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Chapter 1

Introduction

Solving the correspondence problem between images is one of the main topics in computer vision.
The problem of recognizing objects in images is very challenging because images may be acquired
at different scales and perspectives or even because objects may vary their shape. Our project
is focused on this last topic, the problem of solving correspondences for non-rigid deformations.

In computer vision, one of the most used methodologies to solve identifications between
images has consisted on the study of the objects’ local features. Working with local properties,
problems such as partial occlusion, background clutter or illumination changes can be solved
or partially solved. Despite of the fact that most of the current works try to exclusively solve
the matches where only rotation, illumination, scale and perspectives changes are considered,
we have proposed a method which also deals with non-rigid deformations. More specifically,
we have tackled the problem of finding correspondences for initially planar meshes which can
be deformed as if they were some tissue. As it will be seen, this problem has been very few
addressed in the literature and our approach is different to the ones we have found in this field.

Our method relies in a well-known method, the ferns evaluation. The principal advantage
of this tool is that it is based on a training process that makes detection a lot faster than other
methods. Precisely, multiple views of the most important keypoints of the object are used to
create non-hierarchical structures, ferns, which discriminate among the different keypoints. Each
fern consists of a small set of binary tests and returns the probability that a patch belongs to
any one of the classes that have been learned during training. The responses to different ferns
are then combined in a simple way. The main difference between the traditional methods using
ferns and ours is that we train ferns for deformed views of the objects.

We have implemented the method and shown that it represents indeed a great improvement
with respect to one of the most used techniques for local features, SIFT. When dealing with
deformations, we have found that detection rate is increased on almost a 20% by our method.
Figure 1.1 shows an example of the results given by our method.

The core structure of the report consist on three chapters, where we respectively discuss
the state of the art, present the method and analyze the results obtained. In Chapter 2, we
comment the work done in the fields of detecting and describing local features. We also pay
special attention to the methods developed for non-rigid deformation. Learning and redacting
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6 CHAPTER 1. INTRODUCTION

Figure 1.1: At left, points detected by our method in a deformed image of the Guernica are shown. At
right, same results on the reference image. In this deformed image, a total of 2154 points have been
positively detected among an initial set of 3000 points.

the state of the art has been very enlightening and amusing. Despite the length chapter, we
hope readers, instead of getting bored, will enjoy learning general procedures in the computer
vision. We also hope mathematics notation and figures will help clarify ideas introduced. In
advance, vocabulary may be somehow affected by one or the other papers in which this chapter
is based. Nevertheless, there has been a work homogenizing it.

Chapter 3 explains the fundamental parts of our method in an extensive way. After a global
overview of all the procedure, we examine each of the stages taking place in the training process
and in the evaluation of a new input image. In other words, we describe how we decide which
local features are kept for the training process, we explain how the different deformed views are
created to build the ferns’ structure and finally we explain the ferns’ training and evaluation
processes.

Finally, in Chapter 4, we give some results when applying the method we have implemented.
In order to make them comprehensive, we first present the way we have evaluated our method
and also give the parameters used when using another method, SIFT, so that we can compare
our results with others. Then, comparisons are held and, moreover, since our method depends
on a selection of various parameters, we execute some experiments to study the effect of each
parameter in the results obtained. This last part allows us to use the method in an optimal way.



Chapter 2

State of the Art

In this chapter, we present the state of the art techniques which have somehow relations to the
method that we introduce in next chapter. We already start focusing on the techniques relying
on local features. We describe detection procedures and also descriptors being used. Finally, we
insist in the methods which pay attention to the non-rigid deformations. These ones are still
very few and there is not much works willing to deal with them.

As said, we start commenting methods based on local features. Local features consist on
properties that can easily distinguish limited areas of the image. In computer vision, local
features have shown to be well suited to wide baseline matching, object and texture recognition
or even classification, image retrieval and many other applications. Their value relies on the
fact that they are intrinsically robust to occlusion, background clutter and other image changes.
Taking into account their virtues, the effort has been centered in creating local features which
not only stand for their distinctiveness power but can hold more and more properties such as,
for example, robustness to scale, viewpoint changes or image blur.

The most common procedure when dealing with local features is:

(i) Region detection. Interest points are detected to select matchable points between differ-
ent images. As we will see, depending on the method, the region selection can be prefixed
or automatically computed in order to make the region invariant to some changes such as
scale or affine transformations.

(ii) Local features description. They are used to represent the previous detected region.
The goal is to be as discriminative as possible.

(iii) Similarity measures or methods. Once the local features have been created, the com-
parison between local features of different images has to be done. In order to accomplish
our objective, some metrics have to be defined such that the descriptors of same regions
in different images get closer than others.

(iv) Matching. Matching is primarily done assigning the nearest feature in the other image
according to the similarity measures. Typically, additional constraints are incorporated,
for example, global location between local features.

7



8 CHAPTER 2. STATE OF THE ART

Following these steps, we will next give some highlights on the methods currently being
used at each stage and also some ideas about pros and cons of each one. Since structure in
local feature methods is pretty much clear, chapter is divided according to the different steps
we presented above. Nevertheless, since most of the current algorithms involve all the parts,
we may move forward and backward of the main explanation sequence. In Section 2.4, we will
comment the state of the art in dealing with image matching with non-rigid objects. As it will
be seen, very few things have been done in detection of non-rigid objects.

2.1 Local Detectors

In this section, detectors are described on base of their benefits and it is somehow also an
historical overview about detectors creation. In Figure 2.1, an schematic graph gives clarity
to relations between them and also a general perspective on detectors. In addition, Table 2.1
summarizes pros and cons of the methods explained.

Figure 2.1: Overview of detectors used in computer vision to extract regions of interest.
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Detector Pros Cons

Intensity
Extrema
[9]

Resists very well monotonic intensity transfor-
mations

Since a Gaussian smoothing is initially ap-
plied, point location is not accurate

Less likely to lie close an edge so planar as-
sumption is more realistic

Harris [8] Contains a large amount of information → dis-
tinctive power

As it detects corners, planar assumption is
weak

Very well localized in terms of accuracy

Scale Invariant

Harris-
Laplace
[22][20]

Improvement of the Harris detector so that re-
gions are scale-invariant

Still, affine invariance has to be added

DoG [18]
Even not affine designed, it can handle rela-
tively well viewpoint changes up to 50 degrees

If not carefully applied, points can be detected
at different scales and therefore a posteriori
matching can be confusing

Faster than Harris-Laplace

Affine Invariant

Harris-
Affine
[22][20]

It detects more regions than others so results
are better for occlusion or clutter

Still, based on corners so planar assumption is
weak

EBR [32]
Edges are very stable features Weak planar assumption

IBR[32]
Robust to inexact location of the interest point Since ellipse size is doubled, there is some lost

of the local character of the region and a cer-
tain non planar assumption risk even they are
not a corner interest point.

MSER
[19][33]

While relying on intensity extrema, location
accuracy is not lost as there isn’t image pre-
smoothing

It does not respond very well to blur

The most efficient one

Salient
[11]

Interest points are not defined as an extremum
for a filter response. It is a more general ap-
proach

The less efficient one

Table 2.1: Pros and Cons summary of some of the detectors explained

The Simplest Ones

In order to find interest points, the techniques more obvious would be the ones that rely on
detecting local maxima of the intensity values along the image pixels or on detecting points
with maximum variation of the intensity (local maxima of the intensity derivative).

Some of the simplest ones are described below. Figure 2.2 shows the results when being
applied to an image.
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Figure 2.2: From left to right: original image, responses to the intensity extrema detector, gradient
intensity detector, Canny edge detector and Harris detector with k = 0.1 respectively. At second row a
part of image is enlarge so differences between detectors can be better appreciated

• Local Extrema of Intensity.

Given an m× n image I, it can be represented as a matrix:

I = I(u, v) =







I11 = I(u1, v1) · · · I1n

...
. . .

...
Im1 · · · Imn






, where (u, v) are the pixel coordinates.

Note that, since we are associating a single intensity value to each pixel, we are assuming we
are working with a grayscale image. If not said the opposed, we will always assume it1. We
can consider a “raw” way of extracting the local extrema by inspecting, for each pixel, its eight
neighbors (eight at most). So we would take as set of interest points,

S = {(u, v) : argmin
(u′,v′)∈[u−1,u+1]×[v−1,v+1]

I(u′, v′) = (u, v)}.

However, this is not an efficient way to explore the whole image. Since convolution2 can be

1 There are many ways to convert an RGB image to grayscale, one of the most common is the conversion
I = 0.2989 · R + 0.5870 · G + 0.1140 · B.

2Let A, B be matrices, with size na × ma and nb × mb respectively, the convolution matrix M = A ∗ B is
a (na − nb + 1) × (na − nb + 1) matrix, assuming dimA ≥ dimB. Nevertheless, it is usual to consider as the
convolution result of A∗B only its central part, M

′, of the latter matrix M of size the same as A. Last definition
is the one considered in all the text.
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very efficiently done, the previous operation can be expressed as looking for local maxima in

M = |I ∗A|, where A =





−1 −1 −1
−1 8 −1
−1 −1 −1





Note that, assuming intensity values in a [0, 1] range, pixels in an uniform intensity region
would get a 0 after the convolution while pixels with intensities values the most different to
their neighborhood intensity values could get up to 16. Then, it is only needed to fix a threshold
and keep the pixels above the threshold.

• Local Extrema of Intensity Gradient.

In order to find local extrema of the intensity gradient, the method used is to convolve the image
matrix I with some functions which act as simple directional derivatives. By defining

Gx =





−1 0 1
−2 0 2
−1 0 1



 and Gy =





1 2 1
0 0 0
−1 −2 −1



 ,

we can obtain Ix
.
= I ∗Gx and Iy

.
= I ∗Gy which are first numerical approximations of the

derivatives along X and Y axis respectively. Gx and Gy are the so called Sobel operators. Once
gradient intensities have been obtained, the most relevant ones are picked, meaning those whose
modulus is beyond a threshold. As we will discuss later, it is often important to retain the

value θ(u, v) = arctan
(

Iy(u,v)
Ix(u,v)

)

, which indicates the gradient orientation at each pixel. That

way, it is possible to align features so that comparisons are always done with the same known
orientations.

• Canny Edge Detector.

The Canny edge detector is, as the name shows, not an interest point detector but an edge
detector. Nevertheless, it is sometimes used by local feature algorithms, such as in the EBR
detector (see Section 2.1.2 or [32]) or the Harris detector as well. We will briefly explain it. The
Canny edge detector was one of the earliest detectors. Developed in 1986 by John F. Canny, it
is computed as follows:

– Gaussian smoothing.

A Gaussian mask g, meaning a square matrix whose values are the discretization of a
certain gaussian g ∼ N (0, σ2), is used to obtain I′ = I∗g so that I′ is almost like I but the
intensity values of their pixels receive certain influence, depending on σ of the intensity
values around the neighborhood. Smoothing I provides a way to control influence of noise
in the detector results. The larger the variance is, the more smoothness and therefore
the lower the detector’s sensitivity to noise is, but also, the precise location of the edges
decreases. Thus, there is a trade-off. For instance, Figure 2.3 shows the result of convolving
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Figure 2.3: From left to right: The gaussian mask, the original image and the image after filtering. In
the enlarged images it is very clear that filtered image has more blur and also contrast between white
and black is reduced

an image I with a 7 × 7 Gaussian filter with variance σ = 1.4. It can be observed that
contrast in edges gets reduced and intensity changes are more gradual along pixels.

– Finding edges.

Edge candidates are found applying Sobel operators in order to locate gradient local ex-
trema (as discussed before). Then, gradient modulus at each pixel is taken as an edge
strength measure. Similarly, gradient direction is computed for each pixel. Usually, di-
rection is given only within a range θ ∈ [0, π] rad. Moreover, only four directions are
considered: θ ∈ {0, π

4 , π
2 , 3π

4 } rad.

– Non maxima suppression.

After having calculated the image gradients, pixels are inspected to verify if they reach local
maxima in the gradient direction. That is, we compare their modulus with the modulus of
their neighbors on the normal direction. For example, for pixels marked as being oriented
in the direction θ = 0 rad, it has to be checked that their gradient modulus exceeds
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gradient modulus of their north and south neighbors; pixels oriented in the θ = π
4 rad

have to exceed in modulus the north-west and the south-east neighbors and analogous to
the other two directions. Pixels not having passed the test are set to 0.

– Tracing edges.

Tracing edges is done using a hysteresis cycle. First, gradient modulus over a high threshold
are chosen to be like ‘seeds’ for finding strong edges. The edge is extended along both
directions until edge strength in that directions falls below a low threshold.

The results of this detector are shown in Figure 2.2.

• Harris Detector.

Based on the Canny edge detector and also on Moravec’s corner detector [23], Harris and
Stephens proposed in [8] a new detector for both corners and edges. The main idea is to
study how similar a patch centered at a certain pixel would be from a patch centered at a pixel
on its neighborhood. This can be written in terms of the autocorrelation function as follows:

c(x, y) =
∑

u,v

W (u, v) · (I(x, y)− I(u, v))2, where W is a window around (x, y)

. Approximating I(u, v) by the first two terms of its Taylor series around point (x, y), so

I(u, v) ≈ I(x, y) + (Ix(x, y), Iy(x, y))

(

u− x
v − y

)

= (Ix(x, y), Iy(x, y))

(

∆x
∆y

)

where Ix and Iy are the partial derivatives of I. This is Ix =
(

−1 0 1
)

∗ I and

Iy =
(

1 0 −1
)T ∗ I.

Then, we have:

c(x, y) =
∑

u,v

W (u, v) · (I(x, y)− I(u, v))2
≈

∑

u,v

W (u, v) ·
(

[Ix(x, y), Iy(x, y)]

[

∆x
∆y

])2

≈

∑

u,v

W (u, v) · (∆x,∆y)

(

Ix(x, y)
Iy(x, y)

)

(Ix(x, y), Iy(x, y))

(

∆x
∆y

)

≈ (∆x,∆y)M(x, y)

(

∆x
∆y

)

,

where M is the second moment matrix, similar to autocorrelation, and it is defined as

M = M(x, y)
.
=

(

W ∗ I2
x(x, y) W ∗ (Ix(x, y) · Iy(x, y))

W ∗ (Iy(x, y) · Ix(x, y)) W ∗ I2
y (x, y)

)

(2.1)

In order to make the detector robust to noise, W is chosen to be a gaussian window N (0, σ).
Note that matrix M(x, y) contains all the differential operators describing the geometry of the
image surface at a given point (x, y). Let λ1 and λ2 be its eigenvalues, then we can study three
cases:
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Figure 2.4: Contours of the function F (x, y) in Equation (2.2) with k = 0.2. The different cases according
to λ values can be observed.

1. Both curvatures are small, that is λ1 and λ2 small. Then the autocorrelation function is
flat and the windowed image region is of approximately constant intensity.

2. λ1 and λ2 are high so that local autocorrelation function is peaked, meaning small moves
from (x, y) make patches (one patch centered at (x, y) and the other at (u, v)) very different.
We then interpret that patch is centered on a corner ((x, y) is a corner point).

3. If one of the curvatures is high and the other low, that indicates a sharped change of the
autocorrelation only in a direction. Hence we have found an edge.

Having observed this casuistics, Harris used the trace and determinant operators to obtain
equivalent information without having to explicitly calculate the eigenvalues. Observe that:

1. is equivalent to trace(M) = λ1 + λ2 ≈ 0 and det(M) = λ1 · λ2 ≈ 0,
2. is equivalent to trace(M) large and det(M) large, and
3. is equivalent to trace(M) large and det(M) ≈ 0.

An evaluation function is defined as

F (x, y) = det(M)− k · trace(M)2, (2.2)

where k is a tunable parameter that usually moves from 0.04 to 0.15. Also, a positive threshold
T is set and corners are points (x, y) such that F (x, y) ≥ T . This is made more clear from the
iso-response contours of Figure 2.4.

It is important to insist that all the methods explained above detect interest points but
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don’t describe their surrounding region. However, they are used as a first step in more complex
descriptors as it will be shown in the following sections.

2.1.1 Scale Invariant Detectors

Scale invariant detectors are those which can accept similarity transformations, that are trans-
formations that preserve the shape of the geometrical objects.

Note that, when demanding scale invariant detectors, what we are exactly saying is that we
do not care about scale change as long as it is the same in every direction.

The typical approach applied in order to design scale invariant detectors is to extract interest
points at several scales and to use all these points to represent the same interest point, a sort of
pyramidal representation. More precisely, the technique is referred as Laplacian of Gaussian
detector, LoG. The major problem with multi-scale approaches is that, in general, a local
image structure exists in a range of scales and, as a consequence, there are many points with
little variance in location and scale representing the same interest structure. A posteriori, when
matching, it can produce high number of false mismatches.

A different approach is given by [11] where scale is determined as the entropy extremum of
the local descriptors of the interest region being studied. We will explain it a little bit more in
next subsection.

We will now insist on the former technique, LoG. Many modern methods rely on this ap-
proach. For example, Harris-Laplace detector, Hessian-Laplace detector and their affine versions
and also the Difference-of-Gaussian (DoG), used by SIFT, [18], rely on a LoG strategy.

In order to construct the scale-space point detector, the image is convolved by Gaussian
kernels as follows:

Let I(x, y) be our image and g(x, y, σ) = 1
2π·σ2 · exp−x2

+y2

2σ2 , the Gaussian kernel. We define
the scale space function as:

L(x, y, σ) = g(x, y, σ) ∗ I(x, y) where σ is related to the image scale.

Then, the Laplacian operator, ▽2L(x, y, σ) = Lxx + Lyy, is applied. Local maxima (minima) of
the Laplacian are related to dark (bright) blobs of approximate size

√
σ in the original image.

Therefore, a σ sampling is needed and that is where multi-scale appears.
Local extrema are searched in the domain D = (x, y, σ), such that the pixel values are not

only compared to its eight neighbors at the same convolved image but they are also compared to
its nine neighbors obtained at the immediate superior scale level and nine more of the immediate
inferior level. That makes a total of 26 comparisons for pixel (at right on figure 2.5).

If we want the process to operate correctly we have to normalize the Laplacian operator by
the scale parameter because this operator is sensitive to the variance of the Gaussian kernel,
that is ▽̄2

L(x, y, σ) = σ · (Lxx + Lyy). So, the final objective is to characterize the set of local
extrema:

S = {(x̂, ŷ, σ̂) :(x̂, ŷ, σ̂) = argmax
(x,y,σ)∈[x̂−1,x̂+1]×[ŷ−1,ŷ+1]×[σ̂−1,σ̂+1]

▽̄2
L(x, y, σ) or

(x̂, ŷ, σ̂) = argmin
(x,y,σ)∈[x̂−1,x̂+1]×[ŷ−1,ŷ+1]×[σ̂−1,σ̂+1]

▽̄2
L(x, y, σ)}
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Figure 2.5: At left, image. At center, Gaussians with different scales with whom image is convolved. At
right, after having applied normalized Laplacian operator, extrema search over both scale and space is
done (the 26 neighbors are colored in blue)

Equivalently, absolute value can be taken and, then, the local extrema set is:

S =

{

(x̂, ŷ, σ̂) : (x̂, ŷ, σ̂) = argmax
(x,y,σ)∈[x̂−1,x̂+1]×[ŷ−1,ŷ+1]×[σ̂−1,σ̂+1]

∣

∣

∣▽̄2
L(x, y, σ)

∣

∣

∣

}

Figure 2.5 helps understanding the process explained above.

2.1.2 Affine Invariant Detectors

Affinity transformations are those which can be written as a linear bijective transformation
y = Φ(x) = Ax + b, where A is an invertible matrix and b is a translation vector. Delimiting
regions around interest points that are affine invariant makes detectors robust to viewpoint
changes. Viewpoint changes can’t be sufficiently well modeled by affinities since projective
geometry lays out affine geometry limits. Yet, local features are sufficiently small so that affinity
adaptation is usually a good approximation for the viewpoint transformation.

For this purpose, it is clear that regions can not be delimited by a square or a circumference
because these forms are not affine invariant: an affine transformation of a square becomes
a parallelogram while circumference transforms to an ellipse. The most typical is to use an
adaptative ellipse to define the interest region; then, when a comparison is to be made, ellipses
can be normalized to a circumference so that comparison is easier to execute.

Moreover, and as usual, the resultant circumferences can be aligned according to orientation
and they also can be intensity normalized. It hadn’t yet been commented but a typical procedure
along most of the algorithms is to normalize intensities values in order to adapt to photometric

changes. These changes are modeled as an affinity in the intensity values. That is, I′ = m ·I+t,
where m = diag(mR,mG,mB) and t is a translation vector, t = (tR, tG, tB) and R,G,B refer
to red, green and blue colors respectively. Also, very often, color dimensionality is reduced
and detection is made in a grayscale. In order to obtain gray intensity from an RGB data
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image, some conversion models are used. For example, Matlab standard conversion from RGB
to grayscale gives Igray = 0.2989 · Ired + 0.5870 · Igreen + 0.1140 · Iblue.

[20] provides an exhaustive discussion and comparison between these affine invariant detec-
tors. We include a brief description of some of the most cited methods below as the appropriate
end for a state of the art in local detectors. Also, in Table 2.2, we give some comments about
efficiency for these methods.

Detectors Complexity Comments

Harris-Affine O(n) n = #pixels. For Harris detector.
O((m + k)p) p = #initial points, m = #preselected scales, k =

#iterations. For the LoG and shape adaptation.

Edge Based O(n) n = #pixels. For Harris detector.
Regions (EBR) O(pd) p = #corners, d = average number of edges per corner.

To construct the regions.

Intensity Based O(n) n = #pixels. For local intensity extrema detector.
Regions (IBR) O(p) p = #intensity extrema. To construct the regions.

Maximally Stable
Extremal Regions
(MSER)

O(n(1 + log(log(n)))) n = #pixels. To find local extrema.

Salient O(nl) n = #pixels, l = #ellipses investigated per pixel. For
local intensity extrema detector.

O(p) p = #extrema find in the previous step. To construct
the regions.

Table 2.2: Complexity and required computation time for affine detectors

• Harris-Affine Detector [22]

The main ideas of this affine regions detector are:

1. Multi-scale Harris step.
First of all, interest points are detected by a Harris detector specially adapted to be scale
invariant. The second moment matrix, M(x, y) , defining the local structure used by Harris
(recall Equation (2.1)), is modified so that scale-space kernels appear:

µ(x, y, σI , σD) = σ2
D · g(x, y, σI) ∗

(

L2
x(x, y, σD) LxLy(x, y, σD)

LyLx(x, y, σD) L2
y(x, y, σD)

)

with

Lx(x, y, σD) = g(x, y, σD) ∗ Ix(x, y), Iy(x, y, σD) = g(x, y, σD)) ∗ Iy(x, y),

recall that Ix, Iy were the partial derivatives of I

Note that local images derivatives, Lx and Ly, are computed by convolving the partial
derivatives, Ix, and Iy, with a Gaussian kernel of variation σD (which is called the differ-
entiation scale). Derivatives are then averaged in the neighborhood of each point using a
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Gaussian window of variance (smoothing) σI (which we refer as integration scale). Factor
σ2

D is for normalization.
Local extrema are those performing Harris evaluation function, F (x, y) (recall Equation
(2.2)) at a set of pre-selected levels σI ∈ {σn}n = {ξnσ0}n and σD = s · σI . Typically,
ξ =
√

2 and s = 0.7. That is, we find pixel position (x, y) such that I(x, y) is an extremum
once having fixed a level (σI , σD). Observe that values comparison is only made in space.
Briefly, we keep the set:

Extrema set, S = {(x̂, ŷ, σI) : F (x̂, ŷ, σI) = max
(x,y,σI)∈[x̂−1,x̂+1]×[ŷ−1,ŷ+1]×σI

F (x, y, σI)

and F (x̂, ŷ, σI) ≥ T, T threshold, σI ∈ {ξnσ0}n}

2. Refinement of the extrema set.
The next step consists in finding a precise characteristic scale for the feature. Character-

istic can be understood as the best length estimation of the feature structure. Laplacian
of Gaussian is used.
For each point found in the multi-scale Harris step, an iterative algorithm is applied for

simultaneously selecting point location and scale. Let (x(0), σ
(0)
I ) be a point of the extrema

set S. We note x := (x, y). The algorithm below is applied at every iteration. That is,

given (x(k), σ
(k)
I ), we do:

(a) Find local extremum over scale with the LoG technique, as explained in Section
2.1.1, for the point x(k), where (k) indicates the iteration number. Scale ranges are
limited to σI

(k+1) = t · σI
(k), t ∈ [0.7, . . . , 1.4]. Observe that, when taking this range,

the gap between the consecutive, previous and posterior, scale-spaces in multi-Harris
detection is fulfilled (recall in first step we had ξ =

√
2, σn = ξnσ0). Therefore, this

step consists in introducing more precision for scale (initial σI turns into σ
(k+1)
I ) while

location remains the same. If not found any extremum, reject point; otherwise point
(

x(k), σ
(k+1)
I

)

is obtained.

(b) Maximize Harris evaluation function, F (x, y), in the region so point (x(k+1), σ
(k+1)
I )

is obtained. Observe that, here, only location is modified, not scale.

(c) Repeat process until
(

x(k+1), σ
(k+1)
I

)

=
(

x(k), σ
(k)
I

)

(stop condition).

Up to now, we have constructed a scale invariant detector which is called Harris-Laplace
detector. We next estimate the affine shape of the region to obtain the affine invariant
detector.

3. Affinity invariance.
To deal with affinity transformations we can not consider an uniform scale change in every
direction. Scales are allowed to vary independently along orthogonal directions. With this
purpose the Gaussian kernels of the LoG are replaced by multivariate Gaussian kernels:

g(x, y,Σ) ∼ N ((0, 0),Σ), g(x, y,Σ) =
1

2π
√

|Σ|
exp

(

− (x, y)Σ−1(x, y)T
)
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And the second moment matrix for the multi-scale Harris detector is:

µ(x, y,ΣI ,ΣD) = det(ΣD) · g(x, y,ΣI) ∗
(

L2
x(x, y,ΣD) LxLy(x, y,ΣD)

LyLx(x, y,ΣD) L2
y(x, y,ΣD)

)

,

where ΣD has also been chosen as ΣD = sΣI (as case σD = sσI). Notice that using
multivariate Gaussian distributions, ellipses will automatically become the geometrical
object delimiting the region.
The success of this method also relies on the fact that relation between second moment
matrix of points s = (sx, sy) and t = (tx, ty), where t = Φ(s) = As + b, Φ affinity, is as
simple as:

µ(sx, sy,Σ
s
I ,Σ

s
D) = AT µ(tx, ty,Σ

t
I ,Σ

t
D)A

Also, a similar relation is found between covariance matrices: Σt
D = AΣs

DAT .
It also can be shown that, assuming Σb

a = σb
a · µ−1

b , where a ∈ {I,D}, b ∈ {s, t} and µb

denotes µ(bx, by, σ
b
I , σ

b
D) , then A can be expressed as:

A = µ
− 1

2

t Rαµ
− 1

2
s where Rα is only a rotation matrix of a certain angle α.

Then, when normalizing s’ = µ
− 1

2
s s and t’ = µ

− 1

2

t t, relation between transformed points
is only s’ = Rαt’. Rotation Rα is easy to estimate by taking the mean of gradient
orientations in the transformed image (the s’ domain).
Summarizing, Harris-Affine detectors have some nice properties which lead to an easy
comparison between similar images by only searching for a rotation once they have been
normalized.
See Figure 2.6 for further comprehension.
Finally σD is also refined according to a convergence criterion based on ratio Q = λmin

λmax
,

where λmin, λmax are the eigenvalues of matrix µ(x, y,ΣI ,ΣD)

As a final comment, it is worth to mention that the algorithm benefits from the fact that,
after affine normalization, the region becomes to be circular, gaussian kernels are used in the
transformed domain, instead of using multivariate gaussian kernels in the image domain. It is
in the transformed domain where scales are found in order to maximize LoG (σI) or Q (σD).
For the algorithm description, see Table 2.3.

• Edge-Based Region Detector, EBR [32].

Edge-Based Region detectors (EBR) rely on the presence of geometric entities such as corners
and edges.

More specifically, this detector delimits the affine region as a parallelogram based on the
edges that define a corner, which acts as the keypoint region. It is the only method among
those described in this subsection which does not define an elliptical region. Notice that, a
parallelogram is also an affine invariant geometrical object.
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Figure 2.6: Illustration of the affine normalization. At left, two images, s and t, related by an affinity,
Φ. In both, same interest point and region are shown. At right, we can see the respective transformed
images, s’ and t’. Observe the images in the transformed domain only differ on a rotation of angle α.

Let p = (x, y) be a Harris corner point on to an edge. Let p1(s1) and p2(s2) be the edge
curves moving away from the corner in both directions (that is p1(0) = p2(0) = p). Recall edges
can be found by applying the Canny edge detector.

Then,

li
.
=

∫

|det([p′
i(si), p− pi(si)])|dsi,

where i ∈ {1, 2}, and p′
i is curve derivative. Condition l1 = l2

.
= l is imposed for an invariance

criterion. This defines a one parameter family of parallelograms, {Ω(l)}l, defined by sides −→pp1(l)
and −→pp2(l).

The next step is to choose the best l, that is l such that Ω(l) gives the best performance,
based on some photometric quantities evaluated over the parallelogram. These photometric
functions consist on combinations of Mn

pq =
∫

Ω(l) In(x, y)xpyqdxdy, the nth order and (p + q)th
degree moment. It can be proved that looking for local minima of these functions yields more
balanced regions and also invariant regions with respect to photometric and geometric changes.
Here, balance refers to having gravity center of the parallelogram (with intensity ponderation)
close to one of the diagonals. See [32] for more specific information.

It is worth to mention that when edges are not curves but straight lines, p′
i(si) is parallel

to p − pi(si) ∀si. Therefore l ≡ 0 and what has been discussed can not be applied. The
solution proposed is to consider the “low valleys” of two of the photometric functions when
considering the region as Ω(s1, s2) and take intersections of both valleys at the s1, s2-space. Point
obtained (ŝ1, ŝ2) will define the parallelogram region, which will also maintain the photometric
and geometric invariance. The obtention of the invariant region Ω in both cases (whether edges
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Given an interest point, obtained through multi-scale Harris detector, x
(0)
ω , do:

[1] Define U(0) = Id of size the patch centered at x
(0)
ω (U is the transformation matrix,

xω refers to the original image while x refers to the transformed one).

[2] Normalize window W (xω) = I(x) centered on U(k−1)x
(k−1)
ω = x(k−1)

[3] Select integration scale σI at point x
(k−1)
ω . As discussed, LoG is used.

[4] Select differentiation scale σD = sσI , with s ∈ [0.5, 0.75], maximizing Q.

Calculate µ = µ(x
(k−1)
ω , σI , σD)

[5] Maximize Harris evaluation function and find extremum x
(k)
ω nearest to x

(k−1)
ω .

Compute x(k) location, that is x(k) = x(k−1) + U (k−1) · (x(k)
ω − x

(k−1)
ω )

[6] Calculate U(k) transformation, U(k) = µ
−1

2 (x
(k)
ω , σI , σD) ·U(k−1).

Normalize U(k) so that λmax(U
(k)) = 1

[7] Go to step [2] if
(

1−Q(U(k))
)

≥ ε

Table 2.3: Harris-Affine algorithm

are curved or straight) is shown in Figure 2.7.
Finally, EBR detector is proposed in [32] and combined with a descriptor of moments invari-

ants called Generalized Color Moments. For matching between images, Mahalanobis distance is
used as measure. We will explain it in Section 2.3.

• Intensity-Based Region Detector, IBR [32].

Although EBR and IBR are proposed in the same paper, their nature is completely different.
For example, while EBR is based in corner detection, IBR is indeed a blob detector. The first
step of the Intensity-Based method is to extract local extrema of intensity among image pixels
as interest points.

Since images are usually pre-smoothed, location accuracy of extrema isn’t very exact. This
is not important as long as detected regions are chosen in a way that do not rely on accuracy of
the interest point location. This is also the case of IBR.

IBR region of interest is grown starting from the interest point and spreading in a radial
way, independently in every direction, until a certain function evaluated along the ray attains
an extremum. So, region is pretty robust to location inaccuracy.

The function evaluated along each ray is:

fI(t) =
|I(t)− I(0)|

max
( ∫

|I(t)−I(0)|dt

t
, d

) ,

where t is the ray parametrization (t = 0 is the local intensity keypoint) and d is a threshold
chosen to avoid indetermination. Extrema of the function in each ray are affine and photometric
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Figure 2.7: EBR detector. (a) region obtained in presence of curved edges; (b) the process for straight
edges: graphs corresponding to the evaluation of the two defined functions, the characterization of the
optimal values (point (s1, s2) in red) and the region obtained.

invariant.

Next, extrema found at each ray are linked and a region is defined. When more than a local
extremum can be found along the same ray, the selection of the extremum is done imposing
continuity constraints: the closest extremum to extrema in the neighboring rays is chosen.

The defined region is substituted by the best ellipse fitting in the region. Finally, ellipse
size is doubled and that is the final invariant region taken. Doubling the size leads to a more
distinctive region while the risk of breaking planar assumption increases. Region created is
illustrated at Figure 2.8.

Descriptor and also the matching distance used by IBR in [32] are the same as EBR.

• Maximally Stable Extremal Region Detector, MSER [19].

The conceptual idea of how different regions are chosen is the following: Consider the image
embedded as a 2D surface in 3D space when considering intensity, I, the third coordinate. Then,
consider also the set It = {(x, y, I) such that I(x, y) ≤ t}. Starting from t = 0, as t increases,
some regions Rt begin to appear in It. Rt are connected regions considering components in
(x, y) coordinates. While increasing t more and more, these regions begin to merge until, for
I1, we have all the image surface included in the set. The set of regions corresponding to local
intensity minima is defined as all the connected components of It at each threshold t. Figure
2.9 depicts the method exposed.

Finally, the set is reduced by a region stability criterion which can be found in [33].

MSER is presented in [19] as the detector for a robust wide-baseline algorithm. Authors un-
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t

Figure 2.8: Region defined by the IBR detector. Observe first region defined, ellipse fitting and the final
ellipse of size twice of the former one.

Figure 2.9: MSER are, before the maximal stability criterion, those obtained when intersecting the
image embedded with the plane I = t and considering regions whose intensities are below (above) the
intersection for local minima (maxima) regions. At top left, original image, at right image as a 3D graph
with colors proportional to intensity values, which move in interval [0, 1]). At bottom, existent regions
(MSER) at different levels are seen in white while the non-existent in black.

derline its computational efficiency since the enumeration of the extremal set is O(n·log(log(n))),
where n is the number of image pixels.

• Salient Region Detector [11].

Salient region detector approach is quite different from the methods presented above. Interest
points are considered to be the ones that exhibit the most unpredictability not only along their
local attributes but also along scale changes. The method consists on the following three steps:

1. Calculation of Shannon’s entropy of local image attributes over a range of scales, s. A lot
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of functions with which calculate the entropy function can be chosen. Here, pixel intensity
is chosen. Therefore, in order to estimate the probability distribution function p(I,x, s),
an histogram of intensity values is calculated within a circle Ω of radius s centered at point
x. Entropy function is then:

HΩ(x, s) = −
∑

Ω

p(I,x, s) log2(p(I,x, s))

This step cares about feature-space predictability.
2. Selection of scales ŝ such that HΩ(ŝ) is a maximum. ŝ are points that belong to the set:

{

s

∣

∣

∣

∣

∂

∂s
HΩ(x, s) = 0, det

(

∂2

∂s2
HΩ(x, s) < 0

)}

3. Calculation of the change experimented by the probability distribution function p(I,x, s)
when varying s. The resulting measurement function is:

WΩ(s) = s

∫

∣

∣

∣

∂

∂s
p(I,x, s)

∣

∣

∣dI

This step deals with inter-scale unpredictability. For instance, in a noisy image, pixel
values are highly unpredictable at any scale (entropy is close to 1 for all s). However, over
scale, statistics are stationary. This translates into a low value for WΩ measurement.

The final function measure for salient regions detection is YΩ(x, ŝ) , HΩ(x, s) ·WΩ(s), which
is a trade-off between space and scale intensity unpredictability in a concrete region. An example
of the effects of both factors in the salient detector is shown in Figure 2.10.

Until now, the detected region has been found in a scale invariant way. To obtain an affine
invariant detector, s is expanded in order to able to describe any ellipse centered at the pixel
location. Then s turns into s = (s, ρ, φ), where ρ is the axis ratio of the ellipse and φ is its
orientation.

2.2 Local Descriptors

In the previous section, we have shown the most commonly used methods for detecting interest
points and also delimiting their characteristic region. In this section, our aim is to show the
methods used to represent these regions, which are called descriptors. Descriptors are vectors
of a certain dimension where each component of the vector gives information about certain
parameter measured in the detected region that descriptor is parameterizing.

There are many techniques for describing local image regions. The simplest descriptor is
a vector of image pixels. Then, when comparing similarity between region descriptors, cross-
correlation would be the best tool. Nevertheless, cross-correlation of image patches is very
sensitive to changes (scale or affine) and also requires from a high computational cost. Since
this first and natural way of feature matching, lots of descriptors and associated similarity
measures have been proposed.
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Figure 2.10: The behavior and differences between entropy and inter-scale saliency measure are clearly
shown in the example above. While both regions achieve an entropy maximum (it is easy to appreciate
it since the quantity of black pixels is the same as the one of white ones at a certain scale), by changing
scale it is clear that changes on the intensity distribution of the red framed patch are greater than the
ones of the blue framed. For a better illustration, s is here considered as an unique parameter indicating
the radius of a circular window

First, the most relevant descriptors are schematically presented in Section 2.2.1.

Next, in Section 2.2.2 we explain one of the most used descriptors, SIFT, and also discuss
its variants. SIFT shows to be a great descriptor as it has been proved in [21], where descriptors
are evaluated under different situations for matching and recognition: affine transformations,
scale changes, rotations, blur, JPEG compression and illumination changes. In [21], SIFT and
SIFT-like methods give the best performance.
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2.2.1 Descriptors’ Overview
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
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SIFT

{

GLOH
DAISY

SURF [2]
Histogram of Orientated Gradients[6]
Shape Context

Spatial-Frequency Techniques

{

Gabor filters
Haar wavelets

Differential Descriptors,

{

Steerable filters
Complex filters

Other Descriptors







Cross− correlation
Generalized Moment Invariants
PCA− SIFT

2.2.2 SIFT-like Descriptors

Scale Invariant Feature Transform, SIFT [18]

In the previous sections we have presented techniques to assign an image location, scale and
orientation to each point. Remind that the detector used by SIFT is a slight modification of the
LoG scale invariant detector. For further details on SIFT detector, see Section 3.3.1.

In order to compute the descriptor, image gradient magnitudes and orientations are sampled
in a square grid around the point. Sampling is done at the scale at which the keypoint was
detected. Patch and gradient orientations are rotated relative to the interest point orientation
so that orientation invariance is obtained.

A Gaussian weighting function with variance one and a half of the descriptor size grid (s×s, s
the scale) is used so that gradient magnitudes are weighted according to their proximity to the
keypoint. This provides certain robustness since small changes in window position do not affect
much to descriptor.

Samples are grouped in subregions and each subregion is related to an orientation histogram.
Histograms bins are a range of degrees. Samples within the subregion are counted and classified
according to their gradient orientation. Gradient magnitudes, once adjusted by the values of the
previous Gaussian window, act as weight of the sample importance to the histogram. To avoid
boundary effects between subregions, samples effect in the histogram is also weighted by the
inverse of the distance from the sample location to the subregion center (assuming subregion is
of size D ×D and has center (u, v), weight of samples located at pixel (u′, v′) in the subregion,
has factor proportional to (D−1

2 − |u− u′|) · (D−1
2 − |v − v′|)).

Subregions are created around the keypoint: first four subregions are located in a way that
each ones has the interest point as vertex and occupies one of the quadrants. The next twelve
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Figure 2.11: At left, SIFT grid for n = 4. See there is a total of 4×4 subregions surrounding the interest
point. As explained, first, a circular window is applied to gradient magnitudes in the whole region, and
then, histograms take place at each subregion where gradient magnitudes are also modified. This time,
modification consists on convoluting by a triangular function in each direction so center pixel in the
subregion contains the sum of the gradient orientations weighted by distance to the subregion center.
Both the circular window and the triangular one are shown. Second and third figures show the same
process in another perspective. Here, n = 2, there is a total of 4 regions where to construct the histogram.
Gradients of the samples and the Gaussian window are shown at center. At right, histograms for the 4
subregions are shown. Observe histograms have eight bins (r = 8)

subregions are placed adjoiningly the first four and so on until the desired quantity of subregions
has been placed. Figure 2.11 shows the distribution described.

Descriptor is obtained concatenating the values of each bin of each histogram. Therefore, its
complexity depends on the number of subregions, N = n2, where n is the number of subregions
along an axis (X or Y ), and also on the number of bins, r. Values n and r are set to 4 and 8
respectively since the best performance is achieved with a 4 × 4 array of histograms with eight
orientation bins each one. Therefore, vector descriptor dimension is n2 · r = 128. Also, sampling
set in each subregion is a 16× 16 array. Finally, descriptor is normalized to unit length so that
illumination changes affect less.

When changing the square grids where histograms are calculated for circular ones, the re-
sulting method is referred to as circular SIFT or symmetric SIFT.

Note that, even though the SIFT detector is scale invariant but not affine invariant, SIFT de-
scriptor performs quite well robustness to viewpoint changes (only a lost of 10% in repeatability
when viewpoint changes from 0 to 50 degrees).

Gradient Location and Orientation Histogram, GLOH [21]

This new descriptor is an extension of SIFT descriptor, in which, what changes the most is the
limits and shape of the different subregions where histograms are created. SIFT is computed for
a log-polar grid with three subregions in radial direction (radii: 6, 11 and 15) and eight in angular
direction (the log-polar configuration can be seen at Figure 2.12). The central bin is not divided
in angular directions. In total, there are 17 subregions and, as consequence, 17 histograms. Each
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Figure 2.12: At left, the GLOH’s log-polar configuration. At right, DAISY’s configuration. Here notation
introduced can be appreciated.

histogram consists of 16 bins. This yields a vector descriptor of 16 · 17 = 272 elements. This
high dimensionality is reduced through PCA (see 3.4.2) so the descriptor dimension is reduced
to, at most, 128.

DAISY [35] [31] [29] [30]

Although not explicitly called ‘DAISY’, this descriptor was first proposed in [35]. In this article,
Brown and Winder carry out a general study on literature descriptors. They divide them in
differentiated parts (such as the evaluation function characterizing descriptor values and the
region configuration) so they can evaluate each part differently and mix parts from different
descriptors. There, DAISY configuration can be found. Nevertheless, descriptor’s name comes
from [31], where authors underline the efficiency in programming the descriptor.

The method consists, first of all, on calculating image intensity derivatives along certain
directions, Iθ, θ the direction:

Iθ =

(

∂I

∂θ

)+

, where I is the image, θ ∈ {θ1, ..., θH} and (.)+
.
= max(0, .)

Second, each directional gradient is convolved with Gaussian kernels, gΣi
with i = 1, . . . , Q,

GΣi

θ = gΣi
∗ Iθ

Notice that, fixed a point (x, y), GΣi

θ (x, y) is the weighted sum of the θ directional gradient

around pixel (x, y). In fact, GΣi

θ (x, y) can be thought as doing the same as one of the bins of SIFT
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histograms for a subregion centered in (x, y) since it measures θ orientation importance within
the region. We then group hΣi

(x, y) = (GΣi

θ1
(x, y), . . . ,GΣi

θH
(x, y))T and, as usual, normalize h

to unit length.
Next, descriptor D(x0, y0), where (x0, y0) is the interest point, is obtained by concatenating

vectors resembling to hΣi
(x, y). Given a radius R, an angular quantization T and a radius

quantization Q, the set S of ((x, y),Σ) points is:

S = S1

⋃

{((x0, y0),Σ1)}, where

S1 =

{

((x, y),Σ) = ((ri · cos φk + x0, ri · sin φk + y0),Σi), ri =
(i + 1)R

Q
, φk =

2πk

T

and Σi arbitrarily chosen such that Σi−1 < Σi < Σi+1, ∀i = 1, . . . , Q, k = 1, . . . , T
}

This set of points characterize the DAISY configuration, as shown in Figure 2.12. Summarizing,
the descriptor is:

D(x0, y0) = (hΣ(x, y)) , ((x, y),Σ) ∈ S)

=
(

hΣ1
(x0, y0),hΣ1

(x0 + r1 cos φ1, y0 + r1 sinφ1), . . . ,hΣ1
(x0 + r1 cos φT , y0 + r1 sin φT ),

hΣ2
(x0 + r2 cos φ1, y0 + r2 sin φ1), . . . ,hΣQ

(x0 + rQ cos φT , y0 + rQ sin φT )
)

Notice that when the center of subregion associated to an histogram is far from the keypoint,
gaussian is more smoothed and region considered is bigger. Notice also that subregions overlap,
this favors robustness and soft changes between neighbor histograms.

The major differences with SIFT are that:

• The weighting of the samples in a subregion is done through a Gaussian kernel instead of
weighting by convolving by a triangular window in both direction X and Y (this is what
SIFT does when weighting is inverse proportional to distance to subregion center) and
sampling set is a dense set instead of a discrete set within the region,

• The “daisy” configuration of subregions around interest point.

• And mostly, the efficiency.

PCA-SIFT [12]

The only similarities between PCA-SIFT and SIFT is that both are computed over the same
image region (they use same DoG detector). PCA-SIFT descriptor works as follows.

On the one hand, first of all, a m ×m patch centered over the keypoint and at the correct
scale given by the detector3 is extracted and rotated to align its dominant rotation to a prefixed

3Extracting a m×m patch at a given scale means forming the patch by sampling the m×m points according
to scale so that the m×m patch shows the whole region delimited by scale. Therefore, patches extracted can be
very different from the actual m × m pixels centered at the interest point
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and common orientation. Value chosen for m is 41 but could be different. A vector is created
concatenating the x and y directional derivatives for the patch. Therefore, vector dimensionality
is 2 · 39 · 39 = 3042. Vector is then normalized to minimize illumination effects.

On the other hand, there has been a previous evaluation over a lot of patches (21000 in [12]).
Each patch, processed as previously described, creates a 3042-vector. The covariance matrix of
the whole set is calculated and PCA (see 3.4.2) is applied. The top n eigenvectors (that is, the
eigenvectors related to the n greater eigenvalues) are selected as a basis of the feature space.
Finally, for every new vector, the PCA-SIFT descriptor is the projection into the n-dimensional
feature space of the 3042-vector. Typically, n = 20. While one could thing higher values for
feature space dimensionality to always perform better, in reality, it doesn’t happen. That is
because, when increasing n, feature space captures more and more distortions not really related
to the feature itself (blurring, etc.).

In [12], it is shown that PCA-SIFT performs better than SIFT. It is claimed PCA-SIFT takes
profit of SIFT detecting steps so remaining variation is basically due to keypoint identity and
perspective distortions. Moreover, when discarding lower components, PCA improves accuracy
since unmodeled distortions are rejected (they are written in terms of eigenvectors of lower eigen-
values). It is also remarkable the decrease in descriptor dimensionality: from 128-dimensional
SIFT descriptor to 20-dimensional PCA-SIFT descriptor.

2.3 Matching

Here, we present some matching techniques closely related to object classification techniques.

2.3.1 Measures

The metrics used to compare different descriptors can be classified in several classes, such as
heuristics distances, non-parametric test statistics, information-theory divergences and ground-
distance measures. In the following, we will give some examples of each class.

Heuristic distances

Lp distance dLp(x,y) = p
√

∑n
i=1 |xi − yi|p, x,y ∈ R

n

Particularly, dL2
, called the Euclidean distance, and dL1

, called the absolute distance, are
the most used. The most natural environment where using the Lp distances is when directly
comparing two descriptor vectors. Descriptors such as SIFT, PCA-SIFT, GLOH, DAISY, shape
context, SURF and spin images use the Euclidean distance.

Mahalanobis distance: Given a point x and a set of points Y with mean µ and covariance
matrix M, the Mahalanobis distance is defined as follows:

dY (x) =

√

(x− µ)TM−1(x− µ)

Mahalanobis distance differs from the Euclidean one because the former takes into account
correlations of the data set and it is also scale invariant. In fact, when M = Id, dY (x) degenerates
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into dL2
(x, µ). It is commonly used by complex filters, differential invariants, moment invariant,

steerable filters, etc. It is also commonly used in classification problems since distance is a
measure point-to-sets.

Pyramid Matching Kernel [7][4][13]:
Before introducing this method, we briefly explain what kernels are [10]. Kernels are func-

tions which measure similarity between their two inputs, x, y vectors of a certain dimension.
Their general expression is κ(x,y) =< φ(x), φ(y) >, that is an inner product after a transfor-
mation, φ, to a certain feature space. Some kernel examples are: κ(x,y) =< x,y > (which is
equivalent to the L2 distance), κ(x,y) = exp(− < x,y > ·σ−2), etc. Methods as Support Vector
Machines, kernel PCA or Gaussian Processes rely on these objects to perform the classification.
A lot of efforts have been lately put in developing better kernels, specially when data (for exam-
ple, descriptors) can not naturally fit into an Euclidean space. Here, the kernel presented below
is able to even work with vectors of different dimensions ([7]) and also it is very efficient and
robust to clutter.

Consider the input space as a set of sets of d-dimensional feature vectors (descriptors)

X =
{

x such that x = {fi = [f i
1, . . . , f

i
d] ∈ R

d}i=1÷|x|
}

4

bounded by a sphere of dimension D at R
d. Let the feature function be: φ(x) = [H−1(x),

H0(x), . . . , HL(x)], where L = ⌈log2 D⌉ and Hi(x) is an histogram formed over data in x
(remember there is a total of |x| d-vectors in x), containing d-dimensional bins of side length 2i.

Hi(x) dimension is
(

D

2i
√

d

)d

. Simplifying, each histogram has bins that double in size, in each

direction, the previous one. At the finest level, H−1, bins are small enough to only contain, at
most, a vector from x.

Pyramid kernel, κ∆, measures similarity by a weighted sum of correspondences found at
each level of the histograms pyramid, that is κ∆(φ(x), φ(y)) =

∑L
i=0

1
2i Ni, where 1

2i is the i-th
weight and Ni is the number of newly matched pairs at level i, in detail:

Ni =

ri
∑

j=1

min(Hj
i (x),Hj

i (y))−
ri−1
∑

j=1

min(Hj
i−1(x),Hj

i−1(y))

where Hj
i is the j-th bin of the i-th histogram. Notice that weights are inversely proportional to

the finesse of the matching, since features’ similarity at a finer resolution is more distinctive. The
main idea on the pyramid kernel is depicted in Figure 2.13, whereas special cases and detailed
explanations can be seen at [7].

Non-parametric statistics

χ2 distance: Let P,Q be two distributions, Pi, Qi the respective i-th bin. Then distance is:

dχ2(P,Q) =

∑

i (Pi −Mi)
2

Mi
, where Mi =

Pi + Qi

2

4Observe that each x ∈ X is a set of cardinality |x| that can be different from the cardinality of another x’ ∈ X
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H 0(y) H 0(z)

H 2(y)

H 1(y) H 1(z)

H 2(z)

min(H 0(.))

min(H 1(.))

min(H 2(.))

y z

y z

zy

Figure 2.13: At left, point sets, at center, histogram pyramids for each set (first y and next z), at right,
intersections histograms. Observe that, in the example, N0 = 2, N1 = 2 and N2 = 1, therefore distances
is 1

20 ·N0 + 1

21 ·N1 + 1

22 ·N2 = 2 + 1 + 0.25 = 3.25.

dχ2(P,Q) measure how unlikely is that distribution P was drawn from the population rep-
resented by Q or, in other words, how well samples from distribution P, thought as the experi-
mental distribution, would fit in distribution Q, interpreted as the theoretical distribution being
guessed.

Information-theory divergences

Kullback Leibler divergence It quantifies how different two given probability distributions
are. Let P and Q be two different distributions, then the KL divergence is:

dKL(P||Q) =
∑

i

Pi log

(

Pi

Qi

)

For P and Q continuous distributions, substitute the sum by an integral. The KL divergence is
not a distance since it isn’t even symmetric with respect to P and Q. However, dKL(P,Q) = 0

if and only if P = Q. Observe that dKL = EP

[

log
(

P
Q

)]

and also dKL = H(P,Q) − H(P),

where H(P,Q) =
∑

i(Pi log Qi) is the cross entropy. These properties make it attractive to use.
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Figure 2.14: At left, P and Q distributions, at right, Earth Mover’s distance concept: amount moved to
put on the same level both distributions weighted by distance moved; that is, dEMD = 1 · 1 + 1 · 2 = 3

Ground-distances measures

Earth mover’s distance, [25] dEMD(P,Q) =
∑m

i=1

∑n
j=1

dijfij
∑m

i=1

∑n
j=1

fij

Distribution P has m bins, each one weighting Pi, whereas Q has n bins Qj. Let dij be the
distance between the i-th P bin and the j-th Q bin. fij represents the flow between the i-th
P bin and the j-th Q bin when minimizing the cost to transform one distribution to another,
which is expressed as Cost(P,Q, {fij}i,j) =

∑m
i=1

∑n
j=1 dijfij. {fij}i,j is obtained as a result

of a linear optimization problem subject to restrictions:

(1)fij ≥ 0, (2)

n
∑

j=1

fij ≤ Pi, (3)

m
∑

i=1

fij ≤ Qj and (4)

m
∑

i=1

n
∑

j=1

fij = min





n
∑

j=1

Qj ,

m
∑

i=1

Pi





(1) restricts flows to movements from P to Q, (2) forces P to not give more than it can whereas
(3) forces Q to receive what it can hold, and, finally, (4) counts the total amount of earth that
can be moved. Process can be seen in Figure 2.14.

2.3.2 Elaborated Matching Methods

As previously said in the beginning of the section, the link between matching, recognition and
classification is very close when dealing with local features since features can be thought as
classes while a training is done to classify the query patch. Since our algorithm relies on a
classification technique, random ferns, we would like to mention some of the existing techniques
although we won’t explain them in detail.

• Support Vector Machines[10] Training is done maximizing an hyperplane equation
which best separates the two considered classes. When a new sample arrives, classification
is made according to the sign when evaluating the sample in the hyperplane equation. It
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can also be formulated as a multi-way classifier. Lots of variants exist, for example a very
efficient one is [36].

• Adaboost . It constructs a strong classifier as a linear combination of weak ones. Algo-
rithm serves to give weights to each weak classifier in the strong one. Some modifications
have been added since first definition of the method, [34] is an efficient example.

• Random Forests and Ferns. Since these ones are the techniques we use, we will
explain them extensively in Chapter 3.

2.4 Dealing with Deformations

While lots of methods have been proposed to solve image recognition affected by common trans-
formations as scale, viewpoint, blur and photometric change, it has been done very few to deal
with transformations related to non-solid objects, that is general deformations. From what
we know, in the state-of-the-art only two methods approaching to deformation transformations
problem can be found. One is from 2005 and the other is from 2008. We will be explaining them
in this section.

Deformation Invariant Image Matching, [17]

In [17], the deformations are treated as homeomorphisms between images. Homeomorphism (φ)
between deformed images I1 and I2 is such that I2(u, v) = I1(φ(u, v)) = I1(φ1(u, v), φ2(u, v)) =
I1(x, y), with φ continuous with inverse function continuous too. In short, that translates into
considering intensity values changing position but not their value. Taking it into account, 2D
images are embedded in a 3D space considering variables (1− α)x, (1− α)y and αI, where α is
a parameter. α is called the aspect weight and, as we will now show, it has a crucial role into
the deformation invariance descriptor Ling and Jacobs present.

Consider two images I1, I2, related by an homeomorphism so that the latter is considered
a deformation of the former. Let σi be the embedded surface in the 3D space from image Ii

affected by the α weights explained above and γi(t) = (xi(t), yi(t), zi(t)) a curve along the surface
(let γ2 be the deformed version curve of γ1). Curves’ lengths when moving from t = a to t = b
are:

l1 =

∫ b

a

√

(

ẋ2
1 + ẏ2

1 + ż2
1

)

dt =

∫ b

a

√

(

(1− α)2ẋ2 + (1− α)2ẏ2 + α2İ2
)

dt

l2 =

∫ b

a

√

(

ẋ2
2 + ẏ2

2 + ż2
2

)

dt =

∫ b

a

√

(

(1− α)2u̇2 + (1− α)2v̇2 + α2İ2
)

dt,

where ˙(.)
.
= ∂(.)

∂t
. From both expressions, it can be easily seen that when α → 1, lengths

converge to same value since differences, relying on pixel coordinates, get smaller with this
condition. Figure 2.15 shows this behavior.
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Figure 2.15: Example of the effects of the α aspect weight on a 1D function I(x) instead of the 2D
function I(x,y). When α tends to 1, distance between points on both curves (one the deformation of the
other) depends more on the intensity and less on the location coordinate. Meanwhile, curves tend to
have same shape.

Once explained α’s role, the descriptor is created as follows. Given an interest point p =
(x, y), geodesic level curves5 around the point are calculated, these are curves formed with points
at same geodesic distance from p. Notice that, as α → 1, geodesic distance depends more on
intensities and less on pixel location and therefore it adapts to deformation. Figure 2.16 shows
the geodesic level curves of a concrete point once taken α = 0.98.

Then, descriptor consists on a 2D histogram where bins are formed considering a range of
intensities and a geodesic distance interval. It is called the GIH (geodesic intensity histogram).
Sampling set is obtained sampling geodesic level curves at uniform distance ∆ along each curve.
Concisely, Hp, histogram characterizing interest point p, is:

Hp(k,m) = #

{

q ∈ Pp : I(q) ∈
[

k − 1

K
,

k

K

]

, d(q,p) ∈
[

m− 1

M
dmax,

m

M
dmax

]}

where Pp is the sampling set, d(q,p) is the geodesic distance between p and q, K is the number
of intensity intervals, M the number of intensity intervals, d(q,p) the geodesic distance between
points q and p and dmax is the maximum distance used when sampling. Finally, Hp(k,m) is
normalized; first with respect to k once fixed m and then normalized moving m. Similarity
between histograms when comparing local features is given by the χ2 distance.

Results seem to improve the other state of the art methods when using synthetic images.
However, on a real data set, differences are not so clear.

A Deformable Local Image Descriptor, [5]

The method proposed in [5] relies on multiple scale support regions to describe the keypoint
and on a similarity model that takes profit from this multiple representation. Choosing different

5The geodesic distance between two points is the shortest path between these points such that this path is
embedded in the surface
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Figure 2.16: Taken from [17], this image shows the geodesic level curves around a concrete interest point
when applying the method described. Also, the sampling set used for the histogram descriptor can be
appreciated.

#21 

#81 

Figure 2.17: Two interest points with their different support regions.

support regions permits the problem of selecting an optimal scale (which is very difficult to
general deformations) to be skipped and also permits to give more information about the local
feature (an unique region may be not sufficient).

Multiple-size support regions around the interest point are obtained through a circular win-
dow varying its scale, σs. Region scales are σs = s · σ0, s ∈ S = {0, 1, . . . , 2N}. Figure 2.17
show the different support regions being used in the process.
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Descriptor at a given scale is very similar to SIFT: first, gradients are calculated at each pixel
and L1 orientation histograms of L2 bins each result when dividing the region into L1 subregions.

Before classifying pixels into histogram bins, the whole region is rotated θs = arctan
(

v12

v11

)

degrees, where v1 is the eigenvector of the largest eigenvalue of the second moment matrix,
M(x, y), defined when describing the Harris detector, see Equation (2.1). In short, for each
point p, descriptor is Dp = [Hp

0 , . . . ,Hp
2N ]

From that point, what is left is to associate every interest point q from the query image to
one of the candidate points (target image), denoted as p1, . . . ,pM . This is done using a Local-
to-Global Similarity Model (LGS) which consists on an unsupervised learning method where
support regions act as a cascade of “weak” classifiers.

When comparing q to p1, . . . ,pM , it seems clear that histograms can not be only compared
at the same scale: if image contains an scale transformation, most of histogram comparisons
could be wrong even if interest points were the same in both images (q and pj for some j).
Because of this, the first thing to do is to find k∗ ∈ [−N,N ] such that histograms between q and
{pj}j=1,...,M are the most similar possible (best scale comparison between them). k∗ is assigned
to k which minimizes similarity between descriptors Dq and Dpj

, pj being the candidate point
given best performance once k is fixed. That is:

k∗ = amink∈[−N,N ]{f(k)}, where f(k) = min
j∈{1,...,M}

{

max(0,k)+N
∑

i=max(0,k)

dχ2(H
pj

i ,Hq
i )

}

For the next steps, only N histograms per point are considered, in particular: (Hq
k0

, . . . ,

Hq
k0+N−1), (H

pj

k0−k∗, . . . ,H
pj

k0−k∗+N−1) ∀j ∈ {1, . . . ,M}. These histograms serve as input to the
unsupervised learning method LGS. As commonly desired, classification is done in two parts: a
filtering module that pretends to reject as much unlikely candidates as possible and a refining
one that ranks remaining candidate points.

At each classification module, a µ ratio of candidate points are rejected (the worst in the
similarity evaluation). At the end of the filtering mode, only kmax = (1 − µ)n · M , kmax a
parameter and n ≤ N such that satisfies the condition.
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Chapter 3

The Algorithm

3.1 Overview

Before explaining the main steps of the algorithm separately, in this section we want to give a
general idea of the method we have implemented.

The method has an initially complex and large training process in which the image containing
the object to be learnt to detect, even when it is deformed, has to be given.

Let’s consider we have our image I without any deformation. The first thing to do is to
register the image. This means to give the image a position in space, considering it in the
XY plane; also we are giving it Nx ×Ny vertices equally distributed on the image (at distances
Lx and Ly one vertex to another along each direction). Registration gives us 3D information for
the Nx ×Ny vertices and also gives us the camera model that will be used during the training
part.

The next step is to select interest points on the image. Selection will be done according
the Difference-of-Gaussian method but also taking into account the resistance of these points to
perspective changes. The local training will be done around each one of these chosen interest
points.

Parallel to these steps, a large number of deformed meshes of Nx×Ny vertices are generated.
Then, these meshes are split into nx × ny meshes, where nx, ny << Nx, Ny respectively, and
they are going to act as local deformed meshes. A selection process, involving PCA study, is
applied in order to choose the most characterizing deformed small meshes from the whole set
of meshes generated. This subset is the one that will be used to synthesize different deformed
images around each interest point on the original image and it is called the training meshes’
set.

Then, for all interest points, we synthesize the local image on the different meshes from
the training mesh set. All synthesized meshes referring to the same interest point are called
elements of the interest point class. In order to appropriately synthesize each mesh around each
interest point, a visibility model has to be introduced and also orientation of each patch
has to be determined. The former is applied so that deformations can not give any confusion on
the pixel coloring for the training meshes. About orientation, each synthesized image has not

39
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Figure 3.1: Block diagram for the algorithm implemented.

any principal direction a priori. For our process, we would like to have all the elements of the
same class oriented the same way. To obtain it, orientation of the synthetic image is calculated
with the parameters given for the concrete interest point (for example, scale at which it has
been detected is required). And then, a rotation on the synthetic image is applied so that all
orientations for each element in the class become the same. Finally classes’ images are reduced
to about hundred pixels along each direction and having the interest point at the center of this
little patch.

The last step for the training process is to characterize each class in a way that it is distinctive
of the other ones. This part of the process is done by using random ferns [24], which mainly
consist on assigning a set of histograms for each class.

Although the learning process is very slow, the algorithm at running time is very fast. Given
the test image I’, the same interest point detector (DoG) is applied. At each interest point,
a region equivalent to the local image region on the training process is created. There, Ferns
method for evaluation is used and the similarity to the histograms defining each class for which
the image has been trained is computed.

Evaluation ends when giving the criterion for discarding points on the test image that don’t
correspond to any of the classes and also the criterion to affirm that some of the interest points
on the test image correspond to points on the reference image.

An schematic representation of all the steps followed can be seen at Figure 3.1. The following
sections explain the different steps taking part in the algorithm in a more detailed way.

3.2 Mesh Registration

3.2.1 Initial Concepts: Homogenous Coordinates and Camera Model [14]

In this section, we are going to study the relation between the 3D coordinates of a point M and
its correspondent point m in the image captured by the camera. This will help to understand
following sections where points are indifferently referred to according its 3D coordinates in the
different coordinate systems we will explain and also referred to according its 2D representation.

Consider a point M = (X Y Z)T , defined in an arbitrary coordinate system, which we call
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world coordinate system. Consider camera C as another point. Image is then formed in a plane
at a certain distance from the camera point and it consists on a perspective projection taking
rays departing from C, passing through 3D points, such as M, and intersecting the plane at
2D-coordinates described by m. First transformation to obtain m from M is to reexpress point
M in the camera coordinate system, that is the system where C is Ccam = (0 0 0)T . This
transformation consists on a rotation and translation, Mcam = R3×3M + T3×1,

Mcam =





Xcam

Ycam

Zcam



 = R





X
Y
Z



 + T = (R|T)









X
Y
Z
1









= (R|T)3×4M̃

The 3× 4 matrix (R|T) is called the external calibration matrix. Note that camera point in the
world coordinate system is C = −R−1T.

Next step is to project Mcam into the image plane. The image plane is often located so that
its normal vector in the camera coordinate system is ~n = (0, 0, −1)T and its distance from the
camera is f . Using simple triangular relations we obtain:

mX

f
=

Xcam

Zcam

⇒ mX = f
Xcam

Zcam

mY

f
=

Ycam

Zcam
⇒ mY = f

Ycam

Zcam

The last step would be to reexpress m = (mX ,mY )T into the image coordinate system, m =
(u, v)T . Image coordinate system has its center at the top left corner of the image and its axis
are {u, v}, parallel to axis {X,Y } on the camera coordinate system respectively. Let (u0, v0) be
the projection of the camera center Ccam on the image and ku, kv the inverse of the size of one
pixel along axis u and v respectively. Then, (u, v) = (u0 + kumX , v0 + kvmY ). Putting together
the last two steps (projection and transformation into pixel coordinates), we obtain:

(

u
v

)

=

(

U
W
V
W

)

, where





U
V
W



 = A3×3





Xcam

Ycam

Zcam



 , A =





kuf 0 u0

0 kvf v0

0 0 1





Note that (U V W )T are the homogenous coordinates defining m. Matrix A is called the
internal calibration matrix. It is usual to assume ku = kv and (u0, v0) to be image center, so
dimensionality is reduced.

Summarizing, relation between a point M in the world coordinate system and its image

coordinate representation, m = (u, v)T =
(

U
W

, V
W

)T
, is:





U
V
W



 = A(R|T)









X
Y
Z
1









=





kuf 0 u0

0 kvf v0

0 0 1









R11 R12 R13 T1

R21 R22 R23 T2

R31 R32 R33 T3













X
Y
Z
1









Figure 3.2 shows graphically the different notations introduced in this section.
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Figure 3.2: At left, correspondence between the world and the camera 3D coordinates systems. At
center, correspondence between camera coordinates and projection in the image plane. At right, image
coordinates system.

3.2.2 Mesh Registration in Our Algorithm

As previously mentioned in the previous section, our first aim is to give some spatial information
that will be useful on next stages to the image. This means we want to know parameters: R and
T explained at the last section and we also want the exact position of the Nx×Ny vertices on the
mesh in 3D world coordinates. In particular, we set our attention in the synthetic experiment
we have worked with.

We assume the camera to be calibrated and, hence, that we know the matrix A. In our
synthetic experiments, we have worked with a 500× 1000 Guernica image and A is set to:

A =





1000 0 500
0 1000 250
0 0 1





Once the internal calibration matrix is known, we have a perspective to point problem to
resolve: knowing some correspondences between image points and their 3D coordinates, we
want to estimate the position and orientation, that is the external calibration matrix, (R|T).
It can be shown that with only four 3D-2D correspondences we already have R and T. So we
give an invented position for the extremes of the object in the image and we mark the related
points on the image. With these inputs (A and XY Z-position for four concrete points in the
image), we can determine the XY Z position of every pixel in the image1.

Once we are provided the external calibration matrix, we can interpolate the Nx×Ny vertices
in the image covering the object from one of the extremes marked to another. In our case we
fitted a 41× 21 mesh in the Guernica, which was considered a 30× 60 cm rectangle.

Guernica registered image, with the 41× 21 mesh fitted in the image, can be seen at Figure
3.3.

1
Remark: That can be done because we are assuming a planar object in our image.
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Figure 3.3: Once registration has been done we obtain coordinates XY Z of a 41× 21 mesh covering the
image.

3.3 Selecting Interest Points

The method for selecting the interest points is based on [16]. It consists on generating different
views of the object. Then, at each view, we compute the interest points in the image using
the SIFT detector’s method, that is DoG. Since transformations applied to generate the differ-
ent views can be inverted, all points can be reprojected at the reference image (the reference
view). There, an easy counting process can determine the most repeatable interest points under
perspectives changes and these are the keypoints we select.

In this section we first explain the SIFT detector’s method and then we explain the weighting
done by all the perspectives images generated.

3.3.1 SIFT Detector Based on DoG

As previously mentioned, the detector we have used in our method is the one used by Lowe in
[18]. It is an scale invariant detector and, basically, an efficient modification of the Laplacian of
Gaussian detector. We will now proceed to explain it.

Detection of Scale-space Extrema

The scale space of an image was defined (see Section 2.1.1) as L(x, y, σ) = G(x, y, σ) ∗ I(x, y)

where G(x, y, σ) ∼ N (0, σ), that is G(x, y, σ) = 1
2πσ2 exp−x2

+y2

2σ2 , and I(x, y) is the input image.
Instead of using directly this scale-space function, it is proposed to calculate the scale-space
extrema in the difference-of-Gaussian function convolved with the image, D(x, y, σ), computed
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from the difference of two nearby scales separated by a multiplicative factor k:

D(x, y, σ) = (G(x, y, kσ) −G(x, y, σ)) ∗ I(x, y)

First, notice that D(x, y, σ) is directly equal to L(x, y, kσ)−L(x, y, σ). Consequently, in efficiency
terms, it only differs on a substraction from the LoG method. Second, it can be shown that
∂G
∂σ

= σ▽2 G and, since ∂G
∂σ
≈ G(x,y,kσ)−G(x,y,σ)

kσ−σ
, we finally got

G(x, y, kσ) −G(x, y, σ) ≈ (k − 1)σ2 ▽2 G. (3.1)

This shows that Gaussian functions differing by a constant k, it already incorporate the σ2

factor, which, remember, is a crucial normalization factor when defending scale-invariance for
the Laplacian function. Since (k−1) is a constant along the different scale, it doesn’t affect in the
extrema location. Approximation in Equation (3.1) is exact when taking limk→1. Nevertheless,
approximation seems to have a very little impact on extrema detection.

In practice the Difference-of-Gaussian process is done in the following way: The input image
is successively convolved by Gaussians to produce images separated by k in the scale-space. From
σ to 2σ (that would be an octave of the scale-space), different values depending on a parameter s

are taken, where s is an integer number. Fixed an octave, we take k = 2
1

s and the total amount
of smoothed images is s + 3 (so that the octave is completely covered). Adjacent images from
the same octave are subtracted so s + 2 Difference-of-Gaussian functions are obtained. Once an
octave is completed, blurred images from the next octave are resampled taking half of the pixel
rows and columns (down-sampling by a factor 2). This reduces image size from n×m to n

2 × m
2 ,

which affects positively to computation. Meanwhile accuracy is not really affected: it remains
the same that existed at the start of the previous octave.

Figure 3.4 shows the process explained and Figure 3.5 shows a real example.

As in LoG, the comparison for local extrema detection is done not only with the eight
neighbors of the same scale Difference-of-Gaussian function, but also to the nine from the DoG
function at the scale above and the nine at the scale below. When looking for extrema, a
trade-off appears between efficiency and completeness. That is because, for example, there are
features which suffer a continuous transition from a maximum to two maxima. And this has to
be taken into account when deciding the value of the s parameter introduced before. In [18],
the parameter s is chosen when evaluating different possibilities into a synthetic data set. The
result is that best performance is obtained when s = 3 and that is also the scale value per octave
that we use. When increasing more s, no improvement is shown since points lose part of their
stability and therefore also their repeatability through different images. Another parameter that
has to be previously fixed is the initial smooth, σ0. This parameter also represents a trade-off
between computational cost and repeatability. The value taken is σ0 = 1.6.

Finally, another observation has to be made. Blurring the image before extrema detection,
as we are doing, eliminates some of the extrema (the ones with the most sharpened changes,
the ones from high spatial frequencies). In order to counteract somehow the effect, at the first
octave, the image is doubled in size by using linear interpolation. In fact, when assuming a
pre-existent blur of σ = 0.5 in the input image, which is perfectly consistent, doubling image
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Figure 3.4: At left the first stage can be seen, where image suffers different convolution to Gaussian
kernels. Octaves and down-sampling are shown. At right, the Difference-of-Gaussian functions obtained
when subtract ing to adjacent smoothing levels at the same octave are shown.

size gives a blur of σ = 1 and then, choosing σ0 = 1.6 incorporates very little smoothing in the
first octave. Doubling the size has shown to increase the number of stable points by a factor of
4.

Accurate Keypoint Localization

Among the whole set of local extrema, those with a low contrast have to be discarded. In the
proposed algorithm, an initial elimination is done for extrema which are weakly maxima (or
minima) compared to their neighbors. This isn’t enough and to obtain a final stable set of
keypoints, accuracy on location and determination of principal curvatures of each interest point
has to be done first.

For accuracy on location, let x0 be a keypoint found as a maximum of D(x, σ) for a certain,
fixed, σ. Consider the Taylor expansion of scale-space function around x0:

D(x, σ) = Dx0
+

∂DT

∂x

∣

∣

∣

x0

(x− x0) +
1

2
(x− x0)

T ∂2D

∂x2

∣

∣

∣

x0

(x− x0) +O((x− x0)
3)

A first finer approximation for the extremum location is obtained when truncating Taylor ex-
pansion at the third term and imposing the derivative of the polynomial approximation to be

zero. Result is x̂ = x − x0 =
(

∂2D
∂x2

)−1
∂DT

∂x

∣

∣

∣

x0

. This leads to a new location for the interest

point, which is x′
0 = x0 + x̂.
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Figure 3.5: Octaves 1, 3 and 5 are shown by columns. First columns correspond to the Gaussian
smoothing part while the second ones appear when computing the difference of Gaussian at adjacent
scales. Contrast in the DoG images has been incremented so that the forms appearing can be appreciated.

For calculating both derivative and Hessian, an approximation by differences of neighboring
sample points is done. Once the derivative and Hessian are calculated, x̂ is obtained as a result
of a 3 × 3 linear system. When x̂ is found such that its absolute value is greater than 0.5
in a certain direction, this means that the extremum lies closer to a neighbor than the initial
interest point, x0. Then, the sample point is changed and interpolation is calculated from the
new sample point (it is an iterative method).

The value of the DoG function at the accurate extremum x̂+x0 and at the appropriate scale

is then computed. Since it has been imposed that ∂DT (x̂+x0)
∂x

= 0, the value at extremum is

D(x̂ + x0, σ) = D0 +
1

2
x̂T ∂2D

∂x2

∣

∣

∣

x0

x̂ =
{

x̂T =
∂DT

∂x

∣

∣

∣

x0

(

∂2D

∂x2

)−1
}

= D0 +
1

2

∂DT

∂x

∣

∣

∣

x0

x̂

A second threshold is used: extrema with values below 0.03 (when assuming intensity range
[0, 1]) are automatically discarded.

There is still a last step remaining in order to obtain the final keypoints’ set. This consists on



3.3. SELECTING INTEREST POINTS 47

calculating the principal curvatures of the Hessian matrix. Principal curvatures will be used to
discard points belonging to edges. Edges are not convenient since they show very little stability
for the DoG detection. As usual, Hessian eigenvalues are no directly needed and a cornerness
criterion can be established from the trace and determinant of the Hessian matrix, H. Criterion

established is: trace(H)2

det(H) = (λ1+λ2)2

λ1·λ2
= (r+1)2

r
< (10+1)2

10 , where λ1, λ2 are the eigenvalues of H
and r is such that λ1 > λ2, λ1 = r · λ2. In Figure 3.6 points detected before taking on account
the edges can be seen.

Figure 3.6: Set of detected points. Orientations are specified by vectors orientation which are born at
the interest point location and which their magnitude is proportional to their gradient magnitude. In
cyan, the points rejected after applying the edge criterion. In this image, initial set was of 738 points
whereas, after eliminating boundary points, set had 669 elements.

Orientation Assignment

Orientation assignment is a previous step before computing the SIFT descriptor. It introduces
rotation invariance to the local feature. The procedure for obtaining the characteristic orienta-
tion is similar to the ones described in Section 2.1.

Let L(x, y, σ) the Gaussian smoothed image at the scale the keypoint has been recognized.
For each image sample at this scale, the gradient magnitude, m(x, y), and orientation, θ(x, y),
are computed using pixel differences, that is:

m(x, y) =
√

(L(x + 1, y) − L(x− 1, y))2 + (L(x, y + 1)− L(x, y − 1))2

θ(x, y) = arctan

(

L(x, y + 1)− L(x, y − 1)

L(x + 1, y)− L(x− 1, y)

)
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A Gaussian-weighted circular window with variance one and a half of the characteristic scale is
applied to gradient magnitudes around the interest point. An orientation histogram is then con-
structed where samples are weighted by their gradient magnitude once they have been windowed.
The orientation histogram has 36 bins covering the 360 degree range of orientations.

Peaks in the histogram represent the dominant directions of the local gradients. Not only the
highest peak but also the ones within the 80% of the highest are considered. Each orientation
serves to create an interest point at the same location. For a better accuracy of the orientation
values, an interpolation is done using the adjacent bins to each peak bin. Figure 3.6 shows the
detected points set and also the direction of each keypoint. Also, points with more than an
orientation can be seen.

3.3.2 Perspective Weighting

We assume to have our planar object in the XY plane in world coordinates. With the registration
process, we obtain matrix (R|T). Therefore, as seen in the previous section, we have the camera
position in the world coordinates, C = −R−1T. With all these data, we can think about creating
new perspectives by positioning camera at some other places in space. What we have done is
to consider an sphere with equator at the XY -plane and to place camera at different discrete
points on the sphere surface. Sphere radius is given by initial camera position distance to the
XY -plane.

More specifically, considering spherical coordinates {r, φ, θ}, we have r fixed, r = r0 =
d(C, {z = 0}). Then we place a camera for new views at positions:

(r, φ, θ) ∈ {r0} × {0, 1
10π, . . . , 19

10π} × { 1
10

π
2 , . . . , 10

10
π
2 }

Once the camera centers have been placed at different points of the sphere, each one can be
associated a new external calibration matrix (R′|T′) and the Nx×Ny mesh can be reexpressed in
these new camera coordinates. Then, using barycentric coordinates and synthesizing the image
for the new perspectives (as it is explained in Section 3.5), we obtain the different views of the
same object which first was only seen in one perspective (the front one).

For each new viewpoint, SIFT detector is applied to compute the interest points. Since
transformation is perfectly known, pixel location of the interest points can be transferred to the
reference image via, once again, barycentric coordinates. Once this process is completed, all
interest points in the different views are located in the reference image. There, every interest
point in the reference image is weighted by the number of times that has appeared among all
the different perspectives. That way, interest points are ordered and we only keep those more
repeated.

Next figures show what we have explained for the Guernica image. At Figure 3.7, discrete
positions in the imaginary sphere for the different perspectives are shown with the resulting
images. For these examples, Figure 3.8 shows interest points found already projected at the
reference image. Finally, Figure 3.9 shows the best 1200 points found in the image using per-
spective weighting. Depending on the experiment we have used a different quantity of interest
points (from 400 to 1200), always using the most repeatable ones.
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1
11

73

15

55

Figure 3.7: Different camera positions are shown so that different views of the Guernica can be obtained.
The reference mesh is placed at the XY plane (at top of the image). Also five different views with the
camera position indicated are shown.

3.4 Meshes

The aim of this section is to explain the way we construct a set of deformed meshes. Remember
that, for every keypoint found, we will synthesize a local image on each deformed mesh. This
gives us a description of each point in several ways from which ferns will be trained.

In order to construct the set of deformed meshes, we first create a bigger set of deformed
meshes as it is explained in Section 3.4.1. Then, we study the most representative meshes and
we elaborate the final set. To give sense to the concept of most representative, we have used
PCA, explained in Section 3.4.2, and have also followed method explained in Section 3.4.3.

3.4.1 Meshes’ Creation

As said before, we have focused in planar deformable objects such as tissues. We represent the
surface by a triangulated mesh where deformations are modeled by angles between the planar
triangles. Following [26] and [27], we also consider that the vertices in the mesh maintain their
distances with their closest neighbors. We now explain the method followed for creating the
meshes, the constraints and parameters taking part in the process.

Given the number of vertices in each direction, Ny for the number of rows and Nx for the
number of columns, the vertex (n,m) = (1, 1) is fixed in 3D-space. Its position will be taken
randomly within a range of values in each direction ([liminf , limsup]). So position XY Z of the
first vertex is: XY Z(1, 1) = (x, y, z), where x, y, z ∼ U(liminf , limsup), and U is an uniform
distribution probability within the interval.

Also, neighbors’ vertices of (1, 1), that is (1, 2) and (2, 1), are fixed. In order to do it, the
plane containing triangle △{(1, 2)(1, 1)(2, 1)} is determined from 3 random angles between a
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Figure 3.8: Here, interest points detected at each of the five views shown the previous image can be
observed once reprojected at the reference image. Notice that distribution of the interest point at each
image corresponds to the perspective used in each image (for example, image 11, in blue, has much more
interest points to the left part).

specified interval, θx, θy, θz ∼ U [θinf , θsup], so each angle represents a turn around one of the
axis. Then, the plane is determined by the orthogonal vectors obtained as:

Rx ·Ry ·Rz ·





1 0
0 1
0 0



 where Rx ·Ry ·Rz is





1 0 0
0 cos θx sin θx

0 − sin θx cos θx









cos θy 0 − sin θy

0 1 0
sin θy 0 cos θy









cos θz sin θz 0
− sin θx cos θx 0

0 0 1





Moreover, vertices (1, 2) and (2, 1) are placed in the plane at given distances Lx and Ly from
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Figure 3.9: First 1200 points once detection by DoG has been made and also after having ordered the
points according to their appearance in the different perspective images of the Guernica.

vertex (1, 1) in direction Rx ·Ry ·Rz ·
(

1 0 0
)T

and Rx ·Ry ·Rz ·
(

0 1 0
)T

respectively.

The next aim is to create the first row (band) of the mesh, that means creating triangles
formed with vertices corresponding only to the first and second rows (n ∈ {1, 2}). In order to do
it, vertices are determined in the following order: {(2, 2), (1, 3), (2, 3), (1, 4), . . . , (1, Nx), (2, Nx)}.

The process to obtain them is the following:

1. Given the triangle △1 = △{(1, 2)(1, 1)(2, 1)}2 , next vertex (2, 2) is obtained. Vector

edge
−→
L2 =

−−−−−−−→
(2, 1)(1, 2) is obtained and its length, L2 calculated. We called edge ~L2

the common edge between last triangle made and the one being constructed. Other

edges are called ~L0 and ~L1. In this particular case, since
−→
L0 ⊥

−→
L1, where we choose−→

L0
.
=
−−−−−−−→
(1, 2)(1, 1),

−→
L1

.
=
−−−−−−−→
(2, 1)(1, 1) and, as known, |−→L0| = Lx, |−→L1| = Ly, we have got

|−→L2| =
√

L2
x + L2

y. Nevertheless, the new vertex construction method doesn’t count on

orthogonality between any of the triangle edges.

2. A point C is calculated on edge
−→
L2 at distance a =

L2
1
−L2

0
+L2

2

2L2
from vertex (1, 2) (in this case,

distance a =
L2

y−L2
x+L2

x+L2
y

2
√

L2
x+L2

y

=
L2

y√
L2

x+L2
y

). Vector −→v =
−−−−→
C(1, 2) is taken. If a were very little,

−→v would be taken as −→v =
−−−−→
(2, 1)C just to avoid precision errors. Then a perpendicular

2Here, triangles will be always notated as △{A, B, C} where
−→
AB ⊥

−−→
BC, |

−→
AB| = Lx and |

−−→
BC| = Ly
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vector −→v ⊥ contained in the plane determined by △1 is considered (~v,~v⊥ ∈ △1, ~v⊥ ⊥ ~v).

These two vectors allow to construct an orthonormal basis {~v1, ~v2, ~v3} where ~v2 = ~v
|~v| ,

~v3 = ~v×~v⊥
|~v×~v⊥| and ~v1 = ~v2×~v3. At the end, ~v1 = λ~v⊥, with λ a positive or negative constant

in order to create a direct base.

A new vector ~r with origin at C is obtained. It is contained in plane < ~v1, ~v3 > forming an
angle θ1 given with the first vector ~v1. Its length is r =

√

L2
1 − a2. We then define vertex

(2, 2) as point C + ~r. It is easy to see that ~r length is such that d((2, 2), (1, 2)) = L1 and
d((2, 2), (2, 1)) = L0, as we wanted:

d((2, 2), (1, 2)) =
{−−−−→

C(1, 2) = λ~v2, ~r ∈< ~v1, ~v3 >⇒ ~r ⊥ −−−−→C(1, 2)
}

= r2+a2 = L2
1−a2+a2 = L2

1

d((2, 2), (2, 1)) =
−−−−→
C(2, 1)2 + r2 = (L2 − a)2 + (L2

1 − a2) = (
√

L2
0 + L2

1 − a)2 + (L2
1 − a2)

= L2
0 + L12 − 2a

√

L2
1 + L2

0 + a2 + L2
1 − a2 =

{

a =
L2

1

2L2

}

= 2L2
1 + L2

0 − 2
L2

1

L2
L2 = L2

0

Construction of triangle △2 from △1 can be seen at Figure 3.10.

3. Once triangle △2 = △{(2, 1)(2, 2)(1, 2)} has been obtained, next vertex (1, 3) and triangle
△3 = △{(1, 2)(1, 3)(2, 2)} are calculated doing the same steps. In this case, |~L2| = Ly,

and we fix ~L0 such that ~L0 =
√

L2
x + L2

y and ~L1 = Lx. Then, a =
L2

1−L2
0+L2

2

2L2
=

L2
x − (L2

x + L2
y) + L2

y2Ly = 0, and C is consequently placed at vertex (2, 1), and basis

obtained with the anterior method is {~v1‖
−−−−−−−→
(2, 2)(2, 1), v2‖

−−−−−−−→
(2, 2)(1, 2), v3 ⊥ △2}. Same way,

r = L2
1 − a2 is then equal to L1 and orientation is given by θ2 in plane < ~v1, ~v3 > given.

Triangle obtained, △3 = △{(1, 2)(1, 3)(2, 2)}. Its construction can also be seen at Figure
3.10.

4. Finally, the process is repeated for all the vertices in the first two rows following the order
announced before. That way, first 2(Nx−1) triangles (the first band) is finished, see Figure
3.10.

For the moment, we have required the following degrees of freedom: Nx, Ny, Lx, Ly,
XY Z(1, 1), θx, θy, θz, θ1, . . ., θ2(Nx−1)−1.

Once created the first band, the next rows have less degrees of freedom since constraints are
more stringent. As we will see, for each row, there are only two degrees of freedom. That will
give a total of 2 · (Ny − 2) additional values, θ2(Nx−1), . . . , θ2(Nx−1)−1+2(Ny−2). From rows from
one to (n− 1), vertices from row n, that is {(n, 1), . . . , (n,Nx)} are obtained as follows:
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Figure 3.10: Creation process for the first band of the mesh: at (A), triangle △2 is created from the
three first vertices. Parameters used can also be seen. At (B) triangle △3 is created from △2. At (C),
the 1st band of a 7× 5 mesh is shown.

1. Vertex (n,1) is obtained following the process described above applied to triangle △{(n−
1, 1)(n − 1, 2)(n − 2, 2)}, with ~L0 =

−−−−−−−−−−−−−→
(n− 2, 2)(n − 1, 2), ~L1 =

−−−−−−−−−−−−−→
(n − 2, 2)(n − 1, 1) and

~L2 =
−−−−−−−−−−−−−→
(n− 1, 1)(n − 1, 2) and given an angle θ2(Nx−1)+2(n−3) to determine ~r.

2. Vertices (n, 2), . . . , (n,M − 1) are successively calculated. Each vertex (n, i) is perfectly
determined since we have three constraints: d((n, i), (n, i− 1)) = Lx, d((n, i), (n− 1, i)) =

Ly and d((n, i), (n − 1, i + 1)) =
√

L2
x + L2

y. This part is implemented by a non linear

equation solver.

3. Finally, vertex (n,Nx) introduces a freedom degree since there is no constraint d((n,Nx), (n−
1, Nx + 1)) =

√

L2
x + L2

y. That is why another angle, θ2(Nx−1)+2(n−3)+1, is used and

(n,Nx) is determined through △{(n − 1, Nx)(n − 1, Nx − 1)(n,Nx − 1)} defining edges

as follows: ~L0 =
−−−−−−−−−−−−−−−−−−−→
(n− 1, Nx − 1)(n − 1, Nx), ~L1 =

−−−−−−−−−−−−−−−−−−−→
(n− 1, Nx − 1)(n,Nx − 1) and ~L2 =−−−−−−−−−−−−−−−−→

(n − 1, Nx)(n,Nx − 1). These last steps can all be observed at Figure 3.11.

Generation of the Training Meshes in Our Algorithm

For synthesizing the images on deformable meshes, we first modeled the whole image as a mesh
of Nx ×Ny vertices, for example, 41 × 21 vertices in the Guernica image, with equal distances
along X-axis and Y-axis, that is Lx = Ly. The next step consisted on generating lots of Nx×Ny

meshes (about 800 meshes) given interval limits for the parameter angles between triangles in
the mesh (all angles θ ∼ U [θlim inf, θlim sup] where range values were specified at the algorithm
and changed among the different experiments). XY Z(1, 1) and angles θx, θy and θz aren’t
important since all meshes are aligned: mean is subtracted and meshes’ orientation is fixed to
vector (0 0 1). The latter is done using PCA, explained in the next section.
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Figure 3.11: At (A), first vertex of an arbitrary row (row 3 in this case) is constructed as told. In (B)
the other vertices of the row are constructed and last one introduces another freedom degree. At (C) the
final 7× 5 mesh is shown

In order to create small meshes where to synthesize the different interest points, we consider
all the possible 9 × 9 meshes resulting from the bigger Nx × Ny ones and then the selection
process starts by taking the more representative ones as it will be seen in Section 3.4.3. So,
instead of directly creating small meshes, we take sub-meshes from a bigger one. This is done
to avoid certain boundary artifacts produced by the algorithm. See Figure 3.12 for a better
understanding.

3.4.2 Principal Component Analysis, PCA [28]

In this section, we explain the PCA concept in general. PCA has been helpful in various stages
of our algorithm. As it will be explained, we have used this technique to orientate all meshes
the same way and it has also been crucial in the configuration of the deformed meshes set for
the training.

PCA is a standard technique for dimensionality reduction. It is also widely used when
data analyzing since it is a simple non-parametric method which permits extracting relevant
information from big and confusing data sets.

When taking measures, we often don’t know what we are exactly looking for, what dynamics
are appearing, which behavior data is following, if we are measuring more than it is needed, etc.
What PCA does is to change the basis of the measurements so that dynamics and redundant
data or noise are well distinct in the new basis.
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Figure 3.12: Here a 17 × 21 mesh is shown and some of the first 7 × 7 submeshes too. Notice that
differences between some submeshes are only in two rows or two columns, etc. For example in a 17× 21
mesh, 357 7× 7 meshes can be found.

Let X = [x1, . . . ,xn] be the data obtained in n trials, where xi is an m-dimensional vector
consisting on m different measurements done at the same moment, a sample. PCA pretends
to find the best basis that can be obtained by linear combination of the existent basis vectors,
that best re-express the X data set, that is, find P such that Y = P ·X where the rows of P,
{p1, . . . ,pm}, are the vectors of the new basis.

But what is the best possible re-expression of the data set? Data set in a linear system can
only be disturbed by noise, redundancy or underlying dynamics can be hidden by a rotation.
A common assumption, and crucial when applying PCA, is that directions with the largest
variances are the ones that contain the dynamics of the system or the data information, whereas
the ones with little variances are the ones only affected by noise (noise variance depends on the
data quality). Another fact that has to be taken on account is that some of the measures can be
somehow related. When these ties are linear, they are easy to detect thanks to data correlations.
These type of relations have to be eliminated when re-expressing the data set because we are
looking also for a dimensionality reduction: if information can be expressed in less features that
the ones being measures that signifies an improvement so we are removing the meaningless part
of the data. All these observations are shown in a trivial example at Figure 3.13.

Once these considerations have been made, conditions to be imposed to Y are clear: we are
looking for an expression of the data set in which each sample component contributes giving
new information, as if each type of measure was independent to the others. That can easily be
summarized by imposing the covariance matrix of the data set expressed in the new basis to be
diagonal. If expressing the covariance matrix CY in function of the initial data set X we find
the following relation:

CY
.
=

1

n− 1
Y ·YT =

1

n− 1
(P ·X) · (P ·X)T = P ·

(

1

n− 1

)

X ·XT ·PT = P ·CX ·PT
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Figure 3.13: In this example, we have got data generated synthetically from a straight line affected with
some random noise. As said, PCA re-expresses basis so that dynamics are best shown. In this case new
vectors are shown in red and green (modulus has been modified so that they can be distinguished in the
image). Decomposing data in the new axis, one can easily suggest that dynamics are only in one direction
and that the variations on the second direction are only due to noise.

Moreover, without affecting to the calculations, rows of vectors in P are ordered so that variance
in a dimension is greater than the variances of the following ones. That way, first vector directions
have more importance than the last ones. Since now, assumptions made for PCA method have
been:

(i) Linearity: otherwise we won’t be looking only for an optimal change of basis, P.
(ii) Mean and variance as sufficient statistics: conditions imposed rely only on the covariance

matrix. But, unless Gaussian distributions, that isn’t true.
(iii) Dynamics relying on large variance components: we assume the data information to be

higher than noise level.

Essentially, what is left is to see how P is when CY is diagonal. Since a covariance matrix is
symmetric, it always diagonalizes. Let CX be decomposed as CX = EDET , where D is diagonal
and E is the matrix of eigenvectors of CX (if rank of CX, r, is less than m, E can be completed
by adding (m− r) additional orthogonal vectors, corresponding to the eigenvalues equal to 0).
Taking P = ET we obtain:

CY = P ·CX ·PT = (ET ) · (EDET ) · (ET )T = ETEDETE

= {E−1 = ET , since E is an orthogonal matrix} = Id ·D · Id = D

So choosing P that way, the covariance matrix CY diagonalizes.

In practice, before calculating CX the mean of each measurement type is subtracted:
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X = X− [x0,x0, . . .
(n) ,x0] where x0 =







E[xi1, i = 1÷ n]
...

E[xim, i = 1÷ n]







Notice that principal components of data set X are the eigenvectors of XXT or the rows of
P. Also, the i-th diagonal value of CY is the variance of X along the eigenvector pi (ith row
vector of P).

PCA in Our Algorithm

We initially wanted to use PCA so that meshes’ selection was done by fitting a Gaussian of
variance σi, where D = diag(σ1, . . . , σm) along each direction i and then taking samples from
these distributions to construct the N meshes used when training. But our meshes have distances
constraints (distance between vertices must be maintained along the deformations) and PCA
cannot model dimensionality reduction nor representation of data under restrictions.

Nevertheless, our approach uses PCA in two different ways.
First, all meshes are centered at same point (mean substraction) and then PCA is used to

compute principal components of each mesh. The calculus of the principal components of a
concrete mesh gives an insight of which is the best approximation for the mesh normal (like
considering best plane that could be fitted in the mesh). The normal vector, ~n, is the third
principal vector when considering matrix data X as

X =





x1 x2 . . . xNy×Nx

y1 y2 . . . yNy×Nx

z1 z2 . . . zNy×Nx



 ,

where the mesh, X, has the 3D information of the Ny×Nx vertices. Once found ~n, X is modified
into X′ which is obtained by rotating the mesh so that ~n‖[ 0 0 1 ]. Process is the following:

• PCA gives 3 eigenvectors, ~u1, ~u2 and ~u3. As said, normal vector is considered to be ~u3

normalized, ~n = ~u3

|~u3| .

• To verify that ~n is going out from the plate in the same direction (same side of the mesh)

for all meshes we define: ~a1
.
=
−−−−−−−→
(1, 1)(N, 1), ~a2

.
=
−−−−−−−−−−−−−−−→
(1, 1)(⌈N/2⌉, ⌈M/2⌉) and ~a3

.
= ~a1 × ~a2,

and check that ~a3 · ~n > 0. Otherwise we will use −~n instead of ~n as ~u3 and change the
sign of the other ~ui so basis is still a direct one.

• Rotation to be applied to mesh X is such that transforms basis {~u1, ~u2, ~u3} into the
standard {~e1, ~e2, ~e3}. That implies

R = [~e1, ~e2, ~e3][~u1, ~u2, ~u3]
−1 = [~u1, ~u2, ~u3]

−1

and therefore,

X′ =
[

R ·





x1

y1

z1



 , . . . ,R ·





xNy×Nx

yNy×Nx

zNy×Nx





]
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We proceeded this way because we wanted to limit vision angles between camera and meshes’
normal vectors. In a first approximation, camera was placed at the normal direction of the
meshes with angle variation equal to zero (the z-axis). An example can be seen at Figure 3.14.

The second use of PCA in our algorithm appears when selecting the set of training meshes.
This can be seen in the following section.

Figure 3.14: Mesh before and after reorientation. Mesh before the process is in black while its normal
vector is in blue. Otherwise, mesh after reorientation is green and the normal vector, in red, is parallel
to the Z-axis as we have imposed. Also, mean has been subtracted before and after reorientation

3.4.3 Meshes’ Selection

A simple idea we used for selecting the set of training meshes was to consider a subset of a bigger
set of deformed meshes. To construct the set so that chosen meshes were the most representative
ones, we used a recursive method based on the PCA description of the meshes. Having taken
the little meshes created from the big ones, and once centered by subtracting meshes’ mean and
all reoriented so that normal vector is ~n = ( 0 0 1) direction, as explained before, first thing is
to calculate PCA basis where to express the whole meshes’ set.

Let D be the whole meshes’ set where each column represents a mesh in xyz coordinates
and D′ the same set represented by new basis obtained from PCA:
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D =































x1
(1,1) x2

(1,1) . . . x
|D|
(1,1)

y1
(1,1) y2

(1,1) . . . y
|D|
(1,1)

z1
(1,1) z2

(1,1) . . . z
|D|
(1,1)

...
...

...
...

x1
(Ny,Nx) x2

(Ny ,Nx) . . . x
|D|
(Ny ,Nx)

y1
(Ny ,Nx) y2

((Ny ,Nx) . . . y
|D|
(Ny ,Nx)

z1
(Ny ,Nx) z2

(Ny ,Nx) . . . z
|D|
(Ny ,Nx)































, D′ =































a1
1 a2

1 . . . a
|D|
1

a1
2 a2

2 . . . a
|D|
2

...
...

...
...

...
...

...
...

...
...

...
...

a1
3·Ny·Nx−1 a2

3·Ny ·Nx−1 . . . a
|D|
3·Ny·Nx−1

a1
3·Ny ·Nx

a2
3·Ny ·Nx

. . . a
|D|
3·Ny·Nx































,

Then, we take the first two rows on D′, which, remember, correspond to the projections of
each of the |D| meshes on the two eigenvectors with highest eigenvalues on the PCA represen-
tation. From these values, we create a 3-dimensional histogram of ten bins along each direction,
which gives a total of a hundred bins. That is, we have the 3D-histogram:

H1,2 = (h1,2
i,j )i,j∈{1,...,10}, with h1,2

i,j = |{(ak
1 , ak

2) ∈ I1
i × I2

j }|,

where, defining mt
.
= min{a1

t , . . . , a
|D|
t }, Mt

.
= max{a1

t , . . . , a
|D|
t }, and u

.
= Mt−mt

10 ,

It
s are the intervals: It

s =

{

[mt + (s− 1) · u,mt + s · u), s = {1, . . . , 9}
[mt + (s− 1) · u,mt + s · u], s = 10

Let N be the cardinal of the training set. We assign a number n1,2
i,j of meshes to be extracted

from the meshes at bin h1,2
i,j , restricted to constraint,

∑

i,j n1,2
i,j = N . Numbers {n1,2

i,j } are assigned

according to an algorithm that takes into account the weight of h1,2
i,j into H1,2. More precisely,

let w1,2
10·(i−1)+j

be weights of bin h1,2
i,j , w1,2

10·(i−1)+j

.
=

h
1,2
i,j

|D| . Notice
∑

i,j w1,2
10·(i−1)+j

= 1. And take

N random values, u1, . . . , uN ∼ U [0, 1]. Then, n1,2
i,j is defined as:

n1,2
i,j =

∣

∣

∣

∣

∣

∣







uk, uk ∈





∑

m≤i,n<j

w1,2
10·(m−1)+n

,
∑

m≤i,n≤j

w1,2
10·(m−1)+n











∣

∣

∣

∣

∣

∣

That way, the quantity of meshes selected per bin is taken randomly but according to initial
distribution of the created meshes D′ on the PCA decomposition basis.

For n1,2
i,j = 1 we take, as sample for the training set, mesh Dk = (ak

1 , . . . , a
k
3·N ·M )T (a column

of set D′) such that its ak
1 and ak

2 values are the closest to the mean values of intervals I1
i and I2

j

respectively for all meshes belonging to h1,2
i,j . For n1,2

i,j = h1,2
i,j , we take all meshes in h1,2

i,j as part

of the training subset. For n1,2
i,j > h1,2

i,j , we take all meshes in h1,2
i,j as part of the training subset

and also repeat picking meshes from h1,2
i,j until we have got n1,2

i,j meshes more in the training

subset. For n1,2
i,j < h1,2

i,j , we iteratively repeat process explained above taking also third and
fourth components, that is:
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• Set to be considered now is D′ ← {Dk ∈ D′ ∩ h1,2
ij }

• N ← n1,2
i,j

• 3D-histogram is H3,4 = (h3,4
p,q)p,q∈{1,...,10} where h3,4

p,q = |{(ak
3 , ak

4) ∈ I3
p × I4

q }|. Intervals are
defined as above but only considering meshes in the redefined set D′.

• Following same algorithm as before, n3,4
p,q are computed, where

∑

1≤p,q≤10 n3,4
p,q = N .

• Meshes Dk are selected from each bin having components (ak
1 , a

k
2 , a

k
3 , a

k
4) ∈ I1

i ×I2
j ×I3

p×I4
q

If n3,4
p,q < h3,4

p,q, process is repeated again by taking the fifth and sixth components and so on. If
necessary, process stops when arriving at last components: {3NyNx − 1, 3NyNx} if 3NyNx is
even or {3NyNx − 2, 3NyNx − 1} otherwise.

Figure 3.15 shows an example of the selection process.

3.5 Classes’ Elements Image Synthesis

Once meshes have been created and interest points located, the next step is to synthesize the
local images around the interest points to every deformed mesh of the training set. To do so
and since meshes are no longer planar, we have had to consider a visibility model to distinguish
among the visible and the occluded parts when there exists overlapping from the camera point of
view. After the visibility model has been applied, synthesis is performed for every keypoint and
mesh. This synthesis is done through the characterization of the pixel in terms of baryncentric
coordinates, as it is explained below. Finally, all patches are oriented so that the different
synthetic images of the same keypoint are aligned. All these steps are explained in more detail
in the following sections.

3.5.1 Barycentric Coordinates

Any point P = (Px, Py, Pz)
T belonging to a triangle △ with vertices v1, v2 and v3 can be

reexpressed as a linear combination of the triangle vertices coordinates. That is, P =
∑3

i=1 αivi.
Weights {αi}i=1,2,3 are restricted to constraint

∑3
i=1 αi = 1 and we take Pbar = (α1 α2 α3)

T = α.
This coordinate system is called the barycentric coordinates system and α are the barycentric

coordinates of point P.

In order to know α, we build the equations corresponding to P’s coordinates and the con-
straint:

(

P
1

)

=









Px

Py

Pz

1









=









v1x v2x v3x

v1y v2y v3y

v1z v2z v3z

1 1 1













α1

α2

α3



 = Vα

And we operate as follows:

P = Vα⇒ VTP = VTVα, (VTV)3×3 ⇒ α = (VTV)−1VTP = V†P,

where V† .
= V−1V−TVT is the pseudoinverse of V.



3.5. CLASSES’ ELEMENTS IMAGE SYNTHESIS 61

Figure 3.15: Example of the process selection. A total of 9000 samples have been used. Each sample is
75-dimensional. Thousand samples from the set have to be selected. At bottom and at left, distribution
into 10 classes per dimension and for 1st and 2nd components of all data set is shown. At bottom right,
distribution of the number of samples per class in the training set is shown. Notice distribution on the
number of training samples is more or less the same of the total (remember selection method). The
total amount of samples selected is, as said, 1000. At each bin, subset is reconsidered by taking 3rd and
4th components and classifying into 100 classes more. Once again, selection process is applied with the
new weights according to the subset distribution in the 3rd and 4th components (this is the second row
beginning at bottom from the image). Process is repeated at each level until data set in the each bin is
equal or greater than the number of samples to be extracted or only one sample is to be selected. In that
case, we choose the sample from the data set the closest to the center of the bin. In this figure, levels are
shown for a concrete example.
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In fact, any point P in the 3D space can be reexpressed in barycentric coordinates even if it
is not contained in the triangle defining the barycentric coordinates. When P is within triangle
boundaries, then 0 < αi < 1 ∀i = 1, 2, 3; when P lies in one of the edges, then αi = 0 for
i ∈ {1, 2, 3} and the other two αj , αk ∈ (0, 1); finally, when P is a vertex of the triangle, say
vertex vi, then αi = 1, αj = αk = 0, i 6= j 6= k, and i, j, k ∈ {1, 2, 3}. Finally, if P is outside the
triangle, then ∃i ∈ {1, 2, 3} such that αi < 0.

Barycentric Coordinates and Image Synthesis in Our Algorithm

In order to synthesize images of the deformed meshes from a reference planar mesh, we use the
barycentric coordinates as follows:

• Every pixel in the reference mesh is labeled according to the triangle to which it belongs.
The mesh is then represented as

M
.
= {((ui, vi), Ii,△i) ∀i pixel in the mesh, (ui, vi) uv-coordinates, Ii pixel intensity

△i face to which pixel belongs}
• The reference mesh is assumed to be at a certain known distance f from camera and

barycentric coordinates are then calculated for every pixel.

M ′ .
= {((fui, fvi, f), Ii,△i) ∀i pixel in the reference mesh}

M ′
bar

.
= {(α, Ii,△i) ∀i pixel in the reference mesh, α = V†

△i
· (fui, fvi, f)T ,

V△i

.
=

(

vi
1 vi

2 vi
3

1 1 1

)

,△i = △(vi
1,v

i
2,v

i
3))}

• New pixel positions are obtained when using the barycentric coordinates of each pixel with
the new vertices coming from the synthetic mesh. Remember that synthetic meshes were
defined by the 3D position of its vertices.Also, the pixels in the new positions have same
gray intensity as in the reference mesh.

Msyn,0 = { (Ũi, Ṽi, W̃i), Ii,△i), ∀i pixel in the reference mesh, (Ũi Ṽi W̃i 1)T = Ṽ△i
α

Ṽ△i
=

(

ṽi
1 ṽi

2 ṽi
3

1 1 1

)

,△i = △(ṽi
1, ṽ

i
2, ṽ

i
3) }

• 3D interpolation is used to homogenize gray colors in the mesh (see Figure 3.16).

Msyn,1 = {(Ũj , Ṽj , W̃j), Ij), ∀j pixel in the synthetic mesh,

obtained interpolating subset Msyn,0}
• Finally, the 3D pixel coordinates are projected onto the image by means of the calibration

matrices A and (R|T). Also, pixels are rounded to be integers.

Msyn,2 =
{

(ũj , ṽj), Ij), (ũj , ṽj) =
(

round
(

Ũj

W̃j

)

, round
(

Ṽj

W̃j

))}

So, as it can be seen, the barycentric coordinates are perfect to transport in a very efficient way,
gray intensities from a reference mesh to another one created synthetically.



3.5. CLASSES’ ELEMENTS IMAGE SYNTHESIS 63

Figure 3.16: Patch is initialized at 0 for every pixel (that is black colored). When all pixels in reference
mesh are projected into the deformed mesh via the barycentric coordinates, still a lot of pixel remain
black (first row). Intensity interpolation (second row) gives the solution. Here, interpolated patches have
gone through the visibility model and have also been reoriented and cut at the precise specified size.

3.5.2 Visibility Model

Since meshes are deformed and some parts of the mesh may be occluded by others from the
camera viewpoint, it is very important to be able to determine the visible parts of the synthesized
mesh. In a more technical way, occlusion is defined by different points in the 3D mesh which
have same coordinates (u, v) in the 2D image.

Our model to resolve such ambiguity departs from the external and internal calibration
matrices, the 2D coordinates of the dense synthetic mesh from the training set and also its 3D
vertices coordinates and faces information. Let’s explain it.

Let A be the internal calibration matrix and (R|T) the external one. Let P(1,1), . . . ,P(Ny ,Nx)

be the world coordinates of the Ny×Nx vertices of the synthetic mesh being examined. Moreover,
let D = {△1, . . . ,△2(Ny−1)(Nx−1)} be the set of faces where △i is a 3× 1 vector containing the

three vertices defining the i-th triangle, for example △1 =
(

P(1,2) P(1,1) P(2,1)

)

, vertices
ordered the same way we did in Section 3.4.1. Let UQ×2 be a list of Q coordinates (u, v) belonging
to the mesh. More concretely, they correspond to the projection of the 3D coordinates in the
synthetic mesh obtained from the dense reference mesh through the barycentric coordinates.
And finally, let IQ×2 be the list of the gray intensities corresponding to each uv-coordinate in
UQ×2.

The main idea is to examine each point (u, v) in the U list by discovering if there is more
than one triangle intersecting with a ray born at CAM, camera point in the world coordinates
system, and intersecting with the image at same coordinates (u, v). If that is so, from all the
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points found, algorithm only returns 3D coordinates of the closest points and its associated gray
intensity.

In a technical way, the algorithm is described in Table 3.1.

U′ = ∅ and I′ = ∅. Given ((u, v), I) in U× I do:
[1] Consider, arbitrarily, Zcam = K, K = 8 for example.

[2] Let P be a 3D point with coordinates Pcam =
(

Xcam Ycam Zcam

)T

in the camera coordinate system and coordinates P =
(

X Y Z
)T

. Calculate:




K · u
K · v
K



 = A





Xcam

Ycam

Zcam



⇒ Pcam = A−1





K · u
K · v
K





And, Pcam = RP + T⇒ P = R−1 (Pcam −T)
[3] Calculate camera viewpoint, which is, as said before, CAM = −R−1T in the world
coordinates system

[4] Define the normalized projection ray from camera to point P, that is: ray =
(

P−CAM
||P−CAM||

)

[5] DE((u,v),I) = ∅. For all triangle △ =
(

B A C
)

in D do:

[5.1] Calculate edges
−−→
BA and

−−→
CA.

[5.2] Calculate intersection point, J△ =
(

Jt Ju Jv

)T
between the line defined by ray and

the plane defined by △. It can be demonstrate that intersection is the solution of system:




CAMx −Ax

CAMy −Ay

CAMz −Az



 =







rayx

−−→
BAx

−−→
CAx

rayy

−−→
BAy

−−→
CAy

rayz

−−→
BAz

−−→
CAz











Jt

Ju

Jv





[5.3] If point J△ has Ju, Jv ∈ [0, 1] and also Ju + Jv ≤ 1, do DE((u,v),I) ← [△, I△] ∪ DE((u,v),I).

These are the triangles that have intersection point between plane they define and
projection ray within their boundaries.

[6] Among points in DE((u,v),I). Find [△0,J△0] = [(B0 A0C0) , (J0
t J0

u , J0
v )], such that

J0
t = min{Jt, [(B A C) , (Jt Ju, Jv)] ∈ D((u,v),I)}.

[7] If P ∈ △0, do U′ ← (u, v) ∪U′ and I′ ← I ∪ I′.

Table 3.1: Visibility model algorithm.

The explanation has been adapted to our case but the generalization is easy. The list of
vertices coordinates for the triangular surfaces and the list of triangles can be from more than
one object and not necessarily from a unique mesh. Procedure is exactly the same. In Figure
3.17 we show an example of the visibility model which isn’t referring to a mesh. Only some of
the 2D points of U, and consequently projection rays, have been used to see the results in a
better way.
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Figure 3.17: Visibility model general example. As it can be seen, faces do not correspond to a unique
mesh but to all kind of objects.

Visibility Model in Our Algorithm

We first wanted to give some randomness to the position of the camera within the interest point
being analyzed at each moment. That way, keypoints would be characterized by images obtained
not only varying deformations but also the viewpoint. But this step of our approach model is
certainly the slowest part of the algorithm because changing the camera viewpoint forces us to
repeat the verification of visible parts not only for each mesh of the training set but also for
each interest point being analyzed. That’s why the camera was fixed (at a certain distance,
perpendicular to the mesh at its center point) and a common analysis of the visibility was done
for each training mesh independently of the interest point being trained.

The visibility model is applied before the interpolation step when synthesizing the image
onto the training mesh. Only visible points lying in the set of uv-coordinates obtained from the
reference mesh to the synthetic one through barycentric coordinates are used on the following
set.

3.5.3 Images’ Orientation

The synthetic meshes generated for training are created without taking into account any type
of orientation further than aligning its normal vector. However, when training, as we will see
in next section, it is vital that all image patches are oriented the same way. Remember, from
the overview of the state of the art, that lots of methods use orientation gradient histograms
over the interest region to obtain orientation invariance. That is what we are looking for in this
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section.
The method we follow is very similar to the one explained in Section 3.3.1 when discussing

orientation assignment on the SIFT detector used in the algorithm. We first obtain an initial
orientation of the synthetic mesh and then rotate the whole mesh such that main orientation of
the image patch is 0 degrees.

The initial data are pixels of the image patch. That set is M = {((u, v), I)}. We first we
extract the scale at which interest point were detected from the SIFT detection process. Scale,
s, gives us the significative region to consider around the interest point. We define σ = 1.5 · s
and W = 3 · σ. These values are the ones used at [18].

Then, we consider the subset N of uv-coordinates and pixel intensities from points within
the region given by W in the following way: N = {((u, v), I) ∈ M , such that |uc − u| ≤
W , and |vc − v| < W}, being (uc, vc) the mesh center point or, equivalently, the interest point.
The set N changes through interpolation to the set N ′ = {((u, v), I),∀(u, v) ∈ [uc −W,uc +
W ]× [vc−W,vc+W ]∩Z, and I the corresponding one from interpolation}. We have also image
I(2W+1)×(2W+1) formed from data in N ′ sorted according to uv-coordinates.

We take image I(2W+1)×(2W+1) and add a Gaussian blur with σ = 1.5. Consider Iblur the
blurred image. We then compute the gradient modulus for each pixel in the image, Gm =
(muv)u,v and also gradient orientation Gθ = (θuv)u,v. We also calculate the values of a gaussian
window of size (2W + 1)× (2W + 1) and σ, which we note as matrix GW = (wuv)u,v. Next, we
construct a 10-bin histogram considering all θuv ∈ Gθ weighted by product wuv ·muv. The initial
orientation assigned to the patch is the center angle φ from the highest bin of the orientation
histogram.

Finally, we rotate the whole set of uv-coordinates. Rotation is done with an angle φ and
center at point (uc, vc). That way, the output is set:

M ′ =

{

((u′, v′), I) | ((u, v), I) ∈M,

(

u′

v′

)

=

(

cos(φ) − sin(φ)
sin(φ) cos(φ)

)(

u− uc

v − vc

)

+

(

uc

vc

)}

Images’ orientation is also a step previous to final images’ synthesis and it is posterior to the
application of the visibility model. Figure 3.18 shows some examples of the orientation process.

3.6 Ferns’ Training

As said at the beginning of this chapter, the way we solve the recognition of a deformable object
is focusing on local features. These local features are not characterized by specific descriptors
on both the reference and the test images as it is often. We turn the matching problem into a
classification one.

Instead of matching local descriptors between the reference image and the input one, lots
of different local images defining same feature are created and then, a training process learns
how to discern between features. Next, the test image is compared to all trained features and
it is classified as belonging to one of these features. The method for handling this classification
problem is based on random ferns.
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Figure 3.18: Four elements of the same class as example for the orientation process. At each image,
the ten bin histogram is at left at top. At top right, mesh before and after the turn determined by the
maximum bin in the histogram. At bottom left, window at center of the patch at which histogram is
computed. Since it depends on the class, all the examples have the same width of window. Finally, at
right bottom, image synthesized once it has already been oriented. Majority of the patches are oriented
the same way. But we also have noticed that most of the errors come from the ambiguity of the 180
turn, as it happens at one of the examples shown here. This fact can also be appreciated at the different
histograms, where, in general, peaks are in a region of bins and also 18 bins further (modulus 36).

Until now, all we have explained concerning to our algorithm are the previous steps to do
the ferns’ training. We have just constructed the classes where to apply the ferns classification
method. That is, local features have been treated as classes and all the synthetic images created
for each local feature serve as elements which represent the same class. The result of applying
the theory of the former sections for the Guernica can be seen at Figure 3.19.

In this section, we first explain a more general method, the random forests in which ferns
are based. After that, the method we have used, random ferns, is theoretically explained and
also some information about the parameters we used is given.
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Figure 3.19: Each interest point is converted into a class when considering a local region around it.
Synthesis of the deformed meshes around each interest point with the visibility model and orientation
determination compose the elements of each class.

3.6.1 Formulation of the Classification Problem, [16],[15]

Let K be the set of classes used in the training process, K = {k1,k2, . . . ,kNclass
}, with Nclass

the total number of classes (which is equivalent to say that Nclass is the total number of interest
points considered in the training stage). Each class, ki, is a set of Ntraining synthesized deformed

meshes, ki = {k1
i , k

2
i , . . . , k

Ntraining

i }, kj
i a synthetic 2D patch.

Given a test image, we call kinput a test patch consisting in a local region around an interest
point of the test image. The aim is to decide if kinput belongs to one of the classes of K. In
other words, we want to find the best class where kinput fits in, that is kı̃, with:

ı̃ = argmax
i=1,...,Nclass

P ({kinput ∈ ki})

In case, P ({kinput ∈ kı̃}) is low, that is the probability falls below a certain threshold, we can
also consider that kinput does not belong to any of the classes in set K.

3.6.2 Random Forests

Random forests classifier consists on a number of trees. A tree is built as follows: at root node a
simple test on the training images (kj

i , i = 1, . . . , Nclass, j = 1, . . . , Ntraining) is run. That way,
the total set is split into different subsets according to the response to the root’s test. For all
the other nodes, a simple test is run but only to the images arriving at that node. Every patch
generated in the training, kj

i , is classified by dropping it down the tree, responding to the node
tests and arriving to one of the tree leaves. A simple example of a tree with node tests given
randomly can be found at Figure 3.20.
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Figure 3.20: Tree example. Node tests of the tree consist on classifying a random pixel according to if
its intensity value is greater than 0.5 or not. Also an input image is dropped down the tree until achieves
one of the leaves.

At each leaf, the distribution of the training meshes that have arrived with respect to the class
they belong to is kept. That way, for each leaf η, the posterior probabilities can be computed:

P (kinput ∈ ki | reached leaf = η) =
|{kj

i , j = 1, . . . , Ntraining, leaf η reached}|
|{kj

h, j = 1, . . . , Ntraining , h = 1, . . . , Nclass, leaf η reached}|

Then, taking into account each tree Tl, l = 1, . . . , L, for a given kinput which has reached
leaf ηl at tree Tl, the class which kinput is more likely to belong to is kĩ with:

ı̃ = argmax
i=1,...,Nclass

L
∑

l=1

P (kinput ∈ ki | reached leaf = ηl)

Thus, the estimation of the best classification is done by considering the average of the results
achieved at each tree (which is not the only option).

Concerning to the way in which trees are grown, there exist two possibilities. The simplest
one consists on randomly choosing the test among a previous tests’ set (as Figure 3.20). Second
one uses a greedy algorithm3 which picks the test that best separates the given training subset
arrived at that node. Best, here, consists on giving the maximum entropy to the partition
originated by the responses of the data set to the test (we want that branches generated by the

3Greedy algorithm refers to the fact that at each node decision is just focused in the local best results in that
node not globally.
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answers to the test support more or less same quantity of data). When a node receives very few
data from the training set, it becomes a leaf. Also, there is a fixed maximum depth for each
tree which is given as a parameter.

Random forests classifier has been used in lots of applications, such as [1], [3], [16], etc.
Nevertheless, most of the techniques relying in random forests have moved to random ferns
usage since it has been proved that ferns outperform trees in several ways (classification rate,
computational cost, handling more classes, etc) in [24].

3.6.3 Random Ferns

Random ferns are very similar to random forests in spirit but they have some important dif-
ferences which make them a better option. The main one is that ferns aren’t a hierarchical
structure and this fact implies that posterior probabilities can be computed multiplicatively.
This also has a positive effect in the algorithm speed.

Let’s first remember our classification problem: for a given input patch, kinput, we want to
find best i such that kinput ∈ ki. Like in random forests, we will decide the best option by
running some tests, ft, t = 1, . . . , T . We are looking for:

kı̃ = argmax
ki, i=1,...,Nclass

P (kinput ∈ ki | f1, . . . , fT ), (3.2)

which is the probability that patch kinput belongs to class ki once the result of the tests f1, . . . , fT

is known.
Using Bayes’ theorem, we obtain:

P (kinput ∈ ki | f1, . . . , fT ) =
P (f1, . . . , fT | kinput ∈ ki)P (kinput ∈ ki)

P (f1, . . . , fT )

Assuming that the prior distribution for kinput belonging to a class is a uniform one (that is
P (kinput ∈ ki) = P (kinput ∈ kj) i, j = 1, . . . , Nclass) and since denominator is independent
from the class, Equation (3.2) becomes:

kı̃ = argmax
ki, i=1,...,Nclass

P (f1, . . . , fT | kinput ∈ ki)

Up to this point, the formulation is pretty much the same that is used for random forests.
What really changes in the random ferns is the definition of these tests. First of all, with random
forests, tests are run in a top-down manner: a training patch kj

i only receives the tests appearing
in its way down to a leaf, while random ferns apply the same f1, . . . , fT test to all the training
patches. Therefore, contrary to random forests, ferns have got a non-hierarchical structure.
Another different fact is the tests’ set. For random ferns, the tests are only comparisons between
two pixels within the patch. Let’s see it.

Assume dt
1 = (ut

1, v
t
1) and dt

2 = (ut
2, v

t
2) be two random positions within a patch and let It

1

and It
2 be their respective intensities. Then, the test ft is defined as follows:

ft =

{

1 if It
1 > It

2

0 otherwise
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The chosen tests are very simple, only based on binary comparisons, and any good charac-
terization of the different classes will demand a high number of comparisons T large enough (for
example, T ≈ 300). Every patch could then be characterized with a value between 0 and 2T − 1
and this is very difficult to handle (because of its size). A first way to compress the different
representation, the most naive one, is to assume independence between the different tests, then

P (f1, . . . , fT | kinput ∈ ki) =
T

∏

t=1

P (ft | kinput ∈ ki)

But this point of view completely ignores the correlations between the different tests. A trade-
off between making the problem tractable and taking into account the different correlations is
to partition the test features into M groups of equal size S such that T = M · S. Then, the
conditional probability is computed as:

P (f1, . . . , fT | kinput ∈ ki) =

M
∏

m=1

P (Fm | kinput ∈ ki)

where Fm is called a fern and it is a group of S binary tests; Fm = {fm
1 , . . . , fm

S }, fm
s ∈

{f1, . . . , fT } and fm
s = fm′

s′ iff s = s′,m = m′.
This compression of data is based in what is called a semi-naive Bayesian approach which

consists on modeling only some of the whole set of dependencies between features. Instead of
characterizing classes with a distribution of 2T possibilities, with ferns we obtain M distributions
of 2S possible cases each, which is much more tractable than the initial option. Usual values
for S are 10, 12 or 14, and M is such that makes T ≈ 300. Maintaining the parallelism with
randomized forests, M is equivalent to the number L of trees and S would be comparable to
the tree’s depth.

The computation of P (Fm | k ∈ ki) is not as trivial as one could think (see [24] for a
theoretical development). Nevertheless, when considering the training set truly representative
of the actual variations within a class (which is an assumption), then the probability can be
computed as:

P (Fm = (fm
1 , . . . , fm

S ), fm
s ∈ {0, 1}, s = 1, . . . , S | k ∈ ki) =

1 + ni
(fm

1
,...,fm

S
)

∑(1,...,1)
Fm=(0,...,0)

(

1 + ni
Fm

)

This equation can be read as the probability that the fern Fm gets a value (fm
1 , . . . , fm

S ) for a

patch k belonging to class ki is the ratio between the number of patches kj
i of class ki getting

fern value Fm = (fm
1 , . . . , fm

S ) (this is ni
(fm

1
,...,fm

S
)) plus one between the total number of patches

kj
i of class ki getting any of the possible values for Fm (this is Fm = (0, . . . , 0), . . . , (1, . . . , 1))

plus 2S (equivalently,
∑(1,...,1)

Fm=(0,...,0)

(

1 + ni
Fm

)

).
Graphically, the computation of this probability is very easy and is shown at Figure 3.21.

Given the fern Fm, an histogram with 2S bins is created and each bin is initialized to 1. Given
a class ki, for all patch kj

i (j = 1, . . . , Ntraining), the fern test Fm is run and a binary number
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Figure 3.21: Fixed a class (first class on Figure 3.19) and a fern (F1), probability that this fern takes some
concrete values conditioned to a patch k which belongs to this class is computed. In this example, fern
has size S = 3 so fern F1 can get 23 = 8 different values, F1 ∈ {(0, 0, 0), (0, 0, 1), (0, 1, 0), . . . , (1, 1, 1)}.
Also, there are Ntraining = 8 patches in this class. As said before, histogram bins are initialized to one
and each training patch modifies distribution by adding 1 to the bin corresponding to the value obtained
when running the three binary test f1, f2, f3 forming fern F1.

(fm
1 , . . . , fm

s ) is obtained for that patch. The bin corresponding to this value is incremented in
a unit. Once the fern Fm has been run for all the patches of the concrete class ki the histogram
is complete. Once it has also been normalized to one, each bin contains the information of
P (Fm = (fm

1 , . . . , fm
S ) | k ∈ ki) for a concrete configuration (fm

1 , . . . , fm
S ) ∈ {0, 1}S . Also, in

Figure 3.22, different distribution results of applying same fern to different classes are shown.

At the end of the training process, probabilities P (Fm|k = ki) have been computed for all
m from 1 to M and for every class belonging to K = {k1, . . . ,kNclass

}. An example of what is
obtained at the end of the training process can be seen at Figure 3.23.

As told before, once training has been made, given a patch kinput from the test image,
decision about which class ki is the one where kinput fits the best is obtained by running ferns
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F1={f3,f2,f1}

011 111 010 000 010 100 110

110 110 110 110010 110 100 100

100 100 100 100000 100 100 100

011

Figure 3.22: Probability distributions of fern F1 conditioned to patches belonging to classes 1, 2 or 3
respectively (P (F1|k = k1), P (F1|k = k2), P (F1|k = k3)).

F1={f3,f2,f1} F2={f6,f5,f4} F3={f9,f8,f7}

Figure 3.23: For every class, all ferns have been tested and final distributions kept. Figure shows
distributions for ferns F1, F2, F3 and classes k1,k2,k3.
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test  image

F1={f3,f2,f1} F2={f6,f5,f4} F3={f9,f8,f7}
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=  1•1•1 = 1
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=  3•2•1 = 6

}

Figure 3.24: Evaluation of a patch kinput from a test image. Ferns F1, F2, F3 are run on the test image.
As said, for each class, ki, the probability all binary test taking this concrete configuration conditioned
to the fact that kinput belongs to class ki is computed in a multiplicative way where each factor is the
probability that a certain fern gets the same configuration obtained when running the fern to kinput

conditioned to the fact that kinput belongs to class ki. The class chosen for kinput is the one achieving
the maximum for function maxi=1,...,Nclass

{∏M

m=1
P (Fm|kinput ∈ ki)}

on kinput and considering kinput ∈ kı̃ such that

kı̃ = argmax
ki=k1,...,kNclass

M
∏

m=1

P (Fm|kinput ∈ ki)

This process can be observed at Figure 3.24.

A last remark that is used to speed up the test evaluation is the following one (very common
in this type of applications):

kı̃ = argmax
ki=k1,...,kN

M
∏

m=1

P (Fm|kinput ∈ ki) = {log is a monotonically increasing function}

= argmax
ki=k1,...,kN

M
∑

m=1

log
(

P (Fm|kinput ∈ ki)
)

= argmax
ki=k1,...,kN

M
∑

m=1

log





1 + ni
(fm

1
,...,fm

S
)

∑(1,...,1)
Fm=(0,...,0)

(

1 + ni
Fm

)




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Random Ferns in Our Algorithm

Based on parameter values given at [24], the values we use in our training processes were the
following:

• Total number of binary tests, T , varies between 160 and 750.

• Pixel random positions (dt
1 and dt

2) for a binary test ft where to compare pixel intensities
are taken within a window PS × PS centered at the keypoint pixel. PS is the patches’
size along each direction and we have taken PS ∈ [41, 101],

• Parameters M and S controlling number and size of ferns have been set to:

M ∈ {20, 30, 40, 50}, S ∈ {8, 10, 12, 14}.

• Set of classes K has varied its cardinality, Nclass between 400 and 1200.

3.7 Comments on the Computational Cost

When discussing the computational cost of our method, it is very important to stress that
training and evaluation are two processes completely different. While training requires high
computational time, evaluation can almost be done at run-time.

The training process involves some stages with a large computational cost, such as mesh
creation and the patches synthesis. Parts like the selection of interest points or the ferns’
training have very little effect compared to the synthesis of the patches. The latter consumes
the most part of the time of the training process.

Nevertheless, the synthesis process is easily parallelized, which we have done. Also, some
other techniques could be applied to improve the computational cost. For example, we have
mainly worked in MATLAB but we have implemented the visibility model in C++ to speed up.
This type of optimization could be done to the other parts of the code. Moreover, it would also
be helpful to work with the GPU (Graphical Process Unit).
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Chapter 4

Results

In this chapter we present the results obtained by the method we have implemented. First,
we present the way the results have been obtained and also indicate how we have compared
them to the ones achieved by SIFT. Second, we effectively compare both methods. Finally, we
investigate the influences of the different parameters on our method.

4.1 Experiment Setup

Test Set

We have used our method to train the Guernica image. Therefore, the test consists on measuring
the response of our method to deformed Guernica images.

These deformed images have been synthetically generated. As explained in the previous
chapter (Sections 3.4.1 and 3.5), the Guernica reference image is considered to be a 60× 30 cm
rectangular shape, modeled by a 41 × 21 mesh. The camera it placed approximately at 40 cm
from the mesh and we use a focal length of 1000 pixels , on images of 1000 × 500 pixels Then
deformed meshes of same size are created, taking into account maximum deformation angles.
Finally, while taking into account a visibility model, Guernica image is synthesized on the new
deformed mesh through the use of the barycentric coordinates. Figure 4.1 shows an example of
a synthetic deformed image used to test the method.

We have run the different methods in images coming from meshes generated with different
deformation angles. More precisely, each experiment has been iterated for sets of images of a
concrete deformation type. Results are presented as the mean obtained for a set of four images
of same deformation type.

For the deformations, we have here abbreviated types by using the codes 56, 67, 78 and
910. Each one of these codes consist on two numbers, n1n2. First one, n1 refers to the interval
[

− π
n1

, π
n1

]

where the angles to fix first triangle of the mesh are randomly taken. Remember that

first of the triangles was constructed fixing a position for vertex (1, 1) and rotating the initial
triangle in plane XY with respect to each axis with angles θx, θy and θz. Then, what we say is

that θx, θy, θz follow a uniform distribution in interval
[

− π
n1

, π
n1

]

. Referring to n2, all the angles

77



78 CHAPTER 4. RESULTS

Figure 4.1: On top, two different views of the mesh used to generate the first synthetically deformed
image of the Guernica. Camera position is also shown. At bottom, the test image once synthesized.



4.1. EXPERIMENT SETUP 79

between triangles of the mesh are taken randomly in the interval
[

− π
n2

, π
n2

]

. What is important

is to realize that the meshes the most deformed are the ones with the smallest code (56) and
the least deformed meshes are the ones with the biggest code (910).

Interest Points

As explained, both our method and also SIFT rely on local regions. In order to extract local
patches on the test images, we have run the DoG detector (Difference-of-Gaussian). The 3000
most relevant points have been kept to be entries for the fern evaluation and also for the SIFT
evaluation.

Since test images have been obtained synthetically we know the exact position of every
interest point of the deformed image on the reference image. That way, the prediction of their
position on the reference image can be known and, therefore, the methods can be evaluated.
Figure 4.2 shows the 3000 most relevant interest points of a test image and their corresponding
points on the reference image.

SIFT’s Results

For every interest point extracted from the test image, we compute its corresponding SIFT
descriptor, which is a 128-dimensional unitary vector.

We extract Nclass interest points on the reference image. The Nclass interest points for the
training were kept according to a perspective weighting criterion (as seen in Section 3.3.2). The
parameter Nclass responds to the number of classes taken into account in the training process.
Originally, it has been fixed to Nclass = 1200 but as it will be seen, we have also obtained results
with Nclass fixed to other values. To obtain the SIFT’s results, we have also computed the SIFT
descriptor corresponding to each of the Nclass points used for the training.

Then, for each SIFT descriptor of a point on the test image, we measure the Euclidean
distance between it and every SIFT descriptor of the Nclass points for the training. That way,
for each point on the test image, we can sort the Nclass points of the reference image from the
closest one to the farthest one according to the SIFT descriptors’ Euclidean distances. The
closest point will represent the first candidate and the farthest one will be the last one for the
deformed point being studied.

Our Method’s Results

In a similar way as we do for the SIFT, to evaluate our method, we compute a sorted list of
possible candidates for each interest point. Figure 4.3 shows the first interest point extracted
on the test image and the first candidates obtained by our method.

We also want to recall the different parameters that influence on the results obtained by our
method. These parameters are the ones discussed on the next sections:

• Radius: As explained in Section 3.6, ferns consist on various comparisons between inten-
sity values of pairs of pixels. These pixels are chosen within a radius R from the interest
point being described by ferns, where R has been varied between 20 and 50.
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Figure 4.2: On top, once the test image is obtained, we first compute the most significative points
through the Difference-of-Gaussian method. At bottom, thanks to the knowledge of the synthetic mesh,
we associate each interest point on the test image to its real position on the reference image.
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Figure 4.3: On top, first keypoint analyzed of the synthetic test image. At bottom, first three candidates
found via our method. Observe first one is the correct one.

• Number of ferns: The quantity of ferns used in the classification problem, M , varies
between 20 and 50.

• Size of ferns: The size of ferns, S, is the number of binary comparisons done to obtain a
fern. The fern will be defined as an histogram with 2S bins. S takes values from 8 to 14.

• Deformation type for the training images: We have trained Guernica with different
ranges of deformation. According to the the abbreviations given before, we have trained
images with meshes of type 56, 78 and 910.

• Number of classes: Finally, we have also considered the possibility of training for a
different number of classes, Nclass, and we have considered values Nclass ∈ {400, 600, 800,
1000, 1200}.

Evaluation criterion

To evaluate each method, we have proceeded as follows:

• As previously said, for each deformed point, we have a list of all the training points on the
reference image sorted according to the method criterion.

• Since we know the exact position of every deformed point in the reference mesh, we can
also associate an error to every candidate according to the Euclidean distance between
position of the deformed point on the reference mesh and position of the candidate on the
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same mesh. If this distance is larger than 25 pixels, we say that the candidate given by
the method is wrong. Otherwise, we will say that the candidate is a correct one.

This quantity of 25 pixels has been chosen according to the dimensions of the image being
treated which in our experiments is of 500×1000. Figure 4.4 shows the precision obtained
when working with this tolerance of 25 pixels.

• The results presented consist on the averaging of the response of the method to the 3000
points extracted from a specific test image and a set of four different test images of the
same deformation type.

For the results of the following sections, we plot the detection rate of the method: the
abscissa informs about the quantity of candidates being taken into account (N) and the
ordinates is the percentage between the number of points that method has associated at
least one correct candidate to them among the N − th first candidates and the total of
points examined (in fact, in our case, denominator is 4 · 3000).

 

 

Figure 4.4: For the particular synthetic image shown in the previous figures, we here show the associations
between the deformed points and their corresponding first candidate whose distances are less or equal
than 25 pixels. Points of the training process which have been matched with at least one of the deformed
points of the test image are circled in white. Distance between pairs are shown with yellow lines.

4.2 Overview of the Method’s Improvement

While in next section we analyze in more detail the influence of every parameter in the detection
rate given by our method, we first want to give an idea of the method’s improvement with respect
to SIFT.
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Figure 4.5: Detection rates obtained by the two methods. Taking only into account the first candidate,
SIFT gives a positive response in the 30.44% of the cases whether our method starts with a 46.54%.
This difference increases and when considering the first ten candidates, SIFT attains a 46.74% of correct
pairs and our method adds about 20 percentage points more (65.35%). Here, data have been obtained
making an average of the results presented for each type of deformation set of four synthetic images.
Moreover, for our method, parameters selected have been: R = 50, M = 50, S = 12, TrainDef = 56
and Nclass = 1200.

As seen in Figure 4.5, when choosing an optimal combination of parameters, our method
outperforms in about 17 percentage points the detection rate given by SIFT. While taking into
account only the first of the candidates we are able to increase a 15% the detection rate, when
the number of candidates increases the improvement of our method also increases, achieving
a difference of more than a 19% when considering the first 10th candidates. Although we
have chosen one of the best parameter values’ combination, we will show that all combinations
outperform SIFT results except for radius fixed to R = 20 in the next section.

It is remarkable that, while our method achieves a detection rate of a 50% using only the
first candidate, SIFT needs more than the first tenth candidates to achieve a similar rate.

4.3 Discussion with Parameter Variation

4.3.1 Radius’ Selection

When changing the different parameters of our algorithm we found that the radius was the one
introducing more variation on the final results. Figure 4.6 shows exactly this behavior.
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As done in all the parameters’ discussion, Figure 4.6 is split into four subfigures, each one
corresponding to a different test set, composed of test images of a specific deformation type.
While responses are quite similar among the different test sets, there’s a subtle improvement of
the different methods when applying them to test sets less deformed.
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(c) Test images(78)
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(d) Test images(910)

N

D
et

ec
tio

n 
R

at
e

 

 

SIFT
M=20, R=20
M=20, R=30
M=20, R=40
M=20, R=50
M=50, R=20
M=50, R=30
M=50, R=40
M=50, R=50

Figure 4.6: The first parameter discussed is the radius’ election. Subfigures are taken fixing different
test sets: Graphs in (a) are obtained with test set of type deformation 56, (b) of type 67, (c) of type 78,
and (d) is of type 910. SIFT results are shown squared in black. At every plot parameter S is set to
12, TrainDef to 56 and Nclass to 1200. Color refers to the variation of the radius: R = 20 (in yellow),
R = 30 (in red), R = 40 (in green) and R = 50 (in blue) while different markers indicate two different
values of M (M = 20 in triangles and M = 50 in points).

In all test sets, it can be observed that a bigger radius yields a better response. More
precisely, difference between the smallest radius, R = 201, and the biggest one, R = 50, is about
20 percentage points once all other parameters have been fixed to same value. Nevertheless, the

1In all cases, the radius is expressed in pixels
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decay between the results presented for R = 50 and R = 20 is basically due to the decay between
the detection rate achieved for R = 30 and R = 20, which is about 10 percentage points. With
respect to R = 50, results for R = 40 decay about 4 percentage points and for R = 30 the decay
is about 10 percentage points.

Another relevant issue is that, since the radius variation is shown for two different values
of the number M of ferns, we are able to see that the radius has a greater influence than the
amount of ferns. As it can be observed, the plots are distributed in bands according to the
radius’ selection (different colors correspond to different values of R). In other sections we will
see that, after Nclass, the radius is the most influential parameter.

Finally, we stress that the results obtained with our method always overcome the results
obtained by SIFT, except for the case R = 20, where results are more or less the same as the those
obtained by SIFT. Nevertheless, it can be observed that our method presents a bigger growth
of the detection rate when taking into account more candidates. That way, when achieving
N = 10, in the majority of test sets, the only parameter combination which doesn’t get through
SIFT results is R = 20 and M = 20.

4.3.2 Ferns’ Size and Number of Ferns

After having studied the influence of radius’ selection on the results, we will now study some of
the parameters involving the amount of information computed.

Figure 4.7 shows the effects of choosing different values for the number of ferns M . Here, only
three subfigures are shown. This is because we have used same deformation type for training
and testing and we haven’t trained for type 67. Then, the results are presented for a unique
combination of parameters and only varying the amount of ferns. As it would be expected, the
more ferns taken into account, the better the detection rate is. In particular, a variation on M
from 50 to 20 implies a drop of about 4 percent. It can also be observed that just as in the
radius case, the biggest drop is produced when varying M from 30 to 20 and also that, for more
candidates, the differences on detection rates for M = 50 and M = 40 are reduced to less than
a point in the worst case.

Finally, note that, once we fix R to 50, the variation on M gives an improvement of, at least,
about a 15% (when M is equal to 20) and a 20% at most (M = 50).

The number of ferns is not the only way of processing more information on the algorithm.
Also the number of classes used and the size of the ferns modify the amount of information. We
now try to study this last parameter, the ferns’ size, S. The variation on S can be observed in
Figure 4.8.

In contrast to most of the parameters, the influence of the ferns’ size on the results isn’t
monotone. As it can be seen, the best results are given by S = 10 and S = 12 depending on the
other parameters’ values.

While at first sight these results may be surprising, they are not. Remember that ferns’
training is done for different classes which consist on interest points deformed and synthesized
in different ways. The number of representatives or patches of the same class is a parameter
which we fixed to 3000 according to implementation demands. For each class, a fern consists on
a histogram resulting of the evaluation of S binary tests on each patch. Moreover, there is an
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(b) Test images(78)
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(c) Test images(910)
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Figure 4.7: In these figures, we show the effect on the number of ferns used. Different subfigures are
creating using a different test set: set of deformation type 56 in (a), 78 in (b) and 910 in (c). Analogously,
TrainDef has been set to 56 in (a), 78 in (b), and 910 in (c). SIFT results are presented in black
squares. Color differentiates the choices of M : 20 in cyan, 30 in red, 40 in green and 50 in blue. The
other parameters have been fixed to R = 50, S = 12 and Nclass = 1200. Note that introducing more
ferns gives more profitable information and results are improved.

initialization of one per bin before all tests are run in all the class representatives. Then, the
binary number obtained when running the S tests on a patch counts per one in the corresponding
bin. That way, if S is too big, the 3000 binary number obtained modify too little the initialization
on the histogram. That is what we have found when using S = 14. Then, we have 214 bins
(16384) and only 3000 representatives to modify the initialization of weight one in each bin. For
S = 10 and S = 12 the number of bins is 1024 and 4096 respectively and give the best results.
For S set to 8, we have 256 bins and the results are worse than the ones obtained with the
other values of S. Possibly, if we had given freedom to the number of representatives used per
class, results for a bigger S would have been better than other values of S when the number of
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(b) Test images(67)

N

D
et

ec
tio

n 
R

at
e

 

 

SIFT
S=8
S=10
S=12
S=14

1 2 3 4 5 6 7 8 9 10
10

20

30

40

50

60

70
(c) Test images(78)
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(d) Test images(910)
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Figure 4.8: Influence of the ferns’ size. We show a plot for every test set according to the deformation
type (see each image’s title). As usual, SIFT results are marked in black with squares. Colors distinct
the different values taken by S. More precisely, we find S = 8 in cyan, S = 10 in red, S = 12 in
green and S = 14 in blue. We have used TrainDef = 56 and Nclass = 1200. Markers differentiate
different set of values given to other parameters: R = 50, M = 50 in points, R = 40, M = 30 in triangles,
R = 30, M = 40 in crosses and R = 20, M = 30 in hexagrams.

representatives per class was big enough. Nevertheless, the differences on detection rates do not
exceed the 2% when varying the parameter S, so we can conclude that this parameter has not
an important effect on the results.

4.3.3 Number of Classes

Another parameter that we have studied is the number of interest points taken into account
for the training process. The results obtained when varying the number of classes, Nclass, are
shown in Figure 4.9.
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(b) SIFT (56)
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(c) Test images (67)
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(d) SIFT (67)

N

D
et

ec
tio

n 
R

at
e

 

 
1200 classes
1000 classes
800 classes
600 classes
400 classes

1 2 3 4 5 6 7 8 9 10
10

20

30

40

50

60

70

80
(e) Test images (78)

N

D
et

ec
tio

n 
R

at
e

 

 
1200 classes
1000 classes
800 classes
600 classes
400 classes

1 2 3 4 5 6 7 8 9 10
10

20

30

40

50

60

70

80
(f) SIFT (78)
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(f) Test images (910)
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(h) SIFT (910)
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Figure 4.9: The influence of the number of classes considered on the training process is studied. On all
plots, color is the distinction of the different number of classes taken (Nclass=1200 (blue), 1000 (cyan),
800 (green), 600 (yellow) and 400 (red)). First column gives information of our method implemented
with different parameters and second column deals with SIFT’s evaluations. Each row refers to different
types of test images (type 56, 67, 78 and 910). The different graphs shown for our method are: R =
50, M = 50, S = 12 (marked with points), R = 40, M = 30, S = 10 (triangles), R = 30, M = 40, S = 8
(crosses) and R = 20, M = 30, S = 8 (hexagrams). TrainDef has been fixed to 56.
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As it can be observed, choosing a value of Nclass has a great influence on the detection rate
given by our method. Even if other parameters have also an influence, figures show that the
value of Nclass is the most determining.

Results obtained either by our method or SIFT are better as the number of classes increases.
For our method, the difference among results using same parameters except for Nclass is of a
24%. Differences are bigger when the other parameters are set to their optimal values. When
using non optimal values for the other parameters, the differences are shortened among the
results with different number of classes to a 17%.

Moreover, once Nclass is fixed, differences on the detection rates grow different when varying
the other parameters. For example, once we fix Nclass to 1200, there is about a 25% between
the detection rate for R and M fixed to 50 and the case with R = 20 and M = 30. In contrast,
fixing Nclass to 400, detection rates related to this parameters’ selection only differ in a 14%.

4.3.4 Deformation on the Training Process

Finally, the last parameter we analyze is the deformation type on the training process. We have
trained ferns with three different sets of local meshes (which have served to create the set of
3000 representatives of each class once the meshes have been synthesized). These three sets
differ on the deformation type of the meshes being used: 56, 78 or 910. Remember that this
code corresponds to the ranges where angles used to localize first triangle in the space and also
angles between triangles of the meshes are randomly taken. For example, a mesh of type 56 has
the three angles that determine the orientation of the first triangle in the space in the interval
[

−π
5 , π

5

]

and angles between the triangles of the mesh in the interval
[

−π
6 , π

6

]

.

Figure 4.10 show the response obtained when using the different training sets to each test set.
Detection rates obtained with the different training sets differ less than two percentage points
in the majority of cases. Therefore, we can confirm that deformation in the training process is
not the most relevant part of the parameters’ election.

Nevertheless, it can be observed that, for all test sets, the best response is the one using the
most deformation in the training (type 56). This can be explained because type 56 also gathers
information of meshes with less deformation since 56 refers to the maximum variation that can
be obtained by angles in the mesh creation process.

4.3.5 Deformation on the Test Images

Although the deformation on the test sets is not a parameter to be discussed, we want to briefly
mention some observations about it.

As one could have already recalled, figures presented up to now present a non monotone
behavior considering the deformation type on the test sets. While it would be expected that for
the test sets with more deformation, results were a little worst, it always happens that for the
test set with deformation type 67, results are somehow better. This fact can be observed more
precisely in Figure 4.11. We associate this phenomenon to the fact that the four meshes of the
test set have had very little deformations. Remember that in the meshes generation, each angle
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(b) Test images(67)
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(c) Test images(78)
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(d) Test images(910)
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Figure 4.10: Once fixed the test set according to the deformation type (see the subfigures’ titles). We have
run the methods for different types of deformation in the training process. Therefore, we have used cyan
for TrainDef = 56, red for TrainDef = 78 and green for TrainDef = 910. In all graphs, Nclass = 1200.
Different markers serve to distinguish different parameter values: R = 50, M = 50, S = 12, (points),
R = 40, M = 30, S = 10 (triangles), R = 30, M = 40, S = 8 (crosses) and R = 20, M = 30, S = 14
(hexagrams). As usual, SIFT appears in black squares on all plots. Rather different than it would be
expected, in all cases response is better when using the meshes the most deformed in the training process.

is chosen uniformly without a range determined by the values of the deformation type. The rest
of test set behave as it would be expected: the less the deformation, the more the detection rate.

It is also remarkable that differences among results for different test sets are bigger in case
we use our method than in SIFT’s case. When applying our method with the same set of
parameters, detection rate of type 910 is nearly a 5% greater than the one for the test set of
type 56. On the other hand, for SIFT, the difference is shortened to a 2%. Therefore, we can
conclude that SIFT is already very sensitive to small deformations and so, our method is more
suitable in any type of deformations.
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Figure 4.11: The responses of the same parameter evaluation are shown for different images set. At left,
our method has been implemented with 4 different parameter combination: R = 50, M = 50, S = 12
(points), R = 40, M = 30, S = 10 (triangles), R = 30, M = 40, S = 8 (crosses) and R = 20, M = 30, S =
14 (hexagrams). Nclass and TrainDef have always been fixed to 1200 and 56 respectively. Different
colors indicate the responses to the different test sets (see legend). At right, SIFT results are presented
all at once for the different test sets. Surprisingly, a better response is given for test set of type 67. We
attributed to the fact that the 4 meshes used for the deformed meshes have less deformation than others
of the other type, since in their generation angles are chosen uniformly between a range and it can happen
that deformation for these concrete images is more little than the other cases.

4.3.6 Conclusions on the Parameters’ Selection

In this section, we have discussed the differences when choosing one value or another for each
parameter on the parameter sets. We have seeen that the best results are achieved when using
R = 50, M = 50, TrainDef = 56 and Nclass = 1200. For the ferns’ size S = 10 or S = 12
give more or less similar results. We have never abandoned the comparison of our results when
varying the parameters and SIFT results. We have shown that with a good choice of the
parameters, our method always gives about 18 percentage points more on the detection rate
than SIFT.
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Chapter 5

Conclusions

We have presented and implemented a method to solve the correspondence problem in images
of non-rigid objects. The method has shown to perform well and significantly better than one
of the most well-known methods in keypoint detection.

The method implemented turns the correspondence problem into a classification one. This
classification problem is solved thanks to ferns and requires a training process.

For the training process, we have first chosen the keypoints taking part in the training process.
This selection has combined the Difference-of-Gaussian detector and different perspectives of the
planar reference mesh.

Then, the meshes used to perform the ferns’ training have been selected and a large number of
patches synthesized. To create deformed meshes, we have used a model based on planar triangles
combined with other triangles through random angles which cause the deformation. Referring
to the final selection of the meshes for the training, we have created a recursive method where
PCA have a principal role. We consider from the first to the last components of the PCA basis.
At each step, we distribute the meshes from the set according to the value of this components.
This distribution is then used to weight the meshes to be taken of each group.

Next, for each keypoint, all the meshes’ training set are synthesized. The synthesis is done
taking into account a visibility model such that occluded parts of the meshes are not shown.
Also, the orientation of the patches is considered so, when training, all patches of the same
class or keypoint are aligned. This fact is very important since ferns rely on pixel intensity
comparisons and otherwise they wouldn’t be effective.

Finally, the comparisons between pixels of every generated patch are done. These binary
tests let us to construct the histograms which describe the response of the different classes to
same tests. Then, for a new input patch, we only have to look for the histograms which more
likely pick up the responses given by the input patch.

For the evaluation, when a given image needs to be evaluated, we proceed as follows. First,
we compute the interest points with the Difference-of-Gaussian detector. We consider a patch
for every interest point and we align it following same method used during the training. Then,
each patch is evaluated through the ferns and we should be able to decide if image corresponds
to same object or not.

93
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In our study, we have not gone on the prediction of whether the image corresponds to same
object or not. What we have done is to compute the effective detection rates given by our
method for the patches on a set of test images. We have then compared these rates to those
obtained by SIFT. We have found that the response of our method is much better than the one
given by SIFT. More specifically, detection rates are almost 20% above SIFT results. Moreover,
we have studied the influence of the different implementation parameters on our method and
found optimal values although almost for any combination of parameters our method was able
to overcome SIFT.
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