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Chapter 1

Introduction

In this chapter we provide an introduction to supply chain management
(SCM) with emphasis on two types of methods for solving optimization
problems in SCM: mathematical programming and metaheuristics.

1.1 Introduction to Supply Chain Management

Supply chain management (SCM) addresses the strategic, tactical, and op-
erational decision making that optimizes the supply chain performance. The
strategic level defines the supply chain configuration: the selection of suppli-
ers, transportation routes, manufacturing facilities, production levels, tech-
nologies. The tactical level plans and schedules the supply chain to meet
actual demand. The operational level executes plans. Tactical and op-
erational level decision-making functions are distributed across the supply
chain.

To increase or optimize performance, supply-chain functions must be
perfectly coordinated. But the cycles of the enterprise and the market make
this difficult: raw material does not arrive on time, production facilities
fail, workers are ill, customers change or cancel orders, therefore, causing
deviations from the plan. In some cases, these situations may be dealt
with locally. In other cases, the problem cannot be ”locally contained” and
modifications across many functions are required. Consequently, the supply
chain management system must coordinate the revision of plans or schedules.
The ability to better understand an algorithm is important to focus on the
following variables: tactical and operational levels of the supply chain so that
the timely dissemination of information, accurate coordination of decisions,
and management of actions among people and systems is achieved ultimately
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6 CHAPTER 1. INTRODUCTION

determines the efficient, coordinated achievement of enterprise goals.

1.2 Solution Methods

Several solution methods have been proposed so far for dealing with the
complexity associated with the SCM problem. We next provide an overview
of these strategies, with emphasis on optimization tools based on mathe-
matical programming an metaheuristics.

1.2.1 Mathematical Programming

Mathematical programming or optimization is a technique for finding an
optimal solution of a given problem with constraints. Optimization prob-
lems can be classified in terms of continuous and discrete variables. Solution
methods for solving problems that only include continuous variables are lin-
ear programming (LP) and non-linear programming (NLP). On the other
side, problems on discrete variables are modelled as mixed-integer linear
programming (MILP) and mixed-integer non-linear programming (MINLP)
problems. Other than these major problem classes, other types of optimiza-
tion problems are considered: dynamic optimization (including differential
equations), stochastic programming (optimization under uncertainty), etc.
These problems can be solved by different techniques, in the past most of
these where based on trial and error, however in the last decades research
in this area has produced systematic approaches to do this task.

In this general introduction, we will first consider a general constrained
optimization problem (Bazaraa et al., 2006):

min f(x, y)
s.t h(x, y) = 0

g(x, y) ≤ 0
x ∈ X
y ∈ Y

Hereby, f(x, y) is the objective function, x is the set continuous variables,
and y are the integer variables, h(x, y) = 0 are the equality constraints and
g(x, y) ≤ 0 are the inequality constraints. Any optimization problem can be
represented in this form. Note that maximizing function f(x, y) is equivalent
to minimizing −f(x, y). Moreover, if we have inequalities grater than zero,
these may be transformed by multiplying the two terms by minus one.
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Figure 1.1: Feasible region for three inequalities and one equation.

1.2.1.1 Linear Programming (LP)

In the case of only linear functions and continuous decision variables, the
corresponding problem may be modelled as a linear programming (LP) prob-
lem.

min Z = cT · x
s.t A · x = b

Cẋ ≤ d
x ≥ 0

The standard solution method to solve LP problems is the simplex
method (Dantzig, 1963), although in the last decades interior point meth-
ods (Wu et al., 2002) have been extensively used for highly constrained
LP problems (e.g., problems with about 100,000 constraints and variables).
The major commercial solvers developed for LP optimization problems are
CPLEX and OSL, which are based on the simplex method, and XPRESS
which makes use of a Newton barrier interior point method.

1.2.1.2 Non-linear programming (NLP)

In the case that some of the functions are non-linear and the problem does
not include discrete decision variables, the problem can be modelled as a
non-linear programming (NLP) model.

min f(x)
s.t h(x) = 0

g(x) ≤ 0
x ∈ X
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Two major methods for NLP optimization are used; successive quadratic
programming (SQP) (Powell, 1978) and the reduced gradient method (Murtagh
and Saunders, 1978). Concerning the SQP algorithm, the basic idea is to
solve a quadratic programming subproblem at each iteration. In contrast,
the reduced gradient method solves a sequence of subproblems with lin-
earized constraints. Comparing SQP with the reduced gradient method,
SQP generally requires less iterations. However, for large-scale problems
the reduced gradient method is more robust.

The main SQP solvers are SNOPT, KNITOR, IPOPT and rSQP, whereas
reduced gradient method solvers are GRG2, CONOPT and MINOS.

1.2.1.3 Mixed integer-linear programming (MILP)

This type of problem model is an extension of LP where some of the variables
may adopt an integer value. The general form of a MILP problem is the
following one:

min Z = cT · x+ bT · y
s.t A · x+B · y ≤ d

x ≥ 0
y ∈ {0, 1}m

The principal method for solving MILPs is the LP-based branch and
bound (Nemhauser and Wolsey, 1988a). This method consists of a tree
enumeration where at each node a relaxed LP subproblem is solved. Another
technique for MILP optimization makes use of cutting planes, a method
based on generating cuts from the LP relaxation. Currently, most of the
commercial solvers combine both techniques. These computer packages are,
among others, CPLEX, OSL, LINDO and ZOOM.

1.2.1.4 Mixed integer-nonlinear programming (MINLP)

This type of problem model has the characteristics of both NLP and MILP.
The variables may adopt either real or integer values and some of the con-
strains or the objective function may be non-linear. The general form of a
MINLP problem is the following one:

min Z = cT · x+ bT · y
s.t A · x+B · y ≤ d

x ∈ X, y ∈ Y
X = {x | x ∈ Rn, xL ≤ x ≤ xU , B · x ≤ b}

Y = {y | y ∈ {0, 1}m, A · y ≤ a}
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There are several resolution algorithms: branch and bound (Gupta and
Ravindran, 1985), branch and cut (Stubbs and Mehrotra, 1999), generalized
benders decomposition (Geoffrion, 1972) and outer-approximation (Duran
and Grossmann, 1986).

1.2.2 Incomplete Algorithms: Heuristics and Metaheuristics

In this section we start talking about heuristics, then we delve into algo-
rithms that are known as metaheuristics. In fact, the hybridization of meta-
heuristics and integer linear programming is an important aspect of this
work. Therefore, at the end of this section we will give a brief description of
the hybridization of metaheuristics with other techniques for optimization.

1.2.2.1 Combinatorial Optimization

A combinatorial optimization problem (COP), following the definition of
Papadimitriou and Steiglitz, is the pair P = (S, f) consisting by the finite
set of objects S and an objective function f : S → R

+, which assigns a
positive value to each of the objects of S. The goal is to find an s ∈ S
which has a cost value f(s) that is lower than (or equal to) the cost value
of any other object in S. A well-known example of a COP is the Traveling
Salesman Problem (TSP) (Lawler et al., 1985), which is defined as follows.

Definition 1 In the Traveling Salesman Problem (TSP) is given a complete
graph G = (V,E) with a weight we ∈ R

+ for each edge e ∈ E. The goal
consists in finding the minimum Hamiltonian cycle in G. The objective
function value f(s) is calculated as the sum of the weights of the edges that
form the Hamiltonian cycle s, and hence the search space S consists of all
possible Hamiltonian cycles that exist in G.

Note that each COP can be modelled as a MILP in various different ways.
The resolution of any COP, (or any computer problem) is through an algo-
rithm. Algorithms may be �complete, probabilistic or approximate: complete
methods guarantee to find an optimal solution. However, when the size of
the problem instance increases, the computation time required by complete
methods may be impractically high. In the case of COP problems that are
NP -hard, no polynomial algorithm exists to solve them. Therefore, when
rather large instances of NP -hard problems are concerned, approximate al-
gorithms are often the only alternative. While these methods produce good
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solutions in a reasonable amount of computation time, they do not guar-
antee to find optimal solutions. There are two basic types of approximate
algorithms, constructive heuristics and local search.

1.2.2.2 Constructive Heuristics

Constructive heuristics are the most typical approximate algorithms for solv-
ing COP. These algorithms build solutions from scratch, starting from an
empty initial solution. They employ a construction mechanism which will
add solution components at each step, according to a cost function, until
the solution is complete or the process is stopped by another criterion.

The schema of a constructive heuristic is shown in algorithm 1. The
algorithm is initialized with an empty partial solution sp. Given a partial
solution sp, a set of solution components cc(sp) can be derived for the ex-
tension of sp. To each component c ∈ cc(sp) is assigned a Greedy value η(c)
which serves as a selection criterion: at each step we choose the component
c ∈ cc(sp) with the maximal Greedy value and extend the partial solution
sp by adding c. This process is repeated until set cc(sp) is empty, or until
some other criterion indicates that the solutions construction process should
be stopped.

Algorithm 1 Constructive Heuristic

sp = ∅
Generate(cc(sp))
while cc(sp) 6= ∅ do
c = Selection(Cc(sp))
sp = extend sp by adding the component c
Generate(cc(sp))

end while

1.2.2.3 Local Search Methods

These algorithms start from some initial solution and iteratively try to re-
place the current solution by a better one, looking in a neighborhood for-
mally defined as follows:

Definition 2 A neighborhood is a function N : S → 2S that assigns to each
s ∈ S a set of neighboring solutions N(s) ⊆ S. Hereby, each solution s′ ∈
N(s) is obtained by applying an operator to s, which applies a rather small
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change to s and hereby creates a new solution s′. Operators or movements
are applied in a particular order.

A neighborhood with an instance of the problem define a search space,
which can be represented by a graph where the vertices are solutions that
are labeled by the value of the objective function, and the arcs represent
the neighborhood relationship of the solutions. A solution s∗ ∈ S is called
globally minimal solution if for all s ∈ S it holds that S : (f(s∗) ≤ f(s)). The
introduction of a neighborhood structure enables us to additionally define
the concept of locally minimal solutions.

Definition 3 A local minimum with respect to a neighborhood N is a solu-
tion ŝ such that ∀s ∈ N(ŝ) : f(ŝ) ≤ f(s). And ŝ is a strict local minimum if
∀s : s ∈ N(ŝ) : (f(ŝ) < f(s)).

The simplest method of local search is the iterative improvement local
search where at each step a neighbor is chosen which is better than the
current solution. This method is outlined in algorithm 2.

Algorithm 2 Iterative Improvement Local Search

s = generate initial solution()
while ∃s′ ∈ N(s) such as f(s′) < f(s) do
s = choose improving neighbor(N(s))

end while

There are mainly two ways to implement function choose improving
neighbor(N(s)): searching the neighborhood in a pre-defined order return-
ing the first neighbor which is better than the current solution, or perform-
ing an exhaustive search through the neighborhood and returning the best
neighbor.

1.2.3 Metaheuristics

Metaheuristics (Glover, 1986a; Reeves, 1993) were introduced in the 70’s.
They are approximate algorithms that combine basic heuristics to explore
the search space more effectively and efficiently than constructive heuris-
tics and local search. The term metaheuristic is a Greek compound word.
Heuristic comes from heuriskein which means “search”, while the suffix meta
means “ beyond” referring to a higher level. There are different definitions of
metaheuristics according to the respective authors. Here is a representative
one:
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”A metaheuristic is an iterative master process that guides and modifies
the operations of subordinate heuristics to efficiently produce high-quality
solutions. It may manipulate a complete (or incomplete) single solution or a
collection of solutions at each iteration. The subordinate heuristics may be
high (or low) level procedures, or a simple local search, or just a construction
method.” (Voss et al., 1999)

Here we give an excerpt of some of the fundamental properties taken
from different authors, such as for example Blum (2005a). Metaheuristics
are characterized by:

� Metaheuristics are strategies that “guide” the search process.

� The goal is to efficiently explore the search space in order to find
(near-)optimal solutions.

� Techniques which constitute metaheuristic algorithms range from sim-
ple local search procedures to complex learning processes.

� Metaheuristic algorithms are approximate and usually non-deterministic.

� They may incorporate mechanisms to avoid getting trapped in con-
fined areas of the search space.

� The basic concepts of metaheuristics can be described on an abstract
level (i.e., not tied to a specific problem)

� Metaheuristics are not problem-specific.

� Metaheuristics may make use of domain-specific knowledge in the form
of heuristics that are controlled by the upper level strategy.

� Today more advanced metaheuristics use search experience (embodied
in some form of memory) to guide the search.

1.2.4 Classification of Metaheuristics

Metaheuristics may be classified in different ways. In the following we outline
some of these possible classifications:

Nature-inspired vs. non-nature inspired. Probably the most in-
tuitive way of classifying metaheuristics refers to their origins. There are
nature-inspired algorithms, such as evolutionary algorithms and ant colony
optimization, and non nature-inspired ones such as tabu search and iter-
ated local search. However, this classification may not be very meaningful.
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Many recent hybrid algorithms can not be assigned to any of the two classes.
Moreover, it is sometimes difficult to clearly attribute an algorithm to one
of the two classes.

Single point vs. population-based search. Another characteristic
that can be used for the classification of metaheuristics is the number of
solutions that a metaheuristic works on at the same time: Does the algo-
rithm make use of a population or only of a single solution at any time?
Algorithms that work on single solutions are generally referred to as tra-
jectory methods. They comprise all metaheuristics that are based on local
search. This is because their search process describes a trajectory in the
search space. Population-based metaheuristics, on the contrary, either per-
form search processes which can be described as the evolution of a set of
points in the search space, or they perform search processes which can be
described as the evolution of a probability distribution over the search space.

Dynamic vs. static objective function. Metaheuristics can also be
classified regarding the way in which they use the objective function. While
some algorithms use static objective functions during run-time, some others,
such as guided local search, modify the objective function during the search.
The idea behind this approach is to escape from local minima by modifying
the search landscape.

One vs. various neighborhood structures. Many metaheuristic
algorithms only use one single neighborhood structure. In other words,
the search landscape topology does not change in the course of the algo-
rithm. Other metaheuristics, such as variable neighborhood search, use
more than one neighborhood structure. This opens the possibility to diver-
sify the search by swapping between different search landscapes.

Memory-based vs. memory-less methods. A very important fea-
ture to classify metaheuristics is based on the fact whether they use memory
or not. Memory-less algorithms perform a Markov process, as the informa-
tion they exclusively use to determine the next action is the current state of
the search process. Usually we differentiate between the use of short term
and long term memory. The former usually refers to recently performed
moves, visited solutions or, in general, decisions taken. The latter is usually
an accumulation of synthetic parameters about the search. The use of mem-
ory is nowadays recognized as one of the fundamental elements of a powerful
metaheuristic.
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1.2.5 Trajectory Methods

As mentioned before, trajectory methods are characterized by the fact that
the work on a single solutions at any time. Their search process describes a
trajectory in the search space.

1.2.5.1 Simulated Annealing

The idea of Simulated Annealing (SA) (Metropolis et al., 1953) is taken from
the metallurgical industry. It is based on the process of cooling down metal
and glass, slow enough in order to get (nearly) perfect crystal structures.
In each iteration, the SA selects a solution s′ ∈ N(s) at random, where s is
the current solution. If f(s′) < f(s) then we replace s by s′. Otherwise, s is
still replaced by s′ with probability p(s′ | Tk, s) (equation 1.1) which follows
a Boltzmann distribution:

p(s′ | Tk, s) = e
−

f(s′)−f(s)
Tk , (1.1)

where Tk is a so-called temperature parameter. This version of SA works
without memory, but the use of memory for storing the history can be ben-
eficial. The framework of the method is outlined in Algorithm 3.

Algorithm 3 Simulated annealing (SA)

s = generate initial solution()
k = 0
Tk = set initial temperature()
while end condition not found do
s′ = choose neighbor at random(N(s))
if f(s′) < f(s) then
s = s′

else
Accept s′ as new solution with probability p(s′ | Tk, s) (see 1.1)

end if
update temperature(Tk, s)

end while

The different functions that are used in the SA algorithm are explained in
more detail in the following:

� generate initial solution(): The algorithm starts by generating a so-
lution that can be random solution or the result of a constructive
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heuristic.

� set initial temperature(): The initial temperature has to be one that
allows to move to considerably worse solutions at the beginning of the
algorithm. It’s setting is crucial for the success of the algorithm.

� choose neighbor at random(N(s)): Randomly select a neighbor.

� update temperature(Tk): The temperature parameter needs to be up-
dated at each iteration. The idea is to reduce the value of this parame-
ter step by step in order to gradually decrease the probability to move
to worse solutions. An example is the following scheme:

Tk = Tk−1 · α, α ∈ ( 0, 1) (1.2)

The temperature planning method is crucial for obtaining good results.

1.2.5.2 Tabu Search

The simple version of tabu search algorithm (TS) (Glover, 1986b) (see Al-
gorithm 4) is based on the (best-improvement) version of local search and
uses short term memory to avoid local minima and cycling. The short-term
memory is implemented by a tabu list, denoted as TL, which keeps track
of the latest solutions visited. Na(s) is called the allowed set. This set is
a subset of the neighborhood N(s), generated by eliminating the solutions
stored in TL. In each iteration we choose the best solution of all the ones in
Na(s) as new current solution. This solution is also stored in TL by function
update(TL, s, s′). If TL exceeds its maximum capacity, then the oldest solu-
tion is removed from TL. This means that TL is managed following a FIFO
policy. As we can see the algorithm terminates when the end condition is
true or when Na(s) is empty.

The implementation of a short-term memory using a list that stores
complete solutions is not practical because keeping a list of solutions is very
inefficient. Therefore, rather than storing solutions, we keep the solution
components involved in the movements. So we need a TL for each type
of solution component. Each tabu list TL will be involved in defining a
tabu condition that serves to filter the neighborhood of the current solution.
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Algorithm 4 Simple tabu search (TS)

s = generate initial solution()
TL = ∅
while end condition not true do
Na(s) = N(s) \ TL
s′ = argmin{f(s′′) | s′′ ∈ Na}
update(TL, s, s′)
s = s′

end while

However, note that storing solution components instead of complete solu-
tions, even though it is much more efficient, it comes with a potential loss
of information. This is because when forbidding to visit all solutions that
contain this component, solutions may be forbidden that were not visited
before. To solve this problem, aspiration criteria are used. They may allow
to include otherwise forbidden solutions into set Na. The most common
aspiration criterion used is when a solution is better than the best solution
found. Such a solution should, of course, not be forbidden. Algorithm 5
shows the framework of this more practical version of TS.

Algorithm 5 Tabu search (TS)

s = generate initial solution()
init tabu lists(TL1, . . . , TLr)
while end condition not found do
Na(s) = {s′ ∈ N(s) | s′ is not forbidden,
or aspiration conditions are satisfied}
s′ = argmin{f(s′′) | s′′ ∈ Na}
update tabu lists(TL1, . . . , TLr, s, s

′)
s = s′

end while

1.2.5.3 Explorative Local Search Methods

In this section we present some other trajectory methods, which are greedy
randomized adaptive search procedures (GRASP), variable neighborhood search
(VNS), guided local search (GLS) , and iterate local search (ILS).

1. Greedy Randomized Adaptive Search Procedures The greedy
randomized adaptive search procedure Feo and Resende (1995) is a
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metaheuristic that combines a constructive metaheuristic with local
search (see Algorithm 6). GRASP is an iterative procedure that con-
sists of two phases: the construction of a solution (see Algorithm 7)
and the improvement of the solution built.

Algorithm 6 Greedy randomized adaptive search procedure (GRASP)

while end condition not found do
s = build greedy random solution()
apply local search(s)

end while

The construction method is a method that randomly constructs a solu-
tion sp step by step, adding components of a finite list called restricted
candidate list (RCL). The RCL is made up of the first α components
from cc(sp), assuming that the elements of cc(sp) are ordered by a
Greedy function η. Note that α is an important parameter.

Algorithm 7 Greedy randomized solution construction

sp = 〈〉
α = determine length of candidate list()
while end condition not found do
RCL = generate candidate list(η, cc(sp), α)
c = choose at random(RCL)
sp = extend sp by adding solution component c

end while

As local search it is possible to use any of the available local search
algorithms, such as the simple search algorithms, or more advanced
methods such as SA or TS. To be effective, GRASP has to satisfy (at
least) two conditions:

� The constructive heuristic should explore the best areas of the
search space.

� Built solutions should belong to different local minima of the
utilized local search.

In order to satisfy these two conditions both algorithm components
have to be properly chosen. Moreover, the length of the candidate list
must be adequately chosen.
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2. Variable Neighborhood Search

Variable neighborhood search (Hansen and Mladenovi, 2001) applies
strategies to switch between different neighborhoods of a finite set of
predefined neighborhoods (see Algorithm 8):

VNS is initialized with a set of neighborhoods that are required to
meet the following condition: ∀s : s ∈ S : (|N1(s)| < |N2(s)| <
. . . < |Nkmax(s)|). Second, an initial solution s is generated. Then
the outer loop of the algorithm is iterated until the stopping condi-
tions are reached. Within the outer loop, the neighborhood index k
is initialized to 1. Each iteration of the inner loop has three phases:
shaking, local search and acceptance of a new current solution. In the
shaking phase a solution s′ of the k−th neighborhood Nk(s) of s is
chosen, and is then subject to the local search phase which results in
a local minimum s′′. If f(s′′) < f(s) then we replace s by s′′, and
initialize the neighborhood index k to 1. However, if f(s′′) ≥ f(s)
then we increase the neighborhood index k by one in order to diversify
the search process.

Algorithm 8 Variable neighborhood search (VNS)

define neighborhoods Nk, k = 1, . . . , kmax

s = generate initial solution()
while end condition not reached do
k = 1
while k < kmax do
s′ = choose at random(Nk(s))
s′′ = local search(s′)
if f(s′′) < f(s) then
s = s′′

k = 1
else
k = k + 1

end if
end while

end while

3. Guided local search

Guided local search (GLS) (Voudouris and Tsang, 1999) is a meta-
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heuristic that uses a dynamic objective function to escape from lo-
cal minima. The dynamic objective function f ′ is obtained from an
adaptive change of the original objective function f . This change is
based on a set of, in general, m characteristics of a solution: sfi, i =
1, . . . ,m. These features can be used to differentiate solutions. I(i, s)
tells us if the property sfi is present in the solution s.

I(i, s) =

{
1 : if the feature sfi is in the solution s
0 : otherwise

(1.3)

During the execution of the algorithm, the original function f(·) is
replaced by f ′(·), which is obtained from f(·) by adding the penalty
pi : i = 1, . . . ,m, where λ > 0 is the influence of pi in f ′(·):

f ′(s) = f(s) + λ
m∑

i=1

pi · I(i, s) (1.4)

The algorithm (see Algorithm 9) works as follows. First, an initial
solution s is generated and the vector of penalties p is initialized to
all zeros. Then, at each iteration local search is applied to the current
solution s based on the changed objective function f ′. This results in
a solution s′. Depending on s′ the penalty vector p = (p1, . . . , pm) is
modified in the function update vector penalty(p, s′) calculating the
utility U(i, s′) for each property:

U(i, s′) = I(i, s′) ·
ci

1 + pi
(1.5)

The elements pi of the penalty vector p may be modified as follows:

pi = pi + 1 (1.6)

However, there are also other ways for the penalty vector update.

4. Iterated local search

In each iteration of iterated local search (ILS) (Stützle, 1999) (see
Algorithm 10) the current solution s′, which is a local minimum, is
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Algorithm 9 Guided local search (GLS)

s = generate initial solution()
p = (0, . . . , 0)
while end condition not found do
s′ = local search(s, f ′)
update penalty vector(p, s′)
s = s′

end while

subject to the perturbation function, which returns a perturbed so-
lution s′′. Afterwards, solution s′′ is subject to local search which
provides a new local minimum s′′′. Finally, the algorithm must decide
between solutions s′ and s′′′ for a new current solution. The pertur-
bation prevents the algorithm from being trapped in local minima,
whereas the acceptance criteria has an influence on the diversification
and intensification behaviour of the algorithm.

Algorithm 10 Iterated local search (ILS)

s = generate initial solution()
s′ = local search(s)
while end condition not found do
s′′ = perturbation(s′,memory)
s′′′ = local search(s′′)
s′ = apply acceptance criteria(s′′′, s′,memory)

end while

� The term memory (see Algorithm 10) refers, for example, to the
fact that solutions found during the search process may be stored
and used for different purposes.

� generate initial solution(): This function constructs the initial
solution. The most important requirement is to be fast, such as,
for example, the generation of a random solution or the use of a
simple greedy heuristic.

� perturbation(s′,memory): The perturbation usually tends to be
non-deterministic. The most important feature of the pertur-
bation is the strength, defined as the ”damage” inflicted on the
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current solution. This feature can be fixed or variable. In the
first case the distance between s′ and s′′ will always be the same
regardless of the state of the search process. However, a variable
strength is usually more effective and must be experimentally
found, depending on the current state of the search process.

� apply acceptance criteria(s′′′, s′,memory): The two extreme cases
for the acceptance criterion are as follows. We may only accept
s′′′ as new current solution in case it is better than s′, or we may
always accept the new local minimum regardless of its quality.
In between these two cases we have several possibilities to adopt,
for example, acceptance criteria similar to the one used in SA.

1.2.6 Population-Based Methods

The most well known metaheuristics based on populations for the appli-
cation to combinatorial optimization problems are evolutionary algorithms
(EAs), or (evolutionary computation(EC) algorithms), and ant colony opti-
mization (ACO) algorithms.

1.2.6.1 Evolutionary Algorithms

Evolutionary algorithms (EC) are inspired by nature’s ability to adapt to
the environment, that is, the natural evolution of species. In each iteration
the individuals that make up the current population are subject to opera-
tions such as recombination, from which arise the individuals of the next
generation (iteration). These next generation individuals are selected based
on their fitness, which is determined by their objective function value.

The family of evolutionary algorithms can be divided into three cate-
gories of independent development: Firstly, evolutionary programming (EP)
was introduced by Fogel (Fogel et al., 1966). Then, evolutionary strategies
(ES) were proposed by Rechenberg (Rechenberg and Eigen, 1973) and finally
genetic algorithms (GA) as proposed by Holland (Holland, 1992).

Algorithm 11 shows the basic structure of EC algorithms. In the algo-
rithm, P denotes the population. New individuals are produced by applying
recombination and mutation operators to the individuals of P . Then the new
population P ′′ is selected from P and from the newly generated individuals.
The main features of the EC algorithm are as follows:

� Representation of the individuals: Commonly used solution rep-
resentations are bit-strings or permutations of integers. Note that a



22 CHAPTER 1. INTRODUCTION

Algorithm 11 Evolutionary Computation (EC)

P = generate initial population()
evaluate(P )
while end condition not found do
P ′ = recombination(P )
P ′′ = mutation(P ′)
evaluate(P ′′)
P = choose(P ′′, P )

end while

solution representation is generally called genotype whereas the solu-
tion which is represented is called phenotype.

� Process of evolution: In each iteration, individuals are chosen to
constitute the next generation. In some cases the new population is
exclusively composed of new individuals. In other cases, the new pop-
ulation is chosen as the best set of solutions from the old population
and the newly generated individuals. Many times the number of indi-
viduals is constant from iteration to iteration.

� Neighborhood function: In the context of EC algorithms, this con-
cept refers to a function Nεc : I −→ 2R that assigns to each individual
i ∈ I a set of individuals Nεc(i) ⊆ I, which refers to the set of solutions
with which individual i can be recombined.

� Information source: This refers to the input parameters of a recom-
bination operator. In the standard case, a pair of parent individuals
are recombined to generate one or two new individuals (children). But
it could also be that more than two individuals are recombined to cre-
ate new individuals.

� Unfeasible solutions: An important aspect of EC algorithms is the
way of dealing with individuals who are not feasible. This problem
is often encountered, because many genetic operators may generate
unfeasible individuals. There are three ways to address this: the first
is to discard the infeasible individuals, the second way is to penalize
infeasible individuals based on decreasing their quality, and the third
way is to try to fix the corresponding individual.
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1.2.6.2 Ant Colony Optimization

In order to solve a given CO problem, the metaheuristic ant colony optimiza-
tion (ACO) has first to derive a finite set C of solution components, which is
used to assemble solutions (Dorigo and Blum, 2005; Blum and Roli, 2003).
Then we have to define a set T of pheromone values, which is generally
known as the pheromone model. Together with a mechanism for construct-
ing solutions, these values define a probability distribution over the search
space. The pheromone model is the heart of each ACO metaheuristic. Gen-
erally, each solution component from C has an associated pheromone value
τi ∈ T , so that solutions can be generated by assembling components prob-
abilistically.

The ACO in each iteration has two phases:

� Solutions are built on the basis of the pheromone model.

� The values of the pheromone model are updated depending on the
quality of the solutions built.

The general idea is that the pheromone model can guide the search pro-
cess to those parts of the search space containing high quality solutions. This
is because the pheromone value update increases the value of the pheromone
components depending on the quality of the corresponding solutions. A
precondition for ACO to work is that good solutions contain good solution
components.

Algorithm 12 Ant Colony Optimization (ACO)

while end condition not found do
build solution()
update pheromones()
daemon actions()

end while

In the following we give a more detailed description of ACO (see Algo-
rithm 12). ACO is an iterative algorithm which consists of three stages or
procedures build solution(), update pheromones(), and daemon actions().
These procedures are explained in more detail in the following:

build solution(): (see Algorithm 13) The exploration of the ants is sim-
ulated with a probabilistic constructive heuristic that assembles solution
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components from a finite set C = {c1, . . . , cn}. Each component ci of this
set C has an associated pheromone value τi. A complete solution is obtained
as a sequence of solution components s. A solution construction start with
the empty sequence s = 〈〉. At each step, the current sequence s is ex-
tended by adding a solution component from N(s) ⊆ C \ s. The selection of
component ci ∈ N(s) is done in a probabilistic way: to each component we
assign a probability p(ci | s) which depends on greedy information (η) and
pheromone information:

p(ci | s) =
[τi]

α · [η(ci)]
β

∑
cj∈N(s) [ηj ]

α · [η(cj)]β
, ∀ci ∈ N(s), (1.7)

Hereby, η is a greedy function which is also known as the heuristic in-
formation. This greedy function assigns to each component ci ⊆ N(s) a
value η(s). Moreover, the positive exponents α and β are parameters that
scale the weight of the heuristic information in relation to the weight of the
pheromone information.

Algorithm 13 build solution()

s = 〈〉
compute(cc(s))
while Cc(s) 6= ∅ do
c = choose(cc(s))
s = add component c to s
compute(cc(s))

end while

update pheromones(): The pheromone updating process has two phases:
the first phase consists of the so-called pheromone evaporation, which de-
creases the value of the pheromones uniformly. This function is necessary in
order to avoid the rapid convergence of the algorithm and explore different
regions of the solution space. Second, pheromones are increased in each
iteration as follows:

τi = (1− ρ) · τi + ρ ·
∑

{s∈Supd|ci∈s}

(ws · F (s)) , (1.8)

for i = 1, . . . , n. Hereby, Supd the set of solutions that are used to up-
date the pheromones, and F (s) is a function F : S 7−→ R

+ such that
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f(s) < f(s′) =⇒ F (s) > F (s′), ∀s, s′ ∈ S, and ws ∈ R
+ denotes the weight

of the solution s. In most cases, Supd is composed of the best solutions
constructed in the current iteration.

daemon action(): Here we apply those actions that require a global
vision.

1.2.7 Hybrid Metaheuristics

The concept of hybrid metaheuristics is only known from recent years, even
if the idea of combining different metaheuristic strategies and algorithms
dates back to the 1980s. Today, we can observe a generalized common
agreement on the advantage of combining components from different search
techniques and the tendency of designing hybrid techniques is widespread in
the fields of operations research and artificial intelligence. The consolidated
interest around hybrid metaheuristics is also demonstrated by publications
on classifications, taxonomies and overviews on the subject (Raidl, 2006;
Talbi, 2002).

In general, a hybrid metaheuristic is obtained by combining a meta-
heuristic with algorithmic components originating from other techniques for
optimization (possibly another metaheuristic). We may distinguish between
two categories: the first consists in designing a solver including components
from a metaheuristic into another one, while the second combines meta-
heuristics with other techniques typical of fields such as operations research
and artificial intelligence. A prominent representative of the first category
is the introduction of trajectory methods into population based techniques
or the use of a specific local search method into a more general trajectory
method such as ILS. The second category includes hybrids resulting from the
combination of metaheuristics with constraint programming (CP), integer
programming (IP), tree-based search methods, data mining techniques, etc.
Both categories contain numerous instances and an exhaustive description
is not possible.

1.2.7.1 Component Exchange Among Metaheuristics

One of the most popular ways of metaheuristic hybridization is the use
of trajectory methods inside population-based methods. Indeed, most of
the successful applications of EC and ACO make use of local search proce-
dures. The reason for that becomes apparent when analyzing the respective
strengths of trajectory methods and population-based methods.
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The power of population-based methods is certainly their capability of
recombining solutions to obtain new ones. In EC algorithms explicit re-
combinations are implemented by one or more recombination operators. In
ACO, for example, recombination is implicit, because new solutions are gen-
erated by using a probability distribution over the search space which is a
function of earlier populations. This enables the search process to perform
a guided sampling of the search space, usually resulting in a coarse grained
exploration. Therefore, these techniques can effectively find promising areas
of the search space.

The strength of trajectory methods is rather their way in which they
explore a promising region of the search space. As in those methods lo-
cal search is the driving component, a promising area in the search space
is searched in a more structured way than in population-based methods.
Therefore, the danger of being close to good solutions but “missing” them
is not as high as in population-based methods. More formally, local search
techniques efficiently drive the search toward the attractors, i.e., local optima
or confined areas of the space in which many local optima are condensed.

In summary, population-based methods are better in identifying promis-
ing areas in the search space from which trajectory methods can quickly
reach good local minima. Therefore, hybrid metaheuristics that can effec-
tively combine the strengths of both population-based methods and trajec-
tory methods are often very successful.

1.2.7.2 Integration of Metaheuristics With AI and OR Tech-
niques

One of the most prominent research directions is the integration of meta-
heuristics with more classical artificial intelligence (AI) and operations re-
search (OR) methods, such as constraint programming (CP) and branch &
bound or other tree search techniques. In the following we outline some of
the possible ways of integration.

Metaheuristics and tree search methods can be sequentially applied or
they can also be interleaved. For instance, a tree search method can be
applied to generate a partial solution which will then be completed by a
metaheuristic approach. Alternatively, metaheuristics can be applied to
improve a solution generated by a tree-search method.

CP techniques can be used to reduce the search space or the neigh-
borhood to be explored by a local search method. In CP, combinatorial
optimization problems are modelled by means of variables, domains and
constraints, which can be mathematical (as for example in linear program-
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ming) or symbolic. Constraints encapsulate well-defined parts of the prob-
lem into sub-problems, thus making it possible to design specialized solving
algorithms for sub-problems that occur frequently. Every constraint is as-
sociated to a filtering algorithm that deletes values from a variable domain
that do not contribute to feasible solutions. Metaheuristics (especially tra-
jectory methods) may use CP to efficiently explore the neighborhood of the
current solution, instead of simply enumerating the neighbors or randomly
sampling the neighborhood. A prominent example of such a kind of integra-
tion is Large Neighborhood Search (Shaw, 1998a), which is the technique
that we developed in this thesis in the context of integer programming.
These approaches are effective mainly when the neighborhood to explore
is very large, or when problems (such as many real-world problems) have
additional constraints (usually called side constraints). A detailed overview
of the possible ways of integration of CP and metaheuristics can be found
in (Focacci et al., 2002).

Another possible combination consists in introducing concepts or strate-
gies from either class of algorithms into the other. For example, the concepts
of tabu list and aspiration criteria—known from tabu search—can be used
to manage the list of open nodes (i.e., the ones whose child nodes are not
yet explored) in a tree search algorithm. An example of such an approach
can be found in (Della Croce and T’kindt, 2002). Tree-based search is also
successfully integrated into ACO in (Blum, 2005b), where beam search (Ow
and Morton, 1988) is used for solution construction.

Integer and linear programming can be also effectively combined with
metaheuristics. For instance, linear programming is often used either to
solve a sub-problem or to provide dual information to a metaheuristic in
order to select the most promising candidate solution or solution compo-
nent (Ibaraki and Nakamura, 2006; Blum, 2005b).

The kinds of integration we shortly mentioned belong to the class of
integrative combinations. The other possible way of integration, called ei-
ther collaborative combinations or also cooperative search consists in a loose
form of hybridization, in that search is performed by possibly different algo-
rithms that exchange information about states, models, entire sub-problems,
solutions or search space characteristics. Typically, cooperative search algo-
rithms consist of the parallel execution of search algorithms with a varying
level of communication. The algorithms can be different or they can be in-
stances of the same algorithm working on different models or running with
different parameter settings. The algorithms composing a cooperative search
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system can be all approximate, all complete, or a mix of approximate and
complete approaches. This area of research shares many issues with the
design of parallel algorithms and we forward the interested reader to the
specific literature on the subject (Alba, 2005).

1.2.8 Intensification and Diversification

As mentioned before, (hybrid) metaheuristics are intelligent strategies for
exploring a search space. Crucial for the success of such an algorithm is a
well-adjusted (dynamic) balance between diversification and intensification.
The term diversification generally refers to the exploration of the search
space, while the term intensification refers to the exploitation of the accu-
mulated search experience. The balance between diversification and inten-
sification is important because, first, we would like to quickly identify areas
of search space with high quality solutions, and second, we would like to
avoid spending too much time in areas of the search space that are already
well explored or that only consist of poor-quality solutions. For more to see
(Blum, 2004).

1.2.9 Objectives of the master thesis:

The main goal of this master thesis is to propose new algorithms for SCM,
with special emphasis on problems encountered in energy applications. Par-
ticularly, we will focus on two engineering problems that have attracted an
increasing interest in the recent past: the design of hydrogen supply chains
for vehicle use and the strategic planning of ethanol supply chains.

We will first formally state the problems of interest, and then present
detailed mathematical formulations based on MILP that will be expedited
through the use of tailored algorithms. It should be mentioned that our
methods could be easily extended to other SCM applications, since the
models addressed in this work show general common features with stan-
dard supply chain formulations.



Chapter 2

Hydrogen

This first example addresses the design of supply chains for Hydrogen pro-
duction (Sabio et al., 2010). In this case, uncertainties are not included in
the model for the sake of simplicity.

2.1 Problem Statement

The first SCM problem addressed in this work has as objective to deter-
mine the configuration of a three-echelon hydrogen network for vehicle use
(production-storage-market) with the goal of minimizing the expected to-
tal discounted cost and financial risk. The structure of the three-echelon SC
taken as reference in this work is depicted in Fig. 2.1. This network includes
a set of plants, where hydrogen can be produced (hexagons), and a set of
storage facilities (circles), where hydrogen is stored before being delivered to
the final customers (rectangles). We consider a given region (e.g., a country,
a continent, etc.) that can be divided into a set of potential locations that
correspond to different sub-regions of the original region of interest charac-
terized by a given hydrogen demand. The set of potential locations of the
problem along with the associated geographical distribution of the demand
are input data to the problem.

29
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Figure 2.1: The structure of the three-echelon SC (Hydrogen)

The network design problem can therefore be formally stated as follows.
Given are a fixed time horizon and number of time periods, the set of avail-
able production, storage and transportation technologies, the capacity limi-
tations of plants and storage facilities, the costs associated with the network
operation (production, transportation and inventory costs), the investment
cost, the probabilistic information that describe the uncertain parameters
(i.e., type of probability distribution, mean and variance) and interest rate.
The final goal is to determine (1) the SC design, including the number, type,
location and capacity of plants and storage facilities; (2) the number and
type of transportation units (e.g. tanker trucks, railway tube cars, etc.)
and transportation links to be established between the potential locations;
and (3) the associated planning decisions, including the production rates at
the plants, inventory levels at the storage facilities and flows of hydrogen
between plants and storage facilities; in order to minimize the total cost.

2.2 Mathematical Model

Our mathematical formulation, which is based on the superstructure de-
picted in Fig. 1, is similar to that introduced by Guillén-Gosálbez et al.
(2010). Particularly, the model considers the possibility of establishing dif-
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ferent production and storage facilities in a set of potential locations with
known demand and uncertain economic parameters. For the sake of com-
pleteness of our work, we next provide a detailed description of the MILP
model notation, constraints, and objective function equations.

2.2.1 Mass balance constraints

The mass balance must be satisfied in each potential location g and time
period t. Thus, for every hydrogen form i,liquid or gas, the initial inventory
kept in a location Sigst−1 plus the amount produced (PRigpt) and the input
flow rate (Qilg′gt) must equal the final inventory (Sigst)plus the amount
delivered to the customers (Digt)and the output flow rate (Qilgg′t):

∑

s∈SI(i)

Sigst−1 +
∑

p

PRigpt +
∑

g′ 6=g

∑

l

Qilg′glt

=
∑

s∈SI(i)

Sigst +Digt +
∑

g′ 6=g

∑

l

Qilgg′lt∀i, g, t
(2.1)

In this equation, SI(i) represents the set of technologies that can be used to
store product form i. Furthermore, the total amount of hydrogen consumed
(Digt) is restricted to be lower than the hydrogen demand (Dgt) and higher
than a minimum demand satisfaction level (dsat):

Dgtdsat ≤
∑

i

Digt ≤ Dgt∀g, t (2.2)

2.2.2 Capacity constraints

2.2.2.1 Plants

The capacity of each production technology p of product form i at location
g in period tis represented by a continuous variable denoted by CPL

gpt . Eq.
(2.3) constraints the total production rate (PRigp) to be lower than the
existing capacity and higher than a minimum desired percentage, τ , of the
capacity installed.

τCPL
gpt ≤

∑

i

PRigpt ≤ CPL
gpt ∀g, p, t (2.3)

The capacity of each technology p in any time period t is calculated from
the existing capacity at the end of the previous period plus the expansion
in capacity (CEPL

gpt ) executed in period t and location g:

CPL
gpt = CPL

gpt−1 + CEPL
gpt ∀g, p, t (2.4)
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Eq. (2.4) is applied to limit capacity expansions within lower and upper
bounds. These limits are calculated from the number of plants installedNPL

gpt

and the minimum and maximum capacities associated with each technology
p (PCPL

p and PCPL
p , respectively).

PCPL
p NPL

gpt ≤ CEPL
gpt ≤ PCPL

p NPL
gpt ∀g, p, t (2.5)

2.2.2.2 Storage facilities

The storage capacity of product form i during period t in location g asso-
ciated with storage technology s is represented by the continuous variable
CST
gst . The total inventory of product in form i kept at the end of period t

in the storage facilities of type s installed in location g (Sigst), is enforced
to be lower than the available capacity by means of Eq. (2.6).

∑

i∈IS(s)

Sigst ≤ CST
gst∀g, s, t (2.6)

Here, IS(s) denotes the set of product forms i that can be stored by tech-
nology s. Moreover, the amount of hydrogen delivered from the storage
facility to the customers is constrained by its capacity. In steady-state oper-
ation, the average inventory of a product form i in location g, is determined
from the amount delivered to customers (Digt) and the storage period θ.
This storage period is introduced to cover fluctuations in both supply and
demand as well as plant interruptions (Almansoori and Shah, 2006):

2(θDigt) ≤
∑

s∈SI(i)

CST
gst∀i, g, t (2.7)

In Eq. (2.7) SI(s) denotes the set of storage technologies s that can handle
product forms i. Finally, the capacity of the storage technology at any time
period is determined from the previous one and the expansion in capacity
executed in the same period:

CST
gst = CST

gst−1 + CEST
gst∀g, s, t (2.8)

In a similar manner as occurred with the manufacturing plants, the value of
CEST

gst is bounded within lower and upper limits.

SCST
s NST

gst ≤ CEST
gst ≤ SCST

s NST
gst ∀g, s, t (2.9)
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2.2.2.3 Transportation constraints

In this block of equations, we introduce a binary variable Xgg′lt, which takes
a value of one if a transportation link of type l (i.e., tanker trucks, railway
tube cars, etc.) is established between locations g and g′ in time period t,
and zero otherwise. Eq. (2.10) enforces the definition of this variable.

QClgg′Xgg′lt ≤
∑

i

Qilgg′t ≤ QClgg′Xgg′lt

∀g, g′(g 6= g′), l ∈ LI(i) ∪NPL, t

(2.10)

Note that a zero value of the aforementioned binary variable prevents the
flow of materials that can be transported via transportation technology l,
from taking place, whereas a value of one allows the transport flows within
some lower QClgg′and upper limits QClgg′ . In this equation, LI(i) denotes
the set of technologies l that can transport i, whereas NPL is the set of
transportation technologies that involve the use of either railway, trucks or
ships.

Eq. (2.11) is similar to Eq. (2.10), but applies only to pipelines. Specifi-
cally, we assume that if a pipeline is constructed, then the associated trans-
portation link will remain opened during the entire time horizon:

∑

t′≤t+1

QClgg′Xgg′lt′ ≤
∑

i

Qilgg′t ≤
∑

t′≤t+1

QClgg′Xgg′lt

∀g, g′(g 6= g′), l = pipeline, t

(2.11)

Furthermore, only one transportation link involving pipelines can be con-
structed at most during the entire time horizon:

∑

t′≤t+1

Xgg′lt′ ≤ 1 ∀g, g′(g 6= g′), l = pipeline, t (2.12)

We assume that a location can either import or export hydrogen, but not
both at the same time. This is because if a location can only satisfy its
needs by importing from other locations, it would not make sense to export
to other locations:

Xgg′lt +Xg′glt ≤ 1 ∀g, g′(g 6= g′), l ∈ LI(i, t (2.13)

Some specific constraints are appended to the model formulation to han-
dle the specific case of maritime transportation devices. Hence, some binary
variables Xlgg′t denoting the existence of transportation links must be forced
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to take a zero value in some particular cases to prevent ships from trans-
porting materials between grids without harbors (Eq. 2.14) and also from
avoiding the use of road transportation devices, excluding pipelines, between
those grids that can only be connected via a maritime link (Eq. 2.15)

Xlgg′t = 0 ∀l, g, g′ ∈ LG′

LG′ = {l, g, g′ : (l = ship) ∧ ((g, g′) /∈ SGG(gg′))}
(2.14)

Xlgg′t = 0 ∀l, g, g′ ∈ LG

LG = {l, g, g′ : (l 6= ship) ∧ ((g, g′) ∈ SGG′(gg′))}
(2.15)

In these constraints, SGG(g, g′) is the subset of allowable maritime links,
whereas SGG(g, g′) is the subset of maritime links (i.e., SGG′(g, g′) ⊂
SGG(g, g′)) that cannot be connected through road transportation units.

Finally, Eq. (2.16) is introduced to avoid transportation tasks within
the same locations:

Xlgg′t = 0 ∀l, g = g′ (2.16)

2.2.3 Objective function equations

The model considers that the coefficients of the objective function (e.g. fa-
cility investment and variable costs and transportation capital costs) are
uncertain and that their variability can be described through a set of sce-
narios with given probability of occurrence. As a result, the cost associated
with the establishment and operation of the SC is not a single nominal
value, instead it is a stochastic variable that follows a discrete probability
function. In this context, the optimization method must identify the set
of solutions (i.e., strategic SC decisions) that simultaneously minimize the
expected value of the cost distribution as well as its risk level. The main
advantage of the scenario-based approach is that it allows to deal with any
type of probability function. Furthermore, this approach avoids the non-
linearities associated with the reformulation of the probabilistic constraints
used in robust optimization.

2.2.3.1 Expected cost

The expected total cost is given by the mean value of the cost discrete
distribution described by the scenario realizations:

E[TDC] =
∑

e

probeTDCe (2.17)
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The total discounted cost attained in each particular scenario realization(TDCe)
is calculated as the summation of the discounted costs associated with each
time period:

TDCe =
∑

t

TCte

(1 + ir)t−1 ∀e (2.18)

In the aforementioned expressions, e is a subscript that represents a par-
ticular scenario e and probe is the probability of occurrence associated to
each scenario. In Eq. (2.18), ir represents the interest rate and TCte is the
total amount of money spent in period t and scenario e, which includes the
capital (FCCt, TCCt) as well as operating costs (FOCte, TOCte) given by
the production, storage and transportation facilities of the network:

TCte = FCCt + TCCt + FOCte + TOCte ∀t, e (2.19)

In general, it will be possible to know accurately the capital cost at the
design stage, since it is usually agreed before the establishment of a new
facility. On the other hand, the value of the operating cost will fluctuate
according to the market trends. Hence, in Eq. (2.18) it seems convenient
to assume that FCC and TCC are non scenario dependent, whereas FOC
and TOC will depend on the specific scenario realization.

The facility operating cost term is obtained with multiplying the unit
production and storage costs (upcigpte and uscigste, respectively), which are
regarded as uncertain parameters, with the corresponding production rates
and average inventory levels:

FOCte =
∑

i

∑

g

∑

p

upcigptePRigpt

+
∑

i

∑

g

∑

s

∈ SI(i)uscigste (θDigt) ∀t, e
(2.20)

2.2.3.2 Facility capital cost

The facility capital cost in period t (FCCt) is determined from the capacity
expansions made in the manufacturing plants and storage facilities during
that period:

FCCt =
∑

g

∑

p

(
αPL
gptN

PL
gpt + βPL

gptCEPL
gpt

)

+
∑

g

∑

s

(
αST
gstN

ST
gst + βST

gstCEST
gst

)
∀t

(2.21)
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The parameters,αPL
gpt , βPL

gpt , αST
gst and βST

gst are the fixed and variable in-
vestment terms corresponding to plants and storage facilities, respectively.
These parameters reflect the concept of economies of scale.

2.2.3.3 Transportation capital cost

The transportation capital cost, which includes the cost of the trucks and
railcars required to satisfy the demand, is calculated via Eq. (2.22):

TCCt =
∑

l 6=ship,pipeline

NTR
lt · cclt + PCCt (2.22)

Here, PCCt is the pipeline capital costs, cclt represents the capital cost
associated with transport mode l in period t, and NTR

lt is an integer variable
that denotes the total number of transportation units of type l purchased
in period t that can transport product i (i.e., l ∈ LI(i)). Note that ships
and pipelines are excluded from the first summation term of the equation.
This is because the model assumes that ships are hired for carrying out the
specific transportation tasks (i.e., outsourcing), whereas the capital cost of
pipelines is calculated via the following equation:

PCC(t) =
∑

g

∑

g′ 6=g

∑

l∈LI(i)

upcctXlgg′tdistancegg′ ∀t (2.23)

where upcct is the unit capital cost of the pipeline per unit of length built,
and distancegg′ denotes the distance between grids g and g′.

The average number of trucks and/or railcars required to satisfy a certain
flow between different locations is computed from the flow rate of products
between the locations (Qigg′lt), the transportation mode availability (avl),
the capacity of a transport container (tcapl), the average distance traveled
between the locations (distancegg′), the average speed (speedl) and the load-
ing/unloading time (lutimel), as stated in Eq. (2.24):

∑

t′≤t+1

NTR
lt′ ≥

∑

i∈IL(l)

∑

g

∑

g′ 6=g

∑

t

Qigg′lt

avltcapl

(
2distancegg′

speedl
+ lutimel

)

∀l 6= ship, pipeline

(2.24)

The total number of transportation units available in any period t includes
the ones purchased in the same period t as well as those acquired in previ-
ous periods t′. Therefore, the left hand side of the inequality in Eq. 2.24
represents the summation of all the transportation units purchased in all
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the time periods t′ up to the actual period t (i.e., t′ = t). In this equa-
tion, IL(l) denotes the set of product forms i that can be transported by
transport mode l. For the sake of simplicity, this work assumes that each
transportation facility can only operate between two predefined locations.
Thus, in constraint 23, the distance between locations g and g′ (distancegg′)
is multiplied by two to account for the return journey of the trucks/railcars.

2.2.3.4 Transportation operating cost

The total operating cost associated with the transportation tasks carried
out in scenario e in period t (TOCte) is determined from Eq. 2.25:

TOCte = ROCte + POCte + SOCte ∀t, e (2.25)

where ROCte, POCte and SOCte are the operating costs associated with
road transportation technologies and railway, pipelines and ships, respec-
tively. The first term includes the fuel (FCte), labor (LCte), maintenance
(MCte) and general costs (GCte):

ROCte = FCte + LCte +MCte +GCte ∀t, e (2.26)

The fuel cost is a function of the fuel price (fuelplte) and fuel usage:

FCte =
∑

i

∑

g

∑

g′ 6=g

∑

l∈LI(i)

fuelplte
2distancegg′Qilgg′t

fuelcltcapl
∀t, e (2.27)

Note that the main source of uncertainty here is the fuel price, since it
cannot be perfectly known in advance at the design stage. In Eq. (2.27),
the fractional term represents the fuel usage, and it is determined from the
total distance traveled in a trip (2 distancegg′), the fuel consumption of
transport mode l (fuelcl) and the number of trips made per period of time

(
Qilgg′t

tcapl
). The labor transportation cost is described as a function of the

driver wage in scenario e (wagele) and total delivery time (term inside the
brackets):

LCte =
∑

i

∑

g

∑

g′ 6=g

∑

l∈LI(i)

wagelte

×

[
Qilgg′t

tcapl

(
2distancegg′

speedl
+ lutimel

)]
∀t, e

(2.28)

The maintenance cost, which accounts for the general maintenance of the
transportation systems, is a function of the cost per unit of distance traveled
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in scenario e (cudle) and total distance driven:

MCte =
∑

i

∑

g

∑

g′ 6=g

∑

l∈LI(i)

cudle
2distancegg′Qilgg′t

tcapl
∀t, e (2.29)

Finally, the general cost includes the transportation insurance, license and
registration, and outstanding finances. It can be determined from the unit
general expenses in scenario e (gelte) and number of transportation units as
follows:

GCte =
∑

l

∑

t′≤t

gelteN
TR
lt′ ∀t, e (2.30)

Eq. (2.31) determines the pipeline operating costs from the unit operating
cost of the pipelines in scenario e (upocte) and the freight to be delivered.

POC(t, e) =
∑

i

∑

g

∑

g′ 6=g

∑

l∈LI(i)

upocteQilgg′t ∀t, e (2.31)

Finally, Eq. (2.32) calculates the ship operating costs from the unit op-
erating costs for maritime transportation in scenario e (usocte), the time
required to deliver the hydrogen and the load transported:

SOCt,e =
∑

i

∑

g

∑

g′ 6=g

∑

l∈LI(i)

usocte

(
distancegg′

speedl

)
Qilgg′t ∀t, e (2.32)

2.2.3.5 Financial Risk

The traditional approach to address optimization under uncertainty relies
on formulating a single-objective optimization problem where the expected
performance of the system is the objective to be optimized. This strategy
does not allow controlling the variability of the objective function in the
uncertain space. In other words, optimizing the expected economic perfor-
mance of a SC does no imply that the process will yield better results at a
certain level considering the whole cost distribution. The underlying idea
in risk management is to incorporate the trade-off between financial risk
and expected cost within the decision-making procedure. This gives rise to
a multi-objective optimization problem in which the expected performance
and a specific risk measure are the objectives considered. The solution of
such a problem is given by a set of Pareto solutions that represent the op-
timal trade-off between expected performance and risk level.
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In this work, the probability of meeting unfavorable scenarios is con-
trolled by adding the worst case cost as an additional objective to be min-
imized. This metric is easy to implement and leads to a good numerical
performance in stochastic models, as shown by Bonfill et al. (2004). The
worst case can be easily determined from the maximum cost attained over
all the scenarios:

WC ≥ TDCe ∀e (2.33)

The inclusion of the worst case as an alternative objective to be mini-
mized along with the expected total cost leads to the following bi-criterion
MILP formulation:

(MOP) min
x,y,z

(E[TDC](x, y, z),WC(x, y, z))

s.t. equations 2.1 to 2.33
x ∈ ℜ, y ∈ {0, 1}, z ∈ N

where x, y and z denote the continuous, binary and integer variables of the
problem, respectively. The aforementioned multi-objective problem can be
solved by standard algorithms for multi-objective optimization such as the ǫ-
constraint or the weighted-sum method (Ehrgott, 2005). The weighted-sum
method is only rigorous for the case of Pareto sets, whereas the ǫ-constraint
method is also rigorous for the non-convex case, which turns out to be
our case. This method entails solving a set of instances of problem (P)
corresponding to different values of the auxiliary parameter ǫ:

(P) min
x,y,z

E[TDC](x, y, z)

s.t. equations 2.1 to 2.33
WC(x, y, z) ≤ ǫ
ǫ ≤ ǫ ≤ ǫ
x ∈ ℜ, y ∈ {0, 1}, z ∈ N

where the lower and upper bounds within which the epsilon parameter must
fall (i.e.ǫ ∈ [ǫ, ǫ]) are obtained from the optimization of each separate scalar
objective.
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Chapter 3

Ethanol

This second example addresses the design of supply chains for ethanol pro-
duction (Kostina et al., 2010). In this case, uncertainties are not included
in the model for the sake simplicity.

3.1 Problem Statement

To formally state the SC design problem, we consider a generic three-echelon
SC (production-storage-market) like the one depicted in Figure 3.1. This
network includes a set of production and storage facilities, and final markets.
We assume that we are given a specific region of interest that is divided into
a set of sub-regions in which the facilities of the SC can be established in
order to produce and deliver final products to the customers. In general,
these sub-regions, which are regarded as potential locations for the SC en-
tities, will be defined according to the administrative division of a country.
The SC design problem can then be formally stated as follows:

41
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Figure 3.1: The structure of the three-echelon SC (Ethanol)

Given are a fixed time horizon, product prices, cost parameters for pro-
duction, storage and transportation of materials, demand forecast, the tax
rate, capacity data for plants, storages and transportation links, fixed capital
investment data, interest rate, storage holding period and landfill tax.

The goal is to determine the configuration of a three-echelon bioethanol
network and the associated planning decisions with the goal of maximizing
the economic performance calculated over the entire useful life of the SC.
Decisions to be made include the number, location and capacity of produc-
tion plants and warehouses to be set up in each sub-region, their capacity
expansion policy for a given forecast of prices and demand over the planning
horizon, the transportation links and transportation modes of the network,
and the production rates and flows of feed stocks, wastes and final products.



3.2. MATHEMATICAL MODEL 43

3.2 Mathematical Model

In this section, we present a mathematical model that considers the spe-
cific features of the sugar cane industry, while still being general enough
to be easily adapted to any other industrial SC. Particularly, our model
is based on the MILP formulation introduced by Almansoori and Shah
(2006), and Guillén-Gosálbez et al. (2010), which addresses the design of
hydrogen SCs. Furthermore, the model follows the SC formulation devel-
oped by Guillén-Gosálbez and Grossmann for the case of petrochemical SCs
(Guillén-Gosálbez and Grossmann, 2009, 2010), in the way in which the
mass balances are handled.

3.2.1 Production plants

Sugar cane is the leading feedstock for bioethanol production in Argentina
as well as in most of the tropical regions all over the world (e.g., Brazil, In-
dia, China, etc.). The juice is extracted from sugar cane mainly by milling.
From this step sugar cane juice can be treated in different ways.
Sugar factories can use this juice to produce white sugar and raw sugar.
There are two technologies realizing “sugar cane-to-sugar” pathway: one of
them generates molasses (T1) as a byproduct, whereas the other one pro-
vides a secondary honey (T2) in addition to sugars.
These two kinds of byproducts are distinguished by their sucrose content.
Molasses is a viscous dark honey whose low sucrose content cannot be sep-
arated by crystallization, while secondary honey is a honey with a larger
amount of sucrose that leaves the sugar mill before being exhausted by
crystallization. Anhydrous ethanol can be produced by fermentation and
following dehydration of different process streams: molasses (T3), honey
(T4) and sugar cane juice (T5). According to this, the model considers five
different technologies, two for sugar production and three types of distil-
leries.
The details of each technology, including the mass balance coefficients, are
shown in Figure 3.2. We assume that bagasse is completely utilized for in-
ternal purposes, so the model includes a set of nine materials: sugar cane,
ethanol, molasses, honey, white sugar, raw sugar, vinasse type 1, vinasse
type 2 and vinasse type 3. Each plant type incurs fixed capital and oper-
ating costs and may be expanded in capacity over time in order to follow a
specific demand pattern. The establishment of a plant type is determined
from the demand of the sub-region, the capacity that the sub-region has to
fulfill its internal needs and the cost data.
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3.2.2 Storage facilities

The model includes two different types of storage facilities: warehouses for
liquid products and warehouses for solid materials. Each storage facility
type has fixed capital and unit storage costs, and lower and upper limits for
capacity expansions. The storage capacity might be expanded in order to
follow changes in the demand as well as in the supply.

3.2.3 Transportation modes

Transportation links allow to deliver final products to customers, supply
the plants with raw materials and dispose the process wastes. The model
assumes that the transportation tasks can be performed by three types of
trucks: heavy trucks with open-box bed for sugar cane, lorries for sugar
and tank trucks for liquid products. Each type of transportation mode has
fixed capital and unit transportation costs and lower and upper limits for
its capacity. The number and capacity of the transportation links can also
vary over time in order to follow a given demand pattern.

3.2.4 General constraints

We next describe the main mathematical constraints of the model, which
have been derived bearing in mind the particular features of the sugar cane
industry in Argentina.

3.2.4.1 Materials balance

The starting point for all design is the material balance. Particularly, the
law of conservation of mass must be satisfied in every sub-region. The overall
mass balance for each sub-region is represented by Eq.(3.1). In accordance
with it, for every material form i, the initial inventory kept in sub-region
g from previous period (STisgt−1) plus the amount produced (PTigt), the
amount of raw materials purchased (PUigt) and the input flow rate from
other facilities in the SC (Qilg′gt) must equal the final inventory (STisgt)
plus the amount delivered to customers (DTSigt) plus the output flow to
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Figure 3.2: The technology with mass balance coefficients



46 CHAPTER 3. ETHANOL

other sub-regions (Qilgg′t) and the amount of waste (Wigt).

∑

s∈SI(i)

STisgt−1 + PTigt + PUigt +
∑

l∈LI(i)

∑

g′ 6=g

Qilg′gt =
∑

s∈SI(i)

STisgt

+DTSigt +
∑

l∈LI(i)

∑

g′ 6=g

Qilgg′t +Wigt ∀i, g, t
(3.1)

In this equation, SI(i) represents the set of technologies that can be used to
store product i, whereas LI(i) are the set of transportation modes that can
transport product i. Furthermore, the amount of products delivered to the
final markets should be less than or equal to the actual demand (SDigt):

DTSigt ≤ SDigt ∀i, g, t (3.2)

3.2.4.2 Production

The total production rate of material i in sub-region g is determined from
the particular production rates (PEipgt) of each technology p installed in
the sub-region:

PTigt =
∑

p

PEipgt ∀i, g, t (3.3)

As can be observed in Figure 3.2,the material balance coefficients of the
main products (white sugar and ethanol) can be normalized to 1. The pro-
duction rates of byproducts and raw materials for each technology can then
be calculated from the material balance coefficients, ρpi, and the production
rates of the main products:

PEipgt = ρpiPEi′pgt ∀i, p, g, t ∀i′ ∈ IM(p) (3.4)

In this equation, IM(p) represents the set of main products associated with
each technology. The production rate of each technology p in sub-region g
is limited by the minimum desired percentage of the available technology
that must be utilized, τ , multiplied by the existing capacity (represented by
the continuous variable PCappgt) and the maximum capacity:

τPCappgt ≤ PEipgt ≤ PCappgt ∀i, p, g, t (3.5)

The capacity of technology p in any time period t is calculated adding
the existing capacity at the end of the previous period to the expansion in
capacity, PCapEpgt, carried out in period t :

PCappgt = PCappgt−1 + PCapEpgt ∀p, g, t (3.6)
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Eq.(3.7) bounds the capacity expansion PCapEpgt between upper and lower
limits, which are calculated from the number of plants installed in the sub-
region (NPgpt) and the minimum and maximum capacities associated with
each technology p (PCapp and PCapp, respectively).

PCappNPpgt ≤ PCapEpgt ≤ PCappNPpgt ∀p, g, t (3.7)

The purchases of sugar cane are limited by the capacity of the existing sugar
cane plantation in sub-region g and time interval t :

PUigt ≤ CapCropgt ∀i = Sugar cane, g, t (3.8)

3.2.4.3 Storage

As occurs with plants, the storage capacity is limited by lower and upper
bounds, which are given by the number of storage facilities installed in sub-
region g (NSsgt) and the minimum and maximum storage capacities (SCaps
and SCaps, respectively) associated with each storage technology:

SCapsNSsgt ≤ SCapEsgt ≤ SCapsNSsgt ∀s, g, t (3.9)

The capacity of a storage technology s in any time period t is determined
from the existing capacity at the end of the previous period and the expan-
sion in capacity in the current period (SCapEsgt):

SCapsgt = SCapsgt−1 + SCapEsgt ∀s, g, t (3.10)

The storage capacity should be enough to store the total inventory (STisgt)
of product i during time interval t :

∑

i∈IS(s)

STisgt ≤ SCapsgt ∀s, g, t (3.11)

In this equation, IS(s) denote the set of products that can be stored by
technology s. During steady-state operation, the average inventory (AILigt)
is a function of the amount delivered to customers and the storage period
β:

AILigt = βDTSigt ∀i, g, t (3.12)

The storage capacity (SCapsgt) that should be established in a sub-region
in order to cope with fluctuations in both supply and demand, is twice the
summation of the average inventory levels of products i (Simchi-Levi et al.,
2003).

2AILigt ≤
∑

s∈SI(i)

SCapsgt ∀i, g, t (3.13)
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3.2.4.4 Transportation

The existence of a transportation link between two sub-regions g and g’ is
represented by a binary variableXlgg′t which equals 1 if a transportation link
is established between the two sub-regions and 0 otherwise. The definition
of this variable is enforced via Eq.(3.14), which constraints the materials
flow between minimum and maximum allowable capacity limits (Ql and Ql,
respectively):

QlXlgg′t ≤
∑

i∈IL(l)

Qilgg′t ≤ QlXlgg′t ∀l, t, g, g′(g′ 6= g) (3.14)

In this equation, IL(l) represents the set of materials that can be transported
via transportation mode l. Furthermore, a sub-region can either import or
export material i, but not both at the same time:

Xlgg′t +Xlg′gt = 1 ∀l, t, g, g′(g′ 6= g) (3.15)

3.2.5 Objective function

Usage of NPV as an objective function is a widely-spread approach in in-
vestment planning. In most cases it results in a linear model, which can
be effectively solved by standard branch-and-bound methods. However, the
NVP measure does not account appropriately for the rate at which the in-
vestment is recovered because it tends to add investment that has marginal
or meaningless returns. Bagajewicz (2008) pointed out that additional pro-
cedures and measures are needed in planning problems. Particularly, the
return of investment (ROI) is a more appropriate key performance indica-
tor when there are other investment alternatives competing for the same
capital. In the context of a SC design problem like the one addressed in this
article, this metric can be determined as the ratio between the average cash
flows (CFt) and the fixed capital investment FCI :

ROI =
(
∑

tCFt)/T

FCI
(3.16)

As observed, the introduction of the ROI as the economic indicator to be
maximized gives rise to a MINLP formulation with a nonconvex objective
function. Given that the linear NPV-based approach already has computa-
tional issues that this paper attempts to ameliorate, following Bagajewicz
(2008) we resort to approximate the solution of this problem by applying a
heuristic procedure that relies on solving a series of MILPs that maximize
the NPV for
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different upper bounds on FCI. As discussed in Bagajewicz (2008), from
these results one can identify solutions close to the maximum ROI one.

The NPV can be determined from the discounted cash flows generated
in each of the time intervals t in which the total time horizon is divided:

NPV =
∑

t

CFt

(1 + ir)t−1
(3.17)

In this equation, ir represents the interest rate. The cash flow that appears
in Eq.(3.17) in each time period is computed from the net earnings NEt

(i.e., profit after taxes), and the fraction of the total depreciable capital
(FTDCt) that corresponds to that period as follows:

CFt = NEt − FTDCt t = 1, ..., T − 1 (3.18)

In the calculation of the cash flow of the last time period (t = T ), it is
necessary to take into account the fact that part of the total fixed capital
investment may be recovered at the end of the time horizon. This amount,
which represents the salvage value of the network (sv), may vary from one
type of industry to another.

CFt = NEt − FTDCt + svFCI t = T (3.19)

The net earnings are given by the difference between the incomes (Revt)
and the facility operating (FOCt), and transportation cost (TOCt), as it is
stated in Eq.(3.20):

NEt = (1− ϕ)(Revt − FOCt − TOCt) + ϕDEPt ∀t (3.20)

In this equation, ϕ denotes the tax rate. The revenues are determined from
the sales of final products and the corresponding prices (PRigt):

Revt =
∑

i∈SEP

∑

g

DTSigtPRigt ∀t (3.21)

In this equation SEP represents the set of materials i that can be sold.
The facility operating cost is obtained by multiplying the unit production
and storage costs (UPCipgt and USCisgt, respectively) by the correspond-
ing production rates and average inventory levels, respectively. This term
includes also the disposal cost (DCt):

FOCt =
∑

i

∑

g

∑

p∈IM(p)

UPCipgtPEipgt+

∑

i

∑

g

∑

s∈IS(s)

USCisgtAILigt+

DCt ∀t

(3.22)
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The disposal cost is a function of the amount of waste and landfill tax (LTig):

DCt =
∑

i

∑

g

WigtLTig ∀t (3.23)

The transportation cost includes the fuel (FCt), labour (LCt), maintenance
(MCt) and general (GCt) costs:

TOCt = FCt + LCt +MCt +GCt ∀t (3.24)

The fuel cost is a function of the fuel price (FPlt) and fuel usage:

FCt =
∑

g

∑

g′ 6=g

∑

l

∑

i∈IL(l)

[
2ELgg′ Qilgg′t

FEl TCapl

]
FPlt ∀t (3.25)

In Eq.(3.25), the fractional term represents the fuel usage, and is determined
from the total distance traveled in a trip (2ELgg′ ), the fuel consumption of
transport mode l (FEl) and the number of trips made per period of time

(
Qilgg′t

TCapl
). Note that this equation assumes that the transportation units

operate only between two predefined sub-regions. Furthermore, as shown
in Eq.(3.26), the labor transportation cost is a function of the driver wage
(DWlt) and total delivery time (term inside the brackets):

LCt =
∑

g

∑

g′ 6=g

∑

l

DWlt

∑

i∈IL(l)

[
Qilgg′t

TCapl

(
2ELgg′

SPl
+ LUTl

)]
∀t (3.26)

The maintenance cost accounts for the general maintenance of the trans-
portation systems and is a function of the cost per unit of distance traveled
(MEl) and total distance driven:

MCt =
∑

g

∑

g′ 6=g

∑

l

∑

i∈IL(l)

MEl
2ELgg′Qilgg′t

TCapl
∀t (3.27)

Finally, the general cost includes the transportation insurance, license and
registration, and outstanding finances. It can be determined from the unit
general expenses (GElt) and number of transportation units (NTlt), as fol-
lows:

GCt =
∑

l

∑

t′≤t

GEltNTlt′ ∀t (3.28)

The depreciation term is calculated with the straight-line method:

DEPt =
(1− sv)FCI

T
∀t (3.29)
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where FCI denotes the total fixed cost investment, which is determined
from the capacity expansions made in plants and warehouses as well as the
purchases of transportation units during the entire time horizon as follows:

FCI =
∑

p

∑

g

∑

t

(αPL
pgtNPpgt + βPL

pgtPCapEpgt)+

∑

s

∑

g

∑

t

(αS
sgtNSsgt + βS

sgtSCapEsgt)+

∑

l

∑

t

(NTltTMClt)

(3.30)

Here, the parameters αPL
pgt , βPL

pgt and αS
sgt , β

S
sgt are the fixed and variable

investment terms corresponding to plants and warehouses, respectively. On
the other hand, TMClt is the investment cost associated with transportation
mode l. The average number of trucks required to satisfy a certain flow
between different sub-regions is computed from the flow rate of products
between the sub-regions, the transportation mode availability (avll), the
capacity of a transport container, the average distance traveled between the
sub-regions, the average speed, and the loading/unloading time, as stated
in Eq.(3.31):

∑

t≤T

NTlt ≥
∑

i∈IL(l)

∑

g

∑

g′ 6=g

∑

t

Qilgg′t

avllTCapl

(
2ELgg′

SPl
+ LUTl

)
∀l (3.31)

The total amount of capital investment can be constrained to be lower than
an upper limit, as stated in Eq.(3.32):

FCI ≤ FCI (3.32)

Finally, the model assumes that the depreciation is linear over the time
horizon. Thus, the depreciation term (FTDCt) is calculated as follows:

FTDCt =
FCI

T
∀t (3.33)

Finally, the overall MILP formulation is stated in compact form as follows:

max
x,X,N

NPV (x,X,N) (P)

s.t. constraints 1-32
x ⊂ R, X ⊂ {0, 1}, N ⊂ Z

+
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Here, x denotes the continuous variables of the problem (capacity expan-
sions, production rates, inventory levels and materials flows), X represents
the binary variables (i.e., establishment of transportation links), and N is
the set of integer variables denoting the number of plants, storage facilities
and transportation units of each type selected.



Chapter 4

Solution Method: LNS

The models presented before lead to large scale MILPs that are hard to
be solved in short CPU times, specially as the number of grids and time
periods increase. Hence, tailored solution methods are required to expedite
their solutions, so decision-makers can analyze a wide range of potential
alternatives in short CPU times.

Particularly, this chapter we will go into more detail for what concerns
the description of a customized Large Neighborhood Search algorithm, that
exploits the particular features of the SCM models described before. First,
we make a description of the algorithm in general. Second, we describe the
implemented version of LNS.

4.1 Large Neighborhood Search

A crucial decision when dealing with neighborhood search is the choice of a
neighborhood function. In general, when the employed neighborhood func-
tion generates rather small neighborhoods, the corresponding local search
method is fast. On the downside, however, the average quality of the local
minima is rather low. If, in contrast, the generated neighborhoods are rather
large, local search is slower. However, the average quality of the local min-
ima is rather high. Therefore, the general aim is to develop neighborhoods
for which local search is not too slow, and the average quality of the minima
is reasonably high. In other words, neighborhoods define a balance between
the speed of local search and the quality of the obtained solution.

A special type of neighborhood is employed in so-called very large-scale
neighborhood search (VLSN) algorithms (Ahuja et al., 2002). In particular,
these algorithms make use of exponential-size neighborhoods. Let I be an
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instance of a problem, and x ∈ X(I) a solution to this problem, where
X(I) is the set of all feasible solutions of instance I. Given a neighborhood
function N(·), then the size of the neighborhood concerning instances of size
n can be defined as follows:

f(n) = max{|N(x)| | x ∈ X(I) and I ∈ F (n)} ,

where F (n) is the set of all instances of size n of the problem under study.
A neighborhood search algorithm is considered as belonging to the class of
VSLN algorithms if f(n) is of the order ©(2n). According to (Ahuja et al.,
2002) VLSN algorithms are divided into three main categories: (1) depth
variable methods, (2) network flow based improvement methods, and (3)
methods based on restriction to subclasses solvable in polynomial time.

For many combinatorial optimization problems the field of mathematical
programming and (mixed) integer linear programming (MIP) in particular
provides powerful tools (see, for example, (Nemhauser and Wolsey, 1988b;
Wolsey, 1998)). MIP-solvers are, in general, based on some sort of tree
search, but further include the solution of linear programming relaxations
of a given MIP model for the problem at hand (besides primal heuristics) in
order to obtain lower and upper bounds. Frequently, such MIP approaches
are highly effective for small to medium sized instances of hard problems;
however, they often do not scale well enough to large instances relevant
in practice. MIP-solvers might therefore be very useful for searching large
neighborhoods within a metaheuristic framework. Especially the availability
of effective general purpose MIP-solvers and their relatively easy applicabil-
ity makes this approach particularly interesting in practice, providing the
problem at hand can be expressed by a MIP model.

Such an approach, labelled as the LNS metaheuristic, was proposed
in (Shaw, 1998b). Hereby, the definition of the large neighborhoods may
be done in different ways. In the simplest case, an appropriate portion of
the decision variables is fixed to the values they have in the current solution,
and only the remaining (“free”) variables are optimized by the MIP-solver.
If the MIP-solver finds an improved solution, it becomes the new current
solution, a new large neighborhood is defined around it, and the process
is iterated. Obviously, the selection of the variables that remain fixed and
the ones that are subject to optimization, respectively, plays a crucial role:
The number of free variables directly implies the size of the neighborhood.
Too restricted neighborhoods—that is, subproblems—are unlikely to yield
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Algorithm 14 The framework of the LNS metaheuristic

Require: a feasible solution x
Ensure: xb

xb = x
while stopping conditions do not apply do
x′ = repair(destroy(x))
if accept(x′, x) then

x = x′

end if
if cost(x′) < cost(xb) then

xb = x′

end if
end while

improved solutions, while too large neighborhoods might result in excessive
running times for solving the subproblem by the MIP-solver. Therefore, a
strategy for dynamically adapting the number of free variables is sometimes
used. Furthermore, the variables to be optimized might be selected either
purely at random or in a more sophisticated, guided way by considering the
variables’ potential impact on the objective function and their relatedness.

The pseudo-code of LNS is presented in algorithm 4.1. It works roughly
as follows: First, an initial solution x is generated. This may be done ran-
domly, or by means of an appropriate heuristic. Then the initial solution is
stored in variable xb, which—at all times—contains the best solution found
so far by the algorithm. Then, at each iteration of the algorithm, method
destroy(·) is applied to the current solution x. This method frees some of
the decision variables of x. Afterwards, method repair(·) is applied to the
resulting partial solution in order to find the best setting for the decision
variables that have no value. This process results in a (possibly) new solu-
tion x′. Finally, method accept(x′, x) chooses among x and x′ the current
solution for the next iteration. In case a new best solution has been found,
it is stored in xb.

In the following we explain the characteristics of the involved functions
in more detail:

� Function accept(x′, x): In the original algorithm as proposed in (Shaw,
1998b) the only possibility that was considered concerns the accep-
tance of the best solution among x and x′ as the new current solution.
However, in later versions of the LNS metaheuristic (see, for exam-
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ple, (Ropke and Pisinger, 2006)) acceptance criteria similar to the one
used in simulated annealing were applied. That is, if the newly pro-
duced solution x′ satisfies that cost(x′) > cost(x) then it still may be
accepted with probability:

e−(cost(x′)−cost(x))/T

Hereby, T > 0 is the current temperature, which is initialized to some
positive value at the start of the algorithm and then gradually de-
creased.

� Function repair(·): There are several possible ways of implementing
this method: Apart from using a MIP-solver, as mentioned above,
a partial solution might also be completed by means of a heuristic.
This option is, in general, the fastest one. On the other side, exact
methods such as dynamic programming or constraint programming
techniques might be employed for completing the partial solution in
the best possible way. However, notice that in this work we have used
a general purpose MIP-solver.

� Function destroy(·): Together with the repair method, this function is
the most important aspect of the LNS metaheuristic. As mentioned
above, a very important choice when implementing this method is
the degree of destruction: if only a very small part of the current
solution is destroyed then LNS may have trouble exploring the whole
search space. If a very large part of solution is destroyed then the
LNS metaheuristic almost degrades into a repeated exact optimization
algorithm. Shaw, in (Shaw, 1998b), proposed to gradually increase the
degree of destruction, while in (Ropke and Pisinger, 2006) the authors
chose the degree of destruction randomly. In order for the entire space
to be reached, the destruction method should not only focus on a
particular component of the solution.

4.2 Large Neighborhood Search Implemented

In this section we will show all the details of the LNS implementation for
case studied and data structures necessary:

� Solution: As explained in chapter 1 a mathematical model is a set
of values that are defined by constraints. To define these constraints
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variables are used. In this context when we speak about variables, we
refers to a mathematical variables in the mathematical programming
field. Our algorithm works with models manipulating their variables.
Therefore the models have been encapsulated in a data structure so
our algorithm can work with them. The data structure that represents
the solution is a hash table of variables called s (see fig 4.1). The lab
variable is denoted by s[lab], where lab is a label that represents the
name of lab variable. A variable is a triplet 〈v, lb, ub〉, where v is the
value of the variable, lb is the lower bound and ub is the upper bound.
The value of a variable could be a integer, real or Boolean. It always
holds lb ≤ v ≤ ub. A variable is fixed if v = lb = ub. A variable is
released when we return to the initial values of the variables bounds
lb = LB and ub = UB.

� Model: The model is a mathematical programming model. It consists
of a set of equations and inequalities that define the search hyperspace,
which must be enclosed.

� Objective Function: The objective function is a variable of type
real.

The algorithm requires the following input:

� The model mdl.

� A maximum time of algorithm execution tmax.

� A maximum number of iterations itmax.

� A maximum number of variables to be released nmax.

� A maximum number of attempts mmax.

The algorithm works as follows:

1. First of all we generate the initial solution and the value of the ob-
jective function. The initial solution is a feasible solution with all the
variables fixed, ie ∀lab : s[lab].lb = s[lab].v = s[lab].ub.

2. In the main loop while end not equal to true, for each trial m, we do
the following: First, we choose a set of n random variables V to release.
Second, we copy the solution s to s′, and release the n variables of the
solution s′. Third, we invoke the solve. The solver tries to improve
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v lb ub

s[lab1]
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Figure 4.1: Data Structure of the Solution is a hash table

the solution changing the value of the variables released. The solve
invocation gets the run time t of solver, the new value of the objective
function fo′, and a new solution. If the objective function value is
better than the current value, then we update the best solution, the
objective function, and variable improved assign to true. Finally,
we increase the number of iterations it, the current time ct and if the
number of iterations it and the time ct is greater than their maximum,
then the variable end assign to true.

Now go into more detail on each of the functions of the algorithm. To better
understand our algorithm is important to differentiate between the case of
Hydrogen or the case of Ethanol:

4.2.1 Hydrogen

In the case of Hydrogen, we focus on this set of variables (see chapter 2):

� PRigpt: Number of factories of Hydrogen form i with the manufactur-
ing technology p in place g at period t.
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Algorithm 15 LNS for Supply Chain

Require: mdl is the model and tmax > 0 and itmax > 0 and mmax >
0 and nmax > 0

Ensure: s { The best solution found }

1: 〈s, fo〉 := initial solution(mdl);
2: end := false ; it := 0 ; ct := 0
3: while not end do
4: m := 1; improved := false;
5: while m ≤ mmax and not improved do
6: n := 1;
7: while n ≤ nmax and not improved do
8: V := choose random vars to release(n); { V is a set of vars}
9: s′ := release vars(s, V );

10: 〈t, fo′, s′〉 := solve(mdl, s′);
11: if better(fo, fo′) then
12: fo′ := fo ; s := s′ ; improved := true;
13: end if
14: ct := ct+ t ; it := it+ 1;
15: if ct ≥ tmax or it ≥ itmax then
16: end := true;
17: end if
18: n := n+ 1;
19: end while
20: m := m+ 1;
21: end while
22: end while

� NST
gst : Number of stores of Hydrogen with storage technology s in place

g at period t.

� Xgg′lt: Equals 1 if there is a link between g and g′ with the transport
l at the period t, otherwise 0.

In the case of Hydrogen, the implementation of the methods is as follow:

� initial solution(mdl): The generation of the initial solution in Hy-

drogen is as follow:

1. We obtain the average demand for each location g.
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2. Solve the problem for period t = 1, then obtain the value of
PRigpt, N

ST
gst and Xgg′lt for that period.

3. Fix the values of PRigpt, N
ST
gst , Xgg′lt (make them equal to those

associated to period t = 1) and solve considering all the periods,
in order to obtain the initial solution.

� choose random vars to release(n): This function selects n places. In
the case of Hydrogen are the autonomous communities of Spain,
which are numbered from 1 to 19 (see 4.2).

� release vars(s, V ): This method returns a copy of the solution s with
some variables released. The variables are released as follows:
For every variable PRigpt or N

ST
gst or Xgg′lt where g ∈ v put the lower

bounds
s[PRigpt].lb = LB

s[NST
gst ].lb = LB

s[Xgg′lt].lb = 0

and put the upper bound

s[PRigpt].ub = UB

s[NST
gst ].ub = UB

s[Xgg′lt].ub = 1

.

� solve(mdl, s′): Given a model of type mdl MILP, and a solution s′,
this function solves the model. The Solver tries to improve the solution
changing the value of variables released function implements a branch
& bound, this project has used a commercial software called CPLEX.

� better(fo, fo′): Given two objective functions fo y fo′ determines
which is the best. The best solution is the smallest.

4.2.2 Ethanol

In the case of Ethanol, we focus on this set of variables (see chapter 3):

� NPgpt: Number of factories of Ethanol with the manufacturing tech-
nology p in place g at period t.
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Figure 4.2: Autonomous communities of Spain.



62 CHAPTER 4. SOLUTION METHOD: LNS

� NSsgt: Number of stores of Ethanol with storages technology s in the
place g at the period t.

� Xlgg′t: Equals 1 if there is a link between g and g′ with the transport
l at period t, otherwise 0.

In the case of Ethanol, the implementation of the methods is as follow:

� initial solution(mdl): We obtain the initial solution solving the prob-
lem where integer variables are treated as continuous (relaxed model).

� choose random vars to release(n): This function selects n places. In
the case of Ethanol are the provinces of Argentine, which are num-
bered from 1 to 25 (see 4.3).

� release vars(s, V ): This method returns a copy of the solution s with
some variables released. The variables are released as follows:
For every variable NPgpt or NSsgt or Xlgg′t where g ∈ v put the lower
bounds

s[NPgpt].lb = LB

s[NSsgt].lb = LB

s[Xlgg′t].lb = 0

and put the upper bound

s[NPgpt].ub = UB

s[NSsgt].ub = UB

s[Xlgg′t].ub = 1

.

� solve(mdl, s′): Is the same as Hydrogen. This project has used a
commercial software called CPLEX.

� better(fo, fo′): Given two objective functions fo y fo′ determines
which is the best. The best solution is the greatest.
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Figure 4.3: Provinces of Argentina.
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Chapter 5

Numerical Results

In this chapter we describe the numerical results obtained using the algo-
rithms described in the previous chapter, where different instances that differ
in the number of time periods were solved. Particularly, we have compared
the results obtained by our algorithm with those produced by the standard
branch and cut program implemented in CPLEX, nowadays regarded as one
the most efficient state of the art deterministic code for MILP.

For each case, we determine the values of parameters mmax and nmax

that lead to the best performance of the algorithm for the case of 8 periods
(t = 8), considering 10 runs of the algorithm.

5.1 Experiments:

In the following subsection we present the numerical results that illustrate
the performance of our solution method compared with the commercial
full space branch and cut code implemented in CPLEX. Recall that in the
hydrogen SC problem, the Expected Total Cost (E[TDC]) is minimized,
whereas in of the ethanol SC, the Net Present Value (NPV) is maximized.
We have selected the numbers of periods shown in 5.1.

t 2 4 6 8 10 12 14 16

Table 5.1: Number of periods

All experiments were performed on PC Intel (R) Core (TM) Quad CPU
Q9550@2.83 GHz 2.83 GHz 2.98GB RAM.

65



66 CHAPTER 5. NUMERICAL RESULTS

5.1.1 Hydrogen

First, we tune the algorithm, solving the problems for different values of n
and m. Consider that n is the maximum number of variables released and m
is the maximum number of attempts. Figures 5.1 and 5.2 show the results
obtained considering 10 runs of the algorithm. This figure is a boxplot, a
convenient way of graphically depicting groups of numerical data through
their five-number summaries: the smallest observation (sample minimum),
lower quartile (Q1), median (Q2), upper quartile (Q3), and largest observa-
tion (sample maximum). A boxplot may also indicate which observations,
if any, might be considered as outliers. That is, in red we show the median
or Q2 quartile of the runs, whereas the blue boxes denote the Q1 and Q3
quartiles. The final values selected are highlighted in red color.
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Figure 5.1: Tuning of Hydrogen results sorted by n and m

Once the algorithm is tuned, we compare its performance with the com-
mercial branch and cut code implemented in CPLEX. Figures A.1 to A.8
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Figure 5.2: Tuning of Hydrogen results sorted by m and n

show for different time periods, the evolution of the lower and upper bounds
found by CPLEX as a function of time, along with the values provided by
the proposed LNS algorithm as iterations proceed. The time frame consid-
ered in the analysis is that for which no further improvement is observed
in the LNS. As observed, for low time periods (less than or equal to 6),
CPLEX outperforms the proposed algorithm, finding better solutions in
shorter CPU times. For more than 6 time periods, CPLEX cannot find any
solution, whereas the LNS is always able to provide at least one solution.
Note that our algorithm does not show a high variability.

In Table 5.2, we provide for each instance being solved, the time at which
the best solution calculated by the LNS has been found, the best objective
function value in all the runs, the average objective function value and CPU
time, and the standard deviation of the objective function and CPU time.
Note that in periods 14 and 16 the standard deviation of the time is zero
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because the algorithm convergence is very fast.

Per Time Bst Time Bst Cost Avg Cost Std Cost Avg Time Std Time

2 1000 72.83 1050695000000 477.97 248.27 1050707800000 18860894.29
4 2000 139.12 1296608000000 748.38 581.41 1296693500000 37997806.95
6 3000 273.30 1543787000000 1156.19 784.40 1543836900000 42019704.37
8 4000 294.95 1786446000000 1651.62 1196.73 1786516900000 58333238.10
10 5000 295.90 2019579000000 2751.97 1657.26 2019793600000 111899955.32
12 6000 638.58 2239774000000 2973.20 1508.65 2239906300000 128670164.03
14 7000 58.05 2450000000000 195.28 125.80 2450000000000 0
16 8000 144.57 2640000000000 227.95 116.70 2640000000000 0

Table 5.2: Results of the LNS algorithm to the problem of Hydrogen

Finally, Table 5.3 displays the optimality GAPs of the following solu-
tions: the best solution calculated by CPLEX after 12 hours of CPU time
and after the same CPU time provided to the LNS, the best solution found
by the LNS and the average solution calculated by the LNS. The GAP is
determined from the best solution calculated by CPLEX in 12 hours. Note
that in some instances, CPLEX is unable to provide any bound even the
aforementioned CPU time.

Per CPLEX 12h CPLEX Time LNS Avg LNS Bst

2 0.0495 0.0495 0.0540 0.0528
4 0.0594 0.0609 0.0681 0.0615
6 0.0648 0.0674 0.0730 0.0698
8 0.0834 No result No result No result
10 0.0956 No result No result No result
12 No result No result No result No result
14 No result No result No result No result
16 No result No result No result No result

Table 5.3: Hydrogen GAP’s. GAP’s are calculated respect to lower bound
found by CPLEX for 12h. No result means that in the given time CPLEX
not able to obtain a solution.

5.1.2 Ethanol

The information contained in Figures 5.3 and 5.4 are equivalent to Figures
5.1 and 5.2. The Figures A.9 to A.16 are equivalent to Figures A.1 to A.8.
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As shown, for low time periods (less than 6), CPLEX outperforms the pro-
posed algorithm, finding better solutions in shorter CPU times. For more
than 8 time periods, none of the methods performs better than the other
one for the whole range of CPU times. Particularly, LNS tend to behave
better for short CPU times, whereas CPLEX provides better solutions when
long CPU times are considered. The Table 5.4 is equivalent to Table 5.2.
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Figure 5.3: Tuning of Ethanol results sorted by n and m

Finally, Table 5.5 is equivalent to Table 5.3. As observed, LNS provides
better solutions (i.e., with better optimality gaps) in periods 12,14 and 16.
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Figure 5.4: Tuning of Ethanol results sorted by m and n

Per Time Bst Time Bst Profit Avg Profit Std Profit Avg Time Std Time

2 500.00 151.36 347359830 345279290.8 2685964.558 248.204 118.2521557
4 2000.00 406.64 1080116900 1080116900 0 687.211 303.2816757
6 3500.00 1304.48 1780058700 1778863300 1764525.812 1564.232 765.0026542
8 5000.00 4654.22 2360142100 2359543790 1891389.92 3905.375 1049.625741
10 6500.00 1705.22 2770025600 2767586790 5477665.745 5208.404 1460.014114
12 8000.000 6862.200 3182514600 3182511122.222 2329.580 7147.720 974.898
14 9500.000 9530.280 3538394900 3535963255.556 5111604.059 8450.841 1312.555
16 11000.000 9527.750 3812615700 3806304877.778 7596078.119 10104.947 892.877

Table 5.4: LNS algorithm results with the problem of Ethanol
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Per CPLEX 12h CPLEX Time LNS Avg LNS Bst

2 0.00 0.00 5.67 5.04
4 0.00 0.00 2.13 2.13
6 0.35 0.35 1.55 1.48
8 0.83 1.08 1.82 1.80
10 1.38 1.60 2.30 2.21
12 2.09 3.43 2.74 2.74
14 1.92 3.10 2.80 2.73
16 2.06 3.32 2.87 2.70

Table 5.5: Ethanol GAP’s. GAP’s are calculated respect to upper bound
found by CPLEX for 12h
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Chapter 6

Conclusions and future work

This work has addressed the optimal design and planning of Hydrogen/Ethanol
Scs. The design task was formulated as a mixed-integer programming prob-
lem that seeks to minimize the expected total cost in the case of Hydrogen

and maximize the net present value in the ethanol case. To overcome the
large computational burden of solving these MILPs, we proposed a hybrid
metaheuristic that combine the large neighborhood search with CPLEX.
The capabilities of the proposed mathematical model and solver method-
ology were shown through two cases studies based on the Argentina sugar
cane industry and the Hydrogen supply chain in Spain.

From the computational point of view, the hybrid metaheuristic algo-
rithm provides near optimal solutions in a fraction of the time spent by
CPLEX; even when CPLEX did not find a solution, our algorithm obtained
a solution. In particular, the proposed algorithm is more promising for large
instances.

Future work will follow different pathways: on the one hand to exploit
the mathematical formulation of the cases to take profit of particular prop-
erty; on the other, to initialize CPLEX with the solution obtained from our
algorithm.
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Figure A.1: LNS compared with CPLEX on the problem of Hydrogen for
t = 2. The vertical bars show the standard deviation of LNS over 10 runs.
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Figure A.2: LNS compared with CPLEX on the problem of Hydrogen for
t = 4. The vertical bars show the standard deviation of LNS over 10 runs.
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Figure A.3: LNS compared with CPLEX on the problem of Hydrogen for
t = 6. The vertical bars show the standard deviation of LNS over 10 runs.
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Figure A.4: LNS compared with CPLEX on the problem of Hydrogen for
t = 8. The vertical bars show the standard deviation of LNS over 10 runs.
In the time given CPLEX was not able to obtain a solution.
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Figure A.5: LNS compared with CPLEX on the problem of Hydrogen for
t = 10. The vertical bars show the standard deviation of LNS over 10 runs.
In the time given CPLEX was not able to obtain a solution.
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Figure A.6: LNS compared with CPLEX on the problem of Hydrogen for
t = 12. The vertical bars show the standard deviation of LNS over 10 runs.
In the time given CPLEX was not able to obtain a solution.
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Figure A.7: LNS compared with CPLEX on the problem of Hydrogen for
t = 14. The vertical bars show the standard deviation of LNS over 10 runs.
In the time given CPLEX was not able to obtain a solution.
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Figure A.8: LNS compared with CPLEX on the problem of Hydrogen for
t = 16. The vertical bars show the standard deviation of LNS over 10 runs.
In the time given CPLEX was not able to obtain a solution.
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Figure A.9: LNS compared with CPLEX on the problem of Ethanol for
t = 2. The vertical bars show the standard deviation of LNS over 10 runs.
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Figure A.10: LNS compared with CPLEX on the problem of Ethanol for
t = 4. The vertical bars show the standard deviation of LNS over 10 runs.
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Figure A.11: LNS compared with CPLEX on the problem of Ethanol for
t = 6. The vertical bars show the standard deviation of LNS over 10 runs.
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Figure A.12: LNS compared with CPLEX on the problem of Ethanol for
t = 8. The vertical bars show the standard deviation of LNS over 10 runs.
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Figure A.13: LNS compared with CPLEX on the problem of Ethanol for
t = 10. The vertical bars show the standard deviation of LNS over 10 runs.
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Figure A.14: LNS compared with CPLEX on the problem of Ethanol for
t = 12. The vertical bars show the standard deviation of LNS over 10 runs.
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Figure A.15: LNS compared with CPLEX on the problem of Ethanol for
t = 14. The vertical bars show the standard deviation of LNS over 10 runs.
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Figure A.16: LNS compared with CPLEX on the problem of Ethanol for
t = 16. The vertical bars show the standard deviation of LNS over 10 runs.
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