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Abstract

The increasing number of formation �ight space missions proposed by the scienti�c
community for the near future has led many researchers to the study, development and
implementation of optimal control systems applied to a multi-spacecraft system. The
approaches taken may vary among authors, but it is generally agreed upon that having
independent controllers at each spacecraft leads to a non-optimal solution in a global
or formation-wide sense, even when independent controllers are implemented using
any of the locally optimal techniques known from the theory of control. Most of the
future formation �ight missions have been designed with an interferometric purpose,
such as performing a space-based distributed telescope structure that would �y into
deep space with an observational objective. In that case, where global positioning
systems such as GPS are no longer available, relative positioning not only becomes
necessary to achieve control of the multi-spacecraft system, but it also becomes a
crucial factor that would determine the performance of the system with regards to
the optical science output. In fact, if we rede�ne the state vector of the plant and use
the relative states that need to be tracked instead of independent global positions,
we get to a de�nition with coupled dynamics of the whole multi-agent system.

This research focuses on the control performance obtained when the controller
is designed using coupled inter-spacecraft dynamics and how this approach can lead
to an optimal solution in a global sense, both in optical performance and overall
fuel usage. The �rst part of the thesis will address the theoretical advantages that
may arise within the coupled dynamics architecture and the second part analyses
the performance of the results obtained when testing the real implementation of the
controller on hardware. This study, concerning implementation and performance of
formation �ight controllers in a real case scenario such as deep space interferometer
missions, will lead towards increasing mission lifetime, performance improvement and
a step forward in the �eld.
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Chapter 1

Introduction

1.1 Motivation

In human beings' intrinsic behaviour, within our natural instinct of curiosity, lies the

need for conquering new areas, places or �elds of space. Not satis�ed enough with

the discovery of new continents, humans have always needed to extend their arms

towards another direction, towards another dimension. It was not until the �rst �ight

of the history made by the Wright brothers that the door opened in the �z� vertical

direction. People thought that humans would eventually reach the sky, but in fact,

when the Russians opened the star gate in 1957, they showed the world that there

are no limits in the sky, nor in this reference frame called the universe.

And since that day a new burst of passion has kept the scienti�c community fasci-

nated and captivated each and every time that a new planet is discovered, a Path�nder

reaches Mars or an Automated Transfer Vehicle docks with the International Space

Station.

Since the �rst launch of a satellite into the space, spatial technology has developed

highly. This has enabled huge advances into the laborious task of conquering the vast

outer space. In spite of the fact that humans have contemplated the �ceiling� above

them for centuries, it was due to the latest progress in several observation techniques

and interferometer technology that we now can observe, with higher quality and

precision, stars and planets so far away from the Earth, even those from external
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galaxies.

It is important to mention that satellites have played a principal and leading role

here, as they have provided a new means of observation. Circumventing attenuation,

added noise and distortion that di�erent layers of the atmosphere produce to the

received signal, space-based telescopes have become an emerging technology in recent

decades providing resolutions that are inconceivable for any ground-based telescope.

The Hubble Space Telescope [14], for example, whose aperture diameter exceeds 2m,

made pictures available of the most remote observed objects in the universe. There

exists, however, a limitation in the resolution that a space-based monolith telescope

can give due to the relationship between the image quality and the aperture diameter

and the fact that these telescopes must �t within the con�nes of a space launcher.

The physical limitation can be overcome by means of a distributed telescope struc-

ture. The same technology that is used in the ground-based telescope array systems

can be carried to the space and use a network of collectors to constructively combine

the light coming from a further point in the space. The angular resolution improve-

ment that such a formation of satellites can provide is very encouraging.

Furthermore, there are multiple bene�ts of a distributed space system. System

reliability, redundancy, recon�gurability and modularity apart from the aforemen-

tioned angular resolution are probably the most valuable advantages that formation

�ying space systems allow. Taking these advantages into consideration some future

observation missions have already been designed, such as ESA's DARWIN mission

[22] or NASA's Terrestrial Planet Finder (TPF) [25] both of them thought to detect

Earth-like planets orbiting nearby stars, and search for evidence of life.

The scienti�c output of these missions will depend on the best achievable image

quality. It is known that the angular resolution of an interferometer is dependent

on the location of di�erent apertures [1] and more precisely, the baselines separating

them. The capability of collecting light from the same source at di�erent precise

baselines will determine the performance of the distributed telescope. Controlled re-

con�gurations in the relative positioning of the formation will enable the di�erent

baselines to be covered. However, the interferometric techniques require these base-
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lines to be tracked within a very narrow error margin. The positioning control of the

multi-spacecraft system would be a key milestone of this new challenging technology.

Thus, the purpose of this research is to design and implement a control system that

ful�lls these requirements.

1.2 Literature Review

The beginning of distributed space telescope technology promoted the research of

formation �ying algorithms. Several authors have worked on the design of controllers

for a multi-agent system and publications explaining the di�erent approaches taken

are multiple. Most of them would agree that using staged control is a suitable high-

level approach, where initially a roughly controlled formation con�guration is achieved

using wide-range low-precision actuators and �nally a precise control of the formation

is assured by means of narrow range but higher precision actuators. The strategies

followed by the authors may di�er at the precise control stage level.

For the present study an extensive literature review has been considered neces-

sary for the better understanding of the strategies that have been used in the past

by several authors and that are the state of the art in formation �ight algorithms.

Di�erent approaches may be grouped into four formation �ight control architectures

[8],[7]:

� Leader-Follower

� Cyclic

� Multi-Input Multi-Output

� Virtual Structure

Leader-Follower architecture is surely the most studied one. In this architecture,

individual spacecraft controllers are connected hierarchically reducing the formation

control to individual tracking problems. Stability of this control architecture is usu-

ally demonstrated ([39],[38]) using control dependency directed graphs which is based
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on the prior automated highway system (AHS) literature. Most of the work done in

the Leader-Follower architecture �eld di�er in the control strategy or technique used

for the follower's control law. Adaptative [12], feedback linearized [30], [41], model

predictive with linear time-varying models [23], non-linear [28] and robust [11] tech-

niques among others have already been used within the Leader-Follower architecture.

The main issue of this architecture is found on the propagation, towards the followers,

of the disturbances felt by the leaders and guaranteeing that these do not increase as

we go down in the hierarchic line (mesh stability).

Cyclic architecture, which could be considered a particular case of the previous

one, does a non-hierarchical connection between the controllers, leading to a cyclic

control dependency directed graph. Cyclic algorithms rely on the stability convergence

of the controllers and result in di�erent formation moving shapes. Important work in

this �eld can be found in [26], [15].

MIMO architecture de�nes a dynamic model of the entire formation, considering

it as a whole multi-input multi-output plant. Under this consideration the theory

of control can be applied as in any other individual system although global stability

of the formation is already assured. Most advanced and important work concerning

formation control using MIMO architecture is done by Dr. Roy Smith and Dr. Fred

Hadaegh [35], [36], [37].

In the Virtual Structure architecture, the formation behaves like a virtual rigid

body whose motion is used to generate reference trajectories for spacecrafts that will

lately be tracked with individual controllers. Very interesting work is done in [24],

where a formation template (i.e. virtual structure) is computed at each time step

where a virtual center of a formation is considered through a LS (Least-Squares) �t

and minimizes the tracking error of the whole formation.

On the other hand, a thorough research has been conducted on the subject of

implementation of formation �ying algorithms for the SPHERES testbed at MIT

as well as for the International Space Station, which is the place where the real

science occurs. The most important references related to this topic are Dr. Alvar

Saenz-Otero thesis [33], [34], Mark Hilstad thesis [13] and Dr. Simon Nolet thesis
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[29] thesis, concerning the theoretical development of the testbed and some internal

documents showing how to interact with the software architecture and code new

algorithms [27], [32]. Moreover, a big amount of publications by several members of

the SPHERES Team helped in a better comprehension of formation �ight algorithms

design and posterior realization in the testbed. Main results of the research conducted

by the SPHERES Team can be found in [3], [6], [2] as well as in the recently renewed

SPHERES ISS Data Base website [40].

An important reference needs to be done to the optimal control books [21], [19]

that have been a common reference throughout this thesis, as well as [18] for nonlinear

control systems.

The research performed in this present thesis concerns the development of new

formation �ight controllers applied for the SPHERES testbed to optimally ful�ll the

control requirements of a distributed space telescope structure.

1.3 SPHERES Testbed

Synchronized Position Hold, Engage, Re-orient, Experimental Satellites (SPHERES)

was thought and designed to o�er scientists a testing environment where iteratively

could develop algorithms of guidance, navigation and control (GN&C) for distributed

spacecraft systems in microgravity scenarios. With a high test reliability and repro-

ducibility, the SPHERES testbed allows the scientist to carry out research in algo-

rithms in a risk-tolerant environment, enabling a low-cost maturation process.

With the collaboration of NASA the SPHERES Team at the Space Systems Lab-

oratory (SSL, MIT) develops estimation, command and autonomy algorithms for

formation �ight space systems in order to get the technology of distributed satellites

to a mature point so it can be exploited in future space missions. The SPHERES

project needed to have at its disposal a testing tool where microgravity scenarios

could be reproduced with a high reliability of the obtained resultant data so that

the computed algorithms could be validated for reel use. Only that way the control

techniques could be iteratively developed in e�orts to get the architecture ready to
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Figure 1.1: A SPHERE satellite

work on reel conditions. The risk-tolerant property is essential for its evolution so

still-not-validated algorithms can be tested without damaging the system -no matter

how aggressive the algorithms are- and for the lowest possible cost.

1.3.1 Main Characteristics

The SPHERES testbed consists of three free-�yer vehicles (commonly referred to as

�satellites� or �spheres�), �ve ultrasonic beacons, and a laptop control station. The

satellites are equipped in order to be self-contained during a �ight test and have all

the main functionalities of a satellite.

� The power supply is achieved with boarded batteries that can be recharged when

they empty.

� The propulsion subsystem comprises 12 cold-gas thrusters fed by a tank con-

taining liquid CO2 propellant, also with the possibility of replacement and recharge.

Variable forces and torques can be produced using pulse modulation with a minimum

time resolution of one millisecond.

� Communication is provided by a RF link with two frequency channels, one

for communication between satellites (STS) and another for communication between

satellite and laptop (STL). The second one is used for command sending and test

data storage.

� Infra-red and ultrasonic sensors and emitters are used by the global positioning

subsystem. This one makes range measurements using the time of �ight of the signal
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emitted by the �ve beacons located at precisely known positions on the laboratory

reference frame. Inertial data is also obtained by the IMU at a higher frequency than

the external one using measurements of accelerometers and gyroscopes. This will

allow the determination of position and attitude of the 3 spheres on global and local

frames.

� The external control panel is reduced and simple as interaction between human-

machine is done via the laptop control interface.

� Flight software coded in C is downloaded to a Texas Instrument DSP that will

run the algorithms. Standard electronic devices (samplers, controllers, UART, etc)

are also included in the hardware of the spheres.

� The software has both periodic interrupt functions and event-driven task func-

tions to implement control and estimation algorithms with elevated freedom. Most of

the parameters of those functions such as the interruption period or event-mask can

be recon�gured as preferred.

Finally, the SPHERES Guest Scientists Program provides the scientists with doc-

umentation that details the interfaces to the existing �ight code in order to implement

custom algorithms. A Matlab simulation that models the dynamics of the satellites

with a double integrator plant will initially serve for the debugging of the code.

1.3.2 Air table Tests

Once that custom code is debugged using simulation tools and their performances

acquire the speci�cations in demand of scientists the next step in the validation of

the algorithm happens while testing in the hardware, in the spheres. As it could be

expected, the algorithms are designed to be used in a 0-g environment, so in order to

get closer to microgravity dynamics the SSL has built an air table in the laboratory

that fakes zero-gravity for the cost of loosing one space dimension. The air table

makes the spheres �oat, within a very thin air layer, which keeps its altitude constant

(loss of vertical dimension) and reducing the free-motion to 2D (horizontal plan) in

return. Consequently, the number of degrees-of-liberty (DOL) for an air table test is

reduced to 3 (two for horizontal translation, one for attitude), instead of the 6 DOL
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Figure 1.2: Air table test

motion that we would usually desire to test. Nevertheless, the collected data at air

table tests serves to validate algorithms in the reel hardware. The fact that all parts

of the system �propulsion and communication subsystems, inertia and dynamics, etc-

are not mathematically modelled anymore when testing on hardware permits a much

more realistic evaluation of the output data and performance of the custom algorithm.

1.3.3 Testing at zero-gravity environment

The �nal validation of the algorithm takes place in space, inside the International

Space Station (ISS), where reel zero-gravity environment is given. Astronauts at the

ISS have permanently available a SPHERES testbed, with three satellites, �ve ultra-

sonic beacons and the laptop control station. A test session at the ISS laboratories

needs organization and preplanning in advance �at the moment a total of 19 test ses-

sions have been run at the ISS, with an approximate mean duration of 3 to 4 hours

for each test session� so only the algorithms that have proved their good operability

at the air table are valid to be tested at the ISS. The chosen ones will be transferred

by NASA to the ISS. At the beginning of the test session, the astronauts will load the

code in the spheres and will launch the tests from the laptop control station interface
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Figure 1.3: International Space Station (ISS) test

using the procedures documentation provided by the SPHERES Team that details

the steps to follow to get valid data.

The algorithms that show working operability close to the expected performance

may eventually be validated for use in future multi-spacecraft space missions where

the reel environment conditions are similar to those of the test.

1.4 Thesis Objectives

The main objective of the thesis is the design and implementation of optimal forma-

tion �ight controllers that could be applied to interferometric space missions. Opti-

mality will be searched to track the requested baselines for imaging maneuvers while

a reduced use of available resources is made. In this thesis a new architecture for the

control of the SPHERES multi-agent system is proposed. The innovation is found in

the use of coupled inter-spacecraft dynamics that are de�ned when introducing into

the state vector of the system the relative states �position and velocity- connecting

the members of the �otilla. A complete design and analysis of the architecture will be

made and the advantages that it reveals will be presented. The architecture will be

further used for the implementation of optimal controllers. In order to evaluate the

performance improvement that the architecture can provide several common scenar-
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ios of interferometric maneuvers in real space missions will be presented. Controllers

de�ning coupled dynamics will be tested in those scenarios and their performance will

be compared to the one obtained by other controllers that do not use the coupled dy-

namics architecture. The worthiness of using a controller with coupled dynamics will

also be evaluated, as the improvement in performance will be balanced against the

drawbacks that this kind of architecture presents. Finally, this study will contribute

in the science goal of the development of deep space formation �ight controllers as it

is prevented from using telemetry data from any global positioning system.

1.5 Thesis Outline

Following the line of the thesis objectives, chapter 2 focuses on the analysis of the ar-

chitecture characteristics that uses coupled inter-spacecraft dynamics. The approach

towards the search of optimality followed by the author and that led to the initial

design of the architecture is also presented. The advantages that can be deemed from

that architecture are discussed along the chapter. The following chapter introduces

the selected scenarios where the architecture is willing to be tested as well as the

other architectures to be compared to. The scienti�c requirements of each scenario

will serve to de�ne di�erent cost functions. The latest ones will be used for the im-

plementation of optimal controllers within the coupled dynamics architecture, as the

cost functions will determine the criteria to minimize in the optimal control prob-

lem. At the end of chapter 3 the results obtained from testing the controllers in the

SPHERES testbed are presented and the performance improvement when compared

to other architectures is discussed. Chapter 4 focuses on the disadvantages of using

coupled dynamics on the design of a formation �ight control system. It also provides

solutions that may reduce the e�ect of these drawbacks. Particular tests will be run

to demonstrate the capability of the control system to operate under non-nominal

circumstances where these disadvantages are more noticeable. An evaluation of the

performance obtained in non-nominal cases is done at the end of the chapter. In the

5th and last chapter the most important conclusions of the previous chapters are col-
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lected and the overall worthiness of the coupled dynamics architecture is evaluated.

Finally, possible future work is proposed in order to keep on working on maturation

process of optimal formation �ight controllers.
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Chapter 2

Coupled Dynamics Architecture

2.1 Searching Optimality

The main application of formation �ying space systems is the creation of a distributed

sensors structure that allows observation of further celestial objects with an increased

angular resolution. The interferometer techniques lying on the basis of this space-

based distributed telescope structure require a precise formation control, while accu-

racy in relative positioning becomes vital for the observational scienti�c output.

On the other hand, in deep space scenario, where most of the current formation

�ight space missions in development are placed, no accurate global positioning system

is available, and so, using relative sensing among the members of the �eet becomes

necessary for the formation control.

It is worth mentioning that under these circumstances the global inertial position

of the satellites is mostly irrelevant as long as the global trajectory of the �eet is

roughly controlled.

Bearing these ideas in mind, a formation �ight controller is willing to be designed

that will optimally track the relative states �position and velocity� between satellites.

The controller should be able to track any formation shape and should require the less

possible human interaction in order to achieve autonomous recon�guration capability.

It must be noticed that this controller has a formation-wide objective to accom-

plish such as the one of tracking all the relative states among satellites and not just
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the tracking of inertial position of one independent satellite. In order to approach

this problem in an optimal way the following assumption has been made. Information

of the states of other satellites �wether this are global or relative� is needed and the

control commands must be computed taking those states into account. However, no

hierarchic levels through the members of the �eet will be recognized due to the poor

disturbance rejection properties of the Leader-Follower architecture mentioned before

and the undesirable over-reliance on one satellite.

Then, supposing that each satellite is able to get within the control loop period the

current relative states to the other satellites, the control commands can be performed

depending on the actual error on those instead of being a function of the error in global

independent positions which is the case of most of the formation �ight controllers

implemented up to the moment.

This approach may lead us to a rede�nition of the system state vector which will

not comprise global states of satellites anymore but will instead comprise the relative

states of the whole formation. For example, the rede�nition of the state vector for a

three satellite formation would be:

Using global states we had:

xsat = [pos, vel] ≡ global states for a single satellite

xfor = [xsat1, xsat2, xsat3] ≡ state vector of thewhole formation system
(2.1)

Using relative states we have:

xfor = [prel12, vrel12, prel23, vrel23, prel31, vrel31] (2.2)

Note: prelij and vrelij are the relative position and velocity states de�ned as from

satellite i to satellite j

It must be noticed that the relative vectors in the formation state vector are

de�ned in the inertial frame, and not in local body frame for each satellite, as the

global attitude of each satellite is supposed to be controlled by means of star-trackers
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Figure 2.1: Example of relative state de�nition

or other attitude sensors. From now on, the global attitude will be assumed to be

controlled decentralized �the personal implementation does control the attitude of

satellites� but it will not be part of the future discussion as only the performance in

relative positioning will be analyzed.

Figure 2.1 shows an example of how relative states between satellites should be

de�ned. Note that for this example only position states have been de�ned and that

as vectors in the inertial frame they have a determined direction and therefore these

are signed.

Linearized dynamic equations using the rede�ned state vector must be rewritten

for each of the axes (1D) of the inertial frame, as follows:

ẋfor = Axfor +Bu

y = Cxfor
(2.3)

Where u contains the force actuators of each of the satellites put together in a

column vector. A matrix corresponds to the common double integrator dynamics

matrix, augmented to the number of existing relative vectors depending on the mem-

bers of the formation. C matrix is the identity matrix with same size as A. And B

becomes:
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A =



0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0



B = 1
m



0 0 0

−1 1 0

0 0 0

0 −1 1

0 0 0

1 0 −1



(2.4)

where m is the mass of a single satellite.

We can easily see now that this rede�nition of the state vector has led us to some

equations that show dynamics with coupled behavior, as each relative state can be

controlled by the two ends of the relative vector. Moreover, actuation in one only

satellite will not only a�ect to its individual state but will have a global in�uence

on the state of the whole formation through all the relative states that are being

perturbed by this only actuation.

Within this situation we could give the satellites the capability to collectively im-

plement formation-wide commands. An optimal combination of thruster commands

at each satellite will come to an optimal controller in a global sense.

In fact, this kind of controller architecture can be identi�ed as a whole Multi-Input

Multi-Output (MIMO) system, where the inputs are all the thruster commands of

the �eet and the outputs are all the relative states that can be de�ned through it.

We are now in position to implement state-feedback controllers designed with re-

spect to formation-wide objective functions, such as tracking relative vectors between

satellites or minimizing the fuel use across the formation.
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It is worth mentioning that this represents a centralized solution in the sense

that the algorithm takes into account the states of the whole formation but it is

decentralized in the sense that there exists no dependency on any speci�c satellite

and each of them computes the control commands by its own means as long as it gets

the states of the whole formation.

At this point, one could think that the complexity and the information require-

ments of the approach taken here may outweigh any advantage that it might prove

and that having a simple decentralized independent controller that would track in-

ertial positions for each satellite already provides a known valid solution. However,

the author believes that �rstly, even if the tracking of inertial independent position

is a su�cient condition for the tracking of relative positioning, it is not a necessary

condition and sometimes, as in the case of deep space missions, not even possible.

And secondly, the author also believes that a coupled dynamics controller provides

performance advantages when designed for a cooperative formation of satellites with

an interferometric purpose. The following section shows how this is possible.

2.2 Advantages of coupled dynamics architecture

First of all, it is worth mentioning that as part of the MIMO architectures stability

and optimality are characteristics that are achieved in a global sense while some

controllers can be locally optimal (independent control) but not globally when put

together in a multi-agent system.

2.2.1 Scenario de�nition

Let us think of a scenario where two satellites are �ying in the space and these have

to be controlled in order to reach a �nal position from where they will proceed to the

imaging of a celestial object (�gure 2.2).

The grey star shapes represent the target positions to reach by each of the satel-

lites, the arrows are showing the common direction of the thruster commands and the

celestial object to be imaged is supposed to be far away in perpendicular direction to
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Figure 2.2: Scenario de�nition

Figure 2.3: Disturbance with independent control

the plan of the �gure.

2.2.2 Saving Fuel

Let us suppose now a perturbation �represented with a black arrow� that is pushing

both satellites away from their target (�gure 2.3).

If satellites are using independent controllers with de-coupled dynamics trying to

reach individual inertial positions the common thruster commands will try to �ght

against this perturbation to eventually reach their target state separately.

However, if those same satellites would be running a controller that uses coupled

dynamics and trying to reach the relative state that can be de�ned subtracting the

two target positions, then there would be no need to �ght against this perturbation
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Figure 2.4: Disturbance with coupled dynamics control

Figure 2.5: Reducing time of response

as the target centroid of the formation is not speci�ed, only the target relative state.

In the case where the distance between satellites is low down in orders of magnitude

compared to the distance to the celestial object, the target relative vector can freely

move in space (free motion of the formation centroid) without a�ecting the quality

of the imaging process at all (�gure 2.4).

2.2.3 Reducing Time of Response

Similar conclusions can be reached if we zoom in to a lower scale and consider the

error to the target position as the perturbation on the previous case.

Where independent controllers would still try to reach the target positions, the
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Figure 2.6: Fuel consumption with independent control

Figure 2.7: Fuel consumption with coupled dynamics control

controller with coupled dynamics will already have reached its �nal target in the case

that both errors to targets are similar. This means that the errors to global positions

can be cancelled whenever the situation is given and correction controls will only be

commanded in both satellites in order to reach the target relative state which is the

real objective of the general scenario de�nition (�gure 2.5).

2.2.4 Balanced fuel use

It is also worth mentioning that due to the fact that all the satellites are connected

through the relative states that relate them any maneuver or correction in their states

will be executed maintaining an invariant centroid �in a non disturbing environment�

which not only leads to the an optimal control for minimizing fuel consumption but

it also automatically makes a balanced use of fuel across the formation. In �gure 2.6

we can see for the case of an independent controller some maneuvers can lead to a

very di�erent use of fuel in between the satellites of the formation.

However, the same maneuver performed with a coupled dynamics controller will

have a completely balanced use of fuel by its own, enlarging the lifetime of the mission

(�gure 2.7).

At the same time, performing the maneuver collectively will again lead to a re-

duction of the time of response. Instead of having one only satellite executing a long

distance maneuver each satellite will perform short distances at the same time giving

the reduced time of maneuver.
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2.2.5 Performance in tracking error

Let us suppose that an independent de-coupled dynamics controller that is tracking

global positions has a tracking error of svg. If we would use this controller at each of

the two satellites of the described scenario to reach the target global positions the

resultant error in relative positioning would be:

σ2
rel = σ2

g1 + σ2
g2

σrel ≈ 1.4σg
(2.5)

However, if the same controller would be adapted to track relative vectors using

coupled dynamics we could expect to get a tracking error in relative vectors much

lower than 1.4σg. Obviously, this relative tracking error cannot be directly predicted

from the performance of the independent controller, as we have changed the dynamics

of the system and then the controller needs to be re-designed for those. Nevertheless,

the open loop poles of the system �eigenvalues of the A matrix in the dynamics

equations� have not changed and then we could likely expect to implement a controller

that increases the performance in relative positioning reducing the tracking error

under 1.4σg.

2.2.6 Increased Robustness

The precedent sections provided information about advantageous properties of the

coupled dynamics architecture. Many cases showed that the presence of disturbances

increases its relevancy and worthiness compared to an independent or decoupled ar-

chitecture. In fact, the coupled dynamics make the most of the noise that appears

to be in the system by reducing the required fuel or the time of response or simply

increasing the tracking performance focusing the target states of the formation on

relative positioning and not in separated global positions. The robustness against

disturbances is increased yet in the insight of this architecture. In the opposite, in an

ideal noiseless mathematically perfect situation coupled dynamics would not show any

pro�t in any of these ways. However, there are known external disturbances a�ecting
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the astrodynamics in the out space, solar pressure being surely the most important

one. Not only having to consider external sources of orbital perturbations, internal

disturbances can also be taken into account in order to prove the general relevancy of

using coupled dynamics. Modeling errors in di�erent layers or subsystems, process-

ing noises, estimation error in global position and imperfect identi�cation could be

mentioned at this point. In fact, the reasons that make coupled dynamics valuable

are the same that boosted the whole theory of close loop control against the math-

ematically optimal open loop. In other words, the reasons why close loop control is

nowadays used for the most part control system would serve to promote the use of

coupled dynamics architecture for formation �ight control.

2.3 Chapter Summary

This chapter shows the path followed by the author that led to the pre-design of an

optimal formation �ight control system that uses coupled inter-spacecraft dynamics.

Having explained the advantages that this approach may arise for relative positioning

between spacecrafts the next chapter will present the scenarios where the architecture

has been tested showing also the �nal design of the controller and the particular

implementation for each of the scenarios where it will be tested.
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Chapter 3

Optimal Formation Flight Controllers

3.1 Introduction

The previous chapter showed the theoretical advantages of the coupled dynamics

architecture and this chapter will show results from testing on real hardware.

Next, the scenarios and other architectures considered for testing are brie�y pre-

sented. This is followed by a thorough study of the maneuvers; a nominal target

trajectory is generated for each of them. At the same time, speci�c metrics will be

introduced for each case scenario which will lead to the de�nition of cost functions

that will directly evaluate the performance of each experiment. Finally, the controller

optimizing those cost functions is designed and implemented using the coupled dy-

namics architecture. Notice that it is not the objective of this research to study new

optimal trajectories that minimize some given metrics but instead the design of op-

timal controllers that would track a given trajectory under the minimization of some

criteria. Throughout this thesis, already existing and well documented techniques for

solving optimal control problems will be used and their theoretical development will

be introduced as they are required.
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3.1.1 Test Scenarios

Let us introduce �rst the scenarios where the architecture is willing to be tested. Three

di�erent scenarios are considered, each of them corresponding to di�erent maneuvers

in formation �ight that will serve to evaluate the rightness of the hypothesis explained

in chapter 2. These three maneuvers have been picked in order to not only provide

data from trajectories with di�erent dynamical characteristics, which will be useful to

discriminate the cases where using a coupled dynamics architecture shows an increased

value, but also for their relevancy in a real mission scenario. Given the predominant

interferometric purpose of the formation �ight space missions designed up to the

moment, the maneuvers will at the same time be those studied to be pertinent for

the case, which means that the trajectories followed by the satellites will be those

to help cover the maximum points of a UV plan due to the known direct relation

between the number of UV points covered and the quality of image [1]. Optimal

trajectories for interferometric space missions have already been studied by several

authors [31] and most of them would agree that spiral trajectories show this quality.

Following these principles, in the �rst scenario satellites will follow circular tra-

jectories which have dynamical properties close to those of the spirals. Apart from

their invariant radius, these trajectories are non-linear in time as the spirals and will

provide useful data for the initial evaluation of the properties of this architecture.

Secondly, and growing in complexity, spiral maneuvers will be introduced. Finally, in

the last scenario, stop and stare maneuvers will be studied where the stopping points

will correspond to those of a spiral trajectory. This last maneuver is of particular

interest because of its interferometric value and because of its dynamical properties

that mix linear and quadratic functions in time.

3.1.2 Comparing Architectures

Besides the coupled dynamics architecture, data from two other architectures in the

same scenarios presented above will be taken for comparison. Varying the coupling

level in the dynamics of the satellites the �rst other architecture presents completely
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decoupled dynamics. This is commonly named independent control and each satellite

separately tracks global positions. The second one has semi-coupled inter-spacecraft

dynamics and is commonly know as cyclic architecture. This one di�ers from the

Leader-Follower one in the fact that the connections between satellites are non hi-

erarchical. The speci�c implementation for this architecture from which data will

be extracted is called cyclic pursuit and presents the intrinsic property of natural

convergence to moving formations such as circles or ellipses [15].

Results form those three architectures in each of the scenarios will give us enough

data to permit us make conclusions about the real improvement in performance when

using coupled dynamics.

Prior to the study of each of the maneuvers and the implementation of optimal

controllers for each scenario the author has thought convenient to introduce at this

point the technique used in this research for solving the optimal control problem.

Known as the Calculus of Variations, it can be found in numerous books [19] and it

is introduced below to the better understanding of the reader.

3.2 Variational Approach in Optimal Control Prob-

lems

In this section the reader will be introduced in the aforementioned technique Calculus

of Variations which theoretically can be applied for solving many optimal control

problems. Once the general formulation is presented it will be concretized for the

problems of interest in this research.

The objective in solving the optimal problem is to obtain an admissible control u

that causes the system:

ẋ(t) = f(x(t), u(t), t) (3.1)

to follow an admissible trajectory x that minimizes the performance cost function:
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J = h(x(tf ), tf ) +

tfˆ

t0

g(x(t), u(t), t)dt (3.2)

where h is the terminal cost that penalizes the �nal state of the system and g is

the integrated cost in the entire control time. In order to ensure that the dynam-

ics equations of the system (Eq. 3.1) are not violated this requires formulating an

augmented cost function that includes these constraints into the equation 3.2 to be

optimized.

Jaug = h(x(tf ), tf ) +

tfˆ

t0

{
g(x(t), u(t), t) + ψT(t) [f(x(t), u(t), t)− ẋ(t)]

}
dt (3.3)

where the Langrange multipliers ψ(t) ([5]) are introduced. Most of the consulted

literature would at this point de�ne the Hamiltonian function:

H(x(t), u(t), ψ(t), t) = g(x(t), u(t), t) + ψT(t) [f(x(t), u(t), t)] (3.4)

That permits the rede�nition of the augmented cost function. As follows,

Jaug = h(x(tf ), tf ) +

tfˆ

t0

{
H(x(t), u(t), ψ(t), t)− ψT(t)ẋ(t)

}
dt (3.5)

As it has been stated before, the �nal goal is to �nd a minimum of this functional.

The next step in the procedure is then to de�ne its derivative with respect to all the

dependent functions (x, ẋ, ψ, u, t). Since the initial state and time are supposed to

be known the variations of the augmented cost function with respect to those can be

equaled to zero; this assumption can be made without loss of generality. Then we only

need to introduce the variations δx, δẋ, δu, δψ and δtf which gives for an extremal of

the cost function:
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δJaug =
[

∂
∂xf

h(x(tf ), tf )
]T
∂xf +

[
H(x(t), u(t), ψ(t), t) + ∂

∂tf
h(x(tf ), tf )

]
∂tf

+
´ tf
t0
{
[
∂
∂x
H(x(t), u(t), ψ(t), t)

]T
∂x

+
[
∂
∂u
H(x(t), u(t), ψ(t), t)

]T
∂u

+
[
∂
∂ψ
H(x(t), u(t), ψ(t), t)− ẋ(t)

]T
∂ψ + [−ψ(t)]T ∂ẋ}dt = 0

(3.6)

Given the relation between x and ẋ we can use the integration by parts technique

to rewrite 3.6 into:

δJaug =
[

∂
∂xf

h(x(tf ), tf )− ψ(t)
]T
∂xf +

[
H(x(t), u(t), ψ(t), t) + ∂

∂tf
h(x(tf ), tf )

]
∂tf

+
´ tf
t0
{
[
∂
∂x
H(x(t), u(t), ψ(t), t) + ψ̇

]T
∂x

+
[
∂
∂u
H(x(t), u(t), ψ(t), t)

]T
∂u

+
[
∂
∂ψ
H(x(t), u(t), ψ(t), t)− ẋ(t)

]T
∂ψ}dt = 0

(3.7)

Analyzing equation 3.7 we conclude that the integral must vanish on the extremal

regardless the boundary conditions. Thus, leading us to the de�nition of the neces-

sary conditions:

t ∈ [t0, tf ]


ẋ = ∂

∂ψ
H(x(t), u(t), ψ(t), t)

0 = ∂
∂u
H(x(t), u(t), ψ(t), t)

ψ̇ = − ∂
∂x
H(x(t), u(t), ψ(t), t)

(3.8)

The �rst equation in 3.8 is known as the state function and it can be easily

identi�ed as the dynamics equation of the system given in 3.1 which means that the

solution must be one admissible trajectory.

The second one occurs from the fact that the variation in ∂u is independent

and must minimize the Hamiltonian. The expansion of this equation leads to the

expression of the optimal control command law:

43



0 =
∂

∂u
g(x(t), u(t), t) +

[
∂

∂u
f(x(t), u(t), t)

]T

ψ(t) (3.9)

Note that this expression is valid under the assumption that the control-e�orts

are not bounded. In the other case, this equation should be modi�ed to incorporate

this additional constraint. Besides, to ensure that the actual u∗(t) causes a local

minimum in the Hamiltonian it is su�cient to guarantee that ∂2

∂u2H(x(t), u(t), ψ(t), t)

is positive de�nite[21].

The third equation, known as the co-state equation, is usually the key to solving

the optimal control problem. Estimating the co-state will give the actual function

of the optimal control command and this can be used for integrating the trajectory.

However, solving the co-state equation can be a tedious work depending on the form

of the dynamics equations and the cost function. What is more, its complexity grows

as the number of states increases.

Note that the missing equations for reaching the optimal solution are given by the

boundary conditions that are already present in the variation of the augmented cost

and that can be divided in three general groups: initial, intermediate and terminal

conditions. For the concern of this research only the initial and terminal conditions

are discussed. If any further information about boundary conditions were required

those are well documented in [19].

Boundary conditions can occur in di�erent expressions depending on the problem

statement. As it has already been mentioned, the initial time and state are supposed

to be known which for aerospace engineering guaranties that the engineer will have

in advance a precise estimate of the position and velocity of the spacecraft. This is a

very reasonable assumption.

On the other hand, terminal conditions must be satis�ed. Taking the terms outside

of the integral in 3.7 and since the variation must be zero, we have:

[
∂

∂xf
h(x(tf ), tf )− ψ(t)

]T

∂xf +

[
H(x(t), u(t), ψ(t), t) +

∂

∂tf
h(x(tf ), tf )

]
∂tf = 0

(3.10)
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Supposing that variations on terminal states and terminal time are independent,

equation 3.10 can be separated into:

∂
∂xf

h(x(tf ), tf )− ψ(tf ) = 0

H(x(tf ), u(tf ), ψ(tf ), tf ) + ∂
∂tf
h(x(tf ), tf ) = 0

(3.11)

where both need to be satis�ed separately. The �nal expression of the terminal

conditions will depend on the de�nition of the problem. If the �nal state is speci�ed,

�rst equation in 3.11 is ignored while if the �nal time is speci�ed, then the second

one, also known as transversality condition, should be obviated. In this thesis, the

�nal state will be usually speci�ed while the time will be a variable in the optimizing

process that will have to be balanced with the fuel consumption.

3.3 Linear Quadratic Regulator

In this section we shall consider an important class of optimal control problems,

linear quadratic regulators. The formulation in the previous section states that the

dynamics and the cost of the system are function of the states, control and time but

does not make any assumption about their form. We shall consider now the case of

linear dynamics and quadratic cost. This is a generally valid assumption as complex

non-linear dynamics tend to be linearized around a stable point and cost functions

can be written as quadratic forms of control e�orts and the state. We shall show how

in this case the optimal control law can be found as a linear function of the states of

the system.

Next, general equations for the LQ formalism in aerospace framework will be

introduced in order to �nd the particular necessary conditions in the formulation of

the previous section. The following development is primarily due to R. E. Kalman

[16],[17].

Consider the plant described by the linear equations:

ẋ(t) = A(t)x(t) +B(t)u(t) (3.12)
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and the quadratic cost function to be minimized:

J =
1

2
xT
f Fxf +

1

2

tfˆ

t0

{
xT(t)Q(t)x(t) + uT(t)R(t)u(t)

}
dt (3.13)

Where H and Q are real symmetric positive semi-de�nite matrices and R is real

symmetric positive de�nite matrix. The next physical interpretation about the cost

function can be made at this point: it is desired to maintain the state vector close to

the origin without and excessive expenditure of control e�ort, where the weighting of

Q and R matrices will determine the behavior of the controller to be either expensive-

reactive type (Q highly weigthen relative to R) or inexpensive-non-reactive type (R

highly weigthen relative to Q). The Hamiltonian is de�ned:

H(x(t), u(t), ψ(t), t) =
1

2
xT(t)Q(t)x(t) +

1

2
uT(t)R(t)u(t) + ψT [A(t)x(t) +B(t)u(t)]

(3.14)

And the necessary conditions become:

ẋ(t) = A(t)x(t) +B(t)u(t)

0 = ∂
∂u
H = R(t)u(t) +BT(t)ψ(t)

ψ̇(t) = −Q(t)x(t)− AT(t)ψ(t)

(3.15)

The second equation can be solved to get the optimal control law:

u∗(t) = −R−1(t)BT(t)ψ∗(t) (3.16)

Choosing R to be positive de�nite we ensure the existence of R−1 and the optimal-

ity of the Hamiltonian as ∂2

∂u2H = R. Taking the result in 3.16 and substituting into

3.15, the state and co-state equations can be rewritten using matricial nomenclature

where these are linear combination of themselves.

 ẋ∗(t)

ψ̇∗(t)

 =

 A(t) −B(t)R−1(t)BT(t)

−Q(t) −AT(t)

 x∗(t)

ψ∗(t)

 (3.17)
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From the theory of control we know that the 2n (n = number of states) homoge-

neous di�erential equations in 3.17 have the solution of the form (see [19] for further

development):

 ẋ∗(t)

ψ̇∗(t)

 = ϕ(tf , t)

 x∗(t)

ψ∗(t)

 (3.18)

and,

ψ̇∗(t) = P (t)ẋ∗(t) (3.19)

However, �nding P (t) through the transition matrix ϕ(t) can be a long time

consuming task mostly when the order of the system is large and then numerical

procedures have to be used. In this research another approach is taken as it can be

shown (see appendix) that the matrix P satis�es the matrix di�erential equation:

Ṗ (t) = −P (t)A(t)− AT(t)P (t)−Q(t) + P (t)B(t)R−1(t)BT(t)P (t) (3.20)

where the boundary condition is P (tf ) = F .

A case of special relevancy is considered when the system is to be controlled for

an interval of in�nite (non-speci�ed) duration. Kalman has shown that if the next

hypotheses are satis�ed:

1. System is completely controllable

2. F = 0 (in�nite horizon)

3. A, B, R and Q are constant matrices

then Ṗ (t)→ 0 as tf →∞. Substituting in 3.16:

u∗(t) = R−1BPx(t) = −Kx(t) (3.21)

we conclude that the optimal control law is a linear combination of the states of
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the system. In fact, a constant set of gains (matrix K) can be used to implement a

state-feedback controller that stabilizes the system at the origin and minimizes the

cost function in 3.13. Matrix P may be found solving the Riccati equation:

0 = −PA− ATP −Q+ PBR−1BTP (3.22)

Note that the hypotheses made above for �nding the optimal state-feedback time-

invariant controller are common assumptions. We can suppose that the matrices

de�ning the linear dynamics of the system stay invariant for the maneuver time and

that its duration is not speci�ed a priori and could su�er variations depending on the

requirements of each case. Finally, having a controllable system is a valid assumption

for the research conducted in here.

3.4 Circular Maneuver

3.4.1 Trajectory Generation

In the �rst scenario under study satellites will track a circular trajectory. A general

expression for this is (�gure 3.1):

x(t) = r·cos(ωt+ ϕ)ê1 + r·sin(ωt+ ϕ)ê2 (3.23)

Variations on the radius (r) will cause in larger or smaller circles. Taking into

account the dimensions of the air table and the test volume of the ISS the radius was

�xed at 0.3m for testing on the table and 0.4m for testing in the ISS. Vectors ê1 and

ê2 �x the plan on the inertial frame where the circle is placed. ϕ is the initial phase

of the satellite on the circular trajectory. And �nally, ω is used to �x the revolution

rate of the satellite.

ω = 2π/T ≡ revolution rate with T = revolution period (3.24)

The revolution period is picked so that the satellites do not exceed the maximum
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Figure 3.1: Generic circular trajectory

centripetal acceleration they can supply. Given a radius for a circle its perimeter is

�xed, changing the period will make the required velocity to vary and this one should

not exceed the value that gives the maximum centripetal acceleration. This last one

is determined by the thruster capacity of the spheres.

mV 2
max/r = umax

2πr/Vmax < T
(3.25)

where Vmax is the maximum magnitude of the velocity vector and umax is the

maximun truster force.

which can be rewritten:

m·r·ω2
max = umax (3.26)

Given the maximum revolution rate the actual rate is picked keeping a security

margin so that this nominally required force does not allocate a substantial part of

the thrusting capacity.

This maneuver has been run using a formation of two satellites and a revolution

period of 180s, which ful�lls the requirements just mentioned. The unitary vectors ê1
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Figure 3.2: Relative states in time for circular trajectory

and ê2 were chosen to be the x̂ and ŷ directions of the inertial frame for simplicity.

In order to generate the trajectory in relative positioning two global trajectories are

subtracted picking the initial phases for each of the satellites to be diametrically

opposite, 0 and π.

prel(t) = r·cos(ωt)x̂+ r·sin(ωt)ŷ − (r·cos(ωt+ π)x̂+ r·sin(ωt+ π)ŷ)

= 2·r·cos(ωt)x̂+ 2·r·sin(ωt)ŷ
(3.27)

The resulting relative trajectory has exactly the same expression with an increased

radius (�gures 3.2 and 3.3).

3.4.2 Cost Function

As it has been mentioned before, formation �ying space missions are being studied for

interferometric purposes because of their excellent performances to observe celestial

objects while requiring little orbiting mass. The technological challenge lies on the

high precision in relative positioning that interferometer techniques require in order

to combine constructively the light coming from each of the collectors, i.e. satellites.

It is well understood that, the less the error in relative position the better the quality
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Figure 3.3: Circular relative trajectory

of the image obtained.

It is also worth mentioning that in order to avoid the relatively fast dynamics of

an Earth orbiting satellite and so facilitate the control of the formation, this kind

of observational missions are designed to be sent either to the deep space or to the

popular Earth trailing Lagrange point, which creates a �gravitation free� environment

and which justi�es the double integrator plant used in this research.

However, one of the key fundamentals of formation �ight space systems is to

maximize the returns given the minimal resources that are available. The fact of

minimizing the use of resources while keeping an acceptable science output becomes

then a key aspect on the problem. This will be rewarded with a longer mission lifetime

which makes the economical investment worthwhile.

This is why the performance of an experiment cannot only be evaluated for its

precision in trajectory tracking but it also needs to take into account the amount of

fuel used on this purpose. Considering these metrics a cost function can be de�ned

as a combination of the error in relative position (e) and the energy spent during the
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maneuver:

J = eTQe+ uTRu (3.28)

where Q and R are de�nite positive and usually diagonal matrices. Weighting the

values of the matrices will provide a realistic evaluation of the performance.

3.4.3 Controller Implementation

The implementation of the controller will consist on solving the optimal control prob-

lem that will minimize the cost function de�ned in equation 3.28 under the constraints

of the coupled inter-spacecraft dynamics of the system. As the coupled dynamics have

a linear form and the de�ned cost function is quadratic the LQ formalism can be ap-

plied for solving the optimal control problem. However, note that the LQ controller

is supposed to stabilize the state of the system at the origin and we are willing to use

it to track a circular trajectory. This is easily overtaken by changing the inputs of the

controller and feeding the error to the target state instead of the state of the system

itself. This was in fact implicitly assumed in the de�nition of the cost function. The

controller will then try to continuously stabilize the error at the origin, i.e. minimize

the tracking error while using an acceptable amount of propellant.

The LQ formalism, as it has been presented before, leads to a state-feedback con-

troller that can be identi�ed as a Proportional Derivative (PD) controller. However,

the author has believed that incorporating an integral part to the controller could

help minimize the tracking error by rejecting any present disturbances. The way to

add the integral contribution to the controller and make it part of the solution of the

optimal control problem is by adding an equation to the linearized dynamics. The

state vector is incremented where the new state corresponds to the integral of the

error (eint). The equation that must be added to the dynamics is:

ėint = preldesired − prel = e (3.29)

The A, B and C matrices must be augmented, the general reformulation is:
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Aaug =

 Anxn

−1 0 · · · 0



Baug =

 B

0 · · · 0



Caug = In+1

(3.30)

Let us now use this formulation for implementing the optimal controller using

coupled inter-spacecraft dynamics.

In the present, a formation of two satellites is considered. The state vector is

de�ned:

xfor = [prel, vrel, eint] (3.31)

corresponding to the relative position, velocity, and the integral of the error in

relative position. The relative states are de�ned subtracting the global states of the

two satellites.

In this research the convention that the relative state is always de�ned as the

vector going from satellite number one (logical ID1) to satellite number two (logical

ID2) has been made.

[prel, vrel] = xsat2 − xsat1 (3.32)

Using the standard linearized dynamics formulation:

ẋfor = Axfor +Bu (3.33)

where,
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A =


0 1 0

0 0 0

−1 0 0



B = 1
m


0 0

−1 1

0 0


(3.34)

Note that the control in each of the directions of the axes of the inertial reference

frame is done separately as their dynamics are supposed decoupled. Then, the control

u is the column vector that takes the thrusting forces of the two satellites in one axis.

Once that the Q and R matrices are chosen (see Bryson's rule section in this

chapter) the LQ formalism can be used to compute the PID optimal control law

that minimizes the cost function above and that can be formulated by means of the

time-invariant matrix K:

u = −Kxfor (3.35)

It is worth mentioning that thanks to the coupled dynamics introduced in the

design of the controller this is a globally optimal decentralized controller (see chapter

2).

3.5 Spiral Maneuver

3.5.1 Trajectory Generation

On the second maneuver considered in this research the satellites will follow a spiral

trajectory. The spiral was chosen to be of Archimedean type. A general expression

for this kind of trajectory is (�gure 3.4):

x(t) = r(t)·cos(ωt+ ϕ)ê1 + r(t)·sin(ωt+ ϕ)ê2 (3.36)
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Figure 3.4: Generic spiral trajectory

where r(t) is a linear function of time,

r(t) = α·t+ r0 (3.37)

where r0 is the initial radius and α is the rate of the increasing radius.

For the same reason mentioned in the circular maneuver section, α and ω are

both picked so that the centripetal acceleration does not exceed the thruster capacity

but in this case at any time during the maneuver. α will determine the �nal radius

for a given maneuver time. The radius at the end of the maneuver will be used for

selecting ω as the biggest radius is the most restrictive one.

This maneuver has been run using a formation of two satellites, with a radius that

goes from 0.2m to 0.4m for air table testing and from 0.3m to 0.5m for testing in the

ISS in one only cycle of 180s.

As proceeded for the circular maneuver the relative trajectory is obtained sub-

tracting two global trajectories where the initial phases for each of the satellites are

diametrically opposite, 0 and π.
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Figure 3.5: Relative states in time for spiral trajectory

prel(t) = r(t)·cos(ωt)x̂+ r(t)·sin(ωt)ŷ − (r(t)·cos(ωt+ π)x̂+ r(t)·sin(ωt+ π)ŷ)

= 2·r(t)·cos(ωt)x̂+ 2·r(t)·sin(ωt)ŷ

(3.38)

Once again, the resulting relative trajectory has exactly the same expression with

doubled radius (�gures 3.5 and 3.6).

3.5.2 Cost Function

Considering the similarities between the previous and this maneuver the cost function

that would determine the criteria to minimize will also be written as a combination

of the tracking error in relative positioning and the energy spent in this purpose:

J = eTQe+ uTRu (3.39)
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Figure 3.6: Spiral relative trajectory

3.5.3 Controller Implementation

The same coupled inter-spacecraft dynamics and same cost function as used for the

circular maneuver lead to the optimal PID controller of the same form:

u = −Kxfor (3.40)

However, the author has believed pertinent adding to the controller for this ma-

neuver a feedforward control that corresponds to the nominal force that would be

commanded in an ideal noise-free environment in order to make the satellite follow

the target trajectory. This force can be identi�ed as the nominal centripetal force

and can be easily calculated at each control period.

F =
m ‖vrel‖2(

1
2
prel
) (3.41)

Note that for satellite number one the nominal force has the direction of the target

relative position while for the satellite number two the direction is the opposite.
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3.6 Stop and Stare Maneuver

3.6.1 Trajectory Generation

The third scenario that we will consider in this study is commonly known as Stop

and Stare maneuver. This is the popular name is given to interferometric maneuvers

where a satellite goes from an initial position to another �nal position and stops there.

This general description is usually corresponded to the maneuver that connects two

di�erent image captures or for a formation �ight space telescope two di�erent points

of the UV plan of the same image. The only speci�cation for this maneuver is the

�nal position and �nal zero velocity.

Depending on the fuel usage this maneuvers can be performed following di�erent

trajectories. However, all these possible trajectories comprise three phases: acceler-

ating, coasting and decelerating phase. The fuel spent in the maneuver will just vary

the duration of these phases.

For initial zero velocities the nominal duration of the accelerating and decelerating

phases is the same. In the coasting phase the satellite drifts without thrusting. If no

restrictions on the use of fuel are made the coasting phase has zero duration and the

satellite accelerates up to the half-way and decelerates for the rest of the maneuver.

Two generic examples of Stop and Stare maneuver trajectories are shown in �gure

3.7, the second one being less fuel demanding.

This trajectory pro�le is commonly known as Bang-o�-Bang type.

Given that the trajectory will depend on the propellant spent and this is one of

the optimization variables of the problem we cannot present at this point a nominal

target trajectory for this maneuver.

3.6.2 Cost Function

As it has been mentioned before, the only speci�cations for this maneuver are in

fact the terminal conditions: �nal position and zero velocity. The trajectory followed

to reach them can be determined by the optimal controller that would minimize a
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Figure 3.7: Generic Stop and Stare trajectories

speci�c criterion. However, if we de�ne the cost being only function of the fuel usage

the solution to the optimal control problem will return a fuel optimal trajectory with

coasting time tending to in�nite. This is why the time spent in the maneuver needs

to be also penalized. Thus, the cost function for the Stop and Stare maneuver is

de�ned:

J =

ˆ tf

t0

1 + β|u(t)|dt (3.42)

The variable β serves for the balancing between the time and the fuel used and

it will determine the optimal target trajectory to be more or less fuel consuming (see

�gure 3.7).

3.6.3 Controller Implementation

The reader might predict that the LQ framework is not suitable anymore for the

implementation of the optimal controller in the Stop and Stare maneuver. Let us

nevertheless explain why this solution could neither intuitively be a good one.

The main reason is not in fact the non quadratic form of te cost function; neither

59



that the trajectory is not de�ned in advance, because we could generate a speci�c

Bang-o�-Bang trajectory by �xing the amount of fuel used and choose a quadratic cost

to follow it as it has been done in the previous maneuvers. The problem arises indeed

when noticing that this maneuver combines parts where the trajectory is linear in

time (coasting phase) and parts where the trajectory is quadratic in time (accelerating

and decelerating). Moreover, minimizing the lag in the accelerating phase and the

overshoot in the decelerating phase will be a key factor for the optimality of the

controller; those phenomenons would only cause a de�cient use of fuel and a longer

required time for the maneuver.

A time-invariant state-feedback linear controller like the one given by the LQ

formulation and used in previous maneuvers would hardly track such a trajectory

without showing a big lag and overshoot, due to the non-anticipatory behavior of the

controller. The optimality can only be reached with a Bang-o�-Bang �ring pro�le

which comprises two open �ring phases connected by a drifting (non-�ring) phase.

And this again is not the pro�le that would show a time-invariant LQ controller.

Herein, we intend now to solve the optimal control problem by means of the

Calculus of Variations that will minimize the cost function above and will reach

some given terminal conditions within an admissible trajectory constrained by the

couple dynamics of the system. Consider the double integrator plant with the relative

position and velocity as state vector and the thrusting forces of two satellites as control

commands:

ẋfor = ˙[prel, vrel] = Axfor +Bu

A =

 0 1

0 0



B = 1
m

 0 0

−1 1



|ui| < umax

(3.43)
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Let us select for this example some random initial relative position prel0 and as

terminal condition we will �x the �nal state at the origin prelf = 0.

For the given cost function, the Hamiltonian is de�ned as:

H = 1 + β|u|+
[
ψ1 ψ2

]
 0 1

0 0

 prel

vrel

+ 1
m

 0 0

−1 1

 u1

u2


= 1 + β|u|+ ψ1vrel + ψ2

1
m

(−u1 + u2)

(3.44)

From the necessary conditions that must be satis�ed the co-state equation gives:

ψ̇ = − ∂
∂x
H

ψ̇1 = 0; ψ1 = c1

ψ̇2 = −ψ1; ψ2 = −c1t+ c2

(3.45)

where c1 and c2 are constant values to be determined.

The third necessary condition tells us that the optimal control must minimize the

Hamiltonian.

∂

∂u
H = 0

Analyzing only the parts of the Hamiltonian that depend on the control u:

β|u1|+ β|u2|+ ψ2
1

m
(−u1 + u2) (3.46)

we conclude that since β> 0, u1 and u2 must have opposite signs so that:

(−u1 + u2) = ± (|u1|+ |u2|) (3.47)

We rewrite 3.46 de�ning u = ±(|u1|+ |u2|):

β|u|+ ψ2
1

m
u (3.48)
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Note that the Hamiltonian is the sum of two functions |u| and u, sign of which

depends on sign and relative size of ψ2 compared to β.

Three cases need to be considered now:

� If ψ2 > β > 0→ u∗ = −2umax →u∗1 = umax, u∗2 = −umax

� If ψ2 < −β → u∗ = 2umax →u∗1 = −umax, u∗2 = umax

� If β > ψ2 > −β → u∗ = 0 →u∗1 = 0, u∗2 = 0

Thus, the optimal control law has the form:

u(t)


−2umax

0

2umax

ψ2 > β

β > ψ2 > −β

ψ2 < −β

(3.49)

we identify this pro�le as a bang-o�-bang type which we already knew was the

optimal controller's pro�le. We can also foresee that, for the given scenario where

initial zero velocity is supposed, and since ψ2 is a linear function of time that only

two switches will occur in the control command during the maneuver. Those switches

correspond indeed to the ones between the accelerating and the coasting phase and

between the coasting and decelerating phase. The e�ective values of ψ2 will depend

on the boundary conditions i.e. the initial and �nal states.

Applying the boundary conditions, the transversality condition tells:

1 + β|u(tf )|+ ψ2(tf )
1

m
u(tf ) = 0 (3.50)

Since the system must stop at tf → u(tf) = ±2umax

If u(tf ) = 2umax → ψ2(tf ) = −
(
β + m

2umax

)
< β

If u(tf ) = −2umax → ψ2(tf ) =
(
β + m

2umax

)
> β

(3.51)

Therefore, the boundary conditions are consistent with the optimal control law in

3.49. So, the initial and terminal states will serve to determine the initial and �nal

signs of the control commands.
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The only task left is to determine the switching times and �nal time for the

maneuver. Let us pick an arbitrary initial state prel0 > 0. Then, the initial control

command should be u∗(0) = −2umax and ψ2(0) > β. The �rst switching point will

occur at t = t1 and the second one at t = t2. Then the following equations must be

satis�ed at the switching points:

ψ2(t1) = c2 − c1t1 = β

ψ2(t2 = tf − t1) = c2 − c1 (tf − t1) = −β
(3.52)

And since ψ2(tf ) = −(β +m/(2umax)) = c2 − c1tf we get that:

t1 = m
2umaxc1

tf = 2t1 + 2β
c1

(3.53)

In order to determine c1 we just need to integrate the trajectory using the switching

and �nishing times above and solve the Two Point Boundary Problem (TPBP) for

the given initial and �nal states (see Appendix). The solution leads to:

c21 =

(
2β + m

2umax

)
prel0

(3.54)

Note that if the initial state had been chosen to be prel0 < 0, then the trajectory

would be symmetric with reference to the origin but the switching and �nishing

times would remain the same. Thus, the optimal Bang-o�-Bang controller could be

generally de�ned for arbitrary initial and terminal states as:

u(t)


±2umax

0

∓2umax

0 < t < t1

t1 < t < tf − t1

tf − t1 < t < tf

(3.55)

where,

t1 =
(|prel0−prelf |)

1
2m

(2umax·(2β+m/(2umax))
1
2 )

tf =
2t1+2β(|prel0−prelf |)

1
2

(2β+m/(2umax))
1
2

(3.56)
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Integrating the control commands within the coupled dynamics we get the optimal

relative trajectory (prel0 > prelf = 0):

prel(t)


prel0 − 2umax

m
1
2
t2

prel0 − 2umax

m
1
2
t21 − 1

c1
(t− t1)

prelf + 2umax

m
1
2
(tf − t)2

0 < t < t1

t1 < t < tf − t1

tf − t1 < t < tf

(3.57)

vrel(t)


2umax

m
t

− 1
c1

−2umax

m
(tf − t)

0 < t < t1

t1 < t < tf − t1

tf − t1 < t < tf

(3.58)

3.6.3.1 Open loop controller

The solution of the optimal control problem for the stop and stare maneuver is in fact

a controller that is pre-de�ned by the thrusting pro�le and times in 3.56. Once that

beta is picked then the nominal trajectory that optimally brings the system from the

initial state to the �nal one is speci�ed in 3.57. Thus, in a noise-free ideally modeled

environment, commanding to the system the controls de�ned in 3.56 will perfectly

track the trajectory in 3.57. However, this is nothing but an optimal open loop con-

trol whose main drawback is the non-robustness. The actual noise and disturbances

present in the system and the non-perfect identi�cation and modeling of its subsys-

tems make an open loop control hardly worthy. In the next section we will explain

how the problem of the low robustness is solved while keeping the optimality of the

controller.

3.6.3.2 Phase-Plane controller

Herein, we intend to close the loop so we can make our control commands depend on

the actual state of the system instead of following a prede�ned thrusting pro�le.

In order to do so let us introduce �rst what a phase plane graph is. A phase

plane graph is a graphical representation that shows the evolution of the states of the
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Figure 3.8: Example of phase plane graph

system. Let us chose for example the position and velocity states of a system whose

dynamics are de�ned by a double integrator plant. In that case, we can generate a

2D graph where the states of the system are the axis. Then, a translational motion

with positive constant acceleration starting at the origin of coordinates could be

represented by the phase plane graph in �gure 3.8.

The TPBP mentioned when solving the optimal control problem gives in fact,

apart from the switching times, the curves in the phase plane where the switchings

occur. While integrating the TPBP (see Appendix) we �nd that the switchings are

placed over the curves:

prel(t) =
(
2β + m

4umax

)
v2
rel(t)⇒ first switch

prel(t) =
(

m
4umax

)
v2
rel(t)⇒ second switch

(3.59)

Figure 3.9 represents those curves in a phase-plane graph for arbitrarily selected

β and umax:

Let us suppose an initial positive relative position (prel0 > 0) that is asked to be

driven to the origin. Then we could represent the trajectory followed by the system

over the previous phase plane graph (�gure 3.10).
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Figure 3.9: Switching curves for Stop and Stare maneuver

Figure 3.10: Phase-Plane trajectory for Stop and Stare maneuver
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In �gure 3.10 the three phases of the trajectory (black line) can be identi�ed. In

the accelerating phase, the system moves from its initial position towards the origin

increasing its velocity (negative acceleration). When the trajectory overtakes the �rst

switching curve (cyan line) the system stops �ring leading to the coasting phase with

constant velocity. When the second switching curve is reached (blue line), the system

starts decelerating until it gets to origin with zero velocity.

Variations on beta will produce changes in the �rsts switching curve. For greater

values of beta the line becomes more �at and the system has a fuel saving behavior.

Lower values of beta will make the �rst curve get closer to the second one where,

in the limit (β = 0), both are confounded and the system never stops �ring as the

coasting phase has zero duration.

As it can be noticed, this controller has the same Bag-o�-Bang behavior of the

open loop controller that was initially found as solution to the optimal control prob-

lem. However, instead of following a prede�ned �ring schedule this controller decides

whether it needs to accelerate, drift or decelerate depending on the actual state of

the system and the switching curves. Thus, the problem of the low robustness of the

open loop controller is solved.

This Phase-Plane non linear controller can be said to be the optimal close loop

controller for a stop and stare maneuver that minimizes the cost function de�ned in

the previous section.

The Stop and Stare maneuver will be performed by means of the Phase-Plane

controller. However, it is worth mentioning that prior to the maneuver and after this

precise one satellites need to be stable in �xed relative target positions (image cap-

tures). Hence, using the Phase-Plane controller for the static phases of the maneuver

is not the best solution. Thus, the LQ controller implemented for the Circular and

Spiral maneuvers will be used for the stable phases before and after the Stop and

Stare maneuver. In �gure 3.11 we can see the timeline of the controllers that are used

during di�erent phases of the entire test.
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Figure 3.11: Controller timeline in Stop and Stare maneuver test

3.7 Testing on the air table

On the following section results from testing the controllers on SPHERES air table are

shown. The three scenarios are tested and the performance improvement by using the

coupled inter-spacecraft dynamics is discussed. However, prior to the results analysis

some inconvenient situations when testing the coupled dynamics architecture in the

SPHERES testbed are treated here below.

3.7.1 Control of the Centroid

Some of the advantages of the coupled dynamics architecture are based on the free-

drifting of the formation centroid which leads to a reduction of required fuel. This

at the same time makes the satellites concentrate their e�orts in tracking the target

relative states without caring about their states in a global reference frame.

The SPHERES testbed disposes of two testing environments which are the air

table at the Space Systems Laboratory and the ISS laboratory volume. As it can be

expected, both of them have limited dimensions. Little imperfections on the table

(hard to have a big surface perfectly perpendicular to the gravitational �eld) will make

satellites drift considerably when they are not commanded to hold their position. But,
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even in the ISS environment where the satellites do not show a big uncontrolled drift

having a free-drifting centroid of the formation is not a secure option and presents

the mayor issue that the satellites could end up hitting any wall of the ISS and so

invalidate the test before getting useful data. On the air table, a free drifting satellite

would hit the edges of the table in less than one minute. For this reason, control of

the centroid is required in order to complete the test without exceeding the measures

of the test area or volume.

It is worth mentioning that if only the air table would comprise a bigger area,

those imperfections would in fact be convenient as they could be modeled as external

disturbances and they would probably help proving the reduced fuel usage property

of the coupled dynamics architecture.

However, adding a centroid control has a decoupling e�ect in the dynamics of

the system. At some point, where the centroid and relative control e�orts were

comparables, the satellites dynamics would in fact become decoupled. In order to

avoid that situation, we must keep the relative control e�orts over the ones of the

centroid with a certain margin. This can be made by weighting the feedback gains

for the relative and centroid control so that the �rst ones become more reactive but

always keeping the centroid control e�ective enough so that satellites do not exceed

the test limits. The explanation of how the weighting of the gains has been done is

given further in this section. Yet, having bigger gains shows another inconvenient

e�ect.

The thruster commands that the controller can apply are bounded. This is a

common situation in most of the satellite systems. The impulsion they can thrust

is limited and thus so is the maximum applicable force or acceleration. This means

that the actuators of the system have in fact a non linear behavior. This kind of

non linearity where commands saturate at a certain level has a known undesirable

e�ect. The theory of non linear control has been developed for years and the actuator

saturation is probably the most studied non linearity by several authors [18]. When

using the state feedback LQ controller, the control commands of the controller (output

signal) can be modeled a priori as a linear function of the measured states (input
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signal). So, taking the case of the LQ controller:

u(t) = −Kxfor(t) (3.60)

where u(t) is the output signal, xfor(t) is the input signal and K is the constant

feedback gains matrix. As long as |u(t)| < umax, the controller remains inside the

linear region and the system's dynamics are �xed by the close loop control. However,

when the input signal exceeds a certain limit the command does not satisfy 3.60

anymore. This is instead saturated at a certain value. This behavior can be modeled

making the K matrix be function of xfor(t).

u(t) = −K(xfor(t))xfor(t) (3.61)

Then, the matrix K stays invariant up to a certain input level and then decreases

inversely proportional to this one. Whenever the controller exceeds the linear region

the close loop control system becomes less and less e�ective as the control gains are

reduced. Analyzing this by means of a root-locus representation we could see how

the close loop poles move towards the open loop poles of the system. Eventually,

the dynamics of the system are not �xed by the close loop control anymore and the

system destabilizes.

3.7.1.1 Increasing the linear margins of the actuator

The SPHERES satellites have a software variable that �xes the amount of time that

can be used for thruster �ring at each control loop. This variable is called duty_cycle

and speci�es the percentage of the control period that is allocated for �ring. Increasing

the duty cycle we enlarge the �ring time window at each control loop and thus the

maximum applicable force is also increased. This is translated by a larger linear

margin in the actuator where the system stays inside the stable region (�gure 3.12).

Once the non linearity issue has been solved we just need to make sure that

the commanded controls to the actuator never exceed the maximum applicable force

so that the actuators always works in between its linear margins and the system
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Figure 3.12: Use of duty cycle to increase the maximum thruster capacity of Spheres

does not destabilize. This can be introduced as another constraint equation in the

optimal control problem or can also be dealt a posteriori by weighting the gains of the

feedback controller. The second approach was taken in this research and its procedure

is explained here below.

3.7.1.2 Bryson's rule

In order to solve the Ricatti equation in 3.22, matrix Q and R need to be chosen. The

close loop system dynamics will depend on the selected values for those matrices. One

of the most followed rules for picking up the values of Q and R is known as Bryson's

rule:

Q =



α2
1

(x1)2max

α2
2

(x2)2max

. . .

α2
n

(xn)2max



R = ρ



β2
1

(u1)2max

β2
2

(u2)2max

. . .

β2
m

(um)2max

 (3.62)

� The (xi)max and (ui)max represent the largest desired response/control input for

that component of the state/actuator signal.

� The
∑

i a
2
i = 1 and

∑
i β

2
i = 1 are used to add an additional relative weighting
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on the various components of the state/control. These parameters are used in

this research to balance the control e�orts in relative control and centroid control

so that the relative one presents a more reactive response and the dynamics of

the satellites remain coupled.

� ρ is used as the last relative weighting between the control and state penalties

and gives us a concrete way to discuss the relative size of Q and R. Low values

of ρ will produce an underestimated use of fuel with a very reactive system and

fast dynamics. On the other hand, fast dynamics means big feedback gains and

this will make the actuators reach faster the saturating point. Big values of ρ

increase the weight of fuel use in the cost function and the controller becomes

less reactive with lower feedback gains. Finally, the value of ρ needs to be chosen

so that dynamics are fast enough to present an admissible time of response but

keeping the system safe from saturating.

However, the engineer must know that these are just some guidelines for initializing

the matrices and reaching the �nal desirable behavior usually requires of iterative

processes where the speci�c values are tuned.

3.7.2 Results Analysis

In this section results from testing on the air table the implementations of the optimal

controllers in each of the scenarios will be shown.

3.7.2.1 Circular Maneuver

Figures 3.13, 3.14 and 3.15 resulted while performing a circular maneuver in SPHERES.

This data already served to prove the good behavior of the controller and validate the

coupled dynamics architecture as an interesting approach for tracking relative states

between satellites. While �gure 3.13 shows the satellites' global trajectory on the

horizontal table plane -where the circles are noticeable but not very precise- �gures

3.14 and 3.15 show the very precise tracking of the relative states during the whole
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Figure 3.13: Global trajectory of Spheres in circular maneuver, air table test

circular maneuver. Computing the magnitude of the error on the formation plane

during the maneuver as:

errormagnitude =
(
error2

relXpos + error2
relY pos

) 1
2 (3.63)

The mean value of the magnitude for the entire cycle is 1,0cm which is likely the

lowest tracking error ever achieved in a circular maneuver on the SPHERES air table.

3.7.2.2 Spiral Maneuver

Next, the spiral maneuver was tested on the SPHERES air table. Once again, while

�gure 3.16 shows not very accurate spiral global trajectories of the satellites, �gures

3.17 and 3.18 demonstrate high precision in the tracking of relative states. The mean

value of the error magnitude for the spiral cycle is 1,2cm which is also the state of

the art of the SPHERES air table.
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Figure 3.14: Relative position states in time for circular maneuver, air table test

Figure 3.15: Circular maneuver, air table test
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Figure 3.16: Global trajectory of Spheres in spiral maneuver, air table test

Figure 3.17: Relative position states in time for spiral maneuver, air table test
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Figure 3.18: Spiral maneuver, air table test

3.7.2.3 Stop and Stare Maneuver

The last tested scenario on the SPHERES air table with the coupled dynamics ar-

chitecture control was the Stop and Stare maneuver. The optimal controller imple-

mented for this type of trajectory was a close-loop state-feedback non-linear control

law named as Phase-Plane controller.

As it has been shown in the section 3.6.3.2 the controller computes the curves

on the phase-plane graph where the switchings of the Bang-o�-Bang �ring pro�le

occur. The controller however, relies on a precise identi�cation of the maximum

thrusting force of the satellites (umax), as this is a variable that is used to calculate

the curves. Even if we dispose of a precisely identi�ed nominal thrusting force of the

satellites, the disturbing environment that is found in the SPHERES air table makes

the transmitted acceleration impulse to be time-and-space variant.

Another handicap to be overcome when testing the Phase-Plane controller on

SPHERES is the discrete time condition of the control system. Due to this fact the

switchings do not occur just over the curves on the phase-plane graph but they occur

instead at the very next control step after these lines are crossed over. Depending

on the dynamics of the system �how fast these are�, the delay on the switching will
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Figure 3.19: Global trajectory of Spheres in Stop and Stare maneuver, air table test

be more or less signi�cant and so they will the lag and overshoot on the tracking of

relative states.

Despite these two inconvenient conditions the data obtained when testing the

Stop and Stare maneuver on the SPHERES air table was also very satisfactory. The

asymmetric di�erent global trajectories followed by the two satellites in �gure 3.19

shows the e�ectiveness of the coupled dynamics architecture. The controller makes

the most of the external and internal disturbances present in the SPHERES testing

environment deciding to switch to the coasting phase of the maneuver when the

necessary relative velocity is acquired even if the satellites have very di�erent global

velocities. A reduced use of fuel is guaranteed by this fact.

Figure 3.20 shows the evolution of the relative states in time and �gure 3.21

shows the relative trajectory followed by the satellites on the phase-plane graph. The

considerably little overshoot assures the e�cient use of time and fuel in the maneuver

which will be the performance metrics when testing the controller in zero-gravity

environment.
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Figure 3.20: Relative position states in time for Stop and Stare maneuver, air table
test

Figure 3.21: Relative trajectory of Spheres in phase-plane graph for Stop and Stare
mnaeuver, air table test
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3.7.3 Summary of testing on the air table

Testing the coupled dynamics architecture on the SPHERES air table returned very

valuable data proving the high accuracy of the controllers when tracking relative

trajectories such as circles and spirals and very e�ective time-fuel consumption when

performing a Stop and Stare maneuver.

No further analysis on the fuel usage was made at this point because of the centroid

control that had to be added to perform the tests �for the reasons explained in the

section 3.7.1 of this chapter� resulting on unnecessarily increased fuel consumption.

Thus, analyzing the fuel use on these tests would not be representative or concluding

for the evaluation of the coupled dynamics architecture.

At this point the algorithms are considered to be ready to be sent to the NASA

headquarters that will be in charge of transferring the test �les to the ISS.

3.8 Testing on the ISS

A total of two tests using the coupled dynamics architecture were run during the

19th SPHERES test session in the ISS held on the 26th of August 2009. Those

tests corresponded to the circular and spiral maneuvers tested on the SPHERES air

table. The following section will analyze the data obtained in those tests and will

be compared to data obtained from other tests where circular and spiral maneuvers

were performed using other control architectures.

The Stop and Stare maneuver test using the coupled dynamics architecture is

scheduled to happen in October 2009 during the 20th SPHERES test session in space.

The analysis of this data will be provided in the SPHERES Test Session Report

document that is published by the SPHERES team after each test session.
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Figure 3.22: Relative position states in time for circular maneuver with coupled
dynamics, ISS test

3.8.1 Results Analysis

3.8.1.1 Circular Maneuver

The test performing the circular maneuver was very successful. The gravitational-

free low-disturbing environment permitted showing the high precision of the coupled

dynamics controller tracking relative states. Figures 3.22 and 3.23 show the evolution

of the relative states in time and the relative trajectory on the formation plan followed

by the satellites during the circular maneuver. It can be noticed from �gure 3.23 that

the entire circular cycle was not completed by the satellites. This was due to a low

battery level in one of the satellites that caused it to reset. However, the SPHERES

Team decided at that moment of the test session that the test had been a success and

commanded the astronauts to continue with the following test on the test plan. Figure

3.24 shows the magnitude of the error (Eq. 3.63) between the reference and actual

trajectory in �gure 3.23. The performance acquired is below the centimeter precision

for most of the maneuver time. More precisely, the mean value of the magnitude error

for this test was 5,1mm which is the best tracking error ever achieved for a circular

maneuver in a SPHERES test session in the ISS.
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Figure 3.23: Circular maneuver, coupled dynamics control, ISS test

Figure 3.24: Magnitude of relative error on formation plan in time, coulpled dynamics,
ISS test
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Figure 3.25: Fuel consumption of Sphere 2 for circular maneuver test

The other performance metric to be analyzed in this test is the fuel consumption,

this being also part of the cost function that the optimal controller is supposed to

minimize. As it has been already explained in the 3.7.1 section, the centroid control

that requires the SPHERES testbed is detrimental to the fuel consumption with the

coupled dynamics architecture. It is worth mentioning that the centroid control was

expressly reduced �compared to the control e�ort for testing on the air table� before

it was sent to the ISS due to the expected and known lower disturbing environment.

However, the control e�ort was big enough to keep the centroid of the formation in

the very center of the volume for the whole test preventing it from the desirable free-

drifting centroid motion. This caused higher fuel consumption than the necessary. Let

us illustrate this behavior with the image in �gure 3.25 where the fuel consumption

of one of the satellites is plotted in time.

As it can be seen in �gure 3.25 the fuel consumption rate is roughly constant

during the whole test. This means that the satellite was using the same amount of

fuel just for holding position and for performing the circular maneuver. Thus, even if

the control e�orts were decreased before sending the algorithm to the ISS these were

big enough to make the states oscillate into a very narrow deathband increasing the

fuel consumption.

It must be noticed that this was the �rst test session where the coupled dynamics

architecture was tested. Introducing the algorithm into the iterative process of testing

on zero-gravity environment will lead to a better con�guration of control e�orts where
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Figure 3.26: Fuel consumption of Sphere 1 for circular maneuver test

both high performances in tracking error and fuel consumption are achieved.

On the other hand, looking at the fuel consumption of the other satellite (�gure

3.26), we can conclude that a balanced fuel consumption is achieved without the

need of any additional control feature. The di�erence in fuel consumption within

both satellites was below 3%.

Circular Maneuver test with independent and cyclic control

The following data was obtained from tests where satellites performed a circular

maneuver in formation but a di�erent architecture from the coupled dynamics one

was used.

Figures 3.27, 3.28 and 3.29 represent a three satellite formation where each of

them was independently commanded to follow a circular trajectory. While �gure

3.27 shows a pretty accurate circular global trajectory of the satellites, �gures 3.28

and 3.29 show that the precision in relative states is lower. Computing the mean value

of the error magnitude plotted in �gure 3.29 gives an average precision of 21,1mm.

The next architecture that has been used for comparison is the cyclic architecture.

The cyclic pursuit algorithm [15] was used to perform a circular formation of three

satellites. As it has been brie�y mentioned at the beginning of this chapter, the cyclic

pursuit algorithm has the intrinsic property of leading the satellites to converge to a

circular moving formation of a speci�ed radius. The algorithm uses to compute the
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Figure 3.27: Circular maneuver with independent control, ISS test

Figure 3.28: Relative position states in time for circular maneuver with independent
control, ISS test
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Figure 3.29: Magnitude of relative error on formation plan in time with independent
control, ISS test

control commands the relative state to the satellite in front only. Nevertheless, it

does not track any reference trajectory.

Figure 3.30 shows the e�ective circular global trajectory of the three satellites.

Figure 3.31 shows the evolution of the relative states between two of the satellites

which clearly corresponds to a circular evolution of the relative states. However,

�gure 3.32 shows that even if the relative states follow a circular motion satellites

have not yet converged to the speci�ed radius. The lack of a reference trajectory

makes it senseless to estimate any tracking error here.

It is worth mentioning that even if the cyclic pursuit algorithm is not the most

suitable one to track speci�c reference trajectories it does naturally converge to a

circular formation and makes a very low fuel use for this purpose. At this point,

the cyclic architecture is the one that used the less amount of fuel for completing

one whole cycle. Speci�c values of fuel consumption for each of the architectures are

displayed in the table at the end of this chapter.
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Figure 3.30: Global trajectory of Spheres with cyclic pursuit, ISS test

Figure 3.31: Relative position states in time for circular maneuver with cyclic pursuit,
ISS test
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Figure 3.32: Circular relative trajectory with cyclic pursuit, ISS test

3.8.1.2 Spiral Maneuver

In the second test of the SPHERES 19th test session in the ISS where the coupled

dynamics architecture was tested satellites performed a spiral maneuver. The test

was very successful too, showing even better tracking performance than the circular

maneuver test. Figure 3.35 shows that the relative trajectory plotted in �gures 3.33

and 3.34 was tracked within millimeter precision for most of the maneuver. The mean

value of the error magnitude for this maneuver was 4,5mm which makes it the most

precise formation �ight control test ever run in the ISS.

A very interesting event happened at the end of the maneuver when one of the

satellites run out of gas and was unable to command any thruster �rings for about

the last 15 seconds of the maneuver. Even if the satellites where able to �nish the

maneuver it is clearly noticed that the tracking performance decreased signi�cantly

for that time. How the coupled dynamics architecture can deal with this and other

inconvenient situations is treated in the 4th chapter of the thesis.

Spiral Maneuver test with independent control

The data showed in the following �gures was obtained from a test where a two

satellite formation performed a spiral maneuver using independent control and thus
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Figure 3.33: Relative position states in time for spiral maneuver with coupled dy-
namics, ISS test

Figure 3.34: Spiral maneuver, coupled dynamics, ISS test
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Figure 3.35: Magnitude of relative error on formation plan in time, ISS test

tracking two separate global trajectories. Even if the test was very successful with a

global tracking mean error magnitude of 8mm and 7,5mm for each of the satellites,

the precision goes down to 12,3mm when the error in relative states is computed.

Figures 3.36 and 3.37 show the evolution of the relative states during the maneuver

and the error magnitude of those.

3.8.1.3 Stop and Stare Maneuver

Finally, let us close this section mentioning that even if the Stop and Stare maneuver

could not yet be run in the ISS at this point, the promising data from testing on the

air table makes it expectable that successful data will also be obtained for this ma-

neuver. Hopefully, this will help us concluding about the performance improvement

that can be obtained when using the coupled dynamics architecture within these kind

of interferometric maneuvers too.

3.8.2 Summary of testing in the ISS

Let us now regroup all the relevant data obtained from testing circular and spiral

maneuvers in the ISS using di�erent architectures.
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Figure 3.36: Relative position states in time for spiral maneuver with independent
control, ISS test

Figure 3.37: Magnitude of relative error on formation plan in time, ISS test
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Maneuver Architecture Tracking error (mm) Fuel use (g)

Circular Coupled Dynamics 5,1 6,41
Circular Independent 21,1 2,70
Circular Cyclic - 2,10
Spiral Coupled Dynamics 4,5 7,01
Spiral Independent 12,3 1,84

Table 3.8.1: ISS test results

It is worth mentioning that all the circular or spiral tests were performing similar

or equal trajectories, this meaning same spinning rate and radius. This was expressly

prepared so the performance metrics could be fairly compared.

3.9 Chapter Summary

In this chapter full design of formation �ight controllers using the coupled dynamics

architecture presented in chapter 2 was made. Controllers were implemented for

testing the architecture in three di�erent scenarios where they were compared to

other formation �ight controllers using di�erent control architectures. The promising

results obtained testing the controllers in the SPHERES air table were con�rmed

during the 19th SPHERES test session in the ISS when satellites performed the most

precise formation �ight control tests ever run.

On the other hand, the issue with the fuel use and the centroid control e�ort is

willing to be mitigated in future SPHERES test sessions.

At the expectance of getting data from the next SPHERES test session where the

coupled dynamics architecture will be tested in a Stop and Stare maneuver, those

results will likely permit us conclude about the e�cient fuel use that is made with

the coupled dynamics architecture in formation �ight maneuvers.
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Chapter 4

Disadvantages of the coupled

dynamics architecture

In the previous chapters, we have demonstrated how the coupled inter-spacecraft dy-

namics architecture can be used to design optimal formation �ight controllers that

show an improved performance in several interferometric maneuvers. In the present

chapter we will focus on the disadvantages that using coupled dynamics reveals. Once

the problematic is understood approaches to deal with them are presented. Those

approaches are further implemented and tests in non nominal case scenarios are con-

ducted in order to show the e�ects of several vagaries in the controller performance.

Finally, the chapter ends with an evaluation of the ability of the adopted solutions to

face those vagaries.

4.1 High information requirements

The global optimality of the coupled dynamics architecture is assured by taking into

account the states of the whole formation at each control period and computing the

control commands as a function of them. However, the number of relative states in a

satellites formation grows as:

Ns (Ns − 1) /2 (4.1)
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where Ns is the number of satellites when only one direction for the relative vec-

tors is considered. Each relative state needs to be measured by or communicated to

each of the members of the �eet in order to compute by themselves the optimal con-

trol to apply at each loop. This is obviously an important requirement that increases

the complexity of the system whether in communication or in sensing payload. Ei-

ther there is a high communication requirement that translates in a lager allocated

bandwidth or each of the satellites needs to be equipped with the required sensing

payload. Any of both has as a consequence an increase in the economic cost of the

system. Moreover, the main problem lies in the fact that the controller needs from

those states in e�orts to keep on computing the control commands. Not only the

optimality of the controller is compromised but also, the more time the information

takes to get to the satellites the more the controller risks to exceed the delay margin

and thus destabilize the whole system.

For the tests results analyzed in chapter 3 a two satellite formation was considered.

Therefore only one relative state was required by the controller. The communication

bandwidth of the SPHERES testbed is big enough to guarantee with a high probabil-

ity the reception of that required information by both satellites at each control loop,

permitting the tests to be run in a nominal case without information loss.

However, if this algorithm were to be exported to another multi agent system

with a higher number of members on the �eet the increasing information requirement

could in fact become a deciding factor.

Next, how the coupled dynamics architecture can see the required information

reduced without any loss of optimality will be explained. As a result, the required

information will become increasing as a factor ofNs instead ofN2
s as could be expected

from equation 4.1. The technique will be added to the controller implementation and

tests with a formation of three satellites will be run in the air table in non nominal

case scenarios.

Let us consider the general case shown in �gure 4.1 where a formation of three

satellites is displayed.

As it can be seen in the picture, three relative states can be de�ned, named r12,
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Figure 4.1: Example of satellite formation

r23 and r31 as formation states. Using the coupled dynamics architecture, a feedback

control system could be implemented with the form:


u1

u2

u3

 =


K11 K12 K13

K21 K22 K23

K31 K32 K33



r12

r23

r31

 (4.2)

where relative velocity states where omitted for notational simplicity. However, if

the formation states are well de�ned the next equations should always be satis�ed:

r12 + r23 + r31 = 0 (4.3)

We could then express one of the relative states as a linear function of the other

two. In general, in a formation of Ns satellites only Ns − 1 out of the Ns(Ns − 1)/2

relative states are linearly independent. Thus, we can use a transformation matrix H

in order to remove the unnecessary states and compute the control commands only

by means of the Ns − 1 independent states.


u1

u2

u3

 = KH


r12

r23

r31

 =


K11 +K12 −K11 +K13

K21 +K22 −K21 +K23

K31 +K32 −K31 +K33


 r12

r23

 (4.4)
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As it is proved in [37], such a controller that uses Ns − 1 measurements has

same stability and performance properties as the one that uses all measurements

Ns(Ns − 1)/2.

Not only we have considerably unloaded the high information requirements, but

we also have shown that there exits several equivalent topologies (family of controllers)

with same state tracking performances. In equation 4.4 state r31 was removed arbi-

trarily, but we could also decide to remove states r12 or r23 and the properties of the

controller would remain the same. The possibility of switching from one topology to

another gives robustness and redundancy to the system because if one of the state

measurements su�ers from communication link loss or sensing link loss �or just re-

veals a big noise level� then the system could decide to switch to another topology

that is not using that precise state. Switching from one topology to another will

just require of rede�ning the transformation matrix H but the rest of the controller

design could stay invariant. As long as equation 4.3 is satis�ed by the measured

states then the control commands do not depend on the selected transformation ma-

trix and switchings should occur without any visible e�ects in the performance of the

controller.

In order to illustrate this fact with real data a test with a formation of three

satellites was run on the SPHERES air table. Satellites followed a circular rela-

tive trajectory and they switched topologies at several points during the maneuver.

Starting with all three relative states measured, they switched every 30 seconds to a

di�erent topology leading at the end of the maneuver to a situation where each of the

satellites was using a di�erent topology. This last situation could be given in the case

of a communication blackout where each satellite needs therefore to sense the two

relative vectors to the other two satellites. In �gure 4.2 we can see the evolution in

time of the tracking error to the relative states. Vertical lines indicate the moments

during the test where a switching occurred.

As it was expected, no jumps in the tracking error are visibly due to any switching

e�ect. This technique could then be applied to reduce the high information require-

ments and give redundancy to the system.
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Figure 4.2: Evolution of magnitude of relative error in time with switching topologies,
air table test

4.2 Low robustness to failure

Another disadvantage that appears when treating a multi agent system as a whole

MIMO plant is that the failure of one satellite a�ects the performance of the whole

formation. In other words, a local failure can have a global e�ect.

As it is shown in equation 4.2 the feedback control law returns the optimal com-

mands for the actuators of each of the satellites. Then, the control system relies in

every satellite executing the commanded controls. However, the fact that those com-

mands could sometime not get executed by all satellites needs to be considered. That

could be the case where one satellite would su�er from a thruster failure. Without ac-

tuators the satellite would drift freely and a�ect to the states of the whole formation.

Moreover, the commands of the other satellites are not the optimal ones to track the

relative states anymore.

At this point the decision of whether this satellite is kept as part of the formation

or is declared failed needs to be made. If it is kept in the formation other satellites

will try to track the relative states with a free drifting satellite which will decrease the

performance and make the tracking error to rise. In case it is considered failed the

rest of the �otilla should recon�gure to another formation where the relative states

to the failed satellite are not considered in the controller anymore.

In the present research the author has studied the case where the underactuated
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Figure 4.3: Global trajectory of Spheres in half circular maneuver with one underac-
tuated satellite, air table test

satellite remains in the formation in a free drifting motion. The purpose of this case

is to evaluate the performance worsening in these circumstances. A test with a two

satellite formation was run in the SPHERES air table where only one of the satellites

was actuating the control commands. The formation is commanded to perform a

circular maneuver. Figure 4.3 shows the global trajectory followed by the satellites

on the table. It can be seen that even if one of the satellites is just standing still on

the table �simulated thruster failure� the other satellite is still able to perform the

relative maneuver.

From the data obtained in this test and comparing it to the results presented in

the previous chapter (section 3.7.2) it is concluded that the performance is indeed

lower when one of the satellites presents a thruster failure; mean error magnitude for

the latest maneuver is 2,4cm. However, it is worth considering that in this situation

the total fuel used is much lower than in the nominal case. The total fuel use was

reduced compared to the case where both satellites are �ring in 45% due to the fact

that the non actuated satellite does not spend any fuel but the actuated one requires a

little bit more fuel to perform the maneuver on its own. This is an important result; it

could be considered the case where instead of having two actuating satellites only one

of them could be in charge of the relative control and achieve an acceptable relative

tracking error while having a reduced fuel use. Moreover, we could �nd similarities
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Figure 4.4: Relative position states in time for half circular maneuver with one un-
deractuated satellite, air table test

Figure 4.5: Relative trajectory in hal circular maneuver with one underactuated
satellite, air table test
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Figure 4.6: Art. representation of space interferometric formation �ight mission [4]

of this case within future space interferometric formation �ight missions where this

algorithm could be applicable. Missions like Darwin [22], Terrestrial Planet Finder

[25], Stellar Imager [9] and Planet Imager [20] for example are designed to be formed

by several light-collectors and a one big combiner with the necessary payload to

transmit all collected data to the Earth. In those cases, small satellites with fast

dynamics (collectors) could be in charge of the relative control with respect to the

combiner and unload the latest one from this task reducing the fuel to be boarded.

4.3 Chapter Summary

In this chapter the disadvantages that the coupled dynamics architecture presents

have been discussed concluding that the main ones are the low robustness to lo-

cal failures and the high information requirements. Techniques for dealing with these

drawbacks have been developed and later implemented to test them in the SPHERES

testbed. The data obtained from them was very useful and permitted in �rst instance

showing how to reduce the information requirements by switching topologies. Sec-

ondly, the test that was run in non nominal conditions with an underactuated satellite,

although it showed a lower performance, it opened the path to considering a slightly

di�erent control topology where the fuel use could be considerably reduced.

Finally, in the next chapter the global worthiness of the coupled dynamics archi-

tecture is discussed taking into account the advantages that have been proved, the
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drawbacks that it presents and the techniques that we have to face the latest ones.
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Chapter 5

Conclusions

5.1 Thesis summary and contributions

The necessity of further knowledge about the universe, its origins and new galaxies

discovered requires improving the current imaging qualities of the observational space

missions. Approaching the limit in angular resolution for monolithic space telescopes,

a promising technology has emerged that would suppose an improvement without

limits in image quality: the distributed telescope structure. The idea of translating the

ground-based telescope array systems to the space supposes a �eet of satellites �ying

in formation where each of them works as a collector. Light coming from the same

remote celestial source is then combined within the formation using interferometric

techniques, which requires the system to perform very precise and stable relative

con�gurations. The SPHERES testbed, built in the heart of the Space Systems

Laboratory of MIT, permits the development and maturation of this challenging

technology. The research in this thesis focuses on the design and implementation of

a control system for a formation of satellites.

After addressing the importance of developing distributed spacecraft, the �rst part

of this thesis deals with the problem of designing the control of a multi-agent system.

An innovative approach is presented within a control architecture that de�nes cou-

pled inter-spacecraft dynamics. The advantages that this architecture presents when

applied to an interferometric formation �ight space mission are discussed, concluding
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in a performance improvement in trajectory tracking and reduced fuel use, the two

most important factors that will determine the science output from an optical point

of view and lifetime of a mission.

In the second part of this research, the architecture is tested in three di�erent sce-

narios, picked for their importance in interferometric maneuvers. Optimal controllers

for each of the scenarios are designed using the coupled dynamics architecture where

a balance of the resources consumption and relative tracking error is minimized.

The successful results obtained from the �rst attempt to test the controllers in

zero-gravity environment permit us to conclude that we can improve performance

in tracking error when compared to controllers that are using other architectures.

Results from further tests in zero-gravity will permit a more precise evaluation of

reduced fuel use of the coupled dynamics architecture.

In the �nal section, the research focuses on the disadvantages that can be ad-

dressed when using the coupled dynamics architecture, including the high require-

ments in state information and the di�culties in robustness against local failures.

Both of them are partially mitigated. The required information can be deduced by

a technique that switches between topologies where the minimum information �ow

to compute the optimal control commands is adapted to the formation state and the

available communication or sensing links. Secondly, the case of a local thruster failure

was examined, which led to interesting results; a considerable amount of fuel is saved

compared to the performance detriment in tracking trajectory. This test could open

a new research path for the future where the underactuated satellite situation is also

considered in the controller design.

This research contributes to the development and maturation process of control

systems for formation �ight spacecrafts. The coupled dynamics approach proved

with data from testing in real space environment the performance improvement that

can be achieved. A priori, the potential disadvantages of the architecture have been

signi�cantly overcome, making it a suitable and reliable approach. Thus, taking into

account the demonstration of optimal performance, this could be a real step forward

for the future of distributed telescope space missions.
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5.2 Future work

Based on the research done and the knowledge acquired during this study the author

proposes the following work for the future in order to keep on developing optimal

controllers for formation �ight spacecrafts.

The next logical step in further research should be testing the trajectory tracking

controllers in the circular and spiral maneuvers with a reduced centroid control in

order to evaluate the exact in�uence that this additional e�ort had in the use of

fuel made in the latest tests in the ISS. The author believes that this will return very

valuable data and expects it to provide conclusive information about the performance

improvement that can be achieved both in fuel use and tracking accuracy.

At the same time, analyzing the data from testing the coupled dynamics architec-

ture in a Stop and Stare maneuver in zero-gravity environment will provide important

information that will help the evaluation of the architecture performance within this

speci�c interferometric maneuver. A further step in the controller implementation for

this kind of trajectory pro�le should be an additional feature that will help overcome

the issue of the discrete time condition of the control system. This will consist on

propagating (estimating) the states of the formation at each control period in order

to anticipate the crossing of the switching curves on the phase-plane graph and thus

reduce the possible overshoot that it could generate.

On the other hand, further research needs to be done to deal with the disad-

vantages of the architecture in order to increase the global robustness of the control

system against signi�cant loss of information. As the controller requires of a certain

amount of information of the �eet in order to compute the optimal commands, a

solution must be proposed for the unfavorable situations where this information is

not available. The development of hybrid controllers is thought to be the next step

forward to approach this problem.

Adding high level autonomous features would also be an interesting research that

would increase the �exibility and recon�gurability of the formation enabling satellites

to join or quit the formation depending on their state of health without the need of
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a constant operating human supervision.

Finally, concerning the case of a numerous satellite formation system where the

information requirements are more evident, di�erent topologies should be studied

where the information �ow is relaxed by permitting a more decentralized suboptimal

solution. Important work in this �eld is presented by Fax and Murray in [10] where

the stability of di�erent information topologies is discussed based on the Theory of

Graphs and states the basis for the analysis of formation control stability.
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Appendix A

Solving the optimal control problem

A.1 Matrix P(t) as solution of the Riccati equation

We are willing to prove in this section that the matrix P(t) relating the co-state and

state variables in the LQ framework

ψ∗(t) = P (t)x∗(t) (A.1)

is solution of the Riccati equation:

Ṗ (t) = −P (t)A(t)− AT(t)P (t)−Q(t) + P (t)B(t)R−1(t)BT(t)P (t) (A.2)

We start taking derivatives at both sides of the equation A.1:

ψ̇∗(t) = Ṗ (t)x∗(t) + P (t)ẋ∗(t) (A.3)

Given the necessary conditions:

ẋ(t) = A(t)x(t) +B(t)u(t)

0 = ∂
∂u
H = R(t)u(t) +BT(t)ψ(t)

ψ̇(t) = −Q(t)x(t)− AT(t)ψ(t)

(A.4)
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We can rewrite equation A.3 introducing the information from the necessary con-

ditions leading us to:

−Q(t)x(t)− AT(t)ψ(t) = Ṗ (t)x(t) + P (t) (A(t)x(t) +B(t)u(t)) (A.5)

Taking the expression of the optimal control law:

u∗(t) = −R−1(t)BT(t)ψ∗(t) (A.6)

and introducing it in A.4 and given A.1:

−Q(t)x(t)−AT(t)P (t)x(t) = Ṗ (t)x(t)+P (t)
(
A(t)x(t)−B(t)R−1(t)BT(t)P (t)x(t)

)
(A.7)

which leads to the expression:

(
−Q(t)− AT(t)P (t)

)
x(t) =

(
Ṗ (t) + P (t)

(
A(t)−B(t)R−1(t)BT(t)P (t)

))
x(t)

(A.8)

and supossing ∃t�x(t) 6= 0, then

−Q(t)− AT(t)P (t) = Ṗ (t) + P (t)
(
A(t)−B(t)R−1(t)BT(t)P (t)

)
(A.9)

which is the expression that we wanted to demonstrate.
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A.2 Expressions of the switching curves in the phase-

plane graph for the optimal control solution in

Stop and Stare maneuvers

In this section we will �nd the expressions of the curves on the phase-plane graph

where the switching in between the di�erent phases of the Stop and Stare maneuver

occur. Given the Bang-o�-Bang �ring pro�le let us take the case where u(tf ) = 2umax.

Starting from the maneuver end corresponding to the origin of coordenates in phase-

plane graph and integrating the commands, we got for the relative position state:

prel(t) =
2umax
m

1

2
t2 + c3t+ c4 for t ∈ (tf − t1, tf) (A.10)

Given that at t = tf ,prel(t) and vrel(t) are null:

c3 = −2umax
m

tf and c4 =
umax
m

tf (A.11)

and thus,

prel(t) =
umax
m

(t− tf )2 (A.12)

and since

vrel(t) =
2umax
m

t+ c3 =
2umax
m

(t− tf ) (A.13)

then the decelerating phase occur over the curve:

prel(t) =
vrel(t)

2

4umax

m

(A.14)

which corresponds to the second switching curve in the maneuver. At t = tf − t1,

where the coasting and the decelerating phases are switched:
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prel(tf − t1) =
m

4umaxc21
(A.15)

and,

vrel(tf − t1) = − 1

c1
(A.16)

During the coasting phase the velocity is constant and equal to the one at t =

tf − t1, thus,

prel(t1)−
(tf − 2t1)

c1
= prel(tf − t1) =

m

4umaxc21
(A.17)

which gives that

prel(t1) =

(
2β +

m

4umax

)
1

c21
(A.18)

and taking equation A.16,

prel(t1) =

(
2β +

m

4umax

)
v2
rel(t1) (A.19)

so the �rst switching occurs along the curve:

prel(t) =

(
2β +

m

4umax

)
v2
rel(t) (A.20)

Let us now �nish integrating the TPBP within the IC so that the expression for c1

can be given. Studying the case of vrel(0) = 0 and with prel(0) = prel0 , the expression

for the relative position during the accelerating phase is:

prel(t) = prel0 −
2umax
m

1

2
t2 (A.21)

Matching the values of the relative position at t = t1 that come from the acceler-

ating phase (Eq. A.21) and the one coming from the coasting phase (Eq. A.18) we

got:

110



prel0 −
2umax
m

1

2
t21 =

(
2β +

m

4umax

)
1

c21
(A.22)

substituting the value of t1 = m
2umaxc1

already found leads to the �nal expression

of c1:

c21 =

(
2β + m

2umax

)
prel0

(A.23)
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