the values in the Table 5.3.

 Min Typ Max Warning Severe Critical Unit
Oil pressure 10 15 20 <20 <15 <10 PSI
Oil
Temperature Ambient 50 150 >40 >60 >100 ºC

Fuel flow 0 - 16000 >16000 >18000 >20000 Pound/hour

Table 5.3 Oil pressure, oil temperature and fuel flow values.

Appendix 67

SECTION 6. ELECTRICAL SIMULATOR DEVICES

This section explains what devices are used in the Electrical Simulator.

6.1 Electrical devices

First, we consider the most important parameters that can be found in the
electrical system of a UAV to represent them in the main panel of the simulator.

We decided to divide the electrical system in two groups.

• The first group consists of all electrical devices of acquisition and data
emission, i.e., digital cameras, video cameras, thermal cameras, video
transmitters and GPS.

• The second group is the autopilot and all servos that allow the UAV can
fly.

We have considered interesting that the user can manually enable and disable
any device, thereby achieving generate emergencies.

Then, it can be see the devices that have been used.

Photo Cameras

Have been installed cameras, as it is interesting to take pictures at certain times
in a mission. For example, it would be interesting to take a picture of the
situation from an objective of the mission or any problem encountered during
flight.

The camera that we used for the simulation is as follows, this camera allows us
to take images with great accuracy and his weight is quite low, which helps us
not to increase the payload of the UAV:

 Fig.6.1 Sony DSC-S930. Table 6.1 Specifications of photo camera

Parameters Values
Field of view 75º-32º (diag)
Focal length 28-75 mm
F-number 1-2.8
Resolution 4000 x 2656 pixel
Frame rate 3 fps

68 Contingency Manager for ICARUS Simulated Integrated Scenario

Video Cameras

It has been implemented video cameras in the UAV, as it is interesting that we
can make recordings of situations that can be seen from the plane.

As visual camera, we used the Lumenera Le11059c 11 Megapixel network
camera with Tamron A09 zoom lens. Table A summarizes the relevant
specifications of the cameras.

 Fig.6.2 Lumenera Le11059c. Table 6.2 Specifications of video camera.

Thermal Cameras

Have been implemented thermal cameras in the UAV, as it is interesting to
detect points where the temperature is higher. For example, points where it's
starting a fire. If we know these points, we can prevent the fire.

As thermal camera, we used the FLIR A320 camera, a radiometric thermal
camera working in the wavelength range from 7.5 o 13.0 µm and in the thermal
range from 0 to 350ºC. It provides 320 x 240 pixel images of 32 bit floating point
absolute temperature values.

 Fig.6.3 ThermoVision A320. Table 6.3 Specifications of thermal camera.

Parameters Values
Field of view 75º-32º (diag)
Focal length 28-75 mm
F-number 1-2.8
Resolution 4000 x 2656 pixel
Frame rate 3 fps

Parameters Values
Spectral range 7.5 to 13 µm
Temp. range 0 to 350ºC (±2ºC)
Field of view 25.0º x 18.8º
Focal length 18 mm
F-number 1.3
Resolution 320 x 240 pixel
Frame rate 9 fps

Appendix 69

Video Transmitters

The transmitters can receive audio and video images captured by the cameras
of our plane. This is the best way to send the signal wirelessly and with all the
quality offered by the 2.4 GHz band.

The transmitters that we used for the simulation is as follows:

 Fig.6.4 Video Transmitters. Table 6.4 Specifications of transmitters.

GPS

The Global Positioning System (GPS) (although its correct name is NAVSTAR-
GPS) is a global navigation satellite system (GNSS) which allows knowing the
position of a moving object through the reception of signals from a satellite
network. GPS works through a network of 27 satellites (24 operational and 3
back) in orbit above the earth, at 20,200 km, with trajectories synchronized to
cover the entire surface of the Earth.

The gps that we used for the simulation is as follows:

 Fig.6.5 Mini Gps. Table 6.5 Specifications of gps.

Autopilot

An autopilot is a mechanical, electrical, or hydraulic system used to guide a
vehicle without assistance from a human being.

Parameters Values
Frequency Band 2400MHz
Available Channel 8 Ch
Consumption Current 500 mA
Output Power 1000 mW
Power Supply 12V / 500mA
Weight 20 g

Parameters Values
Receptor 66 Channels
Sensitivity -159 dBm
Exact position 2,5 - 3,1 meters
Voltage 3,3 V
Consumption 32 mA
Weight 13 g

70 Contingency Manager for ICARUS Simulated Integrated Scenario

Servos

A servo motor is basically a mechanical actuator based on an engine and a set
of gears that can multiply the torque of the final system, which has control
elements to consistently monitor the position of a mechanical element that will
be the liaison with the outside world.

Fig.6.6 Servomotor.

6.2 Batteries

Battery or accumulator is the device that stores electrical energy using
electrochemical methods and that subsequently returns almost in its entirety.
This cycle can be repeated by a specified number of times. This is a secondary
electric generator, is a generator that cannot operate without being supplied
electricity previously through what is called charging.

The battery management is essential in a flight simulator. It always needs to
have a simulation of the remaining battery level and stimulation of flight time
remaining to us. Battery depletion would produce irreparable damage to the
aircraft. For all this, we consider that the representation of the aircraft battery is
essential on the main screen of the simulator.

We determine the batteries we are representing at the Electrical Simulator with
the help of all members of the ICARUS project.

For the first group of devices previously established we use a lead battery(GP
12120), because it is a higher capacity battery, and can feed a larger number of
devices. If the battery is being finished may be charged by the alternator.

For the second group we use a Lipo battery (V-MAXX 35c), because it is a
smaller capacity battery, and not have to feed so many devices. Moreover, this
battery will be charged from the ground.

Appendix 71

Lead Battery

 Fig.6.7 GP 12120. Table 6.6 Specifications of lead battery.

The lead-acid battery is a type of electrical energy accumulator, which consists
of lead plates alternating with lead dioxide, which are separated by an element
in dilute sulfuric acid soaked in distilled water, called an electrolyte. Each pair of
these plates generates a voltage of 2 volts. As the typical configuration is 12
volts, is required above 6 pairs of plates to achieve the voltage of 12 volts.
Depending on the total area of the plates, the battery will reach a certain
capacity, whose unit is Ampere-Hour (Ah).

Fig.6.8 Lead Battery.

This type of battery will be able to recharge in flight due to an alternator. This
ensures that all devices are always working.

Parameters Values
Cells per Unit 6
Voltage per unit 12 V
Capacity 12 Ah � 25ºC
Internal Resistance 14 mΩ
Weight 3,84 kg
Charging current limit 3,60 A

72 Contingency Manager for ICARUS Simulated Integrated Scenario

Lipo Battery

 Fig.6.9 V-MAXX 35c. Table 6.7 Specifications of lipo battery.

Lipo batteries are composed of lithium and polymer, which gives them look
"soft" and somewhat ungainly, though rather thin and lightweight. These
batteries have a smaller size compared to the lead battery. Its size and weight
make them very useful for small teams that require strength and durability.

Such batteries are a variation of the lithium-ion batteries (Li-ion). Its
characteristics are very similar, but allow a higher energy density and a
significantly higher discharge rate.

Normally these batteries are used to fuel helicopters, radio controlled planes
and cars as they are able to deliver high doses of power consumption in large
schemes.

In the simulation of the electrical system, these batteries are charged from the
ground and will not be recharged during the flight. We will need to know how
many batteries are needed to feed all the devices of the second group.

Parameters Values
Cells per Unit 6
Voltage per unit 12 V
Capacity 12 Ah � 25ºC
Internal Resistance 14 mΩ
Weight 3,84 kg
Charging current limit 3,60 A

Appendix 73

SECTION 7. CONTINGENCY MANAGER USE CASES

This section describes more deeply the CM use cases from the different
contingency areas. The objective of this section is to validate, through
examples, the CM architecture. Emergency procedures need experience
statistics in order to tune in the UAS responses. Therefore, the CM will be
continuously growing with the UAS flight experiences.

Weather Use Cases

Weather is an important factor to achieve mission success. Each aircraft has
different flight performances. So weather conditions affect the each airframe in
a different way. The weather conditions are changeable during the mission flight
plan. In dispatcher phase we know the weather forecast for the flight plan.
However, what happened if these weather conditions change or just if the
weather forecast is not enough suitable?. In this case the UAS flight plan has to
be changed taken in account the new weather conditions.

In the Figure 7.1 and 7.2 we can see the different weather contingencies that
we can find and how the HM and the CIC solves these problems.

74 Contingency Manager for ICARUS Simulated Integrated Scenario

Fig.7.1 Weather use case I

Appendix 75

Fig.7.2 Weather use case II

Figure 7.1 and 7.2 shows the different contingencies that we can detect with the
Weather Manager. In this example the Weather Manager service publishes
different alarms which are detected by itself. On the other hand, through its
variables as the temperature or the wind, the CM might find future contingency
situations. When the temperature outside the aircraft is over a threshold, the
HM raises a minor contingency. This concept is very similar for the wind or
when the temperature falls down. To solve this problem the CIC will propose
different responses for each minor contingency. These responses are based in
a little flight plan change. For example, we might find a lot of wind in a flight plan
altitude layer. Changing the flight plan altitude we can solve this contingency. If
we have changed the altitude several times and the wind is over the threshold,
the CIC will propose go back home. All these decisions will be supervised by
the pilot in command on the USAL flight monitor.

76 Contingency Manager for ICARUS Simulated Integrated Scenario

Engine Use Cases

The UAS engine is managed by the USAL engine manager. This service
controls all the engine parameters involved with the engine, such as
temperature, oil, fuel, etc. The service manages the correct range of each
parameter; these ranges can be configurated for each engine. When the engine
manager detects any parameter out of range, an event is raised to inform the
CM.
Next figures show the engine use case. It described the CM responses in front
of engine paramount mishaps.

Fig.7.3 Engine use case I

Appendix 77

Fig.7.4 Engine use case II

Figure 7.3 and 7.4 shows several engine contingencies. In order to manage
some engine contingencies it is needed mission or flight plan information. For
example in the “No enough fuel” contingency; we need mission information to
provide an intelligent response. If we are near home, maybe it is suitable to land
over there. However, if we do not have enough fuel time to arrive home maybe
the correct response is looked for the closest runway to land. The other
contingencies are addressed to the engine parameters. For example when the
CHT or EGT are out of range the probabilities of the engine crash are so high.
Therefore, we must prepare the UAS to this crash. The same case is for the “No
fuel flow” or “Main fold pressure out of range” of “RPM”.

78 Contingency Manager for ICARUS Simulated Integrated Scenario

Electrical Use Cases

In the USAL, the UAS energy is managed by the Electrical Manager Service
(ELM). It is an on-board system in charge of offering a flexible power supply
architecture that supports minimal reconfiguration overhead for a wide variety of
UAS missions. The ELM is designed to offer a continuous monitoring of the
state of the power network, and a coherent and controlled response in front of
power supply contingencies.

The ELM will monitor the batteries and generator status, the power
consumption of the avionics and other systems, manage the
connection/disconnections of systems, and provide power availability
estimations. However, what happen when the power forecast does not satisfy
mission minimums power. In this case the UAS integrity is in danger. The CM
always must to preserve the UAS safety and reliability. Therefore, it will monitor
the time power forecast and the flight plan/mission time to ensure achievement
the mission goals.

One most common contingency is the lack of electrical power. This lack of
power can have different responses. These responses depend on the electrical
time available in the batteries and the mission phase. If we have time to go back
home, we would have to land there. On the other hand, maybe we only have
enough time to go the closest runway or search a flight termination field in the
worst case. Therefore, the CM needs flight plan/mission information. This
paramount information will be very useful in order to take any decision. Next
figures show the electrical use case.

Appendix 79

Fig.7.5 Electrical use case I

80 Contingency Manager for ICARUS Simulated Integrated Scenario

Fig.7.6 Electrical use case II

Appendix 81

As it is shown in the figure 7.5 and 7.6 with the “energy time” and flight plan
information the CM should provide an intelligent response in front of no enough
energy contingency. The CM will know if the aircraft might arrive home, or if it
has to land in the closest runway. When the battery is terminated, the ELM will
charge it. In this way the CM knows the batteries status and if something is
wrong the CM can command the batter charging. On the other hand, the ELM
manages different electrical alarms related with devices. Alarms as “No Payload
Consumption” or “payload over/under consumption” show failure in any device.
Depends on how important is each device, this type of contingency needs
different responses. For example, if we need this payload for the mission, then
the mission has to be canceled. However, if the payload is not critical for the
mission, it might be turned off. Finally, when the UAS has a lack of energy
contingency, it has to be treated in the “save power energy” way. In this mode
the UAS treats to provide energy the critical devices, as for example the
autopilot, turning off the rest of devices.

82 Contingency Manager for ICARUS Simulated Integrated Scenario

SECTION 8. VARIABLES AND EVENTS PUBLISHED

This section is going to explain the all variables and events that are published in
the middleware. The first three subsections explain the variables and events
that have published each of the simulators. They also show that service is
subscribed to each of the variables published. The last subsection explains the
events and the variables published by the Contingency System.

8.1 Variables and Events of the Weather Simulator

This section explains the all variables and events that are published by the
Weather Simulator. The variables are represented in the Table 8.1 and the
events are represented in the Table 8.2. As shown in the both tables, the right
column shows the services that have subscribed to variables or events of the
Weather Simulator.

Weather

Simulator

Variables Subscribed Service

Wind Contingency System

Elevation Contingency System

Turbulences Contingency System

Visibility Contingency System

Rain Contingency System

Snow Contingency System

Clouds Contingency System

Dew point Contingency System

Temperature Contingency System

Pressure Contingency System

Table 8.1 Variables published by the Weather Simulator.

Appendix 83

Weather

Simulator

Events Subscribed Service

Alarm_Wind Contingency System

Alarm_Dewpoint Contingency System

Alarm_Turbulences Contingency System

Alarm_Visibility Contingency System

Alarm_Rain Contingency System

Alarm_Snow Contingency System

Alarm_Cloudy Contingency System

Alarm_Temperature Contingency System

Alarm_Pressure Contingency System

Table 8.2 Events published by the Weather Simulator.

In the two tables above, we can see that the Contingency System is the only
service subscribed to the variables and events of the Weather Simulator. The
Contingency System needs these values to classify the alarms and determine a
solution to the UAS.

84 Contingency Manager for ICARUS Simulated Integrated Scenario

8.2 Variables and Events of the Engine Simulator

This section explains the all variables and events that are published by the
Engine Simulator. The variables are represented in the Table 8.3 and the
events are represented in the Table 8.4. As shown in the both tables, the right
column shows the services that have subscribed to variables or events of the
Engine Simulator.

Engine

Simulator

Variables Subscribed Service

RPM Contingency System

CHT Contingency System

EGT Contingency System

Oil Pressure Contingency System

Oil_Temperature Contingency System

Fuel_Flow Contingency System

Table 8.3 Variables published by the Engine Simulator.

Engine

Simulator

Events Subscribed Service

Alarm_RPM Contingency System

Alarm_CHT Contingency System

Alarm_OilTemperature Contingency System

Alarm_OilPressure Contingency System

Alarm_FuelFlow Contingency System

Alarm_Fuel Contingency System

Table 8.4 Events published by the Engine Simulator.

In this subsection occurs as in the previous subsection, the Contingency
System is the only service subscribed to the variables and events of the Engine
Simulator.

Appendix 85

8.3 Variables and Events of the Electrical Simulato r

This section explains the all variables and events that are published by the
Electrical Simulator. The variables are represented in the Table 8.5 and the
events are represented in the Table 8.6. As shown in the both tables, the right
column shows the services that have subscribed to variables or events of the
Electrical Simulator.

Electrical
Simulator

Variables Subscribed Service

Alternator Contingency System

LeadBattery Contingency System

GPS Contingency System

PhotoCamera Contingency System

VideoCamera Contingency System

VideoTrans Contingency System

ThermalCamera Contingency System

LipoBattery Contingency System

Autopilot Contingency System

Servos Contingency System

Table 8.5 Variables published by the Electrical Simulator.

Electrical
Simulator

Events Subscribed Service

Alarm_Photo Contingency System

Alarm_Video Contingency System

Alarm_Thermal Contingency System

Alarm_Trans Contingency System

Alarm_Gps Contingency System

Alarm_Auto Contingency System

Alarm_Servos Contingency System

86 Contingency Manager for ICARUS Simulated Integrated Scenario

Alarm_LeadBattery Contingency System

Alarm_LipoBattery Contingency System

Alarm_Alternator Contingency System

Table 8.6 Events published by the Electrical Simulator.

In this subsection occurs as in the previous subsection, the Contingency
System is the only service subscribed to the variables and events of the
Electrical Simulator.

8.4 Variables and Events of the Contingency System

This section explains the all variables and events that are published by the
Contingency System. The variables are represented in the Table 8.7 and the
events are represented in the Table 8.8. As shown in the both tables, the right
column shows the services that have subscribed to variables or events of the
Contingency System.

Contingency

System

Variables Subscribed Service

Alternator_Contingency Electrical Simulator

LeadBattery_Contingency Electrical Simulator

GPS_Contingency Electrical Simulator

PhotoCamera_Contingency Electrical Simulator

VideoCamera_Contingency Electrical Simulator

VideoTrans_Contingency Electrical Simulator

ThermalCamera_Contingency Electrical Simulator

LipoBattery_Contingency Electrical Simulator

Autopilot_Contingency Electrical Simulator

Servos_Contingency Electrical Simulator

New_altitude_layer
Flight Plan Manager

Simulated

reset_boton_fuel Engine Simulator

Table 8.7 Variables published by the Contingency System.

Appendix 87

Contingency

System

Events Subscribed
Service

Alarm_GoHome
Flight Plan
Manager
Simulated

Alarm_FlightTerminatorField
Flight Plan
Manager
Simulated

Alarm_GoClosetAlternativeRunway
Flight Plan
Manager
Simulated

Alarm_GoHomeByAlternative
Flight Plan
Manager
Simulated

Alarm_GoAlternativeTunway
Flight Plan
Manager
Simulated

Table 8.8 Events published by the Contingency System.

The variables published by the Contingency System are used to turn off the
alarms of the simulators. They will know that the problem is resolved through
the variables that publish the Contingency System.

The events published by the Contingency System are used to determine the
action that the UAS has to take. The Contingency System decides to publish a
particular event when a particular hazardous alarm is produced.

88 Contingency Manager for ICARUS Simulated Integrated Scenario

8.5 Variables of the Flight Plan Manager Simulated

This section explains the new variables that are published by the Flight Plan
Manager Simulated. We have not create this service, FPMS is already existed.
We needed to expand the FPMS code to make the integration of our services in
the ISIS. This has led to publish new variables.

The variables are represented in the Table 8.9. As shown in the Table 8.9, the
right column shows the services that have subscribed to variables of the FPMS.

FPMS

Variables Subscribed
Service

Reset_altitude_layer Contingency
System

Times Contingency
System

Reset_Alarm_FlightTerminatorField
Contingency

System

Reset_Alarm_GoAlternativeRunway
Contingency

System

Reset_Alarm_GoClosetAlternativeRunway
Contingency

System

Reset_Alarm_GoHome
Contingency

System

Reset_Alarm_GoHomeByAlternative Contingency
System

Table 8.9 Variables published by the FPMS.

In this subsection occurs as in the Electrical Simulator subsection, the
Contingency System is the only service subscribed to the variables of the
FPMS.

