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Abstract

Helicopter is an aircraft that plays important role in transporting products, people...in society
nowadays. It is complex mechanical equipment that corresponds many fields such as fluid
mechanics, mechanics, control...Design it probably easy but fabrication and control it are not
simple problem.

The aim of research is to obtain a simulation and control model for the setup that has the
principle of function like a real helicopter in laboratory in Automatic Control Department in
Technical University Catalonia — Barcelona. This setup names Twin Rotor Multi Inputs - Multi
Outputs System (TRMS) is manufactured by the Feedback Instruments Limited Company. It
serves as a guide for the control tasks and provides useful information about the physical
behavior of the system. It is also useful setup for study and practice of students to have a
clearer look.

On the main originalities of the present master thesis is the use on a control oriented model
based on the use of a model that has linear structure but parameters varying with the
operating point. This type of model is known as Linear Parameter Varying model (shortly,
LPV model). Two procedures to obtain such a model are proposed. One based of rearranging
the non-linear equations in such a way that the LPV parameters appear linearly. The second
is based on linearizing the non-linear model around different operating points and the
interpolation the parameters between them.

Finally, the LPV model for the TRMS system obtained using either of the procedures
described above can be calibrated using standard parameter estimation algorithms available
in the Identification Toolbox in MATLAB.
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1. INTRODUCTION

1.1 Motivation

Helicopter is an aircraft which is lifted and propelled by one or more horizontal rotors
consisting of two or more rotor blades. It has the ability to take off and land vertically and to
maintain a steady hover in the air over a single point on the ground. This allows the helicopter
to land and to take off from, including heliports in the middle of busy cities and rugged terrain
in remote areas. The helicopter is used for rescue, medical evacuation and as an observation
platform. Other operation that involve the use of helicopters are fire fighting, tours, as an
aerial crane, logging, personnel, personnel transport, electronic news gathering, law
enforcement, military and for pleasure. In reality, helicopters can land everywhere that only
need the ground lager than 1.5 times the helicopters” blades.

Helicopter like aircraft can fly due to aerodynamic force or Zhukovski force. That is the
different pressure between top surface and bottom surface of the blade when the air flows
cover it.

Figure 1.1 Model of aerodynamic force.

The air flows around the blade that has lift and simultaneously appears drag. At the bottom of
the blade has pressure higher than the top, recently, there is a force from the bottom to the
top and is perpendicular with the blade. This different depends on blade’s profile, angle of
attack-angle of flowing air (the cute angle measured between the chord of an airfoil and the
relative wind) and rotation of the blades. So the blades rotate with certain speed that is
enough for helicopter flying due to aerodynamic force, it means this force higher than
helicopter’s weight. The shape and the angle of attack move through the air will determine
how much lift force is created. After the helicopter lifted off the ground, the pilot can tilt the
blades, causing the helicopter to tip forward or backward or sideward.
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There are many kinds of helicopters, nowadays; the popular kind is helicopter s model that
has a lift blade and tail blade.

Figure 1.2 Helicopter UH-1

The blades of the helicopter are airfoils with a very high aspect ratio (length to chord). The
angle of incidence is adjusted by means of the control from pilots.

The main rotor of the helicopter may have two, three, four, five or six blades, depending upon
the design. The main rotor blades are hinged to the rotor head in such a manner that they
have limited movement up and down and also they can change the pitch (angle of incidence).
The controls for the main rotor are called Collective and Cyclic Controls.
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Figure 1.3 Main Rotor Blade System

The tail rotor is small blades may have two or four blades and mounted on the tail of the
helicopter, it rotates in the vertical plane. The tail rotor is controlled by the rudder pedals. Its
pitch can be changed as required to turn the helicopter in the direction desired.

Figure 1.4 Tail Rotor Blade

When the blades lift, the body of helicopter also rotates around the blade at contrast direction.
So avoiding this phenomena, it has a tail blade at vertical direction, blow the air in horizontal
direction. Created moment of tail blade can eliminate with moment cross-action of the body.
Besides that, it plays role in changing the direction’s helicopter into horizontal plane.
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This model is popular about 95% using it today because of simple technology, high stability,
and high reliability.
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1.2 Project objective

This project is based on a two degree of freedom helicopter equipment (Twin Rotor Mimo
System developed by Feedback) available at the laboratories of the Advanced Control
Systems Research in the Automatic Control Department (ESAII) of Technical University of
Catalonia (UPC). This model is a good multivariable control benchmark widely used in the
literature. It allows illustrating the control of helicopter mechanics with two degrees of freedom
that rotates around two directions. In order to design a controller a control-oriented model is
required. On the other hand, to validate such controller before going to the real system, an
accurate model in simulation will be used. To obtain both models (control and simulation
oriented) mechanical physical laws should be applied. Some of the parameters of this model
can be obtained from the manual of this equipment provided by the manufacturer, while some
others should be obtained by experiments such as: magnitudes of physical propeller, length,
mass, inertia, coefficients of friction, and impulse force...

The objective of this project is:
e to develop, calibrate and validate a simulation model
e to develop, calibrate and validate a control model

As a starting point, the model provided in the manual and some additional references will be
used.
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1.3 Content of chapters
Chapter 1 is brief introduction of structure, functional principle of the real helicopter and
objective this project.

Chapter 2 consists of description of system, find and calculate its movements by
experimental data.

Chapter 3 implements the simulation of the system and the model LPV.
Chapter 4 calibrates the system and technical identification.
Chapter 5 Conclusion and future work.

Appendix
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2. MODELLING THE SYSTEM

2.1 Description of system

Figure 2.1 The Twin Rotor MIMO system

The Twin Rotor MIMO System (TRMS) is a laboratory setup that is designed for control
experiments. In certain aspects its behaviour resembles that of a helicopter. As Figure 2.1 the
TRMS mechanical unit has two rotors placed on a beam together with a counterbalance
whose arm with a weight at its end is fixed to the beam at the pivot and it determines a stable
equilibrium position.

The TRMS consists of a beam pivoted on its base in such a way that it can rotate freely both
in the horizontal and vertical planes. Either the horizontal or the vertical degree of freedom
can be restricted to 1 degree of freedom using nylon screws found near pivot point. At both
ends of the beam there are rotors (the main and tail rotors) driven by DC motors. This device
is a multivariable, nonlinear and strongly coupled system, with degrees of freedom on the
pitch and yaw angle denoted by 6,, 6.
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Figure 2.2 Aerodynamic model of the TRMS.

The state of the beam is described by four process variables: horizontal and vertical angles
measured by position sensors fitted at the pivot, and two corresponding angular velocities.
The tacho-generators are used to measure the angular velocities of rotors.

In a real helicopter, the aerodynamic force is controlled by changing the angle of attack but in
this model the aerodynamic forces are controlled by varying the speed of rotors, the angle of
attack is fixed.

A change in the voltage value results in a change of rotation speed of the propeller which
results in a change of the corresponding position of the beam.

Optical encoders: the light beams emitted by two light sources (A and B) go through two rings
of slits on the disc. The slits have a phase difference, so that the electric outputs of the
receivers (A and B) are rectangular waves with a phase difference. The sign of the phase
difference allows the direction of rotation to be determined.
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Figure 2.3 Position sensor

The control signal flows from the computer through the D/A converter of the data acquisition
board. The D/A outputs is wired to the power amplifier output which drives the DC motor. The
power amplifier and encoder interface are located in the TRMS box. This box is equipped
with two switches: the main power switch and cutting off switch the DC motor power.

2.2 Characteristics of the motors

It is necessary to identify the following non-linear functions:
e Two non-linear inputs characteristics determining dependence of DC-motor rotational
speed on voltage:
Wm=P(Urr), W1=P(Utt)

e Tow non-linear characteristics determining dependence of propeller thrust on DC-motor
rotational speeds:
Fr=Fn(w), Fy=Fy(Wm)
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The static characteristics of the propellers should be measured in the case when not
delivered with the equipment documentation or if the propellers were changed by user. In this
case a proper electronic balance with voltage output [0-10V] is needed. The recommended
range of input force is from 0 to 2 N.

2.2.1 Main motor

Having the main motor’s characteristics is done by experiment. Making the measurements is
correct, first block the beam so that it can rotate around the vertical axis. Place the electronic
balance under the beam in such a way that it is pulled vertically up by the propeller. To
balance the beam in the horizontal position attaches the beam. Connect the voltage output of
the electronic balance to A/D input No.3 of the PLC-812PG or RT-DAC data acquisition
board.

\
Q1 .

! -
welght - electronic
,,/ halance

U=0-1 ( ] U~0+1

Figure 2.4 Measuring of main rotor characteristics

The result we obtain:

w (u,)=90.99u° +599.73u’ —129.26u’ —1238.64u> +63.45u> +1283.41u,,

F.(w,)=-34810""w’ +1.09.10°w" +4.123.10°w’ —1.632.107*w? +9.544.10 7w,

2.2.2 Tail rotor

To balance the beam in the horizontal position attaches the beam. Connect the voltage
output of the electronic balance to A/D input No.3 of the PLC-812PG or RT-DAC data
acquisition board.
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Figure 2.5 Measuring of tail rotor characteristic

The result after measuring

w, () = 2020u] —194.69u° —4283.15u> +262.27u’ +3796.83u,

F,(w,)==3.10"*w’ =1.595.10 " w* +2.511.10 7 w’ —1.808.10* w? + 0.8080w,

The rotational speed and the forces of the two rotors have the polynomial of the voltage. They
are used in the subsystem and are the non-linear input characteristics.

2.3 Equations of system
2.3.1 Physical model

The static characteristics of the DC motors with propellers are non-linear function which
connects between a linear dynamic system and static non-linearity and the input voltage is
limited to the range +/-10 volts. The linear part is in the form of first order transfer functions
Gy=1/(TyS+1) and G,=1/(T,S+1). The non-linear function uy and u, are characteristics of the
DC motors. The non-linear relations between the rotor's velocity and the resulting
aerodynamic force can be approximated the quadratic functions:

Fr= sign(wykp. w’

Fu= sign(Wp)ky. w>

kn, ky are positive constants.
Figure 2.6 presents the characteristic of the system. There are two propellers driven by DC

motors at the end of the pivot. The articulated joint allows the beam to rotate in such a way
that its ends move on spherical surfaces.
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—— e ]

Figure 2.6 Schematic diagram of TRMS

The physical model is developed under some simplifying assumptions: the dynamics of the
propeller subsystem is first order differential equations; friction of the system is of the viscous
type and propeller-air subsystem accordance with the postulates of flow theory.

2.3.2 Mathematical model

Solving the system is considered the rotation of the beam in the vertical plane around the
horizontal axis. Applying the Newton’s second law of motion we obtain:

To determine these elements on above equation, consider the figure below and these
parameters are described in the Table 1:
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M +Meyg

Figure 2.7 Side view of TRMS.

Moments of gravity forces (M,4) applied to the beam and making it rotates around horizontal
axis, consider the solution shown in Figure 2.7.

M, = {K% +m, +m, jl, - (m—z’" +m, +m, jlm}cos 0, - (%lh + mchlchjsin Qv}

It can be expressed as
M,1=g {[A-B] cosB,— C sinb,}
Where:

tr

A= +mmjlt
5 :

mr

B=|"mm +mmlem
2

C= %zh + mt,,zc,,j

Moments of propulsive forces (M) applied to the beam
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I\/|v2= Im Fv(Wm)

Moment of the centrifugal forces (M,3) corresponding to the motion of the beam around the
vertical axis.

M, =-o! {ﬂ +m, +m, jlt + (ﬂ +m,, +m,, J + (ﬂlb + mchlchj} sin@, cos 6,
2 ‘ 2 ‘ 2

Or in the compact form:
M, =-w;(A+B+C)sin6, cosé,

Where o, = djt" (1)

Moment of friction (M,4) depends on the angular velocity of the beam around the horizontal
axis.
M, =-wk

v v

Where @, = 46, (2)
dt

According to fig 2.7 we can calculate components of the moment of inertia relative to the
horizontal axis.

_ 2

er - mmrlm
12

Jm =m, ?
2

Jop =myly,
Ly

J, =m, 3
2
Jtr = mtrlt
lZ
J[ = mf -
3
‘Imx =—= Fons + mmslm

2 +ml?

Jrs =myr tsht
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Table 2.1 TRMS model parameters in vertical axis
Symbo Parameter Value Unit
[
M, Total moment of force in vertical plane f(8,) Nm
My Moments of gravity force f(6,) Nm
M2 Moments of propulsive force f(6,) Nm
M,z Moment of the centrifugal force f(8,) Nm
M4 Moment of friction f(8,) Nm
Jy Sum of moments of inertia relative to the horizontal axis 0.055864 kg-m*
J, Moments of inertia of the main DC-motor with main rotor 0.013132 kg- m*
Jm Moment of inertia of main part of the beam 0.000278 kg-m*
Jeb Moment of inertia of the counter weight 0.001149 kg- m*
Jp Moment of inertia of the counter-weight beam 0.000495 kg- m*
Jr Moment of inertia of the tail motor with the tail rotor 0.012875 kg-m*
i Moment of inertia of the tail part of the beam 0.000322 kg-m*
Jms Moment of inertia of the main shield 0.015622 kg- m*
Jis Moment of inertia of the tail shield 0.011962 kg- m*
0, The pitch angle of the beam rad
B The yaw angle of the beam rad
Wy The angular velocity of the beam around the vertical axis f(8,) rad/s
Wh The angular velocity of the beam around the horizontal axis f(Bp) rad/s
Ky Constant 0.00545371 | Nms/rad
Kn Constant 0.055864 | Nms/rad
W, The rotational velocity of main rotor f(Un) rad/s
W, The rotational velocity of tail rotor f(Urr) rad/s
Minr Mass of the main DC-motor with main rotor 0.228 kg
Mp Mass of the main DC-motor with main rotor 0.0145 kg
My Mass of the tail motor with the tail rotor 0.206 kg
m, Mass of the tail part of the beam 0.0155 kg
Mo Mass of the counter weight 0.068 kg
Mp Mass of the counter-weight beam 0.022 kg
Mms Mass of the main shield 0.225 kg
Mis Mass of the tail shield 0.165 kg
lm The length of main part of the beam 0.24 m
ly The length of the tail part of the beam 0.25 m
Iy The length of the counter-weight beam 0.26 m
leb The distance between the counter-weight and the joint 0.13 m
g Gravitational acceleration 9.81 m/ s>
Fms Radius of main shield 0.155 m
s Radius of tail shield 0.10 m
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Similarity, we can describe the motion of the beam around vertical axis as figure below

......

Figure 2.8 Top view of TRMS

From Newton’s second law and the parameters in the Table 2:

d*o
M, =J, "
R

Moments of forces (M) applied to the beam and making it rotate around vertical axis

Mii= I Fr(wy)cosB,

Moment of friction (Mh2) depends on the angular velocity of the beam around the vertical

axis.

M,, =-m,k,

According to Figure 2.7 we can calculate components of the moment of inertia relative to the

horizontal axis.
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J,ﬂ:m—(l cosf, )’
3

J, = i(l cos6’)
3

J,ﬁ:m?(l sinf, )’

J,s =m,(l cos)’
Jys =m,, (1, cosé, )
1o =my, (L, sin6,)’

mt‘ 2 2
Jh7 = 2Y rts +mts (lt COs Hv)

Jyg=m, 1o +m, (l cos6",)2

ms - ms

Or in compact form
J,=Dcos’ @, +Esin” 8, +F
Where D, E, F is constant:
D :%lbz +m,l;,
(T+m +m, )’ +( +m, +m )’

Fmr+ r?

ms - ms tS
2

Using all above equations we find:

. 1 ,
s, de> [ F(w,)—ok, +g(A-B)cosb, —Cs1n6’v)—5a),f(A+B+C)s1n2¢9v

dt dt* J

v

3)

dé
,
dt

v v
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In horizontal axis we have:

ds, deé; LF,(w)cosb, —m,k, (5)
dt  dr* J,
And
dae, —w, 0, =S, + J, w. cos6, R 2erwm Ccos tzv (6)
dt J, Dsin“ 8 +Ecos” 0, + F
Table 2.2 TRMS model parameters in horizontal axis

Symbol Parameters Values | Units
My Total moment of force in horizontal plane Nm
M+ Moments of gravity force Nm
Mo Moments of propulsive force Nm
Mz Moment of the centrifugal force Nm
Jn Sum of moments of inertia relative to the horizontal axis kg-m*
J o Moments of inertia of the main DC-motor with main rotor kg- m*
Jh2 Moment of inertia of main part of the beam kg-m*
Jhs Moment of inertia of the counter weight kg- m*
Jha Moment of inertia of the counter-weight beam kg- m*
Jhs Moment of inertia of the tail motor with the tail rotor kg-m*
Jhe Moment of inertia of the tail part of the beam kg-m*
Jn7 Moment of inertia of the main shield kg- m”
Jhs Moment of inertia of the tail shield kg- m”
ke Cross reaction momentum gain -0.2
To Cross reaction momentum parameter 3.5
T, Cross reaction momentum parameter 2
Th Tail motor denominator parameter 1.1
Sy Angular momentum in vertical plane for the beam
Sh Angular momentum in horizontal plane for the beam
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3. SIMULATOR OF TRMS SYSTEM

In this chapter the implementation of the simulation model for the TRMS system is described
using the mathematical model derived using physical laws presented in chapter 2.

The implementation of this simulation model will be done using the Matlab/Simulink
environment.

The Matlab and Simulink environment are integrated into one entry, and thus we can analyse,
calculate, simulate and revise our models in either environment at any point. We invoke
Simulink within from Matlab.

To control this system we have to do simulator and estimate the system by using Matlab
tools. This simulator consists of 2 parts: Simulink and LPV2 model.

3.1 Simulink TRMS system

The TRMS system uses the program Matlab-Simulink. As we know this system is a non-linear
mechanical system. The mathematical model that we found in chapter 2:

I F.(w,)—wk, +g(A-B)cosb, —CsinHv)—;a),f(A+B+C)sin20v

ds, de?
dt  dr? J,
de,
dt Y
J
W, =S, + L@
J

v

ds, db; IF,(w)cosb, —w,k,
dr  dt’ J,

J, w, cos6, J, w, cos6,
p = § 4 —— :
J, Dsin“ 8 +Ecos” 6, + F

From the equations by using block diagram to simulate this system with the inputs and
outputs. Using block diagrams is a pictorial presentation of the functions performed by each
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component and of the flow of signals. The inputs are the voltages ut, ur of the tail rotor and
main rotor, the outputs are angular velocity and position of two directions. All the variables
and dynamic equations are compacted in the subsystem.

The purpose of this Simulink shows us clearly about the movements of TRMS system and
applies it to estimate the parameters using to control real helicopter. It means using the
identification tool box in Matlab that we will do detailed in the next chapter. The outputs of the
system are connected with the horizontal input and motor’s speed to see how the system
works.

Simulink Twin Rotor MIMO SYSTEM
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Figure 3.1 Simulink in Matlab of TRMS system

There are two horizontal and vertical inputs entering in subsystem and extracting the outputs
by scope of Simulink. Here four outputs are gathered together to see the whole of system’s
behaviour.

All equations in the subsystem using values are from the model in laboratory and are done by
experiments. The parameters are taken from the equipment to model its behaviour. Figure
3.2 following describes the subsystem. The inputs ur, ut voltages supply to tail rotor and main
rotor. The forces of two rotors can change by controlling the inputs.
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Figure 3.2 Subsystem of TRMS

The rotor’s characteristics that we analysed to generate the forces is a polynomial depending
on the signal inputs and it is presented in speed of tail rotor and main rotor subsystem. Base
on the equations of TRMS we use the block diagram to have figure above.

3.2 Some basic concepts of mathematical models for control

To control firstly we are sure to work by modelling and identifying throughout mathematical
model. A mathematical model of a system is defined as a set of equations that represents the
dynamics of the system accurately or, at least, fairly well. The dynamics of many systems,
whether they are mechanical, electrical, thermal, economic, biological, and so on, may be
obtained by using physical laws governing a particular system, for example, Newton’s laws
for mechanical systems...Deriving the reasonable mathematical model is the most important
part of the entire analysis.

Mathematical models may assume many different forms. Depending on the particular system
and particular circumstances, one mathematical model may be better suited than other
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models. It is advantageous to use state-space representation. We will take into account some
definitions in the mathematical model.

3.2.1. State

State of a dynamic system is the smallest set of the variable (called state variables) such that
the knowledge of these variables at t=t, together with the knowledge of the input for t=ty
completely determines the behaviour of the system for any time tt,.

The concept of the state is by no means limited to physical. It is applicable to biological
systems, economic systems, and others.

3.2.2 State variables

The state variables of a dynamic system are the variables making up the smallest set of
variables that determine the state of the dynamic system. If at least n variables x4,%...,x, are
needed to completely describe the behaviour of the dynamic system (so that once the input is
given for t2t, and the initial state at t = t, is specified, the future state of the system is
completely determined), then such n variables are a set of state variables.

The state variables need not be physically measurable and observable quantities. Variables
that do not represent physical quantities and those that are neither measurable nor
observable can be chosen at state variables.

3.2.3. State vector

If n state variables are needed to completely describe the behaviour of a given system, then
these n state variables can be considered the n components of a vector x. Such a vector is
called a state vector. A state vector is thus a vector. A state vector is thus a vector that
determines uniquely the system x(t) for any time tty, once the state at t=t, is given and the
input u(t) for t=tyis specified.

3.2.4 State space

The n dimensional space whose coordinate axes consist of the x; axis, x, axis,...,x, axis is
called a state space. Any state can be represented by a point in the state space.

3.2.5 State space equations

In state space analysis we are concerned with three types of variables that are involved in the
modelling of the dynamic systems: input variables, output variables, and state variables.

The dynamic system must involve elements that memorize the values of the input for t=t, .
Since integrators in a continuous time control system serve as memory devices, the outputs
of such integrators can be considered as the variables that define the internal state of the
dynamic system. Thus the outputs of integrators serve as state variables. The number of
state variables to completely define the dynamics of the system is equal to the number of
integrators involved in the system.
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Assume that a multiple-input-multiple-output system involves n integrators. Assume also
there are r inputs u;(t),ux(t)...,u(t) and m outputs y4(t), ya(t),..., ym(t). Define n outputs of the
integrators as state variables: x;(t), X2(t),...,X,(t). Then the system may be described by

x1() = f1(x), X500, Uy Uy oy U5 T)

}cz(t) = (X, XX, Uy Uy U5 T) (4.1)

Xn(t) = f (X, X500 X, 5U, , Usyoos U, 51)

The outputs y;(1), yi(t),..,ym(t) of the system may be given by

V() =g, (X, Xy, Uy Uy U, 1)

y2(t) = g, (Xp, Xy X, S Uty Uy sl )

(4.2)
j}m(t) =g, (X, Xy X, U, Uy iU, 3T)
If we define )
x, (1) JiO Xy e, X, U Uy sl 5 T)
X, (1 Xi s Xy sees X, s U Uy e U, 5T
x0 =] eun =) P v :
x, (1) St (XX ey X, 55Uy Uy e U5 T)
- e v (4.3)
v, () 81(X) Xy 0y X, 53U Uy sy U5 T) u, (1)
t X3 Xy sees X s U Uy e U 5T u,(r
y0 =0 | g =| ST it D160
|y, () | & (X5 Xy e X, Uy Uy s U5 T) u,(t)
Then from (4.1) and (4.2) become
x(0) = f (x,u,1) (4.4)

y(1) = g(x,u,t)

The 1° equation (4.4) is the state equation and the second is the output equation. If they are
linearized about the operating point state, then we have the following linearized state
equation and output equation:

x(t) = A@O)x(t) + B(t)u(t)

(4.5)

y(1) = C(O)x(t) + D()u(r)
o g 4
$ilNSh
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Where A(t) is called the state space matrix, B(t) the input matrix, C(t) the output matrix, and
D(t) the direct state transmission matrix.

3.3 Linear Parameter Varying (LPV) model for controlling the
TRMS system

Most of the existing control techniques are based in linear models. However, as we know the
above equations of the TRMS system are non-linear. To solve these we have a lot of
methods such as: perturbation methods, harmonic balance method, and numerical integration
methods.

e Perturbation methods: base on the hypothesis that the non-linearity is small, they allow to
transform the system into several linear systems, for which an analytical solution is
obtained.

e Harmonic balance method: the solution is expanded in a truncated Fourier series,
transforming the problem into an algebraic one. It’s a frequency domain method.

e Numerical integration methods: time domain methods where the time is discrete.

All these methods are useful for simulation but not for control. The idea in this master thesis
is to use a model that is linear in the structure but preserves the non-linearity by obtaining
how parameters vary with the operating point. This kind of model is known as a linear
parameter varying (LPV) model.

An LPV model for the TRMS system can be obtained by rearranging the non-linear equations
presented in chapter 2:

de
i a)h
dt
do, _
a Ay @), + Ay @, + Ayslt, + Ayglt,, + Dy,
- (4.6)
de
i a)v
dt
Y = a,w, +a.0 +a,m +a.a, +a,u. +b,u
ar 20, T A0, a0, +asU, +aeU, +0,U,
du
© = assu, +bsu,
du

rr

= a66urr + b61ur

Where




3. SIMULATOR OF TRMS SYSTEM page 25

_kh
a,, = = =
?  Dsin*(6,-6,)+Ecos*(6, —6,)+ F
_ ((E-D)cos*(8, —6,)—(F +D))J,, sin(8, —6,)w,

24

— ll‘ Cos(gv - HO)Fh (un‘)
®  Dsin*(8,-6,)+Ecos*(6,—6,)+F
1 J o cos(év -6,)

a

a26 =T - 2. 2. X
T, Dsin“(6 —6,)+Ecos”(8,—6,)+F
1 . ~
—5(A+B +C)sin(2(8, — 6,))w,
Ay = J.
_ g((A-B)cos(8, —8,)— Csin(8, - 6,)
Y (gv - 00)‘]\/
kV
Ay :_JV
1J,
I
lva(urr)
Ay = J.
1
Ass = ———
Tl‘r
1
Ao =~
Tmr
k. (u)J, cos(d, —6,)
by, =
Tmr ‘Ih
k (u)J
p =Tl T
! 7’.tr JV
k, (u,)
bSl -
Ttr
kmr(ur)
b62 -
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All equations of this model can be described by state space (in code file W= &))

|01 0 0o 0 076710 0]
Wi 0 a, 0 ay ay ay|w, 0 by
év |00 0 1 0 0]6, 0 O
Wy 0 a, a; a, a;s ag|w, b, 0
iy 0 0 0 0 ay O |u, by, 0
y 0 0 0 0 0 ag|u,| [0 by

C_100000
1001 000

O
I
)

The LPV model is implemented as an S-function (named LPV2, see Appendix) of
MATLAB/SIMULINK.  We will use this model to compare how well approximates the non-
linear simulation is. The comparison between LPV2 model and the non-linear system TRMS
using MATLAB/SIMULINK is presented in figure 3.3.
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Figure 3.3 Simulator of TRMS

We can know the movements of two directions (horizontal and vertical) in our model by
plotting the graphs from scope block (horizontal and vertical signal outputs). From the inputs
runs the Simulink and we obtained the results.
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Figure 3.4 Horizontal signal outputs

The signal outputs in horizontal direction show us behaviour of the system. From that we can
know our system function at certain range that correspond the inputs (red colour) and will be
stable after.
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Figure 3.5 Vertical signal outputs
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Vertical position (cyan colour) is the movement of the beam in vertical plan. Like horizontal
position our system will function around some positions and keep stably at certain points.

The LPV2 model is applied in our system by using state space method that is compared with
the non-linear model as figure below.
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Figure 3.6 Horizontal position of LPV2 and Simulink model
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Figure 3.7 Vertical position of LPV2 (red) and Simulink model
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In figure 3 there are different values of vertical position because in model LPV2 that divided
by 0 so avoiding this problem we change the coordinates. To obtain exactly the vertical
horizontal between them we can offset again to get the same result.

Once the simulator for the non-linear and LPV models is finished, we have all the tools to
simulate their behaviour. To control the real system we need to calibrate both models using
real data. This step will be done in next chapter.
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4. CALIBRATION OF TRMS SYSTEM CONTROL
MODEL

4.1. Introduction

Calibration of the TRMS systems control model is done by using the identification toolbox in
Matlab. Two different control models will be considered:

- the linear parameter varying (LPV) model presented in chapter 3.
- a linear model around a given operating point obtained using linearization

The aim of this chapter is to tune the calibration algorithm using data coming from the
helicopter simulation generated using SIMULINK model. Once the calibration algorithm has
been validated, it will be applied using real data.

4.2. Calibration of LPV model using MATLAB (pem command)

4.2.1. Pem and mathematical model

To calibrate the LPV model a set of experiments at different operating points will be
performed in the TRMS system. Using data coming from these experiments and parameter
estimation algorithms from Identification Toolbox in MATLAB parameters will be estimated.
Once the parameters for each operating point have been obtained the variation of their value
can be interpolated obtaining the LPV model.

The parameter estimation algorithm used in MATLAB is the Pem (prediction-error
minimization) algorithm. This algorithm allows to estimate low-order continuous-time process
models, linear state-space, and polynomial models. Pem also refine initial parameter
estimates for all linear and nonlinear parametric models.

Pem uses optimization to minimize the cost function that is a function of weighted sum of
squares of the errors, defined as follows for scalar outputs:

Vy(G.H)= ZN e’ (1)

Where e(t) is the difference between the measured output and the predicted output of the
model. For a linear model, this error is defined by the following equation:

e(t) = H ' (¢ly(t) - G(@u(®)]

e(t) is a vector and the cost function Vy(G,H) is a scalar value. The subscript N indicates that
the cost function is a function of the number of data samples and becomes more accurate for
larger values of N. G (1) is a operator that takes the input to the output and captures the
system dynamics or G is a transfer function between u(t) and y(t). H is an operator that

o_go o 3
'g'-,INSQ
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describes the properties of the additive output disturbance and is the noise model. For
multioutput models, the previous equation is more complex.

The LPV model of TRMS is presented in chapter 3 with the equations rewriting (see detail in
index):

|0 1 0 0o 0 07Jg]T[0 o0
Wi 0 a, 0 ay ay ay|w, 0 by
§V_0001009V+0 O_ut}
wo | |0 Gn ay ay ay ae|w, | by 0 |u,
1o 0 0 0 ay 0fu | b 0
oo 0 0 0 agu] [0 b
100000
001000
D=0

Where:
a —ky

2 Dsin®(8, - 6,)+ Ecos’(0, —6,)+ F
_ ((E-D)cos*(8, —6,)—(F +D))J,, sin(d, —6,)w,

24

B 1, cos(8, —6,)F, (u,)
®  Dsin*(8,—6,)+Ecos*(6, —6,)+F
1 J o cos(gv -6,)

a = —— = ~
2 Tr Dsin2(9v—490)+Ecosz(9v—490)+F
—;(A + B+ C)sin(2(8, — 6,)w,
Ay = J.
_ g((A-B)cos(8, —8,)— Csin(8, - 6,)
v (gv _00)‘]\/
kV
Ay :_J
P
45 - TTV JV
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ll‘ll FV (urr)
46 = J
1
ass =——
Ttr
1
ee =~
Tl‘lll"
kmr (ur) ‘Imr Cos(év B 00)
by, =
Tmr Jh
k. (u)J,
p =Tl T
41 Ttr JV
k, (u,)
bs, =
Ttr
kmr (ur )
by =—"——
T

mr

From this analysis the structure of the system matrices can be inferred. This structural
information will be used during the parameter estimation process using pem algorithm.

4.2.2. Implementation method
J In the first step
we need to calculate the coefficients of matrix A and B for calibrating the model by pem

command in Matlab. From the Simulink and all equations of the coefficients (az, ax ...) we
use the block Fcn in Simulink Library Browser to get them.

flud

Fen

Figure 4.1 Function Fcn

All functions will be calculated easily by this block. They receive the inputs and calculate
outputs so we can extract values into Matlab. The simulink connects the blocks for calculation
in figure 4.2.

For example, the coefficient a22 (output) need to be calculated and the input here is 6. The
function of a22 will be put in block and will give the values of a22. For other coefficients, we
can similarity calculate.

J The second step is estimating state space model with structured parameterization:
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- Creating the data file of the model with name Trms (trms.mat). It contains of the input and
output values from the workspace.

- Specifying the state space model structure, first define the A, B, C, D matrices in the Matlab
workspace.

m=idss(A,B,C,D)

Where A, B, C specify the fixed values and the initial values for free parameters. We put the
calculated values of the coefficients taking from Fcn blocks in matrices.

- After we create the nominal model structure, we must specify which parameters to estimate.
To accomplish this, we must edit the structure of the following model properties: As, Bs, Cs,
Ds. These structure matrices are properties of the nominal model we constructed and have
the same sizes as A, B, C, D respectively. Set a NaN for the coefficient that we want to
calibrate.

01 0 0 0 0
0 NaN 0 NaN NaN NaN
mAs=(0 0 0 1 0 0
0 NaN NaN NaN NaN NaN
0 O 0 0 0  NaN

0 0
0 NaN
0 0
m.Bs =
NaN 0
NaN 0
| 0 NaN |
[1 0 00 00O
m.Cs =
00 1 00 O}
m.Ds=0

The estimation algorithm only estimates the parameters in A and B have NaN value in As, Bs.
Finally, use pem to estimate the model.

m=pem(data,m)

Data is trms.mat that we constructed initially consisting the inputs and outputs.
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In Matlab the calculated values are not really continuous (discrete time) so solving this
problem we change the algorithm into discrete time for making suitable values to estimate

with sampling time At=0.05.

Equation (4.6) is rewritten:

Ok +D)-0k) _

h

At
w, (k +2t— w, (k) =a,,0, +a,,0, +a,u, +au, +b,u,
Ok+1)—0(k
e
w 1A)r_ 20 _ A0, +a,0, +a,0, +au, +au, +byu,
u, (t+l)t— (1) _ aut, +bu,
Mr,(f+2t_”rr(t) = agu, +bgu,

And the state space of the model now is:

o, [1 005 0 0 0 o Te7]1 7 o 0
wa | 10 14005, 0 0.052,, 005,  005a, |w, 0 005,
6|0 0 1 0.05 0 0 6, L0 0 u}
o | |0 005, 005, 1+005, 005, 005, |w | [00%, O |u
Wl |0 0 0 0 1+0.05a., 0 w, | 1003, 0

.| Lo 0 0 0 0 1+0.05a4 |1, | | 0 003, |

With this algorithm we can estimate our model.




4. CALIBRATION OF TRMS SYSTEM CONTROL MODEL

page 36
Sl L [PL w2 - Teekr Roter MIMO SYSTEM [rilih) __
HORTTCORTAL THELT
LE\'- - E M
1 frdqared) |-
. WILOETIOF TiTL ROTDR] -~
I.E3 [cmir] _— D T
L "TI" I L E}, WOF: Ak WLCeTTY L
o HORTTCHTAL FOSTTTON cumus ||
- .: - 1 b |'|1_d:| ki D
P - ¥ =
Harwanlal [rilii] 3
|.|1 E::b_ CF NTH PO TS QY =TT
ILCITLL D]
[, MR AMRILAF WLOETTY (I E|
L fl B ERTTeAL FouTTTOM i aab) I
| - -1 0
U E;J werrTe{ L mefuT oy ouTrL :|
'll'lrlnll _113_ Y =TTTH Y
llllllll . = L -
. 0
L} ﬂ "hF=idll F
™ i —
B
. =l
L} —E 3 g_ Lrtam
] -k [— ]
_.I——I T (-
g = i
.i-l I_I ] = 1" |
l Lﬁ l Ml dlr
1_ — 1
1 O
T

Figure 4.2 Calculating coefficients in state space
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This non-linear system is solved by considering linear system around some operating points.
In this case we consider 4 operating points to calibrate and find the behaviour of TRMS
system.

'DB'&' I I I I I 1 I I

085 .

-0.86 .

087 .

-0.88 =

-0.89

0.9

-0.92

-0.93

-0.94

a 2000 4000 wOODO - 8OO0 10000 12000 14000 16000 18000

Figure 4.3 Operating points of the system

These steps are taken from 0.001-0.20 divided 4 steps of the vertical input. Now with all
known values we will write the codes in Matlab and extract the result.

4.2.3. The results of calibration
Using the pem command extends the Matlab computation environment and let us fit linear

and nonlinear mathematical models to input and output data from the dynamic systems. The
calculated and estimated results are in the table 4.1.
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e The first step 0.001-0.05
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OF 1 | ——mFit%.71%
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|:| 1 i

e
[
1
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Tirme

Figure 4.4 The 1° operating point calibration

The preceding plot shows that the model output is in reasonable agreement with the
measured output: there is an agreement of 98.71% (horizontal position) and 98.06% (vertical
position) percent between the model and the validation data.
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e The second step 0.05-0.10

0.0z

Q02+
004+

v

Q06+

.08

J1F

1.2
I

-15
I

heasured Output and 1-step Ahead Predicted Madel Output

1500 2000 2500 3000 3500 4000
Time

4500

Measured Output
m Fit: 99.18%

| |
s00 1000 1800 2000 X500 3000 800 4000

Tirne

45000

Figure 4.5 The 2" operating point calibration

Measured Output
m Fit: %6.32%

The preceding plot shows that the model output is in reasonable agreement with the
measured output: there is an agreement of 99.18% (horizontal position) and 96.32% (vertical
position) percent between the model and the validation data.

o g 4 P ﬁ,
02INSR 727
L
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e The 3%step 0.10-0.15

Measured Output and 1-step Ahead Pradicted Madel Output
DDE 1 1 1 1 1 1 1 1

Measured Output
7 m Fit: 99.1%
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Figure 4.6 The 3" operating point calibration

The preceding plot shows that the model output is in reasonable agreement with the
measured output: there is an agreement of 98.1% (horizontal position) and 97.85% (vertical
position) percent between the model and the validation data.

o g 4 P ﬁ,
02INSR 727
L
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e The 4" step 0.15-0.20

Meazured Output and 1-step Ahead Predicted Model Output
DDE I I I I I I I I

Meazured Output
T m Fit: 97 58%
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Figure 4.7 The 4™ operating point calibration

The preceding plot shows that the model output is in reasonable agreement with the
measured output: there is an agreement of 97.58% (horizontal position) and 96.74% (vertical
position) percent between the model and the validation data.
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Table 4.1 Result of the calibration

Matrices A B
1 0.05 0 0 0 0 0 0
0 1+0.05a,, 0 0.05a,, 0.05325 0.05325 0 0.05b,,
State space 0 0 1 0.05 0 0 0 0
0 0.05a,, 0.05a,3 1+0.05a44 0.05a,5 0.05a,6 005b41 0
0 0 0 0 | 1+0.05as5 0| 0.05bs, 0
0 0 0 0 0| 1+0.05a4 0| 0.05bg,
1 0.05 0 0 0 0 0 0
qst 0 0.98107 0 -0.00042 -86.718 -0.00032 0 | 0.096487
Operating 0 0 1 0.05 0 0 0 0
point 0 -0.00087 0.05804 0.99511 -7.4081 0.00062 365.05 0
0 0 0 0 0.68308 0 18.7 0
0 0 0 0 0 0.96225 0 1.1429
1 0.05 0 0 0 0 0 0
ond 0 0.98149 0 -0.00138 -88.728 -0.00014 0 0.19788
Operating 0 0 1 0.05 0 0 0 0
point 0 -0.00384 | -0.05751 0.99508 -12.085 2.26E-03 1317.9 0
0 0 0 0 0.61856 0 43.854 0
0 0 0 0 0 0.96425 0 3.3504
1 0.05 0 0 0 0 0 0
3rd 0 0.98161 0 -0.00227 -166.99 -0.00021 0 0.75132
Operating 0 0 1 0.05 0 0 0 0
point 0 0.00034 | -0.05620 0.99512 -43.589 5.33E-03 9138.2 0
0 0 0 0 0.27619 0 160.9 0
0 0 0 0 0 0.96544 0 5.5425
1 0.05 0 0 0 0 0 0
4th 0 0.98254 0 -0.00312 -224.16 -0.00018 0 1.275
Operating 0 0 1 0.05 0 0 0 0
point 0 0.58318 | -0.02029 1.006 -226.94 1.14E-02 19774 0
0 0 0 0 0.13892 0 243.16 0
0 0 0 0 0 0.96667 0 7.665

Table 4.2 Stable points

Stable points of the positions from simulation
0, o
Operat1irsltg point -0.92572912253694 0.105774462
Operaﬁ::; point -0.91345518281618 0.217876897
Operat:i)’:g point -0.88973319573281 0.316503334
OperatAif:g point -0.85044590846964 0.387291297
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We will plot some of coefficients in state space to see the parameters function around the
operating point range.
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Figure 4.8 Estimated coefficients of matrix A
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(A0t Relation between parameter b1 with aperating pain
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Figure 4.9 Estimated coefficients of matrix B
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This model is non-linear that is applied to solve linear method but all coefficients are really
non-linear and we can see from the graph they change around the operating points.

Repeating the calibration that is described so far using real data coming from the real TRMS
system, physical parameters of the real system can be estimated.

4.3. Calibration of a LPV model coming from linearization
toolbox

An alternative way to obtain an LPV model is to linearize the non-linear system around
different operating points. This can be automatically done using the linearization toolbox in
Matlab/Simulink.

The procedure is as follows: From the window Simulink we choose button tools and linear
analysis on tool bar. Matlab will automatically extract the value of the coefficients that we
used block to calculate above. After that we realize the calibration.

This operating point is at t=180 and it is estimated with 4 steps from 0.001-0.20. The results
are in table 4.2.
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| Control'and Estimation Tools Manager

File Tools Help
0@ |

Workspace
E'E Praject - MODELO_PARA_LP Select mocel from linearization Operating Poirt 2t =180

EE Operating Poirts

: fﬁ Defautt Operating Poir |~ —
Linearization Result | | inearizati
fﬁ Operating Paint i = Linearization Inspectar

EI Linearization Task Linearization Result: [i
Lot Custom Vigws - To plot the response of this result click on the node labeled Custom Views.

- To export the result click on the Export To Workspace button below.

as=
xl X2 ] ¥d
x1 0.9657 0 0 0 L |
x2 0 0.878 0 0
¥3  1.5l6e-006 J.6e=005 0.9357 a
¥d 2,101e-005  1.165e-006 -0, 002953 1
x5 6.021e-005 -6.691e-006 -0.1717 0
¥6  -7.3%e-006  4,765e-005 0.001049 0
x5 X6
xl 0 0
) a a
¥ 0.0498] -3, 844e-008
x4 -7.473e-005 0.04956
] 0.9308 -1.53le-006 M
{] = l m Dizplay linear model as; | State Space || ExporttoWorkspace.., ]
= LAUWNCILng L L1l VIEWELD. ..
- LTI Viewer iz ready...
- A linearization result Model has been added to the current Task.
Linearization analysis result.

Figure 4.10 Linearization toolbox window
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e The first step 0.001-0.05

Measured Cutput and 1-step Ahead Predicted Model Output
I:IDE T T T T T T T T

Measured Output
7 m Fit: 97 41%

_|:|12 | | | | | | | |
I 800 1000 1500 2000 2500 3000 3500 4000 4a00

Time

Measured Output
m Fit: 97 63%

| | | | | | | |
0 00 1000 1500 2000 2600 3000 F/O0O 4000 0 4500
Time

Figure 4.11 The 1 operating point calibration by linearization tool

The measured and estimated values are fit together. Horizontal position is 97.41% and
vertical is 97.63%
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e The second step 0.05.0.10

Meazured Cutput and 1-step Ahead Predicted Madel Output
DDE T I I I I I I I

Measured Output
1 m Fit: 85.71%

12 | | | | | | | |
0 00 1000 1500 2000 0 2A00 3000 3500 4000 4A00
Time

Measured Output

i (WW’WWWWM | m Fit: 80 62%

_ED | | | | | ] | |
0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time

Figure 4.12 The 2" operating point calibration by linearization tool

The measured and estimated values are fit together. Horizontal position is 85.71% and
vertical is 80.62%
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e The 3“step

Measured Output and 1-step Ahead Predicted Model Output
0.05 T T T T T T T

= 005

— Measured Output
—m Fit: 86.38%

015 | | | | | | | |
0 S00 000 1800 2000 A5000 3000 3500 4000

Time

0.005

4500

[.005 1

v

.01

0015

L02

Weasured Output
4 | mFitg21%

0025 : ' :
I 500 1000 1500 000 2500 000 3500 4000

Time

4500

Figure 4.13 The 3" operating point calibration by linearization tool

The measured and estimated values are fit together. Horizontal position is 85.38% and

vertical is 82.1%
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e The 4" step

Measured Output and 1-step Ahead Predicted Model Output
DDQ I 1 1 I I I 1 I

— Measured Output
Bt 4 | ——mFit 84.04%

D02F
= 04
Q06

.08

_D‘] | | | | | | | |
a A00 1000 1500 2000 ZA00 3000 3/00 4000 4A00
Time

DD1 I 1 1 I I I 1 I
— Measured Output

il WWW\WWWW | [——mFit796%

0.02 .

v

0.03 .

_004 | | | | | | | |
I 500 1000 1500 000 2500 3000 3500 4000 4500

Time
Figure 4.14 The 4™ operating point calibration by linearization tool

The measured and estimated values are fit together. Horizontal position is 84.04% and
vertical is 79.6% .
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Table 4.3 Result of the calibration by linearization tool
Matrices A B
aqq 0 0 0 0 0 b11 0
0 doo 0 0 0 0 0 bos
State space as1 as2 ass 0 ass ass b3, bs,
asg ago g3 1 ags Age ba ba2
as1 as2 as3 0 ass ase bs, bs,
61 as2 ds3 0 des Ae6 be: b2 |
0.93131 0 0 0 0 0| 62.92100 0
qst 0 0.86675 0 0 0 0 0 178
Operating -0.02421 0.00004 0.99713 0 0.04997 0.00139 0.00001 0.00742
point 0.08978 | -0.00001 -0.01459 1 -0.00176 0.02426 0.00069 0.06726
-0.00053 0.00000 -0.17206 0 0.99018 0.00197 0.00050 | -0.00054
0.00439 0.00007 0.00372 0 0.00907 0.97706 | -0.00026 0.00472
0.96724 0.00000 0.00000 0 0.00000 0.00000 | 61.85000 0.00000
ond 0.00000 0.87336 0.00000 0 0.00000 0.00000 0.00000 178
Operating -0.01037 | -0.00017 0.99570 0 0.05156 0.00617 0.00002 0.39679
point 0.00508 0.00209 -0.02035 1 0.00341 0.05420 0.00068 0.31079
0.02716 0.00053 -0.17077 0 0.99236 -0.01346 0.00102 | -0.00054
0.01428 | -0.00078 0.00072 0 -0.01673 0.97959 | -0.00025 0.00469
0.97349 0.00000 0.00000 0 0.00000 0.00000 | 59.88100 0.00000
0.00000 0.95854 0.00000 0 0.00000 0.00000 0.00000 178
-0.00326 0.00011 0.99491 0 0.05075 0.00486 0.00003 0.04212
0.00392 0.00043 -0.00496 1 -0.00237 0.04659 0.00066 0.64302
3rd 0.00748 0.00008 -0.17044 0 0.99102 -0.04270 0.00185 | -0.00054
Operating 0.00980 | -0.00019 0.00284 0 -0.00216 0.98521 | -0.00023 0.00463
point 0.94344 0.00000 0.00000 0 0.00000 0.00000 57.048 0
0.00000 0.95742 0.00000 0 0.00000 0.00000 0.00000 178
-0.36561 0.00021 0.99153 0 0.05207 0.01029 0.00004 | -0.00832
-1.21700 0.00053 -0.00694 1 -0.00079 0.03597 0.00002 0.25244
0.68938 0.00007 -0.16397 0 0.99448 -0.05769 0.00284 | -0.00052
-0.38194 | -0.00022 0.00155 0 -0.00001 0.98611 | -0.00177 0.00446
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Relation between parameter 322 with operating poit
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Figure 4.15 Estimated coefficients of matrix A by linearization
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Relation between parameter b1 with operating point
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Figure 4.16 Estimated coefficients of matrix B by linearization

The above results can be defined this model that is a good model and can continue to do
next task (implement with real data and control...)
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5. CONCLUSIONS AND RECOMMENDATIONS
FUTURE WORK

Twin Rotor MIMO system has a principal of function like a helicopter that has main rotor and
tail rotor. Main rotor creates a lift force to lift the helicopter and tail rotor changes its direction
but the structure is not the same. This model has been simplified to research in students”
study but it assures the similarity between them.

This work analyses the mathematical model by using physical laws and simulates the system
with Simulink — Matlab. This is an illustration to know the behavior of dynamic system clearly
because of changing and making correct it easier.

The result of calibration of the LPV model for TRMS system is over 90% between the model
and validation data so we can say this model is good. Next step is to repeat the calibration
process using real data. With the non-linear dynamic system, finding its solution is not simple
work and it should be assured well to apply by testing and calculating many ways. This case
we can use linearization method by describing the state space to solve it. The calibration is
used by syntax command and linearization tool. The fitted values using linearization tool is
smaller than syntax command because it just validates around one operating point when
moving out this point is not good.

The future work is:

e Implementation with the real data that is measured by experiments with TRMS
equipment to know exactly the movements and control.

e Implementation of a control algorithm (for example, Model Predictive Control), that
makes use of the LPV model proposed in the master thesis once calibrated using real
data.

e Test and validation of the control algorithm in the real TRMS system.
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STATE SPACE OF LPV MODEL OF TWIN ROTOR MIMO SYSTEM

de,

1.d—th =@, wehave 6 =6,+6, 6 —6, =6, and new state is 0, with initial condition 6,=0.5225
Where @, =S, + LW COS(Q %) derivative to obtain
h
dw, d J, cos(é -6,)w, ]
=S+ , then
dt dt Dsin® (49 —6,)+Ecos’ (49 49)+F_
dw, _ " d _ u cos(d, — 02)vl/m Ot d - o cos(6, — Gg)vfm yv Replace §, and
dt dé,| Dsin"(6,—6))+ Ecos™(6,—6)+F |, dw, | Dsin" (6, —6,)+ Ecos (6, —6,)+ F
Wi = ! with wp=u,
TWH’ (_Wm + krm (ur )ur
dw, [ cos(gv -6,)F,(u,) k, ((E — D)cos’ (0 -6,)—-(F+D)J, w, sm(0 -6, )

= = = u, — = = w, +
dt  Dsin*(6,—6,)+Ecos*(@,—6,)+F " Dsin*(0 —6,)+Ecos’(0,—8,)+F (Dsin’(8, - 6,) + Ecos*(0, — 6,) + F)*

A _cos(6, - 0)[ Cu+k (u)u)}
‘Ih Tmr
2.
da)h lcos(é’ -6,)F,(u,) y k, o + ((E D)cos’ (9 -6,)— (F+D))erwmsm(9 49)
dt  Dsin’(8 —6,)+Ecos’(8 —6,)+F " Dsin’(8,—6,)+Ecos’ (8. —6,)+F (Dsin®(8, —6,)+ Ecos* (6, —6,) + F)*

‘]mr COS(H -0 ) ‘]mr COS(G -6 )krm (Lt
J,T “or J,T

mr mr
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~

3. a6, =@, where , = Sﬁim
dt J,
4.
do, IF k A-B)cos(d, —6,)—Csin(d, - 6,)) ~ 1 ~ J,| 1
v _ v(urr)urr__vwarg(( )cos(6, 3) sin(@, — 6,)) 6 - (A+B+C)w; sin(2(8, —6,)) +—=| —(—u, +k, (u,)u,)
dt J, J, J.6, 2J, J, LT,
5. du, ___1 + b, () u, We consider the inputs are non-linear.
dt Ttrutt Ttr
6' durr :_Lurr_i_wur
dt T T

mr mr
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##% by Maple:

xx:=diff(jmr*wum*cos( 'theta’- 'theta_o*)f(D*(sin( 'theta'- *theta_o'))“ﬂE*(cos( "'theta'-'theta o
A24F), 'theta’);
Jrr v sin (0 — fla) _ Jjmrvwmcos(0—to) (2D am(8—fa) cos(8—fo) — 2Ecos(— o) an(8— fa))

Dsin(8— o) + Ees(8— o) + 7 (Dsn(®— 012 + B eos(B— o)l 4 F)’

=

1. IN LPV2 WE HAVE THE VALUES OF THE MODEL

g = 9.81
b = 0.26
Icb =0.13
Im =0.24

It =0.25
mb = 0.022
mcb = 0.068
mm = 0.0145
mmr = 0.228
mms = 0.225
mt =0.0155
mtr = 0.206
mts =0.165
rms =0.155
rts =0.1
taomr =1.432

taotr = 0.3842

(mt/2 + mtr +mts)*lt

(mm/2+mmr+mms)*Im
(mb/2)*Ib + mcb*Icb
(
(

o0 m>
o

mb/3+mmr+mms)*Im?
mm/3+mmr+mms)*Im? + (mt/3+mtr+mts)*It?
ms*rms? + (mts/2)*rts?

mm
I
3

jtr =0.00001*1.6543 kbal= 5/(2.895 *2048)
jmr =0.00001*2.65

jv. = 0.055846

kv = 0.00545371
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kh = 0.0095
jh = Dsin(x)® + Ecos(x)*+F

2. DEFINITION THE PARAMETER TO OBTAIN LPV2 MODEL

We put the parameters equally

x(D)=6,
x(2)=w,
x(3)=6,+6
x(4)=w,
x(S)=u,
x(6)=u,,
dé
O _ g,
dt
dw,
7 Ay @), + Ay @, +apsity + dyglt,, + by,
dé
|4 — a)v
dt
dw, ~
dtv =A@, +ay30, + a0, + a5y + ageu,, + by,
du,,
= assu, +bsu
o 55U + D51l
durr

g et +bg,
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STATE SPACE

1 [0 1 0 0o o 07, 0 0

W 0 ay 0 ay as ay|w, 0 by
6,|_|0 0 0 1 0 018§ L0 0 [u,}
w, 0 ap ay ay a5 ag||w, by 0 |lu,
i, 0O 0 0 0 as5 O ||lu, bs; 0

i, | (00 0 0 0 agllu,] [0 by

C_100000
1001 00 0
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Q

sizes.NumSampleTimes = 1; % at least one sample time is needed

sys = simsizes(sizes);

% Inicial parameters

5 x0 =[],
THETA_0=0.5225; %$initial condition 30°=0.5225

x0=[0 O THETA_O 0 0 0];

Q

% str is always an empty matrix

str = [1;
% initialize the array of sample times
ts = [0 0];

% end mdlInitializeSizes
function sys=mdlDerivatives(t, x,u)

%$initial variables

g=9.81;

1b=0.26;

lcb=0.13;

1m=0.24;

1t=0.25;

mb=0.022;

mcb=0.068;

mm=0.0145;

mmr=0.228;

mms=0.225;

mt=0.0155;

mtr=0.206;

mts=0.165;

rms=0.155;

rts=0.1;

taomr=1.432; %cte time of main rotor
taotr=0.3842; %cte time of tail rotor
THETA_0=0.5225;

A (mt/2+mtr+mts) *1t; %$0.09488;

B (mm/2+mmr+mms) *1m; %$0.11046;

C = (mb/2)*1lb+mcb*1lcb;

D = (mb/3*1b"2)+ (mcb*1lcb"2); %$0.0016449;
E = (mm/3+mmr+mms) *1m”2 + (mt/3+mtr+mts)*1t"2;

F = mms*rms”2+ (mts/2)*rts"2;

jtr=0.00001*1.6543;
jmr=0.00001*2.65;

jv= 0.055846;

kv= 0.00545371;

kh= 0.0095;

kbal = 5/(2.895%2048);

jh = D*sin(x(3)-THETA_O0) "2+E*cos (x(3)-THETA_0) "2+F; $horizontal
inertia

Q

% Polinomials
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pwt = [2020 -194.69 -4283.15 262.27 3796.83 0]; S%SPOLINOMIAl of
FUNCION of U_TT

pfh = [-.00000000000003 -.00000000001595 .00000025121766 -
.00018087473021 .08010909850208 0]; % polinomio en funcion de wt

pwm = [90.99 599.73 -129.26 -1238.64 +63.45 1283.41 0]; %POLINOMIO EN
FUNCION DE U_RR

pfv = [-.00000000000348 .00000000109079 .0000041231489 -
.0001632767956 .095447585 0]; %polinomio en funcion de wm

Q

% Funciones
wt_utt = polyval (pwt,x(5));

F—————— Characteristic the tail rotor (look MANUAL)
liminf=-1381;
limsup=1630;
wt=max (min (wt_utt, limsup), liminf) ;
fh = kbal*polyval (pfh,x(5));
wm_urr = polyval (pwm,x(6));%x(6)=urr
S—————- Characteristic the main rotor (look MANUAL)
liminfp=-568;
limsupp=668;
wm=max (min (wm_urr, limsupp), liminfp) ;

fv = kbal*polyval (pfv,x(6));

% ESTADOS x = [th,wh,tv,wv,utt,urr] % urr=Wm = x(5); % utt=Wt =

%$Consider non-linear inputs

krm_ur=90.99* (u(2))"6+599.73* (u(2))"5-129.26* (u(2))"~4-
1238.64* (u(2))"3+63.45*(u(2))"2+1283.41*(u(2));
krt_ut=2020*u (1) "5-194.69*u (1) ~4-
4283.15*u(1)"3+262.27*u(1l)"2+3796.83*u(l);

% % Implement the differential equations of no-linear model

$ % % sys(l) = x(2);

% % % sys(2) = lt*cos(x(3)-THETA_0)*(fh)/3h — (kh/jh)*x(2) + ((E-
D) *(cos (x(3)-THETA_O0)"2)—(F+D) ) *jmr* (sin(x(3)—
THETA_O0)/jh"2) *x(4) *x(6)+ ((jmr*cos(x(3)-THETA_O0))/ (jh*taomr)) * (-
x(6) + krm_ur)

% % % sys(3) = x(4);

$ % % sys(4) = Im*(fv/jv) - (kv/jv)*x(4) + (g*((A-B)*cos(x(3)-
THETA_0)-C*sin(x(3)-THETA O))/(j )) -

(0.5*%(x(2)72)* (A+B+C) *sin (2* (x (3)-THETA_0)) )/ (Jjv) +

S %% (jtr/ (jv*taotr))*( -x(5) + krt_ut);

%$ % % sys(5) = —-1/taotr*(x(5)-krt_ut);

% % % sys(6) = -1/taomr* (x(6)-krm_ur) ;
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% OBTAIN THE LPV2 MODEL _

pwt = [2020 -194.69 -4283.15 262.27 3796.83];

pfh = [-.00000000000003 -.00000000001595 .00000025121766 -
.00018087473021 .080109098502087;

pwm = [90.99 599.73 -129.26 -1238.64 +63.45 1283.41];

pfv = [-.00000000000348 .00000000109079 .0000041231489 -
.0001632767956 .095447585];

sys(l) = [0 1 0 0 0 0]*x;

a22 = -kh/jh;

a24 = ((E-D)*(cos(x(3)-THETA_0)"2)—-(F+D))*jmr* (sin(x(3) -
THETA_O0) /jh"2) *x(6);

a25 = kbal*lt*cos(x(3)-THETA_0)* (polyval (pfh,x(5)))/jh;

a26 = —jmr*cos(x(3)-THETA_O0)/(jh*taomr) ;
sys(2) = [0 a22 0 a24 a25 a26]*x+[0 ((jmr*cos(x(3)-
THETA_O0))/ (jh*taomr) ) *polyval (pwm,u(2))]*u;

sys(3) = [0 0 01 0 0]*x;

ad2 = -0.5*x(2)* (A+B+C) *sin(2* (x(3)-THETA_OQ0)) /jv;

a4l = g*((A-B)*cos(x(3)-THETA_0)-C*sin(x(3)-THETA_O0))/(jv*x(3)); %
*x(3)

ad4d = -kv/jv;

ad5 = —-(jtr/(jv*taotr));

ad6 = kbal*Ilm*polyval (pfv,x(6))/jv;

sys(4) = [0 ad42 ad43 ad44 ad4b ad6]*x+
[((jtr*polyval (pwt,u(l)))/jv/taotr) 0]*u;
sys(5) = [0 0 0 0 -1/taotr O ]*x + [(1/taotr) *polyval (pwt,u(l)) O
1*u;

sys(6) = [0 0 0O 0 -1/taomr]*x + [ 0
(1/taomr) *polyval (pwm,u(2))]*u;

% end mdlDerivatives

function sys=mdlUpdate (t, x,u)

sys = [1;

% end mdlUpdate

function sys=mdlOutputs(t, x,u)

1b =0.26;

lcb=0.13;

1m =0.236;

1t =0.25;

mb =0.022;

mcb=0.068;

mm =0.0145;

mmr=0.228;

mms=0.225;

mt =0.0155;

mtr=0.206;

mts=0.165;

rms=0.155;

rts=0.1;
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D = (mb/3*1b"2)+ (mcb*1lcb"2); %0.0016449;
E = (mm/3+mmr+mms) *1m~2 + (mt/3+mtr+mts)*1t"2;

ol
Il

mms*rms”2+ (mts/2) *rts”2;
jh= D*sin(x(3))"2+E*cos (x(3))"2+F;

jtr=0.00001*1.6543;
jmr=0.00001*2.65;
jv = 0.055846;
THETA_0=0.5225;

% DECLAIRE THE OUTPUTS OF MODEL
)

4

+ THETA_O;

4

x(1
(
(
(
(
(

o U WN

)i
)
)i
)i
)i

Il
XoXoX X X

4

% end mdlOutputs
function sys=mdlGetTimeOfNextVarHit (t, x,u)

sampleTime = 1; % Example, set the next hit to be one second
later.
sys = t + sampleTime;

% end mdlGetTimeOfNextVarHit
function sys=mdlTerminate(t,x,u)
sys = [];

[

% end mdlTerminate
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% CALIRATION m.file

yl=theta_h;
y2=theta_v;

ul=ut;

uz2=ur;

g=9.81;

1b=0.26;

1cb=0.13;

1m=0.24;

1t=0.25;

mb=0.022;
mcb=0.068;
mm=0.0145;
mmr=0.228;
mms=0.225;
mt=0.0155;
mtr=0.206;
mts=0.165;
rms=0.155;

rts=0.1;
taomr=1.432;
taotr=0.3842; THETA_0=0.5225;
Jjtr=0.00001*1.6543;
Jjmr=0.00001*2.65;
jv= 0.055846;

kv= 0.00545371;

kh= 0.0095;

kbal = 5/(2.895*%2048);

% Creating a data file

trms=iddata ([detrend(y1(4000:8000), 'constant') detrend(y2(4000:8000),
'constant')], [detrend (ul (4000:8000), 'constant'")

detrend (u2(4000:8000), "constant')])

4

az22)
azd)
az25s)
a26)
a4z)
a43)
)
)
)
)
)

az2n=mean
az4n=mean
a25n=mean
a26n=mean
ad42n=mean
ad43n=mean
ad6n=mean
b22n=mean
bdln=mean (b4l
b51n=mean (b51
b62n=mean (b62
add=-kv/jv;
ad45=-jtr/ (taotr*jv);
a55=-1/taotr;
a66=-1/taomr;

ado
b22

Q

% Construct Matrices to calibrate
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A=[1 0.05 0 0 0 0;0 1+0.05%*a22 0 0.05*a24 0.05*a25 0.05*a26;0 0 1
0.05 0 0;0 0.05%*a42 0.05*a43 1+0.05*%a44 0.05*%a45 0.05*a46;0 0 0 O
1+0.05*%a55 0;0 0 0 0 0 1+0.05*a66];

B=[0 0;0 0.05*b22;0 0;0.05*b41 0;0.05*b51 0;0 0.05*b62];

C=[1 0000O0O0;00100O01;

D=zeros (2, 2);

m=idss (A,B,C,D);

m.As=[1 0.05 0 0 0 0;0 NaN O NaN NaN NaN;0 O 1 0.05 0 0;0 NaN NaN NaN
NaN NaN;0 O O O NaN 0;0 0 O O O NaN];

m.Bs=[0 0;0 NaN;0 0;NaN 0;NaN 0;0 NaN]J;

m.Cs=m.c;

m.Ds=m.d;

%$Calibration the model

m=pem(trms,m, 'Focus', 'Simulation', 'DisturbanceModel’', "Estimate")
compare (trms,m, 1)
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