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Abstract

English
We consider the joint source-channel coding problem of sending a Gaussian source over a
multiple input-multiple output (MIMO) fading channel when the decoder has additional cor-
related side information whose quality is also time-varying. We assume a block fading model
for both the channel and side information qualities, and assume perfect state information at
the receiver, while the transmitter has only a statistical knowledge. We are interested in the
expected squared-error distortion for this system.

We study separate source-channel coding, uncoded transmission and two joint source-
channel transmission schemes based on joint decoding at the receiver: NBJD, that uses no
explicit binning and joint decoding of the side information and the channel output at the
decoder and HDA, that compresses the source and transmits the error. At the decoder,
the quantized codeword is recovered by means of joint decoding of the error and the side
information. We extend such techniques to hybrid digital-analog and multi-layer schemes.
We study numerically the problem and give results in the finite SNR regime. We provide
closed form expressions for the distortion exponent in the high SNR regime.
Keywords
Joint source-channel coding, Distortion exponent, fading channel, fading sideinformation,
Gaussian sources.
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Chapter 1

Introduction

Many applications in wireless networks require the transmission of a source signal over a
fading channel, to be reconstructed with the minimum distortion possible, i.e., multimedia
signals over cellular networks or the accumulation of local measurements at a fusion center
in sensor networks. In classical networks, transmission is based on Shannon’s separation
theorem, in which the source is first compressed at the minimum possible distortion and
then transmitted over the channel. While source-channel separation is optimal in point-to-
point systems (under certain theoretical assumptions), it does not extend to many multi-user
scenarios or non-ergodic channels.

In many practical scenarios, the destination receives additional correlated side information
either form other transmitters in the network or through its own sensing devices. For example,
measurements from other sensors at a fusion center, signals from repeaters in digital TV
broadcasting or relay signals in future mobile networks. However, similar to estimating the
channel state information at the transmitter, it is costly to provide an estimate of the available
side information to the transmitter. Hence, the transmitter needs to transmit in a way to
adapt dynamically to the time-varying channel and side information qualities without knowing
their realizations. We model this scenario by a Gaussian source X to be transmitted over a
block-fading channel to a receiver that has correlated side information Y , modeled also by a
fading gain.

When the knowledge of the channel state information is available at both the transmitter
and the receiver (CSI), Shannon’s separation theorem claims that digital transmission is op-
timal in point to point communication under certain conditions. Digital transmission implies
compressing the source and sending the compressed bits through the channel at a rate not
greater than the capacity, determined by the actual channel state. This channel transmission
is designed independently of the source statistics, i.e., the source and the channel codes are
independent. We call this separate source and channel coding. However, in some practical
scenarios, the channel state is not fully known and the transmitter has to blindly set a rate.
If the channel is ‘good’ the rate is likely to be lower than the capacity and the transmission
will be successful, but if the channel is ‘bad’ the message will not be decoded. Note also
that digital transmission suffers from a threshold effect, that is, the quality of the received
signal does not improve as the channel quality improves once it is above the rate of the used
channel code. If the transmitter only knows the statistics of the channel and the side infor-
mation gains, but not the realizations, the transmission scheme needs to be designed based
on these statistics, and only an average performance in terms of the expected distortion can
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be guaranteed. For this digital schemes, a tradeoff between fidelity of the source code and
the reliability of the channel appears.

On the other hand, it is known that uncoded transmission, in which the transmitter
simply transmits a scaled version of the source, provides both optimality [1] and robustness
in terms of distortion in point to point links. Robustness refers to the gradual decrease in the
average distortion as the channel or side information quality improves.Robustness in uncoded
transmission is because the threshold effect disappears. However, the optimality of uncoded
transmission is lost when multiple antennas are used, or when the bandwidth ratio between
the channel and the source is not one in the transmission.

Here, we consider the problem of transmitting a Gaussian source over a MIMO channel
when the receiver has access to a time varying correlated side information. This problem,
in the absence of side information at the receiver has been studied extensively in recent
years. Gündüz and Erkip propose in [2] a layered broadcast scheme consisting of successive
refinement codes and superposition coding which is shown to achieve the optimal exponential
high SNR behavior in MISO/SIMO systems and in some ranges for MIMO systems. The
minimum expected distortion for the layered broadcast scheme is studied for finite SNR in
[3]. In [4], a hybrid digital-analog scheme is proposed that achieves the optimal high SNR
behavior for low bandwidth ratios. The related problem of an uncertain side information
when the channel is an error-free bit-pipe at a given rate is studied in [5]. In general, analog
transmission provides robustness that benefits the overall performance of the systems, even
in MIMO scenarios, and hence, hybrid digital-analog schemes to improve the performance at
least in the finite SNR regime.

In the presence of side information, separate source and channel coding achieves the opti-
mal distortion when the channel and the side information quality is known at the transmitter,
while, uncoded is no more optimal unlike the scenario without side information. However,
despite the lack of optimality when the channel and side information state at the transmit-
ter (CSIST) is available, uncoded transmission can still provide robustness when CSIST is
not available. Hence, our goal is to design transmission schemes that can benefit from both
the higher transmission capability of digital codes and the robustness provided by uncoded
transmission.

Apart from the classical hyrid digital-analog transmission schemes, a technique that nat-
urally combines the features of digital and analog transmission has been recently presented in
[6]. This scheme benefits from its digital nature while providing robustness similar to uncoded
transmission.

In this thesis, we consider various transmission schemes for this problem and analyze the
expected distortion performance achieved by these schemes. While we study the expected
distortion in the finite SNR regime numerically, we also consider its high SNR behavior,
characterized by the distortion exponent, and obtain closed-form expressions for the achieved
distortion exponent.

The problem of identifying the minimum achievable expected distortion is an open prob-
lem even in the absence of side information. Hence, our numerical results are non conclusive
and we provide comparisons among various schemes as was as an informed transmitter lower
bound. The optimal distortion expression can be characterized for most cases in the ab-
sence of side-information. Unfortunately this is not the case when there is time-varying side-
information. We provide lower and upper bounds for the distortion exponent as a function
of the bandwidth ratio.

The rest of the thesis is organized as follows. In Chapter 2, we introduce the system
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model and the basic ideas used along this work. We start by briefly presenting the Expected
Distortion (ED) optimization problem and the nature of the tradeoff we deal with. We then
develop the ideas behind the high SNR asymptotic characterization of the ED function, and
define the so called Distortion Exponent, ∆. A short review on MMSE estimation for Gaussian
sources is also included.

We start Chapter 3 by providing a lower bound on the ED function. Some achievable
schemes are then proposed in three sections. Firstly, a separation scheme based on Wyner-
Ziv coding [7] is presented. We also propose a simpler digital scheme that refines the digital
transmission with the side information. Pure analog transmission, in which the source is
scaled and directly transmitted over the channel, is also considered in this section. We
propose a joint source-channel coding scheme, based on the joint decoding idea of [8], for
which the success of decoding the message depends on the joint quality of the channel and
the side information. This techniques is called NBJD. Following [4] we extend this scheme
to hybrid digital-analog transmission. We then study another joint source-channel coding
scheme: HDA, introduced in [6], that generates a codeword at the transmitter to be jointly
decoded using the side information available. We extend this scheme to MIMO systems and
the bandwidth regime expansion. Using HDA we also provide a continuum of schemes that
reduces to the scheme proposed by Lapidoth in [9] when there is no side information. We
show that this continuum does not hold in the presence of side information. Following [2],
the last section extends NBJD to two different multilayer schemes.

In Chapter 4, we study the expected distortion at finite SNR by numerically optimizing
over the rates. We prove analytically that the joint decoding scheme outperforms separation
at any finite SNR.

In Chapter 5, the performance at high SNR is studied through distortion exponent [10],
which characterizes the high SNR slope of the expected distortion. We provide the general
results for the MIMO scenario as well as the particularization to SISO.

Finally, the conclusions are drawn in Chapter 6.
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Chapter 2

Background

We start this chapter by providing a rigorous model of the problem. Then, we give some
insights on the joint source-channel coding problem when CSISIT is available or not. Finally,
we provide the rigorous definition of the distortion exponent, that characterizes the high SNR
behavior of the expected distortion function.

2.1 System model

We wish to transmit a zero mean, unit variance complex Gaussian source sequence Xm ∈ Cm

of independent and identically distributed (i.i.d.) random variables, i.e. Xi ∼ CN (0, 1), over
a MIMO block Rayleigh-fading channel with Mt transmit antennas and Mr receiver antennas.
In addition to the channel output, correlated source side information is also available at the
decoder. Similar to the channel model, a block fading model is used for the side information.
The channel and the side information states are assumed to be constant for the duration of
one block and independent among different blocks. The transmitter is required to transmit
a block of m source samples over a block of n channel uses. We define the bandwidth ratio of
the system as b , n

m
channel uses per source sample. We assume that m is large enough to

achieve the rate-distortion performance of the underlying source sequence in the presence of
side information, and n is large enough to design codes that can achieve all rates below the
instantaneous capacity of the block fading channel.

The encoder maps the source sequence Xm to a channel input sequence U ∈ CMt×n using
an encoding function f (m,Mt×n) : Cm → CMt×n such that the average power constraint is
satisfied: Tr{E[U†U]} ≤ Mtn. The memoryless slow fading channel is modeled as

Vi = H
√
ρUi +Ni, i = 1, ..., n, (2.1)

where H ∈ CMr×Mt ∼ ph(H) is the channel matrix with i.i.d. entries ∼ CN (0, 1), ρ ∈ R+

is the transmit power and Ni models the additive noise with Ni ∼ CN (0, I). Let M∗ =
max{Mt,Mr} and M∗ = min{Mt,Mr}. The decoder, in addition to V = [V1, ...,Vn] ∈
Cn×Mr , observes Y m ∈ Cm with a random degradation modeled as,

Yj = γ
√
ρsXj + Zj , j = 1, ...,m, (2.2)

where γ ∈ C ∼ pγ(γ), Zj ∼ CN (0, 1) and ρs ∈ R+ models the power of the side informa-
tion. The decoder reconstructs the source sequence X̂m = g(V, Y m,H, γ) with a mapping
g(n×Mr ,m) : Cn×Mr × Cm × CMt×Mr × C → Cm.
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Figure 2.1: Block diagram of the joint source-channel coding problem with fading channel and side
information qualities.

The distortion between the source sequence and the reconstruction is measured by

D ,
1

m

m
∑

i=1

d(Xi, X̂i), (2.3)

where d(Xi, X̂i) : C×C → R+ is a single letter distortion measure. We focus on the quadratic
distortion measure, i.e. d(Xi, X̂i) = ‖Xi − X̂i‖2.

We are interested in minimizing the expected distortion (ED), E[D], where the expectation
is taken with respect to the source and the side information realizations as well as the channel
state and the channel noise.

In the considered scenario, the receiver knows the side information and the channel realiza-
tion at each block. However, the encoder is only aware of the distribution of both parameters.

In this work, we are interested in characterizing the minimum expected distortion for each
possible set of parameters Ω = (ρ, ρs, b),

ED∗(Ω) , min
f,g

E[D]. (2.4)

In next sections we try to give an intuitive vision of the problem using an example. We
consider the scenario without side information for simplicity.

2.2 The joint source-channel problem with CSIST

In this section we consider the transmission of a source sequence when the channel state
information, i.e. the actual realization of H is available at both the encoder and the decoder.
Consider the classical digital transmission of a source sequence Xm over a channel with ca-
pacity C(H). First, the source sequence is quantized to a source codeword from a quantization
codebook. The size of this codebook, that is given by 2mRs will depend on the channel re-
alization. A channel codeword UMt×n(i) is assigned to each of the quantization codewords,
forming the ‘channel codebook’. The size of the channel codebook is 2nRc i.e. arbitrarily
close to the capacity so that the channel input can be recovered with high probability. Each
UMt×n(i) has to have a one to one correspondence with a W (i), i.e. Rs = bRC . For a given
source sequence, a quantized codeword, indexed with i, is chosen and the corresponding chan-
nel codeword U(i) is used as the channel input. This process from the source sequence Xm

to the channel input U is the encoding mapping, f (m,Mt×n) : Cm → CMt×n.
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At the decoder, a channel output VMr×n is available that depends on the channel dis-
tribution. In the example of digital transmission, the channel input is decoded, i.e. U(i) is
uniquely recovered from the channel, as the channel codebook rate Rc has been design so
that it is below the capacity of the channel, C. Note that this design depends on the actual
realization H. Then, index i is known and the codeword W (i) is available for the source
reconstruction, that is directly X̂m = Wm.

In general, the correspondence of a channel output to a source sequence reconstruction
is the mapping g(n×Mr ,m) : Cn×Mr × Cm × CMt×Mr × C → Cm. Along this work, the design
of such mappings will consist on two basic stages. The first stage will consist on a decoding
stage that will recover from the channel, either with or without the side information, as many
information on the source sequence as possible, as the recovery of the quantized version of the
source that is decoded from the digital channel output. This stage can, as we will see, include
the recovery of source information in many ways. After obtaining all possible information, the
source sequence is reconstructed. For our particular case of Gaussian source, the optimal way
to reconstruct the source such that the mean square error between the source sequence and
the reconstruction is minimized is by means of mmse estimation. It is well known, that the
source sequence will be possible to be recovered with a distortion that is equal to D = 2−Rs .
In this case, is the minimum distortion is achieved by transmitting at the maximum possible
channel rate Rc. In next subsection we give a brief overview of the techniques used to calculate
the distortion achieved by mmse estimation depending on the available information.

2.2.1 MMSE estimation

The minimum mean square error (mmse) estimation is used to reconstruct the Gaussian
source sequence at the receiver with available information y. The mmse is defined as the the
solution to the problem

mmse = min
ŝ=f(y)

E[(s − f(y))†(s− f(y))]

= min
ŝ=f(y)

Tr{D} (2.5)

where the minimization is taken over all possible reconstruction functions f(y), as ŝ = f(y)),
and D = Es[(s−f(y)))(s−f(y))† ] is the error covariance matric. The solution to this problem
is known to be

ŝ = E[s|y], (2.6)

The optimal mmse estimator of a random vector s ∼ N (0,Rs) under a linear model
y = Hs+N, where H is a known matrix and N ∼ N (0,RN), is explicitly calculated as

ŝ = (HTR−1
N H)−1HTR−1

N y, (2.7)

where RN = E[NN†] and the corresponding error covariance matrix is given by

D = (R−1
s +HTR−1

N H)−1. (2.8)
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2.3 Expected distortion function: when CSIST is not avail-
able.

Now consider the system described in the previous system when the transmitter does not know
the actual channel state H. In this situation, the transmitter is not aware of the capacity
of the channel and cannot send at a rate arbitrarily close to the capacity. Consider that
the transmitter decides to transmit at a rate Rc. Now, the decoding of U is not granted.
We have that if Rc > C(H) then U will not be recovered. We call this situation ’Outage
event’. In this situation, the distortion of the source is maximum, i.e D[Outage event] = 1.
On the contrary, if Rc ≤ C(H) we will be able to reconstruct the source with a distortion
D[No Outage event] = 2−bRs .

In order to measure the performance of the system, we are interested in the average
performance of the system, i.e the average distortion. We call this performance the Expected
Distortion function, E[D], i.e.

E[D] = (1− Pout)D[No Outage event] + PoutD[Outage event]

= (1− Pout)2
−bRc + Pout · 1. (2.9)

where Pout = Pr{Rc > C(H)} is the probability of outage of the system. Note that there is
clear tradeoff in Rc. The higher Rc, the better the achieved distortion when there is no error.
However, the higher Rc, the higher the probability of outage, and hence the probability of
having the maximum distortion. As the encoder is only aware of the distribution of both
parameters, we want to design Rc such that we minimize E[D], with respect to the source
and the channel state and the channel noise.

As commented, we are interested in characterizing the minimum expected distortion for
each possible set of parameters Ω = (ρ, ρs, b),

ED∗(Ω) , min
f,g

E[D]. (2.10)

An example of expected distortion function can be seen in Figure 2.2 for different pairs of
(f, g) in function or Rc for a particular scenario. Note that the distortion function becomes
smooth on averaging, with a clear minimum.

2.4 Characterization at high SNR: distortion exponent

In general it is very complicated or impossible to obtain close form solution for the Expected
Distortion function. A method that provides a good insight on the performance of different
transmission schemes is the characterization of the slope of E[D] in the high SNR regime, i.e.
when ρ → ∞. The performance measure is the distortion exponent, defined as

∆(b, x) , − lim
ρ→∞

logED

log ρ
, (2.11)

In this section we will give a brief example of how to calculate the best Distortion Exponent
achievable by the previous scheme. Consider the previous digital scheme for the SISO and
Rayleigh fading. Outage events were proven in [10] to be the dominating in the probability of

8



Figure 2.2: ED function for ρ = 10dB, with b = 2, x = 1 for many schemes presented in Chapter 3.

error in high SNR and hence, the probability of outage is equivalent to the error probability
in high SNR. For this particular case, Pout can be explicitly calculated as

Pout = Pr(Rc > log(1 + ρh2)) = 1− e
(2Rc−1)

ρ . (2.12)

Now, we will characterize the high SNR behavior of the probability of outage Consider the
family of codes such that their dimensionality increases in ρ as Rc = r log ρ, also known as
multiplexing gain in literature. The diversity gain d(r) is defined as the supremum of the
diversity advantage over all possible code families with multiplexing gain r, and given by

d(r) , − lim
ρ→∞

logPout

log ρ
. (2.13)

Then,

Pout = 1− e
(ρr−1)

ρ = 1−
(

1− (ρr−1)
)

+O(ρ) = ρ−(1−r) = ρ−d(r). (2.14)

where we have used the Taylor expansion series at x = 0 as ex = 1− x+O(x), which is true
if r ≤ 1. If r > 1, then Pout = 1. Then, d(r) is the decaying slope for the probability of
outage. The rigorous method to do those approximations was introduced by Tse in [10], and
is extensively used in chapter 5. In this work the existence of a fundamental tradeoff between
d(r) and r is proven.

Now, the Expected Distortion function asymptotical behavior can be equivalently approx-
imated as

E[D] = (1− Pout)2
−bRc + Pout

.
=
(

1− ρ−d(r)
)

ρ−br + ρ−d(r)

.
= ρ−br + ρ−(1−r), (2.15)

9



where (1− ρ−d(r))
.
= 1 as d(r) ≥ 0, as r ≤ 1. As we are interested in characterizing the best

performance of E[D] in the high SNR regime for a given transmission scheme, we want to
find r such that the decay of the expected distortion is maximized. Note that the first term
decreases in r and the second one increases in r. The decay ∆ can be maximized by equaling
both terms, i.e. br = (1 − r) and then the optimal r = 1

1+b
. Then the the best distortion

exponent achieved by digital transmission in a Rayleigh fading scenario is given by

E[D]
.
= ρ−∆ .

= ρ−
b

1+b . (2.16)

This simple example, outlines the ideas behind the optimization procedures used in Chapter
5.
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Chapter 3

Transmission Schemes

In this chapter, we present the transmission techniques for MIMO channels when time varying
side information is present at the receiver based on the state of the art and two novel joint
source-channel coding transmission techniques. The chapter is divided in four sections. In the
first section, we derive a lower bound for the expected distortion assuming that the transmitter
is informed of the actual channel state and side information quality at the time of designing
the transmission.

Then, we present two families of transmission schemes, each one constituting a section.
The first family, that we will call ’Single layer schemes’, consist of transmitting the source by
using a unique layer of transmission. In the first section, ’Single layer schemes: Separation,
Uncoded and NBJD’, we study the classical separation in which the source is first compressed
using binning and the compressed bits are sent though a digital transmission. We then present
a simpler scheme that does not use binning in the compression. We also study the uncoded
transmission.

Next we introduce a novel joint source-channel coding techniques: NBJD, that uses no
explicit binning and applies joint decoding [8]. We study transmission schemes based on pure
NBJD and construct transmission techniques that are known to have good, or even optimal,
performance when time varying side information is not present at the receiver. In this section
we also present an Hybrid analog-digital scheme using NBJD. This scheme superposes an
analog transmission layer with a digital layer on top of it. This scheme is known to achieve
the optimal performance for M∗b < 1 in MIMO systems when no side information is available
[4].

In the second single layer section: ’Single layer schemes: HDA’, we introduce a second
novel joint source-channel coding technique, HDA, that quantizes the source and uses joint
decoding with side information and the error in the quantization [6]. We then extend HDA
to multiple-input multiple-output (MIMO) and bandwidth expansion regime, i.e. b > 1.
Before constructing the scheme for time varying states, we first study the scenario when the
channel and side information states are known at the transmitter and the receiver. We study
a superposition scheme that combines quantization of the source and HDA and generalizes the
result provided by Lapidoth in [9], in which a continuum of optimal transmission schemes when
no side information is present is obtained. Contrary to the result when no side information is
present, we prove, for the single-input single-output scheme, that such continuum of schemes
does not extend when side information is present, and that the is only optimal configuration
when side information is present coincides with pure HDA transmission. A continuum of
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optimal transmission schemes when side information is present has been recently given by
[11] combining HDA with a digital layer superposed. We then construct the MIMO HDA
based on pure HDA for an scenario in which the states are not available at the tranmitter.

In the last section, we introduce the family of ’Multi-layer Schemes’. This group consist
of schemes that use multiple layers of coding to transmit the source and combat fading.
This multilayer schemes where proven to be optimal in the high SNR regime [2] for SISO
sytems and in MIMO systems for b ≥ MtMr in the continuum of infinit layers. We propose
a separation based multilayer scheme and a NBJD scheme.

3.1 Expected distortion lower bound

We derive a lower bound on the expected distortion by providing the transmitter with the
actual channel and side information states (γ,H). A transmitter with the actual H and γ
realizations at each block can use the optimal transmission scheme based on separate source-
channel coding in which the source sequence is compressed using Wyner-Ziv coding and the
compressed bits are transmitted at the channel capacity [12], such that no outage occurs and
the minimum possible distortion is achieved at each block. The distortion at state (H, γ) is

Dlow(H, γ) =
2−bC(H)

γ2ρs + 1
, (3.1)

where we drop the explicit dependance on b, ρ and ρs for the sake of brevity and the capacity
of the MIMO channel is given by

C(H) = sup
Q<0,Tr{Q}≤M∗.

log det

(

I+
ρ

M∗
HQH†

)

, (3.2)

The lower bound on the expected distortion is then found as

EDlow =

∫∫

(H,γ)

log(1 + ρ
M∗

∑M∗

i=1 λiqi)
−b

1 + γ2ρs
ph(h)pγ(γ)dHdγ. (3.3)

where λ1 ≤ λ2 ≤ ... ≤ λM∗
are the ordered eigenvalues ofHH†, with rank{H} = min{Mt,Mr} =

M∗ and

qi =

(

µ− 1

λi

)+

, (3.4)

with µ such that the power constraint equation is satisfied

M∗
∑

i=1

(

µ− 1

λi

)+

≤ 1. (3.5)

Proof. See Appendix 3.A.

3.2 Single layer schemes: separation, uncoded and NBJD

3.2.1 Separate source and channel coding

We first consider separate source and channel coding with a single layer, which is based on
Wyner-Ziv coding followed by channel coding. However, unlike the optimization and binning
rates are fixed at all channel states due to the lack of CSI at the transmitter.
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The quantization codebook consists of 2m(bRc+Rs) length-m codewords,Wm(i), i = 1, ..., 2m(bRc+Rs),
generated through a ‘test channel’ given by W = X + Q, where Q ∼ CN (0, σ2

Q) and inde-
pendent of X. The quantization noise variance is chosen such that I(X;W ) = Rs + bRc, i.e.
σ2
Q = (2Rs+bRc − 1)−1. The generated quantization codewords are then uniformly distributed

among 2nRc bins. On average, each bin contains 2mRs codewords. Additionally, a Gaussian
channel codebook with 2nRc length-n codewords U(s) is generated independently with i.i.d.
components U ∼ CN (0, 1) and each codeword U(s), s ∈ [1, ..., 2nRc ], is assigned to the bin

index s. Note that the power at each antenna is uniformly allocated as E[U†
iUi] = I.

Given a source realization Xm, the encoder searches for a quantization codeword Wm(i)
that is jointly typical with Xm. Assuming one such codeword is found, the channel codeword
U(s) is transmitted over the channel, where s is the bin index of Wm(i). At reception, the
bin index s is recovered with high probability using the channel output V if,

Rc ≤ I(Ui;Vi). (3.6)

The decoder then looks for a quantization codeword within the estimated bin that is jointly
typical with the side information sequence Y n. The correct codeword will be decoded with
high probability if,

bRc ≥ I(X;W |Y ). (3.7)

If the quantization codeword is successfully decoded, then X̂m is reconstructed with an opti-
mal minimum mean square error (MMSE) estimator where X̂i = E[Xi|Yi,Wi] for i = 1, ..., n.

An outage is declared whenever, due to the randomness of the channel and the side
information, the quantization codebook cannot be correctly decoded, i.e., when conditions
(3.6) or (3.7) are not satisfied. In case of an outage, the side-information is used to estimate
the source with X̂i = E[Xi|Yi]. The distortion achieved when the quantization rate is R and
the side information quality is fixed by γ is given by

Dd(R, γ) , (γ2ρs + 2R)−1 (3.8)

when the quantization codeword is decoded by the receiver. When there is an outage over
the channel, the minimum distortion is given by D(0, γ). Then, the expected distortion of
the separation scheme is given by

EDsb(Rs, Rc) =

∫∫

Oc
sb

Dd(Rs + bRc, γ)pγ(γ)ph(H)dγdH

+

∫∫

Osb

Dd(0, γ)pγ(γ)ph(H)dγdH, (3.9)

where Oc
sb is the complement of the outage event defined as

Osb = {(H, γ) : I(Ui;Vi) < Rc or bRc < I(X;W |Y )}.

We have I(Ui;Vi) = log det(I+ ρ
Mt

H†H) and I(X;W |Y ) = log
(

1 + (2Rs+bRc − 1)(γ2ρs + 1)−1
)

for the model under consideration.
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3.2.2 Separate source and channel coding without binning

We can reduce the complexity of the previous scheme by including a single codeword in each
bin, i.e. by letting Rs = 0. This way, we get rid of the outage event corresponding to a poor
side information realization. However, to achieve the same quantization noise, we need to
transmit at a higher rate over the channel, which increases the channel outage probability.
The expected distortion for this scheme is then found as

EDnb(Rc) = (1− Pout(h))Eγ [Dd(bRc, γ)]

+ Pout(h)Eγ [Dd(0, γ)], (3.10)

where Pout(h) , Pr{Rc > log det(I+ ρ
Mt

H†H)} is the probability of having a channel outage
event.

3.2.3 Uncoded transmission

Uncoded transmission is a robust joint source-channel transmission technique that has a
gradual degradation with worsening channel quality. Since rankH ≤ M∗, M∗ samples are
effectively transmitted at each channel use using M∗ of the Mt tx antennas. For b ≤ 1

M∗
,

the channel codeword UM∗×n is generated scaling the first M∗n samples of the source and
mapping them into the channel codeword, i.e., UM∗×n = [XM∗

1 ;X2M∗

M∗+1; ...;X
nM∗

(n−1)M∗+1], so

that the power constraint is satisfied1. At reception, the transmitted samples are estimated
with an MMSE estimator using the channel output V and the available side information Y n

1 .
The remaining m−M∗n source samples that have not been transmitted are estimated using
only the available side information Y m

M∗n+1.

When b > 1
M∗

the source sequence is transmitted in the first m
M∗

channel uses scaling the
power by bM∗.

Let HM∗
be the submatrix of H obtained by taking the M∗ columns corresponding to

the antennas effectively used for the transmission. Then, the minimum achievable distortion
when a source sample is transmitted uncoded at uniform power P at state (H, γ) is given by

Dp(P, γ,H) ,
M∗
∑

i=i

1

1 + Pµiρ+ γ2ρs
. (3.11)

where µ1 ≤ ... ≤ µM∗
are the ordered eigenvalues of the matrix HM∗

H
†
M∗

.

Proof. See Appendix 3.B

Then, the uncoded expected distortion can be expressed as

EDu =











bM∗Dp(1,H, γ) + (1− bM∗)Dp(0,H, γ) if M∗b < 1,

Dp(bM
∗,H, γ) if M∗b ≥ 1.

Note that the uncoded scheme has no outage events.

1Xk
l is used to refer to the vector [Xl, ..., Xk].
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3.2.4 No binning with joint decoding (NBJD)

Next, we consider a source-channel coding scheme that does not involve any explicit binning
at the encoder and uses joint decoding at the decoder. This coding scheme is introduced in [8]
in the context of broadcasting a common source to receivers with different side information
qualities. The success of the decoding process depends on the joint quality of the channel and
the side information.

At the encoder, a codebook of 2nRj length-m quantization codewords is generated with
Rj = I(X;W ) as in Section 3.2.1. Then, an independent Gaussian codebook of size 2nRj

is generated with length-n codewords U(i) ∈ CMt×n with U ∼ CN (0, 1). Given a source
outcome Xm, the transmitter finds the quantization codeword Wm(i) jointly typical with the
source outcome and transmits the corresponding channel codeword U(i) over the channel.
At reception, joint typicality decoding is performed over the channel codewords such that the
decoder looks for an index i for which both (Un(i), V n) and (Y m,Wm(i)) are jointly typical.
The outage event is given by

Oj = {(H, γ) : I(X;W |Y ) > bI(Ui;Vi)}. (3.12)

If the quantized codeword has been successfully decoded, the source Xm is estimated using an
MMSE estimator. On the contrary, if an outage has occurred, the source Xm is reconstructed
using only the side information.

The expected distortion for NBJD can be expressed as

EDj(Rj) =

∫∫

Oc
j

Dd(Rj, γ)pγ(γ)ph(H)dγdH

+

∫∫

Oj

Dd(0, γ)pγ(γ)ph(H)dγdH. (3.13)

3.2.5 NBJD-analog hybrid scheme

Case M∗b ≤ 1

Mittal and Phamdo introduce in [13] the hybrid analog-digital schemes in the context of
robust transmission in which the source sequence is transmitted using an uncoded signal and
a digital codeword. Inspired by this work, we propose a hybrid scheme where the digital
signal is transmitted using NBJD.

When M∗b ≤ 1, we propose a hybrid scheme which consists of the superposition of an
uncoded signal and a signal transmitted using NBJD. At the encoder, the source sequence is
divided into two blocks: Xu = XnM∗

1 is transmitted uncoded andXd = Xm
nM∗+1 is transmitted

with NBJD. The digitally transmitted part, Xd is quantized to a codewordWd of a codebook of
size 2(m−n)Rj using the NBJD encoder and the corresponding channel codeword Ud ∈ Cn×M∗

is picked from an independent codebook of the same size. Next, the analog channel input is
generated by mapping Xu into Uu ∈ Cn×M∗ and scaling to make it unit power as in Section
3.2.3. Then the channel codeword is generated as the superposition of these two signals with
power allocation as

U =
√

1− ρ−ηUd +
√

ρ−ηUu. (3.14)

Again, let HM∗
be the submatrix of H obtained by taking the M∗ columns corresponding to

the antennas effectively used for the transmission. Then U is transmitted using M∗ antennas
thoughtHM∗

. the selection of those antennas is based on some arbitrary prearranged strategy.
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The decoder uses joint typicality decoding to recover Wd and Ud from the channel output.
The outage is defined as

Oh , {(H, γ) : (1− bM∗)I(Xd;Wd|Y ) > I(Ud;V)}.

with

I(Ud;V) = log det

(

I+
ρ

M∗
HM∗

H
†
M∗

)

− log det

(

I+
ρ1−η

M∗
HM∗

H
†
M∗

)

. (3.15)

If Wd is successfully recovered, the receiver uses it and the available side information to
reconstruct Xd with an MMSE estimator. Then, Ud is substracted from the channel output
V to obtain a noisy version of Uu and reconstruct Xu with an MMSE estimator using also
the side information. If there has been an outage and Ud is not recovered, Xd is reconstructed
using only the side information and Xu is estimated using the channel output, now noisier
than the previous case since Ud cannot be substracted and the side information. Finally, the
source sequence is reconstructed as X̂m = [X̂u, X̂d].

Then, the expected distortion for NBJD-analog hybrid scheme is given by

EDh(Rh) = (1− bM∗)
∫∫

Oc
h

Dp(Rh, γ)pγ(γ)ph(HM∗
)dγdHM∗

+ bM∗

∫∫

Oc
h

Dl(ρ
−η,HM∗

, γ)pγ(γ)ph(HM∗
)dγdHM∗

+ (1− bM∗)
∫∫

Oh

Dd(0, γ)pγ(γ)ph(HM∗
)dγdHM∗

+ bM∗

∫∫

Oh

Di(HM∗
, η)pγ(γ)ph(HM∗

)dγdHM∗
. (3.16)

where Di(HM∗
, η) is the distortion achieved by the mmse estimation of Xu treating Ud as

noise when there has been an outage. It is given by

Di(HM∗
, η) =

1

M∗

M∗
∑

i=1

(

1 + γ2 +
ρ1−ηµi

1 + ρ(1− ρ1−η)µi

)−1

(3.17)

where µ1 ≤ ... ≤ µM∗
are the ordered eigenvalues of HM∗

HM∗
.

Proof. See Appendix 3.C.1.

Case M∗b > 1

When M∗b > 1, the channel codeword is generated at the encoder as a concatenation of an
NBJD digital codeword and the scaled version of the error produced in the quantization. The
NBJD codebook Wh is generated at a quantization rate Rh. The digital channel codebook
is generated with Un−mM∗×Mt

d . The analog signal Um×M∗
a is a mapping of the quantization

error sequence, Xm−W (i)m, and scaled by the error variance. Then, the channel codeword is
constructed as U = [Ua Ud] and scaled to satisfy the power constraint to transmitted though
M∗ antennas.
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At the receiver, Ud is decoded with joint typicality decoding using Y and the channel
output of Ud. The outage event is defined as

Oh =
{

(H, γ) ∈ C
2 : I(Wh;X|Y ) > (bM∗ − 1)I(Ud;Vd)

}

,

where Va is the channel output sequence Vm
1 corresponding to the transmission of the quan-

tization noise and Vb = Vn
m+1 corresponds to the NBJD part. We have, after some manipu-

lation

I(Wh;X|Y,Va) = log det

(

σ2(γ2 + 1)I + I+
1

M∗
HH†

)

− log det

(

σ2(γ2 + 1)

(

I+
1

M∗
HH†

))

= log det

(

(

I+
1

M∗
HH†

)−1

+
1

σ2(γ2 + 1)
I

)

(3.18)

and I(Ud;Vd) = log det(I + ρ
M∗

HM∗
H

†
M∗

)i.e.

Oh =
{

(H, γ) ∈ C
2 : log det

(

(

I+
1

M∗
HH†

)−1

+
1

σ2(γ2 + 1)
I

)

> (bM∗ − 1) log det(I +
ρ

M∗
HM∗

H
†
M∗

)

}

.

(3.19)

If Ud is decoded, the decoder reconstructs the source sequence with an MMSE estimator
using the analog error transmission in V m

1 , Y , and Ud. If Ud could not be recovered, the
source is reconstructed with Y and Va. The distortion achieved when there is no outage is
given by

Dpd(R,h, γ) ,
M∗
∑

i=1

(

1

σ2
(1 +

ρλi

M∗
) + γ2ρx + 1

)−1

.

Proof. See Appendix 3.C.2.

Hence, the expected distortion is found as

EDh(Rh) =

∫∫

Oh

Dd(0, γ)ph(HM∗
)pγ(γ)dHM∗

dγ

+

∫∫

Oc
h

Dpd(Rh,HM∗
, γ)ph(HM∗

)pγ(γ)dHM∗
dγ. (3.20)

3.3 Single layer schemes: HDA

In this section, we present an superposition scheme that makes use of the side informa-
tion. Similarly to Lapidoth’s scheme [14], we propose a scheme that superposes a correlated
quantized version of the source with an uncorrelated codeword generated with an hybrid
digital-analog coding scheme. We study the performance of such scheme under the scenario
of known channel state and side information state and the more practical scenario in which
the channel and the side information are Rayleigh block fading with states unknown at the
transmitter. We find that the optimal configuration in presence of side information is given
by a unique configuration that coincides with pure HDA. We then extend HDA scheme to
MIMO systems.

17



3.3.1 Hybrid analog-HDA when CSIST is available

Similarly to the scheme introduced by Lapidoth we present an hybrid scheme for b ≥ 1 that
superposes an scaled version of the source sequence with an digital scheme. At the encoder,
consider the auxiliary a random variable such that the first m samples are

W1 = Q+ κX, (3.21)

and the samples from m+ 1 to n

W2 = Q. (3.22)

with Q ∼ CN (0, 1) independent of X. Then generate a codebook of 2mRC length-n code-
words W n distributed according to PW such that RC = I(W ;X) = log(1 + κ2). At a given
source sequence Xm, the encoder looks for the i∗-th auxiliary codeword W n(i∗) such that
(Wm

1 (i∗),Xm) are jointly typical. Then the channel input is generated as Un = [Um
1 , Un

m+1],
where Un

1 is a superposition of the auxiliary random variable W n
1 and κXm −Wm

1 as

Un
1 = α(Wm

1 (i∗)− kXn) + βWm
1 (i∗)

= (α+ β)Qm
1 + βκXm. (3.23)

and Un
m+1 = Qn

m+1.

In order to satisfy the power constraint, α and β have to satisfy

κ2β2 + (α+ β)2 ≤ 1. (3.24)

At a given channel output V n, the decoder looks for the auxiliary random variable W n(i) such
that W n

1 is simultaneously jointly typical with the current side information block sequence
Y m and the channel output V m

1 , i.e. (Wm
1 (i);V m

1 , Y m) are jointly typical and the channel
output V n

m+1 is jointly typical with W n
m+1(i).

Theorem 1. The decoding will be successful with high probability, using typicality arguments

if

I(X;W ) ≤ RC ≤ I(W1;V1, Y ) + (b− 1)I(W2;V2). (3.25)

where V1 and V2 are a sample of the channel output in V m
1 and V n

m+1, respectively.

Proof. Let Ỹ n .
= [Y m, 0nm+1]. Using typicality arguments, we have that to have W n

1

mRc ≤ I(W n;V n, Ỹ n)

= I(Wm
1 ;V m

1 , Ỹ m
1 ) + I(W n

m+1;V
n
m+1, Y

n
m+1)

= mI(W1;V1, Y ) + (n−m)I(W2, V2) (3.26)

where V1 and V2 is a sample that behaves statistically as a sample in V m
1 and V n

m+1 respec-
tively. Equalities comes from the chain rule and the i.i.d generation of W . Dividing both
sizes leads to the desired result.
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When we have Gaussian sources, condition (3.41) becomes

Rc ≤ log

(

(

1 + κ2
) (

h2β2κ2 + a
(

h2(α+ β)2 + 1
))

a+ κ2 (h2α2 + 1)

)

+ log
(

1 + h2
)b−1

. (3.27)

with a = 1 + γ2 and where to compute the mutual information, we use

Cw;vy =











1 + κ2 α+ β + βκ2 γκ

α+ β + βκ2 (α + β)2 + β2κ2 + σ βγκ

γκ βγκ 1 + γ2











.

and σ2 = 1/h2.
Then, the source sequence is reconstructed with an mmse estimator X̂ = E[X|V, Y,W ].

The achievable distortion is given by

DC(κ, h
2, γ) ,

(

1 + γ2 + κ2(h2α2 + 1)
)−1

. (3.28)

Any power allocation has to satisfy the power (3.24) and decoding (3.27) conditions.
Hence, for a given (h, γ) pair, the set of power allocations such that W is decoded, Λ(h, γ),
is the set of pairs (α, β) ∈ R2 in

Λ(h, γ) =
{

(α, β) ∈ R
2 : (α+ β)2 + κ2β2 = 1,

1 ≤ h2β2κ2 + a(h2(α+ β)2 + 1)

a+ κ2(h2α2 + 1)

(

1 + h2
)b−1

}

. (3.29)

Next theorem shows that, for a fixed (h, γ) there exists a single power allocation (α, β)
in Λ(h, γ) such that the optimal distortion is achieved. This particular choice reduces to
the scheme presented by Wilson in [6] for b = 1. When no side information is available, i.e.
γ2 = 0, a continuum of optimal schemes can be found. This result coincides with the schemes
presented by Bross in [15] for b = 1.

Theorem 2. In presence of side information, i.e. γ2 6= 0, the unique power allocation

achieving the optimal distortion, that for a SISO system is given by

D∗(h2, γ) =
1

(1 + γ2) (1 + h2)b
. (3.30)

is given by

α = 1, β = 0,

κ2 =
a

h2 + 1

[

(

1 + h2
)b − 1

]

. (3.31)

If γ2 = 0, i.e no side information is available, there exists a continuum of schemes achiev-

ing the optimal distortion with the following power allocation for a given κ2 ≤ h2

α2 =

(

1

κ2
− 1

h2

)+

,

β = −α±
√
1 + κ2 − α2κ2

1 + κ2
.
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If κ2 > h2, the continuum reduces to a single power allocation achieving the optimal distortion

satisfying the same equations given by α2 = 0, β2 = 1
1+κ2 and κ2 = h2.

Proof. From equation (3.28) observe that any power allocation achieving the optimal distor-
tion has to satisfy

a+ κ2(h2α2 + 1) = a
(

1 + h2
)b

. (3.32)

A power allocation achieving the optimum has to simultaneously satisfy (3.32) and belong
to (3.29). Substituting (3.32) in (3.29), the optimal allowable power allocation have to satisfy

β2κ2 + (α+ β)2 ≤ 1, (3.33)

β2κ2 + a(α+ β)2 ≥ a. (3.34)

The allowable point are then in the intersection of two ellipsoids. We first prove that any
point satisfying (3.33) is included in the complementary of (3.34), i.e.

β2κ2 + a(α + β)2

= β2κ2 + a(1− κ2β2)

= a− β2κ2(1− a)

= a+ β2κ2(a− 1)

≥ a (3.35)

Hence, the intersection can only happen in the frontier. Any point in the frontier satisfies
(α+ β)2 = 1− κ2β2. The allowable (α, β), then have to satisfy

β2κ2 + a(α + β)2 ≥ 1

β2κ2 + a(1− κ2β2) ≥ 1.

β2κ2(1− a) + a ≥ 1. (3.36)

The intersection is only no null for a = 1, i.e. γ2 = 0 or β2 = 0. Note that for a = 1, the
frontiers of both ellipses are the same.

Now we study those particular cases. Observe that β2 = 0 reduces to the scheme presented
in [6] in the case of b = 1. From (3.24) we have that α2 = 1 and then, from (3.32), we have

κ2 =
a

h2 + 1

[

(

1 + h2
)b − 1

]

. (3.37)

and achieves thus the optimal distortion.
If γ2 = 0, the scheme becomes the optimal continuum of schemes proposed by Lapidoth

in [15] in the case of b = 1. Any power allocation in (3.29) satisfies, for a = 1

β2κ2 + (α+ β)2 = 1,

1 + κ2(h2α2 + 1) =
(

1 + h2
)b

. (3.38)

Then, if κ2 + 1 ≤
(

1 + h2
)b
, we can solve problem (3.38) with equality with

α2 =
1

κ2h2

[

(

1 + h2
)b − 1

]

− 1

h2
,

β =
−α±

√
1 + κ2 − α2κ2

1 + κ2
.
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which is a continuum of pairs (α, β) for the range of valid κ2.

If κ2 + 1 >
(

1 + h2
)b
, the continuum reduces to

α2 = 0,

β2 =
1

1 + κ2
,

κ2 =
1

1 + h2

[

(

1 + h2
)b − 1

]

. (3.39)

which coincides with the scheme for β2 = 0 for a = 1.

3.3.2 MIMO HDA

In this section, we extend the HDA scheme to multiple input multiple output systems (MIMO)
and b > 1. At the encoder, consider the auxiliary random variables W ∈ Cm×Mt and
T ∈ Cn−m×Mt such that

Wi = κXi +Qi, i = 1...m

where κ ∈ RMt and Qm×Mt such that Qi is Gaussian distributed as Qi ∼ CN (0,CQ) in-
dependent of X and others Qj for j 6= i, and Ti ∼ CN(0,CQ), i = 1...n − m also
independent of any Qi. Then generate two codebooks of 2mRC length-m codewords W(s)
and T(s) length-(n − m), s = 1, ..., 2mRC , distributed according to PW and PT such that
RC = I(Wi;X). At a given source sequence Xm, the encoder looks for the s∗-th auxiliary
codeword W(s∗) such that (W(s∗),Xm) are jointly typical. Then, T(s∗) is used to generate
the channel input as

Ui = B[κXi −Wi(s
∗)], i = 1, ...,m

Ui = BTi−m(s∗), i = m+ 1, ..., n. (3.40)

where B is a channel matrix such that the power constraint is satisfied, i. e. Tr{UiUi
†} ≤ 1.

For the sake of notation we consider the equivalent channel H = H̃B where H̃ is the actual
channel state.

At a given channel output Vi = H̃Ui+Ni i = 1, ..., n, the decoder looks for the auxiliary
random variable W(s) such that W(s), and T(s) are simultaneously jointly typical with the
current side information block sequence Ym and the channel output V.

Theorem 3. The decoding will be successful with high probability, using typicality arguments

if

H(W|V1, Y ) ≤ H(Q1) + (b− 1)I(T,V2) (3.41)

where V1 and V2 are a sample of the channel output in Vm
1 and Vn

m+1, respectively.

Proof. From the HDA scheme, we have that

I(W;Xm) ≤ I(W,T;V, Y m) (3.42)

The right hand side is equivalent to

I(W;Xm) =

m
∑

i=1

I(Wi;Xi) =

= m[H(W1)−H(W1|X)] =

= m[H(W1)−H(Q1)]. (3.43)
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The left hand side

I(W,T;V, Y m) = I(W;Vm
1 , Y m

1 ) + I(T;Vn
m+1)

= mI(W1;V1, Y ) + (n−m)I(T,V2)

= m[H(W1)−H(W1|V1;Y )]

+ (n−m)I(T,V2) (3.44)

where V1 and V2 is a sample that behaves statistically as a sample in Vm
1 and Vn

m+1 respec-
tively. Similarly, W2 is used for a sample in Wn

m+1. Equalities comes from the chain rule
and the i.i.d generation of Wi. Dividing both sides leads to the desired result.

For the Gaussian case, the outage region is then given by

O =
{

(H, γ2) :

log det

((

K

a
+CQ

)

+ [

(

K

a
+CQ

)

− I]CQH
†HCQ

)

> log
(

det(I+HCGH†)
)b

− log det(CQ)
b−1

}

(3.45)

where K = κκ†.

Proof. We have that H(W1|V1, Y ) = H(W1,V1, Y ) − H(V1, Y ). Let G = [W,V, Y ]†.
The differential entropy of G, a multivariate gaussian random variable, is given by h(G) =
log((2πe)Mt det(CG)) where CG = E[GG†] and given by

CG =











K+CQ CQH
† γκ

HCQ I+HCQH
† 0

γκ† 0 a











(3.46)

where K = κκ† and a = 1 + γ2. Using the determinant property of a block matrix,

det (CG) =

= adet









K+CQ CQH
†

HCQ I+HCQH
†



− 1

a





γκ

0





[

γκ 0

]





= adet









1
a
K+CQ CQH

†

HCQ I+H†









= adet

(

K

a
+CQ

)

det
(

I+HCQH
†

− HCQ

(

K

a
+CQ

)−1

CQH
†
)

(3.47)
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By Silvester determinant theorem, det(Im + AB) = det(In + BA), for A m × n and B
n×m

det

(

IMt +HCQ[I−
(

K

a
+CQ

)−1

]CQH
†
)

= det

(

IMt + [I−
(

K

a
+CQ

)−1

]CQH
†HCQ

)

(3.48)

Now, we use that det(X +AB) = det(X) det(I +AX−1B) for X invertible to have

det

(

K

a
+CQ

)

det

(

I+ [I−
(

K

a
+CQ

)−1

]CQH
†HCQ

)

= det

((

K

a
+CQ

)

+ [

(

K

a
+CQ

)

− I]CQH
†HCQ

)

Similarly, the differential entropy H(Vi, Y ) is given by

H(V, Y ) = log
(

(2πe)Mtadet(I+HCQH
†)
)

. (3.49)

and the mutual information

I(V2,Q) = log
(

det(I+HCQH
†)
)

− log det(CQ)

= log
(

det(CQ
−1 +HH†)

)

. (3.50)

Substituting we have

O =
{

(H, γ2) :

v log
det
((

K
a
+CQ

)

+ [
(

K
a
+CQ

)

− I]CQH
†HCQ

)

det(I+HCGH†)

> log
(

det(I+HCGH†)
)b−1

− log det(CQ)b−1

}

(3.51)

and operating leads to the result.

If W could be decoded, the source sequence is reconstructed with an mmse estimator
X̂ = E[X|V, Y,W ]. The achievable distortion is given by

D(κ,H, γ2) = (1 + γ2 + κ(I+HCQH
†)κ†)−1 (3.52)

Proof. The available information to reconstruct source sample Xi, i = 1, ...,m with an mmse
estimator can be modeled by the lineal model











Wi

Vi

Yi











=











κ

0

γ











X +











Qi

HQi +Ni

Zi











(3.53)
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Let ti =
[

κ 0 γ

]†
and si =

[

Qi HQi +Ni Zi

]†
. The distortion achieved with the

optimal estimator is given by D = [1 + tCst
†]−1 where Cg

Cg =











CG CGH† 0

HCG HCGH† + I 0

0 0 1











. (3.54)

Using the block inverse properties, we have

C−1
g =





A−1 0

0 1



 (3.55)

where

A−1 =





CG CGH†

HCG HCGH† + I





−1

=





HCGH† + I −H†

−H I





where we have used the block matrix inversion and the Woodbury matrix identity. Finally,
by multiplying tCst

†, the expression is

D(κ,H, γ2) = (1 + γ2 + κ(I+HCQH
†)κ†)−1 (3.56)

Note that κ(I +HCQH
†)κ† is a quadratic form and then we can express it as

κ(I+HCQH
†)κ† (3.57)

The transmitter is not aware of the actual realization of the channel and hence, as in the
digital case, it seems that there is no reason to benefit some dimensions over others in the
channel transmission. Hence, we choose B = 1√

M∗
C−1

Q . Similarly the influence of CQ in the

expressions should depend on H. Similarly we pick CQ = I. For this particular choice, the
outage expression in (3.45) becomes, using Silvester determinant theorem

O =
{

(H, γ2) :

det

(

I+
K

a

(

I+
1

M∗
H†H

))

> det(I+
1

M∗
HH†)b

}

= 1 +
1

a
κ

(

I+
1

M∗
H†H

)

κ† > det(I+
1

M∗
HH†)b (3.58)

Now we use that any Wishart matrix HH† can be decomposed as UΛ(ρ)U† where Λ(ρ)
is a diagonal matrix that contains the eigenvalues of the matrix and U is a Haar distributed
matrix. For any Haar distribute matrix U we have that for any unit vector w, with unit
norm |w| = 1, Uw = s

|s| with s ∼ CN (0, I). Let κ = κκ̂ where κ̂ is a unit vector colineal with

κ and κ ≥ 0 and
(

I+ 1
M∗

H†H
)

= UΛU† with Λ = diag(1 + λi

M∗
) for i = 1, ...,M∗, where
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λ1 ≤ ... ≤ λM∗
are the eigenvalues of H̃H̃†. Note that the eigenvalues of H†H are the same

of HH†. Then,

κ

(

I+
1

M∗
H†H

)

κ†

= κ
(

UΛU†
)

κ†

=
s

|s|Λ
s

|s|
†

=
κ2

|s|2
M∗
∑

i=1

(1 + λi)s
2
i (3.59)

where si ∼ CN (′,∞) and then

O =

{

(H, γ2) : 1 +
κ2

|s|2
M∗
∑

i=1

(1 + λi)s
2
i >

M∗
∏

i=1

(

1 +
λi

M∗

)b
}

,

and

D(κ,H, γ2) = (1 + γ2 +
κ2

|s|2
M∗
∑

i=1

(1 + λi)s
2
i )

−1 (3.60)

Then, the expected distortion can be expressed as

EDh(κ) =

∫∫

Oc
h

D(κ,H, γ2)pγ(γ)ph(H)dγdH

+

∫∫

Oh

D(0,H, γ2)pγ(γ)ph(H)dγdH. (3.61)

3.4 Multi-layers schemes

3.4.1 Multi-layer separate coding without binning

A multi-layer transmission scheme is proposed in [2] in which the transmitter combats channel
fading by superposing multiple layers, where each layer is the successive refinement for the
previous layers. The decoder decodes as many layers as possible depending on the channel
state and reconstructs the source. The better the channel state, the more layers can be
decoded and the smaller is the achieved distortion.

At the encoder, we generate LGaussian quantization codebooks, at rates Rk = I(X;Wk|W k−1
1 ),

k = 1, ..., L, such that each Gaussian codebook is a refinement codebook for the previous lay-
ers. The quantization codewords can be modeled, for k = 1, ..., L, as Wk = X +

∑L
i=k Qi =

Wk+1 +Qk = X + Q̄i with Qi ∼ (0, σ2
i ) independent of each other, and Qk ,

∑L
i=k Qk. The

quantization noise is found to be
∑L

i=k σ
2
i = (2

∑l
i=1 Ri − 1)−1. For the channel codewords,

generate L codebooks Ul,i i = 1, ..., n generated i.i.d. with CN (0, 1) and let ρ = [ρ1, ..., ρL]
T

be the power allocation among each channel codeword such that ρ =
∑L

i=1 ρi. Then the
channel codeword Ui is generated as the addition of the codewords Uk,i scaled with the cor-

responding power allocation
√
ρk. Define ρ̄k =

∑L
i=k ρi. The output of the channel is given

by Vi = H
∑L

j=1
√
ρjUj,i +Ni, i = 1, ..., n. At reception, the decoder applies successive re-

finement decoding starting from the first layer and at each layer it uses typical decoding as in
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Section 3.2.1. If the receiver cannot decode layer k, it does not try to decode the subsequent
j > k layers. Provided k − 1 layers are decoded, the outage event at layer k is given by

Ak = {H : I(Uk,i;Vk,i|Uk−1
1,i ) < Rk}, (3.62)

where, for k = 1, ..., L,

I(Uk,i, V̄k,i) = I(V̄k,i;Uk,i, Ūk+1,i)− I(V̄k,i; Ūk+1,i|Uk,i)

= log
det
(

I+ ρ̄k
Mt

HH†
)

det
(

I+
ρ̄k+1

Mt
HH†

) , (3.63)

with ρ̄L+1 = 0. We define Bk ,
⋃k

i=1Ai. The receiver uses the side information available
together with the decoded layers to reconstruct the source with an MMSE estimator. The
expected distortion for a multiple-layer scheme with L layers is given by

EDml(R) =

L
∑

k=0

Eγ



Dd



b

k
∑

j=0

Rj, γ







 (P i+1
out − P i

out),

where R , [R1, ..., RL], P
i
out , Pr{Bi}, R0 , 0, P 0

out = 0 and PL+1
out = 1.

3.4.2 Multi-layer NBJD

In the previous multi-layer scheme, the side information is not used in the coding and decoding
of the multiple layers and is only used for the estimation at the receiver. We propose a multi-
layer scheme that uses NBJD at each layer to use the joint quality of the channel and side
information.

At the encoder, the transmission scheme is the same as in Section 3.4.1. At reception, the
decoder uses a joint typicality decoder for each layer. The outage event at layer k, provided
that k − 1 layers have been decoded, is given by

Lk = {(H, γ) : bI(Ui,k;Vi|Uk−1
i,1 ) < I(X;Wk|Y,W k−1

1 )|Oc
k−1}

= {(H, γ) : bI(Ui,k;Vi,k|Uk−1
i,1 ) < I(X;Wk|Y,W k−1

1 )}, (3.64)

where Ok is the event of having an outage at the previous k − 1 layers, i.e. Ok ,
⋃k

i=1 Li.
Note that Lk’s are mutually exclusive. Then, the event of being able to decode exactly k
layers, Ōk, is found as

Pr{Ōk} = Pr{Ok+1} − Pr{Ok} = Pr{Lk+1}. (3.65)

The left hand side of the outage event in (3.64) is given in (3.63). Similarly, the right hand
side of the outage event can be calculated as

I(X;Wk |W k−1
1 , Y ) = I(X;Wk|Y )− I(X;Wk−1|Y )

(a)
= H(Wk|Y )−H(Qk)−H(Wk−1|Y ) +H(Qk−1)

= log

(

∑L
i=k−1 σ

2
i

∑L
i=k σ

2
i

1 + (1 + γ2ρx)
∑L

j=k σ
2
j

1 + (1 + γ2ρx)
∑L

j=k−1 σ
2
j

)

,
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and

I(X;W1|Y ) =

(

1 +
1

(1 + γ2ρx)
∑L

i=1 σ
2
i

)

. (3.66)

Equality (a) is due to the independence of Q̄i with X and Y , and

H(Wk|Y ) = log

(

L
∑

i=k

σ2
i +

1

1 + γ2ρx

)

. (3.67)

Including the quantization noise variances the expression is given, with R0 = 0, by

I(X;Wk|W k−1
1 , Y ) = log

(

2
∑k

i=0 Ri + γ2ρx

2
∑k−1

i=0 Ri + γ2ρx

)

, (3.68)

Then, the receiver reconstructs the source with an MMSE estimator with the side infor-
mation and decode layers. The expected distortion can then be expressed as

EDmj(R) =

L
∑

k=0

∫∫

Lk+1

Dd

(

k
∑

i=0

Ri, γ

)

ph(h)pγ(γ)dhdγ

where LL+1 is the set of states in which all layers are decoded.
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Appendix 3.A Proof of the expected distortion lower bound

We derive a lower bound on the expected distortion by providing the transmitter with the
actual channel and side information states (γ,H). A transmitter with the actual H and γ
realizations at each block can use the optimal transmission scheme based on separate source-
channel coding such that no outage occurs and the minimum possible distortion is achieved
at each block. The following distortion is achieved at state (H, γ) [16]

Dlow(H, γ) =
2−bC(H)

γ2ρs + 1
, (3.69)

where C(H) is the instantaneous channel capacity, i.e.

C(H) = sup
Q<0,Tr{Q}≤M∗.

log det

(

I+
ρc
M∗

HQH†
)

, (3.70)

where we drop the explicit dependance on b, ρ and ρs for the sake of brevity as they are
constants for a given scenario.

It is well known that for a channel state with an SVD decomposition HH† = TΛT†, the
instantaneous capacity is maximized by transmitting a channel input U with a covariance
matrix Q = T†D̃T where D̃ is a diagonal matrix with [D]ij the solution to the water-filling
problem [17].

Appendix 3.B Proof of distortion for uncoded transmission

The available information at the mmse estimation step can be modeled liniearly as




V

Y



 =





√
ρHM∗

√
ρsγIM∗



xM∗
+





N

Z





= H̃x+ Ñ. (3.71)

where H̃ ∈ C2M∗×2M∗ and Ñ ∼ CN (0, I). Then the average achievable distortion is given by

1

M∗
Tr{D} =

1

M∗
Tr{(IM∗

+ ρH̃†IH̃)−1}

=
1

M∗
Tr{(IM∗

+ ρH†H+ ρsγ
2I)−1}

=
1

M∗

M∗
∑

i=1

1

1 + ρµi + ρsγ2
. (3.72)

Appendix 3.C Proof of distortion for NBJD-analog hybrid scheme

3.C.1 Case M∗b ≤ 1

The available information is given by




V

Y



 =





√
ρ1−η

M∗
HM∗

γI



Xu +





√
ρ(1−ρ−η)

M∗
HmUa +N

Z



 (3.73)
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where we stack the source sequences and side information sequences as Xu = [X1u, ...,XnM∗u]
and Y = [Y1, ..., Yn]. Similarly for Z.

Then, the average distortion for a given HM∗
can be calculated as

Di(HM∗
, η) =

1

M∗
tr
















I+

[√
ρ1−η

M∗
HM∗

γI

]





ρ(1−ρ−η)
M∗

HM∗
H

†
M∗

+ I 0M∗

0M∗
I





−1 



√
ρ1−η

M∗
HM∗

γI











−1








=
1

M∗
tr

{

(

I(1 + γ2) + ρ1−ηH
†
M∗

(ρ(1− ρ−η)HM∗
H

†
M∗

+ I)−1HM∗

)−1
}

=
1

M∗

M∗
∑

i=1

(

1 + γ2 +
ρ1−ηµi

1 + ρ(1− ρ1−η)µi

)−1

, (3.74)

where 0M∗
is a M∗ ×M∗ matrix with 0 entries.

3.C.2 Case M∗b > 1

The available information is given by











W

V

Y











=











IM∗

0

γIM∗











X+











σ2

M∗
I Hσ 0

H†σ I+ 1
Mt

HH† 0

0 0 I











(3.75)

where Xi is a vector correspond to Mt source samples, and hence, using the Woodbury
identity,

Dpd(R,H, γ) = Tr

{

(

1

σ2
(I+

1

M∗
HH†) + (γ2ρx + 1)I

)−1
}

=

M∗
∑

i=1

(

1

σ2
(1 +

λi

M∗
) + γ2ρx + 1

)−1

(3.76)
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Chapter 4

Numerical Results

We have seen in previous chapters that closed from solutions for the expected distortion are
complicated to obtain for the general finite snr regime.

In this chapter we obtain, through numerical optimization, the minimum expected distor-
tion in function of the signal to noise ratio. Those numerical simulations are also interesting to
check the range of validity of the high snr regime results for the Expected Distortion function
with the Distortion Exponent that will be calculated in next chapter.

4.1 Numerical optimization

In this section, we compare numerically the optimal expected distortion, ED∗(Ω) for the
schemes presented in the previous section by optimizing over the corresponding design pa-
rameters for a given discretized Ω.

For fixed b, x values, the numerical optimization to compute the best expected distor-
tion over a set of design parameters Λ(S)n = [λi1,i2,...,iL] where L is the number of design
parameters in the system, and il = 1, ..., Rl ,l = 1, ..., L with outage event OS(Λ(S)n), in N
uniformly separated ρn, n = 1, ..., N points for a particular scheme S is done by exhaustive
numerical gridsearch

ED∗
S(ρn) = max

Λ(S)n
E[D](ρn,Λ(S)n) (4.1)

Construct a set D with the same dimensions of Λ(S)n and an indicator function I of the same
dimensionality with a one to one correspondence between the 3 sets.

For simplicity in what follows we assume a single parameter to design, for example the
rate R, and then Λ(S)n = [ri] with i = 1, ..., R. If there are more parameters to design, for
example power allocation and rate, the only difference is the increase in dimensionality of the
gridsearch domain: a line for one parameter, a plane for two parameters, a cube for three
parameters, etc. Hence, we have ri, Ii and Di for i = 1, ...R. Then, we can simplify

ED∗
S(ρn) = max

ri
E[Di](ρn). (4.2)

At each ρn, generate T channel states and side information state realizations pairs (Ht, γt)
t = 1, ..., T . For each pair t, compute the outage event indicator Iti for each i-th parameter in
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Figure 4.1: Numerical Expected Distortion function at ρn = 10dB.

Figure 4.2: Numerical Expected Distortion function at ρn = 10dB for Separation with binning scheme.

Λ(S)n, the indicator I will be one if there has been an outge or 0 if it has not. Then, compute
the distortion value Dti for each parameter Λ(S)n according to Iti, i.e. if there has been an
outage or a correct transmission for parameter i at a particular realization t.

Once all Dit have been calculated for each realization pair, average over the realizations
to obtain the expected distortion value at a particular ri, E[Di](ρn). Then the optimal ri is
the one achieving the minimum E[Di](ρn). See Figure 4.1 for an example of gridsearch for a
particular ρn in one dimension and Figure 4.2 for a gridsearch for two parameters.

We numerically obtain the lower bound for the expected distortion and the numerical op-
timized solution ED∗ for separate source-channel coding scheme with and without binning,
for NBJD, for uncoded transmission, HDA and digital-analog hybrid scheme in a SISO sce-
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Figure 4.3: ED∗ for b = 0.8 and x = 0.3.

Figure 4.4: ED∗ for b = 2 and x = 0.8

nario. We also show the achievable distortion Dout using only the available side information
at the receive as a reference. Results are shown in Figure 4.3 for the bandwidth compression
regime, i.e. b < 1, and for the bandwidth expansion regime, b ≥ 1, in Figure 4.4.

For both the expansion and compression bandwidth regime, observe that ED∗ coincide
for the non binning scheme and the binning case. We can conclude that ED∗ for separation
is optimized by ignoring the side information when encoding, (i.e., no binning), as the scheme
suffers from outage in both the channel and the side information. Observe this behavior in
Figure 4.2. Unfortunately, he have been not able to give a proof for this observation.

Observe, in Figure 4.1 that for the same quantization rate, NBJD is able to decode higher
rates and thus lower distortions are possible, i.e. at any given quantization rate, NBJD’s
probability of outage is always lower compared to the separation scheme. For both bandwidth
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regimes, the optimized NBJD performs better than separation with and without binning, i.e.
ED∗

nb(Ω) ≥ ED∗
sb(Ω) ≥ ED∗

j (Ω), at moderate SNR. This can be proven analytically.

Lemma 1. At any SNR, the expected distortion EDj of NBJD outperforms the expected

distortion EDsb of the separation scheme, i.e.,

EDsb(R− bRc, R) ≥ EDj(R) (4.3)

where the equality only holds if R = Rj = Rs + bRc = 0.

Observe that at high SNR, there seems to be a constant distance between NBJD and
transmission based on separation.

The behavior of uncoded transmission at low SNR outperforms joint and separation
schemes. On the contrary, at high SNR, its performance worsens. While in high SNR regimes
it falls short from the others, in compression bandwidth regime, it tends to behave with a
constant distance with Dout.

The behavior or hybrid analog-digital transmission gets the best of each of each scheme. At
low SNR it benefits from the good performance of the analog part and as the SNR increases,
it benefits from the digital component. Note that the hybrid of both performs better than
separate NBJD and uncoded transmission in both bandwidth regimes.

In the expansion bandwidth regime, observe that HDA behaves very closely to hybrid
analog-digital scheme. At low SNR, hybrid outperforms HDA, but they rapidly converge to
the same performance as the SNR grows. In favor of HDA, note that for the special case of
b = 1, hybrid reduces to pure uncoded transmission.
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Chapter 5

High SNR Results: Distortion
Exponent Analysis

In this chapter, we study the performance of the proposed schemes in the high SNR regime,
i.e. when ρ → ∞. The performance measure is the distortion exponent, defined as

∆(b, x) , − lim
ρ→∞

logED

log ρ
, (5.1)

where we have the quality of the side information given by x , limρ→∞
log ρs
log ρ .

5.1 Distortion exponent upper bound

We first provide an upper bound on the distortion exponent by analyzing the high SNR
behavior of EDlow.

Theorem 4. The distortion exponent ∆up(b, x) is upper bounded by

∆up(b, x) = x+

M∗
∑

i=1

min {b, 2i − 1 +M∗ −M∗} (5.2)

Proof. See Appendix 5.A.

5.2 Single layer schemes: separation, uncoded and NBJD

The following theorems characterize the best distortion exponents achievable by the presented
schemes.

Theorem 5. The distortion exponents for the single layer separate source-channel coding,

separation without binning, and single layer NBJD scheme, are equal to each other and given

by,

∆sb(b, x) =































max
{

x, b M∗M∗+x
b+M∗+M∗−1

}

if b ≥ x+ (M∗ − 1)(M∗ − 1),

max
{

x, bM
∗M∗+x−k(k+1)

b+M∗+M∗−1−2k

}

if b ∈
[

(M∗−(k+1))(M∗−(k+1))
k+1 , (M

∗−k−1)(M∗−k−1)
k

)

,

k = 1, ...,M∗ − 1.

(5.3)
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Proof. See Appendix 5.B.

Remark 1. The optimal distortion exponent for the separate scheme is obtained for Rs = 0,
i.e. by including a single codeword in each bin. This result coincides with the numerical

results for the finite SNR regime studied in Chapter 4, i.e. that binning does not improve the

expected distortion performance.

Theorem 6. The distortion exponent of uncoded transmission is characterized by

∆u =











x if M∗b < 1,

max{1, x} if M∗b ≥ 1.

(5.4)

Proof. See Appendix 5.C.

Theorem 7. The distortion exponents for the single layer separate source-channel coding,

separation without binning, and single layer NBJD scheme, are equal to each other and given

by,

∆j(b, x) =































max
{

x, b M∗M∗+x
b+M∗+M∗−1

}

if b ≥ x+ (M∗ − 1)(M∗ − 1),

max
{

x, bM
∗M∗+x−k(k+1)

b+M∗+M∗−1−2k

}

if b ∈
[

(M∗−(k+1))(M∗−(k+1))
k+1 , (M

∗−k−1)(M∗−k−1)
k

)

,

k = 1, ...,M∗ − 1.

(5.5)

Proof. See Appendix 5.D.

Remark 2. Note that it coincides with the distortion exponent achieved by separation with

and without binning, given in 13.

Theorem 8. The distortion exponent ∆h(b, x) of the NBJD-analog hybrid scheme is charac-

terized by

∆h(b, x) =

{

max{x,M∗b+ (1− bM∗)x} if M∗b < x. (5.6)

and for b ≥ M∗b

∆h(b, x) = 1 +
(b(M∗ − k)− 1)((M∗ − k)(M∗ − k)− 1 + x)

(M∗ − k)(b+ (M∗ − k) + (M∗ − k)− 1)− 1

for b ∈
[

k −M∗ +
1

M∗
−M∗ +

M∗M∗ − 1 + x

k
, k + 1−M∗ +

1

M∗
−M∗ +

M∗M∗ − 1 + x

k + 1

)

for k = 1, ...,M∗ − 1. (5.7)

and

∆h(b, x) = 1 +
(bM∗ − 1)(M∗M∗ − 1 + x)

M∗(b+M∗ +M∗ − 1)− 1
for

1

M∗
≥ b ≥ M∗(1 +M∗ −M∗ + x))

(M∗ − 1)M∗ − 1
.(5.8)

Proof. See Appendix 5.F for M∗b > 1 and 5.E for M∗b ≤ 1.
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5.3 Single layer schemes: HDA

Theorem 9. The distortion exponent of HDA source-channel coding scheme is given by

∆hda(b, x) =











































x for b ≤ x
M∗

b(M∗M∗−(k(k+1)+x)
b−1+M∗+M∗−2k for b ∈

[

x+(M∗−(k+1))(M∗−(k+1))
(k+1) , x+(M∗−k)(M∗−k)

k

)

for k = 1, ...,M∗

M∗+M∗−1+(b−1)M∗M∗

M∗+M∗−1+b−1+(b−1)x , for b ≥ (M∗ − 1)(M∗ − 1) + x..

(5.9)

Proof. See Appendix 5.G.

5.4 Multi-layer schemes

Theorem 10. The distortion exponent of L layer separate source-channel coding scheme

without binning and for multi-layer NBJD schemes are equal to each other and given by

∆L
ml(b, x) = max

{

x,
b(Mt − k)(Mr − k)(1− ηLk )

(Mt − k)(Mr − k)− bηLk
+ x

b(1− ηk)η
L−1
k

(Mt − k)(Mr − k)− bηLk

}

,

for (M∗ − k − 1)(M∗ − k − 1) ≤ b < (M∗ − k)(M∗ − k),

for k = 0, ...,M∗ − 1. (5.10)

, where we define,

ηk ,
b− (Mt − k − 1)(Mr − k − 1)

Mt − k +Mr − k − 1
. (5.11)

and

∆L
ml = max

{

x,
b(L− 1)(b−M∗M∗)(x+M∗M∗) + b(x+M∗M∗ + (L− 1)M∗M∗)(M∗ +M∗ − 1)

b(L− 1)(b −M∗M∗) + bL(M∗ +M∗ − 1) + (M∗ +M∗ − 1)2

}

,

for b ≥ M∗M∗. (5.12)

Proof. See Appendix 5.H for multi-layer without binning and 5.J for multi-layer NBJD.

Corollary 1. The distortion exponent ∆L(b, x) in the limit of infinite layers is given by

∆∞
ml(b, x) =



























x if b ≤ x,

b if x < b < MtMr,

M∗M∗ + x
(

b−M∗M
∗

b−(M∗−1)(M∗−1)

)

if x < MtMr ≤ b.

(5.13)
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Theorem 11. By considering a more general power allocation, we achieve a better distortion

exponent ∆L
ml2(b, x) given by

∆L
ml2(b, x) = max

{

x,
b(Mt − k)(Mr − k)(1 − ηLk )

(Mt − k)(Mr − k)− bηLk
+ x

b(1− ηk)η
L−1
k

(Mt − k)(Mr − k)− bηLk

}

,

for (M∗ − k − 1)(M∗ − k − 1) ≤ b < (M∗ − k)(M∗ − k),

for k = 0, ...,M∗ − 1. (5.14)

, where we define,

ηk ,
b− (Mt − k − 1)(Mr − k − 1)

Mt − k +Mr − k − 1
. (5.15)

In the limit of infinite layers, the distortion exponent is given by

∆L
ml2 = max

{

x,
b(L− 1)(b−M∗M∗)(x+M∗M∗) + b(x+M∗M∗ + (L− 1)M∗M∗)(M∗ +M∗ − 1)

b(L− 1)(b−M∗M∗) + bL(M∗ +M∗ − 1) + (M∗ +M∗ − 1)2

}

,

for b ≥ M∗M∗. (5.16)

Proof. See Appendix 5.H for multi-layer without binning and 5.J for multi-layer NBJD.

Corollary 2. The distortion exponent ∆L
ml2(b, x) in the limit of infinite layers is given by

∆∞
ml2(b, x) =



























b(l + 1) if b ∈ [ (M
∗−l−1)(M∗−l−1)+x

l+1 , (M
∗−l)(M∗−l)+x

l+1 ),

(M∗ − l)(M∗ − l) if b ∈ [ (M
∗−l−1)(M∗−l−1)+x

l+1 , (M
∗−l)(M∗−l)+x

l
)

+x
(

b−(M∗−l)(M∗−l)
b−((M∗−l)−1)((M∗−l)−1)

)

for k = 0, ...,M∗ − 1.

(5.17)
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5.5 Comments on the results

In this section we provide a graphical representation of the distortion exponents to give a
better understanding of the distortion exponent results for the described schemes in MIMO,
MISO and SISO systems. We separate the section in three subsections, one concerning to all
schemes for MIMO and MISO systems with different quality of side information x.

Then, next subsection is devoted to multilayer schemes and we show the behavior of the
schemes for finite L and its convergence to the given continuum of schemes.

In the last subsection, we particularize to the SISO system.

5.5.1 MIMO and MISO results

Figure 5.1 and Figure 5.2 show the distortion exponent in function of b for a particular x.
We can do the following observations:

Figure 5.1: Distortion exponents in function of b for x = 0.5 for a MIMO 2× 2 system.

• Uncoded distortion exponent ∆u(b) performs poorly for large b as remains constant for
M∗b ≥ 1. It behaves as if there is no transmission for M∗b ≤ 1.

• The distortion exponents ∆sb(b) achieved by separate source-channel coding, separation
without binning and single layer NBJD schemes are equal to each other.

• The distortion exponents of the layered NBJD in the limit of infinite layers ∆∞
ml2(b) is

the best distortion exponent obtained in the large bandwidth region. Further details
on multilayer schemes behavior is provided in next subsection.

• HDA scheme, ∆hda(b), uniformly outperforms uncoded and single layer schemes ∆sb(b)
and is outperformed by NBJD-analog hybrid scheme for b > 1.
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Figure 5.2: Distortion exponents in function of b for x = 0.5 for a MISO 4× 1 system.

• The NBJD-analog hybrid scheme achieves the second best distortion exponent for
M∗b ≥ 1.

5.5.2 MIMO multi-layer results

Figure 5.3 shows the distortion exponent behavior of multilayer systems when there is no side
information. Figure 5.4 shows the distortion exponent when time varying side information is
available at the receiver. We can do the following observations:

• The distortion exponent of layered NBJD ∆L
ml2(b) and ∆L

ml2(b) with finite number of
layers is not continuous for the proposed power allocations. On the contrary, ∆∞

ml1(b)
and ∆∞

ml2(b) become continuous in the in the limit of infinite layers.
• Note that intuitively, ∆∞

ml2(b) behaves as shifted and scaled versions of ∆∞
ml1(b).

• When no side information is present, ∆∞
ml1(b) meets the upper bound ∆up(b) for b ≥

MtMr and is hence optimal. ∆∞
ml2(b) is optimal for b ≥ MtMr and b ≤ (M∗−M∗+1)

M∗
.

• The distortion exponents of the layered NBJD in the limit of infinite layers ∆∞
ml2(b) is

the best distortion exponent obtained in the large bandwidth region.
• An important remark to recall is that for separation the distortion exponent is maxi-

mized by ignoring the side information when encoding, (i.e., no binning), as the scheme
suffers from outage in both the channel and the side information.

5.6 SISO results

In this section we provide the results particularized to single antenna systems.
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Figure 5.3: Distortion exponents of the multi-layer schemes in function of b for x = 0 in a MIMO 3×3
system.

Figure 5.4: Distortion exponents of the multi-layer schemes in function of b for x = 1 in a MIMO 3×3
system.

Theorem 12. The distortion exponent ∆up(b, x) is upper bounded by

∆up(b, x) =











x+ b if b < 1,

1 + x if b ≥ 1.

(5.18)
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Theorem 13. The distortion exponents for the single layer separate source-channel coding,

separation without binning, and single layer NBJD scheme, for a SISO sytem are equal to

each other and given by,

∆1(b, x) =











x if b < x,

b(1+x)
1+b

if b ≥ x.

Theorem 14. The distortion exponent of uncoded transmission is a SISO system is charac-

terized by

∆u(b, x) =











x if b < 1,

max{1, x} if b ≥ 1.

(5.19)

Theorem 15. The distortion exponent ∆h(b, x) of the NBJD-analog hybrid scheme is char-

acterized, for a SISO sytem, by

∆h(b, x) =











b+ x(1− b) if b < 1,

1 + x
(

1− 1
b

)

if b ≥ 1.

(5.20)

Theorem 16. The distortion exponent ∆hda(b, x) of the SISO HDA scheme is characterized

by

∆hda(b, x) = 1 + x

(

1− 1

b

)

if b ≥ 1. (5.21)

Theorem 17. The distortion exponent of L layer separate source-channel coding scheme

without binning and for multi-layer NBJD schemes are equal to each other in SISO systems

and given by

∆L(b, x) =



























x if b ≤ x,

b+bLx−bL+1(1+x)
1−bL+1 if x < b, b < 1,

b(1−(L−1)x+b(L−1)(1+x))
1+b+b2(L−1)

if x < b, b ≥ 1.

(5.22)

Corollary 3. The distortion exponent ∆L(b, x) in the limit of infinite layers for a SISO

system is given by

∆∞(b, x) =



























x if b ≤ x,

b if x < b, b < 1,

1 + x
(

1− 1
b

)

if x < b, b ≥ 1.

(5.23)
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Figure 5.5: Distortion exponents in function of b for x = 0.4 for a SISO system.

5.6.1 Comments on SISO results

Results regarding the distortion exponent can be summarized as follows (See Figure 5.5 for
illustration):

• Uncoded distortion exponent ∆u(b) performs as no transmission for b < 1 and achieves
∆ = 1 for b ≥ 1.

• The distortion exponents ∆1(b) achieved by separate source-channel coding, separation
without binning and single layer NBJD schemes are equal to each other.

• The distortion exponent of layered NBJD with two layers, ∆2(b), notably improves
upon single layer NBJD, ∆1(b).

• Note that hybrid- NBJD reduces to pure uncoded at b = 1. On the contrary, HDA
achieves the same distortion exponent by a technique that involves decoding.

• The distortion exponents of the layered NBJD in the limit of infinite layers ∆∞(b), the
NBJD-analog hybrid scheme and HDA scheme ∆h(b) are equal to each other for b > 1
and uniformly outperform uncoded and single layer schemes.
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Appendix 5.A Proof for distortion exponent: lower bound

To obtain the distortion exponent lower bound, we notice that the capacity can be lower
bounded by

C(H) ≤ log det
(

I+ ρcHH†
)

, (5.24)

as IM∗ − Q < 0 if Tr{Q} ≤ M∗ and log det(·) is an increasing function in the cone of
positive-definite Hermitian matrices. Then the end-to-end distortion can be lower-bounded
as

Dlow(H, γ2) ≥
{

det
(

I+ ρHH†)−b

1 + ρsγ2

}

≥
{

∏M∗

j=1 (1 + ρcλi)
−b

1 + ρsγ2

}

, (5.25)

where λ1 ≤ λ2 ≤ ... ≤ λM∗
are the ordered eigenvalues of HH†.

Let λi = ρ−αi , with α1 ≥ ... ≥ αM∗
≥ 0 and γ2 = ρ−β

s = ρ−xβ. Then we have

(1 + ρλi)
−b .

= ρ−b(1−αi)
+
and

(

1 + ρsγ
2
)−1 .

= ρ−x(1−β)+ . The joint probability density func-
tion (pdf) of α = [α1, ..., αM∗

], is given by

p(α) = K−1
Mt,Mr

(log ρ)M∗

M∗
∏

i=1

ρ−(M∗−M∗+1)αi ·





∏

i<j

(ραi − ραj )2



 exp

(

−
M∗
∑

i=1

ραi

)

, (5.26)

where K−1
Mt,Mr

is a normalizing constant. For side information state, β is distributed as

p(β) = K−1
1,1 log ρ

xρxβ exp(−ρxβ), (5.27)

similarly. We can write using the independency of α and β and following the arguments as
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in [18], as

E [Dlow(H, γ)]

.
=

∫

R(M∗+1)+

∏M∗

i=1 (1 + ρλi)
−b

1 + ρsγ2
p(α)p(β)dαdβ

.
=

∫

RM∗+

M∗
∏

i=1

(1 + ρλi)
−b p(α)dα

·
∫

R+

(

1 + ρsγ
2
)−1

p(β)dβ

.
=

∫

RM∗+

M∗
∏

i=1

ρ−b(1−αi)+
M∗
∏

i=1

ρ−(2i−1+M∗−M∗)αidα

·
∫

R+

ρ−x(1−β)+ρxβdβ

.
=

∫

RM∗+

M∗
∏

i=1

ρ−[b(1−αi)++(2i−1+M∗−M∗)αi]dα

·
∫

R+

ρ−x(1−β)++xβdβ

.
=

∫

RM∗+

M∗
∏

i=1

ρ−[S(α)+
∑M∗

i=1 b(1−αi)+]dα

·
∫

R+

ρ−x[(1−β)++β]dβ

.
= ρ−∆1ρ∆2

.
= ρ−∆up . (5.28)

where we define pα(α)
.
= ρ−S(α)

S(α) ,
M∗
∑

i=1

(2i − 1 +M∗ −M∗)αi (5.29)

The distortion exponent can be separated in two independent components corresponding
to the channel state and the quality of the side information respectly. ∆1 is a well known
problem solved in proof of Theorem 4 in [18], and given by

∆1 =

M∗
∑

i=1

min {b, 2i− 1 +M∗ −M∗} . (5.30)

Component corresponding to the side information quality is the solution to

∆2 = inf x[(1 − β)+ + β]

s.t. β ∈ R
+. (5.31)

that solves for ∆2 = x for any β ∈ [0, 1]. That completes the proof.
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Appendix 5.B Proof for distortion exponent: separate source
and channel coding

The outage set Osb from equation (3.10) can be decomposed in two non intersecting sets,

Osb = E1 ⊕ E2, (5.32)

where E1 is the set of H such that there is an outage in the channel transmission and E2 is
the set for which there is an outage in the source decoder when the channel codeword has
been correctly decoded, i.e

E1 = {H : Rc > I(Ui;Vi)},
E2 = {(H, γ) : bRc < I(X;W |Y ), Rc ≤ I(Ui;Vi)}. (5.33)

The exponential behavior for the outage set event E1, Ẽ1, is obtained by finding the
equivalent outage probability set

Pr{E1}
= Pr{Rc > I(Ui;Vi)}
= Pr{rc log ρ > log det(I+ ρH†H)}

= Pr{log ρrc > log

M∗
∏

i=1

(1 + ρ1−αi), α1 ≥ ... ≥ αM∗
≥ 0}

.
= Pr{rc >

M∗
∑

i=1

(1− αi)
+, α1 ≥ ... ≥ αM∗

≥ 0}, (5.34)

where we have used the change of variables similarly to (5.26).

The outage event E2 is exponentially equivalent to Ẽ2

Pr{E2}
= Pr{I(X;W |Y ) > bRc|Ec

1}

= Pr

{

log

(

1 +
1

σ2
Q(γ

2ρ+ 1)

)

> bRc|Ec
1

}

= Pr

{

1 +
ρrs+brc − 1

ρx(1−β) + 1
> ρbrc |Ec

1

}

.
= Pr

{

1 + (ρrs+brc)ρ−x(1−β)+ > ρbrc |Ec
1

}

.
= Pr

{

ρ(rs+brc−x(1−β)+)+ > ρbrc |Ec
1

}

.
= Pr

{

rs > x(1− β)+|Ec
1

}

, (5.35)

where γ2 = ρ−β.
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The exponential expected distortion can be computed as

EDsb(Rs, Rc)

=

∫∫

Ec

Dd(Rs + bRc, γ)ph(H)pγ(γ)dHdγ

+

∫∫

E1
Dd(0, γ)ph(H)pγ(γ)dHdγ

+

∫∫

E2
Dd(0, γ)ph(H)pγ(γ)dHdγ.

.
=

∫

Ec
α

pα(α)dα

∫

Ec
β

Dd(rs + brc, β)pβ(β)dβ

+

∫

Ec
α

pα(α)dα

∫

Eβ
Dd(0, β)pβ(β)dβ

+

∫

Eα
pα(α)dα

∫

R+

Dd(0, β)pβ(β)dβ

Where we have used that the equivalent outage sets can be separated for α and β as:

Ẽ1 = Ẽα ⊕R
+ =

{

α : rc >

M∗
∑

i=1

(1− αi)
+, α1 ≥ ... ≥ αM∗

≥ 0

}

⊕R
+,

Ẽ2 = Ẽc
α ⊕ Ẽβ

=

{

α : rc ≤
M∗
∑

i=1

(1− αi)
+, α1 ≥ ... ≥ αM∗

≥ 0

}

⊕
{

β : rs > x(1− β)+
}

, (5.36)

Note that the integrals dependant on the channel realization correspond to the outage prob-
ability of a MIMO channel, Pout, that is known to be exponential characterized by the dmt
curve d∗(r) of the system:

Pout
.
=

∫

Eα
pα(α)dα

.
=

∫

Eα
ρ−S(α)dα

.
= ρ−d∗(rc) (5.37)

where for an Mt ×Mr MIMO block fading channel, the optimal tradeoff curve d∗(rc) is given
by the piecewise-linear function connecting the points (k, d∗(k)),k = 0, 1, ...,M∗ , where

d∗(k) = (Mt − k)(Mr − k). (5.38)

Following the reasonings in [10], the remaining integral in the first term is exponentially
equivalent

∫

Ẽc
β

ρ−max{x(1−β)+,rs+brc}ρ−βdβ
.
= ρ−Γs1(rs,rc) (5.39)

where using the Laplace’s method [18], we have

Γs1(rs, rc) = inf max{x(1− β)+, rs + brc}+ xβ

s.t. rs ≤ x(1− β)+. (5.40)
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Similarly, the second integral can be expressed as
∫

Eβ
ρ−(x(1−β)++xβ)dβ

.
= ρ−Γs2(rs). (5.41)

where

Γs2(rs) = inf x[(1− β)+ + β]

s.t. rs > x(1− β)+. (5.42)

The third integral can be simplified likewise and

Γs3 = inf x[(1− β)+ + β]

s.t. β ≥ 0. (5.43)

Thus, the distortion exponent can be calculated as

EDsb(rs log ρ, rc log ρ)
.
= (1− Pout)ρ

−Γs1(rs,rc) + (1− Pout)ρ
−Γs2(rs) + Poutρ

−Γs3

.
= ρ−Γs1(rs,rc) + ρ−Γs2(rs) + ρ−(d∗(rc)+Γs3)

.
= ρ−min{Γs1(rs,rc),Γs2(rs),d∗(rc)+Γs3}
.
= ρ−∆sb(rs,rc,b), (5.44)

The dominant exponent for the separate source and channel coding scheme can then be
obtained as the solution of the following optimization problem

∆sb(rs, rc, b) = min{Γs1(rs, rc),Γs2(rs), d
∗(rc) + Γs3} (5.45)

Note that from (5.40), (5.42) and (5.43), one can conclude that considering β > 1 can only
increase the expressions to minimize. Consequently, we restrict to 0 ≤ β ≤ 1.

First we solve (5.40). From the constraint we see that β has to satisfy β ≤ 1− rc
x
. Hence,

the infimum is obtained for β = 0 if rs ≤ x and given by

Γs1(rc, rs) = max{x, rs + brc} if rs ≤ x. (5.46)

Next we solve (5.42). Considering the restrictions, rs > x(1−β)+, the infimum is obtained
for β = (1 − rs

x
+ epsilon)+ with ǫ > 0. Note that if rs = 0, there exists no β satisfying the

constraint and the integral does not exist. Hence, letting ǫ → ∞, the infimum is given by

Γs2(rs) = x for rs > 0. (5.47)

Next, problem (5.43) was solved in proof 5.A and is given, for any β ∈ [0, 1] as

Γs3 = x. (5.48)

Bringing all these together, we obtain from (5.45):

∆sb(rs, rc, b) =











x if rs > 0,

min{x+ d∗(rc), brc} rc ≤ 1, rs = 0.

(5.49)
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We now design the rate such that the minimum distortion exponent is maximized, i.e.

∆sb(b) , max
rs,rc

∆sb(rs, rc, b). (5.50)

It can be seen from (5.49) that by letting rs = 0, i.e. by transmitting without binning,
we can improve the distortion exponent. In this case, the infimum is achieved equating
the two terms inside min{·}: x + d∗(rc) = brc. In order to find the explicit expression.
For rc = j, where j = 1, ...,M∗ − 1 are integers, the distortion exponent has solutions at
b = dds(j)−x

j
. Note that if x ≥ bd(M∗), the intersection is always at brc = x. Hence,

∆sb interpolates(dds(j)−x
j

, d(j) + x) points if x < M∗b and is constant x if x ≥ M∗b. For
b ∈ [(M∗ − 1)(M∗ − 1),M∗M∗), the dmt curve intersects as

x+M∗M∗ − (M∗ +M∗ − 1)rsb = brsb, (5.51)

and

∆sb(b, x) = b
M∗M∗ + x

M∗ +M∗ − 1 + b
, (5.52)

for

rsb =
M∗M∗ + x

M∗ +M∗ − 1 + b
. (5.53)

For b ∈ [ (M
∗−k−1)(M∗−k−1)+x

k
, (M

∗−k)(M∗−k)+x
k

) we can consider the intersection of

(M∗ − (k + 1))(M∗ − (k + 1))− (rsb − (k + 1))(1 − 2(k + 1) +M∗ +M∗) = brsb (5.54)

for k = 1, ...,M∗ − 1 and hence,

rsb =
M∗M∗ + x− k(k + 1)

b+M∗ +M∗ − 1− 2k
. (5.55)

Then, the distortion exponent is given by

∆sb(b, x) = b
M∗M∗ + x− k(k + 1)

b+M∗ +M∗ − 1− 2k
. (5.56)

Finally, note that we have that ∆sb(b, x) ≤ x if b ≤ x(M∗+M∗−1)
M∗M∗

and hence the distortion
exponent ∆sb(b, x) = x for this range. Notice that this range includes b ≤ x

M∗
, which completes

the proof.

Remark 3. The optimal exponent is obtained for rs = 0 which indicates that the number

of auxiliary codewords in each bin has to be one per bin. However, note that at finite SNR

regime, separation with binning outperforms the scheme with no binning.

Appendix 5.C Proof for distortion exponent: uncoded

Using the same reasonings as in the proof for Theorem 12, with µi
.
= ρ−αi we have

1

M∗

M∗
∑

i=1

1

1 + ρµi + ρsγ2
.
=

1

M∗

M∗
∑

i=1

1

1 + ρ1−αi + ρx(1−β

.
=

1

M∗

M∗
∑

i=1

ρ−max{(1−αi)+,x(1−β)+}

ρ−mini=1,...,M∗ max{(1−αi)+,x(1−β)+}
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and hence, the exponential equivalent can be found for M∗b < 1 as

EDu
.
= (1−M∗b)

∫

R

ρ−x(1−β)+ρ−xβdβ

+ M∗b
∫∫

RM∗+1

ρ−mini=1,...,M∗ max{(1−αi)+,x(1−β)+}

· ρ−(S(α)+β)dαdβ
.
= (1−M∗b)ρ−∆uN +M∗bρ−∆uR

.
= ρ−∆u, (5.57)

Note that the distortion for the source samples with uncoded transmission, i.e. XnM∗

1 , behave
exponentially as ρ−∆uR and source samples without uncoded transmission, Xm

M∗n+1, behave
as ρ−∆uN . If M∗b ≥ 1, all samples can be transmitted though the channel and equation (5.57)
simplifies to

EDu
.
=

∫∫

RM∗+1

ρ−mini=1,...,M∗ max{(1−αi)
+,x(1−β)+}

· ρ−(S(α)+β)dαdβ
.
= ρ−∆uR, (5.58)

Note that increasing the channel input power does not modify the diversity of the system.

Then, the dominant exponent is the solution to the optimization problem

∆u =











min{∆uR,∆uN } if M∗b < 1,

∆uR if M∗b ≥ 1,

(5.59)

where

∆uR = inf min
i=1,...,M∗

max{(1 − αi)
+, x(1 − β)+}+ S(α) + xβ

s.t. α1 ≥ ... ≥ αM∗
≥ 0, β ≥ 0, (5.60)

and

∆uN = inf x[(1− β)+ + β] + S(α)

s.t. α1 ≥ ... ≥ αM∗
≥ 0, β ≥ 0, (5.61)

Next we solve (5.60). Picking β = 0 minimizes the expression for any α. We observe that
S(α) ≥ 1 and hence by picking αi = 0 the expression is minimized. The infimum is then
given by ∆uR = max{1, x}. Problem (5.61) achieves the minimum ∆uN = x for α = 0 and
β = 0.

Then (5.59), the distortion exponent for uncoded transmission is given by

∆u =











x if M∗b < 1,

max{1, x} if M∗b ≥ 1.

(5.62)
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Appendix 5.D Proof for distortion exponent : NBJD

The outage probability of the joint source-channel scheme is characterized by

Pr{Oj} = Pr{ I(X;W |Y ) > bI(U;V) }. (5.63)

By operating as in [10] we obtain

Pr{Oj} = Pr

{

1 +
ρrj − 1

γ2ρx + 1
>

M∗
∏

i=1

(1 + ρλi)
b

}

. (5.64)

Now we apply the change of variables λi = ρ−αi , α1 ≥ ... ≥ αM∗
≥ 0 and γ2 = ρ−xβ

distributed as in (5.26). Then,

Pr{1 + ρrj − 1

ρx(1−β) + 1
>

M∗
∏

i=1

(1 + ρ1−αi)b}

.
= Pr{1 + (ρrj − 1)ρ−x(1−β)+ > ρb

∑M∗
i=1(1−αi)+}

.
= Pr{1 + ρrj−x(1−β)+ > ρb

∑M∗
i=1(1−αi)+}

.
= Pr{ρ(rj−x(1−β)+)+ > ρb

∑M∗
i=1(1−αi)

+}
.
= Pr

{

(rj − x(1− β)+)+ > b

M∗
∑

i=1

(1− αi)
+

}

. (5.65)

We define the exponentially equivalent outage event set Õj as

Õj =

{

(α, β) : (r − x(1− β)+)+ > b

M∗
∑

i=1

(1− αi)
+, β ≥ 0α1 ≥ ... ≥ αM∗

≥ 0

}

. (5.66)

where we can restrict to α ≥ 0 and β ≥ 0 with the reasoning used to obtain the sets in (5.36).
The expected end-to-end distortion can be expressed as

EDj(rj log ρ)
.
=

∫∫

Õc
j

Dd(rj , β)pα(α)pβ(β)dαdβ

+

∫∫

Õj

D̃d(0, β)pα(α)pβ(β)dαdβ

.
=

∫∫

Õc
j

ρ−max{x(1−β)+,rj}ρ−(S(α)+β)dαdβ

+

∫∫

Õj

ρ−x(1−β)+ρ−(S(α)+β)dαdβ.

.
= ρ−∆j1(rj) + ρ−∆j2(rj)

.
= ρ−min{∆j1(rj ,b),∆j2(rj ,b)}
.
= ρ−∆j(rj ,b). (5.67)

The dominant exponent for the joint scheme can then be then obtained as the solution of the
following optimization problem

∆j(rj , b) = min{∆j1(rj , b),∆j2(rj , b)}, (5.68)
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where

∆j1(rj , b) = inf max{x(1 − β)+, rj}+ xβ + S(α)

s.t.(rj − x(1− β)+)+ ≤ b

M∗
∑

i=1

(1− αi)
+. (5.69)

and

∆j2(rj , b) = inf x[(1− β)+ + β] + S(α)

s.t.(rj − x(1− β)+)+ > b
M∗
∑

i=1

(1− αi)
+. (5.70)

As in previous proofs, we can constrain to 0 ≤ αi ≤ 1 and 0 ≤ β ≤ 1. We first solve problem
(5.69). If rj ≤ x(1− β), we have

∆j1(rj , b) = inf x+ S(α)

s.t.0 ≤ αi ≤ 1

0 ≤ β ≤ 1− rj
x
. (5.71)

The infimum corresponds to ∆j1(rj , b) = x for αi = 0 and β ∈ [0, 1 − rj
x
). Note that the

solution is only valid for rj ≤ x. If rj > x(1− β), we have

∆j1(rj , b) = inf rj + S(α) + xβ

s.t.0 ≤ αi ≤ 1

0 ≤ β ≤ 1

β ≤ b

M∗
∑

i=1

(1− αi)
+ + x− rj

β > 1− rj
x
. (5.72)

By picking αi = 0, we minimize S(α) and increase the domain of β in the problem. Then

∆j1(rj , b) = inf rj + xβ

s.t.0 ≤ β ≤ 1

β ≤ bM∗ + x− rj

β > 1− rj
x
. (5.73)

The minimizing β is given by β = (x − rj)
+ + ǫ if rj ≤ bM∗ + x. Hence, letting ǫ → 0 the

infimum distortion exponent is

∆j1(rj , b) =











rj if x ≤ rj ≤ x+M∗b,

x if rj < x.

(5.74)
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Next we solve the second optimization problem (5.70). If rj ≥ x + bMt there exist no
elements (α, β) ∈ Oc

j , i.e. there is always outage. This can be seen as

(rj − (x− β)+)+ ≤ b

M∗
∑

i=1

(1− αi)
+

(bMt + x+ ǫ− (x− β)+)+ ≤ b

M∗
∑

i=1

(1− αi)
+ (5.75)

which can never be satisfied for a rate rj = x+ bMt+ ǫ. If β = 1, ∆j2(rj , b) is minimized and
the range of α increases. Then, the problem becomes

∆j2(rj, b) = inf x+ S(α)

s.t.0 ≤ αi ≤ 1

rj > b

M∗
∑

i=1

(1− αi)
+. (5.76)

that is an scaled version of the dmt problem in 5.37. Hence, we have

∆2j(rj , b) =











x+ d∗( rj
b
) if rj ≤ b,

x if rj > b.

(5.77)

Bringing all together, if x ≤ b the expected distortion exponent for the joint source-channel
scheme in (5.68) is

∆j(rj , b) =











x if rj ≤ x, rj > b,

min{x+ d∗( rj
b
)} if x ≤ rj ≤ b.

(5.78)

If b < x, the expected distortion exponent for the joint source-channel scheme is ∆j(rj , b) =
x.

We now design the code such that the minimum distortion exponent is maximized, i.e.

∆j(b) , max
rj

∆j(rj , b). (5.79)

In order to maximize the minimum distortion exponent, we chose a rate such that x+d∗( rj
b
) =

rj , that is an scaling of 5.45, and hence

rj = brc. (5.80)
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Appendix 5.E Proof for distortion exponent: hybrid digital-
analog, case M∗b ≤ 1

Let b′ , 1
1−bM∗

. By applying the usual change of variables Rh = rh log ρ, λ
2
i = ρ−αi and

‖γ‖2 = ρ−β, in (3.15) we have

Õh =







b′ log
det
(

I+ ρ
M∗

HM∗
H

†
M∗

)

det
(

I+ ρ1−η

M∗
HM∗

H
†
M∗

) < log

(

1 +
2Rh

1 + ρxγ2

)







=







b′ log

∏M∗

i=1

(

1 + ρ
M∗

λi

)

∏M∗

i=1

(

1 + ρ1−η

M∗
λi

) < log

(

1 +
2Rh

1 + ρxγ2

)







.
=

{

b′(
M∗
∑

i=1

(1− αi)
+ − (1− αi − η)+) < (rh − (x− β)+)+, α1 ≥ ... ≥ αM∗

≥ 0

}

.(5.81)

We now examine each term in (3.16). The exponent for the first term is found to be,
similarly to the other proofs as

∆h1(rh, η) = inf max{rh, (x− β)+}+ S(α) + β

s.t. (α, β) ∈ Õc
h. (5.82)

The second term is found to be

∆h2(rh, η) = inf max{(1 − α1 − η)+, (x− β)+}+ S(α) + β

s.t. (α, β) ∈ Õc
h. (5.83)

Finally, it is easy to see that the third and fourth term have the same exponential behaviour,
given by

∆h34(rh, η) = inf(x− β)+ + S(α) + β

s.t. (α, β) ∈ Õh. (5.84)

Then, similarly to the other proofs, the expected distortion is exponentially equivalent to

EDh(Rh)
.
= (1− bM∗)ρ

−∆h1(rh,η) + bM∗ρ
−∆h2(rh,η) + ρ−∆h34(rh,η)

.
= ρ−∆h(rh,η) (5.85)

where

∆h(rh, η) = inf{∆h1(rh, η),∆h2(rh, η),∆h34(rh, η)}. (5.86)

We can restrict 0 ≤ αi ≤ 1 and 0 ≤ β ≤ x without loss of generlality. We first start by solving
problem (5.84). It can be seen that β = x as the distortion exponent is minimized and the
domain of αi is increased. Then,

∆h34(rh, η) = inf x+ S(α)

s.t. b′
M∗
∑

i=1

[(1− αi)
+ − (1− αi − η)+] < rh,

α1 ≥ ... ≥ αM∗ ≥ 0. (5.87)
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Let rh
b′

= kη + δ with k ∈ {0, ...,M∗ − 1} and 0 ≤ δ ≤ η. Then, the infimum is given by

αi =



























1, 1 ≤ i < M∗ − k,

1− δ, i = M∗ − k,

0, M∗ − k < j ≤ M∗

(5.88)

. Then we have that

∆h34 = x+ dk(rh) (5.89)

where

dk(rh) = (M∗ − k)(M∗ − k)− (M∗ +M∗ − 1− 2k)δ. (5.90)

for rh
b′

= kη + δ with k ∈ {0, ...,M∗ − 1} and 0 ≤ δ ≤ η
Next, we solve (5.82). We have that α = 0 independently of the rest of parameters. If

rh ≤ x− β, then the problem simplifies to

∆h1(rh, η) = inf(x− β)+ + β

s.t. 0 ≤ β < x− rh. (5.91)

The infimum is achieved for ∆h1 = x for any β ∈ [0, x− rh) if x > rh. If rh > x− β, we have

∆h1(rh, η) = inf rh + β

s.t. M∗b
′(1− (1− η)+) ≥ rh − (x− β)

0 ≤ β ≤ x

β ≥ x− rh. (5.92)

The infimum is achieved for β = (x− rh)
+. Finally,

∆h1(rh, η) =











x+ ǫ1 if rh < x,

rh if x ≤ rh ≤ x+ ηb′M∗.

(5.93)

Next we solve (5.83). We have that α = 0 is optimal indendently of β, rh, x. If rh < x−β,
we have

∆h2(rh, η) = inf max{(1 − η)+, x− β}+ β

s.t. 0 ≤ β ≤ M∗b′η + x− rh. (5.94)

The infimum is achieved for β = 0 if x <≥ rh, and

∆h2(rh, η) = max{(1 − η)+, x}, rh ≤ M∗b′η + x. (5.95)

The distortion exponent is then given by the maximum infimum in (5.86), i.e,

∆h(b, x) = max
rh,η

inf{∆h1(rh, η),∆h2(rh, η),∆h34(rh, η)}. (5.96)
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By letting k = M∗ − 1, we have

dk = (M∗ −M∗ + 1)(1− δ) (5.97)

Notice that 0 ≥ δ ≥ η and hence, ∆34(b, x) ≥ ∆2(b, x). Consequently, by picking rh = 1− η,
we have rh ≤ b′M∗(1−r)+x, and the maximum exponent is found for rh = M∗b+(1−bM∗)x−ǫ
and η = 1− rh. Then, the maximum distortion exponent is given, by letting ǫ → 0 by

∆h(b, x) = M∗b+ (1− bM∗)x. (5.98)

Appendix 5.F Proof for distortion exponent: hybrid digital-

analog, case M∗b > 1

The expected distortion function behavior, at high SNR can be calculated, similarly to the
the proofs in previous sections as

EDh(Rh) =

∫∫

Oh

Dd(0, γ)ph(HM∗
)pγ(γ)dHM∗

dγ +

∫∫

Oc
h

Dpd(Rh,HM∗
, γ)ph(HM∗

)pγ(γ)dHM∗
dγ.

.
= ρ−∆h1 + ρ−∆h2 ,
.
= ρ−max{∆h1,∆h2}, (5.99)

where ∆h1,∆h2 are obtained similarly to other proofs and given next.

By applying the usual change of variables Rh = rh log ρ, σ
2 = (2Rh − 1)

.
= ρ−rh λ2

i = ρ−αi

and ‖γ‖2 = ρ−β the outage event is given at high SNR by

Oh =

{

(H, γ) : log det

(

(

I+
ρ

M∗
HH†

)−1

+
1

σ2(γ2 + 1)
I

)

> b′ log det(I+
ρ

M∗
HM∗

H
†
M∗

)

}

=







(H, γ) : det

(

(

I+
ρ

M∗
HH†

)−1
)

det



I+

(

I+ 1
M∗

HH†
)

σ2(γ2 + 1)



 > det(I+
ρ

M∗
HM∗

H
†
M∗

)b
′







=







(H, γ) : det



I+

(

I+ ρ
M∗

HH†
)

σ2(γ2 + 1)



 > det(I+
ρ

M∗
HM∗

H
†
M∗

)1+b′







=

{

(H, γ) :

M∗
∏

i=1

(

1 +
1 + ρλi

σ2(γ2 + 1)

)

>

M∗
∏

i=1

(1 + ρλi)
1+b′

}

.
=

{

(α, β) :

M∗
∏

i=1

(

1 +
ρ(1−αi)

+

ρ−rh(ρ(x−β)+)

)

>

M∗
∏

i=1

(

ρ(1−αi)
+
)1+b′

, α1 ≥ ... ≥ αM∗
≥ 0

}

.
=

{

(α, β) :

M∗
∑

i=1

[(1− αi)
+ + rh − (x− β)+]+ > (1 + b′)

M∗
∑

i=1

(1− αi)
+, α1 ≥ ... ≥ αM∗

≥ 0

}

(5.100)

where b′ = (M∗b− 1).
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On the other hand, the exponential behavior equivalent of the distortion functionDpd(R,h, γ)
is given by

Dpd(R,h, γ) =

M∗
∑

i=1

(

1

σ2
(1 +

ρλi

M∗
) + γ2ρx + 1

)−1

.

.
=

M∗
∑

i=1

(

ρ(x−β)+ + ρrhρ(1− αi)
+
)−1

.
= ρ−max{(x−β)+,rh+(1−αM∗ )

+} (5.101)

Similarly to other proofs, without loss of generality we can constrain 0 ≤ αi ≤ 1 and 0 ≤ β ≤
x. Hence,

∆h1(rh) = max{(x− β)+, rh + (1− αM∗
)+}+ S(α) + β

s.t.

M∗
∑

i=1

[(1− αi)
+ + rh − (x− β)+]+ ≤ (1 + b′)

M∗
∑

i=1

(1− αi)
+,

α1 ≥ ... ≥ αM∗
≥ 0. (5.102)

and

∆h2(rh) = inf(x− β)+ + S(α) + β

s.t.

M∗
∑

i=1

[(1− αi)
+ + rh − (x− β)+]+ > (1 + b′)

M∗
∑

i=1

(1− αi)
+,

α1 ≥ ... ≥ αM∗
≥ 0. (5.103)

First we solve (5.102). The infimum for this problem is obtained for α = 0 and β = 0,
and is given by

∆1h(b, x) = max{x, rh + 1} for rh ≤ M∗b− 1 + x. (5.104)

Now we solve (5.105). Notice that by letting β = x, the range αi increases while ∆2h(b, x)
is minimized. Hence, the problem to solve is

∆h2(rh) = inf x+ S(α)

s.t. M∗r
+
h > b′

M∗
∑

i=1

(1− αi)
+,

α1 ≥ ... ≥ αM∗
≥ 0. (5.105)

This problem has been already solved in Section 5.37, and is given, changing b′ = M∗b − 1,
by

∆2h(b, x) = x+ d

((

b− 1

M∗

)

rh

)

. (5.106)

Gathering all results, the distortion exponent is maximized by letting ∆1(rh, x) = ∆2(rh, x),
i.e. rh + 1 = x + d((bM∗ − 1)rh) for rh > x. First, let r′h = rh(b − 1

M∗
). Then, the problem

can be expressed as r′h
(

b− 1
M∗

)

+ 1 = x + d(r′h). From the points at which rh = k is an
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integer, k = 1, ...,M∗ − 1, we have that the ranges of b for which d(rh) is the interpolating
points between d(k − 1) and d(k), by equaling 1 + i(b − 1

M∗
) = (M∗ − 1)(M∗ − 1) + x, are

given by

b ∈ [k −M∗ +
1

M∗
−M∗ +

M∗M∗ − 1 + x

k
, k − 1−M∗ +

1

M∗
−M∗ +

M∗M∗ − 1 + x

k − 1
)

for k = 1, ...,M∗ − 1. (5.107)

and the solution is given by

∆h(b, x) = 1 +
(b(M∗ − k)− 1)((M∗ − k)(M∗ − k)− 1 + x)

(M∗ − k)(b+ (M∗ − k) + (M∗ − k)− 1)− 1
(5.108)

for

r′h =
(M∗ − k)((M∗ − k)(M∗ − k)− 1 + x)

(M∗ − k)(b+ (M∗ − k) + (M∗ − k)− 1)− 1
, (5.109)

If−1+M∗(1+M∗−M∗+x))
(M∗−1)M∗

≤ b ≤ 1
M∗

, we have that the intersection is given by

1 + r′h

(

b− 1

M∗

)

= x+M∗M∗ − (M∗ +M∗ − 1)r′h (5.110)

that solves as

r′h =
M∗(M∗M∗ − 1 + x)

M∗(b+M∗ +M∗ − 1)− 1
, (5.111)

and the distortion exponent is

∆h(b, x) = 1 +
(bM∗ − 1)(M∗M∗ − 1 + x)

M∗(b+M∗ +M∗ − 1)− 1
(5.112)

Notice that if x ≥ bM∗, the distortion exponent is always ∆h(b, x) = x, due to the
intersection with d(r) = x, constant. Taking the maximum of of this expression with x at
each interval completes the proof.

Appendix 5.G Proof for distortion exponent: HDA

We have that for HH† = UΛU† the distortion expression can be expressed as

EDh(κ) =

∫∫

Oc
h

D(κ,H, γ2)pγ(γ)pλ(Λ)pu(U)dγdΛdU

+

∫∫

Oh

D(0,H, γ2)pγ(γ)pλ(Λ)pu(U)dγdΛdU.

First note that p(U) is a Haar distribution and does not depend on ρ and all dependency on
ρ of H is included in Λ.

Let λi = ρ(1−αi), a = ρ(x−β)+ and κ2 = ρ1−ν with ν ∈ [0,∞), then,

1 +
ρ1−ν

ρ(x−β)+

M∗
∑

i=1

s2i
|s|2

(

1 +
1

Mt
ρ1−αi

)

>

M∗
∏

i=1

(

1 +
ρ1−αi

Mt

)b
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The exponential behavior of

M∗
∑

i=1

s2i
|s|2

(

1 +
1

Mt
ρ1−αi

)

.
= ρ(1−αM∗ )

+
(5.113)

this is true with probability one, as the multiplying component to the maximum eigenvalue
is sM∗

= 0 with probability 0. On the other hand, by definition of the Haar distribution, the
Haar distributed vectors are unit norm and hence

∑M∗

i=1 s
2
i = 1 and si

|s|2 is bounded. Finally, we

can conclude that the maximum eigenvalue dominates the sum with probability one. Then,

1 + ρ(1−ν)−(x−β)++(1−αM∗ )
+
> ρb

∑M∗
i=1(1−αi)

+
(5.114)

that is equivalent to

{(α, β) : [(1− ν)− (x− β) + (1− αM∗
)]+ > b

M∗
∑

i=1

(1− αi),

α1 ≥ ... ≥ αM∗
≥ 0} (5.115)

The same reasoning can be done for the distortion exponential behavior, and

D(κ,H, γ2) = (1 + γ2 +
κ2

|s|2
M∗
∑

i=1

(1 + λi)s
2
i )

−1

.
= (1 + ρ(x−β)+ +

1− ν

|s|2
M∗
∑

i=1

(1 + λi)s
2
i )

−1

(5.116)

Using Varadhan integral lemma, we have that

∆1hda(b, x) =

inf max{x− β, 1− ν + (1− αM∗
)}+ S(α) + β

s.t. [(1 − ν)− (x− β) + (1− αM∗
)]+ ≤ b

M∗
∑

i=1

(1− αi),

α1 ≥ ... ≥ αM∗
≥ 0} (5.117)

and

∆2hda(b, x)= inf(x− β) + S(α) + β

s.t. [(1− ν)− (x− β) + (1− αM∗
)]+ > b

M∗
∑

i=1

(1− αi),

α1 ≥ ... ≥ αM∗
≥ 0} (5.118)

First we solve problem (5.117). If 1 − ν ≥ x, the minimum for this problem is given by
β = 0 and α = 0 and is given by

∆1hda(b, x) = inf max{x, 1− ν + 1}
for (1− ν)− x+ 1 ≤ bM∗. (5.119)
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Now we solve problem (5.121). We can set β = x as the optimal β as the domain of α is
increased while ∆2hda(b, x) is minimized.

If 1− ν ≤ (1− b), we have that

∆2hda(b, x)= inf(x− β) + S(α) + β

s.t. [(1− ν)− (x− β) + (1− αM∗
)]+ > b

M∗
∑

i=1

(1− αi),

α1 ≥ ... ≥ αM∗
≥ 0} (5.120)

is minimized by αM∗
= 1− 1−ν

b−1 + ǫ and αi = 1 for i = 1, ...,M∗ − 1. And

∆2hda(b, x) = x+ (M∗ − 1)(M∗ − 1)

+ (M∗ +M∗ − 1)(1 − 1− ν

b− 1
− ǫ) (5.121)

By equating ∆1hda(b, x) = ∆1hda(b, x) we obtain

∆hda(b, x) =
M∗ +M∗ − 1 + (b− 1)M∗M∗

M∗ +M∗ − 1 + b− 1 + (b− 1)x
,

for b ≥ M∗M∗ + x− (M∗ +M∗ − 1). (5.122)

for

1− ν =
(b− 1)(M∗ +M∗ − 1 + x)

M1 +M2− 2 + b
, (5.123)

that corresponds to

b ≥ (M∗ − 1)(M∗ − 1) + x. (5.124)

If 1− ν ≥ (1− b), consider b(k− 1) + (b− 1) ≤ rh ≤ bk+ (b− 1) with k = 1, ...,M∗ − 1, or
equivalently, rh = b(k− 1) + b− 1+ δ with δ ∈ [0, b). We have that the problem is minimized
by

αi =



























1 1 ≤ i < M∗ − k

1− δ
b
+ ǫ i = M∗ − k

0, M∗ − k < i ≤ M∗ − 1.

(5.125)

with ǫ > 0 and the infimum is given by

∆2hda(b, x) = x+ (M∗ − 1− k)(M∗ − 1− k)

+ (M∗ +M∗ − 1− 2k)

(

1− δ

b

)

for b(k − 1) + (b− 1) ≤ rh ≤ bk + (b− 1),

k = 1, ...,M∗ − 1. (5.126)

For b ∈
[

x+(M∗−(k+1))(M∗−(k+1))
(k+1) , x+(M∗−k)(M∗−k)

k

)

for k = 1, ...,M∗, the solution is given by

∆2hda(b, x) =
b (M∗M∗ − (k(k + 1) + x)

b− 1 +M∗ +M∗ − 2k
. (5.127)

and ∆hda(b, x) = x for b ≤ x
M∗

.
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Appendix 5.H Proof for distortion exponent: multi-layer no
binning

Following [2], we consider a power allocation satisfying

ρ̄k = ρ1−
∑k−1

i=0 ri+ǫk−1 . (5.128)

with 0 < ǫk−1 < ǫk. It is straightforward to obtain that the exponential behavior of the
expected distortion EDml is given by

EDml
.
=

L
∑

k=0

ρ−dsd(rk+1)ρ−∆d
k
.
=

L
∑

k=0

ρ−∆k . (5.129)

where ∆d
k , max{x,∑k

i=0 ri} is the equivalent distortion exponent for the averaged distor-
tion. The successive decoding diversity gain is found in [2] as the solution to the successive
probability of outage at each layer, i.e.

dds(rk) = inf S(α)

s.t.

M∗
∑

i=1

(1−
k−1
∑

i=1

ri − ǫk−1 − αi)
+ −

M∗
∑

i=1

(1−
k
∑

i=1

ri − ǫk − αi)
+ < rk+1,

α1 ≥ ... ≥ αM∗
≥ 0, (5.130)

that is explicitly given by

dds(rk) = M∗M∗(1−
k−1
∑

i=1

ri)− (M∗ −M∗ − 1)rk. (5.131)

The exponent distortion is given by the minimum of each layer exponent ∆k, i.e.

∆L
ml = min

0≤k≤L

{

dsd(rk+1) + ∆d
k

}

. (5.132)

If x ≥ br1, we have ∆d
k = x for all k. The minimum exponent is then given by ∆L = x.

If x ≤ br1x, we have that ∆d
k = b

∑k
i=1 ri for all i. The system becomes

∆0 = x+M∗M∗ − (M∗ +M∗ − 1)r1,

∆k = M∗M∗ − (M∗M∗ − b)

k
∑

i=1

ri − (M∗ −M∗ − 1)rk+1,

for k = 1 . . . L− 1,

∆L = b

L
∑

i=1

ri. (5.133)

Now we design the rates rk such that the minimum distortion exponent is maximized.
Note that ∆0 and ∆k are decreasing in rk while ∆L is increasing. We first consider the case
b ≥ (Mt − 1)(Mr − 1). Let

η0 =
b− (Mt − 1)(Mr − 1)

Mt +Mr − 1
≥ 0. (5.134)
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For 0 ≤ η0 < 1, i.e. M∗M∗ ≥ b ≥ (M∗−1)(M∗−1) we minimize by equaling all the exponents
∆0 = ∆1 = · · · = ∆L. Then, we have that all distortion exponents are equal for

rk =

(

1− ηL−1
0

1− η0

)k−2

r2, for k = 3, ..., L, (5.135)

where

r2 = η0r1 −
x

Mt +Mr − 1
, (5.136)

and

r1 =
1− η0

MtMr − bηL0

(

MtMr + x

(

1 +
b

Mt +Mr − 1

(

1− ηL−1
0

1− η0

)))

.

the system solves for

∆L
ml =

bMtMr(1− ηL0 )

MtMr − bηL0
+ x

b(1− η0)η
L−1
0

MtMr − bηL0
, (5.137)

If η0 ≥ 1, i.e. b ≥ M∗M∗, rates rk cannot be chosen to be decreasing. consequently, we
pick equal rates r = r2 = r3 = · · · = rL. Then we have that ∆k ≥ ∆2. Hence we can only
maximize the lower ∆k, i.e ∆2. With this choice, the system becomes:

∆0 = x+M∗M∗ − (M∗ +M∗ − 1)r1

∆2 = M∗M∗ − (M∗M∗ − b)r1 − (M∗ +M∗ − 1)r

∆L = b(r1 + (L− 1)r). (5.138)

By equating, the system is solved for

∆L
ml =

b(L− 1)(b− δ1)(x+ δ1) + b(x+ δ1 + (L− 1)δ1)δ2
b(L− 1)(b − δ1) + bLδ2 + δ22

, (5.139)

with the rates

r =
δ1(b− x− δ1 + δ2)

b(L− 1)(b− δ1) + bLδ2 + δ22
, (5.140)

and

r1 =
b(L− 1)x+ (x+ δ1)δ2

b(L− 1)(b− δ1) + bLδ2 + δ22
, (5.141)

where

δ1 = M∗M∗ and δ2 = M∗ +M∗ − 1. (5.142)

For (M∗ − k− 1)(M∗ − k− 1) ≤ b < (M∗ − k)(M∗ − k), k = 1, ...,M∗ − 1, we can consider
a (M∗ − k)× (M∗ − k) antenna system and following the same steps as above, we obtain,

∆L
ml =

b(Mt − k)(Mr − k)(1− ηLk )

MtMr − bηLk
+ x

b(1− ηk)η
L−1
k

(Mt − k)(Mr − k)− bηLk
, (5.143)
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Note that if you consider x > b
∑k

i=1 ri, i.e the first k rates are under the quality provided
by the side information, by equaling the distortion exponents ∆1 = ∆i for i = 2...k, we have
that rates of such layers are forced to be 0, i.e. ri = 0 for i = 2...k. By relabeling the rates as
ri+1 = ri−k+2, the distortion exponents system becomes equivalent to one with L− k layers.
Thus there is no improvement by pursuing this strategy.

Finally, putting all the results together, the distortion exponent ∆L
ml is proved to be

Theorem 18. The distortion exponent ∆L
mle(b) for n multiple layer and estimate coding

scheme is characterized by

∆L
ml(b, x) =



























x if b ≤ x,

b+bLx−bL+1(1+x)
1−bL+1 if x < b < 1,

b(1−(L−1)x+b(L−1)(1+x))
1+b+b2(L−1) if x < 1 ≤ b.

(5.144)

The distortion exponent ∆∞
ml(b, x) for an infinite continuum of multiple layer and estimate

coding scheme can be proven to converge to

∆∞
ml(b, x) =



























x if b ≤ x,

b if x < b < MtMr,

M∗M∗ + x
(

b−M∗M
∗

b−(M∗−1)(M∗−1)

)

if x < MtMr ≤ b.

(5.145)

Appendix 5.I Proof for distortion exponent: multi-layers NBJD

The expected distortion can be expressed as

EDmj(R) =

L
∑

k=0

∫∫

Lk+1

Dd

(

k
∑

i=0

Ri,H, γ

)

ph(H)pγ(γ)dHdγ (5.146)

where LL+1 is the set such that all layers are decoded and is given by Lc
L. We have used the

fact that Lk are mutually exclusive to decompose the integral.

We consider a power allocation satisfying

ρk = ρ1−
∑k−1

i=0
ri
b
+ǫk−1 , (5.147)

such that
∑L

i=0 ri ≤ b for k = 2, ..., L and 0 < ǫk−1 < ǫk. By applying the usual change of
variables, λi

.
= ρ−αi , α1 ≥ ... ≥ αM∗

≥ 0, we have,

I(Ui,k;Vi|Uk−1
i,1 )

.
=

M∗
∑

i=1

(1− r1
b
− ...− rk−1

b
− ǫk−1 − αi)

+

−
M∗
∑

i=1

(1− r1
b
− ...− rk

b
− ǫk − αi)

+; (5.148)
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By applying the change of variables, Ri = ri log ρ and γ2 = ρ−xβ, (3.68) is equivalent to

I(X;Wk|W k−1
1 , Y ) = log

(

ρ
∑k

i=0 ri−x(1−β)+ + 1

ρ
∑k−1

i=0 ri−x(1−β)+ + 1

)

, (5.149)

for k = 1, ..., L.

Then, at high SNR we have

Pr{Lk} .
=







b

(

1−
k−1
∑

i=1

ri
b
− ǫk−1 − α

)+

− b

(

1−
k
∑

i=1

ri
b
− ǫk − α

)+

<

(

k
∑

i=1

ri − x(1− β)+

)+

−
(

k−1
∑

i=1

ri − x(1− β)+

)+

, α1 ≥ ... ≥ αM∗
≥ 0







.(5.150)

Then, similarly to the other proofs, the expected distortion function is exponentially
equivalent to

EDmj(R)

=

L
∑

k=0

∫∫

Lk+1

Dd

(

k
∑

i=0

Ri,H, γ

)

ph(H)pγ(γ)dHdγ

.
=

L
∑

k=0

∫∫

L̃k+1

ρ−(max{∑k
i=0 ri,x(1−β)+}+xβ+S(α))dαdβ

.
=

L
∑

k=0

ρ−∆k(r)

.
= ρ−∆mj(r). (5.151)

where

∆mj(r) = min {∆k(r)} . (5.152)

and

∆k(r) = inf max

{

k
∑

i=0

ri, x(1 − β)+

}

+ xβ + S(α)

s.t.(α, β) ∈ L̃k+1. (5.153)

For the case that any layer is decoded, ∆0,

∆0(r) = inf x[(1− β)+ + β] + S(α)

s.t.b

M∗
∑

i=1

((1− αi)
+ − (1− r1 − ǫ1

b
− αi)

+) < (r1 − x(1− β))+

α1 ≥ ... ≥ αM∗
≥ 0

0 ≤ β ≤ 1. (5.154)
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The infimum is achieved by and β = 1 and using, (5.166),

∆0(r) = x+ dds

(r1
b

)

. (5.155)

At layer k, the problem is given by

∆k = max{rk1 , x(1− β)}+ xβ + S(α)

s.t.b

M∗
∑

i1

(

(

1− αi −
rk1 − ǫk

b

)+

−
(

1− rk+1
1 − ǫk+1

b
− αi

)+)

< (rk+1
1 − x+ β)+ − (rk1 − x+ β)+,

α1 ≥ ... ≥ αM∗
≥ 0. (5.156)

If rk1 ≥ x, then the infimum is obtained for β = 0 and

∆k = max{rk1 , x}+ S(α)

s.t.b

M∗
∑

i1

(

(

1− αi −
rk1 − ǫk

b

)+

−
(

1− rk+1
1 − ǫk+1

b
− αi

)+)

< rk+1, (5.157)

α1 ≥ ... ≥ αM∗
≥ 0. (5.158)

that is a version of (5.166) and solved for

∆k = max{x,
k
∑

i=1

ri}+ d(rk+1). (5.159)

If rk1 ≤ x, the infimum is given by β =
x−rk1
x

and again, we have a version of (5.166) with
the distortion exponent is

∆k = x+ d(rk+1). (5.160)

At layer L, the distortion exponent is the solution to the problem

∆L(r) = inf max

{

L
∑

i=1

ri, x(1 − β)+

}

+ xβ + S(α)

s.t.

M∗
∑

i=1

b

(

1−
∑L−1

i=1 ri − ǫL
b

− αi

)+

≥
(

L
∑

i=1

ri − (x− β)

)+

−
(

L−1
∑

i=1

ri − (x− β)

)+

,

α1 ≥ ... ≥ αM∗
≥ 0. (5.161)

The infimum is achieved for αi = 0 and β = 0 and is given by

∆L = max

{

L
∑

i=1

ri, x

}

. (5.162)
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Finally, gathering all results, and letting all ǫk → 0

∆0 = x+ dds(
r1
b
),

∆k = max

{

x,
k+1
∑

i=1

ri

}

+ dds

(rk+1

b

)

,

∆L = max

{

L
∑

i=1

ri, x

}

. (5.163)

It is easy to see that by the scaling ri = br′i, the problem is equivalent to the multilayer
scheme without binning and thus have the same distortion exponent, i.e. ∆L

mj = ∆L
ml.

Appendix 5.J Proof for distortion exponent: multi-layers NBJD

with improved power allocation

We consider a power allocation satisfying

ρ̄k = ργk−1 − ργk . (5.164)

with γk ≥ 0 a decreasing sequence with γ0 = 1. Following the usual arguments, we have that
the exponential behavior of the expected distortion EDml is given by

EDml
.
=

L
∑

k=0

ρ−dsd(rk+1,γk,γk+1)ρ−∆d
k
.
=

L
∑

k=0

ρ−∆k . (5.165)

where ∆d
k , max{x,∑k

i=0 ri} is the equivalent distortion exponent for the averaged distortion
and the successive decoding diversity gain, defined in [2], is the solution to the successive
probability of outage at each layer, i.e.

dds(rk, γk−1, γk) = inf S(α)

s.t.

M∗
∑

i=1

(γk − αi)
+ −

M∗
∑

i=1

(γk−1 − αi)
+ < rk,

α1 ≥ ... ≥ αM∗
≥ 0. (5.166)

Consider that rate at each layer k, 0 ≤ rk ≤ M∗ given by rk = l(γk−1 − γγk) + δ where
l ∈ [0, 1, ...,M∗ − 1] and 0 ≤ δ < γk−1− γk. Then, the infimum for 5.166 is explicitly given by

αi =



























γk−1, 1 ≤ i < M∗ − l,

γk−1 − δ, i = M∗ − l,

0, M∗ − l < i ≤ M∗.

(5.167)

and is given by

dds(rk, γk−1, γk) = (M∗ − l)(M∗ − l)γk−1 − (M∗ +M∗ − 1− 2k)δ. (5.168)
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The exponent distortion is given by the minimum of each layer exponent ∆k, i.e.

∆L
ml = min

0≤k≤L

{

dsd(rk+1, γk, γk+1) + ∆d
k

}

. (5.169)

If x ≥ br1, we have ∆d
k = x for all k. The minimum exponent is then given by ∆L = x.

If x ≤ br1x, we have that ∆d
k = b

∑k
i=1 ri for all i. The system becomes

∆0 = x+ dsd(r1, γ0, γ1),

∆k = b
k
∑

i=1

ri + dsd(rk+1, γk, γk+1),

for k = 1 . . . L− 1,

∆L = b
L
∑

i=1

ri. (5.170)

Now we design the rates rk such that the minimum distortion exponent is maximized.
Note that ∆0 and ∆k are decreasing in rk while ∆L is increasing.

In the following, we fix rk = (l + 1)(γk−1 − γk) − ǫ, ǫ > 0 and γk arbitrary. By equaling
all distortion exponents ∆k for k = 1, ..., L − 1 equal, ∆k = ∆k+1, we have

dsd(rk′ , γk′−1, γk′) = brk′ + dsd(rk′+1, γk′ , γk′+1) (5.171)

where k′ = k + 1 for notation. Since r′k = (l + 1)(γk′−1 − γk′)− ǫ, we have

dsd(rk′ , γk′−1, γk′) = (M∗ − l)(M∗ − l)γk′−1

− (M∗ +M∗ − 1− 2k′)(γk′−1 − γ′k − ǫ).

(5.172)

Substituting in (5.171) we obtain that the power allocations have to satisfy,

(γk′ − γk′+1) = ηl(γk′−1 − γk′) + ǫ′ (5.173)

where epsilon′ → 0 when ǫ → 0, and we define

ηl ,
b(l + 1)− (M∗ − l − 1)(M∗ − l − 1)

M∗ +M∗ − 1− 2k′
. (5.174)

Then, we have have the following recursion

γ′k − γk′+1 = ηk
′−1

l (γ1 − γ2) + ǫ′. (5.175)

Finally, we have that for k = 2, ..., L − 1 the power allocation has to satisfy

γk − γk+1 = ηk−1
l (γ1 − γ2). (5.176)

Now, from ∆0 = ∆1, we have that

(γ1 − γ2) =

(b(1 + k)− (M∗ − 1− k)(M∗ − 1− k))(γ0 − γ1)− x

M∗ +M∗ − 1− 2k
(5.177)

67



Form ∆L = b
∑L

i=1 ri = b
∑L

i=1(l + 1)(γi−1 − γi)) we have

b(γ0 − γ1) + b(γ2 − γ1)

L
∑

i=1

ηi−1
l

= b(γ0 − γ1) + b(γ2 − γ1)
1− ηLl
1− ηl

, (5.178)

if ηl ≤ 1. Let

Γ ,
1− ηL−1

1− η
. (5.179)

From ∆0 = ∆L

(γ0 − γ1) =
(M∗ − k)(M∗ − k) + x− b(γ2 − γ1)Γ

−1 + b− 2k +M∗ +M∗
. (5.180)

From ∆1 = ∆L

(γ2 − γ1) =
(bk + (M∗ − k)(M∗ − k))(γ0 − γ1)

−1− 2k +M∗ +M∗ + bΓ
. (5.181)

Finally, putting all the results together, the distortion exponent ∆L
ml is given by

∆L
ml2 = b(1 + k)

b(1 + k)Γ(x+Φ) + x(Υ− ΓΦ) + Φ( Υ + ΓΥ− ΓΥ)

(b+ bk +Υ)(b(1 + k)Γ + Υ)− b(1 + k)ΓΦ
(5.182)

where

Φ = (M1− k)(M2− k),

Υ = (M1 +M2− 1− 2k). (5.183)

for the power allocation satisfying

(γ2 − γ1) =
(b+ bk − x+Υ−Φ)Φ

(b+ bk +Υ)(b(1 + k)Γ + Υ)− b(1 + k)ΓΦ
, (5.184)

and

γ1 =
(b(1 + k)Γ + Υ)(b+ bk − x+Υ−Φ)

(b+ bk +Υ)(b(1 + k)Γ + Υ)− b(1 + k)ΓΦ
. (5.185)

and

γk − γk+1 = ηk−1
l (γ1 − γ2)fork = 2, ..., L. (5.186)

We omit the system resolution as it is a classical linear system. For 0 ≤ ηk ≤ 1, i. e.

b ∈ [
(M∗ − l − 1)(M∗ − l − 1) + x

l + 1
,
(M∗ − l)(M∗ − l) + x

l + 1
). (5.187)

The power allocation is valid. When

b ∈ [
(M∗ − l)(M∗ − l) + x

l + 1
,
(M∗ − l)(M∗ − l) + x

l
). (5.188)
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we have that ηk > 1. In this region, a power allocation similar to the done previously by
equating all power allocations in k = 1, ..., L can be done.

In the continuum infinity of layers, this scheme can be proven to converge in

b ∈ [
(M∗ − l − 1)(M∗ − l − 1) + x

l + 1
,
(M∗ − l)(M∗ − l) + x

l + 1
). (5.189)

to ∆ml2(b, x)
∞ = b(l + 1).

When

b ∈ [
(M∗ − l − 1)(M∗ − l − 1) + x

l + 1
,
(M∗ − l)(M∗ − l) + x

l
). (5.190)

It can be proven that it converges to

∆ml2(b, x)
∞ = (M∗ − l)(M∗ − l) + x

(

b− (M∗ − l)(M∗ − l)

b− ((M∗ − l)− 1)((M∗ − l)− 1)

)

(5.191)
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Chapter 6

Conclusions

We have studied the transmission of a Gaussian source over a slow fading channel in the
presence of fading side information at the receiver for MIMO systems. The performance has
been studied by means of the achievable expected distortion under the assumption that the
channel and side information states are available only at the receiver.

We have derived the expected distortion function for two separation based schemes, with
and without binning, as well as uncoded transmission. Then, we have presented a joint source-
channel coding technique, named NBJD, that does no explicit binning at the transmitter and
applies joint decoding at the receiver. We have proposed a hybrid NBJD-analog scheme
and a multiple-layer scheme with two different power allocations. We have also studied the
joint source-channel coding scheme of HDA with single layer. In addition to these achievable
schemes, we have provided a lower bound on the expected distortion derived by assuming
the availability of channel and side information states at the transmitter. We have studied
numerically the SISO scenario by exhaustive search over the design parameters in the finite
SNR regime. In the high SNR regime, closed-form expressions for the distortion exponent
are obtained for the proposed schemes as well as the upper bound.

Interestingly, the presented schemes do not achieve the distortion exponent upper bound
as opposed to the scenario without side information. This might be due to the looseness of
the informed transmitter upper bound in the scenario, or it might point to the need of better
achievable techniques.

The following conclusions can be derived from the numerical results and the distortion
exponent analysis in this thesis:

• We have seen that separate source-channel coding with binning is optimized by ignoring
the side information when encoding, (i.e., no binning), and hence coinciding with the
non binning case, in the numerical simulation for the SISO case. While we have been
not able to give an analytical proof for this result in the finite SNR regime, we have
proven that distortion exponent is maximized without binning.

• We have proved that the NBJD scheme outperforms the separation approach analyt-
ically in all bandwidth regimes. The numerical results reveal a constant performance
improvement in the high SNR regime. We have proven that NBJD has the same dis-
tortion exponent performance as separation despite its improvement in terms of the
expected distortion in the finite SNR regime, revealing that the improvement is not
exponential, matching with the numerical result.

• Using the high SNR results, we have proved that hybrid-NBJD, HDA and multi-layer
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NBJD scheme in the limit of a continuum of layers achieve the same distortion expo-
nent performance in a SISO scenario.On the other hand, the numerical results in the
finite SNR regime show that hybrid analog-NBJD and HDA schemes have very simi-
lar performances and they both perform better than NBJD as they benefit from the
robustness provided by the analog transmission in the finite SNR regime.

• The equality of the distortion exponents of theses techniques does not extend to MIMO
scenarios. In the case of MIMO, NBJD multi-layer scheme achieves the higher distor-
tion exponents for large b regimes while the NBJD-analog hybrid scheme achieves higher
distortion exponents in the low bandwidth regime. This is due to the limitations of ana-
log transmission. The proposed HDA MIMO technique achieves a distortion exponent
that is very close to the hybrid analog-NBJD performance. A better construction of
the MIMO HDA should provide the same performance as the hybrid scheme.

Note that HDA scheme naturally combines the robustness of analog transmission with
the higher transmission capability of digital transmission just with a single layer. Based on
this property of HDA and the fact that it achieves the best distortion exponent among all
single layer schemes, future research line aims at creating a multi-layer extension of the HDA
scheme that can potentially improve the pure NBJD multi-layer scheme, which achieves the
best known distortion exponent at the moment.
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[2] D. Gündüz and E. Erkip, “Joint source–channel codes for MIMO block-fading channels,”
IEEE Transactions on Information Theory, vol. 54, no. 1, pp. 116–134, 2008.
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