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Abstract 
 
 
Helicopter is an aircraft that plays important role in transporting products, people…in society 
nowadays. It is complex mechanical equipment that corresponds many fields such as fluid 
mechanics, mechanics, control…Design it probably easy but fabrication and control it are not 
simple problem.  
 
The aim of research is to obtain a simulation and control model for the setup that has the 
principle of function like a real helicopter in laboratory in Automatic Control Department in 
Technical University Catalonia – Barcelona. This setup names Twin Rotor Multi Inputs - Multi 
Outputs System (TRMS) is manufactured by the Feedback Instruments Limited Company. It 
serves as a guide for the control tasks and provides useful information about the physical 
behavior of the system. It is also useful setup for study and practice of students to have a 
clearer look. 
 
On the main originalities of the present master thesis is the use on a control oriented model 
based on the use of a model that has linear structure but parameters varying with the 
operating point. This type of model is known as Linear Parameter Varying model (shortly, 
LPV model). Two procedures to obtain such a model are proposed. One based of rearranging 
the non-linear equations in such a way that the LPV parameters appear linearly. The second 
is based on linearizing the non-linear model around different operating points and the 
interpolation the parameters between them. 
 
Finally, the LPV model for the TRMS system obtained using either of the procedures 
described above can be calibrated using standard parameter estimation algorithms available 
in the Identification Toolbox in MATLAB. 
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1.  INTRODUCTION 
 

1.1 Motivation 
 
 
Helicopter is an aircraft which is lifted and propelled by one or more horizontal rotors 
consisting of two or more rotor blades. It has the ability to take off and land vertically and to 
maintain a steady hover in the air over a single point on the ground. This allows the helicopter 
to land and to take off from, including heliports in the middle of busy cities and rugged terrain 
in remote areas. The helicopter is used for rescue, medical evacuation and as an observation 
platform. Other operation that involve the use of helicopters are fire fighting, tours, as an 
aerial crane, logging, personnel, personnel transport, electronic news gathering, law 
enforcement, military and for pleasure. In reality, helicopters can land everywhere that only 
need the ground lager than 1.5 times the helicopters´ blades. 
 
Helicopter like aircraft can fly due to aerodynamic force or Zhukovski force. That is the 
different pressure between top surface and bottom surface of the blade when the air flows 
cover it.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.1 Model of aerodynamic force. 
 

 
The air flows around the blade that has lift and simultaneously appears drag. At the bottom of 
the blade has pressure higher than the top, recently, there is a force from the bottom to the 
top and is perpendicular with the blade. This different depends on blade’s profile, angle of 
attack-angle of flowing air (the cute angle measured between the chord of an airfoil and the 
relative wind) and rotation of the blades. So the blades rotate with certain speed that is 
enough for helicopter flying due to aerodynamic force, it means this force higher than 
helicopter’s weight. The shape and the angle of attack move through the air will determine 
how much lift force is created. After the helicopter lifted off the ground, the pilot can tilt the 
blades, causing the helicopter to tip forward or backward or sideward.  
 
 
 
 

Lift 

Thrus 

Weight 

Drag 
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There are many kinds of helicopters, nowadays; the popular kind is helicopter ´s model that 
has a lift blade and tail blade. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
Figure 1.2 Helicopter UH-1 

 
 

The blades of the helicopter are airfoils with a very high aspect ratio (length to chord). The 
angle of incidence is adjusted by means of the control from pilots. 
 
The main rotor of the helicopter may have two, three, four, five or six blades, depending upon 
the design. The main rotor blades are hinged to the rotor head in such a manner that they 
have limited movement up and down and also they can change the pitch (angle of incidence).  
The controls for the main rotor are called Collective and Cyclic Controls. 
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Figure 1.3 Main Rotor Blade System 

 
 
The tail rotor is small blades may have two or four blades and mounted on the tail of the 
helicopter, it rotates in the vertical plane. The tail rotor is controlled by the rudder pedals. Its 
pitch can be changed as required to turn the helicopter in the direction desired. 
 

 
 
 

Figure 1.4 Tail  Rotor Blade  
 

When the blades lift, the body of helicopter also rotates around the blade at contrast direction. 
So avoiding this phenomena, it has a tail blade at vertical direction, blow the air in horizontal 
direction. Created moment of tail blade can eliminate with moment cross-action of the body. 
Besides that, it plays role in changing the direction’s helicopter into horizontal plane.  
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This model is popular about 95% using it today because of simple technology, high stability, 
and high reliability. 
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1.2   Project objective 
 
 
This project is based on a two degree of freedom helicopter equipment (Twin Rotor Mimo 
System developed by Feedback) available at the laboratories of the Advanced Control 
Systems Research in the Automatic Control Department (ESAII) of Technical University of 
Catalonia (UPC). This model is a good multivariable control benchmark widely used in the 
literature. It allows illustrating the control of helicopter mechanics with two degrees of freedom 
that rotates around two directions. In order to design a controller a control-oriented model is 
required. On the other hand, to validate such controller before going to the real system, an 
accurate model in simulation will be used. To obtain both models (control and simulation 
oriented) mechanical physical laws should be applied. Some of the parameters of this model 
can be obtained from the manual of this equipment provided by the manufacturer, while some 
others should be obtained by experiments such as: magnitudes of physical propeller, length, 
mass, inertia, coefficients of friction, and impulse force…  

 
The objective of this project is: 

• to develop, calibrate and validate a simulation model  

• to develop, calibrate and validate a control model 
 

As a starting point, the model provided in the manual and some additional references will be 
used.    
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1.3 Content of chapters 
 
 
Chapter 1 is brief introduction of structure, functional principle of the real helicopter and 
objective this project.  
   
Chapter 2 consists of description of system, find and calculate its movements by 
experimental data. 
 
Chapter 3 implements the simulation of the system and the model LPV. 
 
Chapter 4 calibrates the system and technical identification. 
   
Chapter 5 Conclusion and future work. 
 
Appendix 
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2. MODELLING THE SYSTEM 
 

2.1 Description of system 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1 The Twin Rotor MIMO system 
 

 
The Twin Rotor MIMO System (TRMS) is a laboratory setup that is designed for control 
experiments. In certain aspects its behaviour resembles that of a helicopter. As Figure 2.1 the 
TRMS mechanical unit has two rotors placed on a beam together with a counterbalance 
whose arm with a weight at its end is fixed to the beam at the pivot and it determines a stable 
equilibrium position. 

 
The TRMS consists of a beam pivoted on its base in such a way that it can rotate freely both 
in the horizontal and vertical planes. Either the horizontal or the vertical degree of freedom 
can be restricted to 1 degree of freedom using nylon screws found near pivot point. At both 
ends of the beam there are rotors (the main and tail rotors) driven by DC motors. This device 
is a multivariable, nonlinear and strongly coupled system, with degrees of freedom on the 
pitch and yaw angle denoted by θv, θh. 
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Figure 2.2 Aerodynamic model of the TRMS. 

 
 

The state of the beam is described by four process variables: horizontal and vertical angles 
measured by position sensors fitted at the pivot, and two corresponding angular velocities. 
The tacho-generators are used to measure the angular velocities of rotors.  

 
In a real helicopter, the aerodynamic force is controlled by changing the angle of attack but in 
this model the aerodynamic forces are controlled by varying the speed of rotors, the angle of 
attack is fixed. 

 
A change in the voltage value results in a change of rotation speed of the propeller which 
results in a change of the corresponding position of the beam. 

 
Optical encoders: the light beams emitted by two light sources (A and B) go through two rings 
of slits on the disc. The slits have a phase difference, so that the electric outputs of the 
receivers (A and B) are rectangular waves with a phase difference. The sign of the phase 
difference allows the direction of rotation to be determined. 
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Figure 2.3 Position sensor 

 
The control signal flows from the computer through the D/A converter of the data acquisition 
board. The D/A outputs is wired to the power amplifier output which drives the DC motor. The 
power amplifier and encoder interface are located in the TRMS box. This box is equipped 
with two switches: the main power switch and cutting off switch the DC motor power. 
 

2.2 Characteristics of the motors 
 
It is necessary to identify the following non-linear functions: 

• Two non-linear inputs characteristics determining dependence of DC-motor rotational 
speed on voltage: 

Wm=P(urr), wt=P(utt) 
 

• Tow non-linear characteristics determining dependence of propeller thrust on DC-motor 
rotational speeds: 

Fh=Fh(wt), Fv=Fv(wm) 
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The static characteristics of the propellers should be measured in the case when not 
delivered with the equipment documentation or if the propellers were changed by user. In this 
case a proper electronic balance with voltage output [0-10V] is needed. The recommended 
range of input force is from 0 to 2 N. 

 

2.2.1 Main motor 
 
Having the main motor’s characteristics is done by experiment. Making the measurements is 
correct, first block the beam so that it can rotate around the vertical axis. Place the electronic 
balance under the beam in such a way that it is pulled vertically up by the propeller. To 
balance the beam in the horizontal position attaches the beam. Connect the voltage output of 
the electronic balance to A/D input No.3 of the PLC-812PG or RT-DAC data acquisition 
board. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.4 Measuring of main rotor characteristics 
 
 

The result we obtain: 
 

rrrrrrrrrrrrrrm uuuuuuuw 41.128345.6364.123826.12973.59999.90)( 23456
++−−+=  

 

mmmmmmv wwwwwwF
2243649512 10.544.910.632.110.123.410.09.110.48.3)( −−−−−

+−++−=  

 
 

2.2.2 Tail rotor 
 

To balance the beam in the horizontal position attaches the beam. Connect the voltage 
output of the electronic balance to A/D input No.3 of the PLC-812PG or RT-DAC data 
acquisition board. 

 



2. MODELLINGTHE SYSTEM                                                                                        page 11    

   

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 2.5 Measuring of tail rotor characteristic 
 

The result after measuring 
 

ttttttttttttt uuuuuuw 83.379627.26215.428369.1942020)( 2355
++−−=  

 

tttttth wwwwwwF 8080.010.808.110.511.210.595.110.3)( 2437411514
+−+−−=

−−−−
 

 
The rotational speed and the forces of the two rotors have the polynomial of the voltage. They 
are used in the subsystem and are the non-linear input characteristics.  

 

2.3 Equations of system 
 

2.3.1 Physical model 
 

The static characteristics of the DC motors with propellers are non-linear function which 
connects between a linear dynamic system and static non-linearity and the input voltage is 
limited to the range +/-10 volts. The linear part is in the form of first order transfer functions 
Gh=1/(ThS+1) and Gv=1/(TvS+1). The non-linear function utt and urr are characteristics of the 
DC motors. The non-linear relations between the rotor’s velocity and the resulting 
aerodynamic force can be approximated the quadratic functions: 

 

Fh= sign(wt)kh.
2

tw  

Fv= sign(wm)kv.
2

mw  

kh, kv are positive constants. 
 

Figure 2.6 presents the characteristic of the system. There are two propellers driven by DC 
motors at the end of the pivot. The articulated joint allows the beam to rotate in such a way 
that its ends move on spherical surfaces. 
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Figure 2.6 Schematic diagram of TRMS 
 

The physical model is developed under some simplifying assumptions: the dynamics of the 
propeller subsystem is first order differential equations; friction of the system is of the viscous 
type and propeller-air subsystem accordance with the postulates of flow theory. 

 

2.3.2 Mathematical model 
 
Solving the system is considered the rotation of the beam in the vertical plane around the 
horizontal axis. Applying the Newton’s second law of motion we obtain: 

 

2

2

dt

d
JM v

vv

θ
=  

∑ ∑
= =

==
4

1

8

1

,
i i

vivviv JJMM  

 
To determine these elements on above equation, consider the figure below and these 
parameters are described in the Table 1:  
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θv 
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Figure 2.7 Side view of TRMS. 
 

 
Moments of gravity forces (Mv1) applied to the beam and making it rotates around horizontal 
axis, consider the solution shown in Figure 2.7. 
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It can be expressed as 
 
                                                Mv1=g {[A-B] cosθv – C sinθv}                    
 

Where: 



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Moments of propulsive forces (Mv2) applied to the beam 
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Mv2= lmFv(wm) 

 

Moment of the centrifugal forces (Mv3) corresponding to the motion of the beam around the 
vertical axis. 

 

vvcbcbb

b

msmr

m

ttstr
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m
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Or in the compact form: 
 

vvhv CBAM θθω cossin)(2

3 ++−=   

Where 
dt

d h

h

θ
ω =             (1) 

 
Moment of friction (Mv4) depends on the angular velocity of the beam around the horizontal 
axis. 

vvv kM ω−=4  

Where 
dt

d v

v

θ
ω =             (2) 

 
According to fig 2.7 we can calculate components of the moment of inertia relative to the 
horizontal axis. 
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Table 2.1 TRMS model parameters in vertical axis 

 

Symbo
l 

Parameter Value Unit 

Mv Total moment of force in vertical plane f(θv) Nm 
Mv1 Moments of gravity force f(θv) Nm 
Mv2 Moments of propulsive force f(θv) Nm 
Mv3 Moment of the centrifugal force f(θv) Nm 
Mv4 Moment of friction  f(θv) Nm 
Jv Sum of moments of inertia relative to the horizontal axis 0.055864 kg-

2
m  

mrJ  Moments of inertia of the main DC-motor with main rotor 0.013132 kg-
2

m  

Jm Moment of inertia of main part of the beam 0.000278 kg-
2

m  

Jcb Moment of inertia of the counter weight 0.001149 kg-
2

m  

Jb Moment of inertia of the counter-weight beam 0.000495 kg-
2

m  

Jtr Moment of inertia of the tail motor with the tail rotor 0.012875 kg-
2

m  

Jt Moment of inertia of the tail part of the beam 0.000322 kg-
2

m  

Jms Moment of inertia of the main shield 0.015622 kg-
2

m  

Jts Moment of inertia of the tail shield 0.011962 kg-
2

m  

θv The pitch angle of the beam  rad 
θh The yaw angle of the beam  rad 
ωv The angular velocity of the beam around the vertical axis f(θv) rad/s 
ωh The angular velocity of the beam around the horizontal axis f(θh) rad/s 
kv Constant 0.00545371 Nms/rad 

kh Constant 0.055864 Nms/rad 
wm The rotational velocity of main rotor f(utt) rad/s 
wt The rotational velocity of tail rotor f(urr) rad/s 

mmr Mass of the main DC-motor with main rotor 0.228 kg 
mm Mass of the main DC-motor with main rotor 0.0145 kg 
mtr Mass of the tail motor with the tail rotor 0.206 kg 
mt Mass of the tail part of the beam 0.0155 kg 
mcb Mass of the counter weight 0.068 kg 
mb Mass of the counter-weight beam 0.022 kg 
mms Mass of the main shield 0.225 kg 
mts Mass of the tail shield 0.165 kg 
lm The length of main part of the beam 0.24 m 
lt The length of the tail part of the beam 0.25 m 
lb The length of the counter-weight beam 0.26 m 
lcb The distance between the counter-weight and the joint  0.13 m 
g Gravitational acceleration 9.81 m/

2
s  

rms Radius of main shield 0.155 m 
rts Radius of tail shield 0.10 m 
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Similarity, we can describe the motion of the beam around vertical axis as figure below 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.8 Top view of TRMS 
 
 

From Newton’s second law and the parameters in the Table 2: 
 

2

2

dt

d
JM h

hh

θ
=  

∑ ∑
= =

==
3

1

8

1

,
i i
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Moments of forces (Mh1) applied to the beam and making it rotate around vertical axis  
 

Mh1= lm Fh(wt)cosθv 

 

Moment of friction (Mh2) depends on the angular velocity of the beam around the vertical 
axis. 

 

 hhh kM ω−=2  

 
 

According to Figure 2.7 we can calculate components of the moment of inertia relative to the 
horizontal axis. 
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Or in compact form 
 

FEDJ vvh ++= θθ 22 sincos  

 
Where D, E, F is constant: 
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Using all above equations we find: 
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In horizontal axis we have: 
    

 
                                                                                                                       

                                                                                                            
 

And           
  

 
   , 
 
 

 
Table 2.2 TRMS model parameters in horizontal axis 

 

Symbol Parameters Values Units 

Mh Total moment of force in horizontal plane  Nm 
Mh1 Moments of gravity force  Nm 
Mh2 Moments of propulsive force  Nm 
Mh3 Moment of the centrifugal force  Nm 
Jh Sum of moments of inertia relative to the horizontal axis  kg-

2
m  

1hJ  Moments of inertia of the main DC-motor with main rotor  kg-
2

m  

Jh2 Moment of inertia of main part of the beam  kg-
2

m  

Jh3 Moment of inertia of the counter weight  kg-
2

m  

Jh4 Moment of inertia of the counter-weight beam  kg-
2

m  

Jh5 Moment of inertia of the tail motor with the tail rotor  kg-
2

m  

Jh6 Moment of inertia of the tail part of the beam  kg-
2

m  

Jh7 Moment of inertia of the main shield  kg-
2

m  

Jh8 Moment of inertia of the tail shield  kg-
2

m  

kc Cross reaction momentum gain -0.2  

T0 Cross reaction momentum parameter 3.5  

Tp Cross reaction momentum parameter 2  

Th Tail motor denominator parameter 1.1  

Sv Angular momentum in vertical plane for the beam   

Sh Angular momentum in horizontal plane for the beam   
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3. SIMULATOR OF TRMS SYSTEM 
 

 
In this chapter the implementation of the simulation model for the TRMS system is described 
using the mathematical model derived using physical laws presented in chapter 2. 
 
The implementation of this simulation model will be done using the Matlab/Simulink 
environment. 
 
The Matlab and Simulink environment are integrated into one entry, and thus we can analyse, 
calculate, simulate and revise our models in either environment at any point. We invoke 
Simulink within from Matlab.  

  
To control this system we have to do simulator and estimate the system by using Matlab 
tools. This simulator consists of 2 parts: Simulink and LPV2 model. 
 

 

3.1 Simulink TRMS system 
 

 
The TRMS system uses the program Matlab-Simulink. As we know this system is a non-linear 
mechanical system. The mathematical model that we found in chapter 2: 
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From the equations by using block diagram to simulate this system with the inputs and 
outputs. Using block diagrams is a pictorial presentation of the functions performed by each 
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component and of the flow of signals. The inputs are the voltages ut, ur of the tail rotor and 
main rotor, the outputs are angular velocity and position of two directions. All the variables 
and dynamic equations are compacted in the subsystem.  

 
The purpose of this Simulink shows us clearly about the movements of TRMS system and 
applies it to estimate the parameters using to control real helicopter. It means using the 
identification tool box in Matlab that we will do detailed in the next chapter. The outputs of the 
system are connected with the horizontal input and motor’s speed to see how the system 
works. 

 

Figure 3.1 Simulink in Matlab of TRMS system 
 

There are two horizontal and vertical inputs entering in subsystem and extracting the outputs 
by scope of Simulink. Here four outputs are gathered together to see the whole of system’s 
behaviour. 

 
All equations in the subsystem using values are from the model in laboratory and are done by 
experiments. The parameters are taken from the equipment to model its behaviour. Figure 
3.2 following describes the subsystem. The inputs ur, ut voltages supply to tail rotor and main 
rotor. The forces of two rotors can change by controlling the inputs. 
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Figure 3.2 Subsystem of TRMS 
 

The rotor’s characteristics that we analysed to generate the forces is a polynomial depending 
on the signal inputs and it is presented in speed of tail rotor and main rotor subsystem. Base 
on the equations of TRMS we use the block diagram to have figure above. 

 

3.2 Some basic concepts of mathematical models for control 
 

To control firstly we are sure to work by modelling and identifying throughout mathematical 
model. A mathematical model of a system is defined as a set of equations that represents the 
dynamics of the system accurately or, at least, fairly well. The dynamics of many systems, 
whether they are mechanical, electrical, thermal, economic, biological, and so on, may be 
obtained by using physical laws governing a particular system, for example, Newton’s laws 
for mechanical systems…Deriving the reasonable mathematical model is the most important 
part of the entire analysis.  

  
Mathematical models may assume many different forms. Depending on the particular system 
and particular circumstances, one mathematical model may be better suited than other 
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models. It is advantageous to use state-space representation. We will take into account some 
definitions in the mathematical model. 

 

3.2.1. State 
 

State of a dynamic system is the smallest set of the variable (called state variables) such that 
the knowledge of these variables at t=t0 together with the knowledge of the input for t≥t0 
completely determines the behaviour of the system for any time t≥t0.  
 
The concept of the state is by no means limited to physical. It is applicable to biological 
systems, economic systems, and others. 

 

3.2.2 State variables 
 
The state variables of a dynamic system are the variables making up the smallest set of 
variables that determine the state of the dynamic system. If at least n variables x1,x2…,xn are 
needed to completely describe the behaviour of the dynamic system (so that once the input is 
given for t≥t0 and the initial state at t = t0 is specified, the future state of the system is 
completely determined), then such n variables are a set of state variables. 
 
The state variables need not be physically measurable and observable quantities. Variables 
that do not represent physical quantities and those that are neither measurable nor 
observable can be chosen at state variables. 

 

3.2.3. State vector 
 
If n state variables are needed to completely describe the behaviour of a given system, then 
these n state variables can be considered the n components of a vector x. Such a vector is 
called a state vector. A state vector is thus a vector. A state vector is thus a vector that 
determines uniquely the system x(t) for any time t≥t0, once the state at t=t0 is given and the 
input u(t) for t≥t0 is specified. 

 

3.2.4 State space    
 

The n dimensional space whose coordinate axes consist of the x1 axis, x2 axis,…,xn axis is 
called a state space. Any state can be represented by a point in the state space. 

 

3.2.5 State space equations 
 
In state space analysis we are concerned with three types of variables that are involved in the 
modelling of the dynamic systems: input variables, output variables, and state variables. 
The dynamic system must involve elements that memorize the values of the input for t≥t0 . 
Since integrators in a continuous time control system serve as memory devices, the outputs 
of such integrators can be considered as the variables that define the internal state of the 
dynamic system. Thus the outputs of integrators serve as state variables. The number of 
state variables to completely define the dynamics of the system is equal to the number of 
integrators involved in the system. 
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Assume that a multiple-input-multiple-output system involves n integrators. Assume also 
there are r inputs u1(t),u2(t)…,ur(t) and m outputs y1(t), y2(t),…, ym(t). Define n outputs of the 
integrators as state variables: x1(t), x2(t),…,xn(t). Then the system may be described by 
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The outputs y1(t), y1(t),..,ym(t) of the system may be given by 
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Then from (4.1) and (4.2) become 
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The 1st equation (4.4) is the state equation and the second is the output equation. If they are 
linearized about the operating point state, then we have the following linearized state 
equation and output equation: 
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Where A(t) is called the state space matrix, B(t) the input matrix, C(t) the output matrix, and 
D(t) the direct state transmission matrix. 

 

3.3 Linear Parameter Varying (LPV) model for controlling the 
TRMS system 

 
Most of the existing control techniques are based in linear models. However, as we know the 
above equations of the TRMS system are non-linear. To solve these we have a lot of 
methods such as: perturbation methods, harmonic balance method, and numerical integration 
methods. 
 

• Perturbation methods: base on the hypothesis that the non-linearity is small, they allow to 
transform the system into several linear systems, for which an analytical solution is 
obtained. 

• Harmonic balance method: the solution is expanded in a truncated Fourier series, 
transforming the problem into an algebraic one. It’s a frequency domain method. 

• Numerical integration methods: time domain methods where the time is discrete. 
 
All these methods are useful for simulation but not for control. The idea in this master thesis 
is to use a model that is linear in the structure but preserves the non-linearity by obtaining 
how parameters vary with the operating point. This kind of model is known as a linear 
parameter varying (LPV) model. 
 
An LPV model for the TRMS system can be obtained by rearranging the non-linear equations 
presented in chapter 2: 
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All equations of this model can be described by state space (in code file 
..

ω=w ) 
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The LPV model is implemented as an S-function (named LPV2, see Appendix) of 
MATLAB/SIMULINK.   We will use this model to compare how well approximates the non-
linear simulation is.  The comparison between LPV2 model and the non-linear system TRMS 
using MATLAB/SIMULINK is presented in figure 3.3. 
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Figure 3.3 Simulator of TRMS 
 

We can know the movements of two directions (horizontal and vertical) in our model by 
plotting the graphs from scope block (horizontal and vertical signal outputs). From the inputs 
runs the Simulink and we obtained the results.   
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Figure 3.4 Horizontal signal outputs 
 
The signal outputs in horizontal direction show us behaviour of the system. From that we can 
know our system function at certain range that correspond the inputs (red colour) and will be 
stable after.  

Figure 3.5 Vertical signal outputs 
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Vertical position (cyan colour) is the movement of the beam in vertical plan. Like horizontal 
position our system will function around some positions and keep stably at certain points.   

 
The LPV2 model is applied in our system by using state space method that is compared with 
the non-linear model as figure below. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.6 Horizontal position of LPV2 and Simulink model 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.7 Vertical position of LPV2 (red) and Simulink model 
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In figure 3 there are different values of vertical position because in model LPV2 that divided 
by 0 so avoiding this problem we change the coordinates. To obtain exactly the vertical 
horizontal between them we can offset again to get the same result.     

 
Once the simulator for the non-linear and LPV models is finished, we have all the tools to 
simulate their behaviour. To control the real system we need to calibrate both models using 
real data. This step will be done in next chapter.  
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4. CALIBRATION OF TRMS SYSTEM CONTROL 
MODEL 

 
 

4.1. Introduction 
 

 
Calibration of the TRMS systems control model is done by using the identification toolbox in 
Matlab. Two different control models will be considered: 
 
- the linear parameter varying (LPV) model presented in chapter 3. 
- a linear model around a given operating point obtained using linearization 
 
The aim of this chapter is to tune the calibration algorithm using data coming from the 
helicopter simulation generated using SIMULINK model. Once the calibration algorithm has 
been validated, it will be applied using real data.   

 

4.2. Calibration of LPV model using MATLAB (pem command) 
 
4.2.1. Pem and mathematical model 
 
To calibrate the LPV model a set of experiments at different operating points will be 
performed in the TRMS system. Using data coming from these experiments and parameter 
estimation algorithms from Identification Toolbox in MATLAB parameters will be estimated. 
Once the parameters for each operating point have been obtained the variation of their value 
can be interpolated obtaining the LPV model. 
 
The parameter estimation algorithm used in MATLAB is the Pem (prediction-error 
minimization) algorithm.  This algorithm allows to estimate low-order continuous-time process 
models, linear state-space, and polynomial models. Pem also refine initial parameter 
estimates for all linear and nonlinear parametric models. 
 
Pem uses optimization to minimize the cost function that is a function of weighted sum of 
squares of the errors, defined as follows for scalar outputs: 
  

)(),( 2

1

teHGV
N

t

N

=

∑=  

 
Where e(t) is the difference between the measured output and the predicted output of the 
model. For a linear model, this error is defined by the following equation: 
 

[ ])()()()()( 1 tuqGtyqHte −=
−  

 
e(t) is a vector and the cost function VN(G,H) is a scalar value. The subscript N indicates that 
the cost function is a function of the number of data samples and becomes more accurate for 
larger values of N. G (t) is a operator that takes the input to the output and captures the 
system dynamics or G is a transfer function between u(t) and y(t). H is an operator that 
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describes the properties of the additive output disturbance and is the noise model. For 
multioutput models, the previous equation is more complex. 

 
The LPV model of TRMS is presented in chapter 3 with the equations rewriting (see detail in 
index):  
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From this analysis the structure of the system matrices can be inferred. This structural 
information will be used during the parameter estimation process using pem algorithm. 

 

4.2.2. Implementation method 
 

• In the first step  
 
we need to calculate the coefficients of matrix A and B for calibrating the model by pem 
command in Matlab. From the Simulink and all equations of the coefficients (a22, a24 ...) we 
use the block Fcn in Simulink Library Browser to get them. 

 
 
 
 
 
 
 

 
Figure 4.1 Function Fcn 

 
All functions will be calculated easily by this block. They receive the inputs and calculate 
outputs so we can extract values into Matlab. The simulink connects the blocks for calculation 
in figure 4.2.  
 

For example, the coefficient a22 (output) need to be calculated and the input here is θ. The 
function of a22 will be put in block and will give the values of a22. For other coefficients, we 
can similarity calculate. 
 

• The second step is estimating state space model with structured parameterization: 
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- Creating the data file of the model with name Trms (trms.mat). It contains of the input and 
output values from the workspace. 
 
- Specifying the state space model structure, first define the A, B, C, D matrices in the Matlab 
workspace. 
 

m=idss(A,B,C,D) 
 
Where A, B, C specify the fixed values and the initial values for free parameters. We put the 
calculated values of the coefficients taking from Fcn blocks in matrices.  
 
- After we create the nominal model structure, we must specify which parameters to estimate. 
To accomplish this, we must edit the structure of the following model properties: As, Bs, Cs, 
Ds. These structure matrices are properties of the nominal model we constructed and have 
the same sizes as A, B, C, D respectively. Set a NaN for the coefficient that we want to 
calibrate. 
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m.Ds=0 
 
 

The estimation algorithm only estimates the parameters in A and B have NaN value in As, Bs. 
Finally, use pem to estimate the model. 
 

m=pem(data,m) 
 
Data is trms.mat that we constructed initially consisting the inputs and outputs. 
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In Matlab the calculated values are not really continuous (discrete time) so solving this 
problem we change the algorithm into discrete time for making suitable values to estimate 

with sampling time ∆t=0.05.   
 
Equation (4.6) is rewritten: 
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And the state space of the model now is: 
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With this algorithm we can estimate our model.
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Figure 4.2 Calculating coefficients in state space 
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This non-linear system is solved by considering linear system around some operating points. 
In this case we consider 4 operating points to calibrate and find the behaviour of TRMS 
system. 

    

Figure 4.3 Operating points of the system 
 

These steps are taken from 0.001-0.20 divided 4 steps of the vertical input. Now with all 
known values we will write the codes in Matlab and extract the result. 

 

4.2.3. The results of calibration 
 

Using the pem command extends the Matlab computation environment and let us fit linear 
and nonlinear mathematical models to input and output data from the dynamic systems. The 
calculated and estimated results are in the table 4.1. 
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• The first step 0.001-0.05 

•  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 4.4 The 1st operating point calibration 
 

The preceding plot shows that the model output is in reasonable agreement with the 
measured output: there is an agreement of 98.71% (horizontal position) and 98.06% (vertical 
position) percent between the model and the validation data. 
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• The second step 0.05-0.10 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 4.5 The 2nd operating point calibration 
 

The preceding plot shows that the model output is in reasonable agreement with the 
measured output: there is an agreement of 99.18% (horizontal position) and 96.32% (vertical 
position) percent between the model and the validation data. 
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• The 3rd step 0.10-0.15 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 4.6 The 3rd operating point calibration 
 

The preceding plot shows that the model output is in reasonable agreement with the 
measured output: there is an agreement of 98.1% (horizontal position) and 97.85% (vertical 
position) percent between the model and the validation data. 
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• The 4th step 0.15-0.20 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 4.7 The 4th operating point calibration 
 

The preceding plot shows that the model output is in reasonable agreement with the 
measured output: there is an agreement of 97.58% (horizontal position) and 96.74% (vertical 
position) percent between the model and the validation data. 
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Table 4.1 Result of the calibration 

 

Matrices A B 
1 0.05 0 0 0 0 0 0 
0 1+0.05a22 0 0.05a24 0.05a25 0.05a26 0 0.05b22 

0 0 1 0.05 0 0 0 0 
0 0.05a42 0.05a43 1+0.05a44 0.05a45 0.05a46 0.05b41 0 
0 0 0 0 1+0.05a55 0 0.05b51 0 

State space 

0 0 0 0 0 1+0.05a66 0 0.05b62 

1 0.05 0 0 0 0 0 0 

0 0.98107 0 -0.00042 -86.718 -0.00032 0 0.096487 

0 0 1 0.05 0 0 0 0 

0 -0.00087 -0.05804 0.99511 -7.4081 0.00062 365.05 0 

0 0 0 0 0.68308 0 18.7 0 

1st 
Operating 

point 

0 0 0 0 0 0.96225 0 1.1429 

1 0.05 0 0 0 0 0 0 

0 0.98149 0 -0.00138 -88.728 -0.00014 0 0.19788 

0 0 1 0.05 0 0 0 0 

0 -0.00384 -0.05751 0.99508 -12.085 2.26E-03 1317.9 0 

0 0 0 0 0.61856 0 43.854 0 

2nd 
Operating 

point 

0 0 0 0 0 0.96425 0 3.3504 

1 0.05 0 0 0 0 0 0 

0 0.98161 0 -0.00227 -166.99 -0.00021 0 0.75132 

0 0 1 0.05 0 0 0 0 

0 0.00034 -0.05620 0.99512 -43.589 5.33E-03 9138.2 0 

0 0 0 0 0.27619 0 160.9 0 

3rd 
Operating 

point 

0 0 0 0 0 0.96544 0 5.5425 

1 0.05 0 0 0 0 0 0 

0 0.98254 0 -0.00312 -224.16 -0.00018 0 1.275 

0 0 1 0.05 0 0 0 0 

0 0.58318 -0.02029 1.006 -226.94 1.14E-02 19774 0 

0 0 0 0 0.13892 0 243.16 0 

4th  
Operating 

point 

0 0 0 0 0 0.96667 0 7.665 

  
 

Table 4.2 Stable points 
 

Stable points of the positions from simulation  

θv θh 

1st 
Operating point 

-0.92572912253694 0.105774462 

2nd 
Operating point 

-0.91345518281618 0.217876897 

3rd 
Operating point 

-0.88973319573281 0.316503334 

4th 
Operating point 

-0.85044590846964 0.387291297 
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We will plot some of coefficients in state space to see the parameters function around the 
operating point range. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 4.8 Estimated coefficients of matrix A 
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Figure 4.9 Estimated coefficients of matrix B 
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This model is non-linear that is applied to solve linear method but all coefficients are really 
non-linear and we can see from the graph they change around the operating points. 
 
Repeating the calibration that is described so far using real data coming from the real TRMS 
system, physical parameters of the real system can be estimated.  
 

 4.3. Calibration of a LPV model coming from linearization 
toolbox 
 
An alternative way to obtain an LPV model is to linearize the non-linear system around 
different operating points. This can be automatically done using the linearization toolbox in 
Matlab/Simulink.  

 
The procedure is as follows: From the window Simulink we choose button tools and linear 
analysis on tool bar. Matlab will automatically extract the value of the coefficients that we 
used block to calculate above. After that we realize the calibration. 

 
This operating point is at t=180 and it is estimated with 4 steps from 0.001-0.20. The results 
are in table 4.2. 
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Figure 4.10 Linearization toolbox window 
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• The first step 0.001-0.05 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

•  

•  

•  

•  

•  

•  

•  

•  
Figure 4.11 The 1st operating point calibration by linearization tool 

 
The measured and estimated values are fit together. Horizontal position is 97.41% and 
vertical is 97.63%  
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• The second step 0.05.0.10 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.12 The 2nd operating point calibration by linearization tool 
 
 

The measured and estimated values are fit together. Horizontal position is 85.71% and 
vertical is 80.62%  
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• The 3rd step 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.13 The 3rd operating point calibration by linearization tool 
 
The measured and estimated values are fit together. Horizontal position is 85.38% and 
vertical is 82.1%  
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• The 4th step 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.14 The 4th operating point calibration by linearization tool 

 
The measured and estimated values are fit together. Horizontal position is 84.04% and 
vertical is 79.6% . 
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Table 4.3 Result of the calibration by linearization tool 
 

Matrices A B 

a11 0 0 0 0 0 b11 0 
0 a22 0 0 0 0 0 b22 

a31 a32 a33 0 a35 a36 b31 b32 
a41 a42 a43 1 a45 a46 b41 b42 
a51 a52 a53 0 a55 a56 b51 b52 

State space 

a61 a62 a63 0 a65 a66 b61 b62 

0.93131 0 0 0 0 0 62.92100 0 

0 0.86675 0 0 0 0 0 178 

-0.02421 0.00004 0.99713 0 0.04997 0.00139 0.00001 0.00742 

0.08978 -0.00001 -0.01459 1 -0.00176 0.02426 0.00069 0.06726 

-0.00053 0.00000 -0.17206 0 0.99018 0.00197 0.00050 -0.00054 

1st 
Operating 

point 

0.00439 0.00007 0.00372 0 0.00907 0.97706 -0.00026 0.00472 

0.96724 0.00000 0.00000 0 0.00000 0.00000 61.85000 0.00000 
0.00000 0.87336 0.00000 0 0.00000 0.00000 0.00000 178 

-0.01037 -0.00017 0.99570 0 0.05156 0.00617 0.00002 0.39679 

0.00508 0.00209 -0.02035 1 0.00341 0.05420 0.00068 0.31079 

0.02716 0.00053 -0.17077 0 0.99236 -0.01346 0.00102 -0.00054 

2nd 
Operating 

point 

0.01428 -0.00078 0.00072 0 -0.01673 0.97959 -0.00025 0.00469 

0.97349 0.00000 0.00000 0 0.00000 0.00000 59.88100 0.00000 
0.00000 0.95854 0.00000 0 0.00000 0.00000 0.00000 178 

-0.00326 0.00011 0.99491 0 0.05075 0.00486 0.00003 0.04212 

0.00392 0.00043 -0.00496 1 -0.00237 0.04659 0.00066 0.64302 

0.00748 0.00008 -0.17044 0 0.99102 -0.04270 0.00185 -0.00054 

0.00980 -0.00019 0.00284 0 -0.00216 0.98521 -0.00023 0.00463 

0.94344 0.00000 0.00000 0 0.00000 0.00000 57.048 0 

0.00000 0.95742 0.00000 0 0.00000 0.00000 0.00000 178 

-0.36561 0.00021 0.99153 0 0.05207 0.01029 0.00004 -0.00832 
-1.21700 0.00053 -0.00694 1 -0.00079 0.03597 0.00002 0.25244 

0.68938 0.00007 -0.16397 0 0.99448 -0.05769 0.00284 -0.00052 

3rd 
Operating 

point 

-0.38194 -0.00022 0.00155 0 -0.00001 0.98611 -0.00177 0.00446 
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Figure 4.15 Estimated coefficients of matrix A by linearization 
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Figure 4.16 Estimated coefficients of matrix B by linearization 
 
The above results can be defined this model that is a good model and can continue to do 
next task (implement with real data and control…) 
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5. CONCLUSIONS AND RECOMMENDATIONS 
FUTURE WORK 

 
 

Twin Rotor MIMO system has a principal of function like a helicopter that has main rotor and 
tail rotor. Main rotor creates a lift force to lift the helicopter and tail rotor changes its direction 
but the structure is not the same. This model has been simplified to research in students´ 
study but it assures the similarity between them.  
 
This work analyses the mathematical model by using physical laws and simulates the system 
with Simulink – Matlab. This is an illustration to know the behavior of dynamic system clearly 
because of changing and making correct it easier.  
 
The result of calibration of the LPV model for TRMS system is over 90% between the model 
and validation data so we can say this model is good. Next step is to repeat the calibration 
process using real data. With the non-linear dynamic system, finding its solution is not simple 
work and it should be assured well to apply by testing and calculating many ways. This case 
we can use linearization method by describing the state space to solve it. The calibration is 
used by syntax command and linearization tool. The fitted values using linearization tool is 
smaller than syntax command because it just validates around one operating point when 
moving out this point is not good. 
 
The future work is: 
 

• Implementation with the real data that is measured by experiments with TRMS 
equipment to know exactly the movements and control. 

 

• Implementation of a control algorithm (for example, Model Predictive Control), that 
makes use of the LPV model proposed in the master thesis once calibrated using real 
data. 

 

• Test and validation of the control algorithm in the real TRMS system.  
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STATE SPACE OF LPV MODEL OF TWIN ROTOR MIMO SYSTEM 
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*** by  Maple: 

 

 
1. IN LPV2 WE HAVE THE VALUES OF THE MODEL 
 
g     =  9.81 
lb    =  0.26 
lcb  = 0.13 
lm   = 0.24 
lt    = 0.25 
mb = 0.022 
mcb = 0.068 
mm = 0.0145 
mmr = 0.228 
mms = 0.225 
mt          = 0.0155 
mtr = 0.206 
mts = 0.165 
rms = 0.155 
rts          = 0.1 
taomr = 1.432 
taotr = 0.3842 
 
A=(mt/2 + mtr +mts)*lt 
B=(mm/2+mmr+mms)*lm 
C=(mb/2)*lb + mcb*lcb 
D=(mb/3+mmr+mms)*lm2 
E=(mm/3+mmr+mms)*lm2 + (mt/3+mtr+mts)*lt2 
F=mms*rms2 + (mts/2)*rts2 
 
jtr = 0.00001*1.6543  kbal= 5/(2.895 *2048) 
jmr = 0.00001*2.65 
jv = 0.055846 
kv = 0.00545371 
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kh = 0.0095 
jh = Dsin(x)2 + Ecos(x)2+F 

 
2. DEFINITION THE PARAMETER TO OBTAIN LPV2 MODEL 

 
We put the parameters equally  
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STATE SPACE 
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%%     LPV2.m     

%%________ Programe LPV2 

%%________ From the non-linear equations 

%%________ Using S-FUNCTION           

 

function [sys,x0,str,ts] = sfuntmpl(t,x,u,flag); 

switch flag, 

  %%%%%%%%%%%%%%%%%% 

  % Initialization % 

  %%%%%%%%%%%%%%%%%% 

  case 0, 

    [sys,x0,str,ts]=mdlInitializeSizes; 

  %%%%%%%%%%%%%%% 

  % Derivatives % 

  %%%%%%%%%%%%%%% 

  case 1, 

    sys=mdlDerivatives(t,x,u); 

  %%%%%%%%%% 

  % Update % 

  %%%%%%%%%% 

  case 2, 

    sys=mdlUpdate(t,x,u); 

  %%%%%%%%%%% 

  % Outputs % 

  %%%%%%%%%%% 

  case 3, 

    sys=mdlOutputs(t,x,u); 

  %%%%%%%%%%%%%%%%%%%%%%% 

  % GetTimeOfNextVarHit % 

  %%%%%%%%%%%%%%%%%%%%%%% 

  case 4, 

    sys=mdlGetTimeOfNextVarHit(t,x,u); 

  %%%%%%%%%%%%% 

  % Terminate % 

  %%%%%%%%%%%%% 

  case 9, 

    sys=mdlTerminate(t,x,u); 

  %%%%%%%%%%%%%%%%%%%% 

  % Unexpected flags % 

  %%%%%%%%%%%%%%%%%%%% 

  otherwise 

    error(['Unhandled flag = ',num2str(flag)]); 

end 

% end sfuntmpl 

function [sys,x0,str,ts]=mdlInitializeSizes 

 

%Here define the number of inputs, outputs and states 

 

sizes = simsizes; 

sizes.NumContStates  = 6;   %No. State 

sizes.NumDiscStates  = 0; 

sizes.NumOutputs     = 6;   %No. ouputs (this case is 6 states) 

sizes.NumInputs      = 2;   %No. inputs 

sizes.DirFeedthrough = 1; 
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sizes.NumSampleTimes = 1; % at least one sample time is needed 

 

sys = simsizes(sizes); 

 

 

% Inicial parameters 

% x0  = []; 

THETA_0=0.5225;    %initial condition 30º=0.5225 

x0=[0 0 THETA_0  0 0 0]; 

 

% str is always an empty matrix 

str = []; 

% initialize the array of sample times 

ts  = [0 0]; 

% end mdlInitializeSizes 

 

function sys=mdlDerivatives(t,x,u) 

 

%initial variables 

g=9.81; 

lb=0.26; 

lcb=0.13; 

lm=0.24; 

lt=0.25; 

mb=0.022; 

mcb=0.068; 

mm=0.0145; 

mmr=0.228; 

mms=0.225; 

mt=0.0155; 

mtr=0.206; 

mts=0.165; 

rms=0.155; 

rts=0.1; 

taomr=1.432;  %cte time of main rotor 

taotr=0.3842; %cte time of tail rotor 

THETA_0=0.5225; 

A = (mt/2+mtr+mts)*lt;                      %0.09488; 

B = (mm/2+mmr+mms)*lm;                      %0.11046; 

C = (mb/2)*lb+mcb*lcb; 

D = (mb/3*lb^2)+(mcb*lcb^2);                %0.0016449; 

E = (mm/3+mmr+mms)*lm^2 + (mt/3+mtr+mts)*lt^2; 

F = mms*rms^2+(mts/2)*rts^2; 

       

jtr=0.00001*1.6543; 

jmr=0.00001*2.65;  

jv= 0.055846; 

kv= 0.00545371; 

kh= 0.0095; 

kbal = 5/(2.895*2048);       

 

jh = D*sin(x(3)-THETA_0)^2+E*cos(x(3)-THETA_0)^2+F;     %horizontal 

inertia 

 

% Polinomials 



APPENDIX                                                                                                                          page 62 

        

pwt = [2020 -194.69 -4283.15 262.27 3796.83 0];  %POLINOMIAl of 

FUNCION of U_TT 

pfh = [-.00000000000003 -.00000000001595 .00000025121766 -

.00018087473021 .08010909850208 0]; % polinomio en funcion de wt 

pwm = [90.99 599.73 -129.26 -1238.64 +63.45 1283.41 0]; %POLINOMIO EN 

FUNCION DE U_RR 

 

 

pfv = [-.00000000000348 .00000000109079 .0000041231489 -

.0001632767956 .095447585 0]; %polinomio en funcion de wm 

 

% Funciones 

    wt_utt = polyval(pwt,x(5));  

 

%------Characteristic the tail rotor(look MANUAL) 

 

liminf=-1381; 

limsup=1630; 

wt=max(min(wt_utt,limsup),liminf); 

    fh = kbal*polyval(pfh,x(5)); 

 

    wm_urr = polyval(pwm,x(6));%x(6)=urr 

 

%------Characteristic the main rotor(look MANUAL) 

 

liminfp=-568; 

limsupp=668; 

wm=max(min(wm_urr,limsupp),liminfp); 

    fv = kbal*polyval(pfv,x(6));  

 

    % ESTADOS x = [th,wh,tv,wv,utt,urr] % urr=Wm = x(5); % utt=Wt = 

x(6); %  

 

%Consider non-linear inputs  

 

krm_ur=90.99*(u(2))^6+599.73*(u(2))^5-129.26*(u(2))^4-

1238.64*(u(2))^3+63.45*(u(2))^2+1283.41*(u(2));  

krt_ut=2020*u(1)^5-194.69*u(1)^4-

4283.15*u(1)^3+262.27*u(1)^2+3796.83*u(1); 

 

% % Implement the differential equations of no-linear model 

 

% % % sys(1) = x(2); 

 

 

% % % sys(2) = lt*cos(x(3)-THETA_0)*(fh)/jh - (kh/jh)*x(2) + ((E-

D)*(cos(x(3)-THETA_0)^2)-(F+D))*jmr*(sin(x(3)-

THETA_0)/jh^2)*x(4)*x(6)+  ((jmr*cos(x(3)-THETA_0))/(jh*taomr)) * (-

x(6) + krm_ur);  

% % % sys(3) = x(4);  

% % % sys(4) = lm*(fv/jv) - (kv/jv)*x(4) +  (g*((A-B)*cos(x(3)-

THETA_0)-C*sin(x(3)-THETA_0))/(jv)) - 

(0.5*(x(2)^2)*(A+B+C)*sin(2*(x(3)-THETA_0)))/(jv)+...  

% % %          (jtr/(jv*taotr))*( -x(5) + krt_ut);  

% % % sys(5) = -1/taotr*(x(5)-krt_ut);  

% % % sys(6) = -1/taomr*(x(6)-krm_ur);  
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% ____OBTAIN THE LPV2 MODEL __ 

pwt = [2020 -194.69 -4283.15 262.27 3796.83]; 

pfh = [-.00000000000003 -.00000000001595 .00000025121766 -

.00018087473021 .08010909850208]; 

pwm = [90.99 599.73 -129.26 -1238.64 +63.45 1283.41]; 

pfv = [-.00000000000348 .00000000109079 .0000041231489 -

.0001632767956 .095447585]; 

 

sys(1) = [0 1 0 0 0 0]*x; 

  a22  = -kh/jh; 

  a24  = ((E-D)*(cos(x(3)-THETA_0)^2)-(F+D))*jmr*(sin(x(3)-

THETA_0)/jh^2)*x(6);    

  a25  = kbal*lt*cos(x(3)-THETA_0)*(polyval(pfh,x(5)))/jh;                    

  

 

 a26  = -jmr*cos(x(3)-THETA_0)/(jh*taomr);                            

sys(2) = [0 a22 0 a24 a25 a26]*x+[0 ((jmr*cos(x(3)-

THETA_0))/(jh*taomr))*polyval(pwm,u(2))]*u; 

 

sys(3) = [0 0 0 1 0 0]*x; 

  a42  = -0.5*x(2)*(A+B+C)*sin(2*(x(3)-THETA_0))/jv; 

  a43  = g*((A-B)*cos(x(3)-THETA_0)-C*sin(x(3)-THETA_0))/(jv*x(3)); % 

*x(3) 

  a44  = -kv/jv; 

  a45  = -(jtr/(jv*taotr));      

  a46  = kbal*lm*polyval(pfv,x(6))/jv; 

 

sys(4) = [0 a42 a43 a44 a45 a46]*x+ 

[((jtr*polyval(pwt,u(1)))/jv/taotr) 0]*u; 

sys(5) = [0 0 0 0 -1/taotr  0   ]*x + [(1/taotr)*polyval(pwt,u(1))  0           

]*u; 

sys(6) = [0 0 0 0     0 -1/taomr]*x + [      0       

(1/taomr)*polyval(pwm,u(2))]*u; 

 

% end mdlDerivatives 

function sys=mdlUpdate(t,x,u) 

sys = []; 

% end mdlUpdate 

function sys=mdlOutputs(t,x,u) 

lb =0.26; 

lcb=0.13; 

lm =0.236; 

lt =0.25; 

mb =0.022; 

mcb=0.068; 

mm =0.0145; 

mmr=0.228; 

mms=0.225; 

mt =0.0155; 

mtr=0.206; 

mts=0.165; 

rms=0.155; 

rts=0.1; 
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D = (mb/3*lb^2)+(mcb*lcb^2);    %0.0016449; 

E = (mm/3+mmr+mms)*lm^2 + (mt/3+mtr+mts)*lt^2; 

F = mms*rms^2+(mts/2)*rts^2; 

jh= D*sin(x(3))^2+E*cos(x(3))^2+F; 

 

jtr=0.00001*1.6543; 

jmr=0.00001*2.65; 

jv = 0.055846;               

THETA_0=0.5225; 

 

% DECLAIRE THE OUTPUTS OF MODEL 

sys(1) = x(1); 

sys(2) = x(2); 

sys(3) = x(3) + THETA_0;  

sys(4) = x(4); 

sys(5) = x(5); 

sys(6) = x(6); 

 

% end mdlOutputs 

function sys=mdlGetTimeOfNextVarHit(t,x,u) 

sampleTime = 1;    %  Example, set the next hit to be one second 

later. 

sys = t + sampleTime; 

% end mdlGetTimeOfNextVarHit 

function sys=mdlTerminate(t,x,u) 

sys = []; 

% end mdlTerminate 
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% CALIRATION m.file 

 
y1=theta_h; 
y2=theta_v; 
u1=ut; 
u2=ur; 
g=9.81; 
lb=0.26; 
lcb=0.13; 
lm=0.24; 
lt=0.25; 
mb=0.022; 
mcb=0.068; 
mm=0.0145; 
mmr=0.228; 
mms=0.225; 
mt=0.0155; 
mtr=0.206; 
mts=0.165; 
rms=0.155; 
rts=0.1; 
taomr=1.432;   

taotr=0.3842; THETA_0=0.5225; 
jtr=0.00001*1.6543; 
jmr=0.00001*2.65;  
jv= 0.055846; 
kv= 0.00545371; 
kh= 0.0095; 
kbal = 5/(2.895*2048);    
 

% Creating a data file  
trms=iddata([detrend(y1(4000:8000),'constant') detrend(y2(4000:8000), 

'constant')],[detrend(u1(4000:8000),'constant') 

detrend(u2(4000:8000),'constant')]); 
 

 a22n=mean(a22) 
 a24n=mean(a24) 
 a25n=mean(a25) 
 a26n=mean(a26) 
 a42n=mean(a42) 
 a43n=mean(a43) 
 a46n=mean(a46) 
 b22n=mean(b22) 
 b41n=mean(b41) 
 b51n=mean(b51) 
 b62n=mean(b62) 
 a44=-kv/jv; 
 a45=-jtr/(taotr*jv); 
 a55=-1/taotr; 
 a66=-1/taomr; 
 

% Construct Matrices to calibrate 
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A=[1 0.05 0 0 0 0;0 1+0.05*a22 0 0.05*a24 0.05*a25 0.05*a26;0 0 1 

0.05 0 0;0 0.05*a42 0.05*a43 1+0.05*a44 0.05*a45 0.05*a46;0 0 0 0 

1+0.05*a55 0;0 0 0 0 0 1+0.05*a66]; 
  

B=[0 0;0 0.05*b22;0 0;0.05*b41 0;0.05*b51 0;0 0.05*b62]; 
 

C=[1 0 0 0 0 0;0 0 1 0 0 0]; 
 

D=zeros(2,2); 

  
m=idss(A,B,C,D); 

 
m.As=[1 0.05 0 0 0 0;0 NaN 0 NaN NaN NaN;0 0 1 0.05 0 0;0 NaN NaN NaN 

NaN NaN;0 0 0 0 NaN 0;0 0 0 0 0 NaN]; 
m.Bs=[0 0;0 NaN;0 0;NaN 0;NaN 0;0 NaN]; 
m.Cs=m.c; 
m.Ds=m.d; 
 

%Calibration the model 

 
m=pem(trms,m,'Focus','Simulation','DisturbanceModel','Estimate') 
compare(trms,m,1) 

 

                      ------------------------------------------------end---------------------------------------------------
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