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Departament d’Arquitectura de Computadors(DAC).

Grup de Sistemes Operatius (GSO)
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During the last years the computer networks have become an important part of our society.
Networks have kept growing in size and complexity, making more complex its management
and traffic monitoring and analysis processes, due to the huge amount of data and calculations
involved.

In the last decade, several researchers found effective to use graphics processing units (GPUs)
rather than a traditional processors (CPU) to boost the execution of some algorithms not re-
lated to graphics (GPGPU). In 2006 the GPU chip manufacturer NVIDIA launched CUDA, a
library that allows software developers to use their GPUs to perform general purpose algorithm
calculations, using the C programming language.

This thesis presents a framework which tries to simplify the task of programming network traffic
analysis with CUDA to software developers. The objectives of the framework have been ab-
stracting the task of obtaining network packets, simplify the task of creating network analysis
programs using CUDA and offering an easy way to reuse the analysis code. Several network
traffic analysis have also been developed.
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ningú (que segur que ho faré), però gràcies a en Jordi (fonamental), Gerard (quan no

dormia), Aleix (Barcelona’s pubs tourist guide), Dani (rock’n’roll star), Jesús, Fran,
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3 anys de la carrera amb mi. Gràcies.
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Nothingman

Once divided...nothing left to subtract...

Some words when spoken...can’t be taken back...

Walks on his own...with thoughts he can’t help thinking...

Future’s above...but in the past he’s slow and sinking...

Caught a bolt ’a lightnin’...cursed the day he let it go...

Nothingman...

Isn’t it something?

Nothingman...

She once believed...in every story he had to tell...

One day she stiffened...took the other side...

Empty stares...from each corner of a shared prison cell...

One just escapes...one’s left inside the well...

And he who forgets...will be destined to remember...oh...oh...oh...

Nothingman...

Isn’t it something?

Nothingman...

Oh, she don’t want him...

Oh, she won’t feed him...after he’s flown away...

Oh, into the sun...ah, into the sun...

Burn...burn...

Nothingman...

Isn’t it something?

Nothingman...

Nothingman...

Coulda’ been something...

Nothingman...

Pearl Jam
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Chapter 1

Introduction

1.1 Motivation

In the past five decades computer networks have kept up growing in size, complexity

and, overall, in the number of its users as well as being in a permanent evolution. Hence

the amount of network traffic flowing over their nodes has increased drastically.

In particular, the Internet was initially a project from the U.S. government defense

agency ARPA (Advanced Research Projects Agency) to interconnect some government

facilities and protect the country from a USSR attack, called ARPAnet. Later, in 1988,

some U.S. universities joined to this network and in 1995 the network was opened to all

types of organizations (like private companies), experimenting a huge growth. Currently

the Internet has become the world’s largest inter-connection network. Internet, accord-

ing to [4], has currently over 1,733,993,741 estimated users. According to [5], only in the

backbone 1 network of the U.S. during 2008 there was an estimated traffic of between

1,200,000 to 1,800,000 TB/month (TeraByte/month).

At the same time, connection speeds, specially in the backbone networks and between

important inter-network links and also in private networks, are gradually increasing and

are currently of tens or hundreds of MB/s to hundreds of GB/s. Also ISP connections

to the Internet for personal users and small to medium size companies, are increasing

its capacity rapidly, from tens or hundreds of KB/s of the preceding decade to hundreds

of MB/s and in some countries tens of GB/s.
1A backbone network or network backbone is a part of computer network infrastructure that inter-

connects various pieces of network, providing a path for the exchange of information between different
subnetworks.

1
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All that massive amount of data flowing from node to node in either a private or a public

network, contains a lot of information, fundamentally network header’s information,

that in some cases has to be analyzed for one or more purposes, such as:

• Security purposes. To detect, prevent, defeat or analyze in depth security flaws,

threats, attacks. . . to the network or to any element that is connected to it.

• Monitoring and management purposes. To monitor, understood as prevent-

ing and/or detecting problems over the network, like routing problems, element

failures or to enhance network link performance (load balancers, advanced routing

algorithms . . . ).

• Statistical purposes. To obtain any kind of statistical information that may be

of interest.

• Accounting information. To charge users depending on the amount and type

of traffic they produce and/or consume.

• . . .

Depending on the moment that data obtained from the network is processed, one could

distinguish between the following analysis types:

• Real time, or pseudo-real-time analysis. Performing the analysis as the informa-

tion is obtained from the network, or to be precise, nearly in real time (pseudo-real-

time), as small batches or buffers may be used before analysis is indeed performed.

This type of analysis requires a high amount of resources, but offers nearly instant

results.

• Batch analysis. Batch analysis processes data in big data batches in comparison

of real time analysis. This type of analysis gives a medium resources/response time

ratio.

• Forensics analysis. Forensics analysis are usually performed only when a “some-

thing goes wrong”.

It may not seem obvious at first sight, but response time in forensics analysis do matter,

as this amount of time might be the interval of time a network resource, network link,

server or service, in general might be unavailable for a part or all of the network users

or remain vulnerable.
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Problem definition

A quick response time in any of the above analysis types over the huge amount of

data obtained from the network is a must. Performance of network data processing

algorithms is crucial and should be fast, reliable and at the same time, do not interfere (or

interfere as little as possible) in the overall network performance and in the performance

of network connected systems and their services.

The current trend of factors related to the networks and the traffic analysis systems

listed below, complicate the accomplishment of this goal:

1. The number of network nodes is increasing. Most analysis algorithms are

highly dependent on the number of elements (nodes) on the network.

2. Network speed (bit rate) is gradually increasing.

3. The amount of network traffic is increasing heavily.

4. Analysis algorithms are getting more complex. Specially algorithms dealing

with application layer data, are getting more and more complex as security threats

get more complex.

5. Computing analysis systems are reaching two computational limits,

known as memory wall and instruction-level parallelism wall due to sys-

tem architecture limitations, mainly because of the processor and memory tech-

nology and analysis code characteristics.

The first four factors from the above list can not be avoided as are the result of user’s

current needs and technical advances in the networking field, and in any case, the trend

seems to make things even worst for analysis algorithms performance in the near future.

However, regarding the fifth factor which is probably one of the most important factors,

several solutions have been proposed and adopted over the years. But before outlining

some of them and sketching our approach briefly, a small description on the above

mentioned computational limits should be made.

The instruction-level parallelism wall : ILP abbreviated, is commonly referred to

the increasing difficulty of finding enough parallelism in a single instructions stream

to keep a high performance single-core processor busy. That is the main reason of

the last decade interest in the design and development of multi-core processors.
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The memory wall : the increasing difference between the processor and the memory

clock speeds. Currently, the memory wall is an important bottleneck, due to the

high number of CPU-memory-CPU data transactions.

Current approaches

Current approaches to tackle the problem, generally tend to distribute analysis pro-

cessing tasks over a number of computers, in order to reduce hardware computational

resources needed in every single computer, and also reduce the impact of the ILP wall

issue.

This type of approaches offer the following pros and cons:

Pros

• Offers a solution to the problem.

• Scalability. This type of solutions are scalable.

• Distributed systems.

Cons

• Do not reduce the impact of the memory wall.

• Require a data distribution software system. This kind of solutions require

a data distribution software to effectively distribute data over the different network

nodes.

• May require dedicated separate high performance data exchange net-

works to interconnect the different computers, to avoid data distribution delays.

• Hardware costs are considerable, and specially if a high performance dedicated

data exchange network is required.

Our approach: using heterogeneous computing. General-purpose com-

puting on graphics processing units (GPGPU)

This thesis proposes to use what is known as heterogeneous computing, and more specif-

ically using graphics processing units to perform totally or partially network data anal-

ysis.
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Heterogeneous computing could be described as the usage of systems made up by dif-

ferent types of computational units. Computational unit types can be divided into

general-purpose processors (GPP), commonly referred to them as central processor units

(CPUs), as are usually the main processor of the majority of the computing systems,

and special-purpose processors (SPP). Examples of special-purpose processors are digital

signal processors (DSP) or graphics processor units (GPU).

Graphics processor units or GPUs, are processors that originally where conceived to

perform 2D and 3D graphic calculations instead of the the general purpose processors

(CPUs). In fact, their technical evolution is attributed to the popularity and the com-

plexity rise of rendering programs like CAD (Computer Aided Design) programs on

one side, and to 3D video games. The high demanding calculations required by these

software programs that have to be satisfied by the GPUs (specially floating point op-

erations) forced the designers to develop a highly parallel processor structure, capable

of running many execution threads concurrently inside the processor in conjunction of

high speed memory and other processor external lower speed memory resources (typi-

cally RAM memory). This type of computational units are capable of running memory

high intensive operations smoothly.

Since 2005 there is a growing interest in trying to use GPUs to perform computing tasks

that are not strictly related to graphics, and hence taking advantage of the hardware

architecture of this type of computational units. Parallelism and memory bandwidth

led investigators and developers to start using GPUs to enhance complex algorithm

performance.

GPGPU started using GPUs as if they were actually calculating graphics, translating

algorithm’s input data to an image and then use available graphics libraries to perform

operations over that image to finally reconvert resulting data to its original form.

GPUs manufacturers, quickly realised that GPGPU could be a business opportunity, so

they invested in developing tools to make easier to use their products for it. NVIDIA,

which is considered at the time the worldwide GPU manufacturer leader, developed

and released CUDA (an acronym for Compute Unified Device Architecture) 1.0 library

in 2006, which enabled some of their GPUs to run CUDA code for general purpose

computing.

CUDA is the computing engine in NVIDIA GPUs that can be used by software devel-

opers through industry standard programming languages. Programmers can use “C for

CUDA”, which is basically C with NVIDIA extensions and some C++ features.

Our proposal is to apply the concept of general-purpose computing on graphics process-

ing units to the network traffic analysis algorithms implemented typically using general



Chapter 1. Introduction 6

purpose processors only systems, and also open the door to the creation and/or im-

plementation of high resources demanding algorithms that had not been implemented

before due to performance limitations. Specifically, we plan to use CUDA to develop a

framework to simplify third party software programmers the task of using and devel-

oping network traffic analysis over the GPUs.

Network traffic GPU based analysis systems have the following theoretical advantages

and disadvantages compared to traditional approaches:

Advantages

• Offers a solution to the problem.

• Better performance. Better memory bandwidth and parallelism capabilities.

• Scalability. The solution is highly scalable.

• Costs should be lower.

• System could still be a distributed system. If high computational capacity

is needed, analysis systems could also be made up by a group computers using

each of them GPUs to distribute computing process.

Disadvantages

• May require adaptation or rewrite of already programmed traffic anal-

ysis algorithms due to GPUs architecture details and CUDA syntax.

• In distributed systems, high performance dedicated distribution net-

works may still be necessary to avoid data distribution delays.

1.2 Objectives

The project main objective is to develop an open source CUDA based framework

to allow programmers using it to center their efforts on programming network traffic

analysis to be executed in the GPUs.

In addition, the framework should fulfill the following requirements:

• Open source. The framework should be developed under the terms of open

source software.
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• The framework should be developed in C/C++ and CUDA languages. This is

basically because of performance and CUDA requirements.

• Easily extensible. Framework should be easily extended in any of its parts.

• Scalable. Framework should be scalable, particularly related to the number of

analysis supported for the framework-based program.

• Modular. Framework structure should be modular, enhancing scalability, exten-

sibility and code maintenance.

• Easy to use. Framework should be easy to use for the users. The framework

should abstract most of the CUDA related work as well as packet data obtaining

job.

In this sense, even if the user does not know CUDA programming, should be able

to create analysis based on what framework defines as modules: precoded routines

that can be used within analysis code.

• Well documented. Framework should be correctly documented, either for users

willing to use it and for developers who aim to contribute to the project. Docu-

mentation should also be easily accessible.

1.3 Project overview

The project’s resulting framework allows users to create programs being able to capture

packets from network interfaces or obtain network data from a capture file and perform

as many analysis over that data using the GPUs (CUDA) as required to finally carry

out actions with the results obtained of these analysis.

The framework also is able to perform already all types of analysis mentioned before:

real-time analysis, batched analysis and forensics analysis

The architecture of the framework is summarized in the following diagram:
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Figure 1.1: Framework architecture diagram.

The main components of the framework architecture are:

• PacketFeeders: objects that implement PacketFeeder abstract class or interface,

and its purpose is to obtain packets from any kind of resource (i.e. network devices

and files) and serve them as PacketBuffer objects to the analyzer component.

• Analyzer: the analyzer is the component of the framework that distributes Pack-

etBuffer objects obtained from every feeder to all of the program’s analysis.

• Analysis: analysis are the main component of the framework. These components

are the ones in charge of examining, inspecting and calculating something with data

contained in the PacketBuffer objects and later execute actions over the results of

the analysis.

Users have to fill the code, either programming their own code in each different

section of the analysis or using what framework defines as modules. Modules are

precoded routines affecting one or more sections of the analysis that users can use

simply calling one of its routines. Modules increase the framework flexibility as

similar analysis routines should only be coded once, and also enables developers

to add new modules to improve the framework and share them.

The users workflow is summarized in the following diagram:
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Figure 1.2: Framework workflow diagram.

The user’s framework-based program is made-up by, on one side a file containing the

main() method (Main.cpp), and in the other all the analysis components defined using

the template files 2 (files .cu and .h). On the other hand, the framework library and

all the other underlying libraries, like CUDA, are required to build the application.

1.4 Thesis report structure

This thesis report is divided into the following sections or chapters:

1. Introduction

2. Background. In this section an introduction to the different technologies and

theory that sustain the project is exposed. The background section contains infor-

mation about network packet capturing software (commonly known as sniffers),

GPGPU and CUDA programming environment and a brief introduction to the

current network traffic analysis techniques.

3. Design. Design section offers a detailed description of the methodology followed

during the development stage of the framework, as well as description of the dif-

ferent parts that the framework is made of and the design patterns used.
2See section 4.6.4
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4. Implementation. Implementation section focuses on the current implementation

of the framework. Implementation section offers a detailed description of the

implementation details and solutions adopted as well as a summary of the future

work that could be carried out over the resulting framework.

5. Conclusions. Contains the conclusions of this dissertation, a summary of the

knowledge acquired during the development of the project and a brief overview of

the future work that could be done.
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Background

2.1 Network packet capturing: sniffers.

Network packet capturing software, commonly known as packet sniffers, network sniffers

or simply sniffers, are programs or libraries that obtain (actually eavesdrop) data packets

flowing through a certain network segment in which the system is connected to by means

of a network card.

The term sniffer or packet sniffer may be a little confusing. Most software programs

capturing packets from a network and processing them, for instance decoding headers

information and showing it or extracting data from headers for later calculations, are

called sniffers, packet sniffers, network sniffers, packet analyzers or network analyzers

indistinctly. In this thesis we are going to refer to the term sniffing as the act of

obtaining raw packets from a network card or network interface, and as packet

analyzing the act of performing analysis over network data previously ob-

tained.

Therefore, packet decoding and analyzing software like tcpdump[6], Wireshark [7] (pre-

viously called Ethereal) or OmniPeek [8] (formerly AiroPeek, EtherPeek) for instance,

should be considered as sniffers (as all of them rely on a sniffing library) and packet

analyzers. In the other hand, libraries like Libpcap[6] or Winpcap[6] for example, should

be considered formerly as pure sniffing software libraries.

In this section we are going to introduce some fundamentals over network data capturing

techniques and a little bit of history. In the Network traffic analysis theory section, a brief

summary of network traffic decoding, examining and analyzing techniques is presented.

11
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2.1.1 A little bit of history.

Since first networks started to be used in the early 1960s, security has increasingly

become a major concern. In this sense, it was not until early 1980s, as computer net-

works where starting to become widely used in government and big companies facilities,

that network traffic monitoring and control started to be considered a very useful task,

particularly against attacks to hosts and their services, network failures and network

performance issues.

First network programs, including network monitors and network analyzers, where

operating-system-level processes which included the processing code in it. Due to the

necessity of supporting user-level applications as well as to improve performance (as

most of the code did not require to be run as a system-level process code), researchers

of several universities started to think about creating a capturing library that would

run in the operating system’s kernel space and offer to the user an API (Application

Programming Interface) to program their own user-level network applications. This was

commonly known as Packet Filter.

In 1980 the CMU (Carnegie Mellon University) and Standford university joined their

efforts to develop CMU/Standford Packet Filter (CSPF) implementing the idea of kernel

based “packet filtering” library. CSPF was inspired in Xerox Alto Packet Filter, and it

is considered an adaptation and enhancement of Xerox Alto Packet Filter.

In 1992 the Berkeley university developed the BSD Packet Filter [1] that was pretty

much an adaptation of the CMU/Standford CSPF to RISC architectures, as CSPF was

originally designed for being used in memory-stack based computer architectures and

hence very inefficient in RISC architectures (predominant architectures already in the

90s). Due to its design and performance, BSD Packet Filter and other versions highly

inspired in it are the packet filter libraries currently in use by the vast majority of the

UNIX-like operating systems.

Following diagram shows the structure of BSD Packet Filter based packet filters, widely

used in Unix-like operating systems (including BSD OSs and GNU/Linux OSs).
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Figure 2.1: BSD packet filter diagram. Extracted from [1]

2.1.2 How they work.

The vast majority of network cards, support what is known as promiscuous mode or

monitor mode. Normal operation of network cards when obtaining packets from the

network (default configuration), compare the destination layer 2 (link layer) address to

the one in use by the network card. If packet destination address and network card

address in use match, or if the packet destination address is a broadcast address 1,

packets are passed to the operating system, otherwise packets are dropped.

If promiscuous mode or monitor mode is enabled, network card passes all packets cap-

tured from the network to the operating system, even if they are not addressed to

the system. Operating system later manages, using the packet filter engine, how to

distribute packets to the applications. In the Unix-like systems, root privileges are re-

quired to enable promiscuous and monitor operation mode. Sniffer techniques rely on

this functionality to do its job.
1Broadcast address: is a network address that allows information to be sent to all nodes on a network,

rather than to a specific network host.
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It is important to remark that capturing packets from a network is highly dependent of

the type of the network used and of the topology and configuration of the network.

Clear examples of this fact can be found in LAN (Local Area Network) networks based on

the IEEE 802.XX (physical and link layer protocols) protocol macro-family, for instance

in the IEEE 802.3 [9] protocol based networks, also known as Ethernet networks, and

in the IEEE 802.11[10] based networks, so-called Wifi or Wireless networks.

In the following subsections some details over sniffing on both network types are exposed.

2.1.2.1 IEEE 802.3 sniffing details.

In a typical IEEE 802.3 LAN network, a star topology is used, so all the nodes in the

network are connected (through their own cable) to either a hub or a switch.

Figure 2.2: Star topology usually used in IEEE 802.3 networks

Hubs are basically repeaters: packets coming from a certain port are retransmitted over

the rest of the ports.

Switches instead, only send packets to the port where the destination host is connected,

by previously identifying all the hosts connected to each port. Switched networks have

better performance than not switched networks. Switches may perform other actions

over traffic, such as filtering based on different protocol fields (link, network, transport

and application protocol fields, depending on the switch), but this is beyond the scope

of this thesis.
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That means that if a switched network is used, only packets flowing to or from the

particular host running the sniffer or broadcast packets will be captured.

Several techniques have been used to overcome this problem:

• Using a hub: an obvious but bad solution is to use hubs instead of switches. It

is not a valid solution as its performance is very reduced compared to switched

networks and their production is practically discontinued.

• Placing the sniffer in the gateway links as a bridge/router: this technique

is widely used and has the advantage of being able to sniff packets from a lot

of sub-networks by only placing one network tap. The disadvantage is that only

traffic going through that link is captured, so internal traffic (between nodes in

the same subnetwork or between different sub-networks) is not captured, which in

some cases, like data centers for instance, is very relevant[11] [12]. In those cases

the only solution is to use distributed sniffers, port mirroring or a combination of

both of them. Figure 2.3 illustrates this technique with an example.

Figure 2.3: Example: eavesdropping traffic in the gateway links.

• Switch port mirroring: some switches have what is called port mirroring or

monitoring port2. If port mirroring is enabled, a copy of all the packets flowing in

the switched are transmitted to the mirroring port selected. On networks formed

by several switches, obtaining packets in a single host is more complex, and may

require to use advanced switch capabilities like Cisco’s RSPAN 2 or combine them

with a distributed sniffer.
2Switch manufacturers use several names to refer to their port mirroring technologies: Cisco Systems

generally refers to them as Switched Port Analyzer (SPAN) or Remote Switched Port Analyzer (RSPAN)
for capturing traffic from more than one switch. 3Com calls them Roving Analysis Port (RAP).[13][14]
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Figure 2.4: Using port mirroring switch capability.

• Distributed sniffer: distributed sniffers use a software based architecture to

collect traffic in several network taps (hosts), and combine them to obtain them

in a unique host. The main advantages of this type of systems are their scalability

and flexibility. The drawbacks of this kind of systems are that distributed network

sniffers have less performance than port mirroring due to overhead introduced by

software architecture and the increase of network traffic. The figure 2.5 shows

graphically the structure of a distributed sniffer platform.

Figure 2.5: Distributed sniffer structure example.

2.1.2.2 IEEE 802.11 sniffing details.

IEEE 802.11 based networks share access medium, so it may be easier than IEEE 802.3

switched networks to capture packets, as having a network card being able to be set to

promiscuous mode (actually monitor mode) is all the hardware required.
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Nevertheless, some considerations have to be kept in mind. When placing a sniffer in

a wireless network, some packets or even all the packets sent by a certain host may be

lost, due to environment conditions (shadowing) and the physical position of the sniffer

host and the other hosts in the network (attenuation due to propagation). IEEE 802.11

networks made up by several access points may increase capturing problems, due to the

larger coverage area (and therefore the higher reception antenna gain needed when using

a unique sniffer host).

Some approaches to solve these problems are:

• Capture packets in the wired network section: sometimes is preferable

to sniff packets in the wired section rather than capturing them in the wireless

subnetwork. This is conceptually similar to place a sniffer in the gateway link

above mentioned, so the main disadvantage is that internal wireless traffic is not

captured. This approach has also the drawback that link layer protocol (level 2)

information is lost.

• Distributed sniffer: usage of distributed systems. Pros and cons are similar

than above mentioned.

2.1.3 Libpcap.

Libpcap is the capture library for Unix systems. Windows systems use a port of Libcap

called Winpcap. This library offers the programmer an API to use BSD Packet Filter

kernel facilities or any other Packet Filter kernel architecture that is based on Berkeley

Packet Filter, to create user-level network capturing programs. Libpcap was released by

the tcpdump developers in the Network Research Group at Lawrence Berkeley Labora-

tory.

Libpcap offers the following capabilities: packet capturing from a network card, packet

capturing from a file and capturing packets to save them into a file. Libpcap was

extracted from the tcpdump program and made into a library. Development of Libpcap

is in charge of tcpdump group [6].

2.2 Network traffic analysis theory.

Network Network traffic analysis could be defined as: “the inference of information from

observation of the network traffic data flow”. Analysis in general, and hence network
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traffic analysis, can be categorized by time (or frequency) criteria and by the purpose

of the analysis.

Time based analysis categorization

Regarding time and frequency criteria, any network traffic analysis can be classified

in one of the following three categories: real-time analysis, batched analysis and

forensics analysis. The first two categories are not event orientated analysis in the

sense that analysis is performed continuously, and not when a particular event occurs

like forensics analysis do.

Real-time analysis are performed over the data as it is obtained, or using small batches

often called buffers to efficiently analyze data. The response time of this kind of analy-

sis, understood as the time elapsed between a certain event occurs and is computed or

detected, is low thanks to the low delay obtaining data and the fact that real-time anal-

ysis are fully automated. Real-time analysis though, have usually high computational

resources requirements.

In contrast, batched analysis performs analysis periodically, where the period is enough

to accumulate data in so-called data batches. Depending on the batching policies, the

response time and associated computational resources requirements may be higher or

lower, but in general they offer a higher response time and lower computational resources

requirements than real-time analysis (although they require larger storage size).

Forensics analysis in the other hand, are analysis performed when a particular event

occurs (triggered analysis). A typical example of forensics analysis are the analysis

performed when an intrusion is detected to a particular host. This kind of analysis

require that data had been previously stored to be analyzed, and may also require of

human intervention.

Network traffic analysis purposes: applications.

The main purposes for network traffic analysis and some of their applications are listed

below:

• Monitoring and management purposes. To monitor, understood as prevent-

ing and/or detecting problems over the network, like routing problems, element

failures or to enhance network link performance (load balancers, advanced routing

algorithms . . . ).
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Monitoring and management use a variety of applications and platforms, from

packet analysis tools, like tcpdump[6], Wireshark [7] or Airopeek [8], to monitor-

ing and management platforms like Nagios[15], OpenNMS [16], Pandora FMS [17],

IBM monitoring and management integrated solution[18] or Cisco Works[19].

• Security purposes. To detect, prevent, defeat or analyze in depth security flaws,

threats, attacks. . . to the network or to any element that is connected to it. Fire-

walls and Network Intrusion Detection Systems (NIDS) are the main applications

that take advantage of network traffic analysis techniques for security.

Firewalls, are basic policy based network traffic analysis systems, and due to per-

formance principally analysis are restricted to a few inspection operations over

network packets and usually run in the kernel space of the operating system of the

filtering device. Examples of them are the BSD packet filter[20] (pf) and Linux

NetFilter[21] (iptables).

The other main application that uses network data traffic analysis techniques for

security purposes are so-called network intrusion detection systems (NIDS) or net-

work intrusion prevention systems (NIPS). NIDS have the objective of inspect

network traffic in search of network intrusions to hosts connected to the network,

traffic anomalies and network misuse. NIPS in addition, try to minimize the ef-

fects of the intrusions or anomalies, by performing actions against threats, like

modifying firewall policies.

To achieve this goal, NIDS use either what is known as signature detection or

statistical approaches (or a combination of both). In signature detection based

NIDS, network traffic is examined for pre-configured and predetermined attack

patterns known as signatures or rules, contained in a ruleset. This kind of systems

effectively detect known attacks, but are unable to detect new threats and attacks

(or variations of them), and need to have rulesets updated frequently.

In the other hand, statistical based NIDS (also known as behaviour based NIDS)

use advanced statistical techniques and signal processing techniques to detect

anomalous and malicious traffic. They have the advantage of being able to detect

new threats and attacks at the expense of more computational resources required

and usually a higher number of false alarms.

Some examples are Snort [22] or Bro[23] as open source signature based NIDS, and

Cisco Systems NIPS and IBM ISS platforms as commercial NIDS/NIPS global

solutions.

• Information gathering and statistical purposes. To obtain any kind of in-

formation or statistical parameters that may be of interest to any area except of

previously mentioned monitoring, management and security areas.
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2.2.1 A little bit of history on network traffic analysis.

Network traffic analysis history could be fundamentally summarized with the history of

network monitoring on one hand and network intrusion detection on the other. Both of

them have been the main areas in which network analysis engineering efforts have been

centered in due to their interest and outcome.

Network monitoring history

Network monitoring tasks have been taken place in computer networks since first net-

works where starting to be used. Network monitoring could be defined as the use of a

system that constantly monitors a computer network for slow or failing components and

that notifies the network administrator in case of problems.

Over the years, two different kind of techniques mainly have been found effective for

monitoring purposes[24]:

• Agent based monitoring: agent based monitoring relies on a piece of software

running on the network devices that should be monitored (hosts, routers . . . ),

called agent. This piece of software collects information from the device, such as

the connectivity state of its network interfaces, link performance like throughputs

and any other information that may be of interest, and send them to a management

platform through the same network or through a dedicated management network.

SNMP (Simple Network Management Protocol)[25], in all of its versions, is a clear

example of a typical agent based monitoring and management protocol (although

SNMP has limited management capabilities, specially in versions 1 and 2).

This kind of monitoring techniques are out of the scope of this project, as agent

based monitoring generally do not involve traffic analysis engineering.

• Agentless monitoring: does not rely on agents collecting information from each

of the hosts of the network under surveillance, but on analyzing network traffic

obtained directly from the network. In this sense this kind of systems typically

supervises network traffic in terms of connection throughputs, packet routing in-

formation, TCP[26] window state to estimate congestion, host services (web, ftp,

ssh . . . ) being used among others.

This kind of systems may be totally passive systems, and hence do not interfere

on the traffic flowing in the network or be also an active system, in which the

monitoring system is able to deliberately inject packets to force devices to respond

to them obtaining information by capturing and analyzing devices responses. The
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weakness of this kind of monitoring systems is that not all the information can

be gathered from the network data observation, specially information related to of

particular hardware and software parameters on the hosts which agents are able

to supply.

Most IT administrators agree that agent based monitoring and agentless network mon-

itoring are complementary.

Intrusion detection history

Is often considered that 1972 James P. Anderson paper of the United State Air Force

(USAF)[27] set the bases of what later will be considered formerly as network intrusion

detection. Anderson highlighted the fact that the USAF had “become increasingly aware

of computer security problems. This problem was felt virtually in every aspect of USAF

operations and administration”.

The USAF, in those years, had the huge task of providing users shared access to their

computer systems, which contained different levels of classifications to be accessed by

various types of users with different levels of security clearance. The problem was: how

to assure secure access to separate classification domains within the same network.

In 1980, Anderson published a study [28] in where he presented new approaches to

improve computer security auditing and surveillance. The idea of automated intrusion

detection is often credited to him for his paper on “How to use accounting audit files to

detect unauthorized access”.

Several years later, Dorothy Denning and Peter Neumann published the first model

of a real-time intrusion detection system (IDS), called IDES (Intrusion Detection Ex-

pert System)[29]. IDES was a rule-based (signature based) system developed to detect

already known malicious traffic patterns.

In the following years several enhancements on the IDES were performed. In addition,

throughout 1980s and 1990 researchers worldwide started to investigate on the intrusion

detection field. Different projects where started, most of them funded by the U.S.

government like Discovery, Haystack, Multics Intrusion Detection and Alerting System

(MIDAS), Network Audit Director and Intrusion Reporter (NADIR).

Since the 1990s the intrusion field, and particularly network intrusion detection field

(NIDS) has become a major research field of interest. The raise of networks usage and

the Internet, as well as the 1996 successful attacks to the U.S. government website,

CIA website, U.S. Air Force, United States Department of Justice or 1997 successful
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penetration to Yahoo!’s servers for instance[30], increased the interest on the network

intrusion detection. In the later 1990s several companies, like Wheelgroups Netranger

and Internet Security Systems Real, developed their own NIDS.

In the last years, many different commercial and open source network intrusion detection

systems have been developed. Most of them are evolving from NIDS to NIPS (Network

Intrusion Prevention Systems).

Some of the most common NIDS and NIPS, both commercial and open source, are listed

below:

Open-source:

• Snort: combining the benefits of signature, protocol and anomaly based inspection

Snort is possibly the most widely deployed NIDS/NIPS technology worldwide.

Snort NIDS is free (NIPS solution is not).

• Bro: Unix-based Network Intrusion Detection System. Its analysis includes de-

tection of specific attacks (including those defined by signatures, but also those

defined in terms of events). Bro is free.

Commercial:

• Cisco Systems Network IPS: NIPS system based on signature and anomaly

analysis.

• IBM ISS (Internet Security Systems): made up by several components in-

cluding an NIDS/NIDP.

2.2.2 Network traffic analysis techniques.

In this section a brief introduction of main network traffic analysis techniques currently

in use is exposed, focusing on the analysis procedures but also outlining some of the

analysis purposes which take advantage of them. But first, some considerations over the

network traffic analysis inputs (network data) should be sketched out.

The main input source of any network traffic analysis is the collection of packets captured

from the network, commonly called the dataset or the analysis dataset. From that

dataset which may contain all protocol header information as well as application an

user information, a process of extracting (mining) the useful pieces of data for every

particular analysis has to be carried out.
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Datasets may also be broken up in smaller parts, resulting in data subsets, to later

be analysed separately. The reasons of splitting dataset are usually performance issues

with non-linear computing cost analysis algorithms, as working with large datasets may

increase computing time exponentially, or to achieve a higher time resolution due to

the reduced time interval of the datasubset. In these cases analysis are said to be

performed over windowed datasets or simply called windowed analysis. Depending on

the criteria followed to split the dataset into data subsets, two different types of windowed

datasubsets can be obtained:

• Packet windowed datasubsets. Dataset is splitted in portions of equal number of

packets each.

• Time windowed datasubsets. Dataset is splitted in time intervals. The size of the

subsets is unknown, and depends on the amount of traffic collected per second.

The usage and type of dataset windowing may affect to the results of the different

analysis performed over it, and hence windowing parameters have to be taken into

account when analysis results have to be evaluated and interpreted.

2.2.2.1 Network traffic data inspection techniques

Network data inspection techniques obtain information of network data by inspecting

network header fields of each packet, compute them and produce outputs or results.

Packet decoding (packet analyzing)

The simplest network data inspection possible is packet decoding, also called packet

analysis, in which all header’s field are decoded and presented in a human readable way.

Network analyzers like tcpdump, Wireshark or OmniPeek are some examples of packet

decoding applications.
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Figure 2.6: Screen shot of the Wireshark program.

Packet decoding is used for the vast majority of purposes, being the most reliable se-

curity (intrusion detection, bandwidth abuse...) and network management and failure

detection.

This kind of techniques are specially of interest in network security forensics analysis.

Specific packet data extraction and analysis

The extraction of pieces of data from the packets contained in the dataset instead of

decoding all packet headers information, and processing them is a strategy used when

particular aspects of traffic need to studied.

Different processing tasks can be performed over data collected:

• Graphical representation of raw data.

• Statistical information and pattern extraction

• Rule based (signature based) analysis, anomaly detection and policies.

• Flow based analysis.
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Graphical representation of raw data is of interest in many areas, principally in

network monitoring, network management and security. Representations are usually

in the form of 2D and 3D scatter plots, time based graphs, histograms, pie charts or

diagrams.

Network monitoring applications make an extensible usage of graphs like node state

monitor graphs, throughputs and link performance graphs, source and destination hosts

(IPs) histograms and scatter plots, service usage (TCP and UDP ports) histograms and

scatter plots or routing diagrams. Some examples are shown in the figures below.

Figure 2.7: Some graphics obtained with Nagios and Zenoos open-source network

monitoring platform

Statistical information and pattern extraction is a big field in network analysis.
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First and second order statistical moments, averages, time distributions and probability

distributions functions are some of the basic statistical analysis that can be performed

over network data.

Obtaining interesting statistics over network traffic is widely used primarily in moni-

toring platforms. Average number of connections to a certain hosts, average inbound

and outbound throughputs, transport and application layer protocol distribution, time

distribution of connections to servers, time distribution of average network through-

put are some examples. These statistics can also be applied for other purposes rather

tan monitoring and network management, like security or marketing purposes (specially

application level statics).

Figure 2.8: Protocol distribution graphic from the NetAnalyzer traffic analysis plat-

form

On the other hand, statistical pattern recognition or statistical pattern extraction is an

extensive area related to network traffic analysis. They are applicable to security and

marketing fields. Due to the extension of this field and complexity, further information

is given in the 2.2.2.2 section.

Rule based (signature based) analysis and policies are all the analysis that in-

spect traffic searching packets that match a certain rule or signature. Rules or signatures
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are defined as values of certain headers fields or a combination of several values of certain

headers fields. Rules may also define adequate field value intervals or thresholds.

Rule based analysis is also frequently called signature pattern matching. There is quite a

confusing usage of the term pattern over the network analysis literature, and particularly

in network intrusion detection analysis literature: while some authors use the word

pattern to designate statistical patterns (statistical user behaviour patterns, statistical

usage patterns in general) like W.S. Chen in [31] or Yung Wang in [32], some others like

Richard Bejtlich in several books like [33] use them to refer as rule based analysis. In

this thesis be are going to refer to patterns as statistical patterns only.

Rule based analysis techniques are used above all for security purposes and specially

in signature based intrusion detection systems (NIDS), like Snort. Threshold rules are

commonly used in security (for instance to detect DoS attacks and other resource abuse

attacks) and also for network management purposes like for example in network link

load monitoring.
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# (C) Copyright 2001-2004, Martin Roesch, Brian Caswell, et al.

# All rights reserved.

# $Id: ddos.rules,v 1.26 2005/02/10 01:11:03 bmc Exp $

#-----------

# DDOS RULES

#-----------

alert icmp $EXTERNAL_NET any -> $HOME_NET any

(msg:"DDOS TFN Probe"; icmp_id:678; itype:8;

content:"1234"; reference:arachnids,443;

classtype:attempted-recon; sid:221; rev:4;)

alert icmp $EXTERNAL_NET any -> $HOME_NET any

(msg:"DDOS tfn2k icmp possible communication";

icmp_id:0; itype:0; content:"AAAAAAAAAA";

reference:arachnids,425; classtype:attempted-dos; sid:222; rev:2;)

alert udp $EXTERNAL_NET any -> $HOME_NET 31335

(msg:"DDOS Trin00 Daemon to Master PONG message detected";

content:"PONG"; reference:arachnids,187;

classtype:attempted-recon; sid:223; rev:3;)

alert icmp $EXTERNAL_NET any -> $HOME_NET any

(msg:"DDOS TFN client command BE"; icmp_id:456;

icmp_seq:0; itype:0; reference:arachnids,184;

classtype:attempted-dos; sid:228; rev:3;)

Figure 2.9: Some Snort rules.

In this sense, rules could be considered as policies, as certainly define the type and

amount of traffic permitted and not permitted in the network.

Flow based analysis techniques are focused in the treatment of network traffic as

flows, as most information exchanged in a computer network is session or connection

oriented and not packet oriented, so analysis can take advantage of it. A clear example

of a typical network flow is a TCP connection, where data exchanged is ruled by the

TCP state machine[26].
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Their main applications are in the monitoring and security field. Regarding security,

most NIDS like Snort, use flow based analysis techniques to detect possible threats,

based on anomalies and well known attacks.

Monitoring platforms on the other hand, inspect network traffic in search of flows, to

generally list them or represent them in a diagram.

2.2.2.2 Advanced statistical and signal processing techniques applied to the

network traffic analysis

Since early 1990’s, researchers all over the world have devoted some of their efforts in the

research of advanced statistical analysis techniques and also applying signal processing

techniques to the network traffic analysis. The efforts have been centered in the network

intrusion detection and prevention field, due to the fact that signature based NIDS

(and NIPS) have important limitations detecting new security threats, as new rules

for detection appear as new attacks and security threats are discovered. In addition,

signature based NIDS have the obvious drawback that rulesets have to be frequently

updated.

Platforms or applications that use statistical techniques for the network intrusion de-

tection are known as Statistical Network Intrusion Detection Systems or alternately

Behaviour based Network Intrusion Detection Systems. This kind of NIDS rely on ad-

vanced statistical techniques, heuristic pattern extraction and signal processing to detect

anomalies and classify network traffic.

Y. Wang exposes in his book [32] a general and up to date state-of-the-art of most

reliable statistical techniques in the field of statistical network intrusion detection. There

is also an extensive set of publications from researchers over new statistical and signal

processing techniques applied to network intrusion detection. Some of the techniques

are briefly introduced here.

Linear and Nonlinear modeling methods

Significance tests, like χ2 (chi-square) test and t-test have been proposed for a sim-

ple network intrusion detection, examining frequency difference between two categorical

variables and differences between two continuous variables respectively. Linear methods

like logistic models, regression models, principal component analysis or clus-

tered based analysis are some of the main methods suitable to use complex statistical

modeling techniques to examine user behaviour based on network traffic data.
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Non linear methods are fundamentally based in AI (artificial intelligence) algorithms

like Artificial neural networks, Fuzzy logic algorithms and K-nearest neighbour

algorithms have also been found effective for aiding network intrusion detection decisions.

Bayesian and probability approaches

Bayesian and probability approaches assume that parameters that are being studied are

random rather than fixed parameters. Before looking at the current data, old infor-

mation can be used to construct a prior distribution model for these parameters and

therefore classify new data based on how likely various values of the unknown param-

eters are, and then make use of the current data to revise this starting assessment so

that parameters can be considered random, not fixed. This attribute allows an intrusion

detection systems to make a more precise decision based on the probability approach.

Latent class model based analysis like proposed in Wang, Kim, Mbateng and Ho [34]

or Bayes role based analysis like proposed by Barbard, Wu and Jajodia [35] are some

examples of Bayesian and probability approaches.

Other

Data mining techniques are based on the combination of machine learning, statistical

analysis modeling and database technology to find patterns and subtle relations between

network data fields to allow future prediction results. Several research papers have been

published in this direction like Lee, Stolgo and Mok 1999 paper [36].

Fourier model has been proposed [37] for effectively detect DoS and Probe attacks

by analyzing periodicity in either packet arrival or connection arrivals.

2.3 GPUs

Graphical processor units commonly referred to them as GPUs and occasionally called

visual processing units or VPUs, are a specialized type of processors that its purpose is

to offload 3D graphics rendering from the microprocessor or CPU.

The history of GPUs started in 1970s, where ANTIC and CTIA chips provided for

hardware control of mixed graphics and text mode on Atari 8-bit computers. The

ANTIC chip was a special purpose processor, that mapped text and graphics data to

the video output.
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Later, in 1984 the IBM Professional Graphics Controller appeared as one of the first

2D/3D graphics accelerators available for the IBM PC architecture compatible systems.

IBM’s chip did not succeed, due to the lack of compatibility with already existing pro-

grams and due to its high price.

The first mass-market computer to include a dedicated graphics processor was the Com-

modore Amiga, that was launched in 1985. The dedicated graphics processor from

Amiga was the first full graphics accelerator as offloaded practically all video operations

from the CPU.

By the time, IBM’s 8514 graphics system was the first PC video cards to implement 2D

primitives in hardware.

In 1991, S3 manufacturer introduced the S3 86C911 to the market, which claimed to be

the first single-chip graphics card to implement 2D acceleration functions in hardware.

The rest of the manufacturers followed the 86C911 model, and by 1995, all major PC

graphics processor vendors had added 2D hardware acceleration support to their chips.

During the first half of 1990s decade, CPU based real-time 3D graphics were becoming

increasingly significant, specially in the CAD (Computer Aided Design) field and spe-

cially in computer video games. As video games gained popularity, and the consequent

increasing demand of 3D hardware acceleration, graphics manufacturers started the de-

velopment of 2D and 3D graphics accelerators. This milestone was reached with the

launch of Vérité V1000 chip in 1996 by Rendition.

During the second half of 1990s decade, and thanks to the increasingly success of 3D

graphic programs, fundamentally video games, several manufacturers appeared to com-

pete over the GPU market. By the end of 1990s, manufacturers leaders were 3dfx,

ATI and NVIDIA. NVIDIA launched the Geforce 256 in 1999 being the first card on

the market with hardware transform and lighting capabilities, adopting new hardware

solutions that set the precedence for future designs like pixel shaders and vertex shaders.

During the early 2000s, thanks to the OpenGL API, a multiplatform and multilanguage

API that was created in 1992 by Silicon Graphics Inc. to help programmers draw 3D

images, and new the hardware architectures that allowed each image pixel be processed

by a short program that could include additional image textures as inputs and geometric

vertex be processed similarly, 3D applications experienced a major graphical capabil-

ity improvement.The first device that supported vertex shaders programming was the

NVIDIA’s Geforce 3.

In 2000 3dfx was acquired by NVIDIA. From that point to the present, the market of

high performance GPU chips has been dominated by NVIDIA on one hand, with an
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estimated market-share of 63.46% in October of 2009 according to [38], and ATI, with

and estimated of 28.97% of market-share according to [38] at the same date.

The latest chips of NVIDIA are the G80 and G90 chip family (Geforce 8 and 9 ) gener-

ation. Recently NVIDIA has published a new architecture for the CUDA enabled chips

with the code name Fermi[39], which will have 512 cores integrated in the chip, as well

as bigger L1 and L2 cache memory sizes and memory error correction among others,

making it more suitable for general purpose computing. For his part ATI has developed

Radeon 5000 family, with the Evergreen graphic chipsets.

2.3.1 GPGPU: general-purpose computing on graphics processing units.

GPGPU stands for General-Purpose Computing on Graphics Processing Units. Since

2003, several researchers like Harris, Mark J., William V. among others [40], outlined

that current architecture of high performance GPUs in terms of FLOPS (FLoating-point

Operations Per Second), with programmable fragment and vertex shaders that enabled

the programmers to create more realistic and complex graphics, could be used for other

purposes rather than graphic calculations.

The motivation of GPGPU was performance improving of computing algorithms, and

particularly to overcome limitations of traditionally CPU based computing already

pointed in section 1.1: the instruction-level parallelism wall and the memory wall.

On one hand, although GPUs architecture offer a limited set of operations to be per-

formed over data, they have the ability to process many of them in parallel, thanks

fundamentally to the programmable shaders that were added to the GPU processor’s

pipelines. GPUs are able to compute many vertices or fragments of graphics in the

same way in so-called streams. A stream is simply a set of elements that require similar

computation, providing data parallelism, and kernels are the functions that are applied

to each element in the stream.

In the other hand, the usage of graphical processor units have another important advan-

tage over traditionally computing CPU based model; its memory bandwidth. In the last

decade the gap between CPU and memory speed have kept growing, and thus memory

latency has become a major bottleneck in CPU computing, specially in applications

with an intensive usage of memory. The evolution of theoretical single precision floating

point operations (FLOPS) [2] for both Intel based CPU processors and NVIDIA based

GPU processors is shown in the figure 2.10.
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Figure 2.10: GPU (NVIDIA) vs. CPU(Intel) processor FLOPS performance gap.

Based on [2]

First attempts of using GPUs with other purposes rather than graphics, required to

transform or convert complex algorithms and data into a graphics, to be able to use

the GPU through graphics libraries (like OpenGL) to solve them and later revert the

transformation.

NVIDIA, conscious that GPGPU could be an important boost for the GPU market

and also knowing that the current approaches for using GPUs for general purpose pro-

gramming required a high level of knowledge and was a tedious job, started developing

an SDK with the purpose of simplifying the task of GPGPU programming. The re-

sult of this development was CUDATM(Compute Unified Device Architecture), that was

launched in November 2006.

CUDA is a parallel computing architecture that enables programmers to use both CPU

and GPU processors to cooperate in a single program, using a computing paradigm

known as heterogeneous computing. Software developers are able to program general

purpose functions or routines to be run on the GPU by simply use “C for CUDA” (C

with NVIDIA extensions) while the rest of the program is still executed in the CPU.
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CUDA has become widely used in many areas such as physics simulations, scientific

and medical simulations, signal processing, cryptography or audio and video processing

among others.

ATI also launched his own GPGPU SDK called Stream SDK, but at the time Stream

SDK has not been as successful as CUDA.

2.3.2 CUDA architecture and programming model for GPGPU

The CUDA SDK allows programmers to code parts or functions of a general purpose

program to be executed in the GPU using C language with some extensions. The main

three key abstractions that are exposed to the programmer as the C extensions are: a

hierarchy of thread groups, shared memories and thread barrier synchronization.

CUDA programmers have to partition the algorithms or parts of the code that are going

to be boosted using the GPU into coarse sub-problems that can be solved independently

in parallel, and then into smaller pieces that can be solved cooperatively in parallel.

Functions executed into the GPU are called kernels, the rest of the code, and particularly

high control intensive parts of the code, are executed on the CPU.

Kernels are functions designated with global attribute. When they are called, ker-

nels throw a total number of N threads. To achieve a good performance in general,

kernels should throw thousands of threads.

Figure 2.11: CUDA thread hierarchy (based on [2])
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Figure 2.11 show kernel’s thread organization of model. The N threads thrown by the

kernel are organized in 2D array of blocks called grid 3, each of this blocks containing a

3D array of threads. The number of threads, and their organization cannot be modified

during the kernel execution. The programmer may use or not multidimensional block

and grid organization according to their needs, simply not using (0 value) the dimensions

not needed.

The programmer can access to the current thread block ID dimensions values with

variables blockIdx.x and blockIdx.y respectively. Likewise, the programmer can ac-

cess to current thread ID dimension with variables threadIdx.x, threadIdx.y and

threadIdx.z respectively. The combination of blockIdx and threadIdx complex vari-

ables values identify unequivocally each thread, and are used to perform ordered data

accesses and execute code conditionally depending on the thread and block IDs.

Currently, CUDA based programs have the restriction of a maximum of 65536 (216)

threads and the limitation of 512 threads/blocks per dimension due to current GPU

architectures (Tesla architecture).

The code contained in the figure 2.12 shows a simplified example of a kernel call, throwing

vecAdd kernel with a 1D grid organization and 1D thread block organization, throwing

NB blocks, with NT threads per block. Some coding details, like memory data transfers

from CPU to host are omitted for simplicity.

1 __global__ void vecAdd(float* A, float* B, float* C)

2 {

3 int i = threadIdx.x;

4 C[i] = A[i] + B[i];

5 }

6 int main(int argc , char *argv [])

7 {

8 vecAdd <<<Nb ,Nt >>>(A, B, C);

9 return 0;

10 }

Figure 2.12: CUDA kernel example and associated main() function (simplified).

Kernels are called using kernel name<<<dim3 gridSize, dim3 blockSize,...>>>(...)

syntax, where gridSize and blockSize are dim3 variables NVIDIA C extension , which
33D grid is currently implemented but yet not supported.
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define the number of blocks in the grid and their organization in gridSize, and the num-

ber of thread per block and their organization in the case of blockSize (they can be

constants, in which case 1D organizations are assumed).

When executing kernel functions, threads within the same block can cooperate sharing

data using special variables residing in so-called shared memory space, tagging those

variables with the shared attribute. CUDA also offers the possibility to synchronize

all the threads within the same block only with a barrier, by using syncthreads()

API function.

In CUDA architecture several different memory spaces are defined. Figure 2.13 shows a

simplified diagram of memory spaces[2].

Figure 2.13: CUDA memory hierarchy (based on [2])

All the threads in the block have their own read-and-write local memory and registers

that can only be accessed by itself. Shared memory instead, is defined with shared

variable attribute, and all the threads within the block can read-and-write in it (note that

shared memory is not race-condition free). Additionally CUDA offers the programmer

two more read-only memory spaces, a reduced size (currently 64KB) constant memory

space ( constant ), which is fast as it is cached and texture memory ( texture ),

which is also very fast. Finally global memory space ( global ) is a read-and-write mem-

ory space, with large capacity but slow access speed. the global, texture and constant

memory spaces are persistent across multiple kernel launches by the same application.

The following table summarize memory spaces access costs.
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Memory space Size Latency R/W

Global up to 768MB 200-300 cycles R/W

Shared 16KB/SM ' Register latency R/W

Constant 64KB total ' Register latency R/-

Texture up to global ≥ 100 cycles R/-

Local up to global 200-300 cycles R/W

Table 2.1: Memory spaces in a Geforce 8800 GTX. Extracted from [3].

CUDA also has several limitations compared to the traditional CPU based programming.

CUDA does not support at the time function pointers and the accesses to global memory

must be aligned to a 4-byte address[3]. This is basically due to hardware architecture

limitations, and is possible that in future GPU architectures these limitations have been

solved, as NVIDIA have assured that new architectures will be CUDA compatible.
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Design

3.1 Developing tools and methodology.

As previously outlined in section 1.2, the tools and programming languages that have

been used in the developing process of the framework are:

Languages:

• C++[42]: to take advantage of object oriented programming (classes, inheritance

and polymorphism) and also due to the performance requirements, C++ has been

used in the entire program, except when using CUDA as C++ is still not fully

supported by CUDA1.

• CUDA[43]: CUDA is the “language” or SDK used to perform general purpose

calculations in the GPUs.

• Bash scripting: bash scripting language has been used for several pre-compiling

scripts.

Libraries:

• Libpcap[6]: library to obtain packets from the Packet Filter.

• unixODBC[44]: ODBC library used to save analysis results to a database.

• GNU utilities[45]: Several GNU programs have been used. Further information

can be found in Implementation section.
1CUDA 2.3 supports C++ template meta-programming but not classes.

38
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The methodology used in the development phase has been the spiral model.

Figure 3.1: Spiral methodology used in the developing process of the framework

In this methodology, in each turn of the spiral, the process of determining the objectives

and requirements, analyzing the possible risks, developing and testing and planning

(understood as an evaluation of the result), are done over the project. The number

of turns through the spiral depend on the implementation issues that might be found,

the accuracy of objective definition in the early stages of the development and the

requirement fulfillment of the current implementation.

3.2 Framework design overview.

The main objective of this thesis has been to design and implement a framework capable

of giving the user a simple way of programming network traffic analysis using GPUs, and

specifically using CUDA. In addition, the framework should give an easy and extensible

way of reusing analysis code for multiple analysis purposes, and thus giving the chance

to programmers not knowing CUDA to create framework-based applications. A more

extensive definition of the project objectives can be found in section 1.2.

The framework should allow users to create an undefined number of analysis, that are

going to analyze network data captured or obtained from either network interfaces or

from several capture files. The workflow planned for those applications based on the

framework should be:
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Figure 3.2: Framework workflow (design).

Framework design has been divided in several subsystems or components. The diagram

contained in figure 3.3 shows the relationship between these components.

Figure 3.3: Framework design diagram.

• PacketFeeders: in charge of obtaining network packets and buffering them into

PacketBuffer objects.

• Analyzer: obtaining the PacketBuffer objects from PacketFeeders and distribut-

ing them to all the Analysis components.

• Analysis: performing analysis calculations over the data contained in the Pack-

etBuffer objects. They also perform actions depending on the results obtained.
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The framework should simply require that the program main() function contain the

addition of new Analysis and PacketFeeder components to the Analyzer component,

prior to start the analysis process. The figure 3.4 shows how this should be translated

into code (pseudo-code):

main(){

// Add as much Analysis components as desired

Analyzer.addAnalysis(analysis1);

Analyzer.addAnalysis(analysis2);

// ...

Analyzer.addAnalysis(analysisN);

// Add as much PacketFeeeder components as desired

Analyzer.addFeeder(packetfeeder1);

Analyzer.addFeeder(packetfeeder2);

// ...

Analyzer.addFeeder(packetfeederM);

//Start obtaining packets and analyzing

Analyzer.start()

}

Figure 3.4: main() function structure draft (pseudo-code).

3.2.1 PacketFeeders.

The framework defines PacketFeeders as the components in charge of obtaining network

packets and packing them into a PacketBuffer class object.

The PacketBuffer class should define an array of MAX BUFFER PACKETS packets, in

which raw network data, basically network headers, are stored. The size of each packet

buffer should be fixed to MAX BUFFER PACKET SIZE bytes, to easily be accessed by GPU

threads as a function of the thread id. The figure below outlines the basic structure of

the PacketBuffer class.
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typedef struct{

uint8_t data[MAX_BUFFER_PACKET_SIZE];

}packet;

class PacketBuffer {

packet buffer[MAX_BUFFER_PACKETS];

}

Figure 3.5: PacketBuffer basic structure draft (pseudo-code).

PacketFeeders may obtain packets from any kind of source and pack them into PacketBuffer

objects. The framework, as previously said in the objectives, should allow at least:

• Obtain packets from network interfaces in real-time. This capability will al-

low the framework to perform any kind of real-time traffic analysis, like monitoring,

management or security surveillance tasks.

• Obtain packets from a tcpdump capture file, or from any other source. This

feature will allow framework users to perform forensics analysis (or even batched

analysis), to, for instance, obtain information after a security attack has been

perpetrated.

From the design point of view though, all the PacketFeeder objects, regardless of its

packet source, should indeed implement the same abstract class or interface. The inter-

face should have at least the method getSniffedPacketBuffer(), where the Packet-

Feeder supplies a filled PacketBuffer object, as shown in the following figure.

abstract class PacketFeeder {

PacketBuffer getSniffedPacketBuffer(void);

}

Figure 3.6: Abstract class for PacketFeeder (pseudo-code). Draft.

This component, and specifically the classes created that inherit from the abstract class

PacketFeeder, are going to use the Libpcap library for obtaining packets from a network

card or a file.
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3.2.2 PreAnalyzer.

The PreAnalyzer component has been used in the development process for debugging

purposes, and specifically to debug PacketFeeder components and to obtain useful in-

formation over the network capture files that have been used. During the development

phase, PreAnalyzer component has been executed right before the buffers retrieved from

PacketFeeders have been sent to all the analysis, giving to the programmer the chance to

check and decode network packet information, and also verify the correct implementation

and operation of PacketFeeder objects using host code (C++).

From the framework design point of view, PreAnalyzer will not be a part of the user-

framework, although it will be included in the source code to help developing and ex-

tending the framework architecture.

3.2.3 Analyzer.

The Analyzer should be a unique object (static object) in the whole framework-based

program, acting as a distributor or hub of the PacketBuffer objects filled by Packet-

Feeders and all the Analysis of the framework-based program. This component should

provide the flexibility to the framework, in terms of easy inclusion of new PacketFeeder

and Analysis components to the framework-based program.

As the framework should allow users to have a multiple PacketFeeder objects and also

multiple Analysis components in the same program, different policies on how to retrieve

and distribute PacketBuffer objects on programs using multiple PacketFeeder and

Analysis components, could be implemented:

Buffer retrieving policies:

• Event oriented buffer retrieving (interruptions). The buffers are retrieved as

they are filled, and require an interruption or signaling mechanism to the Analyzer.

This policy make no sense with PacketFeeder objects obtaining packets from a

capture file.

• Retrieve buffers sequentially, by obtaining Nbuffers buffers from each Packet-

Feeder object contained in the program. A particular case of this, is obtaining a

buffer from each feeder sequentially.

The drawback of this kind of policy is that packet rates between feeders obtain-

ing packets in real-time should be similar or analysis time should be less than

capturing time, to avoid packet loss.
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Buffer broadcasting policies:

• Broadcast buffers to all Analysis components.

• Broadcast buffers to only a set of Analysis components, based on Packet-

Buffer object parameters, for instance network interface or file origin.

• Broadcast buffers to only one Analysis components sequentially. This

policy makes no sense with the current design of the framework.

Obtaining buffers sequentially, one by one from each feeder (Nbuffers = 1), and broad-

casting them to all analysis policies have been assumed in the design and implementation

of the framework, as they are in our opinion the most reliable. However, the design of

the Analyzer could be easily extended to allow other policies, and they are considered

in the future work subsection of section 4.5.

The following diagram shows a functional description of the Analyzer component main

execution loop in pseudo-code.

//Assuming sequential buffer obtaining policy

//and buffer broadcasting to all analysis policy

analyzerStart(){

while(1){

//For each feeder in allFeeders

foreach feeder in allFeeders{

//Obtain buffer from a PacketFeeder

buffer = feeder.obtainBuffer();

//For each analysis in allAnalysis

foreach analysis in allAnalysis{

//Analyze buffer

//execute GPU(analysis) and CPU(hooks) code

analysis.analyze(buffer);

}

}

}

}

Figure 3.7: Functional description of the Analyzer main loop (pseudo-code). Draft.
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In order to ease adding both Analysis and PacketFeeder components, the design of

Analyzer static class should include two methods; addAnalysisToPool(...) and the

addFeederToPool(...). The following figure presents a draft of the Analyzer class

structure, without analyzerStart() implementation presented in the figure 3.7.

class Analyzer {

//Add PacketFeeder to analyzer feeders pool

addFeederToPool(PacketFeeder feeder);

//Add Analysis component to analyzer analysis pool

addAnalysisToPool(Analysis analysis);

//Start analyzer loop

analyzerStart();

}

Figure 3.8: Analyzer class structure (pseudo-code). Draft.

3.2.4 Analysis.

Analysis components are the main components of the framework. Analysis should be

objects performing a specific calculation or analysis over the network data buffered,

inside the GPU using CUDA.

The Analysis components design should accomplish the following features and design

demands:

• Easy addition of new Analysis components to the Analyzer component.

• Each analysis, has to be a unique entity in the whole framework-based program,

performing a particular analysis task.

• Each Analysis component has to include the GPU analysis code (CUDA code) and

the actions to be done over the analysis results, which we will refer to as hooks

(C++ CPU code).

• The code of the analysis and hooks section should be easily reused in other analysis

entities, in the form of libraries or modules.

Analysis components, therefore, should be unique objects or “static classes” in the whole

framework-based program. To ease adding analysis to the Analyzer, all analysis should

have the same entry point or method; launchAnalysis(...).
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The design of the Analysis is divided in two different sections: the analysis code section,

containing CUDA code, and the actions or hooks code section, containing CPU code.

According to the study carried out to find a general structure suitable for most of the

network traffic analysis, the analysis code section has been divided in several functions

or methods. The following functions have been identified:

• mining(). This function is defined as the routine in charge of obtaining the data

needed by the analysis function from the network packets contained in the buffer,

and place it into the analysis input data array.

• preAnalysisFiltering(). The pre-analysis filtering function is intended to con-

tain code filtering the analysis input data array of the analysis() function. This

function might filter data by other criterias rather than the ones used in the

mining()function.

• analysis(). The analysis function must contain the analysis algorithms, taking

as algorithms input data the input data array and placing the results into a results

array. In general, the data-type of the input and output array may be different,

as well as the number of results.

• postAnalysisOperations(). In this function, the programmer should be able to

define operations over the results array, filter the results or perform small calcula-

tions over them.

Figure 3.9: Analysis component graphical scheme

Figure 3.10: Detail of the analysis() routine of Analysis component
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The operations or hooks section, in the form of the hooks() function, is defined as the

function where programmers have the ability to code actions depending on the analysis

results obtained from the GPU analysis. C/C++ code, external libraries, like unixODBC

library, and in general any other programming tool that may be of interest should be

used within hooks() function, in contrast of the analysis section.

According to all what was previously highlighted, any analysis of the framework should

follow the structure outlined in the subsequent figure.

abstract class Analysis {

/*

User must implement:

1. analysis section (kernel) functions

2. hooks() function

*/

//CUDA analysis main function (kernel)

__global__ kernel(packetBuffer buffer, OUTPUT_TYPE results){

mining(...);

preAnalysisFiltering(...);

analysis(...);

postAnalysisOperations(...);

}

//Analysis launch function

launchAnalysis(packetBuffer buffer){

//Analysis section: call GPU functions

kernel<<<gridSize,blockSize>>>(buffer,results);

//Hooks section

hooks(buffer,results);

}

}

Figure 3.11: Analysis abstract class structure (pseudo-code).Draft.

Finally, Analysis components should allow to reuse code of analysis and hooks sections

in the form of a libraries or a modules. The idea behind this, is to create an open-

source set of modules to be delivered with framework source code, containing analysis
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algorithms, hooks and other useful routines, to be used by other user programmers in

order to take advantage of them.



Chapter 4

Implementation

4.1 General considerations

The current implementation of the framework has been developed using the following

versions of the libraries and programming tools:

• GCC 4.3.

• CUDA release 2.3.

• LibPcap 0.8.

• Libc6 version 2.07.

• unixODBC version 2.2.11.

• Autotools version 1.11.

4.1.1 Framework implementation overview.

The framework has been developed based on the design presented in the chapter 3. The

framework user workflow obtained though, has been heavily modified due to the facts

exposed in the section 4.6.

The framework compilation workflow resulting of the development process has been:

49
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Figure 4.1: Analysis components compilation workflow (separately).

Figure 4.2: Framework-based application compilation workflow.

The components are made up from a set of template files to simplify the task of the

framework user, containing the analysis .cpp and .h file and a Makefile. The analysis

components are first compiled into .o objects with nvcc and the framework library, after

the process of code parsing to obtain the files .syncblocks.ppph and .dmodule.ppph

is made, to automatically configure some parameters of each analysis.

The framework-based executable is then created by compiling the file containing the

main() method, the rest of analysis objects and the framework library.
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Source structure

The source code of the framework (trunk) is the one showed in the figure 4.3, obtained

using the tree -d command (truncated):

.

|-- Analysis

| |-- BlankAnalysisTemplate

| |-- Libs

| | |-- Gpu

.............

| | |

| | ‘-- Host

.............

| |

| ‘-- Modules

.........

|

|-- Analyzer

|-- Common

| ‘-- Protocols

|-- ConfigFiles

|-- Examples

| |--

.....

|-- PacketFeeders

|-- PreAnalyzer

|-- TestBench

‘-- Tools

Figure 4.3: Framework source code structure (truncated).

Each component has his own directory within the source directory, like Analysis, An-

alyzer . . . The Analysis component is where most of the code is placed, and has two

important subfolders Libs and Modules. The first subfolder contains both CPU and

GPU libraries, while the Modules folder contains the code modules1 of the framework.

The Common directory contains common classes like PacketBuffer or protocol headers

(Protocols subfolder). The Testbench folder contains tcpdump capture files for testing

purposes, and the Tools folder contains fundamentally the PrePreProcessor scripts.
1Section 4.6.5
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4.1.2 Framework threading model.

The framework has been developed using the pthreads library. The implementation cur-

rently uses the main thread(the one executing main() routine) for all the analysis tasks,

including the analyzer, and one for each packetFeeder object created by the framework-

based application.

The reason of having a thread for each packet feeder, independent from the analysis/-

analyzer thread, is to assure that the capturing tasks of the feeder do not affect to the

analysis performance or to the capturing rate of other packetFeeder objects.

The figure below shows the threading model of the framework-based applications graph-

ically.

Figure 4.4: Framework-based applications threading model (CPU).

4.1.3 Naming conventions.

All the source code developed in this project uses the same name convention. The style

used to define types, classes, functions, methods and variable names is basically C++

style.

• Class names are spelled in mixed case starting with upper case. Examples: MyClass,

MySecondClass.

• Methods are spelled using mixed case starting with lower case. Examples: myFunction(),

myOtherFunction().

• Types defined with typedef are spelled using mixed case starting with lower case

and with the suffix t. Examples: myType t, anotherType t.
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• Variable names are spelled using mixed case starting with lower case. Examples:

variableName, anotherVariableName.

In addition, all the pointers corresponding to addresses of the GPU memory space are

named using the variable name style, and with the prefix GPU . Examples: GPU buffer,

GPU data.

4.2 Common classes

In this section an overview of the common implementation classes used in several com-

ponents of the framework is presented, corresponding to the classes contained in the

folder Common of the source code.

4.2.1 PacketBuffer

PacketBuffer as described in section 3.2.1, is in charge of the network packet data buffer-

ing. Figure 4.5 shows partially the implementation of the header of the class.

1 /* ... */

2 #define MAX_BUFFER_PACKETS 3840 //Max number of packets

3 #define MAX_BUFFER_PACKET_SIZE 94 // Packet max size

4 #define TIMESTAMP_OFFSET sizeof(int)

5

6 typedef struct{

7 int proto [7];

8 int offset [7];

9 }headers_t;

10

11 typedef struct{

12 timeval timestamp;

13 headers_t headers;

14 uint8_t packet[MAX_BUFFER_PACKET_SIZE ];

15 }packet_t;

16

17 class PacketBuffer {

18

19 public:

20 /* ... */

21 int pushPacket(uint8_t* packetPointer , const struct pcap_pkthdr* hdr);

22 packet_t* getPacket(int index);

23 /* ... */

24 protected:
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25 // DataLink info for all packets

26 int deviceDataLink;

27

28 unsigned int lastPacketIndex;

29 unsigned int lostPackets;

30 packet_t* buffer;

31 /* ... */

Figure 4.5: Extract of PacketBuffer.h

The class implements packet buffering by defining a protected packet t array named

buffer, containing up to MAX BUFFER PACKETS packet t elements (dynamically allo-

cated, in the source code of PacketFeeders/PacketBuffer.cpp file).

The defined packet t type structure, contains three elements: the packet timestamp,

in timestamp field, a header t structure object headers and the packet data in the

uint8 t array packet.

The content of packet data, in this case the network protocol headers, is stored in the

field packet by copying directly the raw data from the captured packet. That means

the data contained in the field packet, and particularly the headers, are not aligned

and they are in network bit representation (BIG ENDIAN format). These facts

will have their implications in analysis component implementation.

The headers field is used to store packet protocol dissection result. The dissection

process is described in depth in section 4.2.2, and is carried out by classes implement-

ing abstract methods of Dissector class. Regarding PacketBuffer, the usage of the

SizeDissector class is required for two reasons:

• Protocol identification. Network protocol headers are identified, and the infor-

mation is stored in headers struct.

• Packet data size calculation. As packet field has a fixed and limited size

(MAX BUFFER PACKET SIZE), packets not fitting buffer should be dropped, as net-

work headers can be cracked, and hence packet data size calculation is needed.

The implementation decision of saving the protocol identification information in the

headers field, responds to four main reasons:

• Packet data size calculation is needed, and hence a protocol identification process

has to take place anyway.
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• The process of protocol identification is done only once, thanks to the way in-

formation is stored. Later this information can be used in both CPU and GPU

functions/methods without having to re-identify protocols.

• Dissector implementation, offers a simple way to perform protocol identification

and, at the same time, actions depending on the protocol that is being identified,

due to the implementation of Dissector class.

• Dissection is not done in the GPU because the implementation of a GPU dissector

could be tedious to code and hard to maintain, due to the lack of class support

by CUDA 2.3. In addition polymorphism is not supported by CUDA either, as no

function pointers can be used in the current CUDA implementation.

Future work

The future work that could be carried out over current PacketBuffer implementation is

basically dynamic size adjusting of the packet field contained in the packet t

struct. The idea behind that is to ensure that packet dropping is under a certain

threshold; for instance to ensure that packet loss is below 1%. This is indeed, partially

implemented, as PacketBuffer’s lostPackets variable is incremented when a packet is

dropped, and therefore, using lastPacketIndex and lostPackets, loss ratio can be

calculated when buffer is filled as:

LostPacketRatio% = lostPackets
lastPacketIndex+lostPackets100

Figure 4.6: Lost packet ratio calculation.

4.2.2 Dissector

The Dissector is an abstract class interface implementing network protocol identifi-

cation. At the same time Dissector defines a set of pure virtual (abstract) Action

methods, one for each network protocol. The derived classes must implement Action

methods, giving an easy way to implement specific code that is going to be executed

when that particular protocol is identified within a dissection process.

The figure 4.7 contains the source of the Common/Dissector.h

1 #ifndef Dissector_h

2 #define Dissector_h

3

4 #include <pcap.h>
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5 #include <inttypes.h>

6 #include <iostream >

7 #include <arpa/inet.h>

8

9 #include "../ Util.h"

10

11 // Protocols

12 #include "Protocols/Ethernet2Header.h"

13 #include "Protocols/Ip4Header.h"

14 #include "Protocols/TcpHeader.h"

15 #include "Protocols/UdpHeader.h"

16 #include "Protocols/IcmpHeader.h"

17

18 using namespace std;

19

20 class Dissector {

21

22 public:

23 unsigned int dissect(const uint8_t* packetPointer ,const struct

pcap_pkthdr* hdr ,const int deviceDataLinkInfo ,void* user);

24 private:

25 void dissectEthernet(const uint8_t* packetPointer ,unsigned int *

totalHeaderLength ,const struct pcap_pkthdr* hdr ,void* user);

26 void dissectIp4(const uint8_t* packetPointer ,unsigned int *

totalHeaderLength ,const struct pcap_pkthdr* hdr ,void* user);

27 void dissectTcp(const uint8_t* packetPointer ,unsigned int *

totalHeaderLength ,const struct pcap_pkthdr* hdr ,void* user);

28 void dissectUdp(const uint8_t* packetPointer ,unsigned int *

totalHeaderLength ,const struct pcap_pkthdr* hdr ,void* user);

29 void dissectIcmp(const uint8_t* packetPointer ,unsigned int *

totalHeaderLength ,const struct pcap_pkthdr* hdr ,void* user);

30

31 // Virtual Actions:

32 virtual void EthernetVirtualAction(const uint8_t* packetPointer ,

unsigned int* totalHeaderLength ,const struct pcap_pkthdr* hdr ,

Ethernet2Header* header ,void* user)=0;

33

34 virtual void Ip4VirtualAction(const uint8_t* packetPointer ,unsigned

int* totalHeaderLength ,const struct pcap_pkthdr* hdr ,Ip4Header* header

,void* user)=0;

35

36 virtual void TcpVirtualAction(const uint8_t* packetPointer ,unsigned

int* totalHeaderLength ,const struct pcap_pkthdr* hdr ,TcpHeader* header

,void* user)=0;

37

38 virtual void UdpVirtualAction(const uint8_t* packetPointer ,unsigned

int* totalHeaderLength ,const struct pcap_pkthdr* hdr ,UdpHeader* header

,void* user)=0;
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39

40 virtual void IcmpVirtualAction(const uint8_t* packetPointer ,unsigned

int* totalHeaderLength ,const struct pcap_pkthdr* hdr ,IcmpHeader*

header ,void* user)=0;

41

42 virtual void EndOfDissectionVirtualAction(unsigned int*

totalHeaderLength ,const struct pcap_pkthdr* hdr ,void* user)=0;

43

44 };

45 #endif // Dissector_h

Figure 4.7: Dissector.h abstract class.

Dissector class defines the main method dissect to start the dissection process, and

all the protocol dissection methods are named dissectPROTOCOL NAME . These meth-

ods receive a pointer to the packet header data (packetPointer), the size counter

totalHeaderLength, the struct pcap pkthdr hdr and the void* user pointer.

The pointer user is passed between every method of the dissector, and can be used by the

virtual action methods. The name of the virtual action methods follow PROTOCOL NAME-

VirtualAction nomenclature.

In the framework two different Dissector-based classes are used; SizeDissector on one

hand, used by PacketBuffer class to calculate packet size and store protocol informa-

tion, and on the other PreAnalyzerDissector, that can be used for multiple purposes,

but currently is used to decode and dump network protocol information for debugging

purposes.

Future work

The future work that could be done over Dissector class is to add support for more

protocols from link, network, transport and application layers.

In addition the Dissector could also be extended to dinamically load shared objects at

runtime, and hence not having to recompile the framework-based applications to add

more protocols.

4.2.3 Network protocol headers

The network protocol files are placed in the directory Common/Protocols. All the net-

work protocols are modeled as a class inheriting from the abstract class VirtualHeader.
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VirtualHeader interface has a unique pure virtual method dump() that must be imple-

mented for dumping the network protocol decoding (debugging purposes).

The implementation of each protocol header file contains:

• Protocol header struct definition.

• Header class definition, containing a pointer to protocol header struct which is set

in the constructor of the class and the prototype for the dump() method. Class

may also define useful methods to obtain data from the header.

• MACROS for inserting and retrieving the network protocol information from the

headers t struct.

MACROs for inserting and retrieving the network protocol identification from headers t

are tools to simplify the task of storing and obtaining information from the dissection.

The information saved in the headers t struct is, on one hand a unique protocol iden-

tifier number in the proto field, and on the other the offset from the start of the packet

where that particular header is, in the offset field. This information is saved in one of

the seven positions of the arrays depending on the type of protocol header.

All the protocol must implement their own MACROs as a invoking the two general

MACROs contained in the VirtualHeader.h file:

1 /*...*/

2 #define INSERT_HEADER(headers , level , offseT ,protocol) do{ \

(headers)->proto[level] = protocol; \

(headers)->offset[level] = offseT; \

}while (0)

3

4 #define IS_HEADER_TYPE(headers , level ,protocol)\

(headers)->proto[level] == protocol

5 /*...*/

Figure 4.8: MACROs defined in VirtualHeader.h file to store and obtain information

from header t struct.

The current network protocols implemented are: Ethernet, IP4, IP6 2, TCP, UDP and

ICMP. Current implementation does not support protocol tunneling, although the sys-

tem is designed to support it.
2Partially implemented; test-pending
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An example of the MACROs defined by the TCP protocol is shown below:

1 /*...*/

2 #define HEADER_TCP_HEXVALUE 0x0006

3

4 /* MACROS HEADERS */

5 #define TCP_HEADER_TYPENAME struct tcp_header

6

7 #define INSERT_HEADER_TCP(headers , level , offseT) INSERT_HEADER(headers ,

level , offseT ,HEADER_TCP_HEXVALUE)

8 #define IS_HEADER_TYPE_TCP(headers , level) IS_HEADER_TYPE(headers , level ,

HEADER_TCP_HEXVALUE)

9 /*...*/

Figure 4.9: MACROs extract from the TcpHeader.h file

Each protocol within the framework must define a unique ID, in this case 0x0006.

The protocols use INSERT HEADER and IS HEADER TYPE MACROs defining a MACRO

“wrapper” in which the ID is used to mask the usage of this ID to the user (actually

this MACROs are “rewrapped” to be more easy to use by the user in the Analysis

component).

Future work

Adding new protocols, and modifying the dissectors to support them are the main

improvements that could be done over this part of the source code.

4.3 PacketFeeder components

Following the schematic design presented in section 3.2.1 and in figure number 3.6,

and also according to the threading model exposed in section 4.1.2, the abstract class

PacketFeeder has been implemented as the following figure shows.
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1 #ifndef PacketFeeder_h

2 #define PacketFeeder_h

3

4 #include <pthread.h>

5

6 #include "../ Util.h"

7 #include "PacketBuffer.h"

8

9 class PacketFeeder {

10

11 public:

12 // Create a pthread and start buffering packets

13 virtual pthread_t* start(int limit)=0;

14

15 //Get a filled PacketBuffer

16 virtual PacketBuffer* getSniffedPacketBuffer(void)=0;

17

18 //Force to stop feeding and mark last PacketBuffer with flag "

flush" to true

19 virtual void flushAndExit(void)=0;

20

21 private:

22

23 };

24

25 #endif // PacketFeeder_h

26

27

Figure 4.10: PacketFeeder abstract class or interface.

The PacketFeeder interface consists of three pure virtual methods:

• start(int limit): the start() method creates a new pthread, as defined in

the threading model, and begins to buffer packets in one or more PacketBuffer

objects. The start() method returns a pointer to a pthread t variable, corre-

sponding to the new pthread created. The optional parameter limit indicates the

capturing limit in packet number.

• getSniffedPacketBuffer(): the method must be called by the analyzer thread

to retrieve a filled PacketBuffer object. The PacketBuffer pointer returned,

must point to a heap memory section but must not be freed by any other method

rather than PacketFeeder’s class methods. The current implementations of
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the abstract class block the calling thread, if no buffer is ready yet. An

asynchronous implementation of the PacketFeeder interface is proposed in the

future work section.

• flushAndExit(): the flushAndExit() method flushes immediately the current

buffer, and ends PacketFeeder pthread execution.

4.3.1 LivePacketFeeder

LivePacketFeeder class implements the PacketFeeder interface, offering methods to

sniff packets from network interfaces or cards in pseudo real-time.

The current implementation of the feeder does not unblock consumer thread (the thread

calling getSniffedPacketBuffer()) and therefore returning a valid pointer to a filled

PacketBuffer object, until the PacketBuffer is fully filled or when Analyzer calls asyn-

chronously flushAndExit() method.

The internal implementation of the class, contains an array of two PacketBuffer objects,

one that is currently being consumed by last consumer thread, and the one that is being

used to buffer the packets being captured (double buffer).

The implementation of this class can be found in the figure A.1 of the appendix A and

in the file PacketFeeders/LivePacketFeeder.cpp of the source code.

LivePacketFeeder constructor, LivePacketFeeder(const char* device), requires the

C string parameter device, indicating the system’s network interface name (Unix-style

name, like lo, eth0, eth1, wlan0...). A special network interface defined by Libpcap

library, any, can be used as device value to sniff from all the network interfaces on the

system.

Current implementation has been developed to achieve the maximum performance with

a unique consumer thread. Nevertheless, if in the future the framework requires mul-

tiple consumer threads to concurrently call getSniffedPacketBuffer() method, the

class could be easily improved by increasing the number of PacketBuffer objects in

packetBufferArray variable to the maximum number of concurrent consumer threads.

Future work

A feature that has not been implemented, and could be considered as future work

over this class is timeout buffer dispatching. This could be done, by using libpcap

pcap loop() or pcap dispatch() packet number capturing limit and a timer.



Chapter 4. Implementation 62

Another feature that could be easily implemented in both LivePacketFeeder and

OfflinePacketFeeder and would be of great interest is the capturing filters based on

libpcap filters.

4.3.2 OfflinePacketFeeder

OfflinePacketFeeder class implements the PacketFeeder interface, offering methods

to obtain packets from a capture file. The capture file must have the same format as

those used by tcpdump and tcpslice. A capture file can be saved, for instance, using

tcpdump tool with the following command (sniffing eth0 network interface):

LenovoT400 :~ # tcpdump -i eth0 -w captureFile.tcpdump

Figure 4.11: Example: obtaining a capture file (captureFile.tcpdump) with tcpdump

program.

The current implementation of the OfflinePacketFeeder, is similar to the LivePacketFeeder

one, as the main difference between them is that OfflinePacketFeeder implementation

uses pcap open offline() libpcap function while LivePacketFeeder uses pcap open live().

Additionally, a special mechanism to finish the execution of the feeder is implemented,

when all the packets from the capture file have been read. The source code of the class

definition is shown in the figure A.2 of the appendix A and the implementation can be

found in the file PacketFeeders/OfflinePacketFeeder.cpp

In the same way as LivePacketFeeder does, OfflinePacketFeeder does not unblock con-

sumer thread (the thread calling getSniffedPacketBuffer()), until the PacketBuffer

is fully filled or when the file capture has no packets left to read.

The implementation of the class also contains the array of two PacketBuffer objects.

The implementation of the methods of the header file, can be found in the file Packet-

Feeders/OfflinePacketFeeder.cpp.

OfflinePacketFeeder defines a parametric constructor OfflinePacketFeeder(const char*

file), where the C style string file is the path to the source capture file.

Due to the similarity between LivePacketFeeder and OfflinePacketFeeder implementa-

tion, this PacketFeeder interface implementation shares the same performance limitation

with LivePacketFeeder. If the framework is ever modified to allow multiple consumer
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threads to call concurrently getSniffedPacketBuffer() method, the current imple-

mentation will underperform. The solution in this case should be the same as the

solution outlined in section 4.3.1.

4.4 PreAnalyzer component

The PreAnalyzer component has been implemented in the PreAnalyzer class containing

a main entry method preAnalyze(PacketBuffer* bufferPointer). The code of this

method can be modified to fulfill debugging needs. PreAnalyzer has also a private object

that inherits from Dissector, PreAnalyzerDissector, which implements pure virtual

Action functions of the dissector, and can also be used to obtain information from

packets in the buffer. The PreAnalyzer objects have to be created and called from the

Analyzer code, in order to be used.

The files are all implemented in the PreAnalyzer/ directory.

4.5 Analyzer component

The Analyzer component has been developed based on the description of section 3.2.3.

The Analyzer class has been defined with static methods and attributes solely, and hence

is a “static class”. An extract of the code of files Analyzer/Analyzer.h and Analyzer/-

Analyzer.cpp is presented in figures A.3 and A.4 of the appendix A.

The Analyzer class offers to the framework-user programmer three methods:

• Analyzer::addFeederToPool(PacketFeeder* feeder,int limit)

• Analyzer::addAnalysisToPool(void (*func)(PacketBuffer* packetBuffer,

packet t* GPU buffer))

• Analyzer::start(void)

The first two methods must be executed before Analyzer::start() is called.

As its names suggests, Analyzer::addFeederToPool method adds a feeder to the feeders

pool, to later retrieve buffers from it. The optional parameter limit should be used in

the future to implement a limit in the number of packets to capture, but is currently

not implemented.
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In the other hand, users are able to add analysis to the Analyzer analysis pool by using

the static method Analyzer::addAnalysisToPool(...). The implementation of the

method Analyzer::addAnalysisToPool(...) requires a function pointer instead of a

pointer to an analysis abstract class object (interface). This is implemented this way

because analysis classes have been developed as static classes3, and as C++ virtual func-

tions and pure virtual functions cannot be declared as static, the addAnalysisToPool,

cannot be implemented by getting a pointer from an abstract class, which might be a

more natural way to implement it (like addFeederToPool implementation does).

Nevertheless, as all the analysis are implemented defining the same entry method, the

static method ANALAYSIS NAME::launchAnalysis, adding new analysis to the pool by

the framework users is quite natural and simple too. Syntax for adding new analysis is

as follows:

Analyzer::addAnalysisToPool(ANALYSIS NAME::launchAnalysis);

The buffer retrieving policy implementation is the one described in section 3.2.3, and

is implemented in the Analyzer::start() method. It should be remarked that if new

retrieving policies may be implemented, buffer obtaining should be encapsulated in one

or more private methods of the same Analyzer class, for better code organization.

Buffers are distributed across all the analysis contained in the pool. According to the

threading model, as all the analysis run in the same thread as the Analyzer, the distri-

bution of the buffers to the analysis is sequential, so analysis are performed sequentially.

The Analyzer has also the task to load and unload the PacketBuffer buffer from the

GPU memory space. All the analysis contained in the pool will receive, in addition to

the PacketBuffer object, the GPU buffer pointer that is going to be used by CUDA

kernels.

Finally Analyzer::start() is the method that start the analysis process. Before calling

the start() method, the framework-based program should have introduced at least one

feeder and one analysis to the pool. This method only returns when program execution

is terminated by a SIGTERM signal or if there are no more packets to obtain in the

case of a program containing OfflinePacketFeeders.
3The decision of implementing analysis with static methods is further described in section 4.6.
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Known limitations

The framework gives to the framework-user the chance to define windowed analysis. The

user is able to program analysis that accumulate several PacketBuffer objects before

the analysis routine is actually performed.

There is a known limitation of the current implementation of Analyzer related to the win-

dowed analysis implementation. When multi-feeding feature is used, windowed analysis

cannot assume time-coherence of captured packets (in other words, that all the packets

are in timestamp order), as it can indeed be assumed by analysis from a single feeder

program. The current window buffering policy of analysis is to place new packets at the

end of the window buffer (in the GPU), as later explained in section 4.6.2.

Some of the modules developed, listed in section 4.7, currently assume this time-coherence

property of buffers and window buffers, and therefore the usage of multi-feeding pro-

grams in conjunction with these modules, or any other analysis that might be defined,

may lead to erroneous results. The current framework implementation sets macro

ANALYZER MAX FEEDERS POOL SIZE to the value of one, to prevent the creation of multi-

feeding framework-based programs.

Several strategies could be used to work around time-coherence limitation:

• Change current implementation, from GPU memory buffering to host buffering,

and sort buffer before throwing analysis.

• Maintain current implementation, and therefore sort the buffer inside the GPU,

prior to the analysis routine. Due to the current implementations of sorting algo-

rithms, and the fact that fast sorting algorithms are generally difficult to program

in stream processing, among other limitations4, this might be less efficient than

the above mentioned.

Future work

The future work that could be carried out over the Analyzer component is:

• Solving the time-coherence limitation previously described with the techniques

outlined before.
4Current sorting algorithms support only reduced types, 32 bit types in general.
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• Implementation and performance evaluation of an event-oriented buffer re-

trieving policy. This implementation would require an asynchronous communi-

cation system between feeders and Analyzer (avoiding inefficient polling synchro-

nization).

• Implementation and performance evaluation of selective buffer distribution

to analysis policy to allow users to only send buffers with particular properties

to a group of Analysis; i.e. send all the buffers obtained from a certain network

interface, to a subset of analysis.

• Interactive feeder/analysis control: enable, disable, add and delete actions.

This would offer users the ability to disable and enable, and add or delete from the

pool feeder and/or analysis at runtime, without having to stop framework-based

program execution, recompile and re-execute. This would require the implemen-

tation of a text-based, graphical or both text-based and graphical user interface

(UI) and an asynchronous communication system with the Analyzer.

4.6 Analysis components

The Analysis component has been developed under the directives described in sec-

tion 3.2.4. The generic execution of an analysis had been divided into five differ-

ent generic sections or routines; mining(), preAnalysisFiltering(), analysis(),

postAnalysisOperations() and hooks(). The first four methods had to be executed

inside the GPU and hence being CUDA, functions while hooks() method had to be

executed in the CPU.

The appropriate way to design and implement analysis in C++ language would have

been to define an abstract class Analysis as presented in figure 3.11 of section 3.2.4. All

the analysis created by the framework-users therefore, would have defined classes derived

from Analysis, implementing the abstract methods mining(), preAnalysisFiltering(),

analysis(), postAnalysisOperations() and hooks() defined by the interface, to ful-

fill their needs.

However several CUDA architecture and CUDA library limitations have been found,

which had forced to fully redesign and change implementation of the Analysis component

from its foundations. A brief summary of the current limitations that have been found,

regarding CUDA 2.35 version and CUDA enabled GPU architecture are:

• CUDA 2.3 does not support C++ classes.
5The limitations also apply to versions 2.1 and 2.2 of CUDA.
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• CUDA 2.3 does not allow kernels to be called from non-static methods or C++

class methods.

• CUDA 2.3 does not support function pointers, and hence although C++ classes

would have been supported by CUDA, abstract methods could not have been used

(polymorphism). This is more of a hardware limitation rather than a software

limitation, and it is possible that next generations of CUDA compatible NVIDIA

graphic processors support function pointers.

• CUDA 2.3 does not support dynamic memory allocation from inside kernel func-

tions. Currently memory has to be allocated and freed from the CPU code, using

the API calls.

Therefore, the challenge has been to create library component capable of building new

analysis in the most user-friendly way, based on the structure outlined in section 3.2.4,

overcoming the limitations exposed. The component must still support the rest of anal-

ysis features described.

It is possible that future versions of the CUDA library and CUDA-enabled graphic cards

overcome some (or all) of the limitations described before.

4.6.1 Analysis basic implementation.

Problem definition: CUDA 2.3 does not support C++ classes nor func-

tion pointers (and therefore any form of inheritance and polymorphism).

Adopted solution: To overcome CUDA class support limitation and function

pointer limitation, the strategy followed has been to create a pseudo-polymorphism

using a more primary tool; the preprocessor (in particular, the GNU/cpp pre-

processor).

The Analysis components have been defined as static classes, all with the same struc-

ture, similar to the basic structure outlined in section 3.2.4. Instead of using C++

class inheritance and polymorphism, the task of preserving the same structure for every

analysis defined in the framework is done by the preprocessor. The reason why analysis

classes have been defined as static is merely to simplify its usage by the users.

All the analysis define a class with a static method launchAnalysis(...). The class

name must be defined by the user with the ANALYSIS NAME MACRO, and this class does

inherit from AnalysisSkeleton class, a completely blank class, just to remark that
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all the analysis have the same structure. Figure 4.12 shows the definition of the class

ANALYSIS NAME contained in AnalysisPrototype.h file.

1 /* Include skeleton */

2 #include "AnalysisSkeleton.h"

3

4 /* ... */

5

6 class ANALYSIS_NAME:public AnalysisSkeleton{

7

8 public:

9 static void launchAnalysis(PacketBuffer* packetBuffer , packet_t*

GPU_buffer);

10 static QueryManager queryManager;

11 private:

12

13 };

14

15

16 #ifdef __CUDACC__ /* Don’t erase this */

17

18 /*...*/

19

20 /* Launch analysis method */

21 void ANALYSIS_NAME :: launchAnalysis(PacketBuffer* packetBuffer , packet_t*

GPU_buffer){

22

23 // Launch Analysis (wrapper from C++ to C)

24 COMPOUND_NAME(ANALYSIS_NAME ,launchAnalysis_wrapper)<

ANALYSIS_INPUT_TYPE ,ANALYSIS_OUTPUT_TYPE >( packetBuffer , GPU_buffer);

25

26 }

27 #endif // ifdef CUDACC

Figure 4.12: Extract of AnalysisPrototype.h

The figure 4.12 shows the usage of the COMPOUND NAME(a,b) function-like MACRO in

the launchAnalysis(...) method.

In the whole analysis implementation, the MACRO COMPOUND NAME(a,b) has been

used to create unique identifiers, using the cpp concatenation preprocessor operator

##. The purpose of using this MACRO is dual; on one side unique identifiers across

all the framework-based program can be created using a fixed part and a variable part
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(ANALYSIS NAME), and on the other a pseudo-polymorphism can be implemented by

using it.

The methods defined within analysis abstract class in the figure 3.11, mining(...),

preAnalysisFiltering(...), analysis(...), postAnalysisOperations(...) and

hooks(...), have been redefined using the MACRO COMPOUND NAME(a,b) to follow the

same structure of every analysis and implement a pseudo-polymorphism. These methods

will be the ones that the framework-user will implement.

The figure 4.13 shows the definition of these methods. The decision of using template

meta-programming techniques is discussed later.

1 /* ... */

2 /**** Forward declaration prototypes ****/

3

4 template <typename T,typename R>

5 __global__ void COMPOUND_NAME(ANALYSIS_NAME ,KernelAnalysis)(packet_t*

GPU_buffer , T* GPU_data , R* GPU_results ,analysisState_t state);

6

7 template <typename T,typename R>

8 __device__ void COMPOUND_NAME(ANALYSIS_NAME ,miningImplementation)(

packet_t* GPU_buffer , T* GPU_data , R* GPU_results , analysisState_t

state);

9

10 template <typename T,typename R>

11 __device__ void COMPOUND_NAME(ANALYSIS_NAME ,

preAnalyisFilteringImplementation)(packet_t* GPU_buffer , T* GPU_data ,

R* GPU_results , analysisState_t state);

12

13 template <typename T,typename R>

14 __device__ void COMPOUND_NAME(ANALYSIS_NAME ,

AnalysisRoutineImplementation)(packet_t* GPU_buffer , T* GPU_data , R*

GPU_results ,analysisState_t state);

15

16 template <typename T,typename R>

17 __device__ void COMPOUND_NAME(ANALYSIS_NAME ,

postAnalysisOperationsImplementation)(packet_t* GPU_buffer , T*

GPU_data , R* GPU_results ,analysisState_t state);

18

19 template <typename R>

20 void COMPOUND_NAME(ANALYSIS_NAME ,resultsHook)(PacketBuffer *packetBuffer ,

R* results , analysisState_t state , int64_t* auxBlocks);

21

22 /* ... */
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Figure 4.13: Implementation of methods contained in an analysis (redefinition). Ex-

tracted from AnalysisSkeleton.h

As the preprocessor needs to know the value of the ANALYSIS NAME MACRO during

macro-expansion time, the definition of this MACRO and others, like input and output

type definition or windowing parameters must be defined prior to the usage of them,

basically by AnalysisSkeleton.h and AnalysisPrototype.h files. Due to this fact all the

analysis, as separate preprocessor units, need to comply with the following order of

MACRO definition and file inclusion:

1. Analysis name (ANALYSIS NAME), input and output type (ANALYSIS INPUT TYPE

and ANALYSIS OUTPUT TYPE), windowing parameters ... cpp MACRO definitions.

2. Inclusion of the AnalysisPrototype.h file to define launching functions. The inclu-

sion of this file in this point also allows programmers to use the Basic MACROs

(4.6.6) and Modules (4.6.5).

3. Include the code of the analysis user functions implementation:

• COMPOUND NAME(ANALYSIS NAME,miningImplementation)

• COMPOUND NAME(ANALYSIS NAME,preAnalysisFilteringImplementation)

• COMPOUND NAME(ANALYSIS NAME,AnalysisRoutineImplementation)

• COMPOUND NAME(ANALYSIS NAME,postAnalysisOperationsImplementation)

• COMPOUND NAME(ANALYSIS NAME,resultsHook)

Problem definition: CUDA 2.3 does not support kernel calling from

within class methods.

Adopted solution: To work around this problem, a wrapper function has been

created. The wrapper COMPOUND NAME(ANALYSIS NAME,launchAnalysis wrapper)

is defined as a C function, containing the code for launching CUDA kernel of the

analysis and the hook() function. A different launchAnalysis wrapper C func-

tion must be defined for every single analysis in the framework-based program, and

to achieve it, COMPOUND NAME(ANALYSIS NAME,launchAnalysis wrapper) MACRO

has been used to create unique identifiers for all this wrapper functions.
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Problem definition: CUDA 2.3 does not support dynamic memory allo-

cation inside CUDA kernels. The framework-user must be able to define

the types of the analysis. Each analysis routine, formerly defined as the func-

tion COMPOUND NAME(ANALYSIS NAME,AnalysisRoutineImplementation), is im-

plemented according to the section 3.2.4 with an input array and an output array

type to place the results. Analysis components must allow users to define analysis

with user-defined input/output types. At the same time, the framework should

allocate and free GPU memory for the GPU data (input array) and GPU results

(output array) arrays.

Adopted solution: To be able to handle analysis with user-defined types, C++

template meta-programming techinques have been used. All the functions,

from which an analysis is made up, are defined as templatized functions with two

types; typename T as the input type and typename R as the output type of the

analysis.

The types are defined by the user by defining the MACROS ANALYSIS INPUT TYPE

and ANALYSIS OUTPUT TYPE. In addition, if output type is not defined, input type

is assumed as the output type.

The wrapper COMPOUND NAME(ANALYSIS NAME,launchAnalysis wrapper) is the first

function which is called templatized. All the functions in the analysis, including global

and device CUDA functions as well as hooks() function are called using the tem-

plate arguments T and R.

As described in section 3.2.4, the structure of the thread blocks and the grid in all

the analysis is linear, only using the x dimension in both block and grid size. The

framework implementation allows to the programmer to define the size of the block in

threads per block that is going to be used in this particular analysis, by defining the

MACRO ANALYSIS TPB. The total number of threads is defined as the total number of

threads contained in the buffer6, and therefore is fixed.

4.6.2 Windowed analysis.

One of the features implemented in the framework is the support of so-called windowed

analysis. The idea behind windowed analysis is to store a set of packets before the

analysis takes place.
6If the analysis is not windowed
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The implementation of windowed analysis in the framework allows the user to define

two types of window, in accordance with what is exposed in section 2.2.2:

• Packet windowing. Accumulates Npackets before analysis takes place.

• Time windowing. Waits tinterval seconds before analysis takes place, accumulating

an undefined number of packets.

The default behaviour of the framework is to create non-windowed analysis. If windowed

analysis feature wants to be used in a particular analysis, three MACROs have to be

defined by the user:

• HAS WINDOW with the value of 1

• WINDOW TYPE defining window type. The value of this MACRO depends on the

type of window aimed to use:

– For packet windowing, the value of WINDOW TYPE must be PACKET WINDOW.

Then the MACRO WINDOW LIMIT must be defined with an integer value cor-

responding to the number of packets that will be accumulated.

– For time windowing, the value of WINDOW TYPE must be TIME WINDOW. Then

the MACRO WINDOW LIMIT must be defined with an integer value correspond-

ing to the number of seconds of the tinterval.

The current implementation of windowing system stores the packets in the GPU. Instead

of accumulate packets in a large buffer in the CPU, and finally execute the analysis over

the large array (previously loading it to the GPU memory space), the packets are being

accumulated in the GPU array GPU data.

Mining and prefiltering operations are always performed over the current data contained

in the GPU (actually with the new data that is being inserted), while the rest of functions

can be conditionally run depending on the programmer requirements. This can be

achieved by conditionally execute code based on a special flag contained in the state

variable (state.windowState.hasReachedWindowLimit).

The state variable, as its name suggests, defines the state of the current analysis. The

state variable is of analysisState t type, and defines among other parameters, the

state of the window in the windowState t variable state.windowState.

To implement time windowing, the size of GPU data array is calculated in compilation

time. In the case of time windowing, as the size of the array is unknown, the size is

being adapted depending of the needs.
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Problem definition: CUDA has a limitation on the total number of

threads and the number of blocks per grid dimension; currently up to

65536 threads and 512 blocks per grid dimension are supported.

Adopted solution: The solution adopted to work around this problem has been

to reuse threads. Threads execute code for his own block, and if the window

exceeds CUDA limitations, threads must also execute code for the blocks in posi-

tions multiple of his position, in terms of the current number of real thread blocks

thrown. Figure 4.14 shows graphically the reuse of threads.

Figure 4.14: Analysis thread reusage.

For example, if 30 blocks of threads are thrown (thread blocks 0 to 29), and the

window is of 60 blocks, block 0 will execute code for the 0th and 30th block.

This forces the implementation to contain in the state.windowState variable, the num-

ber of real thread blocks executing in the GPU, and the window size in thread blocks.

The variable state.blockIterator, is used to point to the current block in execution.

The framework code as well as the user code, except for the mining and filtering functions

(already implemented), must implement the following loop to support large windows,

specially regarding time windows, where size is not known:

1 state.blockIterator = blockIdx.x;

2 while(state.blockIterator < state.windowState.totalNumberOfBlocks){

3

4 /* Do something */

5

6 state.blockIterator += gridDim.x;

7 SYNCTHREADS ();

8 }
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Figure 4.15: Required loop to support large windows.

4.6.3 Global barriers.

CUDA 2.3 provides block barriers with the API call syncthreads() inside kernels,

which synchronize all the threads within the block. Nevertheless, CUDA does not pro-

vide to the programmers a global barrier for all the threads in a kernel, or in other

words, a inter-block barrier, from inside the kernel.

Most algorithms require, in a point of the execution, to synchronize all the threads of

the kernel function, and for this reason the framework must allow the programmers to

call global barriers in a simple way.

There are currently two ways to implement global barriers in CUDA:

• GPU global memory barrier implementations. Current implementations

define a barrier using global memory. These barrier implementations do not work

in some GPUs (dead lock), while in the rest their performance is poor compared

to the other alternative.

• Finishing the current kernel execution, call the CUDA API function

cudaThreadSynchronize(), and start a new kernel with the rest of the

code. This way to implement barriers certainly synchronizes all the threads of the

kernel, and currently is the one achieving the highest performance. The drawback

is that new kernels have to be coded, splitting the code in several kernels, having

to define a new kernels call and cudaThreadSynchronize() for each of them, and

hence this solution presents a low scalability. In addition the automatic variables

and shared variables within the function must also be redefined and its value

reassigned.

From the user point of view, the global barrier synchronization should be as easy as

calling syncthreads() API function, from within the current kernel execution, without

having to care about how the kernels are called and, at the same time, achieving the

maximum performance.

Problem definition: CUDA does not provide global barriers (inter-block

barriers) API calls from inside the kernels. In addition current ways to

implement barriers are either not fully compatible with all the GPUs or

difficult to implement from the framework programmer point of view.
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Solution may define a syncblocks() function to provide kernel thread synchro-

nization.

Global barriers issue has possibly been the biggest challenge of the whole framework

implementation.

Adopted solution: The solution needed to be fully compatible with all the GPUs

out in the market. The only way to achieve it had been creating as many kernels

as needed and calling the cudaThreadSynchronize() API function before every

new kernel is called.

The users are able to create global barriers by calling the MACRO SYNCBLOCKS()

only. To achieve this level of abstraction, the framework uses a combination of

the preprocessor (cpp) tool and a pre-compiling parser called the PrePrePro-

cessor (ppp).

The implementation of the kernel launching system defines two types of global barri-

ers, the user SYNCBLOCKS() and the X-MACRO #include "PrecodedSyncblocks.def"

used mainly in the modules. However both barriers use the same underlying system.

The SYNCBLOCKS() MACRO ends the current function and kernel execution, printing

the } symbol, and then starting a new device function. To define the new function,

the MACRO COMPOUND NAME is used to create unique identifiers for each function name,

combining the analysis name, a fixed part and a counter that is incremented every time

the SYNCBLOCKS() MACRO is called. In this case, the counter is implemented using

the recently added functionality in GCC preprocessor7 COUNTER , that is an integer

counter that is incremented every time it is macro-expanded8.

The framework later defines the global function or kernel, in which the device

function mentioned before is called. The framework also manages how to call them, by

adding the code in the launchAnalysis function.

The figures 4.16 and 4.18, show a simple example on how the SYNCBLOCKS() MACRO

can be used, and how the framework manages the creation of the appropriate functions.

1 template <typename T,typename R>

2 __device__ void COMPOUND_NAME(ANALYSIS_NAME ,

AnalysisRoutineImplementation)(packet_t* GPU_buffer , T* GPU_data , R*

GPU_results ,analysisState_t state){

7GCC 4.3 and above
8The module global barrier uses a preprocessor counter instead
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3

4 /* Some code */

5 SYNCBLOCKS ();

6 /* Some more code. Blocks are synchronized.*/

7 /* shared and automatic variables must be redefined and reassigned */

8 }

Figure 4.16: Simplified example of the usage of SYNCBLOCKS() MACRO.

1 #define SYNCBLOCKS () } \

template <typename T,typename R>\

__device__ __inline__ void COMPOUND_NAME(COMPOUND_NAME(ANALYSIS_NAME ,

AnalysisExtraRoutine),__COUNTER__)(packet_t* GPU_buffer , T* GPU_data ,R

* GPU_results , analysisState_t state){\

do{}while (0)

Figure 4.17: SYNCBLOCKS() MACRO definition.Extracted from Analysis/Libs/G-

pu/Macros/General.h

1 template <typename T,typename R>

2 __device__ void COMPOUND_NAME(ANALYSIS_NAME ,

AnalysisRoutineImplementation)(packet_t* GPU_buffer , T* GPU_data , R*

GPU_results ,analysisState_t state){

3

4 /* Some code */

5 }

6 __device__ __inline__ void ANALYSIS_NAME_AnalysisExtraRoutine_0(

packet_t* GPU_buffer , T* GPU_data ,R* GPU_results , analysisState_t

state){

7 /* Some more code. Blocks are synchronized */

8 /* shared and automatic variables must be redefined and reassigned */

9 }

Figure 4.18: Macro-expansion of the simplified example of the figure 4.16

The wrapper launchAnalysis, is configured to launch the new kernel after the previous

one, in this case when the original has finished his execution. The figures 4.19 and

4.22 show a simplified example before and after macro-expansion takes place in the

AnalysisSkeleton.h file.
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1 #ifdef __CUDACC__

2 //User kernels

3 #define ITERATOR__ 0

4 #include "UserExtraKernel.def"

5

6 #define ITERATOR__ 1

7 #include "UserExtraKernel.def"

8 /* ... */

9

10 // default Kernel

11 template <typename T,typename R>

12 __global__ void COMPOUND_NAME(ANALYSIS_NAME ,KernelAnalysis)(packet_t*

GPU_buffer , T* GPU_data , R* GPU_results , analysisState_t state){

13 state.blockIterator = blockIdx.x;

14 COMPOUND_NAME(ANALYSIS_NAME ,miningImplementation)(GPU_buffer , GPU_data

, GPU_results , state);

15 __syncthreads ();

16

17 state.blockIterator = blockIdx.x;

18 COMPOUND_NAME(ANALYSIS_NAME ,preAnalyisFilteringImplementation)(

GPU_buffer , GPU_data , GPU_results , state);

19 __syncthreads ();

20

21 /* Analysis implementation */

22 COMPOUND_NAME(ANALYSIS_NAME ,AnalysisRoutineImplementation)(GPU_buffer ,

GPU_data , GPU_results , state);

23 __syncthreads ();

24

25 /* If there are SYNCBLOCKS barriers do not put Operations function

call here */

26 #if __SYNCBLOCKS_COUNTER == 0 && __SYNCBLOCKS_PRECODED_COUNTER == 0

27 COMPOUND_NAME(ANALYSIS_NAME ,postAnalysisOperationsImplementation)(

GPU_buffer , GPU_data , GPU_results , state);

28 #endif

29

30 }

31

32 /**** Launch wrapper ****/

33 // default Launch Wrapper for Analysis not using Windows

34

35 template <typename T,typename R>

36 void COMPOUND_NAME(ANALYSIS_NAME ,launchAnalysis_wrapper)(PacketBuffer*

packetBuffer , packet_t* GPU_buffer){

37

38 /* ... */

39

40 /*** KERNEL CALL ***/
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41 COMPOUND_NAME(ANALYSIS_NAME ,KernelAnalysis)<<<grid ,block >>>(GPU_buffer

,GPU_data ,GPU_results ,state);

42 cudaAssert(cudaThreadSynchronize ());

43

44 /* EXTRA KERNEL CALLS */

45 /* ... */

46

47 /* Userdefined Extra Kernels calls */

48 #define ITERATOR__ 0

49 #include "UserExtraKernelCall.def"

50

51 #define ITERATOR__ 1

52 #include "UserExtraKernelCall.def"

53

54 /* ... */

55

56 /*** END OF EXTRA KERNEL CALLS ***/

57 /*** Copy results & auxBlocks arrays ***/

58

59 /* ... */

60

61 /*** LAUNCH HOOK (Host function) ***/

62 COMPOUND_NAME(ANALYSIS_NAME ,resultsHook)(packetBuffer , results , state ,

auxBlocks);

63

64 }

65

66 #endif // __CUDACC__

Figure 4.19: Simplified code for the launchAnalysis wrapper before macro-expansion

1 #if ITERATOR__ < __SYNCBLOCKS_COUNTER

2

3 // Extra kernel __device__ function prototype

4 template <typename T,typename R>

5 __device__ void COMPOUND_NAME(COMPOUND_NAME(ANALYSIS_NAME ,

AnalysisExtraRoutine),ITERATOR__)(packet_t* GPU_buffer ,T* GPU_data ,R*

GPU_results , analysisState_t state);

6

7 // Define extraKernel __global__ function

8 template <typename T,typename R>

9 __global__ void COMPOUND_NAME(COMPOUND_NAME(ANALYSIS_NAME ,

KernelAnalysis),ITERATOR__)(packet_t* GPU_buffer , T* GPU_data , R*

GPU_results , analysisState_t state){

10

11
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12 COMPOUND_NAME(COMPOUND_NAME(ANALYSIS_NAME ,AnalysisExtraRoutine),

ITERATOR__)(GPU_buffer , GPU_data , GPU_results ,state);

13 __syncthreads ();

14

15 }

16 #endif

17 #undef ITERATOR__

Figure 4.20: X-MACRO defined in the UserExtraKernel.def

1 #if ITERATOR__ < __SYNCBLOCKS_COUNTER

2 // Throwing Extra kernel ITERATOR__

3 COMPOUND_NAME(COMPOUND_NAME(ANALYSIS_NAME ,KernelAnalysis),ITERATOR__)

<<<grid ,block >>>(GPU_buffer ,GPU_data ,GPU_results ,state);

4 cudaAssert(cudaThreadSynchronize ());

5

6 #endif

7

8 #undef ITERATOR__

Figure 4.21: X-MACRO defined in the UserExtraKernelCall.def

1 #ifdef __CUDACC__

2 //User kernels

3 template <typename T,typename R>

4 __device__ void ANALYSIS_NAME_AnalysisExtraRoutine_0(packet_t*

GPU_buffer ,T* GPU_data ,R* GPU_results , analysisState_t state);

5

6 template <typename T,typename R>

7 __global__ void ANALYSIS_NAME_KernelAnalysis_0(packet_t* GPU_buffer , T*

GPU_data , R* GPU_results , analysisState_t state){

8 ANALYSIS_NAME_AnalysisExtraRoutine_0(GPU_buffer , GPU_data , GPU_results

,state);

9 __syncthreads ();

10 }

11

12 // default Kernel

13

14 /*...*/

15

16 /**** Launch wrapper ****/

17 // default Launch Wrapper for Analysis not using Windows

18



Chapter 4. Implementation 80

19 template <typename T,typename R>

20 void COMPOUND_NAME(ANALYSIS_NAME ,launchAnalysis_wrapper)(PacketBuffer*

packetBuffer , packet_t* GPU_buffer){

21

22 /* ... */

23 /*** KERNEL CALL ***/

24 COMPOUND_NAME(ANALYSIS_NAME ,KernelAnalysis)<<<grid ,block >>>(GPU_buffer

,GPU_data ,GPU_results ,state);

25 cudaAssert(cudaThreadSynchronize ());

26

27 /* EXTRA KERNEL CALLS */

28 /* ... */

29 /* Userdefined Extra Kernels calls */

30 ANALYSIS_NAME_KernelAnalysis_0 <<< grid , block >>>(GPU_buffer ,

GPU_data , GPU_results , state) ;

31 cudaAssert (cudaThreadSynchronize ()) ;

32

33 /*** Copy results & auxBlocks arrays ***/

34 /* ... */

35

36 /*** LAUNCH HOOK (Host function) ***/

37 COMPOUND_NAME(ANALYSIS_NAME ,resultsHook)(packetBuffer , results , state ,

auxBlocks);

38

39 }

40

41 #endif // __CUDACC__

Figure 4.22: Macro-expansion of the code listed in figure 4.19

As can be seen in the definition of the X-MACROS, the preprocessor expands code

conditionally based on the value of the preprocessor MACRO SYNCBLOCKS COUNTER,

which contains the number of the extra kernels that must be created by the framework

for this particular analysis. Because of the limitations of the GNU cpp preprocessor, the

value of this MACRO must be calculated (set) before the cpp macro-expansion of the

code takes place.

The only way to do it has been to develop a pre-compilation parser, called PrePrePro-

cessor, that among other functions, has the task to count the number of SYNCBLOCKS()

calls that the user has placed in the source code. The PrePreProcessor, is a set of bash

scripts using several GNU shell commands, such as cat, grep, find, sort or awk.

As the PrePreProcessor must be executed by every single analysis, the compilation of

each analysis has to be made separately, creating an object for each analysis (.o file).
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In every single analysis a .syncblocks counters.ppph9 local file (in the same directory of

the analysis) is created setting the barrier counters. This file is later included by the

AnalysisSkeleton.h file.

Known limitations.

The current implementation, although certainly fulfill the requirements in terms of sim-

plicity for the framework-user, and offers and scalable solution to the global barrier issue,

presents a number of limitations:

• Analysis must be placed in separated directories and Analysis must be

compiled separately, as the file syncblocks counters.ppph is a local file included

as #include ".syncblocks counters.ppph".

• The code must be pre-parsed. The code must be pre-parsed, and so compila-

tion time is incremented.

• The PrePreProcessor is slow. As the PrePreProcessor is developed with shell

scripting, the execution is slow compared to other scripting languages.

• Automatic and shared variables must be redeclared and reassigned

after a global barrier call, as it is indeed a new function. This limitation could

only be overcome if a global barrier in the GPU could be implemented.

Future work.

The future work that could be carried out over the kernel launching system could be on

one side, improve the PrePreProcessor, by coding it using more advanced interpreted

scripting languages like Perl or Python. Another option would be to use a source-to-

source compiler, in which case the compilation time would also be reduced and which

would offer much more complex parsing capabilites.

On the other side, the efforts could be centered in adding more intelligence into the

kernel launching system, not launching kernels that are known to be blank in certain

calls, like when windows are used and no actions are done before the window limit has

been reached (introducing conditional code).
9The extension .ppph is used to remark that the files are a product of the PrePreProcessor (ppp)
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4.6.4 Template files.

During the development of the framework, where the structure of the analysis had been

progressively modified and adapted to a heavily preprocessor-based structure, it was

clear that the creation of new analysis was getting more and more complicated.

In order to avoid that the user would have to deal with the current complex function

names (COMPUND NAME(a,b) MACRO based names), and to assure that the user would

follow the required order of file inclusions and, at the same time, assure that the user

would compile the analysis source code separately and having executed PrePreProcessor

before (ppp), the framework defines the template files.

The template files are three files listed below

• BlankAnalysisTemplate.h. Containing all the MACROs defined by the frame-

work, like ANALYSIS NAME for instance. After that the inclusion of the Analysis-

Prototype.h file is performed.

1 // --> Do not delete/edit this line

2 #include <netgpu/Initializer.h>

3

4 /* ANALYSIS TEMPLATE HEADER FILE.

5 Fill at least uncommented LINES with appropiate values

6 !! Read documentation for more info */

7

8 /* ******** Edit this section ********* */

9

10 // [[ GENERAL PARAMETERS ]]

11 // --> Analysis Name: unique name here for all the program

12 #define ANALYSIS_NAME change_me

13 // --> int ,uint ,floats , double (*) intXX_t , uintXX_t , structs

etc.. or typedefs (define new types below)

14 #define ANALYSIS_INPUT_TYPE type

15 // --> Threads Per Block (unidimensional): [8-512], default 128

16 #define ANALYSIS_TPB 128

17

18 /*** DEFINE COMPLEX TYPES HERE ***/

19 // typedef struct{

20 // int x,y,z;

21 //}mytype;

22

23 /*** DEFINE HERE WINDOW PARAMS ***/

24 // --> HAS_WINDOW: value of 1 to enable

25 //#define HAS_WINDOW 0
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26 // --> WINDOW_TYPE

27 //#define WINDOW_TYPE TYPE

28 // --> HAS_WINDOW: window limit

29 //#define WINDOW_LIMIT put_the_numeric_limit_here

30

31 /*** OUTPUT DATA TYPE ***/

32 // --> If you are NOT USING PREDEFINED ANALYSIS OR if INPUT

TYPE IS DIFFERENT THAN OUTPUT TYPE , uncomment and modify

33 // --> this line

34 //#define ANALYSIS_OUTPUT_TYPE type

35

36 /* ******** End of editable section ********* */

37 // --> DO NOT EDIT REST OF THE FILE

38 #include <netgpu/AnalysisPrototype.h>

Figure 4.23: Template file: BlankAnalysisTemplate.h.

• BlankAnalysisTemplate.cpp. It includes BlankAnalysisTemplate.h, and con-

tains the definition of the implementation of the functions listed in the figure 4.13

by the user.

• Makefile. The Makefile rules the analysis compilation process, executing first of

all the PrePreProcessor (ppp.sh) and then compiling the analysis into an object

file (.o file).

The framework also includes a small utility (command) to create new analysis, creating

a folder with the analysis name and modifying the template files with the analysis name.

4.6.5 Module system

The module system allows the objective defined in the project objectives section to

allow the users of the framework to reuse analysis code for multiple analysis entities. It

is basically designed to allow programmers to develop modules which will define unique

calls per each analysis section, although current implementation allows several calls to

be used in a section, taking advantage of it (specially in the operations section).

Problem definition: Due to the way global barriers are implemented

(kernel launching system), all the modules cannot be included and com-

piled in a analysis. As modules may use global barriers, if all the module sources

were included, the preprocessor barrier counter will certainly be incremented by
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every global barrier call placed in the modules, even if they are not used, and in

an arbitrary order.

Adopted solution: The PrePreProcessor (ppp) will be in charge of iden-

tifying the modules used, and load them dynamically. The PrePreProces-

sor will implement a small parser to identify and include only required modules in

order.

The PrePreProcessor, and in particular dmodule.sh script, looks for the keys saved in

the PrePreProcessor ###PATTERNS directive of the modules within the user code, to

identify the modules used. So every module must define at least one pattern or will be

ignored and never included. It also orders the inclusion of code based on the first time

the module is called.

All the modules are defined with the extension .module, and are placed in the source

code in the folder Analysis/Modules.

All the module calls use the same nomenclature:

$MODULE NAME[$SUBMODULE NAME]$ROUTINE NAME(args )

The MODULE NAME must always be present and as its name suggests is the name of the

module. It is usually the name of the analysis, if the module functionality is associated

with a particular analysis. The SUBMODULE NAME is the name of the submodule and is

optional; depending on the module the submodule name may or may not be used. The

ROUTINE NAME is the routine call name, and may include a variable number of arguments

(args ).

As the result of this module system, the users can simply use one of the module calls

directly, and the PrePreProcessor will load the source code in compilation time (if the

module is installed).

The following code, shows a simple example of a module definition and how to call it.

1

2 /*

3 MODULE:Example

4 TYPE: Analysis

5

6 PrePreprocessor orders (ppp.sh); note that this is a commented section

7 ### PATTERNS $MY_MODULE$ANALYSIS ();
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8

9 */

10

11 //It is not strictly needed

12 #ifdef __CUDACC__

13

14 // Defining the CALL as a MACRO

15 #define $MY_MODULE$ANALYSIS () \

16 COMPOUND_NAME(ANALYSIS_NAME ,preDefinedAnalysisCodeMyModule)(GPU_buffer

,GPU_data ,GPU_results ,state);\

17 __syncthreads ()

18

19 // Implementing it in a device inline function

20 template <typename T,typename R> __device__ __inline__ void COMPOUND_NAME(

ANALYSIS_NAME ,preDefinedAnalysisCodeMyModule)(packet_t* GPU_buffer , T*

GPU_data , R* GPU_results , analysisState_t state){

21

22 // Dummy: Putting in the results array data_element *2

23 RESULT_ELEMENT = DATA_ELEMENT *2;

24 }

25 #endif // __CUDACC__

Figure 4.24: Example of a module implementation. (Example.module).

To use it, and hence loading it, it only has to be called in the appropriate section.

1 template <typename T,typename R>

2 __device__ void COMPOUND_NAME(ANALYSIS_NAME ,

AnalysisRoutineImplementation)(packet_t* GPU_buffer , T* GPU_data , R*

GPU_results ,analysisState_t state){

3 // Calling the analysis routine of the module

4 $MY_MODULE$ANALYSIS ();

5 }

Figure 4.25: Example of usage of the module defined in figure 4.24, by using its call

in the analysis section.

Windowed analysis module support.

The modules may support windowed analysis or not, or even only allow programmers

to use it when the analysis is windowed. To achieve it, the module developer can use
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the preprocessor variable HAS WINDOW and preprocessor conditional code and #error

preprocessor directive to assure that the user fulfill module requirements.

Type wrapping and controlling by the module.

The module, and in particular analysis routine modules, can have full control over the

ANALYSIS INPUT TYPE and ANALYSIS OUTPUT TYPE type of the analysis. For instance

the module might require to set a particular output type, or fix both input and out-

put types. To achieve it, the module is able to redefine ANALYSIS INPUT TYPE and

ANALYSIS OUTPUT TYPE MACROs to the correct type names, as certainly the analysis

types are not configured until modules are loaded.

In addition, the module can also achieve partial type definition by the user, by using the

type wrapping technique. The idea behind type wrapping is to let the user define his

own data type, and then create a more complex data type including it. The technique is

basically to define a complex type first based on the current values of the type MACROs,

ANALYSIS INPUT TYPE and ANALYSIS OUTPUT TYPE, and then redefine them to the new

complex type (wrap type).

Two partially implemented module examples are shown below, the first one omitting

user type definition, and the other wrapping it.

1 /*...*/

2 // Omiting INPUT TYPE

3 #undef ANALYSIS_INPUT_TYPE

4 #define ANALYSIS_INPUT_TYPE uint32_t

5 // Defining output type = input type

6 #define ANALYSIS_OUTPUT_TYPE ANALYSIS_INPUT_TYPE

7

8 /*...*/

Figure 4.26: Example of a module ommitting user type definition (extract).

1 /*...*/

2

3 // Defining complex type (wrapping)

4

5 typdef struct{

6 ANALYSIS_INPUT_TYPE user

7 uint32_t a;

8 int b;
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9 float c;

10 }myWrappedType_t;

11

12 // Redefining INPUT TYPE

13 #undef ANALYSIS_INPUT_TYPE

14 #define ANALYSIS_INPUT_TYPE myWrappedType_t

15 // Defining output type = input type

16 #define ANALYSIS_OUTPUT_TYPE ANALYSIS_INPUT_TYPE

17

18 /*...*/

Figure 4.27: Example of module wrapping user type (extract).

4.6.6 Basic Macros.

One of the main objectives of the project is that framework must easy to use for the users.

Throughout the development stage, in addition of the problems summarized in sections

4.6.1, 4.6.2 and 4.6.3, several other issues where found which reduced framework’s usage

simplicity and usability:

Problem definition: CUDA only allows global memory accesses to 4-

byte multiple addresses [3]. This is a big limitation, as data stored in the

GPU buffer array is raw data. The network protocol headers, and therefore the

header fields are stored without any kind of alignment.

Adopted solution: There were two possible solutions; align the types while

storing them in the buffer (CPU) or create a wrapper function to obtain misaligned

types in the GPU.

The solution adopted has been to create a wrapper cudaSafeGet(...). The reason

of this election is performance, as aligning the types in the CPU, although would

increase GPU performance, will be very time consuming for the CPU. The wrapper

is able to safely get types of 8,16,32 and 64 bits.

Problem definition: Network information is BIG ENDIAN format, while

CPU and therefore GPU (as the GPU uses CPU endianism), uses LIT-

TLE ENDIAN type representation format. This problem was already

known from the start.
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Adopted solution: The inline function cudaNetworkToHost(...) has been

defined to convert values when obtaining them from the GPU buffer array to little

endian format. The function is able to convert values of 8,16,32 and 64 bit types.

To simplify the task of the users of the framework and the module developers, several

MACROs have been defined. The MACROs simplify different tasks in various areas of

the analysis, like obtaining network protocol information from the GPU buffer, accessing

to GPU data and GPU results arrays or for thread synchronizing purposes. Two types

of MACROs are supplied, User MACROs intended to be used by all the users and the

module developers, and Module Developer MACROs which may only be used by the

second ones.

4.6.6.1 User MACROs.

A brief summary of the most important User MACROs are listed below:

General MACROs

These MACROs have been defined to easily access to the elements contained in the

input and output array and to easily access to the information contained in the buffer

array.

• DATA ELEMENT: Obtains the element or elements (in case of windowed analysis)

of the input array GPU data. It Expands to the dereferenced pointer of the

ANALYSIS INPUT TYPE object for this particular thread.

Note that it may not always point to GPU data[absoluteThreadId], as certain

modules wrap10 the type defined by the user by a more complex type including

the user type. In these cases, DATA ELEMENT dereferences a user object. Mainly

used in the mining section.

• RESULT ELEMENT: Obtains the element or elements (in case of windowed analysis)

of the output array GPU results. Expands to the dereferenced pointer of the

ANALYSIS OUTPUT TYPE object for this particular thread. This MACRO is used

mainly in the analysis and postanalysis routines.
10See details in section 4.6.5
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Mining MACROs

MACROs to be used in the mining section principally.

• GET FIELD(field ): safely gets a field of a network protocol header by using

cudaSafeGet(...) and cudaNetworkToHost(...) functions to avoid errors.

The field must be in the form of PROTOCOLNAME HEADER.struct field, where

the struct field is the header struct field defined in the protocol.

The network protocol header related MACROs are implemented for all the pro-

tocols currently supported, listed in section 4.2.3.

• PROTOCOL NAME HEADER: Expands to a dereferenced pointer (object) of the type

PROTOCOL NAME. It assumes that there is no tunneling, so for example the

IP4 header is in the network level.

• IS PROTOCOL NAME (): Expands to a boolean value depending if the packet con-

tains or not the PROTOCOL NAME.

• ...

Particular protocols may define their own MACROs apart of the above mentioned. For

instance, IP4 defines the MACRO IP4(a,b,c,d) to define ips and be able to compare

them. A detailed description of all the protocols MACROs is exposed in the online

documentation in the appendix C.

An example of usage:

1 template <typename T,typename R>

2 __device__ void COMPOUND_NAME(ANALYSIS_NAME ,miningImplementation)(

packet_t* GPU_buffer , T* GPU_data , R* GPU_results , analysisState_t

state){

3

4 //If is Ethernet and source IP == 10.0.0.0/16

5 if(IS_ETHERNET && IS_IP4 () && (IP4_NETID(GET_FIELD(IP4_HEADER.ip_src)

,16) == IP4(10,0,0,0))){

6 // Store to data Element protocol of the header

7 DATA_ELEMENT = GET_FIELD(IP4_HEADER.protocol);

8 }

9 }

Figure 4.28: Example of the usage of mining MACROs.
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The MACRO expansion of the code shown in figure 4.28 is presented in the figure A.6

of appendix A (code might have some extra *, () and & operators).

Filtering MACROs

The filtering MACROs are intended to only be used in the filtering and operations

section.

• PRE FILTER(field to compare, filterOps operation,op1[,op2]): Can only

be used in the preAnalyisFilteringImplementation section. Filters (erases)

elements that match the condition made up by operation, op1 and depending on

operation by op2 in the GPU data array.

• POST FILTER(field to compare,filterOps operation,op1[,op2]): Can only

be used in the postAnalysisOperationsImplementation section. It filters (erases)

elements that match the condition made up by operation, op1 and depending on

operation by op2 in the GPU results array.

The operations of the filter are defined as:

1 enum FilterOps{

2 //One operator operations

3 Equal , // ==

4 NotEqual , // !=

5 LessThan , // <

6 GreaterThan , // >

7 LessOrEqualThan , // <=

8 GreaterOrEqualThan , // >=

9

10 //Two operator operations

11 InRangeStrict , // ()

12 NotInRangeStrict , // !()

13 InRange , // []

14 NotInRange // ![]

15 };

Figure 4.29: Filtering operations of the filtering MACROs.

Synchronization MACROs

• SYNCTHREADS(): expands directly to syncthreads() CUDA function and is de-

fined to maintain a coherent style across the whole framework calls.
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• SYNCBLOCKS(): as previously outlined synchronizes all the threads of the kernel

(synchronization between blocks).

4.6.6.2 Module developer Macros and X-Macros.

The module developers, the ones developing code in the form of *.module files for an

specific section (or several), in addition to the previous MACROs, have a couple of extra

MACROs.

Operations MACROs (windowed analysis)

For windowed analysis, a set of MACROs are defined for the proper execution of the

code in the operations section. Basically allows programmers to conditionally execute

code in windowed analysis depending if the window limit has been reached.

As this functions have no been used in the developed modules, they are not going to

be exposed here. The reader can fulfill his curiosity by taking a look to the MACRO

definitions in the file Operations.h.

Synchronization

The developers can use the following X-MACRO to achieve the same effect as SYNCBLOCKS().

The module developers must use this X-MACRO instead of the users barriers.

• #include "PATH BACK /PrecodedSyncblocks.def": where PATH BACK is the path

to the .def file, which is placed in the modules root folder.

4.6.7 Analysis component current limitations and future work

The limitations of the current implementation are above all a consequence of the current

implementation of global barriers and the current state of the CUDA library (C++

support). In future CUDA releases and with the new CUDA-enabled devices it is highly

possible that global barriers could be implemented in global memory, and hence not

having to resort to preprocessor techniques.

The module system could be improved by using more advanced code parsing techniques

or a source-to-source compiler.
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The current way to access the elements of the GPU buffer could also be improved(specially

regarding the headers t struct), as in the current implementation each protocol veri-

fication and data extraction requires a global memory access which is high costing. The

decision of implementing it this way it has been due to the fact that CUDA does not

allow to pass shared memory pointers between functions, and hence to achieve the

goal of reducing global memory accesses an extra MACRO call would have been needed

to be placed by the user in the mining section.

In addition to all the issues mentioned above, the number of registers used by each

thread (basically the analysisState t struct) should also be reduced somehow, as it

impacts on the performance of the kernels (as it reduces the number of concurrent

threads running in a GPU multiprocessor). In this sense, this modifications should not

mean more global memory access, as it would be far more inefficient than the current

implementation.

4.7 Developed modules

The framework development has also consisted of the creation of several basic network

traffic analysis routines, a set of basic operations over these analysis and finally several

hook modules.

The basic network analysis implemented are:

• Threshold based analysis. Application of policy based techniques to detect

traffic anomalies or resource abuse.

• Histograms. To obtain any type of histogram regarding any parameter/s aimed

to be observed of the network traffic.

• Scan detectors. Two scan detectors have been developed, a portscan detector

and an ipscan detector. This are examples of fixed type modules.

All the analysis modules have their own operations and hooks, and the user is able

to dump the analysis results into a file, the screen or a database (using unixODBC

library).

It is necessary to remark, that the implementation of some modules, basically the

threshold and histogram module, has a balance between performance and flexibil-

ity. Modules have been implemented trying to archive the maximum performance

assuring user type definition support.
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If required, more specific modules could always be developed to get maximum

performance for a particular routine.

During the development of some of the modules there was a need of supporting

multiple types and partially user-defined types within a module. As comparison

operators (<, >, <=, =>, == and !=) can only be used with basic types (int,

float ...), a memcmp function has been needed to develop in the GPU.

Problem definition: To enable modules to support multiple type

sizes, a device (GPU) memcmp() implementation was needed. This

operation must be fast, and hence should be implemented in using shared

memory or registers. First implementations using shared pointers ran-

domly failed.

Adopted solution: The solution has been to implement the cudaSharedMemcmp()

function casting the types to a uint8 t type and using the operator [] (and

using the template meta-programming technique).

Several examples are included in the Examples/ folder of the source code, showing

several applications of the developed modules.

The documentation of all the modules is presented in the appendix C and includes

complete information about the syntax, parameters and additional MACROs sup-

plied by each module, as well an accurate description and examples of usage. It

also includes a list of modules related to the module.

4.7.1 Thresholds

Three different analysis modules have been developed within this type of analysis:

• $DETECTOR$ module. Detects user-type elements that are not null elements, and

counts the number of user-type elements within the input array. It can be used

for example to detect abnormal header field values and known malicious packets.

It should be improved to increase performance for multiple anomaly detection (like

in signature-based NIDS).

• $RATES$ module. Rates module allows the programmers to implement threshold

detection in number of user-type elements per second.

The user is able to define a type and fill the values of this user-type elements.

The module then, identifies elements that are not null, calculating the rate of

equal elements in number of elements per second. If the rate is above a certain
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threshold, a result is placed in the output array. An operations submodule is able

to perform multi-threshold analysis for different values of the user-type element.

This module has multiple usages. It can be used for instance to calculate de

number of packets flowing to a certain host/service (and therefore detecting DoS

attacks), the number of connections between two hosts which may indicate an

strange behaviour . . .

• $THROUGHPUTS$ module. The throughputs is similar to the $RATES$ modules, but

is able to calculate any magnitude, basically bytes, per second. The user, must in

addition to mine values for the user-type element, mine the magnitude for each

packet using a special MACRO defined by the module. An operation submodule

also allows to define multiple thresholds.

4.7.2 Histograms

The $HISTOGRAMS$ analysis module allows to create histograms of the type of elements

chosen by the programmer. The module counts the number of equal user-type elements

using a memcmp function implemented in the GPU (in shared memory), and stores

the results in the beginning of the array.

It must be remarked that the histograms are discrete, in the sense that only not null

elements are outputted. At the same time, as the users define input type (output type

is assumed as the same) of the analysis, complex types like structs can be used without

any problem, creating complex histograms (that can be represented as multidimensional

histograms or compound key histograms).

4.7.3 Scandetectors

As port scanning and ip scanning are techniques known to be potentially suspicious,

two different modules have been developed to try to detect this kind of actions: the

$PORTSCAN DETECTOR$ module and the $IPSCAN DETECTOR$ module. The implementa-

tion of this detection algorithms has been based in the intuitive idea that the rate of

connections/second in the case of portscans, and destination ips/second in the case of

ipscans are high during the elapsed time of the scan.

4.7.4 Other

It should also be remarked that a special hooks section module called $PROGRAM LAUNCHER$

has been released. This module, not related to any analysis module and hence being
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able to be used in any analysis, allows to the framework user to call external programs

and scripts passing information to them.

4.7.5 Future work

The future work that could be carried out over the modules currently released would be

to improve them, basically improving the performance of some of them.

In the other hand, and due to project time limitations, there are two big modules that

have not been implemented and should be considered as a future work: a behaviour

based NIDS and a signature based NIDS module.

The behaviour based NIDS is probably the analysis that could take the most advantage

of the GPU capabilities, due to the mathematical calculations behind their algorithms.

Several research papers, like the ones cited in the section 2.2.2.2, should be studied in

depth to implement it.

In the other hand, the signature based NIDS could be implemented using the rule-sets

defined in the opensource NIDS Snort, translating them into framework code somehow.

An implementation of a signature-based NIDS based on Snort paper, [46], has recently

been published (but not the source code) and should be also taken into consideration

throughout the implementation.

The hope of the framework creators is that, once the framework is published on the

Internet, developers all over the world contribute to the project creating new modules

to extend the framework functionality and also improve the current modules.
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Conclusions

The Thesis result is a framework capable of achieving all the objectives exposed in sec-

tion 1.2 of the thesis report. The framework allows a simple way to create programs

that allow to the framework-programmer capture packets from either the network inter-

face or network capture files and analyse the traffic using the GPUs under the CUDA

architecture. The task of programming network traffic analysis routines has been sim-

plified by the framework structure as well as by all the tools, framework functions and

MACROs developed within this thesis project. Thus, all the objectives defined have

been successfully met.

The resulting workflow for the framework-based programs is simple, as the users only

have to define the main() function of the program and code the analysis based on the

structure contained in the template files.

At the same time, the framework’s built-in module system brings to the framework

developers and user-programmers an easy way to share analysis code in a simple way,

without having to renounce to neither any of the framework capabilities nor CUDA’s

power. In this sense, modules give the chance to programmers that even do not known

anything about CUDA programming, to use the framework. The module system also

grants that the framework will be easily extended, as adding more analysis capabilities

to it is as easier as adding new files (modules) with the code in the appropriate folder.

In this respect, the decision of releasing the code under the GPL license is, apart from

a conviction in the way software is conceived, an instrument to assure that there will be

the possibility to allow other programmers to join to the project development to enrich

it.

The framework project should be considered as in an open development state. Al-

though the current state of the framework’s implementation is fully functional there

96
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are several aspects of the project that can be improved, most of them outlined in the

future work sections of each component. In addition, the framework might also be ex-

tended, particularly regarding network traffic analysis routines, to fulfill the needs of

more framework-users.

Regarding the personal side of the project, as indeed is the final subject of the “ETSETB

Enginyeria de telecomunicacions” university degree, this thesis has reported me a lot of

personal satisfaction and above all, knowledge. Although during the development stage

some aspects of the project have gotten more complicated than initially expected, thanks

to the unconditional support of my advisor and the work carried out, all the problems

have finally been solved.

During the development of this project, C++ (including template meta-programming

techniques) programming language has been learnt as well as GPGPU techniques based

on the CUDA architecture. In addition, knowledge about Libcap library, ODBC libraries

has been acquired. An extensible study of the possibilities of the GNU cpp preprocessor

has been carried out also. Autotools has also been used for the first time.

At the same time, tough it may not be fully perceived throughout the lecture of this thesis

report, a significant study on network traffic analysis techniques, security threats against

the network and/or its hosts as well as NIDS/NIPS systems and particularly statistical

NIDS/NIPS, has been carried out and allowed me to acquire a lot of knowledge in this

areas.

In addition, LATEX program has been used for the first time to write this thesis report

and dokuwiki has been used to create web documentation for the framework, which had

also never been used.

The student’s hope is that the framework will be of interest by IT and software commu-

nity, and that the release of the source code under the GPL license will make possible

that developers all over the world use and contribute to its development.



Appendix A

Code details

LivePacketFeeder.h

1 #ifndef LivePacketFeeder_h

2 #define LivePacketFeeder_h

3

4 /* Inclusion of library headers */

5

6 #include "../ Util.h"

7 #include "../ Common/PacketFeeder.h"

8 #include "SizeDissector.h"

9

10 #define CAPTURING_TIMEms 1000

11 #define SNIFFER_BUFFER_SIZE 8192

12 #define SNIFFER_NUM_OF_BUFFERS 2

13

14

15 #define SNIFFER_GO_STATE 0

16 #define SNIFFER_LASTBUFFER_STATE 1

17 #define SNIFFER_END_STATE 2

18

19 using namespace std;

20

21 class LivePacketFeeder:public PacketFeeder {

22

23 public:

24

25 LivePacketFeeder(const char* device);

26 ~LivePacketFeeder(void);

27

28 pthread_t* start(int limit);

29

98
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30 // captured packet callback method

31 static void packetCallback(u_char *sniffer ,const struct pcap_pkthdr*

pkthdr ,const u_char* packet);

32

33 // Method for the consumer thread to get the sniffed PacketBuffer

34 PacketBuffer* getSniffedPacketBuffer(void);

35

36 void flushAndExit(void);

37 private:

38 //PCAP descriptor

39 pcap_t* descr;

40

41 // Counter and limit

42 int packetCounter;

43 int maxPackets;

44

45 // Array of 2 packetBuffers and actualindex

46 PacketBuffer* packetBufferArray;

47 short int bufferIndex;

48

49 // Device name

50 const char* dev;

51

52 // State

53 int state;

54

55 // Mutex pthread semaphore

56 pthread_mutex_t mutex;

57

58 // Synchronization pthreads semaphore

59 sem_t* waitForSwap;

60 sem_t* waitForLivePacketFeederToEnd;

61

62 static void* startThreadWrapper(void* object);

63 void _start(void);

64 inline void setDeviceDataLinkInfoToBuffers(int deviceDataLink);

65 };

66

67 #endif // LivePacketFeeder_h

Figure A.1: LivePacketFeeder.h

OfflinePacketFeeder.h
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1 #ifndef OfflinePacketFeeder_h

2 #define OfflinePacketFeeder_h

3

4 /* Inclusion of header libraries */

5

6 #include "../ Util.h"

7 #include "../ Common/PacketFeeder.h"

8 #include "SizeDissector.h"

9

10 #define CAPTURING_TIMEms 1000

11 #define SNIFFER_BUFFER_SIZE 8192

12 #define SNIFFER_NUM_OF_BUFFERS 2

13

14

15 #define OFFLINE_SNIFFER_GO_STATE 0

16 #define OFFLINE_SNIFFER_LASTBUFFER_STATE 1

17 #define OFFLINE_SNIFFER_END_STATE 2

18

19 using namespace std;

20

21 class OfflinePacketFeeder:public PacketFeeder {

22

23 public:

24

25 OfflinePacketFeeder(const char* file);

26 ~OfflinePacketFeeder(void);

27 pthread_t* start(int limit);

28

29 static void packetCallback(u_char *useless ,const struct pcap_pkthdr*

pkthdr ,const u_char* packet);

30

31 PacketBuffer* getSniffedPacketBuffer(void);

32

33 void flushAndExit(void);

34 private:

35 //PCAP descriptor

36 pcap_t* descr;

37

38 // Counter and limit

39 int packetCounter;

40 int maxPackets;

41

42 // Array of 2 packetBuffers and actualindex

43 PacketBuffer* packetBufferArray;

44 short int bufferIndex;

45

46 // Device name

47 const char* file;
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48

49 // State

50 int state;

51

52 // Mutex

53 pthread_mutex_t mutex;

54

55 // Synchronization semaphore

56 sem_t* waitForSwap;

57 sem_t* waitForOfflinePacketFeederToEnd;

58

59 void _start(void);

60 static void* startThreadWrapper(void* object);

61 inline void setDeviceDataLinkInfoToBuffers(int deviceDataLink);

62 };

63

64 #endif // OfflinePacketFeeder_h

Figure A.2: OfflinePacketFeeder.h

Analyzer.h and Analyzer.cpp

1 #ifndef Analyzer_h

2 #define Analyzer_h

3

4 /* Inclusion of library headers */

5 #include "../ Util.h"

6 #include "../ Common/PacketBuffer.h"

7 #include "../ Common/PacketFeeder.h"

8 /* Inclusion of other own headers */

9

10 #define ANALYZER_MAX_ANALYSIS_POOL_SIZE 128

11 #define ANALYZER_MAX_FEEDERS_POOL_SIZE 1 //DO NOT MODIFY. Still not able

to handle more than 1 feeder at the time

12

13 typedef struct{

14 PacketFeeder* feeder;

15 pthread_t* thread;

16 }feeders_t;

17

18 using namespace std;

19

20 class Analyzer{

21
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22 public:

23 static void start(void);

24 static void term(void);

25 static DatabaseManager* dbManager;

26

27 //Add tot analysis Pool

28 static void addAnalysisToPool(void (*func)(PacketBuffer* packetBuffer ,

packet_t* GPU_buffer));

29

30 //Add to feeders pool

31 static void addFeederToPool(PacketFeeder* feeder ,int limit =-1);

32

33 private:

34 static void init(void);

35 static void programHandler(void);

36 static void analyzeBuffer(PacketBuffer* buffer);

37

38 static packet_t* loadBufferToGPU(PacketBuffer* packetBuffer);

39 static void unloadBufferFromGPU(packet_t* GPU_buffer);

40

41 // Analysis Pointers Pool

42 static void (* analysisFunctions[ANALYZER_MAX_ANALYSIS_POOL_SIZE ])(

PacketBuffer* packetBuffer , packet_t* GPU_buffer);

43 // Feeders Pool

44 static feeders_t feedersPool[ANALYZER_MAX_FEEDERS_POOL_SIZE ];

45 };

46

47 #endif // Analyzer_h

Figure A.3: Analyzer.h source extract.

1 #include "Analyzer.h"

2 /* ... */

3 packet_t* Analyzer :: loadBufferToGPU(PacketBuffer* packetBuffer){

4

5 /* Loads buffer to the GPU */

6 packet_t* GPU_buffer;

7 int size = sizeof(packet_t)*MAX_BUFFER_PACKETS;

8

9 BMMS:: mallocBMMS ((void **)&GPU_buffer ,size);

10 cudaAssert(cudaThreadSynchronize ());

11

12 /* Checks if buffer is NULL */

13 if(packetBuffer == NULL)

14 return NULL;

15
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16 if(GPU_buffer == NULL)

17 ABORT("cudaMalloc failed at Analyzer");

18 if(packetBuffer ->getBuffer ()==NULL)

19 ABORT("PacketBuffer is NULL");

20

21 cudaAssert(cudaMemcpy(GPU_buffer ,packetBuffer ->getBuffer (),size ,

cudaMemcpyHostToDevice));

22 cudaAssert(cudaThreadSynchronize ());

23

24 return GPU_buffer;

25 }

26

27 void Analyzer :: unloadBufferFromGPU(packet_t* GPU_buffer){

28 /* Unloads buffer from the GPU */

29 BMMS:: freeBMMS(GPU_buffer);

30 }

31

32 /* Adds feeder to the pool and stores pthread_t */

33 void Analyzer :: addFeederToPool(PacketFeeder* feeder ,int limit){

34 int i;

35

36 for(i=0;i<ANALYZER_MAX_FEEDERS_POOL_SIZE;i++){

37 if(feedersPool[i]. feeder == NULL){

38 feedersPool[i]. feeder = feeder;

39 feedersPool[i]. thread = feedersPool[i].feeder ->start(limit);

40 return;

41 }

42 }

43 ABORT("No more feeders can be placed into the pool");

44 }

45

46 /* Adds an analysis to the pool */

47 void Analyzer :: addAnalysisToPool(void (*func)(PacketBuffer* packetBuffer ,

packet_t* GPU_buffer)){

48 int i;

49

50 for(i=0;i<ANALYZER_MAX_ANALYSIS_POOL_SIZE;i++){

51 if(analysisFunctions[i] == NULL){

52 analysisFunctions[i] = func;

53 return;

54 }

55 }

56 ABORT("No more analysis can be placed into the pool");

57 }

58

59 /* Buffer analyze routine */

60 void Analyzer :: analyzeBuffer(PacketBuffer* packetBuffer){

61 int i;
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62

63 packet_t* GPU_buffer;

64

65 //Load buffer from PacketBuffer to GPU

66 GPU_buffer = loadBufferToGPU(packetBuffer);

67

68 /*** Throwing Analysis ***/

69 for(i=0;i<ANALYZER_MAX_ANALYSIS_POOL_SIZE;i++){

70 if(analysisFunctions[i] != NULL){

71 analysisFunctions[i]( packetBuffer ,GPU_buffer);

72 }else

73 break;

74 }

75

76 // UNload buffer from GPU

77 unloadBufferFromGPU(GPU_buffer);

78 }

79

80 /* Start routine. Infinite loop that obtains buffer and analyzes it*/

81 void Analyzer ::start(void){

82

83 int i;

84 bool hasFeedersLeft;

85 PacketBuffer* buffer=NULL;

86

87 /* SIGTERM signal handler */

88 programHandler ();

89

90 /* Implements infinite loop */

91 for (;;){

92 for(i=0, hasFeedersLeft = false;i<ANALYZER_MAX_FEEDERS_POOL_SIZE;i

++){

93

94 //If slot has valid Feeder pointer

95 if(feedersPool[i]. feeder != NULL){

96 //Get buffer

97 buffer = feedersPool[i].feeder ->getSniffedPacketBuffer ();

98

99 // Analyse it

100 analyzeBuffer(buffer);

101

102 // Check if(offline) feeder has no more packets to get

103 if(buffer == NULL || buffer ->getFlushFlag ())

104 feedersPool[i]. feeder = NULL;

105 else

106 hasFeedersLeft = true;

107 }

108 }
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109

110 if(hasFeedersLeft == false)

111 break;

112 }

113 }

114

115 void Analyzer ::term(void){

116

117 int i;

118

119 cerr <<"Sending term"<<endl;

120

121 // Force all feeders to flush their buffers and to exit

122 for(i=0;i<ANALYZER_MAX_FEEDERS_POOL_SIZE;i++){

123 if(feedersPool[i]. feeder != NULL)

124 feedersPool[i].feeder ->flushAndExit ();

125 }

126 }

Figure A.4: Analyzer.cpp source extract.

Example of basic MACROs usage.

1 template <typename T,typename R>

2 __device__ void COMPOUND_NAME(ANALYSIS_NAME ,miningImplementation)(

packet_t* GPU_buffer , T* GPU_data , R* GPU_results , analysisState_t

state){

3

4 //If is Ethernet and source IP == 10.0.0.0/16

5 if(IS_ETHERNET && IS_IP4 () && (IP4_NETID(GET_FIELD(IP4_HEADER.ip_src)

,16) == IP4(10,0,0,0))){

6 // Store to data Element protocol of the header

7 DATA_ELEMENT = GET_FIELD(IP4_HEADER.protocol);

8 }

9 }

Figure A.5: Example of the usage of mining MACROs.

The MACRO expansion of the code shown above (code might have some extra *, ()

and & operators) is:
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1 template <typename T,typename R>

2 __device__ void Example_miningImplementation(packet_t* GPU_buffer , T*

GPU_data , R* GPU_results , analysisState_t state

3 ){

4

5

6 if (((&((& GPU_buffer [( threadIdx.x + ((state.blockIterator -state.

windowState.blocksPreviouslyMined)*blockDim.x))])->headers))->proto [2]

== 0x0001) && ((&((& GPU_buffer [( threadIdx.x + ((state.blockIterator -

state.windowState.blocksPreviouslyMined)*blockDim.x))])->headers))->

proto [3] == 0x0800) && (( cudaNetworkToHost(cudaSafeGet (&((*(( struct

ip4_header *) ((( uint8_t *)&((& GPU_buffer [( threadIdx.x + (( state.

blockIterator -state.windowState.blocksPreviouslyMined)*blockDim.x))])

->packet))+(& GPU_buffer [( threadIdx.x + ((state.blockIterator -state.

windowState.blocksPreviouslyMined)*blockDim.x))])->headers.offset [3]))

).ip_src))) & (( uint32_t)(0xFFFFFFFF < <(32-16)))) == (( uint32_t)

((10 <<24)|(0<<16)|(0<<8)|0)))){

7

8 GPU_data[threadIdx.x + (state.blockIterator*blockDim.x)] =

cudaNetworkToHost(cudaSafeGet (&((*(( struct ip4_header *) ((( uint8_t *)

&((& GPU_buffer [( threadIdx.x + ((state.blockIterator -state.windowState.

blocksPreviouslyMined)*blockDim.x))])->packet))+(& GPU_buffer [(

threadIdx.x + (( state.blockIterator -state.windowState.

blocksPreviouslyMined)*blockDim.x))])->headers.offset [3]))).protocol))

);

9 }

10 }

Figure A.6: Macro-expansion of the code listed in figure A.5 and 4.28.
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Source Code (digital appendix)

The source code of the application, the modules and the examples can be found in the

folder src/ of the CD.
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Online Documentation (digital

appendix)

The User’s manual documentation, developed with dokuwiki, can be found in the folder

doc/, and specifically in the file doc/index.html of the CD.

Note that as it has been impossible to get a “static html version” of it. Therefore

Internet connection is required to contact the server and browse it. Simply open

the page with your favourite web browser.
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