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Abstract

In recent years, three-dimensional building reconstruction has been an active area of

research, partly motivated by the spread of low cost unmanned aerial vehicles plat-

forms. These permit exploiting the entire three-dimensional space as long as it is free

of obstacles. Current approaches manually plan a set of viewpoints from which to con-

duct multiple scans of a target building, and then later select the best ones to use in

a structure from motion system. This procedure often has two problems: some parts

are covered with low detail or some parts are evenly uncovered. In these situations, an

automatic view planner is necessary; it will completely cover a building surface, while

reducing time and cost of the overall process. This thesis presents an automatic view

planner for three-dimensional building reconstruction based on dividing edifices into sev-

eral slices and for each one solve a two-dimensional problem. From a rough model of

the environment and a desired detail level, both described in a cost function, the system

computes a route in which there is a set of viewpoints to completely cover a target

building surface of any shape, taking into account that there may be obstacles in the

environment. The final route is proposed to be followed by an unmanned aerial vehicle

equipped with a digital camera.

Keywords: Computer vision, 3D building reconstruction, view planning, path planning,

structure from motion, UAVs.



Zusammenfassung

Die digitale, drei-dimensionale Gebäuderekonstruktion ist ein aktiver Bereich der For-

schung, der besonders in den letzten Jahren an Bedeutung zunahm - teilweise motiviert

durch preiswerte, unbemannte Fluggerät, welche es ermöglichen eine drei-dimensionale

Szene vollständig zu erkunden, solange diese frei von Hindernissen ist. Aktuelle Metho-

den wählen die Aufnahmepunkte der Kameras manuell aus, und erzeugen aus diesen

eine Menge von Bildern vom gewünschten Gebäude. Die besten Aufnahmen können

anschließend für ein Structure-from-Motion System verwendet werden. Dieses Herange-

hensweise hat zwei häufig auftretende Probleme: Einige Stellen werden nur detailarm

oder gar nicht aufgezeichnet. Für derartige Situationen ist eine automatisierte Aufnah-

meplanung nötig; Diese ermöglicht eine komplette Erfassung der Gebäudeoberfläche und

reduziert dabei gleichzeitig den Gesamtzeitaufwand und die Kosten des Prozesses. Die-

se Arbeit stellt einen automatisierten Aufnahmepunktplaner für die drei-dimensionale

Gebäuderekonstruktion vor, welcher auf der Aufteilung einer Struktur in mehrer, ho-

rizontale Scheiben und dem Lösen des so zwei-dimensionalen Problems für jedes die-

ser Scheiben basiert. Aus einem groben Modell der Umgebung und einem gewünschten

Detailgrad der Aufnahmen - beides in einer Kostenfunktion integriert - berechnet das

System eine Route, die es erlaubt die komplette Oberfläche eines Gebäudes, unabhängig

von dessen Form, aufzunehmen. Auch die mögliche Anwesenheit von Hindernissen wird

durch das System berücksichtigt. Die erhaltene Route dient dann als Flugweg für ein,

mit einer Digitalkamera ausgestattetes, unbemanntes Fluggerät.

Stichwörter: Computer vision, 3D-Gebäuderekonstruktion, view planning, path plan-

ning, structure from motion, UAVs.
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Chapter 1

Introduction

1.1 Motivation

Society continuously faces situations in which buildings are lost, by causes such as fire,

earthquake, flood, war, or simply, erosion. Sometimes, a building or a monument which

is of special interest for artistic, historical, architectural or religious reasons is partially

or completely destroyed, causing a cultural heritage loss (see Figure 1.1). Typically a

building of these has been built many years ago and has complex structures and detailed

façades. It is inevitable attempting to repair this loss and try to restore or reconstruct

these buildings. The building plans and photographic documentation are a helpful tool

for the building preservation. With them, sometimes, like in the case of the Dresden

Frauenkirche [1], a building that has been destroyed, can be satisfactorily reconstructed.

Nevertheless, it is common not to have the plans of a building constructed hundreds of

years ago, or in other cases, the building plans may have not been preserved; and even

if the plans are available, they only describe course structures and the photographic

documentation is often not exhaustive, making it impossible to preserve certain façade

details.

Against these situations, nowadays, with the technological advances, another key point

for the building preservation has appeared: a Three-Dimensional (3D) model of the

building, a representation of the building in a digital space. With a highly detailed

3D model built before the (partial or complete) destruction of a building, an accurate

restoration or even a precise reconstruction of it can be achieved.

1



Chapter 1. Introduction 2

(a) Frauenkirche in Dresden,
Germany.

(b) Port-au-Prince Cathedral,
in Port-au-Prince, Haiti.

(c) Alma College in St.
Thomas, Ontario, Canada.

Figure 1.1: Example of buildings destroyed by: war (1.1a), in February 1945; by an
earthquake (1.1b) in January 2010 and by a fire (1.1c) in May 2008. In these images
two cathedrals and an old college are shown; other examples of historic buildings to

preserve for different reasons could be mosques, synagogues, palaces or castles.

Computer graphics and computer vision are fields of study that produce 3D models

in different ways. While the first one produces them by a combination of artistic and

technical design processes, the second one does it by measuring the shape and visual

properties of real physical objects. For creating a 3D model of a real building, a computer

vision approach is needed, which will develop a surface reconstruction of it.

The process of 3D reconstruction consists of four main phases: planning a set of views,

taking scans, registering the acquired data in a common coordinate frame of reference,

and finally integrating the acquired data into a model. Whereas all steps are important,

the first one is of special interest in this thesis. A manual view plan can be the root of

an acceptable 3D building reconstruction, but sometimes not. Often, it will not cover

completely a complex building surface, or some parts will be covered with a certain detail

and other parts with another one, producing a low quality 3D model, which probably

will not be enough to restore a detailed façade or reconstruct a complex structure of a

building with no plans. As a consequence, new scans from the uncovered or wrongly

covered surface will be necessary. Taking these new scans will extend the whole 3D

reconstruction process and will increase its cost. For these reasons, an automatic view

planner will be necessary.
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1.2 Scope of this thesis

This thesis aims to present an automatic view planner of buildings for a later 3D recon-

struction of them.

In the past, the coverage of buildings was either restricted by earthbound vehicles or by

air-borne sensors to generate only low detailed building models. However, in the last

years, the usage of Unmanned Aerial Vehicles (UAVs), commonly known as drones, is

growing in this field [2–6] because of their flexibility. UAVs combine the advantages of

earthbound vehicles and air-borne sensors, they are able to observe a whole 3D scene

and to capture images of a building of interest from completely different perspectives.

On the other hand, when using a UAV, weight, time and security restrictions must be

taken into account. The first one is of special interest because it will limit the choice of

the viewing sensor since the weight that a UAV can carry is limited. A digital camera

seems to be a good solution because of its small size, weight and cost. Although 3D

information can be extracted from a single image [2, 7, 8], it is more difficult and solutions

are not as robust as in Structure from Motion (SfM) systems, where 3D structures are

estimated from Two-Dimensional (2D) image sequences which are coupled with local

motion signals.

There are already some works [5, 6], which present 3D building models built from digital

images acquired from UAVs. In these works the view planning step is manually designed,

having to send occasionally the UAV several times until the complete surface is acquired,

with the corresponding increase of cost and time. In addition these works have not

computed 3D models from a building with a complex structures. This thesis presents an

automatic system that gives a path in which there are a set of viewpoints for covering

the complete surface of a target building of which a 3D reconstruction is desired. For

this enterprise the system will compute the route from a rough model of the environment

(e.g. a model of Level Of Detail (LOD) 11), taking into account security and path length

issues.

The detail of the 3D model is important, as discussed above, for correctly restore or

reconstruct some buildings. If a 3D building model is computed with images taken from

1LOD refers to the different levels of detail in the representation of virtual models in applications
such as building 3D reconstruction. Depending on the application, different levels of detail are needed.
LOD 1 is according to CityGML [9] a level where only coarse structures are described.
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far away of it, the final result will not have enough detail and some façade details could

be lost. In a possible application, it could be desired to distinguish the bricks in a brick

wall (see Figure 1.2). For this purpose, in the images the brick separation should not

be smaller than the size of the smallest element, a pixel, in these images. As it can be

appreciated, this constraint directly implies a certain distance to acquire images.

Brick separation 1

B
ric

k 
se

pa
ra

tio
n 

2

Figure 1.2: Brick wall with a detail of the brick separations.

The final route created in this thesis will be designed according to a desired detail of

the future 3D model to be built. The result is thought to be used in the generation of

highly detailed 3D building models for the preservation of buildings of special interest,

city planning, or digital tourism.

1.3 Thesis outline

Chapter 2 gives background information relevant to this thesis. It is divided in three

sections: 3D reconstruction from multiple images, view planning and path planning.

The goal of this chapter is to give enough information to understand the next chapter.

Chapter 3 is the core of the thesis, describes the system proposed. It begins describing

several assumptions that have been taken, after that the overall operation is explained

and then its two main blocks, the View- and the Path-planners are described, as well as

the approach to cover 3D scenes.

Chapter 4 shows the results of the evaluations of the proposed system in the previous

chapter, for 2D and 3D environments; and finally, Chapter 5, gives a conclusion for the

thesis, summarising the most relevant achievements, and discussing future work, that

can be followed from this thesis.



Chapter 2

Related Work

This chapter gives theoretical background for understanding chapter 3, the core of the

thesis, and reviews related work done in the main topics.

The first section explains how 3D information is extracted from multiple images and

also which restrictions must these meet for a proper 3D reconstruction.

The second and the third sections review previous methods and work of the main two

blocks treated in this thesis: view planning, the problem of covering an area with a

sensor or multiple sensors, and path planning, the problem of finding a path from an

initial location to a final location.

2.1 3D reconstruction from multiple images

In this section, it is explained how to extract 3D information from multiple images,

since it is the background problem. This thesis presents a systems which is thought to

be used for 3D reconstruction of buildings from multiple images. It is divided in four

subsections, the core of 3D reconstruction from several images, triangulation; then the

mathematical basis for the process, after that a brief description of SfM systems, and

finally the role of UAVs in 3D reconstruction from multiple images.

5



Chapter 2. Related Work 6

2.1.1 Basic procedure

An image is basically a projection of a 3D scene onto a 2D plane, and, as a consequence

depth is lost. A 3D point represented in a image is restricted to be in the line of

sight. From a single image it is almost impossible to determine which point in this line

corresponds to the image point. Some works [2, 7, 8] aim build 3D models from single

images, but this is not the focus of this thesis.

m1

M

C1
C2

m2

image 1 image 2

Figure 2.1: With two images of a static scene, the location of a 3D point, M , in the
scene can be recovered from the projections, m1 and m2, in the respective images using

triangulation.

On the other hand, if two images are available, the position of a 3D point can be

found as the intersection of the two corresponding projection rays (see Figure 2.1). This

process is known as triangulation and it requires the equations of the rays and, hence,

complete knowledge of the cameras: their relative positions and orientations, as well as

their optical settings. The process of determining all the camera parameters is referred

to as camera calibration. Furthermore, in order to perform the triangulation process,

the problem of finding corresponding points in several images needs to be solved. This

problem is known as the correspondence problem.

According to [10], a distinction of 3D acquisition methods can be done, according to

whether or not light sources are controlled. If they are, methods are known as active.

If they are not, methods are known as passive. In this thesis, light sources are not

controlled, and thus, when it is said 3D reconstruction or triangulation, it means passive

3D reconstruction or passive triangulation.
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2.1.2 Image formation and mathematical basis

The pinhole camera is the simplest model of the image formation process in a camera.

In this model, the camera is not more than a black box one side of which has a small

hole. The rays of light from the outside world pass through this hole and fall on the

opposite side of the box where a 2D image of the 3D environment outside the box (the

scene) is formed. This pinhole image is in fact, the photo-negative image of the scene.

The photo-positive corresponds to the projection of the scene onto a hypothetical plane

that is situated in front of the pinhole camera at the same distance from the hole as the

opposite wall on which the image is actually formed. In this section, the term image

plane will always refer to this hypothetical plane in front of the camera. This plane is

preferred to avoid sign reversals in this section. The centre of projection, the hole in the

box will be referred to as the camera centre and the distance between this point and the

image plane is called the focal length of the camera1.

The amount of light that falls into the box through the small hole is limited, but by

making the hole bigger, the amount of light can be increased, and as a consequence

rays coming from different 3D points can fall onto the same point on the image, causing

what is known as blur. A solution for this problem is using lenses, which focus the light.

However, even the most perfect lens will come with a limited Depth Of Field (DOF)

which means that only scene points within a limited depth range are imaged sharply.

Within that depth range a camera with a lens basically behaves like the pinhole model.

A reference frame for the 3D environment containing the scene and fixed to the camera,

will be used to simplify the problem. It is a right-handed and orthonormal reference

frame whose origin is at the camera center. Its Z-axis is the principal axis of the camera

and the XY-plane is the plane through the camera center and parallel to the image

plane. The image plane is the one with equation Z = f . The principal axis intersects

the image plane in the principal point, p (see Figure 2.2).

The projections onto the image plane cannot be detected with absolute precision. An

image consists of many small elements, known as pixels, which are arranged in a rectan-

gular grid, according to rows and columns. Pixel positions are typically indicated with

a row and column number measured with respect to the top left corner of the image.

1The focal length is strictly the distance between the camera center and the image plane, when the
camera is focused at infinity. A detailed explanation can be seen in Appendix A.
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Figure 2.2: The camera-centered reference frame is fixed to the camera and aligned
with its intrinsic directions. The coordinates of the projection m of a scene point M
onto the image plane in a pinhole camera model with a camera-centered reference frame,

are given with respect to the principal point p in the image.

These numbers are called the pixel coordinates of an image point. They will be denoted

by (x, y), where the x-coordinate is measured horizontally and increasing to the right,

and the y-coordinate is measured vertically and increasing downwards.

In a camera-centered reference frame the X-axis is usually chosen parallel to the rows

and the Y -axis parallel to the columns of the rectangular grid of pixels, and at the same

time, it induces an orthonormal uv reference frame in the image plane. The u- and v-

axes induced in the image plane have the same direction and sense as those in which the

pixel coordinates x and y of image points are measured. But, while pixel coordinates are

measured with respect to the top left corner of the image, (u,v)-coordinates are measured

with respect to the principal point, p. The transition from (u,v)- to (x,y)-coordinates

for an image point m consists then, into apply offsets, related to the principal point, to

each coordinate.

The image of a scene point M is the point m where the line through M and the origin

of the reference frame intersects the image plane. If M has coordinates (X,Y, Z) ∈ R3

with respect to the camera-centered reference frame, then an arbitrary point on the

line through the origin and the scene point M has coordinates ρ(X,Y, Z) for some real

number ρ, which somehow represents the depth of the scene point M. According to [10],

the pixel coordinates (x, y) of the projection m of the scene point M in the image are

given by:
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x = αx ·
X

Z
+ px and y = αy ·

Y

Z
+ py (2.1)

where αx and αy are the focal length expressed in number of pixels for the x- and

y-direction of the image and (px, py) are the pixel coordinates of the principal point.

More elegant expressions for the projection Equations 2.1 are obtained if the extended

pixel coordinates for the image points are used. In particular, if a point m with pixel

coordinates (x, y) in the image is represented by the column vector m = (x, y, 1)T , then

formula 2.1 can be rewritten as:

Z ·m = Z


x

y

1

 =


αx 0 px

0 αy py

0 0 1




X

Y

Z

 (2.2)

If one interpretes the extended pixel coordinates (x, y, 1)T of the image point m as a

vector indicating a direction in the world, then, since Z describes the depth in front of

the camera at which the corresponding scene point M is located, the remaining 3 × 3

matrix represents the transformation that converts world measurements (expressed in

centimeters, millimeters, · · · ) into the pixel metric of the digital image. This matrix is

called the calibration matrix of the camera, and it is generally represented as:

K =


αx s px

0 αy py

0 0 1

 (2.3)

where αx, αy, px, py are the parameters described above. The additional scalar s is

called the skew factor and models the situation in which the pixels are parallelograms (for

example, not rectangular). In fact, s is inversely proportional to the tangent of the angle

between the X- and the Y -axis of the camera-centered reference frame. Consequently,

s = 0 for digital cameras with rectangular pixels, which will be the case in this thesis.

The parameters αx, αy, s, px, and py of the calibration matrix K describe the internal

behavior of the camera and are therefore called the internal parameters of the camera.
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Furthermore, the projection Equation 2.2 of a pinhole camera with respect to a camera-

centered reference frame for the scene is compactly written as:

ρ ·m = K ·M (2.4)

where M = (X,Y, Z)T are the coordinates of a scene point M with respect to the camera-

centered reference frame for the scene, m = (x, y, 1)T are the extended pixel coordinates

of its projection m in the image, K is the calibration matrix of the camera. As it has

been introduced before, ρ is a positive real number and it actually represents the depth

of the scene point M in front of the camera. Due to the structure of the calibration

matrix K, the third row in the matrix Equation 2.4 reduces to ρ = Z. Therefore ρ is

called the projective depth of the scene point M corresponding to the image point m.

When more than one camera is used, or when a camera is taking several photos, a

world frame is needed. In this frame, position and orientation of a camera in the scene

are described by a point C, indicating the centre of projection, and a 3 × 3 rotation

matrix R indicating the orientation of the camera-centered reference frame with respect

to the world frame. As C and R represent the setup of the camera in the world space,

they are called the external parameters of the camera. The process of determining a

camera parameters, internal and external, is known as camera calibration. Traditional

3D reconstruction techniques had a separate, explicit camera calibration step. Self-

calibration techniques use the same images utilized for a 3D scene reconstruction, to

extract the internal and external camera parameters.

Finally, the coordinates of a scene point M with respect to the camera-centered reference

frame are found by projecting the relative position vector M−C orthogonally onto each

of the coordinate axes of the camera-centered reference frame. As a result, Equation 2.4,

the projection m of the scene point M in the image is given by the general projection

equation:

ρ ·m = K ·RT · (M − C) (2.5)

This equation is the key for recovering a 3D information of a 3D point. As it was said

in the beginning, with only one view of the point it will not be possible to recover the
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position of a 3D point. At least two views will be needed. Equations 2.6 (derived from

Equation 2.5), could be the projection equations of two different cameras, such in the

situation described in Figure 2.1:

M = C1 + ρ1 ·R1 ·K−11 ·m1

M = C2 + ρ2 ·R2 ·K−12 ·m2

(2.6)

This system of equations can be solved, if the internal and external parameters of the

cameras are known, for the five unknowns X, Y , Z, ρ1, and ρ2. When the cameras are

not internally and externally calibrated, then it is not immediately clear how to perform

triangulation from the image data alone, although it is possible. In both cases, however,

the system is required to be rank-deficient, which is guaranteed if the points m1 and m2

are in correspondence (i.e., their projecting rays intersect) and therefore special relations

hold (epipolar relations, see Appendix B).

2.1.3 Structure from motion

If the scene to reconstruct is static, like a target static object, the two images could be

taken by two different cameras, or by placing the same camera at the two positions, and

taking the images in sequence. In this second situation, more than two images could

be taken while moving the camera. Such strategies are referred to as SfM. If images

are taken over short time intervals, it will be easier to find correspondences, e.g. by

tracking feature points over time. Moreover, having more camera views will yield object

models that are more complete. Last but not least, if multiple views are available,

the camera(s) need no longer be calibrated beforehand, and a self-calibration procedure

may be employed instead. These properties render SfM a very attractive 3D acquisition

strategy.

Automated systems based on SfM process image sequences to first recover the camera

poses and then, a sparse (point cloud) reconstruction of the scene. The situation de-

scribed in this thesis is suitable for using a SfM system. A 3D reconstruction from a set

of images will be desired, while the camera poses will not be exactly known, and thus,

an external calibration will be needed.
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From the sparse reconstruction computed in a SfM system, dense multi-view stereo

algorithms can generate a dense mesh model. Two examples of systems which use large

image sequences with SfM approaches to recover 3D structure are [11] and [12].

In [11] an interactive system for modeling architectural scenes from an unordered col-

lection of photographs using SfM is developed. Features are detected in all images,

matched across image pairs, then used to robustly estimate the camera poses and the

position of points in the sparse 3D point cloud in an incremental fashion. The optimal

camera and point parameters are ones that minimize the error between the re-projected

3D points and the detected 2D interest points.

The Photo Tourism System [12] uses SfM to compute the 3D locations and poses of

all the cameras taking the images, along with a sparse 3D point-cloud model of the

scene. This system browses and organizes large photo collections of popular sites and

exploits the common 3D geometry of the underlying scene. To reconstruct the required

3D information, the system handles large photo collections taken by different cameras

in widely different conditions, which increases the complexity of the problem. On the

other hand, the goal of this thesis is to give a tool for taking a set of images of a concrete

building, by the same camera in the (almost) same light conditions.

2.1.4 UAVs and 3D reconstruction from multiple views

According to the Unmanned Vehicle System (UVS) International definition [13], a UAV

is a generic aircraft designed to operate with no human pilot onboard. They originally

had military applications, but are increasingly applied into civilian fields, such as aerial

surveying of crops, aerial footage in film making, search and rescue operations, inspecting

power lines and pipelines, counting wildlife, or aerial photography.

UAVs are the aerial version of Unmanned Ground Vehicles (UGVs) and Unmanned Un-

derwater Vehicles (UUVs), which are systems that operate also without an on board

human presence, in terrestrial and aquatic applications. Based on size, weight, en-

durance, range and flying altitude, UVS International defines three main categories of

UAVs:

• Tactical UAVs. In this first category, micro, mini or close-range systems are en-

closed. Their mass ranges from few kilograms up to 1.000 kg, their range from few
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kilometres up to 500 km, their flight altitude from few hundred meters to 5 km,

and their endurance from some minutes to 1-2 days.

• Strategical UAVs. Systems included here are high altitude long endurance, strato-

spheric and exo-stratospheric systems which fly higher than 20.000 m altitude and

have an endurance of 2-4 days.

• Special tasks UAVs, like unmanned combat autonomous vehicles, lethal and decoys

systems, which have longer endurances to 4 days, and are basically used for military

applications.

The principal airframe types are fixed and rotary wings while the most common launch

methods are, beside the autonomous mode, air-, hand-, car/track-, canister-, bungee

cord launched.

Figure 2.3: Octocoper UAV equipped with a DSLR camera used by the company
ATEA Data Ltd. [14].

In the last years, micro UAVs2 have started being used in diverse applications ranging

from monument conservation to city planning, for 3D building reconstruction [2–6]. This

development can be explained by their flexibility and the spreading of low-cost platforms.

Classical tools for acquiring building information consist in using earthbound vehicles or

air-borne sensors. While the first ones can cover only building façades, air-borne sensors

help to determine the coarse shape of buildings with low detail. UAVs combine the

advantages of earthbound and air-borne sensors. Their flexibility allows exploiting the

2According to UVS International, a micro UAV is a tactical UAV that weighs less than 5 kg and
whose endurance is smaller than 1 hour. However, this is more a guide definition than a strict one.
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whole 3D space and their possibility of different imaging positions permits the acquisition

of a whole building with an adjustable detail.

For weight constraints, laser scanners, such as Light Detection and Ranging (LIDAR)

sensors, can not be mounted on a micro UAV and digital cameras seem to be a good solu-

tion because of thir small weight and cost. Digital Single-Lens Reflex (DSLR) cameras3

are a type of cameras which provide high quality images with a light weight body.

Nowadays, UAVs are usually equipped with Global Navigation Satellite Systems (GNSSs)

and Inertial Measurement Unit (IMU) devices [15] and because of this, they can fly along

a flight path pre-defined by way points. The flight path usually is planned in advance for

shortening the flight time as well as the overall time in the field. This is important, since

their time of operation is restricted. With a predefined flight path, images can either

be taken at some way points with a desired position and orientation or in dense image

sequences using the continuous shooting mode of the camera. However, a navigation

system typically carried by a UAV, such as the Global Positioning System (GPS), has

an error of 7-8 meters [16]. As a consequence, images will probably be taken in unknown

concrete points. For this reason, the acquired images by a UAV are suitable to be used

in a SfM (see previous section).

This thesis presents a system which calculates automatically the points where images of

a target building should be acquired. Despite extensive literature review no publication

on automatic path planning for building reconstruction could be found. Works until now

aim to present a complete 3D building reconstruction chain and their focus is not on the

path planner but on the overall 3D process [3–6]. As a consequence, they use a manually

designed path and against the uncertainty of acquiring the necessary images, those works

usually take large image sequences from which a small set of images is selected manually

for the reconstruction process. For simple structures it can be a solution, but for complex

ones, a manual plan will not cover the complete surface or will do it with a low detail.

An example can be seen in [5]. Here, a 3D reconstruction of the Castle Landenberg in

Switzerland using a UAV is accomplished. In this work, two path flights were designed

and in those paths image stripes were acquired. One of those flight paths was flown

twice to ensure the acquisition of a sufficient number of high quality images. In total,

3A DSLR camera is a digital camera combining the optics and the mechanisms of a single-lens reflex
camera with a digital imaging sensor, instead of photographic films.
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72 aerial images were taken and from them, 18 were selected manually. As a result,

54 useless images were acquired. This thesis aims to give a set of points from which to

acquire a set of minimum necessary images for a latter 3D building reconstruction with

a desired detail and provide the security that the target building has been completely

covered, and thus, eliminate the need to send a UAV more than one time for the same

path, with the corresponding increase in cost and time of the overall process.

2.2 View planning

The main problem of this thesis is a visual task of covering or observing a region of

interest with a robot, a drone. This becomes a problem of selecting a set of positions of

multiple sensors or a single sensor, in our case a digital camera carried by the drone. This

problem has been already studied in computer vision and is known as sensor planning

problem or View Planning Problem (VPP). It consists of automatically computing sensor

positions or trajectories given a task to perform, the sensor features and a model of the

environment. An early survey about the VPP was done in [17], where three distinct

areas of research were identified according to the vision task: object feature detection,

model-based object recognition and localization, and scene reconstruction.

1. Object feature detection. Those methods aim to automatically determine vision

sensor parameter values for which particular features of a known object in a known

pose satisfy particular constraints when imaged. For example, the features can be

required to appear in the image as being visible, in the Field of View (FOV), in the

DOF, in-focus, or magnified to a certain agreement. These planning techniques

draw on the considerable amount of a priori knowledge of the environment, the

sensors, and the task requirements. Because the identities and poses of the viewed

objects are known, the sensor parameters are usually preplanned off-line and then

used on-line when the object is actually observed.

2. Model-based object recognition and localization. This group assumes some knowl-

edge about the objects that can appear in the scene, and the task is to develop

sensing strategies for model-based object recognition and localization. Sensing

operations are chosen according to their capacity of identifying an object or de-

termining its pose. The a priori known information about the world in the form
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of models of possible objects, sensor models, and information acquired to this

point are compiled into recognition/localization strategies. Most approaches in

this area follow a common line. Usually, a search is performed in the space of

object identities/poses employing a hypothesize-and-verify paradigm:

1) Hypotheses are formed regarding the object identities and poses.

2) These hypotheses are assessed according to certain metrics.

3) New sensing configurations are proposed based on a given criterion until a

stopping condition is reached.

In order to limit the search of sensor parameter space in this hypothesize-and-verify

paradigm, a discrete approximation of this space is commonly employed.

3. Scene reconstruction. In this third group, methods attempt to build a model of

the scene incrementally by successively sensing the unknown world from effective

sensor configurations using the information acquired about the scene up to this

point. At each step, new sensor configurations are chosen based on a particular

criterion. The sensory information acquired at each step is then integrated into a

partially constructed model of the scene and new sensor configurations are gener-

ated until the entire scene has been explored. While there is no a priori known

scene information that could be used in this problem, the iterative sensing strategy

is guided by the information acquired to each step.

The authors described the VPP in the initial efforts of researchers to address a problem

with many degrees of freedom. It was noted that future work was required for incorpo-

rating more realism into the object models and relaxing some of the constraints made

on developed systems.

A lot of research has been addressed since then in the three described areas. Scene

reconstruction is of special interest for this thesis, as its background problem is 3D

building reconstruction. In order to reconstruct an object or scene, a set of views are

needed. Finding the minimum number of views which reveal the greatest amount of

previously unknown information has been a topic of extensive research in the last years

in the sensor planning field. This problem is known as Next Best View (NBV) problem

or Next Best Pose (NBP) problem. According to [18], there are two major methods in

the literature followed to solve the NBV problem: search based [18–21] and occlusion

based methods [22–24]. Search based methods use optimization criteria to search a
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group of potential viewpoints for the best view and occlusion based methods use the

occlusion boundaries in the image of the current view to choose the next view. Some of

this works will be described next.

One of the first publications on the NBV problem is [19]. Here, two algorithms are

presented for determining the next best view using partial octree models. The regions

that have been scanned were labeled as seen, empty and unseen. In the first algorithm,

the next view position is the point at which the greatest surface area of unseen nodes is

visible. The second algorithm uses information about the node faces in the octree which

are common to both unseen and empty nodes.

In [22], the authors aim to completely acquire an object’s surface based on the analysis

of occlusions. A priori knowledge of the environment and the sensor is given to the

system, and it returns the next view position from which a complete range image of the

surface visible to the camera may be obtained. The system then computes new scanning

planes for further 3D data acquisition based on the discontinuities (occlusions) in the

most recent range image.

Relevant work is presented by Pito in [25]. He presents a solution for the NBV problem

for surface acquisition of a priori unknown object. The NBV was determined as the

sensor position that maximizes the unseen portion of the object volume; to do that,

an objective function is maximized. An objective function is an optimization of the

visibility state for all unknown points in the current model. An algorithm is described

and implemented as a part of an automated surface acquisition system which used a

triangulation based range scanner showing satisfactory results for two or three handspan

objects, which can be self-occluded.

An objective function is also used in [18]. Here, it is presented a NBV system which

consists of three parts: the Range Scanner, the Model Builder, and the NBV Decision

Maker. The NBV Decision Maker examines the unknown information in the volumetric

model and uses an objective function to determine the best place to position a new

viewpoint. To simplify the problem, all the possible viewpoints are in a view sphere

thanks to the assumption that the size and the center of the object to be reconstructed is

roughly known. The objective function (see Equation 2.7) uses the unknown information

in the current model to calculate the next sensor pose. The NBV is defined as the view

from which the largest number of unknown area can be seen. The pose of the next
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best viewpoint,
−→
P , is the position and orientation vector of the best view from which

to acquire new data, chosen from the set of potential viewpoints,
−→
Pi. The updated

volumetric model is contained in OG and the visibility state, V , of a given point, n, is

the visibility of this point from the current viewpoint.

−→
P = maxi

OG(n)|
−→
Pi∑
V (n, unknown)

 (2.7)

This equation is an interesting concept and it will be used for choosing the viewpoints.

On the other hand, the sensor planning problem has also been studied in computational

geometry and robotics with the 2D problem known as art-gallery problem [26, 27]. This

problem consists in finding the minimum number of guards, which are necessary to cover

a whole art gallery. In the computational geometry version of the problem, the gallery is

represented by a simple polygon and each guard is represented by a point in the polygon.

A set S of points is said to guard a polygon if, for every point p in the polygon, there is

some q ∈ S such that the line segment between p and q does not leave the polygon.

Some interesting 2D path optimization problems resulting from the previous one are

the watchman route problem and the zookeeper’s problem [28, 29]. The watchman route

problem goal is to compute the shortest route that a watchman should take to guard

an entire area with obstacles given only a map of the area. The challenge is to make

sure the watchman reaches behind every corner and to determine the best order in which

corners should be visited in. The zookeeper’s problem is slightly similar (see Figure 2.4).

Figure 2.4: Zookeeper’s Problem. Given a simple polygon (the zoo) with a set of k
disjoint convex polygons (the cages, C1, C2,..., Ck) inside it, such that each cage shares
an edge with the zoo, the goal is finding a shortest route in the interior of the zoo that
touches each cage without entering into their interiors starting in a given point, p, and

ending in the same point.
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The object reconstruction problem is somewhat related to these classic computational

geometry problems. Still, there are additional complexities, such as 3D scenarios or

restricted visibility.

2.3 Path planning

In robotics, the process of converting high-level specifications of human tasks into low-

level descriptions of how to move to a robot or machine, in this case a UAV, is referred

as motion planning or path planning. Path planners or planning algorithms are tools

that create paths from an initial state to a goal state according to a criteria and a given

map of the environment.

In our case, the states will be positions and the singularity of the path to design is that

between the starting and ending position, it should go through a set of other positions

(the viewpoints). Length and security issues must be taken into account in order to

design an acceptable path. An optimal path in terms of length which does not take into

account security issues will not be interesting and the same the other way around, and

as a consequence there must be a balance.

One option is to use an algorithm that finds a path in a given map. A graph is one

way to represent a map, more precisely, it is a representation of a set of objects where

some pairs of them are connected by links. The interconnected objects are represented

by mathematical abstractions called vertices, and the links that connect some pairs of

vertices are called edges [30]. A directed edge has a direction and an undirected edge does

not. Graphs can be directed or undirected depending on whether its edges are directed

or undirected. If a graph has edges of each kind, it is called mixed. A graph can be

weighted if a number, usually called weight, is assigned to each edge. Such weights might

represent, for example, costs, lengths or capacities depending on the problem [31]. A

graph could be built as to describe a map, in which the weights in the edges represented

the cost to move from one position to another. In Figure 2.5, a directed graph with 6

vertices and 10 directed edges is represented.

In graph theory, the shortest path problem is the one of finding a path, p, between

two nodes in a graph such that the sum of the weights, w, of its constituent edges is

minimized (see Equation 2.8).
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Figure 2.5: Directed graph with non-negative edge path costs.

min
∑
p∈P

w(p) (2.8)

This problem can be defined for undirected, directed or mixed graphs. There are several

algorithms that solve this problem whose solutions can be considered as optimal. Some

of them are the Dijkstra’s, the Bellman-Ford or the A*search algorithms, among others

[32, 33].

Dijkstra’s algorithm solves the single-source shortest-paths problem on a weighted, di-

rected graph for the case in which all edge weights are non negative. It is asymptotically

the fastest known single-source shortest-path algorithm for arbitrary directed graphs

with unbounded non-negative weights [34]. On the other hand, the Bellman-Ford algo-

rithm is a bit slower, but more versatile, as it is capable of handling graphs in which

some of the edge weights are negative numbers. Finally, the A*search algorithm uses

heuristics to try to speed up the problem.

Those algorithms give optimal solutions in terms of length and as they have been studied

since the 1950s, nowadays there are implementations of them in different programming

languages. The key point is then to design the graph. For this thesis it will be desired

that the graph takes into account the security issue.

On the other hand, potential field methods are motion planning approaches that take into

consideration the security problem, basically they give the safest path in a environment

with obstacles [35]. The robot’s configuration is treated as a point in a potential field

that combines attraction to the goal, and repulsion from obstacles. While the potential
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field principle is particularly attractive because of its simplicity, some problems have

been identified, like for example that they can become trapped in a local minima of the

potential field, and fail to find a path. Potential field methods inspired the creation of

the cost function that will be described in the next chapter.



Chapter 3

Path Planner for Optimal

Coverage System

In this chapter, an approach to solve the presented problem is given. It has mainly

two blocks, the View-planner, which calculates a set of viewpoints in a 2D map, and

the Path-planner, which links the previous ones using a cost function and a planning

algorithm.

The first section describes several assumptions that have been taken to solve such a

complex problem like the presented one. The second section explains the general pro-

ceeding, the third and fourth sections describe the View-planner and the Path-planner,

respectively, and finally an approach to 3D is given.

3.1 Assumptions

Four different kind of assumptions will be taken: assumptions related to optimality, to

the representation of the scene, assumptions related to the sensor which will acquire

information of the scene and finally assumptions related to the viewpoints, which will

be the points from which information will be acquired.

22
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3.1.1 Optimality

The title of this thesis is ”Path Planning for Optimal Coverage under Security Con-

straints”, but what does optimal coverage means? According to the meaning of the

word optimal, optimal coverage can be understood as the best, most desirable or most

favourable coverage of a region with certain purposes (e.g. a 3D reconstruction), under

some restrictions. It implies that there is only one single path for the optimal coverage,

the other paths which are closer to the optimal one, can be labelled as near optimal

paths. In this work, two restrictions are taken into account, the security and the path

length and according to this, if a path allows for a desired 3D reconstruction1, avoids

obstacles and is proved to be the shortest one, it will be described as the optimal path,

however it is really difficult to measure if the allowed 3D reconstruction is the desired

one or if the path is the shortest one. As a conclusion, the resulting paths in this

thesis will be labelled as near optimals, and they will aim to allow for the desired 3D

reconstruction, while considering security and length issues.

3.1.2 Environment

The final path will be calculated from a rough 3D model of the environment, it means

that it will be known where the target building can be, but not precisely. The idea

is to use this system iteratively, refining the model until reaching a satisfactory result.

Henceforth the part of the rough model that represents the target building will be

referred simply as the target building.

This rough model will be described as a 2D/3D array in which each element represents

a specific area/volume in the discrete tessellation of the workspace, the Scene Grid

(SG) from now on. Some works [21, 36–38] use a 3D array with binnary values, an

occupancy grid, for describing the scene according if the space is occupied or not. This

approximation is useful when there are no obstacles, but in this thesis the presence of

obstacles is taken into account and there must be a way to distinguish a possible obstacle

(e.g. a tree or another building). This is the reason why the elements of the SG can take

three different values, in accordance if they belong to a target building, to an obstacle

or to unoccupied space, free space. The drone and the camera will be represented as a

1The desired 3D reconstrion will be the one computed with a set of images that meet a desired detail.
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single point in the SG, the sensor point, and the final path will be described as a set of

sensor points, indicating which are shot points and which not. The target building will

be described as a polyhedron with four main different kinds of surfaces: the façades,

the rooftop, terraces and opposed terraces (see Figure 3.1). In a given building, maybe

not all the kinds of surfaces are present (see Figure 4.8). Slices from the building are

supposed to be polygons of diverse shapes.

Terrace

Opposed 
Terrace

Rooftop

Façades

Figure 3.1: Different types of building surfaces.

Buildings and obstacles are regions where the UAV can not obviously operate and they

can be understood as prohibited regions. In addition, a security distance will be defined

as a distance to a building or obstacle, beneath of which the UAV will be also not

permitted to go. This parameter is used to build the Shot Region (SR) in Section 3.3

and the cost function in Section 3.4.

Finally, an initial point will be given to the system, from which all the path will be

designed. It will be the initial point, but also the final one. The point of the first shot

will depend on this point. From the position and orientation of this point, only the

position is of interest for designing the path.

3.1.3 Sensor

The UAV will most likely carry a digital camera such a DSLR one to take shots of a target

building. Two assumptions are taken related to the camera, the first one is that the

camera will be focused at infinity and the second one is that the optical parameters (i.e,

specifications or internal parameters) of the camera will be known, and consequently, it
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can be said that the camera will be internally calibrated. Assuming ideal illumination

conditions, the parameters of interest in this thesis are the sensor format, the image

resolution and the focal length.

• The sensor of a digital camera is a device that converts an optical image into an

electronic signal. The image sensor format (shape and size) determines the viewing

angle of a particular lens (together with the focal length).

• The image resolution of a camera is the capability of the sensor to observe or

measure the smallest object clearly with distinct boundaries, usually it is expressed

in pixels.

• The focal length, is the distance between the optical center of the lens to the image

sensor, when the camera is focused at infinity (see appendix A). It is a fundamental

property of a lens and determines the magnification of the image projected onto

the image plane.

3.1.4 Viewpoints

As it has been said, a shot will be taken from some points called viewpoints or shot-

points. There are a set of parameters that define a viewpoint, divided in external and

internal parameters. The internal parameters are the optical parameters of a camera

that have been described in the previous section. The following is a description of the

external parameters, the position and the orientation, which are independent of the

camera mechanisms.

• Position is given by three positional degrees of freedom of the sensor (x, y, z), it

can also be understood as the position vector of the sensor point.

• The orientation is typically given by three degrees of freedom, the roll, pitch and

yaw angles (ϕ, θ, ψ) (see Figure 3.2), but it must be taken into account that the

camera will be carried by a drone, which has limitations in terms of orientation

since it can only be oriented according to the roll angle. Nowadays when a drone

carries a camera, it is common to use a camera positioner and depending on it,

the viewpoint will be able to have 1, 2 or 3 orientation degrees of freedom.
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Pitch

Yaw

Roll

Figure 3.2: Yaw, pitch and roll angles. The yaw angle rotates on the camera’s up
vector. The roll angle rotates on the camera’s direction vector. The pitch angle rotates

on the cross product of the camera’s up and direction vector.

It will be assumed that there will be three possible camera configurations for taking

images and in the three cases the viewpoints will have only 1 degree of orientation

freedom, the yaw angle. In the first configuration, the roll and pitch angles will be fixed

to 0o, this configuration is thought to be used for covering the building façades. In the

second and third ones, the roll angle will be also fixed to 0o, but the pitch angle will be

fixed to a certain angle for covering the rooftops, the terraces and the opposed terraces.

For the rooftops and terraces the pitch angle will be fixed to a negative angle, and for

the opposed terraces, it will be fixed to a positive one. These configurations can be seen

in Figure 3.3.

Pitch=0º

Yaw

Pitch=angle1
(negative)

Yaw

Pitch=angle2 
(positive)

Yaw

Figure 3.3: The three different camera configurations for this thesis.

In this thesis the internal parameters will remain constant in all the viewpoints, and

since a path is a composition of positions and orientations, the internal parameters will

be used (together with a desired image detail) for calculating the external ones in the

final path.
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On the other hand, there are several constraints that will constrict the region of accept-

able viewpoints. Early studies of these constraints are done in [17, 39–41]. Assuming

ideal illumination conditions, the constraints taken into account in this thesis are visi-

bility, FOV and desired detail.

• Visibility. The surface of the target building must first be visible from the sensor

viewpoints. It means that all lines of sight from the camera to the building surface

are not obstructed by any obstacle. To determine if a point is visible from a

viewpoint, all the points between them are checked. If the sum of those values is

equal to the free space value, it is considered as visible.

• Field of view. The previous constraint requires that all the light rays from a given

point in the target building reach the sensor. The FOV constraint requires that

these rays reach the active area of the sensor. In the case that a light ray from

a given point lies outside the active area of the sensor, it will not be observable,

and thus not recorded. The FOV at a given distance is determined from the focal

length and the image sensor size of a camera as it can be seen in Figure 3.4.
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Figure 3.4: Relationship between focal length, sensor size, working distance and field
of view.

• Desired detail. It describes the desired amount of real distance represented by a

single pixel. It will an input together with the rough model of the scene and the

camera parameters. As it can bee seen in Figure 3.5, this detail defines a distance,

the optimal distance, which is the distance between the camera and the target

building for taking appropiate photos according to the desired detail. Given this
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detail and some camera parameters it is possible to calculate this distance by using

the intercept theorem [42].

Focal Length Optimal Distance

Pi
xe

l H
ei

gh
t

SCENE
LENS

SENSOR

Ve
rt

ic
al

 D
et

ai
l

H
or

iz
on

ta
l D

et
ai

l

Pi
xe

l W
id

th

Figure 3.5: Relationship between the image detail and the optimal distance.

When a shot at a certain distance is taken, there is only one point which is at

exactly this distance. For this reason and also due to the presence of obstacles, it

will be impossible to cover all the surface of the target building from the optimal

distance, however it will be the reference distance.

3.2 General proceeding

The system, which has been implemented in MATLAB with a Graphical User Interface

(GUI), needs a set of inputs. A 2D or a 3D SG, an initial position in the map, a digital

camera and a desired image detail. After selecting these inputs, the system computes

a path or a set of paths, which are showed visually, together with a road map. The

road map describes which points must been followed and in which ones a photo must be

acquired and with which orientation.

If a 2D SG is given, the path will only have two positional and one orientation degrees

of freedom (x, y, and the yaw angle). On the other side, if a 3D SG is selected, the path

will contain three positional and two orientation degrees of freedom (x, y, z, the yaw

and the pitch angles).

The basic idea of the system is dividing a building into several slices and for each slice

solve a local 2D problem. With this idea, the façades will be covered, but not the

rooftop, the possible terraces or opposed terraces; for this reason, in the beginning it is
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detected if there is any of these special surfaces and in the case that there are, a path is

computed for each one. Finally, a path for the façades is calculated following the slice

approach.

Any of those paths is formed by three sub-paths: an initial, a coverage and a final path.

The initial path goes from the initial point to the closest point in the SR, which in fact

will be the viewpoint where the first shot will be taken. The SR is explained in the

next section. The coverage path is the one that covers all the target surface and it is

calculated by the View-planner. Finally, the final path links the last shot and the initial

point.

3.3 View-planner

The View-planner computes a set of viewpoints from which to take shots of a target

building slice given an initial viewpoint. The resulting images taken from those view-

points will be supposed to be used in a SfM system.

3.3.1 Shot region

First of all, the SR is calculated. It will be the region where the viewpoints will be

placed. This area is limited by two distances: the security distance, and the optimal

distance. For calculating the SR, Euclidean distances have been used, dE .

SR = A ∩B

A : dE(T,A) ≤ dOPT

B : dE(TO,B) ≥ dSEC

(3.1)

Where T represents the target points and TO describes de target and obstacle points.

As explained in section 3.1.2, being under the security distance to the target building or

an obstacle, is considered dangerous, this is the reason because this distance is the lower

limit of the shot-region. The optimal distance is the ideal distance for taking photos

perpendicularly to the target surface, according to the desired detail. It will be the

upper limit because farther away to this distance any picture will have a worse detail
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(a) 2D scene without obstacles (b) 2D scene with obstacles (c) Limiting distances

Figure 3.6: SR (in yellow) for the same 2D SG, without and with obstacles (in red).

compared to the desired one. The view planner looks for viewpoints which are in this

region.

3.3.2 Surface organization

From a initial viewpoint, the surface of the target building is organized. This process

has three main steps: select a first point, choose a direction and select the rest of points

until the last surface point is arranged.

The initial viewpoint is supposed to take an image of a concrete part of the target

building, it means that a set of surface points will be seen. From these points, the two

extreme ones are detected (see Figure 3.7) as the two points that are only linked to one

single surface point imaged in the first shot. After that, one of those two points will be

selected randomly as the first surface point. The random selection is reasonable due to

the fact that both extreme points are equal candidates to be the first point, it will only

affect in the direction of the organization.

The way of selecting the first point implies that the first image acquires a connected

set of surface points. If the points are are not connected (e.g. the target itself occludes

some points), the system will have problems. After that, the second point is selected

as the neighbourhood point that is visible in the first image. The other neighbourhood

point is not seen because the first point is one extreme imaged point. As it can be seen,

it is assumed that any surface point is connected to only two points, which may lead to

problems if the target shape is sharp. It may seem a drawback, but it can be thought

that for the same shape, if the resolution is increased, this problem will disappear.
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Figure 3.7: The first viewpoint (in yellow) takes an image. The two extreme surface
points seen in the first image are detected (in blue). The target surface will be organized

from one of those two points.

After having selected the first two surface points, the rest of them are selected as the

adjacent ones to their previous ones which have still not been organized. As a result, a

vector of organize points is built and used by the View-planner to cover exactly all the

surface.

3.3.3 Viewpoint selection

After having organized the target’s surface, two checking loops are done from the first

point until the last one. In the first loop, when an unseen surface point is found, a

viewpoint is selected looking at it as the one that sees more unseen surface points. The

criteria to choose it follows the idea described by Equation 2.7. After the first loop, all

the surface points are seen at least one time. In the second loop, when a surface point

seen only one time is found, a viewpoint is selected looking at it as the one that sees

more surface points seen only one time. After the second loop, all the surface points are

seen at least two times.

In both loops, the potential viewpoints are set inside the SR. In the case that a surface

point is unreachable due to the presence of an obstacle, the View-planner will not be able

to find a path, due to the fact that it supposes that all the surface points are reachable.

Ideally, in each loop several viewpoints are selected as the ones that see more special

surface points (i.e. unseen points or points seen just one time), but because of working
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with low resolutions, sometimes, a group of viewpoints see the same amount of special

surface points. For this reason, another criteria has been included. In the case that more

than one viewpoint sees the same amount of special surface points, the viewpoint which

is placed farther away to the previous viewpoint is selected in order to avoid p-outliers

(see next chapter).

In the second loop, at times it was found that viewpoints were selected really close to

some viewpoints chosen in the first loop, what may produce a low quality 3D recon-

struction. To avoid that, after the first loop, the surrounding areas where viewpoints

were selected were labelled as prohibited for the second loop.

Finally, the selected viewpoints are arranged because they are disorganized due to the

fact that they have been found in two different loops, and the Path-planner needs an

organized set of points to link. They are arranged according to the proximity to their

previous point, starting with the first shot.

3.4 Path-planner

The task of the Path-planner is linking all the viewpoints. To do that, a path algorithm

will be used recursively. The path algorithm will use a graph built from a cost function,

which is a representation of the security and the desired image detail in the SG.

3.4.1 Cost function

The cost function is a multidimensional array of the same size as the initial SG, in which

each element will have a value according to two criteria for describing the space. The

first one is that high values represent dangerous area and the second one is that low

values represent optimal area to go through. The goal for the Path-planner is to find

a path which links the shot points with low values according to the cost function. The

area to avoid will be the target building and the obstacles and the optimal area will be

zones which are around the optimal distance to take photos. The cost function c, is built

from two other functions, a security function s, and an optimal-placement function op:

c(x, y, z) = s(x, y, z) + op(x, y, z) (3.2)
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The security and the optimal-placement functions are multidimensional arrays of the

same size of the SG, where each element has a value indicating how close is this element

to a building or obstacle in the SG, in the case of the security function; and a value

indicading how close is this element to the ideal area to take shots in the case of the

optimal-placement function. For that pourpose, as for computing the SR, Euclidean

distances have been used, dE .

s(x, y, z) = K −min(dE(SGx,y,z, TO))

op(x, y, z) = min(dE(SGx,y,z, OR))
(3.3)

Where TO are the points that represent the target and the obstacles, OR represents the

optimal distance area around the target without taking into account possible obstacles,

and K is the maximum distance found in the term min(dE(SGx,y,z, TO). The usage of

K, inverts the shape of the security function, giving high values (K) to the target or

obstacles.
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Figure 3.8: Creation process of a cost function for a 2D scene. In the initial map, the
white figure represents a target building and the red one, an obstacle. In the security
function, the brighter areas represent not allowed areas (the building and the obstacle).
In the Optimal placement function, the darker areas represent ideal areas to take shots.
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Once both functions are combined, the values of the building, obstacles and regions

under a security distance to them, are set to infinite, to ensure that the cost of these

regions is really high, so that it is not interesting to go in this areas. The creation

process of the cost function for a 2D case is illustrated in Figure 3.8.

3.4.2 Path algorithm

From the cost function, a directed weighted graph is built. In this graph, each node

represents a position in the space, in the scene grid. The weights asigned to the edges

are values of the cost function.
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(c) Graph of size 16×16 used by the Dijkstra’s algorithm imple-
mentation in MATLAB

Figure 3.9: Example of the graph creation from a cost function.
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As it is explained in chapter 2, a directed edge goes from an initial node to a final one.

Those nodes represent an initial position and a final position in the cost function. The

value of the end position in the cost function is assigned to the edge weight (see Figure

3.10a).

Finally a path algorithm uses the graph and links the input points (the viewpoints) two

on two. The costs are all positive numbers which represent the space mobility, for this

reason the Dijkstra’s algorithm has been chosen. Its operating system consists in:

1. Assign to every node a tentative distance value: set it to zero for the initial node

and to infinity for all other nodes.

2. Mark all nodes unvisited. Set the initial node as current. Creating a set of the

unvisited nodes called the unvisited set consisting of all the nodes.

3. For the current node, consider all of its unvisited neighbours and calculate their

tentative distances. Compare the newly calculated tentative distance to the current

assigned value and assign the smaller one.

4. When all of the neighbours of the current node have been considered, the current

node is marked as visited and it is removed from the unvisited set. A visited node

will never be checked again.

5. If the destination node has been marked visited (when planning a route between

two specific nodes) or if the smallest tentative distance among the nodes in the

unvisited set is infinity (when planning a complete traversal; occurs when there is

no connection between the initial node and remaining unvisited nodes), then stop.

The algorithm has finished.

6. The unvisited node that is marked with the smallest tentative distance is selected,

and set it as the new current node, then it goes back to step 3.

Finally, as it was said before, to create an optimal path, it is important to give to the

Path-planner a set of ordered viewpoints, otherwise it would compute a zig-zag path.
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3.5 Approach to 3D

Trying to take advantage of the View- and the Path-planners, an approach using them

in 3D has been developed. It must be remarked that it is just an rough approach.

3.5.1 Façades

With the internal parameters of the camera and the desired detail, the vertical coverage

at the optimal distance can be calculated. Slices separated between this distance are

computed until the rooftop is reached. Each 2D SG used in each slice corresponds to

a slice of the overall 3D SG. To link the different slices, the movements are completely

vertical and once the next level is reached, the closest point in the SR region of this new

level is connected. This vertical movements is due to the fact that a graph describing

the 3D scene has not been built. It is a line of work that can be conducted in future.

Target 
building

Vertical 
coverage

(a) Scheme of façade coverage

First coverage Second coverage

(b) Example of rooftop covered in two steps.

Figure 3.10: Scheme for covering façades and rooftops.

3.5.2 Rooftop, terraces and opposed terraces

For covering these surfaces, a 2D problem is solved iteratively, updating the SG, with

a reduced target region, until all rooftop/terrace/opposed terrace points are seen. The

target region is reduced proportionally to an assumed distance seen inwards the target.

Finally, the resulting paths are fixed at a height related to a fixed pitch angle and the

optimal distance.



Chapter 4

Results and Evaluations

The system has been implemented in MATLAB, and thus, the simulations which will be

shown are performed in this environment. It is useful for manipulating and representing

matrices, which fits well with the volumetric model to represent the space used in this

thesis.

In the following simulations, three main criterions are studied, the number of times a

surface point is imaged, the distance of the cameras for taking images and finally the

angle between image pairs.

1. The first one is the number of times that each surface point of the target building

is imaged, nt-imaged. Theoretically, each surface point must be imaged at least

two times from different perspectives for a proper 3D reconstruction. Imaging a

point more than two times is not negative, what is more, this point will be better

reconstructed because the proper pair of images for computing triangulation will

be able to be chosen.

2. The second is the distance at which each surface point of the target building is

imaged, d-image. As it has been seen before, this distance is directly related to the

image detail and it depends on the application. Generally, a relatively high detail

will be desired, since one of the motivations of this thesis is acquiring a highly

detailed 3D models. The system proposed gives a path according to a desired

image detail, from which an optimal distance can be computed, and it will be

desired that the d-image approximates to this distance.

37
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3. The last criterion is the angle between lines of sight of image pairs, the cone angle.

When a 3D point location is computed from lines-of-sight forming small angles,

the intersection computation of the projection rays is imprecise and the 3D point

is likely to be an outlier. In [44], cone angles smaller than a certain angle were

discarded. Based in this work, viewpoint pairs with smaller cone angles than 5o

will be detected as potentially outliers, p-outliers.

On a second level, the total number of shots, the path length and the time of computation

will be also studied; and finally, other criterions analysed will be the distance between

viewpoints, db-viewpoints, the relation of the number shots and the target surface length

p-surface 1, and the relation of the path length and the target surface length p-surface 2.

p-surface 1 =
number shots

surface length

p-surface 2 =
path length

surface length

(4.1)

4.1 2D results

In this section, the performance of the system with 2D rough models will be studied,

first without the presence of obstacles, and then with it. For that purpose, four 2D

SG models with different target shapes (See Figure 4.1) have been created to evaluate

the system in different situations. Although, the idea is to use a rough model of the

environment and it means that it has low detail, e.g. LOD 1; it is interesting to see

the capacity and versatility of the system with models of certain complexity. In fact, a

possible future need would be using an automatic view planner several times, updating

the current 3D model until reaching a desired accuracy. In this case, the system should

be able to adapt to any model shape.

The first 2D SG has a square shape. It is the most simple shape of a building slice. In

this first experiment, it is interesting to observe how the system behaves in flat areas and

in convex vertices1. This SG could correspond to a typical building slice. The second SG

is L-shaped and is interesting for two reasons. The first one is that it contains a concave

1A convex vertex in a polygon is a vertex where the internal angle of the polygon formed by the two
edges at the vertex (with the polygon inside the angle), is less than π radians. In other cases the vertex
is called concave vertex.
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(a) Squared shape (b) L-shape

(c) H-shape (d) Triangulated shape

Figure 4.1: Different target building slice shapes which have been evaluated.

vertex, and the second one is that its centroid2 lies outside the polygon. Earlier strategies

for organizing the surface and the shot points were based on the angle to the targets

centroid; with that strategy shapes whose centroid lied outside the polygon, such as the

L-shape, could not be covered. The third model has a special shape used for seeing the

systems behaviour with dead ends, which are regions where the possible viewpoints are

limited. This shape also contains convex and concave vertices. Finally, the last SG has

a triangular shape. As the grid is visualized as an array of square elements, this model

is interesting for seeing the behaviour in oblique surfaces with respect to coordinate axes

of the system.

The results are computed from a set of initial parameters which remain the same, without

and with obstacles experiments, and for the four SGs, for a better comparison.

• Size of the SG (a square of side M=50 pixels) and initial point.

• Optimal distance = 7 pixels and security distance = 3 pixels.

• Horizontal FOV = 80o.

2The centroid of a polygon is the arithmetic mean position of all the points in it.
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The initial point may seem like of no importance but from it depends the position of the

first shot, and thus, the computation of all the coverage path. It is placed in the upper

left corner of the SGs. The next results are related only to the coverage path, which is

shown in yellow with the shot points coloured in orange.

4.1.1 2D without obstacles

(a) Path for a square shaped slice (b) Path for a L-shaped slice

(c) Path for a H-shaped slice (d) Path for a triangulate shaped slice

Figure 4.2: Resulting coverage paths for the four different 2D SGs evaluated.

As it can be seen it Figure 4.2, the paths have approximately a shape that would be

drawn by a human designer. However, there are two concrete behaviours that would

may have been designed in a different manner. The first one is related to the Path-

planner. As described in Figure 4.3a, in some concrete situations the path has a strange

design, instead of a single direction path, it has a to and fro design, due to the fact that

the shot points are organized according to the proximity to their previous ones. The

other special conduct is illustrated in Figure 4.3b, and is related to the View-planner.

At times, a set of viewpoints is chosen around a concrete area, and then another regions

are empty, it may be more logical to chose viewpoints uniformly. The system chooses
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the viewpoints only depending on the amount of information that they can acquire, and

usually a point looking in a angled direction to a wall covers more surface.

First shot

(a) To and fro behaviour

Possible 
regions

(b) Regions without viewpoints

Figure 4.3: Special conducts which may had been manually designed in a different
manner.

In the following tables, the information regarding those experiments is given. First,

Table 4.1 is given to observe the ranges of the times a surface point is seen, of the image

distance, and of the distance between viewpoints.

Table 4.1: Ranges of nt-imaged, d-image and db-viewpoints for the 4 experiments
without obstacles.

min max mean

PATH OF SG 1
Nt-imaged 2 4 2.5

D-image (pixels) 4,123 10,295 6,77
Db-viewpoints (pixels) 2 12,165 5,512

PATH OF SG 2
Nt-imaged 2 4 2,337

D-image (pixels) 3,605 10,44 6,901
Db-viewpoints (pixels) 1,414 13,152 4,947

PATH OF SG 3
Nt-imaged 2 4 2,4

D-image (pixels) 3,605 10,44 6,671
Db-viewpoints (pixels) 0 14,317 4,206

PATH OF SG 4
Nt-imaged 2 6 2,6

D-image (pixels) 3,605 10,295 6,591
Db-viewpoints (pixels) 1,414 12,041 4,398

It is interesting to see that the minimum times a point is seen, is always two times; it

is logical according to the system, it checks the surface two times, looking for uncov-

ered points. Also, it is remarking the fact that in the path for the H-shape target, the

minimum distance between points is 0, meaning that two points have the same posi-

tion. After studying the case, it was found that in the below dead end of the SG, two
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consecutive points, in the same checking loop3, were chosen with the same position, but

with different orientation. It is logical, because in this region, the possible viewpoints

are limited due to the nature of the target shape. Another remarking point of this

situation is that the road map result showed only one of those viewpoints, because the

Path-planner was built in order to link points with different positions and one of them

was erased, causing an error.

Finally, Table 4.2 shows the global evaluation results of the four experiments. In general,

all the parameters are satisfactory, except for the p-outliers, which would be desirable to

be lower, if possible 0. Specially high is this parameter in the triangulate shape target,

due to the surface definition, which is not practical in this situation. It could be said

that the best behaviour is found in the L-shape model, where the d-image is the closest

one to ideal one while it has the smallest number of p-outliers. Times are quite similar,

except for the H-shape, which has the highest one, due to the complexity of the shape;

in fact, it has the largest surface length, and more points must been covered.

Table 4.2: Complete results of the 4 experiments without obstacles.

SG1 SG2 SG3 SG4

Shots 17 21 26 18

Path length (pixels) 79 96 100 71

Time (s) 49,922 65,359 91,302 52,371

(Average) nt-imaged 2,5 2,337 2,4 2,6

(Average) d-image 6,77 6,901 6,671 6,591

(Average) db-viewpoints 5,512 4,947 4,206 4,398

P-outliers 5 3 3 8

P-surface 1 0,283 0,262 0,288 0,3

P-surface 2 1,316 1,2 1,111 1,183

4.1.2 2D with obstacles

In order to evaluate the systems performance with the presence obstacles, a set of them

of different size in random positions have been included in two of the four rough models

seen before. For these evaluations the square and the L-shapes have been chosen.

3After the first checking loop, the surrounding areas where a viewpoint has been selected are labelled
as not possible shot region in the second checking loop, in order to prevent p-outliers. In this case, it was
performed in the same loop, and the viewpoint were not p-outliers becuase they had a big cone angle.
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Concretely, 3 big (9 pixels), and 5 small (4 pixels), have been placed randomly in SGs

with the square and the L-shapes of the same size of the previous experiments (M=50

pixels). With the same initial parameters as the previous experiments, 10 different

obstacle configurations for each target shape have been created, producing 10 different

paths for each shape.

(a) Square shape with obstacles presence (b) Resulting path for the left situation

(c) L-shape with obstacles presence (d) Resulting path for the left situation

Figure 4.4: Two results of each collection of experiments.

If the obstacles are placed in areas where they do not cover completely a part of the

target building, the system is able to find a path (see Figure 4.4). However, if an

obstacle or some obstacles together cover completely an area of the target building (see

Figure 4.5), the system can not give a result, because the system checks each surface

point and tries to find a viewpoint that covers it. It could be understood as if an obstacle

covered completely a part of a building; in this case, this edifice could not be physically

covered. The system has been designed assuming that the target building is possible to

be covered. One line of future research consists in merging obstacles to the target, if they

are too close to it, so as the system can give at least a path, a result (see Appendix C).
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(a) Square shaped target with obstacles (b) L-shaped target with obstacles

Figure 4.5: Two situations, where the system could not give a result.

Table 4.3 shows the mean and the standard deviation of the parameters described pre-

viously for each experiment collection. Those results have been computed from 10 SGs,

where the system could find a path, situations where an obstacle covered completly a

surface part where discarded.

Table 4.3: Results of the two collection of experiments. Collection 1 corresponds to
the square shape, and collection 2 to the L-shape.

Experiment collection 1 Experiment collection 2
Mean Std. deviation Mean Std. deviation

Shots 18,1 1,044 22,2 1,166

Path length (pixels) 97,4 16,499 110,6 20,367

Time (s) 48,808 2,345 78,483 8,359

Nt-imaged 2,466 0,055 2,463 0,081

D-image (pixels) 6,818 0,129 6,856 0,069

Db-viewpoints (pixels) 5,219 0,393 4,886 0,23

P-outliers 2,6 1,280 3,5 1,565

P-surface 1 0,301 0,017 0,277 0,014

P-surface 2 1,623 0,275 1,382 0,254

These results are analogous to the case without obstacles. The nt-imaged and the d-

image are quite satisfactory, but again, the p-outliers is high, and with an elevated

deviation compared with its mean, which is a drawback. Also interesting is the time

result, it does not differ a lot from the experiments without obstacles. The reason is

that the system computes the same amount of operations for finding the viewpoints, but

in a more restricted SR limited by the obstacles.
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4.1.3 Other 2D results

In order to test the Path-planner, a special situation has been designed, where a target

building is completely surrounded, except for a small entrance, by an obstacle. The

simulation was performed with an square shape and with the same input values given

in experiments described above, but with a different initial position. In purpose, it was

given in the opposite site of the entrance to see the behaviour of the Path-planner.

(a) Target surrounded by an obstacle (b) Total path for covering the left SG

(c) Initial path (d) Coverage path

Figure 4.6: Target building surrounded by an obstacle, the total path to cover it, and
the initial and coverage paths.

In Figure 4.6c, it can be seen that in order to reach the first shot point, which is

the closest point in the shot region to the initial point, a path is designed with the

particularity that for a while it goes alongside the target and some pictures could have

been taken. When the first shot point is reached, the coverage path is computed (Figure

4.6d). After that a final path is computed, which goes back to the initial position. If

they are treated independently, they can be reasonable paths, but treated together are

not efficient because at the end, two rounds are done around the target. This is an issue

that must be addressed by modifying the Path-planner.
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Finally, the system has been tested with different SG resolutions to see the orders of

magnitude of the computation times4.

Figure 4.7: Time increment, with respect to the SG size increment.

The time increasing has a quadratic form due to the fact that the system must com-

pute a number of operations increased quadratically; in fact, the size of the SG is

M ×M . Each simulation performed previously in this section has been realised with

M = 50 pixels, and the order of magnitude for this resolution is around 100 seconds, ap-

proximately 2 minutes, which can be considered a good performance. On the other hand,

for M = 100 pixels, the order of magnitude is around 1.300 seconds, approximately

20 minutes, which is a time that can be considered significant.

4.2 3D results

Although most of the work in this thesis has been centred in 2D problems, the final goal

was to develop an approach for 3D. In this section, some 3D results of the system are

presented visually, for three different building shapes. In the following images, the path

is described as a line of points around a main structure which represents a building.

Due to representation problems the path and the building could not be coloured in a

different manner, which would have been desirable. The images correspond to paths

which include an initial, a coverage and a final path to illustrate the movements that

4The times presented in this section have been computed with an HP Pavilion g6 Notebook PC, with
a processor Intel(R) Core(TM) i5-2430M CPU @ 2,4 GHz, and a memory (RAM) of 4 GB.
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a UAV should realize. On the other hand, the corresponding tables are related only to

the coverage paths. As in the 2D results, all of these evaluations are performed with the

same initial parameters:

• Size of the SG (a cube of side M=50 pixels) and initial point.

• Optimal distance = 7 pixels and security distance = 3 pixels.

• Horizontal FOV = 80o and vertical coverage = 10 pixels.

• Fixed pith angle to one of three possibilities (0o, ± 45o).

The first experiment was realized with a quadrangular prism shaped building. Two

paths were computed, one for the rooftop, and another for the façades. It must be said

that a slice of this building is a square a bit smaller than the square studied in the

2D section and as a consequence the number of shots or the path length can not be

compared.

(a) Quadrangular prism shape (b) Rooftop path (PATH1)

(c) Façade path (PATH2) (d) Façade path seen from above

Figure 4.8: Resulting paths for a building with a quadrangular prism shape.

The path which covers the façades was built from 4 slices. Information about the two

paths can be seen in Table 4.4.
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Table 4.4: Information of the system result with a quadrangular prism shaped target.

PATH1 PATH2

Shots 22 45

Path length (pixels) 108 267

Time (s) 50,492 125,537

The second 3D SG tested was the same as the previous one, but with an added ring at

half height, creating a terrace and an opposed terrace.

(a) Quadrangular prism shape with
a ring (b) Terrace path (PATH1)

(c) Rooftop path (PATH2) (d) Opposed terrace path (PATH3)

(e) Façade path (PATH4) (f) Collision between slices

Figure 4.9: Resulting paths for a building with terraces and opposed terraces.

In this case, four different paths were computed: one for the terrace, one for the opposed

terrace, one for the rooftop and one for the façades. Information about them can be

seen in Table 4.5.
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Table 4.5: Information of the system result with a building with terraces and opposed
terraces.

PATH1 PATH2 PATH3 PATH4

Shots 51 21 51 57

Path length (pixels) 175 94 178 312

Time (s) 126,493 49,243 152,091 192,571

The third 3D SG has a target with a pyramidal shape. Terraces were not detected

because the shape changed gradually. As a consequence only two paths were computed,

one for the rooftop and one for the façades.

(a) Pyramidal shape (b) Rooftop path (PATH1)

(c) Façade path (PATH2) (d) Façade path seen from above

Figure 4.10: Resulting paths for a building with a pyramidal shape

As in the quadrangular prism shape, the façade path was also built from 4 slices. Infor-

mation about the two paths can be seen in Table 4.6.

Finally the system has been tested with a 3D scene with obstacles presence. In figure

4.11, the SG studied is shown, as well as the façade path.
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Table 4.6: Information of the system result with a pyramidal shaped target.

PATH1 PATH2

Shots 8 53

Path length (pixels) 27 307

Time (s) 16,112 158,246

(a) Building and obstacles (b) Façade path

(c) Façade path seen from above (d) Façade path seen from the side

Figure 4.11: A 3D SG with obstacle presence.

As it can be seen visually, the large obstacle is avoided because it remains constant in

the vertical axis. However with the small obstacle a problem is presented. It is not a

problem of collision, but a coverage one. As it lays in a level between two slices, for

them it is not treated. As a result, a building surface area will remain uncovered which

is an obvious problem (see circled area in Figure 4.11d).

A last comment is addressed to the time results. The computation time of the façades

is directly related to the number of computed 2D slices. In the presented results, only 4

slices are computed because of an assumed vertical coverage of 10 pixels, which in fact,

is not realistic, compared to the optimal distance (optimal distance = 7 pixels).
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Conclusions

5.1 Summary

This thesis has proposed an automatic view planner for 3D reconstruction of buildings

dividing them into slices and for each slice, solve a 2D coverage problem. Most of the

effort has been focused in solving 2D problems with building slices of any shape. The

2D results are promising, but much more effort must be focused in the 3D direction. As

a summary, the strong points presented in this thesis are:

• The creation of a system that covers completely a 2D target shape (i.e. a building

slice), and with the designed path, a 3D reconstruction from the building area

corresponding to it will be able to be performed. The system avoids obstacles and

covers a target 2D shape as long as it is physically coverable, taking into account

the image detail. An approach for 3D scenes is given using several 2D coverage

problems.

• The design of a useful tool, the cost function used by the system, which describes

the security and the desired image detail together. It has been developed in 2D

and in 3D satisfactorily.

• An implementation of the system in MATLAB, with a GUI, where a user can

choose a 2D or 3D scene model, a desired detail and a digital camera, and request

for a path that covers the target building of the model. The results are shown

graphically and in a road map.

51
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5.2 Further work

This thesis has given a first approach to solve a complex problem with many variables

and restrictions. However, it is still not completely solved and future work can be

addressed in several directions.

The first direction could be improving the 2D performance. As it has been seen, the 2D

results are satisfactory, but against two concrete situations the system has a deficient

behaviour. If an obstacle occludes completely a certain part of the target building,

so that this part of the surface can not be seen by any viewpoint, the system can not

provide a solution due to the fact that it supposes that all the surface is reachable. Some

first steps has been addressed in this direction (see Appendix C). The other situation is

the shot point linkage, which sometimes leads to a not optimal path shape. The Path-

planner links one point to another, without considering the rest. One possibility for

improving this problem is taking into account the complete group of shot points when

linking them, and not only two at each step. Besides improving the behaviour in those

situations, effort must be addressed in reducing the number of p-outliers, because they

will probably lead to an inaccurate 3D reconstruction.

On the other hand, a view planning problem for a building reconstruction is obviously a

3D problem. The most amount of work must aim to develop a satisfactory 3D solution.

The strategy of dividing a building into slices has sense, but instead of solving a 2D

problem for each slice, it could be interesting to confront the problem differently.

One of the first steps could be taking into account two orientation degrees of freedom.

With this configuration, a single path able to cover the different kind of surfaces seen in

this thesis could be designed, and thus, the UAV could be sended just once. This would

have a direct reduction in cost and time of the enterprise.

Developing a graph that describes all 3D space is another key point to link the viewpoints

and to give a path in a 3D model. It would give more movement freedom, and obstacles

in 3D space could be avoided. This graph would also avoid the collision between slices

of Figure 4.9f. To do that, another strategy for creating the graph must be followed.

Further, it will be also interesting to work with SGs with high resolution, so that the

results are more realistic. One interesting tool could be using kd-trees, which is a space-

partitioning data structure for organizing points in a k-dimensional space. It is useful
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for several applications, such as searches involving a multidimensional search key, e.g.,

nearest neighbour searches.

The final step, after having improved properly the automatic view planner, could be

acquiring a real building coordinates, create a rough model of it and give this model

to the system. After that, transforming the generated path into a navigation system

coordinates, e.g. GPS coordinates, so that a real UAV can follow the generated path.



Appendix A

Focal Length in Digital Cameras

A digital camera is an optical device which creates a single image of an object or scene,

and records it on a digital image sensor. All cameras use the same basic design: light

enters an enclosed box through a convex lens and an image is recorded on a light-sensitive

medium. While in principle in a digital camera a simple convex lens will suffice, in

practice a compound lens made up of a number of optical lens elements is required to

correct the many optical aberrations that arise. This Appendix simplifies the operation

of a camera, to the use of a single convex lens.

A convex lens makes light rays passing through it bend inward and meet at a spot just

beyond the lens known as the focal point. The image sensor of a camera is situated in

the focal plane, a plane perpendicular to the optical axis, which passes through the focal

point. In order for a lens to focus rays of light that are not parallel, the lens needs to

focus the light. This act of focusing moves the focal point. The image sensor, however,

is stationary and does not move, in fact are the lens elements that move away from the

image sensor as the lens is focused.

In Figure A.1a, a convex lens focuses a beam of collimated light into the focal point.

Collimated light is light whose rays are parallel, which come from infinite. In the case

that collimated light comes to a convex lens, the focal length f , is defined as the distance

between the optical center of the lens and the focal point. On the other hand, if not

collimated light comes to a convex lens, e.g. from an object situated at distance S1 to

the optical center, the focal point will be then situated at a distance S2 to the optical

center. This distance is different to the focal length (see Figure A.1b).
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Focal 
point

f

(a)

Focal 
point

f

S2S1

Object

(b)

Figure A.1: Focal length in a situation with collimated light (left), and focal length
in a situation with light coming from an object at position S1 (right).

As a conclusion, for the interest of this thesis, when a digital camera is set to infinity,

its optical center is separated from the image sensor, by the lens’s focal length.



Appendix B

Epipolar Geometry

Epipolar geometry is the geometry of stereo vision. When two cameras view a 3D scene

from two distinct positions, there are a number of geometric relations between the 3D

points and their projections onto the 2D images that lead to constraints between the

image points. These relations are derived under the assumption that the cameras behave

like in the pinhole camera model.

mL

M

EL
ER

CL
CR

mR

epipolar 
plane

Figure B.1: Two cameras are indicated by their centres CL and CR and image planes.
The camera centres, a 3D point M, and its images mL and mR lie in a common plane.
A line connecting each camera center, intersects each image plane at the epipoles EL

and ER. A plane containing this line is an epipolar plane.

If the relative translation and rotation of the two cameras is known, the corresponding

epipolar geometry leads to two important observations:
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1. If the projection point mL is known, then the epipolar line ER–mR is known and

the point M projects into the right image, on a point mR which must lie on this

particular epipolar line. This means that for each point observed in one image, the

same point must be observed in the other image on a known epipolar line. This

provides an epipolar constraint which corresponding image points must satisfy and

it means that it is possible to test if two points really correspond to the same 3D

point.

2. If the points mL and mR are known, their projection lines are also known. If the

two image points correspond to the same 3D point M, the projection lines must

intersect precisely at M. Triangulation is the process of calculating a point M, from

the coordinates of its two image points.

Epipolar constraints are usually described by the fundamental matrix, if the internal

camera parameters are unknown:

mT
2 Fm1 = 0 (B.1)

Or, by the essential matrix, if the internal parameters are known:

mT
2Em1 = 0 (B.2)

Those are 3×3 matrices, which are basically the algebraic representation of the epipolar

constraint.



Appendix C

Obstacle Merging

The situation where an obstacle or multiple obstacles cover completely a part of the

target building is of special interest. The system proposed assumes that the target

building surface is able to be covered. Otherwise, it can not give a path. This can be

seen as a drawback, since in the real world any building is surrounded by obstacles such

as trees, other buildings, lampposts, etc. Two solutions have been thought to solve this

problem:

1. Ignoring the unreachable surface points, and cover the rest of the surface points.

2. Merging the obstacles which are too close to the target into it and solve a problem

with this updated target shape.

Initial efforts have been focused in the second direction, obtaining some interesting

results. The strategy consists in checking neighbouring points to the target and examine

if they belong to an obstacle or not. If they do, they are merged to the target, and the

neighbouring points of the new target shape are checked again, until the model is not

updated any more. Figure C.1 shows a result of this strategy. Given a scene with

obstacles placed too close to the target building, after that they are merged, and finally

a path is computed from this updated model. This situation could not have been solved

by the systems behaviour by default.

This performance is still not refined. It only merges obstacles which are up against the

target or which are at a certain distance. It would be interesting to merge obstacles at
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(a) Original SG (b) Updated SG (c) Final coverage path

Figure C.1: Situation with two obstacles near a the target building. First, they are
merged and as a result a path can be computed.

different selectable distances, and obstacles which cover completely a target surface part

but maybe are not to close.

As a consequence, this merging process can lead to a sharped target, which would

produce problems in the surface organization step.



Appendix D

Data CD

Contents:

1. Thesis in PDF format.

2. MATLAB folder containing all the necessary functions to run the implementation

of the system.

3. File readme.txt. Instructions and indications of how to use the system.
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