
Universitat Politècnica de Catalunya

Departament de Llenguatges i Sistemes Informàtics

Master in Computing

MASTER THESIS

Algorithms for a multi-projector CAVE

system

Student: Javier Tibau
Directors: Carlos Andújar & Pere Brunet

September 2010

ii

Contents

1 Introduction 1
1.1 Introduction . 1
1.2 Objectives . 3
1.3 Document Organization . 4

2 Project Background 5
2.1 Brief History of the CAVE . 5
2.2 Distributed Computing Paradigms 6
2.3 Parallel Rendering . 7
2.4 Frameworks . 13
2.5 Interaction in 3D . 17
2.6 Summary . 21

3 Design of the Abstraction Layer 23
3.1 Architecture . 24
3.2 Results . 34

4 Project Management 37

5 Conclusions 41

A Installation Instructions 47
A.1 Installation . 47
A.2 Configuration . 53

B CAVE Configuration 59
B.1 Network and Devices Layout 59

iii

iv CONTENTS

List of Figures

2.1 The StarCAVE . 6
2.2 Standard Pipeline . 10
2.3 Sort-first . 11
2.4 Sort-last . 12

3.1 Architecture Layers . 26
3.2 Class Diagram . 26
3.3 Deployed Application . 35
3.4 Left Wall . 36

4.1 Planification of this Thesis Project 38
4.2 Development Costs . 39

B.1 Network and Devices Layout 60

v

vi LIST OF FIGURES

Chapter 1

Introduction

1.1 Introduction

Virtual Reality (VR) applications are very complicated to develop and de-
ploy. Besides the common problems dealt with by any computer graphics
programmer, a VR researcher must usually face a combination of the fol-
lowing issues:

• Uncommon input devices. Some of them have very specific and rare
usage requirements and configuration. Many use legacy interfaces.

• Multiple displays. These must be skillfully placed, calibrated and con-
figured.

• Complex projects require many PCs working together for multiple
purposes:

– Connecting as many input devices as the application needs. For
example, some tracking technologies are based on optical sensors,
requiring the system to connect a high number of cameras to
provide redundancy, low latency, error checking and detect object
occlusion.

– Feed a higher number of displays than can be connected to a
single PC.

– Accelerate the rendering tasks, whether the speed up is needed
online or offline. With an appropriate parallelization strategy,
the frame-rate of the running application can be significantly ac-
celerated.

• Whn using multiple PCs or Displays, synchronization and networking
becomes an issue that is far our area of expertise:

– All PCs must have a coherent time stamp.

1

2 CHAPTER 1. INTRODUCTION

– Non-deterministic algorithms should be performed on a single
PC, their results then distributed amongst all others.

• Furthermore, for a truly immersive experience, VR applications need
to provide some form or other of 3D sound rendering. This being, yet
again, a field of specialization out of the scope of this project.

While there are currently many software packages available, both freely
available and commercial ones, there is always the tradeoff between:

• Programming experience required. Including the prerequisites and
also learning how to program using the specific VR Framework.

• Flexibility and configurability.

• Cost: Initial investment, maintenance of the execution platform and
upgradability. Bearing in mind that although the software may cost
nothing, the administrator still has to spend a long time learning the
quirks of the system.

By this definition and general experience, it is impossible to reach a state
of perfection in all three of the aspects of this tradeoff, at the same time.

This document overviews some of the publicly available and most widely
used solutions. By leveraging on their knowledge and experience a viable
alternative is proposed.

The idea for this thesis sprung from the need to update the infrastructure
of an old “Cave Automatic Virtual Environment” (CAVE) system from the
“Centre de Realitat Virtual de Barcelona” (CRV). The previous incantation
of the CAVE was made from commercial hardware and software components.
Porting and deploying current state-of-the art applications was not an easy
task. Upgrading the old system was too expensive and not viable in the
long term.

ALIVE, the project here described has two main tangible objectives:

• To refresh of the old CAVE at CRV and be able to work with more
modern hardware and software.

• Facilitate the development of VR applications, that will be deployable
in the rehabilitated CAVE.

ALIVE stands for Abstraction Layer for Interactive Virtual Environ-
ments. It introduces an abstract Application Programming Interface, with
a three-layered architecture, meant to provide an effective middle point that
addresses the three aspects of the aforementioned tradeoff separately.

Instead of developing a VR library from scratch, we decided to use exist-
ing work on this field from community projects available freely online. Since
each library has its strengths and shortcomings, an architecture that allowed

1.2. OBJECTIVES 3

the integration of many libraries was highly desirable. With such a thing
in mind, a three-layered two-sided abstraction architecture was envisioned.
The three-layers correspond to the following components:

Application Filled by the user’s application-specific code. A sample poly-
gon renderer application was developed to provide a concrete descrip-
tion of this layer.

Abstraction These classes enforce application flow and component con-
nection. On instantiation these classes are fed with concrete imple-
mentations from the other layers.

Backend Backends, in the context of this document, are the wrapper classes
that enable alive applications to interact with a specific VR Frame-
work. At the time of writing, we provide a wrapper class for VR
Juggler as well as sample configuration files for the VR Juggler envi-
ronment.

The Abstraction layer masks the interaction between the polygon rendering
code and the VR Juggler backend. Upon compilation, neither is meant to
know about the other. They only meet at run-time, although only through
the abstract interfaces in the Abstraction layer.

1.2 Objectives

With regards to facilitating development of VR applications, the main pur-
pose of ALIVE is to reduce the amount of attention that the application
developer has to dedicate to the issues that were described previously. In
this project we aim to abstract the user from dealing with:

• Input devices.

• Display number and layout.

• Definition of the virtual cameras.

• Synchronization issues between cluster nodes.

Notably missing from the list are 3D sound rendering and synchroniza-
tion for non-deterministic algorithms. These problems are out of the scope
of this project and will be addressed in the future.

Summarizing the objectives of this project, we list:

• Provide an abstraction API, that facilitates development and deploy-
ment of VR applications.

• Create a polygon renderer application based on the proposed API.

4 CHAPTER 1. INTRODUCTION

• Update the CAVE software infrastructure.

• Abstract the users of the CAVE from installation and configuration
issues.

• Facilitate de migration of VR Applications to this framework.

1.3 Document Organization

The rest of this thesis is organized as follows:
In Chapter 2 we overview the state of the art on parallel rendering tech-

niques, libraries and 3D interaction methods. These are integral issues in a
VR application. As the complexity of an application increases, so does the
weight of these problems.

Chapter 3 details the design decisions applied for the implementation of
ALIVE. Application flow and development is also explained as it pertains
to the usage of the API.

A summary of the project is provided in Chapter 5, with our perceived
achievements, conclusions and proposals for future work.

Lastly, from a practical point of view, the appendixes provide an indis-
pensable help for installing, compiling and configuring the project and its
dependencies.

Chapter 2

Project Background

As a proper introduction to the subject of parallel rendering, this first section
introduces the Cave Automatic Virtual Environment (CAVE) by means of
a brief history of its development. This introduction serves to illustrate the
many issues present when developing multi-display systems.

The second section describes parallel rendering in more detail. Analyzing
advantages and disadvantages of different approaches. Meanwhile the last
section in this chapter surveys some of the available software packages that
tackle the issues of parallel rendering from various angles.

2.1 Brief History of the CAVE

Developed by the Electronic Visualization Laboratory (EVL) at Univer-
sity of Illinois at Chicago, the first Cave Automatic Virtual Environment
(CAVE), was shown at SIGGRAPH’92[1]. It quickly became popular as a
VR system and has been replicated in many research centers worldwide.

The first generation CAVE used active stereo and three-tube CRT pro-
jectors to project 1280x1024 images onto 3m2 screens. The layout of the
system included 3 rear-projected walls and a down-projected floor, this pro-
vided a novel sense of immersion. The user’s head and hand tracking was
performed by an Ascension, Inc. Flock of Birds electromagnetic trackers.
Amongst its many shortcomings: the images were dim and had low spatial
resolution; the 5 SGI Crimson workstations employed did not have enough
power to provide more than 8 frames per second, therefore not achieving a
sufficient rate for animation. The system was later updated with Marquee
projectors and an SGI Onyx system.

For a second-generation CAVE in 2001, EVL focused on improving
the image quality by utilizing Christie Mirage DLP projectors, which were
brighter but more expensive than the previous equipment. Also improved
was the frame rate, due to the usage of newer SGI Reality Engine, achieving
around 25 frames per second. Spacial resolution was still a problem. Suc-

5

6 CHAPTER 2. PROJECT BACKGROUND

Figure 2.1: The StarCAVE, a “third-generation” CAVE [2]

cessive work from EVL was aimed at increasing the number of pixels per
screen by usage of tiled displays.

The StarCAVE[2], a third-generation CAVE system, is a 5-wall plus floor
virtual reality room. By using tiled-displays coupled with integrated circular
polarization on LCOS LCD projectors, they provide a high-resolution envi-
ronment viewable through lightweight polarized glasses. Furthermore, the
basic layout of previous systems was discarded in favor of a pentagon-shaped
room, with one rail-mounted wall to allow for access.

Universitat Politècnica de Catalunya, through the Centre de Realitat
Virtual, owned an upgraded version of a first-generation CAVE system.
Though the physical structure remains usable, not so does the old equip-
ment, which is severely outdated and too expensive for a feasible renewal
path.

In order to rehabilitate the CAVE, this and a sibling project sprung to
life.

2.2 Distributed Computing Paradigms

The term “distributed computing” is generally applied to system of net-
worked computing nodes, which perform a task together and coordinate
their actions by message passing. There are two main paradigms that we
need consider when dealing with distributed systems for VR.

2.2.1 Server-Client

In a client-server system, there are essentially two types of nodes. The
server, which provides a service to be used by the many clients. On a VR

2.3. PARALLEL RENDERING 7

platform, usually one machine acts as the input server, processing the input
data from devices and providing digested information to the other nodes.
The clients are constantly requesting updates updates of the data from the
server.

2.2.2 Master-Slave

One master node controls task execution, and distributes the subtasks amongst
slave nodes. The master PC may also have a slave process running. Most
VR frameworks use some variation of master-slave architecture, where one
master node controls that all clients remain synchronized and in the same
frame step.

The VR Juggler cluster architecture also puts the master node in charge
of sending the configuration parameters to the slave nodes.

Both of these distributed paradigms result in a network topology shaped
like a star, centered around the server or master node. The other nodes
depend on the central node to provide a service or instructions needed.

2.3 Parallel Rendering

Alongside the introduction of ever more effective display technologies and
equipment, development of new algorithms for scaling the number of pixels,
screens or image quality has also been underway. Most, if not all, of the effort
has been focused on improving the parallelism of the rendering pipeline.

The appearance of high performance 3D commodity graphics cards in
the 90’s sparked the use of PC clusters for High Performance Visualiza-
tion (HPV). A cluster implementation was already used to drive the first
CAVE[1]. Nowadays, PC clusters provide their users with several advantages
over dedicated supercomputers[3]:

• Low cost, being built from commodity components.

• High modularity and scalability that allows the cluster to adapt to its
user’s needs.

• Standards compliance and large range of Open Source Software solu-
tions.

Asides from CAVEs, there are many other applications for PC clusters on
HPV. Most commonly, an advance user may want an increase in image
quality in order to properly perform a specific task. This will almost always
push the envelope of performance for a single workstation. For an instance,
if a user requires higher visual acuity on a large display, many problems arise
besides the obvious need for a better screen:

• More calculation power is needed.

8 CHAPTER 2. PROJECT BACKGROUND

• With an increase in resolution, many imperfections of a low quality
model may become visible. Hence, higher resolution data is desirable
and this taxes available memory of a single system.

• More than a single display may be required to reach the desired spatial
resolution. A separate graphics card might be needed, if not for its
processing power, due to its added graphics ports.

2.3.1 Problems

The typical performance bottlenecks on the basic (single) rendering pipeline
can be generally described as being:

Fill Rate The amount of pixels to be rendered can exceed the capabilities
of the graphics card.

Geometry Transformations As in Fill Rate, the amount of triangles to
be processed can become an issue.

GPU Memory Specially with volume rendering, the amount of data that
needs to be held on the GPU might be larger than its available memory.

Bus Bandwidth Usually with dynamic data, when it cannot be kept on
the GPU but must be generated or transferred on each frame, the
speed of the available transmission channels might not suffice.

CPU Performance The CPU may also become a bottleneck, if it is unable
to traverse the database to generate the rendering commands with
enough speed. Tesselation or visibility computations might cause this.

Main Memory Occurring when the model data is larger than main mem-
ory

IO Bandwidth The speed with which the system can move the data from
storage to the main memory.

There are many ways to parallelize the rendering pipeline. However, none
of them is an optimal solution for all of the bottlenecks mentioned. Most
attend to mitigate a specific issue, therefore making one appropriate for a
specific visualization problem, but terrible for another.

2.3.2 Taxonomy

Based upon the following taxonomy[4], it is easier to understand the strengths
and weaknesses of a particular approach to parallelization.

2.3. PARALLEL RENDERING 9

Functional Parallelism

The rendering process is split into several clear and distinct functions. These
functions will be applied sequentially to the individual data items. When
a unit finishes working on a piece of data, it forwards its output to the
next element and immediately takes a new instruction. This is the general
structure of a rendering pipeline. While very successful in design and appli-
cation, this approach suffers from being limited to the speed of its slowest
processing unit, which becomes the bottleneck of the pipeline. Parallelism
is also limited to the maximum number of individual steps that one may be
able to define.

Temporal Parallelism

In the two previous approaches, one may consider only still images. Tem-
poral parallelism is exploitable only for animations. If the time required to
produce a high quality frame is tf , rendering n frames would take n ∗ tf .
For non-interactive animation, one may task m processors and render the
complete animation in n/m ∗ tf time. This may also be applied to interac-
tive applications, trading quality for some latency since future object states
have to be predicted.

Data Parallelism

While functional parallelism is used as a basic building block, considering its
limits, further parallelization is achieve by contemplating multiple streams
instead of a single pipeline. Simply, the input data is distributed amongst
the processors. It has been widely adopted, while not trivial to implement,
it is highly scalable since the number of elements can vary depending on the
complexity of the rendering task. This type of parallelism deserves special
consideration, as the distribution of the data and the merging of the output
can be done on different stages of the pipeline[5].

While functional and temporal parallelism cases are trivial to realize and
implement. Data parallelism, however easy to understand, suffers from the
algorithmic difficulty of deciding when to distribute the data and when to
share the results of individual processors.

Considering the following steps in the rendering pipeline:

1. Geometry Processing (GP): Transformations

2. Rasterization

3. Composition

Communication between processors can happen on three distinct places of
the pipeline: Before processing the geometry, after applying the transfor-
mations but before rasterization and after rasterization.

10 CHAPTER 2. PROJECT BACKGROUND

Figure 2.2: A simplification of the standard pipeline, as present on most
single pipeline graphics processors [5]

Sort-first

Sort-first parallelization may be best described as a projection surface 2D
subdivision problem. Each processor gets tasked with producing a tile of
the entire final view. Compositing the final image just requires to place the
sub-images side by side in a predefined layout.

The name is given under the consideration that the object database is
distributed amongst all the processing units and communication occurs be-
fore applying the geometry transformations: each unit confirms that the
objects it possesses falls inside its viewing frustum; If the object falls out-
side, the unit sends the object to the appropriate neighboring processor.
Afterwards, rasterization occurs as if working on independent pipelines.

This is a very classical approach for clusters, as it entails little modifica-
tion to the code structure. The most important benefits and drawbacks are
now listed:

+ Low communication requirements. Very little information needs to be
passed from node to node, mostly just input data from sensors.

+ Spatial coherence between rendered frames can be heavily exploited,
this eliminates most of the initial communication overhead of exchang-
ing objects with neighbors.

+ If enough memory is available, the object database may be replicated
on each node. Further eliminating the communication overhead.

2.3. PARALLEL RENDERING 11

Figure 2.3: Sort-First: Spacial division of the scene representation [3]

- Input data is analyzed and processed in all nodes independently.

- Geometry transformations and overlapping primitives are also pro-
cessed redundantly.

- If implemented without interprocessor communication, non-deterministic
algorithms will obtain different results on each machine.

- Certain tiles may have to generate parts of the scene with far greater
complexity than others. This is a highly undesirable load imbalance.

Sort-middle

Each processing unit applies all the geometry transformations to its objects.
Communication between processing units occurs just before rasterization,
the data for each object has already been converted to screen primitives and
are ready for rasterization.

Geometry Processing units and Rasterizing units may be better consid-
ered as separate here. Since Geometry Processors are assigned arbitrary
objects from the database, while the Rasterizers are still assigned a 2D sec-
tion of the final view.

The redistribution of data occurs at an intuitive place in the pipeline,
between geometry processors and rasterization. However, while this can be
considered desirable design-wise, it does not work well with current popular
techniques such as tessellation. If a high tessellation ratio r, is applied to
the primitives, sort-first takes advantage in that only the raw primitives n
are transmitted. Compared to sort-first:

- The cost of transmission is highly increased.

- Load imbalance is also present, for the same use cases.

12 CHAPTER 2. PROJECT BACKGROUND

Figure 2.4: Sort-Last: Balanced division of the scene primitives [3]

- Commodity graphics cards don’t allow the user to retrieve data before
rasterization. This makes the approach unpractical for PC clusters,
since the geometry transformations would have to be performed solely
on CPU[3].

Sort-last

The application partitions the database so that each rendering unit renders
completely an arbitrary set of the data.

The scalability of this method is high, maintaining some aspects of the
pipeline fixed for each unit, such as: Memory usage, IO bandwidth, GPU us-
age and so on. However, the final compositing step has a linearly increasing
cost depending on the number of processing units used.

The compositing unit merges the separate rendered images correctly de-
pending on the alpha and depth values obtained by each rasterizer.

The high transmission cost of the compositing step is the main concern
for this approach, however several great advantages occur:

+ It is easy to achieve load balance.

+ The rendering pipelines of each node are independent until composi-
tion.

+ With a hardware based approach, pixel composition may be greatly
accelerated.

With or without hardware acceleration at the compositing level, ex-
tremely high pixel traffic may occur as this increases with the node count.
Oversampling may also become prohibitive.

2.4. FRAMEWORKS 13

Hybrid Approaches

Combinations of the previous forms of parallelism are clearly possible. As
hinted, a current HPV cluster may already implement functional and data
parallelism if analyzed on a low-level. Very complex systems may result
from such hybrid architectures, where appropriate combinations may serve
to leverage the shortcomings of the different approaches.

For example, a combination of temporal and sort-last parallelism could
be laid-out in the form of two separate high-performance clusters. If all
nodes worked together to produce each frame, the amount of pixel data
generated may surpass the network capabilities. If, however, the nodes
are split into two separate subnets, the generated data would effectively be
halved. Each frame would take longer to generate, but the next frame is
already being rendered by the other cluster. All in all, such a design could
generate a better use of the network at the expense of some latency.

2.4 Frameworks

Some software packages have achieved considerable recognition for CAVE de-
velopment. Although a couple of the solutions are commercial, most of them
originated in educational research environments and are freely distributed
under open source licenses. This section is a brief description about the more
predominant packages. Commentary about the strengths and weaknesses of
each, as they relate to the previously mentioned taxonomy, is given.

CaveLib

The original API for the CAVE. It was created by EVL and today it is
commercialized by Mechdyne [16].

It uses a replication sort-first approach. It was first deployed with the
cluster of SGI workstations that powered the CAVE. Presently, it supports
PCs with Windows or Linux operating systems.

As a low-level API, it abstracts the programmer from handling tasks
such as:

• Viewport creation

• Cluster synchronization

• Data sharing

The user must only provide the graphics for the system. Integration with
higher level OpenGL graphics APIs is supported.

14 CHAPTER 2. PROJECT BACKGROUND

VR Juggler

One of the most widely used software solutions. It allows the programmer
to write an application regardless of display and interaction devices, without
changing code or recompiling[6].

The configuration of a VR Juggler environment is achieved by means of
an xml file, which defines:

• Number of PC Nodes, their available hardware and network addresses.

• Input Devices such as 3D trackers, virtual gloves, wands, etc.

• Displays, their physical layout and to which node they correspond.

Besides providing device abstraction, VR Juggler does not provide many
additional features. The programmer must interact with the VR Juggler
kernel by subclassing an App class in a process described by its developers
as “filling the blanks”. This is a very straightforward and general purpose
approach. VRJuggler is configurable at run-time and provides a GUI con-
figuration tool to make changes on the fly. It supports most mainstream
operating systems and rendering through OpenGL.

VR juggler’s parallelization strategy is one of application replication
amongst cluster nodes. In other words, the master node remains in charge
of state synchronization and sharing input data from the sensors. Each slave
node is reproducing the same steps unaware of the other slaves.

Chromium

The main advantage of Chromium over other solutions is that it provides its
users with a way to automatically execute their applications on a visualiza-
tion cluster. It accomplishes this by intercepting the OpenGL calls sent by
the application and redistributing them appropriately. It is unique in that
no other system provides this kind of functionality, even commercial appli-
cations can be scaled, whereas other solutions require access to the source
code[7].

As a parallel rendering API, however, it is considered to be rather lim-
ited. If a parallel rendering application is built from scratch, other solutions
are preferable in that they offer the developer more flexibility and perfor-
mance.

Equalizer

The Equalizer framework is one of the newer projects focused on parallel
rendering. Self-described as ”GLUT on steroids”, it places severe emphasis
on developing parallel application from the beginning, instead of expecting
a separate solution to provide parallelization[8].

2.4. FRAMEWORKS 15

It is multi-platform, OpenGL based and distributed under the LGPL
open source license. Being a good combination for both scientific and com-
mercial applications.

One of its main selling points is the abstraction of display configuration.
After developing an application using the framework, the user can choose
between the many types of parallelism explained in Section ?? at runtime.
This allows the exact code to be run at the highest possible performance on
a tiled-display, a CAVE or a single screen backed by a remote visualization
cluster.

OpenSG

Quite different from the other mentioned solutions, OpenSG is a portable
scene graph system. It allows manipulation of the scene to asynchronous
threads. It can be run on PC clusters with the data changes being applied
automatically to the other nodes[9].

Rather than being a complete solution, it is used with other tools like
VR Juggler, to provide data synchronization to the package.

FlowVR

FlowVR is a dedicated middleware for VR applications[10]. It proposes an
approach for developing applications based on modules:

• Modules exchange data through a FlowVR network. Each module
runs on its own thread.

• Daemons running on the cluster’s nodes are in charge of communicat-
ing modules on the network.

• The FlowVR network can implement simple connections between mod-
ules, or complex instances of data synchronization, frustum culling,
etc.

Alongside, the same group develops FlowVR Render, a library built on top
of FlowVR. It implements the necessary modules and network for a sort-first
parallel renderer.

Comparison

Table 2.1 pits the aforementioned libraries against each other to better il-
lustrate the purpose of each approach. Amongst them, OpenSG is the only
one whose purpose does not generally allow direct comparison. It is a dis-
tributed scene graph, while the others are full-blown solutions to address
the VR development issues.

16 CHAPTER 2. PROJECT BACKGROUND

D
istrib

u
ted

P
a
ra

d
igm

P
arallel

R
en

d
erin

g
D

evelop
m

en
t

In
p

u
t

M
an

agem
en

t
A

p
p

lication
P

ortin
g

C
aveL

ib
S

erver-C
lien

t
S

ort-F
irst

C
om

m
ercial

Y
es

R
e-im

p
lem

en
t

w
ith

A
P

I

V
R

J
u

g
gler

M
a
ster-S

lave
S

ort-F
irst

F
ree

&
A

ctiv
e

Y
es

R
e-im

p
lem

en
t

w
ith

A
P

I

C
h

ro
m

iu
m

S
erver-C

lien
t

D
efi

n
ed

b
y

N
etw

ork
F

ree
b

u
t

S
tale

N
o

U
n

m
o
d

ifi
ed

A
p

p
lication

s

E
q
u

alizer
M

a
ster-S

lave
M

an
y

C
on

fi
gu

ration
F

ree
&

A
ctiv

e
N

o
R

e-im
p

lem
en

t
w

ith
A

P
I

F
low

V
R

S
erver-C

lien
t

D
efi

n
ed

b
y

N
etw

ork
F

ree
&

A
ctiv

e
N

o
R

e-im
p

lem
en

t
w

ith
A

P
I

T
ab

le
2.1:

C
om

p
arison

of
V

R
F

ram
ew

ork
s

2.5. INTERACTION IN 3D 17

2.5 Interaction in 3D

While users have grown accustomed to interacting with WIMP1, these meth-
ods cannot be used as effectively on a Virtual Environment. The introduc-
tion of the aforementioned components, if done wrong, may even lessen the
sense of immersion.

The are, essentially, three interaction tasks that a system has to offer to
provide a fully interactive and immersive experience: Navigation, Selection
and Manipulation[11]. All complex interaction inside a VE can be recreated
by using the aforementioned tasks as building blocks.

A key ingredient for all interaction techniques is the use of a 6 degrees-
of-freedom (DOF) 3D tracking device. A 6 DOF device can determine the
position (x, y, z) and orientation (roll, pitch and yaw). This provides de
researcher with a powerful tool to enable natural interaction.

Furthermore, there is the possibility of allowing for non-isomorphic rep-
resentation of the input data. That is, if the user moves its hand over a space
of 1 meter, the virtual object being manipulated might actually perform a
translation of 2 meters. This non-isomorphic interpretation of the relation
between physical space and virtual space can allow for very control of the
virtual world.

This section presents some of the current approaches used to accomplish
each of the basic interaction tasks.

2.5.1 Selection

Selection is the means to access one or many objects in a virtual world. It
is intricately related to manipulation, which will be analyzed later, but bear
in mind that some of the techniques are evidently shared.

Techniques

At the core, each technique must solve the issue of discerning amongst the
collection of elements which is the one that must be picked out. At the same
time, the selection technique might specify on when the selection should take
place: On the press of a button, a hand gesture or other type of signal.

Often, finding if an object is selected is a hierarchical task. This involves,
first checking against the axis aligned bounding box of a selectable object,
and keep going down on the structure until verification with the primitives
of the object.

Virtual Hand A very natural technique, involves simple collision detection
tests between the geometry and the hand.

1Window, Icon, Menu and Pointing Device

18 CHAPTER 2. PROJECT BACKGROUND

Ray-Casting The metaphor applied here is that of a laser pointer. It is a
very powerful since it allows selection of objects at a distance. It in-
volves the creation of a ray whose origin and direction are determined
by the hand’s position and orientation vectors. Line-object intersec-
tions checks must be performed on the selectable objects.

Occlusion Technically similar to the above. The ray is meant to start at
the user’s eye, and be directed towards the hand. The metaphor being
that the selection occurs when the object is “touched” at a distance.

Arm-Extension The Go-Go technique, inspired on the cartoon Inspector
Gadget. Is a non-isomorphic representation as per the explanation
at the beginning of this section. Before a certain distance threshold,
the user’s hand movement performs isomorphically, but passing this
threshold its extension becomes exponential. A slight issue for this
technique is the definition of regarding to which reference point to
calculate the extension of the wand, in many cases this is point is
located at the torso.

2.5.2 Manipulation

As mentioned earlier, manipulation is very much connected with selection.
Since first of all, an object must be selected before applying any manipula-
tion to it. t should be noticed that it is not desirable that we keep testing
for intersections when an object is already being manipulated.

An issue that is most intrinsic to the manipulation task, besides applying
a certain transformation that is, is to define what will happen to the object
after the manipulation has taken place: The object might stay suspended
mid-air, it might snap to a grid or it might also fall as by gravity until
colliding with a fixed object.

Techniques

It is implied on the previous explanations of the selection techniques, that
the same metaphors can be applied to manipulation. As such, two unrelated
techniques will be explained instead:

HOMER The Hand-Centered Object Manipulation Extending Ray-Casting
technique. It uses basic ray-casting for selection, and then moves the
virtual hand to the objects position. All manipulation is thereafter ref-
erenced around the virtual hand’s coordinates. For translation there
is a similarity to the arm-extension technique, where a point in the
torso is used as reference for translations. A displacement delta of the
user’s hand would incur in a directly proportional displacement of the
object in regards to the torso.

2.5. INTERACTION IN 3D 19

World-in-Miniature This technique provides the user with a small version
of the virtual world to interact directly with. Any manipulation that
affects the objects of the miniature world will be mapped onto the real
objects and scaled appropriately.

2.5.3 Navigation

Navigation is the movement of the user around the virtual world. It is a
fundamental human task, of which we need to consider two problems: Travel
and Way-finding.

Travel is the low-level, motor component of navigation. It corresponds
to the physical representation of moving. Depending on the scenario, this
may be related to walking, steering a wheel, or any other form of controlling
the position and orientation of the user’s viewpoint.

Way-finding is the high-level, cognitive component of navigation. It
corresponds to the decision making and planning related to user movement.
It involves spatial recognition, path planning, determination of the current
position and mental mapping the environment and locations.

The user can perform a short number of subtypes of navigation. They
may be, yet again, observed as independent use cases.

Exploration

In an exploration setting, the user has no explicit goal for his movements.
The only objective of exploration is to collect information: objects and
locations within the world, and building up knowledge of the environment.

The level of exploratory allowance greatly depends on the application’s
needs. On games, free exploration of a map may be part of the entertainment
value; On another environment, focused on performing tasks in a relatively
well known world, it might be better to induce search-based goal-directed
travel techniques.

Search

Searching involves traveling to a specific goal or target location. On the
extreme case, a näıve search, resembles exploration in that the user must
navigate the world randomly but with a specific final location in mind.

There is no clear distinction between exploration and searching. A user
may start the experiment by exploring the environment, until it gathers
enough information about its surroundings and is able to guide himself to-
wards the target destination.

20 CHAPTER 2. PROJECT BACKGROUND

Maneuvering

Maneuvering tasks take place in a local area and involve small, precise move-
ments. The most common case, involves the positioning of the viewpoint
more precisely in order to perform a particular task. For example, the user
may need to examine an object from many angles, or read from a label on
the virtual world.

Technically, the best solution for maneuvering tasks is to make use of
body and head tracking. It is a straight-forward mapping and intuitive for
the user to apply.

Specified Trajectory Movement

Specified Trajectory Movement does not engage the user in a locomotory
way. The path to be traversed is previously set, therefore making it unrelated
to travel and only to way-finding.

Techniques

In order to achieve these locomotory tasks, certain techniques have been de-
veloped. Depending on the situation, each has it advantages and problems.
We introduce a few of the most common:

Gaze-Directed Steering Although the term gaze is a little mis-leading,
since in most systems no eye-tracking is being performed. The user’s
gaze direction is inferred from the head’s orientation. It is simple to
implement but doesn’t allow the user to look around the scene while
navigating.

Pointing The user’s hand orientation is used to continuously specify the
direction of motion. Similar to gaze-directed steering, the considerable
benefit is that direction of motion can be decoupled from line of sight.

Map-Based Travel A 2D scaled representation of the world is presented
to the user. By pointing to the desired destination, the technique
would smoothly transport the user to the new position. Several con-
siderations must take place on implementation, such as terrain-height,
boundaries, map scale and origin, as well as the smoothness of the
transitory animation.

Grabbing the Air Analogous to the physical motion of pulling yourself
along a rope, except the rope in the virtual world exists everywhere
and can be pulled using hand gestures. For every frame, the movement
that must be perform results from finding the transformation between
the current hand’s position to the previous’ frame.

2.6. SUMMARY 21

2.6 Summary

We presented a brief history of the CAVE system, with light technical infor-
mation, highlighting the evolutionary direction that the paradigm has taken.
There is a mention to the existence of an outdated system at UPC, whose
physical infrastructure can be exploited to build a self-developed CAVE.
This fact constitutes UPC’s first interest in the continued development of
the platform.

The listed software is powerful and multi-purpose. Regardless of the
which solution, they carry either: A steep learning curve, in the case of the
many APIs, or a very limiting set of features, as is the case for Chrome.

This project is presented as a tailored solution, which strikes closer to
our user’s needs in flexibility and ease of use.

22 CHAPTER 2. PROJECT BACKGROUND

Chapter 3

Design of the Abstraction
Layer

The main purpose of the ALIVE framework is to simplify the development
process of any type of visualizer, with different levels of complexity and
organization. Some of the most representative projects at CRV implement
the following visualizers:

• A Volume Renderer, used to visualize medical data from various sources.

• A Naval Ship Visualizer, that implements a space partition scheme to
accelerate rendering of very large models.

• A City visualization application, implementing a quad-tree of relief-
impostors[12].

Many other visualizers have been developed. The rendering code for each
visualizer is very special-purpose, and yet, many development tasks are gen-
erally present present in all of them:

• Input Handling.

• Interaction Implementation.

It would already be very desirable to provide a unified library to handle
these two development tasks.

Few of our researchers have dabbled with distributed systems and paral-
lel rendering. From their development experience we gathered the following
functional requirements that the framework should fulfill:

• It should completely abstract the developer from the running plat-
form’s layout. For an instance, while the CAVE might become the
preferred Virtual Environment (VE) for performing user tests, the re-
searcher should still be able to run the same application locally on his

23

24 CHAPTER 3. DESIGN OF THE ABSTRACTION LAYER

workstation for development purposes. Other VR display systems are
available at CRV, that serve various levels of portability, immersion
and price, the applications should be able to run in any of them with
little effort.

• Input devices should be accessible through generic interfaces. It is
extremely important that, similarly to the previous point, the appli-
cation can make use of a Polhemus Fastrack tracker or an Immersion
Flock of Birds setup. Though the devices might return different data
types, the framework should perform the conversion steps and mask
initialization and update procedures.

• Since all of them use different forms of interaction, if the framework
is to handle it, allow for different configurations and customizations.
Each visualizer has a preferred, or mandatory, method of interaction.
Some, like the volume renderer don’t require navigation, model visu-
alization usually involves rotating the object to perceive a different
perspective. The naval ship visualizer by comparison, provides an ex-
perience of ship inspection that is meant to facilitate navigation inside
the model, more than one navigation method is implemented then.

• All visualizers use different file specifications for storing and retriev-
ing model data. It was clear that loading models was not something
that would be part of the framework. The developers prefer complete
control while handling the data. The cities visualizer loads a cache of
textures with all its relief impostors. The volume renderer needs to
load some sort of volumetric data, most likely in the form of three-
dimensional textures.

3.1 Architecture

Lets recount and generalize our problems into three main categories:

1. Abstraction. Throughly described in the introductory chapter, on the
background analysis and further defined in the functional requisites
we just presented.

2. Interaction. For which we have already stablished that it would be
desirable, in terms of code reuse, to provide a shared collection of
interaction techniques.

3. Clustering, Parallelism and Device Handling. Encompassing also sys-
tem synchronization and administration.

Our proposed architecture is a multi-layered approach, specially designed
to handle these three problems separately. Figure 3.1 indicates the frame-

3.1. ARCHITECTURE 25

work’s layers. The dark gray blocks in figure 3.2 represent the layers that
have been concretely implemented as part of the current project.

We now define what does each layer mean and how they relate to each
other and our problems.

Application The application layer is implemented by each researcher. It
is meant as a wrapper class between the rendering libraries and the
Abstraction Layer bellow. The sample polygonal renderer uses Open-
SceneGraph [13] for generating OpenGL commands. When porting
an application, if properly modularized, the rendering code of said
application can also be treated as a separate package.

Abstraction With a name so self-explanatory, the only thing that should
be made clear is that this layer provides the necessary means of com-
munication between the user code and the backends. The Abstraction
layer also defines the interface of communication between the appli-
cations and the Interaction Methods. This layer deals then with the
first problems of Abstraction and sets the basis for the development
of a collection of Interaction Techniques to solve our second problem.

Backend A backend is wrapper code that manages to mask the VR Li-
brary from the common ALIVE-based application. The juggler back-
end hides the implementation details of initializing, updating and con-
trolling application flow with respect to the VR Juggler library. The
backends, together with the VR Libraries deal with the issues relating
to clustering, parallelism and devices.

Referring back to the tradeoff defined in the introductory chapter:

• Flexibility is provided in our library by the ability to choose between
the many VR Libraries for which we can write a backend, this allows
for an enormous level of configuration and adaptability.

• The programming experience required to start developing with our
library is fairly low. The classes in the Abstraction Layer are well-
documented and follow a pattern that should be self-explanatory to
computer graphics programmers.

• Only the backend developers are meant to deal with configuration and
administration details of a VR Library. This specialization of tasks
means that the rest of the team members will not have to spend time
acknowledging these problems too.

3.1.1 ALIVE API

For the API design, the chosen methodology was to define an interface that
would be analogous to VR Juggler. This ensures that our current users of

26 CHAPTER 3. DESIGN OF THE ABSTRACTION LAYER

Figure 3.1: Layers of a sample ALIVE Application

Figure 3.2: Main classes of our implementation

3.1. ARCHITECTURE 27

that framework will find it easy to transition their applications to the new
API.

Five main classes were defined, of which the user must “fill the gaps” in
order to develop an ALIVE application. These classes are inside the “alive”
namespace of figure 3.2 and they implement the Abstraction Layer of our
architecture.

alive::App Is a concrete implementation and whose methods act as glue
code between the others. The methods in this class are placeholders,
which will in turn pass the application’s instructions to running back-
end. The App object is in charge of controlling program flow, it con-
tains references to the other objects, such as the alive::SceneRenderer,
the alive::InteractionMethod, and the alive::Input input manager.

Listing 3.1: The main placeholder object enforces application flow

void a l i v e : : App : : c on t e x t I n i t () {
mSceneRenderer−>c on t e x t I n i t () ;

}
void a l i v e : : App : : preFrame () {

mInteractionMethod−>update () ;
}
void a l i v e : : App : : draw () {

mSceneRenderer−>draw () ;
}

alive::Input The Input Manager class. Has indirect access to hardware
and state resources, which is retrievable by the other classes by calling
its methods. The abstract Input class has pure virtual methods where
they correspond to backend-dependent information. Subclasses of this
are the ones in charge of connecting the VR Framework to our API.

Listing 3.2: Provides generic representations for the input

f loat a l i v e : : Input : : getTimeStamp () {
return mTimeStamp ;

}
bool a l i v e : : Input : : getButtonState (int number) {

return buttonStates [number] ;
}
Vec3f a l i v e : : Input : : getWandDirection () {

return mWandDirectionVector ;
}

alive::SceneRenderer The purely abstract alive::SceneRenderer class, is
the blank canvas for OpenGL development. Its subclasses must define
specific methods to provide the rendering code: Initialization routines,
per frame updates, drawing calls.

28 CHAPTER 3. DESIGN OF THE ABSTRACTION LAYER

Listing 3.3: General purpose interface for rendering encapsulation

class SceneRenderer{
. . .
virtual void i n i t () = 0 ;
virtual void c on t e x t I n i t () = 0 ;
. . .
virtual void draw () = 0 ;
. . .

}

alive::InteractionMethod InteractionMethod subclasses can implement
any type of interaction (Navigation, Selection or Manipulation). Al-
though optional to use, the API’s design facilitates reuse of interaction
code, regardless of the Scene. Through generic data types, the imple-
mented methods are able to communicate the desired interaction to
the Scene, which must deal with the data as appropriate for the ren-
dering algorithms.

Listing 3.4: Interaction sample code

a l i v e : : Interact ionMethod : : Interact ionMethod (int button)
{
mButton = button ;

}
a l i v e : : Interact ionMethod : : update () {

i f (mInput−>getButtonState (mButton)) {
// Update code

}
}

alive::Kernel Is based on the idea of letting the backend handle framework
initialization internally. The user instantiates an App object with a
proper Scene and optional InteractionMethods, after which a Kernel is
instantiated and gives application control to the backend framework’s
execution loop.

Listing 3.5: Code snippet from main.cpp

a l i v e : : Kernel ∗ ke rne l = new a l i v e : : j u g g l e r : : Kernel (
app l i c a t i o n) ;

kerne l−>startAndWait (argc , argv) ;

3.1.2 The VR Juggler Backend

A backend provides the user with processed data regarding devices, displays
and system state. The main implementation of backend functionality lies in
subclassing the alive::Input class.

3.1. ARCHITECTURE 29

juggler::Input

The backend’s juggler::Input defines functions for:

• Initializing and Updating Input Devices. It must convert the data in
order to provide a generic representation for a Head and a Wand, as
well as button states.

• Retrieving Viewport, Viewing Frustum, ModelView details for the cur-
rent drawing context.

• Keeping time values for the application: Timestamps.

• It also holds state information, that allows asynchronous communica-
tion between the Scene and the InteractionMethod used.

Listing 3.6: VR Juggler specific code

void j u g g l e r : : Input : : i n i t () {
mWand. i n i t (‘ ‘VJWand ’ ’) ;
mButton0 . i n i t (‘ ‘ Button0 ’ ’) ;
. . .

}
int j u g g l e r : : Input : : getCurrentContext () {

return v r j : : opengl : : DrawManager : : i n s t anc e ()−>
getCurrentContext () ;

}

VR Juggler was chosen as the first implementable backend, due to its
available features and previous experience with it.

The backend must also provide a solution for context-dependent data,
for dealing with multi-threaded processes. Each OpenGL generates object
ids for data and instructions that are stored in the GPU’s memory. If not
handled correctly, different threads might overwrite this data which would
result in run-time errors. VR Juggler provides a solution with the use of
the template object ContextData, which encapsulates values in a hash table
and returns the appropriate instance for the correspondent context.

juggler::App

App is the wrapper class, mediating between the backend and the user-
facing API described in the previous section. It is not a subclass of alive’s
App, but rather an implementation of the necessary application structure
as defined by the VR Framework (i.e. VR Juggler).

Listing 3.7: VR Juggler specific code

void j u g g l e r : : App : : App(a l i v e : : App∗ app) {
mApp = app ;

}

30 CHAPTER 3. DESIGN OF THE ABSTRACTION LAYER

void j u g g l e r : : App : : latePreFrame () {
mApp−>latePreFrame () ;

}
void j u g g l e r : : App : : draw () {

mApp−>draw () ;
}
void j u g g l e r : : App : : () {

mApp−>() ;
}

The Kernel object plays the minor role of ensuring proper framework
initialization, it is instantiated in the main method of the application. In-
stantiates the backend’s App object and yields control to the framework’s
control loop.

On instantiation the App receives the user’s App object, which contains
the applications Scene and InteractionMethods. It is the backend’s App
job to provide a concrete Input object to the user’s App. Proceeding to
initialization and appropriately keeping the devices updated.

3.1.3 The Polygon Renderer

The API has already been used in the implementation of an OpenSceneGraph-
based polygon renderer. This application serves to demonstrate the API’s
functionality in allowing the programmer to write compact code that is rel-
evant to his rendering algorithms. A secondary purpose of implementation
is that this application should serve as a reference implementation of the
platform.

The polygon renderer code is split amongst two classes:

• A SceneRenderer class that interfaces directly with OpenSceneGraph
objects. It is responsible for calling the OSG methods appropriately
and implement navigation, intersection and object manipulation meth-
ods with the OSG Scene. The init method for example creates the
graph structure and loads some predefined models:

Listing 3.8: Initing the SceneGraph

void poly : : SceneRenderer : : i n i t (a l i v e : : Input∗ input)
{
a l i v e : : SceneRenderer : : i n i t (input) ;
. . .
mMan = osgDB : : readNodeFi le (‘ ‘man. 3 ds ’ ’) ;
mManTransf−>addChild (mMan) ;
mHouse = osgDB : : readNodeFi le (‘ ‘ house . 3 ds ’ ’) ;
mHouseTransf−>addChild (mHouse) ;
. . .
mNavigationTransf−>addChild (mManTransf) ;
mNavigationTransf−>addChild (mHouseTransf) ;
. . .
mSceneGraphRoot−>addChild (mNavigationTransf) ;

3.1. ARCHITECTURE 31

}

A SceneViewer object is used by OSG to provide visualization capa-
bilities of the SceneGraph we just defined.

Listing 3.9: Initing the Context-Dependent Objects

void poly : : SceneRenderer : : c on t e x t I n i t () {
// mSceneViewer has two l e v e l s o f i nd i r e c t i on ,

∗mSceneViewer i s the r e a l po in t e r to the
o b j e c t .

∗mSceneViewer = new o sgUt i l : : SceneView () ;
. . .
// s e t l i g h t n i n g , c l e a r co l o r and o ther OpenGL

con t ex t i n i t i a l i z a t i o n code f o r our
sceneViewer o b j e c t .

. . .
∗mSceneViewer−>addSceneData (mSceneGraphRood) ;

}

Drawing the scene entails setting the current Viewport, ModelView
and Projection Matrices, applying any last minute scene processing
and sending the rendering calls:

Listing 3.10: Initing the Context-Dependent Objects

void poly : : SceneRenderer : : draw () {
∗mSceneViewer−>setViewport (mInput−>getViewport

()) ;
∗mSceneViewer−>s e tP r o j e c t i o n (mInput−>

ge tPro j e c t i on ()) ;
∗mSceneViewer−>setViewMatrix (mInput−>

getViewMatrix ()) ;
. . .
∗mSceneViewer−>c u l l () ;
. . .
∗mSceneViewer−>draw () ;

}

• A Sample InteractionMethod. Or rather a combination of methods,
it implements the abstract alive::InteractionMethod but also possesses
some alive::InteractionMethod references. Since this is supported by
the language, it becomes a powerful way to combine Interaction Tech-
niques. With continued development, it is possible that some of these
combination techniques become popular and therefore worthy of join-
ing the collection of single purpose methods, this would simplify yet
another step of development.

Listing 3.11: Mixing Interaction Techniques

void poly : : MyInteract ion : : MyInteract ion (int button)
{

32 CHAPTER 3. DESIGN OF THE ABSTRACTION LAYER

s e l e c t i o n = new a l i v e : : i n t e r a c t i o n : :
RayCast ingSe lect ion (0) ;

manipulat ion new a l i v e : : i n t e r a c t i o n : :
SimpleManipulat ion (1) ;

nav igat i on = new a l i v e : : i n t e r a c t i o n : :
De fau l tNav igat ion (2) ;

}
void poly : : MyInteract ion : : update () {

s e l e c t i o n−>update () ;
manipulation−>update () ;
nav igat ion−>update () ;

}

3.1.4 Interaction Flow

The flow of Interaction requires some special attention, in order to ensure
the proper communication between the SceneRenderer and the Interaction-
Methods. We will keep using the classnames of our sample polygon renderer
application.

Navigation is the most straightforward to implement. Listing 3.8 defined
the graph structure. The navigation matrix starts as an identity matrix.
The navigation method then modifies the navigation matrix and lets the
poly::SceneRenderer know by means of the alive::Input object.

Listing 3.12: Navigation

void a l i v e : : i n t e r a c t i o n : : Bas icNavigat ion : : update () {
navigat ionMatr ix = mInput−>getNavigat ionMatr ix () ;
. . .
// modify nav i ga t i on matrix
. . .
mInput−>setNavigat ionMatr ix (navigat ionMatr ix) ;

}
void poly : : SceneRenderer : : latePreFrame () {

. . .
mNavigationTransf−>setMatr ix (mInput−>

getNavigat ionMatr ix ()) ;
. . .

}

Selection and Manipulation are slightly more complicated ventures, the
selection method is fairly simple though. We just need to define the geometry
that we will use to intersect with the scene. In this case a simple ray that
points in the direction of the wand.

Listing 3.13: Selection Method

void a l i v e : : i n t e r a c t i o n : : RayCast ingSe lect ion : : update () {
. . .
r ayStar t = mInput−>getWandPosition () ;
rayEnd = rayStar t + mInput−>getWandDirection () ;

3.1. ARCHITECTURE 33

. . .
mInput−>setRayStart (rayStar t) ;
mInput−>setRayEnd (rayEnd) ;

}

The code in the Manipulation method is, conceptually, also very simple.
But, now we do have to deal with 2 flag variables: A button state that will
determine if we are going to try and send manipulation instructions if there
is a selected object currently.

Listing 3.14: Manipulation Method

void a l i v e : : i n t e r a c t i o n : : RayCast ingSe lect ion : : update () {
i f (mButton && mInput−>i sOb j e c tS e l e c t ed ()) {

. . .
ob jectTrans format ion = mInput−>

getSe l ec tedObjectTrans format ion () ;
// We now use the data from the t r a c k e r d e v i c e s to

modify the t rans format ion matrix f o r the s e l e c t e d
o b j e c t .

. . .
// And we g i v e i t back a long wi th a f l a g t e l l i n g the

SceneRenderer t ha t i t shou ld update the matrix .
mInput−>s e tSe l ec tedObjec tTrans fo rmat ion (ob j e c t) ;
mInput−>applyManipulat ion (true) ;

}
else mInput−>applyManipulat ion (fa l se) ;

}

The SceneRenderer code carries the burden of having to handle interaction
states. Our update interaction method should follow the next structure and
be called inside the SceneRenderer’s latePreFrame method.

Listing 3.15: Selection/Manipulation Handling by the SceneRenderer

// In our case , i f no ray has been casted , t h e r e i s no need
to t r y any f u r t h e r .

i f (mInput−>getRayCasted ()) {
i f (mInput−>i n t e r s e c t i onCheck ()) {

. . .
r ayStar t = mInput−>getRayStart () ;
rayEnd = mInput−>getRayEnd () ;

// I n t e r s e c t the Scene wi th the ray de f ined by the
above po in t s .

i f (in te r s ec t i onFound) {
node = i n t e r s e c t i o n−>getNode () ;
transfNode = node−>getTransform () ;

mInput−>s e tOb j e c t I n t e r s e c t ed (true) ;
mInput−>s e tSe l ec tedObjec tTrans fo rmat ion (

transfNode−>getMatrix ()) ;
}

34 CHAPTER 3. DESIGN OF THE ABSTRACTION LAYER

}
else mInput−>s e tOb j e c t I n t e r s e c t ed (fa l se) ;

i f (mInput−>getApplyManipulation ()) {
transfNode−>setMatr ix (mInput−>

getSe l ec tedObjectTrans format ion ()) ;
}

}

Some other application might prefer to always execute some form of ma-
nipulation, if for an instance they want to make the movement of an object
dependent on the wand’s orientation. We cannot implement interaction flow
in the abstraction layer since it would disallow some forms of interaction flow.

3.2 Results

We have implemented an OSG-based polygon renderer that uses our library
to gain access to an in-development CAVE system. The generated code is
very compact and is mostly contained in a single SceneRenderer sub-class.

With approximately 200 lines of code this application:

• integrates head and hand tracking.

• Uses a specialized interaction scheme.

• Can be displayed on a multi-projector, multi-PC synchronized system.

3.2. RESULTS 35

Figure 3.3: A user, testing the input devices

36 CHAPTER 3. DESIGN OF THE ABSTRACTION LAYER

Figure 3.4: Left Wall of the CAVE

Chapter 4

Project Management

This appendix describes the planning as it was followed during the research
and development of this thesis project. It should be noted that due to unex-
pected technical circumstances, it was impossible to adhere to the planned
schedule. Where appropriate or relevant, comments will be made in regards
to plan deviation.

Figure 4.1 shows the Gantt diagram for the main block of development
time, during the months of July and August of 2010. Previous to this,
research on the state of the art and tests were done, however they are not
accounted in the final diagram and cost estimation.

Development did not proceed as planned. The complexity of the hard-
ware and software used, generated unforeseen time sinks that largely dis-
turbed the project workflow.

VR Juggler proved to be far more complex to compile than initially
expected. Instead of the one week suggested for overcoming this chore,
we were plagued by one annoying bug in the VR Juggler build system: It
would not detect the presence of VRPN in our system and therefore would
not build the required plugin.

It would seem that bugs were masking one another. Once the build
system bug was fixed, another one appeared inside the VRPN driver, related
to a recent redesign of the VR Juggler gadget interface. Apparently, nobody
had noticed it because they had not tried to compile the VRPN driver.

When everything seemed solved and the driver was properly generated,
three issues began showing during our testing:

1. The timestamps that we retrieved from the devices were zero-valued
all the time, therefore incorrect. Another bug was reported to the VR
Juggler user’s list and it was solved in due time.

2. The VRPN buttons are reported as being pressed upon initialization,
by the VRPN driver. A bug has been filed to the aforementioned user
list, but a solution is still pending.

37

38 CHAPTER 4. PROJECT MANAGEMENT

Figure 4.1: Planification of this Thesis Project

39

3. Our tracker seems to have initialization issues. It needs be reset a few
times before reaching a correct init state. Often times it will return
zero or infinity values, not detect the connected sensors or deliver an
overly jittery sensor data.

This unfortunate combination of bugs pushed back development for about
two weeks. Determining the identity of each bug was challenging due to the
overlapping output they produced.

The issues with the hardware were the most unexpected and frustrating,
since every morning it seemed that work had become undone during the
night.

Economic Analysis

Considering the initial time allotment for tasks and standard fees for the
development services, the estimated cost of development stands close to
14000, as per the analysis in figure 4.2

Figure 4.2: Development Costs

40 CHAPTER 4. PROJECT MANAGEMENT

All of the software used in this project is available through free software
licenses. Hardware cost are also not considered in the economic analysis.

Chapter 5

Conclusions

A large amount of the time dedicated to this project was allotted to trou-
bleshooting of devices, libraries and installation instructions. It is my opin-
ion that these are tedious tasks that should be performed by a minimum of
number of researchers. While most developers have the necessary skills to
solve these problems, it is not productive to dedicate time to these issues.
The backend layer has a secondary, but transcendental purpose, regarding
this issue. Only the framework developers have to deal with the deployment
issues. Once the wrinkles for a specific VR library have been ironed out,
the new backend may be released to unsuspecting that ideally should only
realize a change has been applied due to performance enhancements or other
differences.

Of relative importance, it should also be noted that contributions to
the VR Juggler project were made throughout the testing of the library.
Bug reports were filed through their mailing list. Two of the bugs reported
are listed out of the total of eight fixes responsible for reaching Release
Candidate state for their long-awaited 3.0 release. Further collaboration
between these projects would be a highly desired result, as it would ensure
further improvement of both platforms.

Comparing our initial objectives to the achieved results:

• Abstraction from the common VR issues is provided by the VR Juggler
backend. With the noted exceptions of 3D Sound Rendering and non-
deterministic algorithms.

• The sample application has been tested on the CAVE. Complete re-
habilitation of the CAVE still depends on porting of applications and
technical issues unrelated to this project.

• The integration of OSG with ALIVE is completely contained within
one class of the polygon renderer sample application. All in all, the
code is around 200 lines of not too dense code, introducing almost zero
programming overhead. My personal opinion is that these metrics help

41

42 CHAPTER 5. CONCLUSIONS

demonstrate that, porting well-designed applications should be fairly
straightforward.

• CAVE configuration has already been performed and is well-documented.
It should be easy to replicate it by following the instructions in Ap-
pendix A.

As demonstrated by the OSG-based sample polygon renderer and the
VR Juggler backend, ALIVE-based applications:

• Will be written in, very compact, render-specific code.

• Are ready to run in our CAVE setup. And also any other configura-
tion configurable by VR Juggler, such as the existing PowerWall or
WorkBenches at CRV.

The desired benefits of this project will become even more tangible
shortly:

• Our researchers will start porting applications. This is due to hap-
pen very soon, after some instructive sessions to demonstrate the API
features.

• A comprehensive library of Interaction Methods gets implemented.
Which should help the developers by semi-automatically, defining very
controllable interaction schemes.

Future Work

Summarizing the road that is still ahead of us, we need to:

• Implement more Backends. VR Juggler is highly capable, there are
however other frameworks that display great amount of potential for
integration:

– Equalizer. Whose great advantage over VR Juggler is the abil-
ity to parallelize the rendering pipeline by many methods. VR
Juggler only allows sort-first parallelization by replication.

– A VRPN backend. Although it would not provide any rendering
functionality, could prove essential in bringing device-abstraction
to other render-only libraries such as Equalizer.

– xVR, which is also used by some of our group members.

– Theoretically, the abstraction level of this library allows for inte-
gration with non-VR libraries. It would be interesting to explore
the possibility of integrating a rendering framework for mobile
devices.

43

– Support for Sound Rendering is not yet included in the abstrac-
tion layer. 3D Sound Rendering is desired, to complete the im-
mersion experience.

– A solution for distributed random number generator should be
implemented. This would allow some basic support for non-
deterministic algorithms.

• Start porting the existing CRV applications.

• Implement a comprehensive library of Interaction Techniques.

44 CHAPTER 5. CONCLUSIONS

Bibliography

[1] Carolina Cruz-Neira, Daniel J. Sandin, Thomas A. DeFanti, Robert V.
Kenyon, and John C. Hart. The cave: audio visual experience automatic
virtual environment. Commun. ACM, 35(6):64–72, 1992.

[2] Thomas A. DeFanti, Gregory Dawe, Daniel J. Sandin, Jurgen P.
Schulze, Peter Otto, Javier Girado, Falko Kuester, Larry Smarr, and
Ramesh Rao. The starcave, a third-generation cave and virtual real-
ity optiportal. Future Generation Computer Systems, 25(2):169 – 178,
2009.

[3] Bruno Raffin and Luciano Soares. Pc clusters for virtual reality. In
VR ’06: Proceedings of the IEEE conference on Virtual Reality, pages
215–222, Washington, DC, USA, 2006. IEEE Computer Society.

[4] Thomas W. Crockett. An introduction to parallel rendering. Parallel
Computing, 23(7):819 – 843, 1997. Parallel graphics and visualisation.

[5] Steve Molnar, Michael Cox, David Ellsworth, and Henry Fuchs. A
sorting classification of parallel rendering. Technical report, Chapel
Hill, NC, USA, 1994.

[6] Vr juggler homepage. http://vrjuggler.org/.

[7] Chromium homepage. http://chromium.sourceforge.net/.

[8] Equalizer homepage. http://equalizergraphics.com/.

[9] Opensg homepage. http://www.opensg.org/.

[10] Flowvr homepage. http://flowvr.sourceforge.net/.

[11] Doug A. Bowman, Ernst Kruijff, Joseph J. LaViola, and Ivan Poupyrev.
3D User Interfaces: Theory and Practice. Addison Wesley Longman
Publishing Co., Inc., Redwood City, CA, USA, 2004.

[12] C. Andujar, P. Brunet, A. Chica, and I. Navazo. Visualization of
large-scale urban models through multi-level relief impostors. Com-
puter Graphics Forum, 9999(9999), 2010.

45

http://vrjuggler.org/
http://chromium.sourceforge.net/
http://equalizergraphics.com/
http://www.opensg.org/
http://flowvr.sourceforge.net/

46 BIBLIOGRAPHY

[13] Openscenegraph homepage. http://www.openscenegraph.org/.

[14] Chadwick A Wingrave and Joseph J LaViola. Reflecting on the design
and implementation issues of virtual environments. Presence: Teleop-
erators and Virtual Environments, 19(2):179–195, 2010.

[15] Andrew S. Tanenbaum and Maarten Van Steen. Distributed Systems:
Principles and Paradigms. Prentice Hall PTR, Upper Saddle River,
NJ, USA, 2001.

[16] Mechdyne. Cavelib homepage. http://www.mechdyne.com/

integratedSolutions/software/products/CAVELib/CAVELib.htm.

http://www.openscenegraph.org/
http://www.mechdyne.com/integratedSolutions/software/products/CAVELib/CAVELib.htm
http://www.mechdyne.com/integratedSolutions/software/products/CAVELib/CAVELib.htm

Appendix A

Installation Instructions

Due to the many dependencies and the complexity of the development en-
vironment, we provide the following installation and configuration instruc-
tions.

The cluster administrator is expected to have sufficient gnu/linux expe-
rience and to be comfortable working with the command line.

A.1 Installation

A.1.1 Ubuntu pre-compiled packages

After a clean installation of ubuntu, the Operating System doesn’t provide
us with the required development environment. Here is a short description
of what each of the required packages provides.

build-essential The essential development environment, according to the
ubuntu devs. It contains the C, C++ compilers and gnu make.

subversion and git-core The SVN and Git packages you will need to
download VR Juggler and ALIVE respectively.

automake1.9 Required version of automake.

scons A replacement for the autotools, needed to install some of the pack-
ages.

openjdk-6-jdk Java for the GUI-based configuration applications of the
VR Juggler suite.

python2.6-dev The development headers for python.

libboost* The boost distribution of C++ libraries.

qt4-dev-tools The ALIVE libraries are built using qmake, and will soon
add QT features.

47

48 APPENDIX A. INSTALLATION INSTRUCTIONS

libopenscenegraph-dev OSG libraries, necessary for the sample polygo-
nal renderer.

qtcreator An optional development environment. Since we are already
going to use the QT libraries. It also provides good integration with
qmake and uses it as a its project file.

Type the following commands on your terminal to install everything on
the list.

$ sudo apt−get update && sudo apt−get upgrade
$ sudo apt−get i n s t a l l bui ld−e s s e n t i a l subver s i on g i t−core \
automake1 . 9 scons openjdk−6−jdk python2 .6−dev \
l i bboo s t−dev l i bboo s t−dbg l ibboo s t−doc \
l i bboo s t−f i l e s y s t em−dev l i bboo s t−s i gna l s−dev \
l i bboo s t−program−opt ions−dev qt4−dev−t o o l s l ibopenscenegraph−dev

\
q t c r e a t o r

Note that “$” is the command prompt and “\” is the the line break which
allows to split the input of the long command. The qtcreator package is
optional.

A.1.2 Manual Compilation Packages

Some dependencies could not be satisfied by the ubuntu repositories. There-
fore, download the latest versions of:

CPPDOM http://sourceforge.net/projects/xml-cppdom/files/

GMTL http://sourceforge.net/projects/ggt/files/

Flagpoll http://code.google.com/p/flagpoll/downloads/list

Doozer http://sourceforge.net/projects/doozer/files/

VRPN ftp://ftp.cs.unc.edu/pub/packages/GRIP/vrpn/

We recommend to install all of the following libraries into a single folder
structure. Since later they will have to be addressed to the compiler and
linker. Also recommendable is to maintain the compiled objects separate
from the sources.

$ mkdir −p $HOME/Share/ j u g g l e r $HOME/Workspace/ j u g g l e r

The folder in Workspace will the used for the sources and we will use
the Share folder for file sharing between the nodes.

Now, we will create a temporary environment variable to facilitate giving
the installation directory to each package. Bear in mind that if you close
your terminal after this step, if you want to resume the installation at any
step, you will have to set this again.

A.1. INSTALLATION 49

$ export VJ BASE DIR=$HOME/Share/ j u g g l e r

We are ready to start compiling the dependencies. Unpack the down-
loaded dependencies to the juggler folder in Workspace.

CPPDOM

Change to the cppdom directory.

$ cd $HOME/Workspace/ j u g g l e r /cppdom−1.0 .1

Scons is having a problem detecting the correct architecture of the in-
stalled ubuntu system. Therefore there is a slight difference in the following
command if you are using a 32 bit system or a 64 bit system.

For 32 bit systems type:

$ scons i n s t a l l p r e f i x=$VJ BASE DIR var arch=ia32

For 64 bit systems type:

$ scons i n s t a l l p r e f i x=$VJ BASE DIR var arch=x64

GMTL

A little simpler than the above.

$ cd $HOME/Workspace/ j u g g l e r /gmtl −0.6 .0
$ scons i n s t a l l p r e f i x=$VJ BASE DIR

Flagpoll

Change to directory and install:

$ cd $HOME/Workspace/ j u g g l e r / f l a g p o l l −0.9 .1
$ python setup . py i n s t a l l −−p r e f i x=$VJ BASE DIR

Flagpoll is used by the VR Juggler tools to help configure their build
system according to the installed dependencies. There are some variables
that need to be set now. Remember the above terminal regarding the is-
sue caused by closing the terminal after this point. There is also a slight
difference of commands between architectures.

For 32 bit systems type:

$ export ACLOCAL FLAGS=‘‘− I $VJ BASE DIR/ share / a c l o c a l /”
$ export FLAGPOLL PATH=$VJ BASE DIR/ share / f l a g p o l l \
: $VJ BASE DIR/ l i b / f l a g p o l l \
: $VJ BASE DIR/ j u g g l e r / l i b /debug/ f l a g p o l l
$ export PATH=”$VJ BASE DIR/bin :$PATH”

For 64 bit systems type:

50 APPENDIX A. INSTALLATION INSTRUCTIONS

$ export ACLOCAL FLAGS=‘‘− I $VJ BASE DIR/ share / a c l o c a l /”
$ export FLAGPOLL PATH=$VJ BASE DIR/ share / f l a g p o l l \
: $VJ BASE DIR/ l i b 6 4 / f l a g p o l l \
: $VJ BASE DIR/ j u g g l e r / l i b 6 4 /debug/ f l a g p o l l
$ export PATH=”$VJ BASE DIR/bin :$PATH”

Doozer

Doozer also helps in the configuration/installation process of VR Juggler.

$ cd $HOME/Workspace/ j u g g l e r /Doozer −2.1 .6
$. / c on f i gu r e −−p r e f i x=$VJ BASE DIR
$ make i n s t a l l

VRPN

The Virtual Reality Peripheral Network is used to facilitate integration of
trackers, wands and other VR devices. VR Juggler detects its presence on
the system and builds an input plugin for it.

The VRPN build system requires editing the Makefiles of its different
subprojects, in order to specify your system architecture. Inside each Make-
file, amongst the first line you must uncomment the appropriate line, defin-
ing the HW OS as pc linux for 32 bit systems or pc linux64 for 64 bit sys-
tems.

Note that depending on the tool you use for unzipping the vrpn package
(GUI or CLI), you might get both quat and vrpn inside another folder.

First install the quat library, change to the quat directory:

$ cd $HOME/Workspace/ j u g g l e r /quat

Remember to modify the Makefile, you may use any text editor of your
choice.

$ make
$ sudo make i n s t a l l

Now onto proper VRPN:

$ cd $HOME/Workspace/ j u g g l e r /vrpn
$ make
$ sudo make i n s t a l l

There is a further step needed in order to allow VR Juggler to correctly
detect the presence of VRPN in our system. The crude installation system
of VRPN doesn’t set the required symbolic links. We must therefore create
them.

A.1. INSTALLATION 51

$ cd / usr / local / l i b
$ sudo ln −s l i bqua t . a l i bqua t
$ sudo ln −s l i bv rpn . a l i bv rpn
$ sudo ln −s l ibvrpnatme l . a l ibvrpnatme l
$ sudo ln −s l i b v rpn s e r v e r . a l i b v rpn s e r v e r

Since configuration of individual VRPN devices is out of the scope of
this document. We recommend heading to vrpn’s homepage and learn how
to configure your devices, as well as starting a vrpn server. Documentation
is also available with the vrpn source code you downloaded.

A.1.3 VR Juggler

Now that we have satisfied the smaller dependencies, it’s time to install VR
Juggler. There are two lengthy steps required, downloading the latest SVN
code takes a few minutes depending on your connection, and compilation
might take about 15 minutes.

Change to sources directory and download the VR Juggler source code:

$ cd $HOME/Workspace/ j u g g l e r
$ svn co http :// v r j u g g l e r . goog lecode . com/svn/ j u g g l e r / trunk

j u g g l e r

Go turn on your coffee machine.

Change to juggler’s source directory. Run the autogen script and con-
figure the build inside a separate folder.

$ $HOME/Workspace/ j u g g l e r / j u g g l e r
$. / autogen . sh
$ mkdir bu i ld
$ cd bu i ld
$. . / c on f i gu r e . p l −−with−boost−i n c l ud e s=/usr / inc lude \
−−with−gmtl=$VJ BASE DIR \
−−with−f l a g p o l l=$VJ BASE DIR/bin / f l a g p o l l \
−−with−vrpn=/usr / local −−p r e f i x=$VJ BASE DIR

VR Juggler is ready for compilation. By now your cup of coffee should
be ready too. Type the following command and do something else for the
next 15 minutes:

$ make bu i ld i n s t a l l >& i n s t a l l . l og

The output of the make command is being forwarded to an install log file.
You can view it interactively by typing the following into another terminal:

$ t a i l −f $HOME/Worskpace/ j u g g l e r / j u g g l e r / bu i ld / i n s t a l l . l og

When make is done, if you followed the instructions correctly (the coffee
part is not mandatory), VR Juggler should be installed into the shared
directory we defined at the beginning.

52 APPENDIX A. INSTALLATION INSTRUCTIONS

A.1.4 ALIVE

For the following steps we use qmake, all are pretty straightforward. The
only decisions being the definition of a home folder for the libraries and the
correct compilation order based on the dependencies.

First we need to define the home folder for ALIVE. Analogous to the
folder we chose for VR Juggler and its dependencies, we will create and set:

$ mkdir −p $HOME/Share/ a l i v e
$ export ALIVE HOME=$HOME/Share/ a l i v e

Now we need the source code. It is available in a github repository.

$ cd $HOME/Workspace
$ g i t c l one g i t : // github . com/ j t i b au / a l i v e . g i t

Compiling all of the enclosed folders involves the same exact procedure,
we just have to be careful about the build order.

First we need to change into the appropriate project folder. Each project
has a .pro file inside. Then we enter the following commands:

$ qmake PREFIX=$ALIVE HOME
$ make i n s t a l l

The preferred building order is:

1. The abstract classes, in the subfolder alive.

2. The Interaction Methods, inside the subfolder interaction

3. The VR Juggler backend wrapper, inside the juggler subfolder.

Now everything is installed in your shared folder. You could start de-
veloping your own application now, or test the installation with the sample
polygonal renderer.

A.1.5 The Sample Polygonal Renderer

After installing the abstract libraries, the provided interaction methods and
the VR Juggler backend, you have all the necessary tools to build your own
alive-based application.

The building procedure is the same as for the previous components.
Remember by this point you still need the environment variables set earlier.

$ cd $HOME/Workspace/ a l i v e / poly
$ qmake PREFIX=$ALIVE HOME
$ make i n s t a l l

You will need to add the another environmental variable to tell the sys-
tem where to look for the dynamic link libraries in your system.

Refer to the configuration section of this appendix to learn how to per-
manently configure your system for development.

A.2. CONFIGURATION 53

$ export LD LIBRARY PATH=$VJ BASE DIR/ l i b : $VJ BASE DIR/ l i b 6 4

You should also set the path that OSG should use to find the resources
your models will need. We recommend putting the models inside a data
directory on the shared folder. If you don’t, OSG will render only the
meshes with no textures, but will still work.

$ mkdir −p $HOME/Share/data
$ export OSG FILE PATH=$HOME/Share/data

The PREFIX variable appended to the qmake command ensures that
upon installation, the produced files go to the shared folder’s alive directory.

In order to run the polygonal renderer, with a standalone configuration,
type the following commands (replacing modelname with your own model
filename):

$ cd $HOME/Share
$. / a l i v e /bin / poly . / data/modelname standa lone . j c on f

You should now be running the polygonal rendering with a standalone
VR Juggler configuration.

A.2 Configuration

As mentioned previously, there are a few configuration steps you may want
to perform in order to ease your day to day development tasks:

• Provide a way to access the nodes remotely. This is fairly important in
terms of comfort, as you will be able to administer and run the nodes
remotely from a single machine.

• Set the environment variables as a permanent configuration, so you
don’t have to do it every time.

• Configure the shared folder for the cluster, or else you would have
to find another way to distribute application changes between cluster
nodes.

A.2.1 Remote Access to the Nodes

You may have reached this point configuring only the master node of the
cluster. If you are not developing cluster-based system and only want to use
ALIVE as an abstraction library, you may skip this and the shared folder
subsections.

If you do want to configure a cluster, remote access is probably a highly
desired feature. We use OpenSSH for this. It is very easy to configure in

54 APPENDIX A. INSTALLATION INSTRUCTIONS

ubuntu and it should be comfortable and straightforward to use for any
command line user.

At this point, you will most likely have not installed anything on your
slave nodes. If appropriate, perform a clean Ubuntu 10.04 installation, use
the same architecture for all nodes.

For sanity’s sake, it might also be important to introduce an easy to
remember naming scheme for the cluster nodes: node1, node2, node3. It is
also recommended that you use the same, generic, user name in all machines.

The installation package for OpenSSH is available in the ubuntu repos-
itories. The slave doesn’t need to operate an ssh server and the client is
installed in the default ubuntu installation. Be sure you have an up-to-date
installation and type de following command to install the server:

$ sudo apt−get i n s t a l l openssh−s e r v e r

If you have connectivity between your nodes, you can now move away
from the nodes and do all your work from the single master node.

Lastly, there is an easy step that you can perform so that every time you
login to the one of the nodes it doesn’t ask you for a password. You must
first generate an rsa key pair in the master node, leave an empty passphrase
when asked.

$ ssh−keygen

Then for each node, type the following command replacing N for the
node number (or using the naming scheme of your choice):

$ ssh−copy−id − i $HOME/ . ssh / i d r s a . pub username@nodeN

Now if you want to access one of your nodes you can type on a terminal:

$ ssh username@nodeN

It won’t ask you for a password. The output will show a welcome message
and change the prompt to reflect that your are in nodeN.

A.2.2 Setting the Environment

Configuration of these variables is fairly easy. We just need to append the
export lines to the end of the bash configuration file.

We recommend editing your personal file. You may use gedit, vi or the
text editor of your choice, append the following lines:

export VJ BASE DIR=$HOME/Share/ j u g g l e r
export ALIVE HOME=$HOME/Share/ a l i v e

export ACLOCAL FLAGS=‘‘− I $VJ BASE DIR/ share / a c l o c a l / ’ ’
export FLAGPOLL PATH=$VJ BASE DIR/ share / f l a g p o l l \
: $VJ BASE DIR/ l i b 6 4 / f l a g p o l l \
: $VJ BASE DIR/ j u g g l e r / l i b 6 4 /debug/ f l a g p o l l

A.2. CONFIGURATION 55

export PATH=”$VJ BASE DIR/bin :$PATH”

export JDKHOME=/usr
export LD LIBRARY PATH=$VJ BASE DIR/ l i b \
: $VJ BASE DIR/ l i b 6 4 \
:$ALIVE HOME/ l i b :$ALIVE HOME/ l i b

export OSG FILE PATH=$HOME/Share/data

That’s all there is to it.

A.2.3 Shared Folder

We provide instructions for configuring the Network File System protocol, as
it is the preferred way for linux systems. You may also configure samba/cifs
if you know your way around it. It is however crucial that you use the same
folder, as we have used it previously during the installation and environment
configuration steps.

As mentioned before, the purpose of the shared folder is not having to
compile everything for each node. Since each node pulls the latest object
files from the same place in the network. Keep in mind that depending on
your data you may need a very fast connection.

The NFS Server

The master node should be the server. First install the nfs server:

$ sudo apt−get i n s t a l l nfs−kerne l−s e r v e r

Create the shared folder, it should actually be outside your home so
create it:

$ sudo mkdir −p / srv /Share

Now we need to change a few configuration files. With the editor of your
choice, edit: The /etc/default/nfs-kernel-server file by finding the following
flag and setting it to no:

NEED SVCGSSD=no

The /etc/default/nfs-common file should have the following:

NEED IDMAPD=yes
NEED GSSD=no

Lastly, append the line that defines our share to the /etc/exports file.
Your network IP and mask could may look like this: 192.168.0.0/24.

/ srv /Share network ip /mask(rw , sync , no subtree check ,
no root squash)

You can now restart the server to apply the changes we just made:

56 APPENDIX A. INSTALLATION INSTRUCTIONS

$ sudo / e tc / i n i t . d/ nfs−kerne l−s e r v e r r e s t a r t

The NFS Clients

All nodes, including the master nodes, should apply the following configu-
rations.

Although the master node already possesses the shared folder, remember
it is not as of yet mounted on the correct position. For simplicity, you should
just treat is a regular node in regards to the mount. However, if you mount
over your existing $HOME/Share folder you won’t be able to access the
contents you have created over the course of this guide. Move the contents
of your shared folder to a temporary location:

$ mv $HOME/Share $HOME/temp
$ mkdir Share

The clients now need the nfs client daemons. Install them from the
repository:

$ sudo apt−get i n s t a l l nfs−common

To ensure that the folder is mounted upon log in, append the following
line to your /etc/fstab configuration file:

master ip : / s rv /Share /home/username/Share n f s rw , hard , i n t r 0 0

Change the line appropriately with your master node’s ip and your username
on each machine (including the master).

In order to mount the shared folder, you may restart your machine, or
type the following command:

$ sudo mount −a

All that is left is to move the contents of the Share folder back to its
correct location:

$ mv $HOME/temp/∗ $HOME/Share

The Slaves

This special subsection is dedicated to the slave nodes. If you applied the
previous instructions to the master, it will be easy to infer the exact steps
to follow for configuring the slave nodes. Here is however, a quick listing of
them.

First install the tools and dependencies available through the ubuntu
repository. Note that some things are only needed at the node that will be
doing development, such as the svn and git applications. This command
also includes nfs and openssh.

A.2. CONFIGURATION 57

$ sudo apt−get i n s t a l l bui ld−e s s e n t i a l \
automake1 . 9 scons openjdk−6−jdk python2 .6−dev \
l i bboo s t−dev l i bboo s t−dbg l i bboo s t−doc \
l i bboo s t−f i l e s y s t em−dev l i bboo s t−s i gna l s−dev \
l i bboo s t−program−opt ions−dev qt4−dev−t o o l s l ibopenscenegraph−dev

\
nfs−common openssh−s e r v e r

Configure NFS and the environment variables per the previous sections.
The dependencies and the polygon renderer application are already avail-

able through the shared folder.

58 APPENDIX A. INSTALLATION INSTRUCTIONS

Appendix B

CAVE Configuration

The new CAVE at CRV is meant to be highly scalable with easy to find and
replace components. This were features that became very desirable when
the previous CAVE started to show its age.

That said, in the current state of deployment, this project runs on the
left wall of the CAVE with head and hand tracking.

We recently noticed that the walls of the CAVE depolarize the reflected
light and therefore are only capable of stereo with active components. So-
lutions are being weighted but the project can demonstrate its validity by
displaying the single monoscopic multi-projector wall all the same.

B.1 Network and Devices Layout

The network layout is fairly simple, with all the nodes connected to a single
network switch and accessible through public IPs.

A total of 6 projectors illuminate the 3x3 meter left wall of the cube.
The are positioned to project into 3 rows and 2 columns matrix. Each node
is in charge of projecting a single row. If a polarized stereo solution is found,
two superimposed matrices of 3x2 will be used to generate the left-eye and
right-eye images respectively. Each machine is able to feed 4 projectors,
through 2 video cards.

Tracking is provided by a Polhemus Fastrack tracker, connected via serial
port to the master node. There are two devices attached to this tracker:

• The head sensor, glued to a pair of polarized glasses.

• A stylus, to represent the wand an possessing one button for interac-
tion.

Ideally a third device should be considered, a wand, providing more than
one button. But we only had one serial port available and it had to be
occupied by the Polhemus device.

59

60 APPENDIX B. CAVE CONFIGURATION

For all administrative purposes, we recommend running the nodes from
the ssh command line interface.

The master node then has direct access to the devices, by means of a
serial connection to the tracker. It must then raise a vrpn service, so that all
nodes can access the device data remotely. Alternatively, the vrpn service
may be hosted on a separate single purpose machine on the network.

Figure B.1: Network and Devices Layout

	Introduction
	Introduction
	Objectives
	Document Organization

	Project Background
	Brief History of the CAVE
	Distributed Computing Paradigms
	Parallel Rendering
	Frameworks
	Interaction in 3D
	Summary

	Design of the Abstraction Layer
	Architecture
	Results

	Project Management
	Conclusions
	Installation Instructions
	Installation
	Configuration

	CAVE Configuration
	Network and Devices Layout

