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mailto:adria.armejach@bsc.es
http://www.fib.upc.edu
http://www.upc.edu


2



Acknowledgements

Finishing this master thesis ends one chapter of my life and marks

the beginning of another.

I would like first to specially thank Marina, for supporting me through

the whole process and encourage me to keep learning.

I, of course, would not be here today without the help of my closest

people, thanks for being there. My father gets some extra thanks for

reading and editing this document.

I must thank all my collages, friends I should say, that made this a

wonderful experience. I felt part of the group since the very first day,

and they helped me with everything they could. Specially, I would
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Chapter 1

Introduction

This thesis has been developed in the joint center held by Barcelona Supercomput-

ing Center (BSC) in collaboration with Microsoft Research (MSR). The Center

focuses on the design of future microprocessors and software for the mobile and

desktop market segments basis (1).

The following sections of this chapter discuss the context and motivations of

this thesis, along with its scope, main objectives and contributions.

1.1 Context

During the last decades the number of transistors in a single chip has increased

exponentially, from the first home computers that had a few thousands of transis-

tors (∼6.000) to today’s designs that involve hundreds of millions (∼700.000.000)

(6). Given this ever-increasing transistor densities (see Figure 1.1), and mainly in

response to the problems of incrementing performance in single-threaded proces-

sors that computer architects faced over the last years (e.g., undesirable levels of

power consumption because of high clock frequencies (15)), manufacturers have

shifted to multiprocessor designs instead. Large-scale multiprocessors with more

than 16 cores on a single board or even on a single chip will soon be available. This

is achieved by using a simpler and smaller core processor design and replicating

it many times, reducing power requirements and making thread-level parallelism

the new challenge to achieve high performance.
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1.1 Context

Figure 1.1: Curve showing CPU transistors count 1971-2008.

The advent of chip multiprocessors (CMPs) has moved parallel programming

from the domain of high performance computing to the mainstream. Now, soft-

ware developers have the difficult task to write parallel programs to take advan-

tage of multiprocessor hardware architectures.

1.1.1 Why is Parallel Programming Difficult?

Parallel programs are more difficult to write than sequential ones, concurrency

introduces several new classes of potential software bugs, of which race condi-

tions (e.g., data dependencies) are the most common ones (25). To take advan-

tage of thread-level parallelism involves creating several parallel tasks that need

to synchronize and communicate to each other. Today’s programming models

commonly achieve this via lock-based approaches, in this parallel programming

technique, locks are used to provide mutual exclusion for shared memory accesses

that are used for communication among parallel tasks.

2



1.1 Context

Unfortunately, when using locks, programmers must pick between two unde-

sirable choices:

• Use coarse-grain locks, where large regions of code are indicated as critical

regions. This makes the task of adding coarse-grain locks to a program quite

straightforward, but introduces unnecessary serialization that degrades sys-

tem performance.

• On the other side, fine-grain locks cause critical sections of minimum size.

Smaller critical sections permit greater concurrency, and thus scalability.

Anyway, this schema leads to higher complexity, and makes it more likely

to have problems such as deadlock.

There are many other problems related with locks, some of the most important

are: priority inversion, convoying and debugging. The first one prevents high

priority threads to be executed if a low priority one is holding the common lock,

while in convoying all the other threads of the system have to wait if the thread

holding the lock gets de-scheduled due to an interrupt or a page fault; finally,

lock-based programs are difficult to debug, since bugs are very hard to reproduce

themselves (8).

1.1.2 Transactional Memory

To address the need for a simpler parallel programming model, Transactional

Memory (TM) has been developed and promises good parallel performance with

easy-to-write parallel code (22; 25).

Unlike lock-based approaches, with TM, programmers do not need to explic-

itly specify and manage the synchronization among threads; however, program-

mers simply mark code segments as transactions that should execute atomically

and in isolation with respect to other code, and the TM system manages the

concurrency control for them. It is easier for programmers to reason about the

execution of a transactional program since the transactions are executed in logical

sequential order according to a serializable schedule model.

TM allows non-blocking synchronization with coarse-grained code, deadlock

and livelock freedom guarantees. Non-blocking synchronization is achieved by

3



1.2 Project Objectives

executing the transactions optimistically (in parallel), while still guaranteeing

exactly-once execution as if these were ran in isolation and committed in a serial

order. If any conflicts are detected during the execution, some of these transac-

tions will be aborted to maintain system consistency.

TM can be implemented either in software (STM) or hardware (HTM). STMs

are more flexible but suffer from serious performance overheads whereas HTMs

are faster but limited due to hardware space constrains, even though this space

limitations can be handled using virtualization or other mechanisms (30).

As more processing elements become available, programmers should be able

to use the same programming model for setups of varying scales. Hence, TM is

of long-term interest if it scales to large-scale multiprocessors properly.

1.2 Project Objectives

In the previous section, we stated several problems regarding the actual program-

ming models when developing parallel applications, and how new approaches like

TM are coming up to solve those problems. The main motivation for researching

new ways to face parallel programming issues is that manufacturers are turning

to CMPs in detriment of single-threaded processors as a realistic path towards

scalable performance for server, embedded, desktop and even notebook platforms

(16; 26).

This project aims two main goals. The first one is to develop a Hardware

Transactional Memory (HTM) module based on an already existing protocol,

and integrate it into a full-system simulator. Evaluate its performance using

realistic benchmarking tools and extract conclusions about its scalability and

performance.

The second one is to provide a tool to experience with its many configurable

parameters, to see how different setups of the components (e.g., size or associa-

tivity of the caches) affect the performance of this kind of systems and to be able

to detect its associated pathologies or if any bottleneck exist. Furthermore, it

can also be used to compare new approaches that are under development (35)

or that can be implemented in a near future in the Center against an existing

state-of-the-art proposal.

4



1.3 Project Description

1.3 Project Description

The protocol chosen to implement the HTM module is the first non-blocking TM

implementation that targets distributed shared memory (DSM) systems, and uses

directory-based mechanisms to ensure coherence and consistency. By targeting

DSM-like systems we are focusing in the domain of high performance computing

sector. This protocol is called Scalable Transactional Coherence and Consistency

(Scalable-TCC) (19).

With regard to the simulator, we used The M5 Simulator: a modular platform

for computer system architecture research, with system-level architecture as well

as processor micro-architecture basis (12). It supports multiple Instruction Set

Architectures (ISAs) such as Alpha, SPARC, MIPS, and ARM, with X86 sup-

port in progress. However, full-system capability is only available in Alpha and

SPARC. For our project we will use Alpha architecture since it is the only one

that can boot Linux 2.4/2.6, and we are more familiar with this OS than others.

In order to achieve our objectives the whole project workload has been split

in three work packages:

• Introduction and generic modifications to The M5 Simulator.

• Scalable-TCC HTM module.

• Merge Scalable-TCC HTM module into The M5 Simulator.

In the first package, once the system was set and running, we learned about

The M5 Simulator structure and its tools. Moreover, some generic modifications

have been done to the simulator that will be useful in the future when merging the

Scalable-TCC HTM module into it (e.g., extend the ISA to support instruction

to begin and commit a transaction).

The second package has the largest volume of work. First of all, a con-

siderable amount of time was spent on reading about TM and directory-based

protocols, to have a general knowledge to be able to analyze properly the descrip-

tion proposed on the Scalable-TCC paper. Afterwards, before starting to specify

and implement the HTM module, some decisions about the cache hierarchy setup

and how to implement DSM were made. The implementation of the HTM module

was split into two different and isolated sub-projects:

5



1.3 Project Description

• A cache-simulator with directory that fits to the Scalable-TCC directory-

based protocol demands. For this module an already existing cache-simulator

for MESI protocol was at our disposal. Nevertheless, Scalable-TCC proto-

col has been proven to behave quite different than common MESI/MOESI

like protocols, besides the fact that it was not prepared for DSM-like sys-

tems nor for a directory-based protocol. Therefore, all the functionalities

have been written from scratch.

This module allows the creation of a cache hierarchy (L1, L2, etc.), it also

handles main memory using DSM schema and the directory structures.

Statistics are incorporated at cache level (i.e., for every cache level), at

main memory, and at directory level. Tracking events such as: hits, misses

and ticks spent, amongst others; that occur on these mentioned structures.

• The HTM module will interact with the previous one to define the desired

memory hierarchy for each node of the system. The module defines the

concept of transaction and stores the necessary information such as the

transaction state and the transaction identifier. The interface of the HTM

is also defined here, so here are defined the behaviors, for example, of the

begin and commit transaction instructions, among others.

Since we want a powerful statistics system, there will be statistics at trans-

action and at HTM level too; regarding to the number of memory accesses,

begin instructions executed, etc.

By splitting the work in two smaller sub-projects we can trace errors easier

than having a larger single project. For this reason, each subproject has been

checked separately using unit tests to verify its functionalities, and using some

stress tests afterwards, to ensure a higher degree of correctness before starting

the last work package.

In the third package of this project we merged the HTM module into The

M5 Simulator. During this process some modifications on both sides, the HTM

module and the simulator were really necessary. For example, in the simulator

side, we had to declare the memory hierarchy and its parameters using our im-

plementation. Some more complex modifications regarding fault tolerance and

switching from user-mode to kernel-mode (and vice versa) were also necessary.

6



1.4 Contributions

After checking that the integration was working as expected, we started with the

testing phase using a couple of basic tests (e.g., incrementing a shared counter

using transactions). Once those test were passed correctly, a set of synthetic

benchmarks that are intended to represent real applications that cover a wide

range of transactional scenarios (17), were used to evaluate performance and

scalability of the system.

1.4 Contributions

Basically, this thesis presents the implementation and evaluation of a hardware

transactional memory system. Its major contributions are:

• Propose an implementation of a scalable design for TM that is non-blocking

and is tuned for continuous transactional execution.

• Provide a memory system, that allows for a configurable number of cache

entries, associativity, cache-line size, and all the access timings in the mem-

ory hierarchy.

• Provide a powerful statistics system to extract conclusions about the trans-

actional executions. In particular, we have stats for every level of cache,

main memory bank, directory, transaction and at global HTM level.

• Demonstrate that the proposed TM implementation scales efficiently to 32

processors in a DSM system for a wide range of transactional scenarios.

1.5 Organization

After introducing the context, and state the objectives and contributions of the

project, in this section, we explain the structure of the document with a brief

description of each chapter.

The second chapter introduces basic concepts about transactional memory,

discussing different possible design approaches, stating its advantages and disad-

vantages.

7



1.5 Organization

The third chapter explains in detail the protocol that our HTM simulator will

use and the configuration choices done at this moment in the simulator side.

The fourth chapter presents the related work, where we talk about some of

the most relevant proposals regarding transactional memory.

The fifth chapter introduces the architecture details that our proposal will

use, at processor, caches, directory and interconnection network level.

The sixth chapter presents the cache with directory module, with a general

detailed explanation, the functionalities and configuration possibilities it imple-

ments, the available statistics and a unit test example showing its execution

statistics output.

The seventh chapter follows the same layout than the previous one, but ex-

plaining the HTM module.

The eighth chapter explains the merging process of the HTM module and The

M5 simulator, along with the modifications required in the simulator side and the

problems encountered.

The ninth is the evaluation chapter, where we introduce the system configu-

ration used to run the tests, the methodology, and finally we present and discuss

our results.

The tenth chapter explains the initial planning and its modifications, the

project costs, achieved objectives, exposes future lines of work and personal con-

clusions.

8



Chapter 2

Transactional Memory

In this chapter we introduce some basic concepts about Transactional Memory

(TM), like its properties, along with the mechanisms and policies used to guar-

antee those properties. We also discuss the advantages and disadvantages of

Hardware and Software based systems.

2.1 Transactional Memory Basics

Using conventional multi-threaded programming on shared memory machines,

programmers need to manually manage the synchronization among threads when

they use locks. For example, they must select the lock granularity, create an

association between shared data and locks, and manage lock contention. In other

words, with locks, programmers not only need to declare where synchronization

is used, they must also implement how synchronization will occur.

In contrast, with Transactional Memory (TM), programmers simply declare

where synchronization occurs, and the TM system will handle the implementation

properly. In more detail, with TM, programmers indicate that a code segment

should be executed as a transaction by placing that group of instructions inside

an atomic block (28) as shown in Figure 2.1.

It is the responsibility of the TM system to guarantee that the transactions

have the following properties: atomicity, isolation, and serializability. Firstly,

atomicity means that, either all or none the instructions inside a transaction

9



2.1 Transactional Memory Basics

atomic {

if ( foo != NULL ) a.bar();

b++;

}

Figure 2.1: Group of instructions representing a transaction.

must be executed. Secondly, having isolation means that none of the intermedi-

ate state of a transaction is visible outside of the transaction (i.e., any memory

update is visible to other threads during the execution of a transaction). Fi-

nally, serializability requires that the execution order of concurrent transactions

is equivalent to some sequential execution order of the same transactions (24).

The way that TM systems achieve good parallel performance is by providing

optimistic concurrency control (19), where a transaction runs without acquiring

locks, optimistically assuming that no other transaction operates concurrently on

the same data. When the TM system executes the body of an atomic block, it

is done speculatively (hence the name optimistic). While the body is executed,

any memory addresses that are read are added to a read set, and the ones that

are written are added to a write set. Finally, at the end of the atomic block, the

TM system ends, or commits, the transaction.

To verify that the speculative execution of the transaction is valid, the TM

system compares the read and write sets of all concurrent transactions. This

allows to perform fine-grain read-write and write-write conflict detection (i.e., to

know the exact conflicting address). If no conflicts are detected, the transaction

commits successfully, otherwise it is aborted, and the execution is rolled back to

the beginning of the atomic block and retried.

The key idea of TM is that because of their atomicity, isolation, and serial-

izability properties, transactions can be used to build parallel programs. Using

large atomic blocks simplifies parallel programming because it provides ease-of-

use and good performance. First, like coarse-grain locks, it is relatively easy to

reason about the correctness of transactions. Second, to achieve a performance

comparable to that of fine-grain locks, the programmer does not have to do any

extra work because the TM system will handle that task automatically for him

(24).

10



2.2 Transactional Memory System Taxonomy

2.2 Transactional Memory System Taxonomy

Like in database systems, there are a variety of ways to provide transactional

properties of atomicity and isolation. There are three categories that can be

used to classify TM systems: the data versioning mechanism, the conflict detec-

tion policy, and the approach used for implementation, being hardware-based or

software-based (24; 27).

2.2.1 Eager versus Lazy Data Versioning

Transactional systems must be able, at least, to deal with two versions of the same

logical data. An updated version and an old version, just in case the transaction

fails to commit, so the old version can be used to roll back. Updates to memory

addresses, when a write is executed by a transaction can be handled either eagerly

or lazily (27).

In lazy data versioning, updates to memory are done at commit time. New

values are saved in a per transaction store buffer, while old values remain in place.

This grants isolation, because all the speculative updates are not visible by other

threads until the transaction commits. On the other side, eager data versioning

applies memory changes immediately and the old values are stored in an undo log.

If the transaction aborts, the undo log is used to restore memory changes. Note

that in order to grant isolation in eager TM systems, transactionally modified

variables must be locked, and therefore they cannot be accessed until the owner

either commits or aborts the transaction. This can derive into a classic deadlock

situation, as shown in Figure 2.2, where transaction T1 has acquired the lock for

memory address A and is waiting to acquire the lock of memory address B, and

T2 has acquired the lock for address B and is waiting to acquire A’s address lock.

Therefore, a contention management mechanism is required, and when detecting

a potential deadlock cycle it will break it by choosing a victim to abort and

roll-back.

Each data versioning, eager and lazy, has its own advantages and disadvan-

tages. Eager versioning systems have a higher overhead on transaction abort

because they have to restore the memory changes. In contrast, lazy versioning

aborts have smaller overhead since no speculative updates were applied to main

11
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T1 T2

BeginTX BeginTX

Write A

Write A

Write B

Write B

deadlock

Figure 2.2: Deadlock situation in a system running with an eager data versioning

policy. Both transactions are waiting for the other one to free a locked address.

memory. However, lazy policies have performance penalty at commit time, when

all transactional updates become visible.

2.2.2 Optimistic versus Pessimistic Conflict Detection

Conflict detection can be performed either taking an optimistic or a pessimistic

approach. Systems with pessimistic conflict detection notice possible data de-

pendency violations as soon as possible, checking for conflicts on each memory

access during transaction execution. On the other hand, optimistic conflict de-

tection assumes that a transaction is going to commit successfully and waits until

the transaction finishes its execution to detect the conflicts.

Conflict management can substantially affect system performance, we illus-

trate the problem in Figure 2.3 (this example is inspired from (34)). Pessimistic

conflict detection, Figure 2.3-a, attempts to minimize the amount of wasted work

in the system. Transaction T1 conflicts with T2 and is stalled (waiting for T2 to

finish). Then, T2 conflicts later on its execution with T3 and gets stalled too. Note

that T1 now has to wait until T3 (and then T2) either aborts or commits, even

though it does not conflict with T3 at all. Most systems that use this pessimistic

approach suffer from these so-called cascading waits (14), where a transaction is

stalled waiting for transactions to finish even if there are no conflicts between

them.
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T1

T2

T3

a) Pessimistic b) Optimistic

T1

T2

T3

Figure 2.3: Pessimistic and optimistic conflict detection behaviors.

Figure 2.3-b, shows the same execution with optimistic conflict detection. In

this case, all the transactions are executing until one reaches its commit point.

As we can see, transaction T1 attempts to commit, and therefore transaction T2

aborts. Then, T3 can also commit without conflicts.

As we can see with this example, attempts by pessimistic systems to reduce

wasted work are not always successful. In Figure 2.3-a, for instance, the systems

stalls T1, and since it does not eventually abort, the work that was avoided would

have been useful. This happens due to a limitation in pessimistic systems; it

addresses potential conflicts, caused by an offending access to a shared location,

at this point they have to speculate which transaction is more likely to commit

(and which should be aborted), but the system at this time does not have all

the necessary information to make the optimal decision and the prediction is

sometimes wrong. On the other hand, optimistic conflict detection deals with

conflicts that are unavoidable in order to allow a transaction to commit.

Previous research claims that optimistic conflict detection allows for more par-

allelism (14; 24; 31), delaying conflict detection at commit time avoids speculative

decisions of which is the best transaction to abort, simplifies the system, and also

results in higher performance due to a larger number of transactions committing.

Furthermore, optimistic conflict detection guarantees forward progress, processor

instructions are guaranteed to complete properly.
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2.2.3 Synergistic Combinations

We introduced two ways to deal with data versioning (eagerly or lazily) and two

ways to treat conflict detection (pessimistically or optimistically). Intuitively,

eager data versioning, where memory updates are done while the transaction is

executed, is commonly used with pessimistic conflict detection to ensure that only

one transaction has exclusive access to write a new version of a given address. On

the other hand, lazy data versioning is usually combined with optimistic conflict

detection, doing both tasks (conflict detection and memory updates) at commit

time.

However, these are not the only two alternatives. Some of the first TM pro-

posals provide lazy versioning with pessimistic conflict detection. On the other

hand, recent research tries to split the monolithic task of conflict detection and

adopt an approach that detects conflicts while the transaction is still active (i.e.,

at every memory access), but resolves them when the transaction is ready to

commit (35).

2.3 Software versus Hardware

Software Transactional Memory (STM) systems are not expensive to build, are

very flexible about implementing different policies and do not suffer from buffer-

ing overflow constrains. However, software is not as fast as dedicated hardware

because of the greater overheads it has on every memory access, where data

structures must be maintained and eventually queried to perform conflict detec-

tion. In contrast, Hardware Transactional Memory (HTM) systems offer higher

performance because no software annotations are required on memory accesses.

However, they can encounter difficulties when transactionally-accessed lines over-

flow the capacity of the cache.

Another approach for TM are hybrid systems, like (18). These systems try to

either address the challenges of HTM systems switching to an STM system when,

for example, hardware resources become exhausted, or even introduce hardware

changes to gain performance and address bottlenecks of software transactions.
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Chapter 3

Initial Study

This chapter focuses on the explanation of the HTM protocol and the main

characteristics and configuration choices of the M5 simulator.

3.1 Scalable-TCC - The Protocol

This section covers the protocol explanation. Firstly, an overview and some

protocol details are exposed. Then, we show two detailed examples that clarify

the protocol operation process.

3.1.1 Protocol Overview

Scalable-TCC is a non-blocking implementation of TM that is tuned for contin-

uous use of transactions within parallel programs (19). By adopting continuous

transactions we can implement a single coherence protocol, we don’t need to dis-

tinguish transactional accesses from non-transactional since all memory accesses

will be considered transactional. This fact makes the consistency model much

simpler and easier to understand.

The “illusion” of executing always-in-transaction does not need any code mod-

ification at all, it is completely transparent to the programmers point of view and

it is handled at runtime by the HTM. When a memory access is executed outside

a real or explicit transaction (i.e., outside an atomic block, see Figure 2.1), it

is detected and the system immediately starts a forced or implicit transaction
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(assuming that no other implicit transaction is running). If the system is ex-

ecuting an implicit transaction and an explicit transaction is going to start, it

will automatically commit the first one in order to guarantee the properties of

atomicity and isolation of explicit transactions. Note that implicit transactions

can be committed at any point in time without altering the correctness of the

execution whatsoever.

One of the best properties of this protocol is its non-blocking implementation.

This is achieved by detecting conflicts only when a transaction is ready to com-

mit; hence, using optimistic conflict detection, running the transaction without

acquiring locks, optimistically assuming that no other transaction operates con-

currently on the same data. If conflicts between transactions are detected, the

non-committing transactions abort, their local updates are rolled-back, and they

are re-executed. Scalable-TCC also uses lazy data versioning which allows trans-

actional data into the system memory only when a transaction commits. Having

lazy data versioning guarantees deadlock and livelock freedom without interven-

tion from user-level contention managers as we mentioned in Section 2.2.1.

Interconnection Network

Processor

Main Memory

DirectoryCA

...

Node 0

Node 1 Node 2 Node 3

Figure 3.1: System organization schema; CA states for Communication Assistant.

Figure 3.1 shows the system organization. We use distributed shared mem-

ory (DSM) with directory-based coherence. Using DSM means that the memory

address space is split amongst the different nodes of the system, so each memory

address belongs to one node. In directory-based coherence, information about

the addresses being shared (e.g., a sharers list) is placed in the directories that
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maintain the coherence between caches. Note that since DSM is used, each di-

rectory will hold information of the addresses belonging to its own node. The

directory acts like a filter through which the processor must ask permission to

load an address from main memory to its caches. We will show details about the

directory behavior later in this section; see examples 3.1.3 and 3.1.4.

3.1.2 Protocol Details

The key idea that allows the protocol to achieve a high degree of concurrency is

the possibility to commit two or more transactions in parallel if they involve data

from separate directories.

First, transactions are executed, execution phase, during the execution all

memory accesses are not visible to the rest of the system. This means that: a)

read and written addresses are added to per-transaction private structures called

read-set and write-set respectively; b) written data is buffered locally in private

caches.

Then, the transaction is ready to start the commit process, which has two

phases:

• Validation Phase: The system ensures that the transaction is serially

valid. To check this condition the system asks, only the directories involved

in the write-set and the read-set, if there are younger transactions waiting

to commit on these directories. If there are no younger transactions wait-

ing, this phase completes and the transaction cannot be aborted by other

transactions anymore. Note that two transactions with a disjoint set of

committing directories can go through the commit process completely in

parallel.

• Commit Phase: After validation phase, the transaction makes its write-

state visible to the rest of the system and the commit process finishes.

Directories are used to track processors that may have speculatively read

shared data. When a processor is in its validation phase, it acquires a transac-

tional ID (TID) and does not proceed to its commit phase until it is guaranteed

that no other processor can abort it, then sends its commit addresses only to the
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directories responsible for data written by the transaction. The directories gener-

ate invalidation messages to processors that were marked as having read what is

now invalid data. Processors receiving invalidation messages then use their own

tracking facilities to determine whether to abort or just invalidate the cache-line

if it was not read in the current transaction. Note that we use the term cache-line

here, this is because our HTM implementation works with cache-line granularity,

all the addresses present in read or write sets and in the directories are cache-line

addresses.

Each directory tracks the TID currently allowed to commit in the Now Ser-

vicing TID (NSTID) register. When a transaction has nothing to send to a

particular directory by the time it is ready to commit, it informs the directory by

sending a Skip message that includes its TID, so that the directory knows not to

wait for that particular transaction. A complete list of the coherence messages

used in our Scalable-TCC-like implementation is shown in Table 3.1.

Message Description

Add Sharer Load a cache-line

TID Request Request a transactional identifier

Skip Instructs a directory to skip a given TID

NSTID Probe Probes for the Now Servicing TID register

Commit Instructs a directory to commit marked lines

Invalidate Instructs a processor to treat an invalidation

Abort Instructs a directory to abort a given TID

Mark Marks a line intended to be committed

Data Request Instructs a processor to flush a given cache-line to memory

Write Back Write back a committed cache-line

Table 3.1: The coherence messages used to implement Scalable-TCC protocol.

3.1.3 Commit Example

The following example, see Figure 3.2, attempts to illustrate all the possible situ-

ations that may occur during the execution phase and during a successful commit
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process between two processors. In the example, inspired from (19), a transaction

in P1 successfully commits with one directory while a second transaction in P2

aborts and restarts.

During the explanation of the example we use the coherence messages listed

in Table 3.1. Changes in the state are circled and events numbered to show order,

meaning all events numbered y1 can occur at the same time and an event labeledy2 can only occur after all events labeled y1 are done.
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Figure 3.2: Scalable-TCC commit execution example.

In part a, processors P1 and P2 each load a cache-line using the Add Sharer

message y1, and are marked as sharers by Directory 2 and Directory 1 respec-

tively. Note that now both processors are in the execution phase at the same

time.

In this example, both processors write to data tracked by Directory 1, but

this information is not communicated to the directory until the commit phase. In

part b, processor P1 loads another cache-line from Directory 1 and then starts
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the commit process, thus it starts the validation phase. Then, it first sends a

TID Request message to the TID Vendor y3, which responds with TID 1 y4 and

processor P1 records it y5.

In part c, P1, that is still in its validation phase, communicates with Directory

1, the only directory it wants to write to. First, it probes this directory for its

Now Servicing TID (NSTID) register using an NSTID Probe message y1. In

parallel, P1 sends to Directory 2 a Skip message since Directory 2 is not in

the write-set, causing it to increase its NSTID to 2 y2. Meanwhile, P2 has also

started the commit process (validation phase). It requests a TID y1, but can also

start probing for Directory 1 NSTID register y1 — probing does not require the

processor to have acquired a TID. P2 receives TID 2 y2 and records it internallyy3.

In part d, both P1 and P2 receive answers to their probing messages, and P2

also sends a Skip message to Directory 2 y1 that updates its NSTID register to 3y2. P2 cannot finish its validation phase because the TID answer it received is lower

than its own TID. On the other hand, P1’s TID is equal to the NSTID register

from Directory 1, thus it can send commit-addresses using Mark messages

to that directory. P1 sends a Mark message y2, and line X becomes marked

(M) as part of the committing transaction’s write-set y3. Mark messages allow

transactions to pre-commit addresses to the subset of directories that are ready

to service the transaction. In order to finish the validation phase, P1 has to be

sure that no other transactions with a lower TID can violate it. This is done

by checking that every directory in its read-set (1 and 2) has finished servicing

younger transactions. Since it has already marked lines in Directory 1, it can be

certain that all transactions with lower TID’s have been serviced by this directory.

However, Directory 2 needs to be probed y3. P1 receives NSTID 3 as answer y4,

this means that it can be certain that all transactions younger than TID 3 have

been already serviced by Directory 2. Thus, P1 cannot be aborted by commits

to any directory and finishes the validation phase.

In part e, P1 sends a Commit message y1, which causes all marked (M) lines

to become owned (O) y2. Each marked line that transitions to owned generates

invalidations that are sent to all sharers of that line y3, except the committing

processor which becomes the new owner. P2 receives the invalidation, discards
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the line from its private caches and aborts because its current transaction had

read it. Note that during the whole commit process no data is communicated

between nodes and directories, only addresses, making the process quite cheap in

time basis.

In part f, P2, that has to re-execute the transaction, attempts to load an

owned line y1, this causes the directory to send a data request to the owner y2;

the owner then writes back the cache-line and invalidates the line in its private

caches y3. When receiving the data, the directory removes the ownership that P1

had and adds P2 as new sharer for that line y4, then forwards the data to the

requesting processor (P2) y5.

Each commit requires the transaction to send a single multi-cast skip message

to the set of directories not present either in the read or write sets. The trans-

action also communicates with directories in its write-set, and probes directories

in its read-set. Even though this might seem a large number of messages, we

will show in Section 9.3 that this communication does not damage performance

scalability since the number of directories touch per transaction is small in the

common case. Furthermore, we will show also that our implementation scales

very well in practice indeed.

3.1.4 Parallel Commit Example

Here we will show two different scenarios. Firstly, a successful parallel commit

involving two transactions that have disjoint read and write sets. Secondly, we

show the behavior of the system when a transaction that has started the commit

process (validation phase) is aborted. Thus, the parallel commit fails and we

have to undo the changes done in the directory by the aborted transaction.

Figure 3.3 assumes that both processors have already asked for a TID and

were assigned TID 1 and 2 respectively. P1 has written data from Directory 2,

while P2 has written data from Directory 1. Note that the only difference

between parts a* and a, is that in part a* P2 is also marked as sharer of line Y

in Directory 2.

To start with, we describe the example exposed in the first row where both

processors are able to commit in parallel. In part a, P1 and P2 probe the direc-
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Figure 3.3: Two scenarios attempting to commit a couple of transactions in

parallel. Note that in both scenarios the messages generated at the beginning are

the same, but in part a) P2 is not marked as sharer of line Y in Directory 2.

tories in their write sets and send the needed Skip messages y1. Both processors

receive as answer of the probing a TID that matches their own TID y2 y3. Since

the read sets coincide with the write sets no extra probing is needed and validation

phase finishes for both.

In parts b and c, a parallel commit takes place. In part b, both processors

send a Mark message to the directory where they wrote to; P1 sends the message

to Directory 2 and P2 to Directory 1 y1. In part c, commit messages are

sent y1 and the directories update concurrently the sharers list, the owner and

the NSTID register y2.

The second row shows an example where parallel commit fails and P2’s trans-

action has to abort because it read a line from Directory 2, and P1 will commit

there due to its lower TID. In part b*, P2 has to probe Directory 2 because is in
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its read set y1. Meanwhile P2 also sends a Mark message to Directory 1 since it

is ready to service TID 2. Note that Mark messages can be sent before finishing

the validation phase. P2 receives an answer of the probing with NSTID 1 y2,

which is smaller than its own TID, thus it cannot proceed. It will have to keep

probing until the NSTID received is higher or equal than its own. So two commits

that involve the same directory, Directory 2 in this case, must be serialized.

In part c*, P1 has finished the validation phase and the marking process, thus

it can send the Commit messages to the set of directories involved in the write set

(i.e., Directory 2) y1. Once the directory receives the Commit message, it gener-

ates invalidations to the other sharers of the committed cache-line while updates

the ownership y2. Since line Y was speculatively read by P2, the Invalidation

message causes it to abort. Since P2 had already sent Mark messages, it has to

send an Abort message to every directory where Mark messages where sent, so

an Abort message is sent to Directory 1 y3, which causes the directory to clear

all the marked bits and to update its NSTID y4. Note that once the necessary

aborts are sent, P2 also needs to send an Invalidation Ack message that will

cause Directory 2 NSTID register to be updated. This is necessary to avoid

certain race conditions; resolves the situation in which a transaction with TID

Y is allowed to commit because it received NSTID Y as an answer to its probe

before receiving an invalidation from transaction X with X < Y .

3.2 The M5 Simulator

In order to test our implementation and evaluate performance of the HTM mod-

ule we will use The M5 Simulator (12), a research tool for computer system

architecture widely used by the community. A complete list of publications using

this simulator can be found here (4).

3.2.1 Key Features and Configuration Choices

One of the most important features of the simulator and also very important to

make it change-prone is its pervasive object orientation. All the major simulation

structures (CPUs, busses, caches, etc.) are represented as objects, M5’s internal
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object orientation (using C++) provides in addition the usual software engineer-

ing advantages. Using a quite simple configuration language that allows flexible

composition of this objects we can describe complex simulation targets. This is

important for us, because we will have to modify the simulator in order to use

our own cache, directory and HTM objects amongst others.

M5 supports multiple interchangeable CPU models, currently there are three

different models: a simple in-order CPU; a detailed out-of-order CPU that is

superscalar and has simultaneous multi-threading (SMT) capabilities; and a ran-

dom memory-system tester. The first two models use a common high-level ISA

description, we will make some modifications over this ISA to provide new in-

structions to support transactional executions. We used the AtomicSimpleCPU,

it is an in-order, one cycle per instruction CPU. This choice is not done to sim-

plify the system, but for consistency with the HTM literature since there are just

a few proposals of HTM’s using out-of-order CPUs, and as they proved it is quite

challenging (36).

M5 features a detailed event-driven memory system, including non-blocking

caches over a simple snooping coherence protocol. Since we need a directory-

based coherence protocol as shown in the previous section, we have to develop

our own implementation for the memory hierarchy (caches, main memory banks

and directories). Thanks to M5’s object orientation, instantiation of multiple

CPU objects within a system is trivial. Combined with our module that will

define the memory hierarchy we can easily simulate the desired system.

The simulator supports either full-system and system call emulation execution

modes. We are interested in full-system capabilities to be able to have a functional

environment able to interact with a disk image for example, since we will store

our test binaries there. Full-system mode is only available in Alpha and SPARC

architectures. Alpha can boot an unmodified Linux 2.4/2.6 kernel as well as

FreeBSD, while SPARC can boot Solaris with some constrains. We chose Alpha

architecture to be our testing platform, because using Linux we are sure that

all the tests that we will use to evaluate performance and scalability will work

properly. Note that no Alpha hardware is needed to make full use of M5 compiled

with Alpha architecture, because Alpha binaries to run on M5 can be built on

x86 systems using gcc-based cross-compilation tools.
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Furthermore, M5 is being released under an open source license. It implies an

active community around it with good support from its main developers.
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Chapter 4

Related Work

There have been a number of proposals for Transactional Memory (TM) over the

last years. In this chapter we will walk through some of them to provide a global

view of the research done by the TM community.

TM proposals that use pessimistic conflict detection such as Log-TM (29) and

Unbounded TM (UTM) (11), write to memory directly (eager data versioning).

This improves the performance of commits, which are more frequent than aborts.

However, it may also incur additional violations not present in lazy data version-

ing. Moreover, UTM tries to address the problem of limited hardware buffering

capabilities, by providing mechanisms to support transactions of arbitrary size

and duration in a pure hardware approach. However, UTM is not unique in

this field, Virtualizing TM (30) provides different mechanisms that shield the

programmer from various platform-specific resource limitations.

Scalable-TCC is based on a previous work called TCC (23), it was the first

hardware TM system with lazy data versioning and optimistic conflict detection.

However, TCC suffers from two major bottlenecks. First, it utilizes an inher-

ently non-scalable communication medium between processors (common bus);

and second, all commits are serialized with a commit token which has to be ac-

quired by a transaction at commit time. With Scalable-TCC (19) both problems

are addressed.

New proposals are trying to come up with new ideas to take the best of both

worlds, lazy-like systems and eager-like systems. Eager-lazy HTM (EazyHTM)
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(35) detects conflicts while the transaction is running, but defers conflict resolu-

tion to commit time, resulting in a new HTM architecture that performs well, is

scalable and easy to implement. Detecting conflicts while the transaction is run-

ning makes commit process much faster, and delaying the resolution at commit

time does not incur additional violations.
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Chapter 5

Architectural Details

In this chapter we discuss the architecture used and the decisions we took about

the architectural setup of the whole system. Furthermore, we explain in detail

the internals of each main component present in the system.

5.1 Architecture Overview

There are a lot of things to take into account and to decide when setting up

such a complex architecture (e.g., interconnection network used, cache hierarchy

setup, etc.). Our system is composed of 4 main components: the interconnection

network; the directories; the main memory banks; and the processors. As we can

see in Figure 3.1 the system is organized in nodes, each one has a directory, a

processor and a main memory bank. Nodes communicate with each other through

an interconnection network (ICN). In the following sections we explain in detail

each component.

5.2 The Processor

Figure 5.1 shows the internals of the processor we are simulating. As we can see in

the figure we will use two levels of private data cache (L1 and L2), both tracking

the speculatively state of the cache-lines read and/or written by the transactions.

In the CPU side there is a structure called Register File Checkpoint. This

structure is a replication of the register file present in any CPU. The register
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5.2 The Processor

file is an array of processor registers. Each architecture has its own set of pro-

cessor register of different kinds, such as: address registers, which are used by

instructions that indirectly access memory; data registers, used to hold numeric

values like integers and floating-point values; special purpose registers, including

the program counter or the stack pointer; and many others. Thus, the Register

File Checkpoint is used to take a snapshot of the current register file state at

the beginning of a transaction (i.e., when a begin transaction instruction is ex-

ecuted). In case a transaction aborts, the CPU uses the snapshot to restore its

state, this is necessary because we have to restart the execution of the transac-

tion to maintain atomicity and we need the CPU to be in the same exact state

it was when the transaction started. Note that if we restore the checkpoint, the

program counter will point to the first instruction of the aborted transaction (i.e.,

its begin transaction instruction).

Speculative state is stored in L1 and L2 caches. Note that we do not need

non-speculative state tracking since we assume an always-in-transaction scenario,

thus all memory accesses are transactional. Figure 5.1 presents data cache or-

ganization. Tag bits include dirty (D), valid (V), speculatively-read (SR) and

speculatively-modified (SM) bits. We have cache-line level speculative state track-

ing with one bit per field, but word-level tracking is also possible adding more

bits to the SR, SM and V fields. In a 32 bytes cache-line configuration, 8 bits per

line and per field would be needed.

The SM bit indicates that the corresponding cache-line has been modified

during the execution of a transaction. Similarly, the SR bit indicates that its line

has been read by a transaction. The valid bit as its name indicates marks invalid

data in the cache. Finally, the dirty bit is used to support write-back protocol,

we check the dirty bit on the first speculative write in each transaction. If the

bit is already set, we first write-back that line to a non-speculative level of the

memory hierarchy, in this case, to its associated main memory bank that can be

located in any node of the system.

As we said, we will use two levels of private cache. In fact, we need them be-

cause we need enough room to store all the speculative memory accesses of a run-

ning transaction, and with just one level of cache this would be very difficult even
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Figure 5.1: Detailed view of the processor internals.

for medium sized transactions since L1 caches tend to be small (∼32KB). How-

ever, some researchers have shown that, with relatively large L2 private caches

(∼512KB) tracking transactional state, it is unlikely that overflows occur in the

common case (21). Moreover, there are mechanisms to deal with the problem

with some performance penalties, of course (20; 30).

We will use set associative caches since they provide a good trade-off between

hit servicing time and miss rate. Direct mapped caches have the fastest hit times

since only one cache position has to be checked to know if a certain line is in the

cache, while in a full associative cache all positions have to be checked, but they

have the lowest miss rate because any cache-line can be placed to any position

(2). As for the replacement policy, when it comes time to load a new line and

evict (remove from cache) an old line, we use last recently used (LRU) policy in
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5.3 The Directory

a per-set basis.

The last two components we want to remark are the write set and the read

set. The first one stores all the written addresses during a transaction of the

lines that need to be committed in a FIFO structure. The read set is used to

determine weather to violate and abort or just invalidate the line from the caches

when an invalidation message is received.

5.3 The Directory

The directory tracks information for each cache-line in the main memory housed

in the local node. This information involves a sharers list, a marked bit and an

owned bit as shown in Figure 5.2.

0x00000000
0x00000020

0x10000000

...

...

...

...

Directory Controller

NSTID

Skip Vector

... PN
Sharers List

Marked OwnedAddress P0 P1

Figure 5.2: Detailed directory structure view.

The sharers list indicates the set of processors that have speculatively accessed

the line, so when the line gets committed invalidations will be sent to those nodes.

The Owned bit tracks the owner for each cache-line, the owner is the last node

that committed updates to the line until it writes back to main memory (i.e, an

eviction occurs or the line is requested by another node, thus it has to be removed

from the private caches). The owner is indicated by setting a single bit in the

sharers list and the owned bit. The Marked bit is used to indicate lines that are

part of an ongoing commit to that directory. Each directory also makes use of a

controller that consist in the NSTID register and a structure called skip vector,

that allows the directory to keep track of unordered skip messages received.

Directories control access to a contiguous region of main memory. Only one

transaction, at any time, can send state-altering messages to the memory region

controlled by that directory, this transaction is the one that has the same TID
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5.4 The Interconnection Network

than the stored in the NSTID register of the directory. If a transaction has nothing

to commit to a directory it will send a Skip message with its TID attached. This

will make the directory mark the TID as completed. The key point is that

each directory will either service or skip every transaction of the system. If

two transaction have an overlapping write set, then the affected directory would

serialize the commits; in this case, the transaction with the lower TID will always

commit first, if the conflicting transaction is not aborted by the first one, then,

it can commit later. In other words, a transaction with a higher TID will not

be able to write to a directory until all transactions with lower TID have either

skipped or committed that directory. Moreover, a transaction cannot commit

until all transactions that could abort it have surely finished its execution. This

makes the protocol livelock-free and forward process guaranteed.

During the commit process, for each directory that has a satisfactory NSTID,

the transaction sends mark messages for the corresponding addresses in its write

set. Once marking is complete for all directories involved in the write set and

the transaction has received a NSTID higher than its own TID for each directory

involved in the read set, the transaction commits by sending a multi-cast Commit

message to the write set of directories. On receiving this message, each directory

will gang-upgrade (all at once) marked lines to owned and generate invalidation

messages if there are sharers other than the committing processor. If a transaction

after sending mark messages is aborted, it will send abort messages that will make

the directories gang-clear mark bits.

5.4 The Interconnection Network

All the messages that have to go from one node to another will use the inter-

connection network (ICN). We implemented a simple 2-D mesh ICN, as we show

in Figure 5.3 with a setup of 16 nodes. We will assume a fixed value of latency

per hope and we will always consider the shortest path between two nodes to

calculate the cost of sending a message through the network.
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5.4 The Interconnection Network

N0 N1 N2 N3

N4 N5 N6 N7

N8 N9 N10 N11

N12 N13 N14 N15

Figure 5.3: Interconnection Network distribution, node organized.
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Chapter 6

Cache with Directory Module

In this chapter we introduce the module that allows to handle the definition of

the cache hierarchy (L1, L2, etc.), main memory and directory structures using a

DSM schema. Statistics are incorporated at cache, main memory and directory

level; tracking events such as hits, misses and ticks spent amongst others.

In the following sections, details about the specification and implementation of

the cache module are treated. First, we show in detail all the possible transitions

that the cache can perform using a diagram, explaining the actions taken on

each transition. Followed by the functionalities needed to be implemented for

all the structures. Then, we show the possibilities that offer the statistics we

implemented. Finally, the chapter concludes with a unit test example and the

statistics obtained from its execution.

6.1 Cache State Transitions

In Figure 6.1 we show a diagram of the state transitions that are possible in our

cache implementation. It is based on five states that a line in the cache memory

can have. These five states are the ones we explained in Section 5.2 plus an

extra state, the “dirty and speculatively read” state. Since the hardware allows

for combined states set in the caches, we can take advantage of this feature and

serve as hits, without writing back, reads over dirty lines.

The diagram assumes only one level of cache, even though it extends to mul-

tiple levels, because we always maintain all private cache levels consistent if pos-
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6.1 Cache State Transitions

sible; that is, if a line is in speculatively read state in L1 and L2, and a write

takes place, we will access both levels to update data and state to speculatively
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Figure 6.1: Cache transitions state diagram.

Although Figure 6.1 is very clear, here is a brief explanation. We have to

remember that any data modification is stored into the cache and must not be

visible to the rest of the system. From each state we can either have a read or a

write. At the beginning, when the cache is empty and the CPU wants to access

a certain line, we will have a cache miss, thus we have to get the line from main

memory and the resulting state will be either SM if the access was a write or SR

if the access was a read. When in SM state any memory access will be a hit and

data read or updated in place. On the other hand, with SR state, if a write takes

place we have to change to SM state (updating data in place), but with reads the

state remains unchanged. Note that in the graph we show a transition that takes

place when committing a transaction, this transition is necessary to show how

the dirty state is reached. From dirty state if a write takes place, the line needs
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6.2 Configuration and Functionalities

to be written back to main memory because it is the only copy of a “visible”

portion of data, and then it has to be updated in place with the new value and

state changed to SM. Upon a read we change state to dirty and SR which has the

same behavior than dirty when a write is executed. We included the dirty and

SR state in the diagram for clarity, since when an evict occurs, in both cases, we

have to unset the owner in the directory and write back to main memory, but

in the second case, a transaction could be aborted because the address might be

part of the current transaction; thus, the actions taken are not exactly the same

for both states in some cases.

It should be taken into account that the state of a cache line can change

because of actions taken also by other CPUs, this is not represented in the graph.

Possible scenarios are:

• On receiving an invalidate message for a given address, that line will im-

mediately change its state to invalid. Note that we can never receive an

invalidation message for a line in dirty state, because if the line is set as

dirty it means that it is owned by the same processor in the corresponding

directory.

• On receiving a data request message, in this case the line must be dirty,

thus a write back takes place and the line is removed from the cache if it

was in dirty state or left as SR if it was in dirty and SR state.

6.2 Configuration and Functionalities

This module implements functionalities of three structures: cache, main memory

and directory. Here we will first show the configuration possibilities for these

structures and then its main functionalities.

In the cache structure side we can set several configuration parameters, we

now enlist the most important ones:

• Number of cache entries: A cache entry is a container with an associated

direct index. In associative caches an address can only be stored in one

of these entries that compose the cache. In Figure 6.2 we can see how an
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associative cache is filled, this figure shows a cache with two direct entries

with index 0 and 1.

• Associativity: The associativity of a cache determines how many cache

lines can be stored inside a direct entry. In the example of Figure 6.2 the

associativity is 2.

• Cache line size: As its name indicates this parameter sets the amount of

bytes stored per cache line.

• Cache access cost: The cost that takes to access the cache and service the

request. For example, if we have an L1 cache with 2 cycles access latency

and an L2 cache with 10 cycles access cost, it would take 12 cycles to get a

cache line stored in L2.

Main

Memory

.

.

.

Index

0

1

2

3

4

Index 0, Way 0

Index 0, Way 1

Index 1, Way 0

Index 1, Way 1

Cache

Memory

Figure 6.2: 2-Way associative cache fill.

The main memory structure also has some configuration parameters, the fol-

lowing list shows them:

• Address space size: Determines the total amount of main memory that the

system has distributed amongst all the nodes.

• Memory access cost: The cost that takes to access a main memory bank

and service the request. Following the previous example, with an access

latency of a hundred cycles, getting a cache line from main memory within

the same node would cost 112 cycles.
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Note that we are not talking about the 2-D Mesh interconnection network.

This is because we will not represent it as a structure since we just calculate the

minimum number of hops required to access or to reach a certain node from the

source, and calculate the latency multiplying the number of hops by a configurable

hop latency.

Each one of the three mentioned structures (cache, main memory and direc-

tory) has plenty of functionalities. Starting with the cache, the following list

shows the most important functionalities that have to be implemented.

• Get Line: Services a memory access of a given type (read or write), ex-

ploring the cache memory hierarchy in ascending order. If a hit occurs, we

found the line in the caches; otherwise, we have to forward the request to

the main memory level. Considering that accesses at main memory level

are always a hit.

• Service Request: Services a request started by another CPU over an owned

line that is present in this cache as dirty. The line is written back and

invalidated from the caches if it was just in dirty state, or written back and

left as sharer if it was in dirt and SR state.

• Invalidate Line: Instructs the cache to set as invalid a given cache-line

address.

• Evict Line: Evict (remove) a given cache-line address of the cache if present,

and also in the lower cache levels if any. When evicting a dirty line we have

to write it back. Note that evict is used when there is not enough room to

put another line inside the cache, thus evicting a line that is either in the

read or the write set of a running transaction would abort the transaction.

• Line Present: To know if a line is present in any valid state inside the cache.

• Get Line Size: To know the size of the cache-line in this cache, in bytes.

• Line Valid: Determines if an existing cache-line is in a valid state.

• Address to Entry: Function that relates an address with its associated direct

entry in this cache.

38



6.2 Configuration and Functionalities

• Address to Node: Function that relates an address with its associated node

in the system. We take the necessary bits to index the number of nodes

in the system starting from the 12th bit. This way we prevent memory

pages to be split over different nodes, 212 is equal to 4KB, the usual size of

a memory page.

Regarding main memory functionalities, assuming that any access will be

considered a hit, we have the following ones:

• Get Line: Services a line request that could not be serviced by the caches,

we always consider accesses to main memory as being hits.

• Write Back Line: Used when a write back to main memory takes place.

Directory functionalities are mainly to service the messages received from any

processor through the ICN. The most important are:

• Add Sharer: Sets a given processor as being sharer of a given cache-line

address in the directory sharers list.

• Remove Sharer: Removes the given processor from the sharers list of the

given cache-line address.

• Is Sharer: Determines if a given processor is sharer of the given line.

• Is Marked: Determines if an entry in the directory is set as Marked.

• Is Owned: Determines if an entry in the directory is set as Owned.

• Set Marked: Sets a given line as Marked.

• Set Owned: Sets a given line as Owned. The owner must be one of the

sharers of the line.

• Unset Marked: Unset a given Marked line.

• Unset Owned: Unset a given Owned line.

• Get Owner: Used to know the processor that is owning a given owned line.
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• Get Sharers: Used to know the list of sharers of a given line.

• NSTIDProbe: Probes the NSTID register of the directory.

• Skip: Updates the skip vector structure and the NSTID register according

to the received TID.

• Commit: Gang updates (all at once) all the Marked lines to Owned and

the directory generates invalidation messages to the sharers of these lines

(other than the owner).

• Abort: Instructs the directory to unmark Marked lines and update the

NSTID register (skip the actual value).

• Forward request: Send a cache-line request to the owner processor. Trig-

gered when a processor tries to access a line owned by another processor.

Almost all the functionalities listed also gather and update statistics that will

allow us to take conclusions about the different executions that we will show in

future sections.

6.3 Diagrams

Herewith we show, to have a general picture, a set of diagrams (Figure 6.3) that

illustrate the relations between the components of this module in our implemen-

tation. This diagrams have been automatically obtained using doxygen (3), which

is a very useful documentation system that we used to document the code.

The diagrams show the relations from the point of view of the cache and main

memory structures. As shown in Figure 6.3(a) both inherit from a structure called

GenericMemory that defines common attributes and functionalities.

Figure 6.3(b) shows the relations from the point of view of the cache structure.

Each cache has a parent and a child memory which must be of GenericMemory

type, that is, either another cache or main memory; obviously for the first level

there is no child memory. Each cache component has also its own statistics.

Figure 6.3(c) shows the same schema for the main memory structure, it also

has statistics and a child generic memory (of cache type in this case), but there
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is no parent since it is always at the top level. We have defined for convenience

the directory inside the main memory structure, which also has its own statistics.

GenericMemory

Cache MainMemory

(a) Generic memory inheri-
tance graph.

Cache

GenericMemory

_parent_memory
_child_memory

CacheStats

stats

(b) Cache relations diagram.

MainMemory

GenericMemory

_child_memory

Directory

directory

DirectoryStats

dstats

CacheStats

stats

(c) Main Memory relations diagram.

Figure 6.3: Inheritance and relation diagrams from cache and main memory point

of view.

6.4 Statistics

By having statistics we can use the information gathered to know if the system

that we are simulating is behaving as we expected, and we can also be aware of

system performance penalties and bottlenecks. Moreover, statistics can be used

to fix bugs and other problems related with programming. In this section we

show the different statistics that this module collects, we have stats for cache and

main memory which use the same interface and statistics for the directory that

gather mainly information about the messages received and sent.
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6.4.1 Cache and Main Memory Statistics

Figure 6.4 shows the struct that is used to manage the statistics at cache and

main memory levels. We use this interface for both. But, for example, when

collecting information at main memory level we will never have misses. On the

other hand, write backs are tracked only at main memory level.

We can gather information about the number of hits and misses, caused either

by a load or a store, at any level of the memory hierarchy; and the number of cycles

spent on each level. As we can see in the Figure there is a function to initialize

the counters and some functions to count each tracked event as it occurs. The

statistics are printed in a file when the execution finishes using the dump function.

We show an example of the output file obtained when executing one of the

unit tests we used during the development of the module later in this chapter.

struct CacheStats {

size_t ticks;

size_t hits;

size_t misses;

size_t misses_ld;

size_t misses_st;

size_t write_backs;

CacheStats() :

ticks(0), hits(0), misses(0), misses_ld(0), misses_st(0), write_backs(0)

{};

inline void reset() { ticks=0; hits=0; misses=0; misses_ld=0; misses_st=0; write_backs=0; }

inline void ticks_inc(size_t cnt=1) { ticks+=cnt; }

inline void hits_inc(size_t cnt=1) { hits+=cnt; }

inline void misses_inc(size_t cnt=1) { misses+=cnt; }

inline void misses_ld_inc(size_t cnt=1) { misses_ld+=cnt; }

inline void misses_st_inc(size_t cnt=1) { misses_st+=cnt; }

inline void write_backs_inc(size_t cnt=1) { write_backs+=cnt; }

inline std::ostream & dump(std::ostream &os, const char *prefix, size_t indentation) {

os << nspaces(indentation).c_str() << prefix << ":\n";

os << nspaces(indentation+4).c_str() << "Ticks: " << this->ticks << std::endl;

os << nspaces(indentation+4).c_str() << "Hits: " << this->hits << std::endl;

os << nspaces(indentation+4).c_str() << "Misses: " << this->misses << std::endl;

os << nspaces(indentation+4).c_str() << "Misses Load: " << this->misses_ld << std::endl;

os << nspaces(indentation+4).c_str() << "Misses Store: " << this->misses_st << std::endl;

os << nspaces(indentation+4).c_str() << "Write Backs: " << this->write_backs << std::endl;

return os;

}

};

Figure 6.4: Struct that handles the statistics at cache and main memory levels.
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6.4.2 Directory Statistics

In Figure 6.5 we show all the information tracked at directory level. It is very

important for us to know the directory load since our system is directory based.

The statistics track the number of accesses a certain directory has serviced

after an execution, along with the number of messages of each type it received

or sent. The resulting stats are dumped in a file using a similar function than

the one shown in Figure 6.4. An example of the output can be seen later in this

chapter.

struct DirectoryStats {

size_t accesses;

size_t add_sharer_msg;

size_t NSTIDProbe_msg;

size_t mark_msg;

size_t commit_msg;

size_t abort_msg;

size_t skip_msg;

size_t inval_sent_msg;

DirectoryStats() :

accesses(0), add_sharer_msg(0), NSTIDProbe_msg(0), mark_msg(0), commit_msg(0),

abort_msg(0), skip_msg(0), inval_sent_msg(0)

{};

inline void reset() { accesses=0; add_sharer_msg=0; NSTIDProbe_msg=0; mark_msg=0;

commit_msg=0; abort_msg=0; skip_msg=0; inval_sent_msg=0; }

inline void accesses_inc(size_t cnt=1) { accesses+=cnt; }

inline void add_sharer_msg_inc(size_t cnt=1) { add_sharer_msg+=cnt; }

inline void NSTIDProbe_msg_inc(size_t cnt=1) { NSTIDProbe_msg+=cnt; }

inline void mark_msg_inc(size_t cnt=1) { mark_msg+=cnt; }

inline void commit_msg_inc(size_t cnt=1) { commit_msg+=cnt; }

inline void abort_msg_inc(size_t cnt=1) { abort_msg+=cnt; }

inline void skip_msg_inc(size_t cnt=1) { skip_msg+=cnt; }

inline void inval_sent_msg_inc(size_t cnt=1) { inval_sent_msg+=cnt; }

...

};

Figure 6.5: Struct that handles the statistics for the directories.

6.5 Programming Methodology and Testing

We used a software development technique called Test-Driven Development (TDD)

(10), that relies on the repetition of a very short development cycle. First, the

developer writes a failing automated test case that defines a desired improvement
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or new function (a unit test), then produces code to pass that test and finally

refactors the new code to acceptable standards.

For this purpose we have developed up to 17 unit tests for this module that

test many functionalities, such as: cache-line addition and eviction, setting up a

memory hierarchy and check that the access times are correct, check that different

configuration parameters and cache-line sizes work as expected, check that direc-

tory sharers list and state bits are updated properly, and communication between

different nodes. Moreover, some stress tests were also used to prove robustness.

QT_TEST(testFourSqr)

{

QT_CHECK_EQUAL(4 * 4, 16);

}

Figure 6.6: Unit test example using QuickTest.

To build the unit tests we used a unit testing framework called QuickTest (9).

It is totally contained within a single header file and its goal is to let you write

each test with a minimal amount of code. It is assertion-based, so if a test fails

we can know the exact line that makes it fail. An example of usage is shown in

Figure 6.6.

6.6 Unit Test and Statistics Output Example

In this section we show an example of one of the unit tests we used and the

resulting statistics that we obtained after executing it. Figure 6.7 shows the test

example, and Figure 6.8 shows the statistics output for this test.

The test example, named cache hierarchy simplest, defines two levels of private

cache and the main memory level, thus a single node is defined. As we can see, the

first parameter of the constructors (lines 16-18) is an identifier that indicates the

node number at which the structures belong; followed, in the caches definitions,

by a string that names them, and a pointer to the parent memory in the hierarchy.

The rest of the parameters allow for configuration and the chosen values can be

seen in the figure, lines 2-14.
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At line 23 we are executing the first memory access at address A_addr, asking

for SR state, the number of cycles that will be needed to service the request is

put in the num_ticks variable. Thus, after the execution of the access we can

check with one of the macros provided by QuickTest if the servicing time is the

expected one. Since the caches are empty at this point, the access is a miss in

both L1 and L2 so accessing to main memory is needed. The time of accessing

the directory is included in the time of accessing main memory, so the access

time should be, as we can see in line 24, the sum of accessing all the memory

levels, that is, 112 cycles. If any of the QuickTest checks fails, an error message

is printed indicating the line where the error takes place.

At line 27 we access again the same location, but now the address is in both

L1 and L2 caches, meaning that a hit at L1 level occurs, and thus the cost of

the access is 2 cycles. Next access is done at line 31, where we are accessing a

new location that is going to be stored in the same direct entry than address

A_addr. We can ensure this because we are accessing a location that is the result

of adding to A_addr the entry cycle, which is the size of the line multiplied by

the number of entries. This means that now this direct entry is full in L1 since

its associativity is 2. Similarly than in the first access, this one takes 112 cycles

to complete.

At line 35 we are accessing again a new location that has to be stored in the

same direct entry. Since it is full, this will effectively evict the last recently used

cache-line (A_addr). Note, however, that the evicted cache-line is still in L2 due

to its higher associativity. To test that A_addr is still in L2 we access this location

again at line 39, checking that its access cost is the sum of L1 and L2 costs, 12

cycles.

To finish with the test example, at line 42 we print the statistics to a file using

the dump stats function. Note that it is called just at main memory level, but it

prints the stats of all the levels recursively. The output of the statistics is shown

in Figure 6.8.
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1 QT_TEST(cache_hierarchy_simplest) {

2 Addr addr_space = 8*GB;

3 size_t mem_access_cost = 100;

4

5 size_t L1_direct_entries = 4;

6 size_t L1_cl_size_bytes = 64;

7 size_t L1_associativity = 2;

8 size_t L1_hit_cost_ticks = 2;

9 size_t L1_entry_cycle = L1_cl_size_bytes * L1_direct_entries;

10

11 size_t L2_direct_entries = 128;

12 size_t L2_cl_size_bytes = 128;

13 size_t L2_associativity = 8;

14 size_t L2_hit_cost_ticks = 10;

15

16 MainMemory main_mem(0, addr_space , mem_access_cost);

17 Cache L2(0, "L2", &main_mem , L2_direct_entries , L2_associativity ,

L2_cl_size_bytes , L2_hit_cost_ticks , IS_TOPLEVEL_CACHE);

18 Cache L1(0, "L1", &L2, L1_direct_entries , L1_associativity , L1_cl_size_bytes

, L1_hit_cost_ticks , !IS_TOPLEVEL_CACHE);

19

20 const Addr A_addr = 100000000;

21

22 size_t num_ticks = 0;

23 L1.cl_get(A_addr , STATE_S , num_ticks);

24 QT_CHECK_EQUAL(num_ticks , mem_access_cost+L2_hit_cost_ticks+

L1_hit_cost_ticks);

25

26 num_ticks = 0;

27 L1.cl_get(A_addr , STATE_S , num_ticks);

28 QT_CHECK_EQUAL(num_ticks , L1_hit_cost_ticks);

29

30 num_ticks = 0;

31 L1.cl_get(A_addr+L1_entry_cycle , STATE_S , num_ticks);

32 QT_CHECK_EQUAL(num_ticks , mem_access_cost+L2_hit_cost_ticks+

L1_hit_cost_ticks);

33

34 num_ticks = 0;

35 L1.cl_get(A_addr +2* L1_entry_cycle , STATE_S , num_ticks);

36 QT_CHECK_EQUAL(num_ticks , mem_access_cost+L2_hit_cost_ticks+

L1_hit_cost_ticks);

37

38 num_ticks = 0;

39 L1.cl_get(A_addr , STATE_S , num_ticks);

40 QT_CHECK_EQUAL(num_ticks , L2_hit_cost_ticks+L1_hit_cost_ticks);

41

42 main_mem.dump_stats("Test 8 stats");

43 }

Figure 6.7: Unit test example, cache hierarchy simplest.
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The statistics gathered should match with our explanation above. If we sum

the number of hits and misses at L1 level we obtain the total amount of accesses

done, 5 in this case. There was only one hit at this level, the one done by the

access at line 27; therefore, the rest of the accesses were misses. Since one access

was serviced by L1 there were 4 accesses that reached the L2 level, again one of

them was a hit (line 39), and the rest were misses that had to query the main

memory level. Since we access to 3 different locations there were 3 messages to

the directory of type Add Sharer. Note that we count timings in a cumulative

way on each level, so in L1 we count also the time it takes to the other levels in

the hierarchy to service the requests, thus we know the total amount of cycles

it took to service all the accesses, 350 cycles, of which 300 were spent just on

accesses to the main memory level.

Statistics:

# Test 8 stats

- main_mem:

Ticks: 300

Hits: 3

Misses: 0

Misses Load: 0

Misses Store: 0

Write Backs: 0

- directory:

Accesses: 3

Add Sharer messages: 3

NSTIDProbe messages: 0

Mark messages: 0

Commit messages: 0

Abort messages: 0

Skip messages: 0

Invalalidations sent messages: 0

L2:

Ticks: 340

Hits: 1

Misses: 3

Misses Load: 3

Misses Store: 0

Write Backs: 0

L1:

Ticks: 350

Hits: 1

Misses: 4

Misses Load: 4

Misses Store: 0

Write Backs: 0

Figure 6.8: Cache statistics results of executing the cache hierarchy simplest test.
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Chapter 7

The HTM Module

In this chapter we introduce the HTM module, this module uses the cache with

directory module to define the memory hierarchy. This module mainly defines

the concept of transaction and the HTM interface.

In the following sections some details about the specification and implemen-

tation of the HTM module are discussed. First, we show a diagram of the pos-

sible state transitions a transaction can do, explaining the insights of each case.

Followed by a list of the functionalities needed to be implemented in all the

structures. Then, we show the relation diagrams and the possibilities that offer

the statistics we implemented. Finally, the chapter concludes with a unit test

example and the statistics obtained from its execution.

7.1 HTM State Transitions

In Figure 7.1 we show the state transition diagram for our HTM implementation.

Each transaction that is running in a processor has its own associated state (along

with other information). Thus the processor knows, depending on the current

transaction state, what to do. We will now explain in detail the actions that are

taken depending on the state of a transaction.

The initial state is the free state, even though, technically, code is never

executed while in free state. This is because we use the already mentioned always-

in-transaction approach. Meaning that every instruction has to be part of a

transaction, except for begin transaction instructions that will change the state

48



7.1 HTM State Transitions

to active. If any other kind of instruction is about to be executed while in

free state, a begin instruction is immediately executed before, thus an implicit

transaction starts.

COMMITTINGFREE ACTIVE

ABORT

+

ACTIVE

ABORT

+

WTC

begin tx commit tx

in
v
a
lid

a
ti
o
n

tx cannot abort

all dirs. readyWAITING

TO

COMMIT

reset tx state

re
sta

rt 
tx

re
sta

rt 
tx

in
v
a
lid

a
ti
o
n

Figure 7.1: HTM state transition diagram. WTC stands for waiting to commit

While in active state, both implicit and explicit transactions execute their

code normally. Two state-altering situations can occur when in active state: 1)

receive an invalidation message over a line that is part of the transactions

read set, then a conflict is detected and the transaction has to be aborted. Thus,

the transaction moves to abort+active state. Since the transaction had no as-

sociated TID, will ask the vendor to acquire one. Ones the TID is received, a

broadcast Skip message is sent to instruct the directories to update its skip vec-

tor and NSTID register, and the lines involved in the transaction are discarded

from private caches. Finally, the register file is restored and the transactional

information, including the state, is cleared. 2) execute a commit transaction

instruction, which will make the transaction ask for a TID and the state will

change to waiting to commit.

Ones in waiting to commit state, the processor starts the validation phase

to ensure that the transaction is serially valid by probing the directories like

we explained in Section 3.1. When all the directories are ready to service the

transaction, it reaches the committing state. As happened in active state, the

transaction can receive invalidations from other processors. If the invalidation
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makes the transaction abort it moves to abort+wtc state. The aborting process

is similar, but in this case, acquiring a TID is not needed since the transaction

already has one, and Abort messages are sent to the directories where Mark

messages were sent in the previous state.

After reaching the committing state the transaction can no longer be aborted,

and we are sure it will commit successfully. In this state the commit phase takes

place, Commit messages are sent to the writing set of directories to change marked

lines to owned, and these lines are also set as dirty in private caches. Now, the

commit process has finished, transactional information is cleared, and the next

transaction can start its execution following the same transitions.

7.2 Functionalities

This module introduces the concept of transaction, the definition of the HTM

interface and the TID Vendor, along with a “fake” processor implementation to

be able to test the module.

The processor will use the cache with directory module to define the memory

hierarchy, and has some wrappers to functions that interact mainly with the

caches. The TID Vendor objective is to service TID requests giving the next ID

available.

A transaction has, as we already know, an ID that is unique and a state associ-

ated. Furthermore, we need to have for each transaction its read and write sets of

addresses. So, basically the related functionalities are focused on interacting with

these parameters, such as: get and set a TID of a transaction; state-consulting

functions, for example, to know if the transaction is in free state; state-altering

functions, to change the transaction state; or to know if a certain line is present

in the read or the write set.

The HTM interface defines the new additional behaviors that a processor

needs to use in order to make transactional executions possible. Through the

interface the processor has access to the transaction information, so it can make

use of the transaction functionalities mentioned above. A list of these additional

behaviors and its description follows:
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• Is HTM ready: Checks if a processor can proceed to the next instruction,

this means that this will be done in a per-cycle basis, considering that the

number of instructions executed per cycle (IPC) equals one. First, we check

if there are pending invalidations to be treated, this operation may abort

the transaction by changing the state of the transaction to any of the possi-

ble aborting states, depending on the actual one. If there were invalidations

we have spent some time treating them, so we have to count it by adding

this delay to the processor cycles counter.

Then, after invalidations are treated, we check the state of the transaction

to take the appropriate action. If the state is either free or active, there is

nothing else to be done, we let the next instruction start its execution. If

the state is ready to commit, we will start probing directories (validation

phase), when all are ready we will change the state to committing to finish

the commit processes with the commit phase. Similarly, the appropriate

actions are taken for the aborting states, which were explained in the pre-

vious section. The processor is delayed as many cycles as needed for the

system to finish the actions required for each state.

We must not execute all the actions related to one state as if they were an

atomic task, since it would be unrealistic. For example, a processor should

be able to receive and process invalidations while executing the validation

phase. Thus, we need a way to allow a good degree of concurrency. Lets

say we are starting the validation phase, one round of Probing and Skip

messages is sent (considering that this is an atomic task) and the appropri-

ate delay is added. At this point, since there is more work to be done in the

validation phase, we prevent the processor to execute the next instruction of

the running program and we do not allow it to update the program counter

either. On the next cycle, the processor will try to execute the instruction

again, but it first checks if the HTM is ready, and since it is not, another

round of messages is sent, the instruction is not executed and the program

counter remains the same. This is done until the commit process finishes.

By fractioning the commit process we allow invalidations, or other events,

to be treated every time we check if the HTM is ready.
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• Begin transaction: Starts a new transaction, the transaction must be in

free state and changes to active state. A register file checkpoint is done as

well.

• Commit transaction: The transaction must be in active state, it acquires

a TID from the Vendor and sets its state to ready to commit. The rest

of the work is delegated to the is HTM ready functionality to allow for

concurrency.

• Read transactional: Is used whenever an instruction needs to execute a

read in the memory hierarchy. Essentially, we use the already explained

functionality get a cache-line, that we have in our cache structure. We add

the line address to the read set and then select the bytes from the line that

the instruction needs. The processor is delayed as many cycles as it took

to get the line from the hierarchy.

• Write transactional: Similarly than in the read, we get the line and then

we write the new value leaving the modified line in private caches.

• Terminate transaction: Either if the transaction committed successfully or

aborted we use this functionality to prepare the needed structures and to

update the statistics.

• Is part of transaction: To check if a given address is either part of the read

or the write set.

• Broadcast Skip: Sends a Skip message to all the directories of the system

for a given TID.

• Abort all: Sends an Abort message to the directories that have marked lines

of an aborted transaction.

• Commit all: Sends a commit message to the writing set of directories.

As happened in the previous module, the majority of these functionalities

gather and update statistics. It are shown in Section 7.4.
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7.3 Diagrams

7.3 Diagrams

In Figure 7.2 we show a couple of diagrams that allow us to see all the relations

between the different components of the module, including the components of the

cache with directory module, to see how they are used.

FakeCPU

CacheContainer MainMemory

main_mem

GenericMemory

_child_memory

Cache

_parent_memory
_child_memory

Directory

directory

DirectoryStats

dstats

CacheStats

statsstats

L1
L2

(a) FakeCPU relations diagram.

StccHTM

TIDVendor

tidVendor

TX

txs

TXStats

txstats

(b) Scalable TCC in-
terface relations dia-
gram.

Figure 7.2: Relation diagrams from FakeCPU and HTM interface point of view.

In the first diagram, Figure 7.2(a), we can see how the cache with directory

module is used by the FakeCPU structure. The diagram shows that it defines

two levels of private cache (L1 and L2) and main memory. We will consider

each FakeCPU as a node of the system, thus, for each FakeCPU defined, the

system has an extra node that affects the ICN topology and the distribution of
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the memory address space amongst the nodes.

The second diagram, Figure 7.2(b), shows the relations from the point of

view of the HTM interface. We should consider the interface as an extension

of functionality, available for all the processors. The interface can communicate

with the TID Vendor to obtain a TID when a transaction needs it. It can also

access and modify the transactions information, like its state, read set, write set,

etc. Statistics per-transaction basis are also collected.

7.4 Statistics

As we explained in the Section 6.4, statistics are very helpful to evaluate the

system and to make it error-free. In this section we show the statistics collected for

each transaction executed on the system and the resulting global HTM statistics.

7.4.1 Transaction Statistics

In Figure 7.3 we show the statistics that are gathered at transaction level, lines

2-17. So, for each TID we know the processor that executed the transaction,

if it committed successfully or aborted, and if it was an implicit or an explicit

transaction. Moreover, we also know the read and write set sizes, the number of

invalidations received from commits done by other transactions, the number of

cycles spent in the ICN by the messages sent to any directory, and the amount

of directory messages of each type sent. Finally, we also know the time when the

transaction started and its execution time in cycles.

We also show, as example, one of the functions that update the statistics of

the Add Sharer directory message, lines 21-25. Note that we are updating here at

the same time the statistics at global HTM level and we make distinction between

implicit and explicit transactions as we explain in the following section.

This stats are printed in a dedicated file formated with tab separated values

(TSV), easily exportable to a spreadsheet-like environment.
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1 struct TXStats {

2 int txid;

3 int cpuid;

4 bool committed;

5 bool real;

6 size_t rs_size;

7 size_t ws_size;

8 size_t invalidation_msgs_recived;

9 size_t dir_msgs_cycles;

10 size_t dir_msgs_addsharer;

11 size_t dir_msgs_nstidprobe;

12 size_t dir_msgs_skip;

13 size_t dir_msgs_mark;

14 size_t dir_msgs_commit;

15 size_t dir_msgs_abort;

16 size_t btx_time;

17 size_t exec_time;

18

19 ...

20

21 inline void dir_msgs_addsharer_inc(size_t cnt=1) {

22 dir_msgs_addsharer += cnt;

23 if (real) htm_stats_global.real_dir_msgs_addsharer_inc(cnt);

24 else htm_stats_global.forced_dir_msgs_addsharer_inc(cnt);

25 }

26

27 ...

28

29 };

Figure 7.3: Statistics gathered at transaction level.

7.4.2 Global HTM Statistics

In Figure 7.4 we show all the information we track at global HTM level. We

consider that all the necessary information we would need to extract conclusions

is included. In order to know the impact of having an always-in-transaction

execution we have separated stats for implicit and explicit transactions. Referred

in the figure as forced for implicit and real for explicit.

We track the number of begin and commit transaction instructions, the num-

ber of commits that finished successfully, the time spent during commit processes,

and the aborts due to conflicts; for both, implicit and explicit transactions. Fol-

lowing the layout of the transaction statistics we also have global stats for the
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1 size_t begin_instr;

2 size_t commit_instr;

3

4 size_t real_begin_instr;

5 size_t real_commit_instr;

6 size_t real_commit_finished;

7 size_t real_commit_cycles;

8 size_t real_aborts_conflicts;

9 size_t forced_begin_instr;

10 size_t forced_commit_instr;

11 size_t forced_commit_finished;

12 size_t forced_commit_cycles;

13 size_t forced_aborts_conflicts;

14

15 size_t real_dir_msgs_cycles;

16 size_t real_dir_msgs_addsharer;

17 size_t real_dir_msgs_nstidprobe;

18 size_t real_dir_msgs_skip;

19 size_t real_dir_msgs_mark;

20 size_t real_dir_msgs_commit;

21 size_t real_dir_msgs_abort;

22 size_t forced_dir_msgs_cycles;

23 size_t forced_dir_msgs_addsharer;

24 size_t forced_dir_msgs_nstidprobe;

25 size_t forced_dir_msgs_skip;

26 size_t forced_dir_msgs_mark;

27 size_t forced_dir_msgs_commit;

28 size_t forced_dir_msgs_abort;

29

30 size_t real_total_rd;

31 size_t real_total_wr;

32 size_t real_total_rd_wasted;

33 size_t real_total_wr_wasted;

34 size_t forced_total_rd;

35 size_t forced_total_wr;

36 size_t forced_total_rd_wasted;

37 size_t forced_total_wr_wasted;

38

39 size_t invalidation_msgs_recived;

40 size_t aborts_evictions;

41

42 size_t real_cycles_in_txs_total;

43 size_t forced_cycles_in_txs_total;

44 size_t diffcurTick;

45 size_t diffcurTick_parallel;

46 size_t diffcurTick_barrier;

Figure 7.4: Statistics gathered at HTM level.

56



7.5 Unit Test and Statistics Output Example

number of cycles spent in the ICN by the messages sent to any directory, and

the amount of directory messages of each type sent during the entire execution.

We also count the number of reads and writes done in both implicit and explicit

transactions, and the wasted amount of work due to aborts in this sense.

As in transaction level, we can know the number of invalidation messages

received, this is an indicator of the amount of shared data used during the execu-

tion; the higher this value is, the more accesses to shared data are done during the

execution. Two transactions accessing the same line always generate an invalida-

tion message when one of the transactions commits. Aborts caused by evictions

should not occur in any case, it would mean that we overflown the private cache

capacities and it could lead to an infinite abort cycle over the same transaction,

thus by looking at the statistics at runtime we have a mechanism to detect this

behavior, that would abort the execution if needed.

Finally, regarding timings, we count the time that the execution spends in

implicit and explicit mode in all threads; and the times that will allow us to

know if the system scales are: diffcurTick, that tells us the total amount of time

required to execute the test; diffcurTick parallel, is the time spent in the parallel

section, we will use this one to make the scalability study in Section 9.3; and

diffcurTick barrier, which is the time spent in barriers if any, useful to justify the

behavior of some executions that contain barriers.

As happened with transaction statistics this are also printed in a separated

file.

7.5 Unit Test and Statistics Output Example

We followed the same methodology than in the cache with directory module. So,

we have implemented a set of unit test using QuickTest directives and the test

driven development approach to develop this module. The unit tests check from

correct state transitions according to specific events to potential circular lock

cases, tri-conflict situations, or the so-called always-in-transaction approach.

The FakeCPU processor does not support any kind of timing measurements,

thus we will show a simplified version of the statistics output as example, that
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will show the relevant information for this test execution. Full use of the statistics

system is done in the final evaluation.

Figure 7.5 shows one of the unit tests we used to verify our module correctness.

It assumes a system with 32 processor (or nodes) defined, but we are using just

one of the processors at random. First, at line 8 we start a transaction with the

begin transaction instruction on the randomly picked processor. Then we read

the variable A from memory which is equal 100 and we store the read value in

the auxiliary Ard variable. Note that we are using the programs memory space

as main memory for this tests, and that this read operation loaded into our cache

structures the appropriated line. Now, both A and Ard are equal 100. Before

proceeding with the next instruction we check if the HTM is ready, since it is in

active state we can move on. At line 13, we perform a write over the variable

A with value 101, but this change is done only in private caches; thus, it is not

visible at program’s memory space. To check it, at line 14, we make a comparison

that verifies that variable A is still equal 100. After checking that we can continue

with the next instruction (line 15), we commit the transaction. This action will

again not make the line visible, it will be set as dirty in private caches and as

owned in the correspondent directory, verified by the check in line 20. The commit

instruction can take some time to finish the commit process, so we wait until the

HTM is ready again (line 18).

At line 23 a new transaction is started on the same processor. Next, we

proceed to read again variable A leaving the read value in Ard, this read changes

the line state from dirty to dirty and SR state in both of the private caches.

Note that now we read 101 (line 27), since we got the value directly serviced

as a hit from the private caches, where the updated copy of the data resides.

Now, we execute a write over variable A (line 30), which will effectively cause a

write back of the actual data residing in the private caches, making variable A

change its value to 101 in the program address space (checked at line 31). As

final observation, the value residing in the private caches at the end of the test

execution is 110, as a result of the last write executed that changed the value

right after the write back.

The statistic outputs are shown in Table 7.1 and Figure 7.6, the ones in the

table are at transaction level and the ones in the figure are at global HTM level. In
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1 QT_TEST(simple_write_back_tx) {

2 int cpuid = (int)(rand() % MAX_CPUIDS);

3 unsigned int A=100;

4 uint64_t Ard=0;

5 Addr refA = (Addr) &A;

6 const unsigned int origA = A;

7

8 QT_CHECK_EQUAL(HTM.begin_tx(cpuid), true);

9 QT_CHECK_EQUAL(HTM.read_tx(cpuid , refA , sizeof(A), &Ard), NoFault);

10 QT_CHECK_EQUAL(A, Ard);

11 QT_CHECK_EQUAL(HTM.is_htm_ready(cpuid), NoFault);

12

13 QT_CHECK_EQUAL(HTM.write_tx(cpuid , refA , sizeof(A), Ard+1), NoFault);

14 QT_CHECK_EQUAL(A, origA); // still not visible

15 QT_CHECK_EQUAL(HTM.is_htm_ready(cpuid), NoFault);

16

17 QT_CHECK_EQUAL(HTM.commit_tx(cpuid), true); // This does not write back!

18 while (HTM.is_htm_ready(cpuid) != NoFault) {};

19

20 QT_CHECK_EQUAL(A, origA); // still not visible at main memory level!

21 QT_CHECK_EQUAL(HTM.is_free(cpuid), true);

22

23 QT_CHECK_EQUAL(HTM.begin_tx(cpuid), true);

24 QT_CHECK_EQUAL(HTM.is_htm_ready(cpuid), NoFault);

25

26 QT_CHECK_EQUAL(HTM.read_tx(cpuid , refA , sizeof(A), &Ard), NoFault);

27 QT_CHECK_EQUAL(Ard , origA +1);

28 QT_CHECK_EQUAL(HTM.is_htm_ready(cpuid), NoFault);

29

30 QT_CHECK_EQUAL(HTM.write_tx(cpuid , refA , sizeof(A), Ard+9), NoFault);

31 QT_CHECK_EQUAL(A, origA +1);

32 QT_CHECK_EQUAL(HTM.is_htm_ready(cpuid), NoFault);

33

34 QT_CHECK_EQUAL(HTM.commit_tx(cpuid), true);

35 while (HTM.is_htm_ready(cpuid) != NoFault) {};

36 }

Figure 7.5: HTM module unit test example, called: simple write back transac-

tional.

the transaction statistics each row means an executed transaction. Since the unit

test executes two transactions we have two rows, each one showing a simplified

version with the relevant information. We can see that processor 26 executed

the transactions with TID 1 and 2 respectively. Both transactions committed

successfully and were explicit. Regarding the messages sent to the directory,
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7.5 Unit Test and Statistics Output Example

we can see that 31 Skip messages were sent per transaction, they were sent at

commit time, one for every other node on the system, as we stated before we are

considering a system with 32 nodes. On the other hand, just one Probe message is

sent since we are committing lines from a single directory. Note that the directory

message cycles is not time spent by the processor, it is the time that the ICN is

working to deliver the messages, and some of them do not make the processor

wait for an answer (e.g., Skip messages).

At HTM level (Figure 7.6), the statistics are usually divided in three sections:

the first one has general information and combines the information from both

explicit and implicit transactions; the second one has all the information related

with explicit transactions; and the third one has information regarding implicit

transactions, not shown in the figure because no implicit transactions were ex-

ecuted. As we already pointed out, processor clock dependent values are not

available at this stage.
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7.5 Unit Test and Statistics Output Example

Statistics:
HTM statistics TOTAL:
Begin instr: 2
Commits started: 2
Commits finished: 2
Commit cycles (total): 0
Aborts: 0
Dir. messages: 70
Inval. messages reciv: 0
Total TXnal reads: 2
Total TXnal writes: 2
Tot. TXnal reads wasted: 0
Tot. TXnal writes wasted: 0
curTick diff: 0
curTick parallel diff: 0
curTick barrier diff: 0
Cycles in TXs (all thr): 0

HTM statistics EXPLICIT TX:
Begin instr: 2
Commits started: 2
Commits finished: 2
Commit cycles: 0
Aborts evictions: 0
Aborts conflicts: 0
Dir. messages: 70
Dir. messages (cycles): 2500
Dir. messages addsharer: 2
Dir. messages nstidprobe: 2
Dir. messages skip: 62
Dir. messages mark: 2
Dir. messages commit: 2
Dir. messages abort: 0
TXnal reads: 2
TXnal writes: 2
TXnal reads wasted: 0
TXnal writes wasted: 0
Cycles in TXs (all thr): 0

Figure 7.6: Global HTM statistics, implicit transactions section not shown. Tim-

ings are not available.
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Chapter 8

Merging within M5 - The Process

This chapter explains the necessary steps to run M5 in Full-System mode, the

merging process and the problems we encountered.

8.1 Running M5 in Full-System Mode

First of all, we needed to build the M5 binary for Alpha architecture and Full-

System (FS) mode. To be able to run the simulator in FS mode we need a set of

files such as a disk image (filesystem), and pre-compiled binaries that include, for

example, the Linux kernel we will boot. All these files are available from the M5

site (5). Once everything is set we can launch the simulator using the provided

FS configuration and the Linux kernel should boot successfully.

At launch time we can specify a script to be executed just after the kernel

boots, if no script is specified the simulator waits for commands to be entered

in the terminal. To automate the process of executing the tests we will use

bootscripts to run the tests, as the one shown in Figure 8.1, that will be called

from another script that will launch all the executions while saving the statistic

files.

Note that in Figure 8.1 we are using a path (htm/st/genome) that is inside

the filesystem of the simulator. We modified the filesystem image to include our

test input data and binaries, compiled with and alpha cross-compiler.
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8.2 Modifications and Additions

# select bootscript with --script=this_script_path
m5 checkpoint
htm/st/genome -g256 -s16 -n16384 -t8
m5 exit

Figure 8.1: Bootscript to launch genome test with 8 processors,

bootscript htm genome 8.rcS.

8.2 Modifications and Additions

Several modifications and additions were necessary as part of the merging process

of the HTM module within the M5 simulator.

We want the simulator to recognize some new instructions to make possible

the execution of the begin and commit transaction instructions among others.

For this purpose we will intercept the XOR instruction, that called with an spe-

cific set of registers will be recognized as a customizable instruction. The Alpha

architecture has a register, R31, which is read-only and always contains the value

zero. Thus, this register is never used as destination of an operation in correctly

compiled code, but, we will hardcode XOR instructions with a specific combi-

nation of registers, having R31 as destination register. The simulator will detect

this kind of combinations after defining them using the special ISA language that

M5 uses to define the behavior of the instructions it supports, like we show in

Figure 8.2. This way, if the simulator executes an XOR instruction of the form

R31 = R1 ^ R31, the code in the htm_begin_tx function will be executed. Since

the R31 register is read-only, the execution of this instructions does not affect the

processor state at all.

We will use from now on the simulator processor structure instead of our

simple FakeCPU, the processor we will use is called AtomicSimpleCPU. It is an

in-order, one instruction per cycle CPU, that guarantees that once an instruction

has started its execution it cannot be interrupted in the middle of it. Many

modifications are necessary in the processor side to make our HTM module work

properly. First, we have to declare the memory hierarchy to be able to access

our cache modules. Then modifications to the read and write functionalities are

necessary to make them use our transactional versions, explained in the previous

chapter.
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8.2 Modifications and Additions

0x40: xor({{
/* For begin_tx: Rc = Ra xor Rb; R31 = R1 xor R31
* For commit_tx: Rc = Ra xor Rb; R31 = R2 xor R31
*/

if (this->srcRegIdx(1) == 31 && this->destRegIdx(0) == 31){
if (this->srcRegIdx(0) == 1){
fault = xc->htm_begin_tx();

}
else if (this->srcRegIdx(0) == 2){
fault = xc->htm_commit_tx();

}
...

}
Rc = Ra ^ Rb_or_imm;

}});

Figure 8.2: XOR-based HTM instructions, src/arch/alpha/isa/decoder.isa

The processor has a functionality called tick, it defines the work done in a per-

cycle basis: executing the next instruction and updating the program counter and

the system’s internal timer, called current tick. We modified this functionality,

thus at the beginning of this function we check if the HTM is ready, that will

either allow or prevent the execution of the next instruction. We prevent the

execution of an instruction by launching a fault exception we defined, called

HTMInstrRepeatFault. It does nothing but prevent the next instruction to be

executed. At the end of the function we reschedule this processor to a given

current tick, making it wait the time it took the execute the actions taken during

this tick function execution.

Still in the processor side, we added the register file checkpoint and restore

capabilities, used when a begin transaction instruction or an abort occur, respec-

tively. Since we are executing code always in a transactional way, we should

be able to support all kind of code. Unfortunately, there are some things like

system calls and some specific instructions (e.g., conditional stores) that are not

supported inside transactions. The reason is quite obvious, this kind of opera-

tions cannot be easily rolled back (if at all). This is a known problem in the

TM community and there is specific research to address this problem, there are

successful proposals that allow system calls inside transactions with some per-

formance penalties (13). Since it would require a lot of effort to overcome this

problem, and it is not part of the project scope either, we will use another solu-
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8.3 Problems Encountered

tion that we now describe. Even with all the modifications, M5’s original memory

system is still functional, working in a second plane. Thus, we will switch to it

when the system enters in kernel mode, and switch back to transactional execu-

tion on returning from kernel mode. This does not affect our results, because

going to kernel mode happens in very rear occasions while in the parallel section

(part of a test were the threads are running concurrently), and we never enter in

kernel mode on explicit transactions. Moreover, the time spent in kernel mode is

not counted as part of the execution time in our statistics, so we can thing about

this as having cost-free kernel mode executions.

We also implemented our own mechanism to count time spent in the parallel

section, by using the simulators current tick variable. So we can easily obtain the

time spent inside a region of code by subtracting the exit instant by the entry

instant. Finally, we had to adapt the compilation scripts to accept the new source

files in the compilation tree.

8.3 Problems Encountered

We found several problems during the whole process of merging the HTM with

the simulator. We now discuss the most relevant.

For example, as we explained in the previous section, we are using XOR

instructions that have a read-only destination register. The simulator by default

was renaming this instructions putting NOPs (No OPeration) instead, because

this XOR instructions are useless from the simualtors point of view. It took us

some time to notice this fact and we had to disable this feature from the simulator,

that was indeed renaming instructions that have R31 as destination register.

A very interesting problem we had also is thread migration. The Linux ker-

nel, for some reasons, performs thread migrations between processors. Since with

transactions we have all the memory updates in private caches, migrations while

a transaction is running must not be allowed, because all the speculatively mod-

ified data is lost. Apparently the only solution against a thread migration is to

abort the running transaction and restart it in the new processor. But this is

not even possible since we will not have the correct register file checkpoint on

that processor. To overcome this problem we used the PLPA (Portable Linux

66



8.3 Problems Encountered

Processor Affinity) library (7). It allows us to associate threads with a particular

processor, so that thread will always be executed on that processor, no migra-

tions are allowed. Thus, we had to modify the test sources to pin each thread to

a different processor. This solution solved completely the problem.
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Chapter 9

Evaluation

In this section we evaluate our HTM module. We first discuss the system con-

figuration. Then, we introduce the methodology used to evaluate our proposal,

and finally we present and discuss our results.

9.1 System Configuration

We evaluate our HTM using a Full-System simulator based on Alpha 21264 ar-

chitecture, that was introduced in the previous chapter. Table 9.1 presents the

main parameters of the simulated system.

Feature Description

CPU 1–32 Alpha cores, 2 GHz, in-order, 1 IPC

L1 64-KB, 64-byte cache line

512 direct entries, 2-way associative, 2 cycle latency

L2 1-MB, 64-byte cache line

2K direct entries, 8-way associative, 8 cycle latency

ICN 2D mesh topology, 10 cycles link latency

Main Memory 100 cycles latency

Table 9.1: Parameters for simulated architecture.

The system configuration that we chose tries to be similar to those used in the

HTM literature (11; 19; 23; 29; 35), and realistic according to today’s hardware
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possibilities. All operations except loads and stores have a CPI of 1.0. We

assume that both L1 and L2 levels of cache are private per processor. When using

smaller caches than 1MB we observed poor performance. This is because all the

speculative transactional accesses cannot be kept in the cache, resulting in aborts

because of the cache evictions. However, nowadays, is common to have 1MB of

cache, or even more, at L2 level; and for the benchmarks we evaluated it is enough.

Moreover, the HTM module can be extended to support transactions that are

larger than private cache sizes by implementing virtualization mechanisms (11;

30).

9.2 Methodology

To evaluate our HTM implementation we will use the Stanford Transactional

Applications for Multi-Processing (STAMP) benchmarking suite (17). This suite

was designed specifically for evaluating TM systems. It consists of eight appli-

cations, representative from different application domains; with 30 different sets

of configurations and input data that exercise a wide range of transactional be-

haviors such as short and long transactions, and different sizes of read and write

sets, as we will show in the results section (see Section 9.3).

9.2.1 The STAMP Applications

STAMP consists of eight applications: bayes, genome, intruder, kmeans, labyrinth,

ssca2, vacation and yada. Table 9.2 gives a brief description of each benchmark,

and a more detailed explanation follows.

1) bayes implements an algorithm for learning the structure of Bayesian net-

works from observed data. A transactional implementation is much simpler than

a lock-based approach as using locks would require manually orchestrating a two-

phase locking scheme with deadlock detection and recovery to allow concurrent

modifications of the graph. bayes spends almost all its execution time in long

transactions that have large read and write sets. Overall, this benchmark has a

high amount of contention as the subgraphs change frequently.
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9.2 Methodology

Application Domain Description

bayes machine learning Learns structure of a Bayesian network

genome bioinformatics Performs gene sequencing

intruder security Detects network intrusions

kmeans data mining Implements K-means clustering

labyrinth engineering Routes paths in maze

ssca2 scientific Creates efficient graph representation

vacation online transaction

processing

Emulates travel reservation system

yada scientific Refines a Delaunay mesh

Table 9.2: The applications of the STAMP suite.

2) genome implements a process called genome assembly, which is the process

of taking a large number of DNA segments and matching them to reconstruct

the original source genome. By using transactions a deadlock avoidance scheme

is not needed. Overall, the transactions in genome are of moderate length and

have moderate read and write set sizes. Additionally, almost all of the execution

time is transactional, and there is little contention.

3) intruder is a signature-based network intrusion detection systems that

scans network packets for matches against a known set of intrusion signatures.

Overall, this test has a moderate amount of total transactional execution time

with moderate to high levels of contention.

4) kmeans algorithm groups objects in an N -dimensional space into K clusters.

The sizes of the transactions in kmeans are relatively small and so are its read

and write sets. Overall, this tests spends an small portion of its execution time

in transactions.

5) labyrinth calculates paths in a three-dimensional grid that represents a

maze. Overall, labyrinth has very long transactions with very large read and

write sets. Virtually all of the code is executed transactionally, and the amount

of contention is very high because of the large number of transactional accesses

to memory.

6) ssca2 constructs an efficient graph data structure using adjacency arrays
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#define BEGIN_TX asm volatile ("xor $1, $31, $31")
#define COMMIT_TX asm volatile ("xor $2, $31, $31")
#define BEGIN_SIMULATION asm volatile ("xor $13, $31, $31")
#define FINISH_SIMULATION asm volatile ("xor $12, $31, $31")
#define SIM_TIME_START asm volatile ("xor $4, $31, $31")
#define SIM_TIME_STOP asm volatile ("xor $5, $31, $31")
#define SIM_PARALLEL_START asm volatile ("xor $6, $31, $31")
#define SIM_PARALLEL_STOP asm volatile ("xor $7, $31, $31")
#define SIM_BARRIER_ENTER asm volatile ("xor $8, $31, $31")
#define SIM_BARRIER_LEAVE asm volatile ("xor $9, $31, $31")

Figure 9.1: New directives added to the STAMP tests.

and auxiliary arrays. This application does not spend much time in transactions

and the amount of contention is relatively low. Additionally, the length of the

transactions and the sizes of their read and write sets is also small.

7) vacation implements an online transaction processing system that emu-

lates a travel reservation operations. vacation spends a lot of time in transac-

tions and its transactions are of medium length with moderate read and write set

sizes. Using transactions simplifies a lot the the parallelization because designing

an efficient lock-based strategy is non-trivial.

8) yada implements an algorithm for Delaunay mesh refinement. This bench-

mark has relatively long transactions and spends almost all of its execution time

in transactions. Moreover, it has large read and write sets and a moderate amount

of contention. This tests was simpler to parallelize, according to its authors, with

TM than with locks.

9.2.2 Modifications Required

Some modifications were necessary to adapt the tests to our needs. We added

some new directives to execute functionalities present in the simulator side. Fig-

ure 9.1 shows the new directives we defined. Note that they use XOR-like in-

structions similar to the ones we presented in Section 8.2, so when the simulator

executes one of this XOR instructions, we intercept it, and we are able to exe-

cute a suitable piece of code that implements the functionality we want at that

moment.
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Using this directives we modified the applications code to define the transac-

tions using our BEGIN_TX and COMMIT_TX. Likewise, we used the BEGIN_SIMULATION

directive to instruct the simulator to switch to transactional execution, that is,

using our caches and HTM interface, and to start gathering statistics. On the

other hand, the FINISH_SIMULATION directive switches the simulator back to

non-transactional and flushes the statistics. The rest of directives are used to

calculate execution times. Thus, SIM_TIME directives calculate the time it takes

to execute the whole test, while SIM_PARALLEL directives calculate the time in-

side the parallel sections, and SIM_BARRIER directives calculate the time spent in

barriers for thread synchronization.

To overcome the problem of thread migration we mentioned before, we had

to modify the code to associate created threads with a particular processor using

the PLPA library. Finally, the compilation of the tests was done using a cross-

compiler for Alpha architecture, and the test binaries along with its input data

were uploaded to the filesystem of the simulator.

9.3 Results and Discussion

In this section, we analyze the performance of each of the applications to quantify

the effectiveness of our HTM module implementation based on the Scalable-

TCC protocol (19); we also study the impact of having an always-in-transaction

approach and include a detailed overview discussing the results obtained for each

application.

All the applications start as single threaded, execute initialization code, and

then create worker threads that start executing the parallel part of the applica-

tion. Since we are interested only in the time spent inside of this parallel section,

all the results shown correspond to the parallel section. We used the recom-

mended input configurations and data sets for the tests executions, specified in

(17). Moreover, kmeans and vacation were evaluated with two different conflict

rate settings, high and low, as their authors suggest.

Tables 9.3 and 9.4 show a complete set of statistics obtained from executions

that range from 1 to 32 processors. While in Figures 9.2 and 9.3 we can see the

scalability charts for each test. In the tables we can see the percentage of parallel
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section time spent in explicit (or real) transactions; the abort rate for both, all

(implicit and explicit) transactions, and for implicit transactions; the percentage

of parallel section time spent in commit processes for all transactions; the average

number of messages sent to a directory per explicit transactional access (excluding

messages sent by implicit transactions); percentage of received invalidations that

make a transaction (of any kind) abort; average number of wasted read and

write accesses per explicit transaction; average number of directories touched per

commit for implicit and explicit transactions separately; and the average number

of read and writes per explicit transaction.

As we can see in the tables, the time spent in explicit transactions differs

significantly from benchmark to benchmark, and explicit transaction sizes range

in average from four to over three hundred reads, and from two to over two

hundred writes per transaction. This wide range of time spent in transactions

and transaction sizes provides a good evaluation of the HTM system.

We can extract several conclusions by looking at the statistics tables. If we

take a look at the abort rate columns, we can see that the abort rates consider-

ing both implicit and explicit transactions are almost equal compared to explicit

transaction abort rates. This means that the abort rate regarding implicit (or

forced) transactions is negligible, reaching its maximum in kmeans-high with

0.91% (32 processors). This is the first indicator that tells us that the always-in-

transaction approach we are using does not introduce sensitive overheads. The

second indicator proves this affirmation, the percentage of parallel section time

dedicated to commit processes (including both implicit and explicit) is very small,

less than 0.14%, for all the tests. We achieve this low overhead at commit time

by not writing back data updates during the process, the data remains in private

caches until its requested (i.e.,accessed by another processor), and we send mes-

sages to the directory to mark and own the lines instead, which are much cheaper

than memory updates since we avoid paying the main memory latency for each

write done to the same node.

Looking at the number of directory messages sent per transactional access

(read or write) in explicit transactions, we can observe that in some tests such

as kmeans-low, kmeans-high or ssca2, the number of messages increases sub-

stantially while incrementing the number of processors; this is because memory
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accesses in this tests are using a lot of shared data, which requires a higher amount

of communication between nodes. However, in the worst case, the number of mes-

sages increases linearly with the number of processors; and in the common case

the increase is very small, compensating the fact that main memory is being split

over more nodes.

One of the key ideas that makes the protocol scale is the possibility of having

parallel commits of transactions that touch disjoint sets of directories. Thus,

for us is very important to know the average number of directories touched per

commit in both implicit and explicit transactions. As shown in the table, for

explicit transactions, the number of directories touched per commit is small in the

common case. With a maximum of five directories touched in the wost case, and

an average of 2.73 directories touched for 8 processors and 3.26 for 32 processors.

This numbers allow for a very good potential degree of parallel commits. On the

other side, for implicit transactions, the average number of directories touched is

very small, being lower than one in many cases, which suggest a large number of

read-only implicit transactions.

We see from the speedup curves in Figures 9.2 and 9.3 that the overall per-

formance of our HTM implementation is good compared to existing implementa-

tions. Average speedup with 16 processors is 8.09 and for 32 processors is 12.86.

We noted that some applications, genome and ssca2, have difficulties to scale

because of wide use of barriers for synchronizing the execution. The time spent

in barriers for these applications is shown in the figures with a green line and

triangle markers. As we can see, barriers severely damage scalability since the

time spent inside them increase considerably with the number of processors.

Looking at the applications in more detail gives us more insight into the

behavior of the HTM module.

1) bayes has a discreet speedup for a low number of processors but has an un-

expected performance boost when executing with more than 8 processors. Since

bayes has large transactions, as we can see in Table 9.4, we thought this boost of

performance was because of a sudden increase of hits in one of the cache levels,

due to hot memory addresses fitting in caches. However, we checked this possi-

bility by looking at the cache statistics, and we found that the number of hits in

all the memory hierarchy levels remain quite constant comparing the executions
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9.3 Results and Discussion

with 8 and 32 processors. Therefore, after inspecting the source code and fur-

ther examining the STAMP paper (17) we have found that the execution time

is sensitive to the order in which the dependencies of the Bayesian network are

learned. Thus, the speedup curves are not as smooth as those for other STAMP

applications.

2) genome scales constantly up to 8 processor configurations (see Figure 9.3).

However, the barriers used to synchronize the execution saturate scalability and

make the application lose performance with 16 and 32 processors, were the pro-

cessors spend, respectively, 47% and 59% of the parallel section execution time

in barriers. We can also see the effect of barriers on the percentage of parallel

section time spent inside explicit transactions, shown in the first column of Table

9.4.

3) intruder curve shows a constant speedup, this is because the application

suffers from high abort rates, over 50% with 32 processors which severely degrades

scalability. This high abort rates make wasted memory access rise a lot, having

more than one hundred wasted accesses per explicit transaction. However, we

already expected the curve to be this way since intruder has a high conflict

rate.

4) kmeans is evaluated with two different inputs resulting in low and high

contention (see Figure 9.2). For low level of contention it scales very well, up

to 21.5x with 32 processors. On the other hand, for high level of contention, it

scales at the same rate up to 8 processors, but with more processors the abort

rate starts to be significant reaching a 23%. Thus, the obtained speedup for 32

processors is lower than the one we obtained for low contention.

5) labyrinth is the test with the worst results. The reason is a high abort

rate combined with long running transactions, over five hundred memory accesses

per explicit transaction. This combination generates a lot of wasted work, as we

can see in Table 9.3, with almost nine thousand wasted memory accesses per

explicit transaction. However, we have found, after looking at the STAMP paper

(17), that for labyrinth to scale an early release (32; 33) of cache lines has to

be supported by the HTM. Early release means that a cache line is explicitly

removed from the transaction during the transaction execution, that it, before

it commits. In labyrinth’s application main loop, every transaction reads an
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entire dataset, and it consequently becomes part of the read set. On commit

every transaction wants to mark as owned some part of the dataset, so this part

of the execution is guaranteed to create conflicts on every commit. Since we do

not support early release, we have a fully conflicting execution.

6) ssca2 has, like genome, barriers to synchronize the execution. In this case,

we achieve good scalability up to 16 processors while having around 50% of the

parallel execution time spend in barriers (Figure 9.2). This test has very small

transactions and a very low abort rate as well (see Table 9.3). Thus, speedups

are drastically constrained because of the barriers, which already consume 25%

of the execution time with 2 processors.

7) vacation is the best performing application, and is evaluated with two

different conflict rates, high and low. As we can see in Figure 9.3 we have almost

the same speedups for both conflict rates, around 15x for 16 processors and 27x for

32 processors, presenting a very good scalability for all the configurations. In this

case, a higher amount of contention is not making the abort rate increase, thus

performance is not damaged as happened in kmeans-high with high processor

counts.

8) yada has a significant abort rate even with low processor counts (see Table

9.4), and even though the abort rate increases up to 34% with 32 processors,

it does so in a constant rate. This gives the application some margin to scale

in the same way for all the configurations, reaching a speedup above 8x for 32

processors.

In general, all the speedup curves obtained match the expected results ac-

cording to the characteristics of each application, and, in most cases, there are

significant speedups. We have shown that having an always-in-transaction ap-

proach does not damage system performance nor introduces significant overheads,

while leads to a simpler hardware design (non-transactional state tracking is not

needed).
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Figure 9.2: Scalable TCC HTM execution time, parallel section speedup over

single-threaded execution (1/2).
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Chapter 10

Project Analysis

This chapter exposes the project costs and its initial and final project time plan-

ning. It also discuss the achieved objectives and future lines of work. Finally,

personal conclusions conclude the chapter.

10.1 Project Planning

The planning of this project was very hard to do when the project started, since

the topic of the project, transactional memory, was completely unknown to us,

and we had no clue about how much time would take to learn the necessary

knowledge to achieve our objectives.

The project workload is split into three different work packages:

1. Introduction and generic modifications to The M5 Simulator.

2. Scalable-TCC HTM module.

3. Merge Scalable-TCC HTM module with The M5 Simulator.

For the reasons explained above, the initial plan was conceived after starting

the second work package, because until than moment we had no background to

know how many time would require to accomplish each task, and some tasks were

still not clear.

The project started the 26th of February and had an approximate duration of

6 months, ∼26 weeks, having as deadline August 31st. Fortunately, the project
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objectives were well defined since the beginning; fact that allowed us, after having

some background of the project’s topic and a general view of the tasks necessary

to complete each work package, to define an accurate planning. Thus, delaying

the creation of the initial plan a few weeks helped a lot to maintain the plan almost

unchanged in terms of tasks, and time estimations were also more accurate since

we had some hints about how much time would require each task to complete.

We now present the initial plan of time estimations for each work package,

with its tasks detailed; followed by the modifications required after each package

was completed.

10.1.1 Work Package 1

As we explained in the previous section, this work package was finished before

creating the initial plan. However, this package has a very small amount of

workload compared to the other ones, it took 13 days to complete.

In this package we learned about The M5 Simulator structure and its tools.

Moreover, after inspecting and get familiar with M5’s source code, some generic

modifications have been done to the simulator that will be useful in the future

when merging the Scalable-TCC HTM module into it.

Figure 10.1: Work package 1 Gantt diagram, initial plan.

Figure 10.1 shows the Gantt diagram for this package. The time assigned to

82



10.1 Project Planning

each task is not estimated, since the diagram was done after the package was

complete, so no modifications apply.

10.1.2 Work Package 2

This work package has the largest volume of work. Thus, the package itself is

divided in three sub packages. During the first one we read extensively about our

topic of research and we also developed the initial plan among other tasks shown

in Figure 10.2. The second packet focuses on the cache with directory module

(see Figure 10.3); and the third, on the HTM module (see Figure 10.4).

Figure 10.2: Work package 2 Gantt diagram, first sub package, initial plan.

The tasks for this first sub package were very straightforward and there was

no problem to accomplish all the tasks on time. Note that the time of the first

two task is not an estimation, since the initial plan was created after reading and

analyzing the Scalable-TCC proposal. Actually, we saved one day in the high-

level definition of the HTM interface, so this sub package was completed one day

before its scheduled deadline.

In the second sub package (see Figure 10.3), that started one day earlier than

the Gantt diagram shows, we had some time miss prediction in the implemen-

tation task, since combining implementation with unit testing reveals some bugs

that need to be fixed at the moment, and the implementation time increases; it

took five extra days. In contrast, bug fixing task was less time consuming since
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the major part of the bugs were identified during the implementation, it took one

day. The rest of the tasks were completed in the time predicted. Overall, after

finishing this sub package we were two days delayed from initial schedule.

Thus, the last sub package starts with two days of delay. As happened with

the previous one we had the same problem with the implementation task, it took

three extra days, and we saved one day in the bug fixing task. Having unit tests

helped a lot to find difficult bugs and to maintain functionalities working during

the implementation process, even though it took some extra time. Thus, this sub

package and the whole second work package finished with four days of delay.

10.1.3 Work Package 3

The last work package consists in the merge of the HTM module with the sim-

ulator and results evaluation. We include here for completion the last task of

the project, documentation and formatting. Figure 10.5 shows the initial Gantt

diagram for this package.

We underestimated the time to run successfully the stress tests at this final

stage, some hard to track bugs came up and resulted to be time consuming. Thus,

the task took three extra days; in contrast, the time it took to run successfully

the STAMP tests, since we already fixed a lot of bugs in the stress test execu-

tions, took one day less. However, when we did the initial planning we forgot an

important task, the modifications required in the STAMP tests source code, task

that took 2 days to accomplish.

Overall, when we finished the tasks of the third package, excluding the final

documentation task, we had eight days of delay. However, at that time more or

less, we were able to move the deadline of the project to the 9th of September,

giving us seven extra days to finish the project. Even with this extra time, we

had to work hard to finish this documentation in time, since writing in a foreign

language is much more difficult than in a native language.
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10.2 Project Cost

In this section we present the economic study of the project costs. The costs of

the project are divided in human, hardware and software costs.

10.2.1 Human Resources

This project has been developed in a research center which targets mainly PhD

students. This fact conditions this study since the organization in this kind of

centers differs from normal companies organizations.

The development of this project required the intervention of an analyst, a

developer, and an advisor or project manager. Table 10.1 shows the human costs

separated per working role, hours of dedication and estimated salary per hour.

From the Gantt diagram we can see that the initial plan included 133 days of

work, but after changing the deadline of the project, it took a total of 140 days

to complete, 1120 hours.

Role Hours of dedication Price/Hour Total

Analyst 450h 25e 11250e

Developer 670h 20e 13400e

Project manager 30h 35e 1050e

Total 25700e

Table 10.1: Total human resources costs.

10.2.2 Hardware Resources

Regarding hardware costs, we have to consider a personal computer and a server

where the test were executed. Moreover, an additional screen was also provided

since working on laptop screen is not comfortable. Table 10.2 summarizes the

costs.
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Hardware Description Cost

Personal Computer Lenovo Thinkpad T400 1350e

Monitor Fujitsu ScenicView B19-2 125e

Server 4 x Intel Xeon 5160 3GHz; 16GB RAM 2750e

Total 4225e

Table 10.2: Total hardware resources costs.

10.2.3 Software Resources

All the software used to develop this project has free license, starting from the

Ubuntu Linux operating system. We now enlist all the applications used during

the project:

• Mercurial: is a distributed version control system.

• Doxygen: is a documentation system, it can generate an on-line documen-

tation browser and an off-line reference manual from a set of documented

source files.

• CMake: is an extensible, open-source system that manages the build process

in an operating system and in a compiler-independent manner.

• Vim: is an advanced text editor that seeks to provide the power of the

de-facto Unix editor ’Vi’, with a more complete feature set.

• QuickTest: is a simple C++ unit testing framework.

• OpenProj: is a free, open source desktop alternative to Microsoft Project.

• Kile: is a user friendly TEX/LATEXeditor.

• LATEX: is a document markup language and document preparation system

for the TEXtypesetting program.

• The M5 Simulator: is a modular platform for computer system architecture

research.
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• Scons: is a software construction tool (build tool, or make tool) imple-

mented in Python.

• Python: is a programming language that lets you work more quickly and

integrate your systems more effectively.

• OpenOffice: is a free office applications suite.

• Inkscape: is an open source vector graphics editor, with a lot of capabilities.

10.2.4 Total Cost

Table 10.3 shows the total cost of the project, considering: human, hardware and

software costs.

Resources Cost

Human 25700e

Hardware 4225e

Software 0e

Total 29925e

Table 10.3: Total costs.

10.3 Achieved Objectives

At the end of this project both main objectives have been accomplished.

We have successfully developed an HTM simulator. We obtained, through full-

system simulation, significant speedups that reach 27x for configurations with 32

processors, making TM a promising approach for parallel programming. More-

over, our HTM implementation allows for multiple configuration options. This

options can be tuned to user needs to see its effect in the results, where our

complete statistics system provides a lot of information about the executions.

Furthermore, our results are used to compare performance with another ap-

proach developed in the Center that is presented in an upcoming article that will

be published in a near future (35).
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10.4 Future Work

Even though the simulator is fully functional now, there are a lot of things to

work on to make it more complete.

One of these extra functionalities would be additional support for long-running

transactions that overflow hardware capabilities, using one of the approaches we

already commented.

It would also be interesting to provide a user-friendly way to modify the

configuration of the simulator, since in the actual version it is possible only by

directly modifying the source code definitions. Thus, using a text configuration

file, for example, would make much easier to change the configuration and to

automate the process of running the simulator with different configurations.

Finally, we would like to add support for nested transactions, since there are

applications that use them (not in STAMP) and we would like to be able to

execute as much applications as possible.

10.5 Personal Conclusions

During these months in the Barcelona Supercomputing Center – Microsoft Re-

search I have learned a lot of things, in both technical and personal sides.

The project was a challenge from the beginning, since the topic was completely

unknown to me. I had to learn all the necessary concepts fast to understand

clearly the proposals I had to analyze. Moreover, working with the simulator

was difficult at some stages, for example, the final executions were very difficult

to debug because the simulator is very complex. This experiences helped me to

mature in a professional way since I had to face many problems on my own and

to take decisions based in my own criteria.

I have had the opportunity to make this project in an international environ-

ment, with researchers of several countries from all over the world, that have

helped and taught me a lot of things. From their experience and endless skills I

have learned different work methodologies and new ways to do things much more

efficiently. This environment helped me to focus and pushed me to keep learning

every day.
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