
Application with:

TMS320DM6437

Diana Ripoll Pérez

Prague 21-June_2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons

https://core.ac.uk/display/301206436?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Thanks to:

Thanks to my family especially to
my parents because they gave me

unconditional support during all
my studies, without they this can

not be possible.

Thanks to all my colleagues, the
people how I met at the university

and we shared many time working.

Thanks to my friends because they
supported me during this years

and for all the unforgettable
moments that they have given me.

And finally, thanks to all the
people that I met this year in

Czech Republic because they have
done that this year has been really

special.

2

INDEX:

Index 4

Introduction 7

Components work 9

Hardware 9

Software 11

Configuration 12

Aplication 17

PAL 17

Projector 19

Rearrange 20

Programs 21

Video_loopback_test 21

One DSP 22

Invert program 24

Copy() 27

Inv1() 28

Inv2() 29

Inv3() 31

Programs with two DSPs 33

How should be 34

Main file DSP1 34

Main file DSP2 37

Result 38

Rearrange from DSP1 41

Result 42

3

Rearrange from DSP2 45

Result 46

Problems 49

Conclusions 51

Annexes 52

1.Schematic figure of TMS320DM6437 52

2.Code Video_loopback_test 53

3.Code tvp5146 61

4.Code first DSP, how should be 65

4

5

Introduction:
I have done this study at the university ČVUT in Prague during the academic

year 2008/2009. I have been studying with the Erasmus program thank you

to the convention of this university and my own faculty ETSEB from UPC in

Barcelona. My tutor has been the professor Zahradni.

The project is related with video signal processing. Specifically, it is about

how to rearrange the pixel of a digital image, in a real time, for can be

connected to the mirror projector.

From a video playback device we are obtaining an analogy signal with PAL

(Phase Alternating Line) encoding, this signal it can’t be connected directly

to the projector if we want to optimize the travel of the mirror. An image in

this standard is composed for 720 rows and 576 lines and for draw it first

are drown the even lines and after the odd lines. The travel for draw an

image encoded on the PAL format it’s from the top to the bottom and

horizontally from the left to the right, this is useful for all lines, even and

odd. We can see on the figure bellow this comportment.

The arrows are indicating the direction of each line while the numbers are

indicating the order of each line.

6

If we want to optimize the travel of the mirror on the mirror projector we

should rearrange the pixels because the optimum it’s that the mirror doesn’t

have big jumps so always should draw a pixel next to the other. On the

figure bellow we can see how should be:

The arrows are indicating the direction of each line while the numbers are

indicating the order of each line.

For solve this problem we have done an application, this is upload to a DSP

from Texas Instrument, TMS320DM6437. I this DSP the application is run it

and it convert the standard signal PAL to the signal that we want to connect

on the mirror projector.

The material that we use for this work is a camera, screen, computer and

two DSP (one convert the signal and the other one simulates the mirror

projector). And the software that we use is CCStudio v3.3 and Matlab.

On the next pages we can see with more detail the steps that we have done

and some important concept for do it.

7

Components works:
For do this application we use the next components:

Hardware:

TMS320DM6437: It’s a DSP, Digital Signal Processor, from the

fabricant Texas Instrument. It is used for process image and voice signal but

in this work we are using only for the video signal processing.

This is the most important hardware of this project and in the next pages we

will explain more about it.

Computer: we are working directly with the computer, with the correct

software we are designing the code and uploading to the DSP, after that, the

board can work independently. In addition, we use the computer for obtain

information and analyze the results.

Screen: On the screen we can observe the directly the result of the

application. This it will be connect directly to the DSP.

Camera: the camera captures images in a real time. The codification of

the output signal from this peripheral is codification PAL (Phase Alternating

Line), and it’s connect directly to the DSP, this means that on the board we

have to switch correctly.

8

In the figure bellow we can see how the work space where the DSP is

connected is:

9

Software:

Code Composer Studio v3.3: this software allows us to write,

compile the code of the application of our design. Moreover, we have the

options for check, and save in a file, the values of the memory or the values

of different parameters of our code, that is useful for debug and find errors.

In addition, we can upload to the DSP this code and run it there, on the

board, the application can be run independent of the computer.

Matlab: Matlab is mathematical software that allows us to analyze the

values that we have on the memory. We can draw it in a graphic, check

concrete values, measure parameters, etc. Ultimately, with this program we

can analyze how is working the application in a simple and clear way.

10

Configuration:

The DSP have to be configured extern: the switches, and internally:

programming, some parameters.

Before connect the DSP with the computer we must to position the switches

and jumpers correctly, on the annex 1 we can see a schematic figure of this

board where are indicates the names and the situation of the connectors and

the switches.

The specifications and correct position for each jumper and switches are:

JP1 Jumper: Jumper JP1 is used to select the display output format,

NTSC or PAL. We are working with PAL format so the correct position is

shown in the figure bellow.

JP2 Jumper: Jumper JP2 is a jumper bank used to select the routing of

the CS2 signal. The position that we have worked with is as shown in the

following figure

11

Switches: The DM6437 EVM has seven switches. These switches are

used to create certain actions on the board or to select certain functions on

the board. The switch functions are summarized in the table.

SW# Function
SW1 Bootload Mode Select
SW2 DM6437 Muxing Configuration
SW3 EMIF Data Select
SW4 4 position user readable
SW5 Power On Reset
SW6 Reset
SW7 Slide Switch

And we had work with the initial position, for each switch like is shown on

the figures bellow:

12

SW4, 4 Position User Readable: 0Down

1Down

2Down

3Up

SW5, Power On Reset Switch: Switch SW5 is a momentary

switch that asserts power on reset to the DM6437 device.

SW6, Reset Switch: Switch SW6 is a momentary switch that asserts

a reset to the DM6437 processor.

SW7, Slide Switch: Switch SW7 is a 2 position slide switch used by

demonstration software. The switch is read via a I2C expander. Refer to the

I2C section for more information.

13

The connectors that we are using in this research are J5, J4, J16 and J501.

J5, Video in: it is a n RCA jack used as a video input to the TVP5246M2

video decoder. This connector brings in a video signal to the TVP5146M2.

The figure below shows this connector as viewed from the card edge.

J4, DAC D Video Out: it is an RCA jack used to interface to DAC D of

the DM6437 to a video device. This connector is driven directly by the VPSS

back end via an opamp.

J16, +5V Input: Connector J16 is the input power connector. This

connector brings in +5 volts to the EVM. This is a 2.5 mm. jack.

14

J501, Embedded Mini USB Emulation Interface: This

connector allows the user to run software development tools and emulation

without an external emulator. The signals on this connector are shown in the

table below.

15

APPLICATION:

In this work we create an application for connect a PAL signal to a projector

mirror which is drawing the image optimizing the travel of the mirror. For do

this, we must to know the signal PAL and how should be the signal that we

send to the projector.

PAL:

Acronyms PAL are reference short for Phase Alternating Line, and it is an

analog television encoding system used in broadcast television systems in

large parts of the world. This is an evolution of the NTSC have the same

concept but it introduce an improved: part of the color information on the

video signal is reversed with each line, which automatically corrects phase

errors in the transmission of the signal by canceling them out.

For our study the useful information is how the image is defined in this

standard: how it is sent and how many rows and lines are defined. On the

figure bellow we can see how the image is a frame:

16

http://en.wikipedia.org/wiki/Broadcast_television_systems

The relevant parameters for our study are as follows:

Aspect ratio: 4:3

Number of lines: 625

Active lines (effective vertical resolution): 576

Active columns: 720

In this standard, each frame is divided in two half frame, one is compose for

the odd lines while the other is compose for the even lines. When the

picture is drawn, these frames are painted alternately, first, odd lines then,

even lines and so on.

The order which each frame is drawn is: from left to right and from the top

to the bottom. On the figure bellow we can see an explanation about how is

working.

The arrows are indicating the direction of each line while the numbers are

indicating the order of each line.

17

PROJECTOR:

The projector that we use is working optimizing the travel of the mirror. The

mirror starts drawing the even lines from top to bottom. Horizontally, the

travel is from right to left and from left to right alternating order in each

line. After drawing all the even lines, it’s time for the odd lines, this time the

tour is from the bottom to the top vertically and horizontally starts from

right to left and continues left to right alternating the direction in each line.

In this way always is drawing a pixel between the last one.

We can understand better if we are working with two half frames, this half

frames are compose from even lines or odd lines. In the figure bellow we

can see how this division is:

After see how is each half frame we can see how the image draw is:

The arrows are indicating the direction of each line while the numbers are

indicating the order of each line.

With this information we can think how should be the rearrange of each

pixel and we can make the application.

18

REARRANGE:

Comparing the figures for each method is easy to see how the rearrange

should be. For the half frame composed of even lines the way to work is:

The first lines will be copy directly while the odd lines are invert: the first

pixel will be the last one an so on.

For the other half frame, the rearrange is more difficult, we should invert the

order of all the lines. In addition odd lines of this frame should invert the

order too how we see on the figure bellow.

19

PROGRAMS:

Video_loopback_test.

This file is common to all the programs and On the annex we can see the

code of the file video_loopback_test, in this file we are initializing the

parameters on the board, between the code it’s commented which are the

function of each field.

One parameter that it is relevant is SDOFT. This is controlling how save the

values on

VPFE_CCDC_SDOFT=0x00000249;

With the parameter SDOFST from the CCDC we can control how it will be

save the image on the memory. We assigned to this parameter the value:

This means that: FINV=0 No inverse

LOFST=01 line offset

LOFST0= LOFST1= LOFST2= LOFST3= 1h 2 lines

offset

With these values, we are saving on the memory a complete frame,

compose of field 0 and field 1, in the way that the picture shown:

For know more of each field we can consult the manual.

20

One DSP:

The first program that we run on that DSP was a simply program for copy

the input image to the output. This is using a common space on the

memory, DDR2, for save the output and input information. On the file

video_loopback_test we can see that the parameters

VPFE_CCDC_SDR_ADDR in the function that we are initializing the VPFE, and

the parameter VPBE_OSD_VIDWIN0ADR on the function for initialize the

VPBE have the same value, video_buffer. These parameters save the

position on memory where are the input and output information,

respectively. If we are assigned the same position the result it will be

perfect, without errors and losing information.

On the figure bellow we can see how the information on the memory is:

Analyzing this figure we can see that are some periods, it’s easy to see that

the each period is corresponding to one line of the image, so we can know

how many pixel are defining a line. On the labels of the image and with a

simple calculation we can know that the pixels on a line are:

21

36053165676_ =−=linesPixels

It’s quite strange this result because we are working with signals coded

according to the standard PAL. This standard defines the image like 720

pixels on a line and 576 pixels on a row.

Finally, we can see that in this case the DSP is working with the half pixels

per line.

22

Invert program
The next programs that we implement are basic applications for copy and

invert the image. We use the same file where are defined some function,

three of them are inverting the image in a different way and the other is for

copy the image directly. We can see the code and the result in the next

pages:

#include <stdio.h>

#include <stdlib.h>

#include "stdio.h"

#include "evmdm6437.h"

extern Int16 video_loopback_test();

#define Pixels 207360

Int32 buffer_out[Pixels]; //from 0x80000000

Int32 buffer_in[Pixels]; //from 0x800CA800

#pragma DATA_SECTION(buffer_out,".ddr2")

#pragma DATA_SECTION(buffer_in,".ddr2")

void Copy(void){

Int32 i;

Uint32 temp;

i = 0;

do{

temp=buffer_in[i];

buffer_out[i]=temp;

i++;

} while (i < Pixels);

}

23

void Inv_1(void){

Int32 i,j;

Uint32 temp;

i = 0;

j=Pixels-1;

do{

temp=buffer_in[j];

buffer_out[i]=temp;

i++;

j--;

} while (i < Pixels);

}

void Inv_2(void){

Int32 i,j;

Uint32 temp;

j=Pixels/576-1;

i = 0;

do{

temp=buffer_in[j];

buffer_out[i]=temp;

i++;

j--;

if(i%(Pixels/576)==0){ j=i+Pixels/576-1;}

} while (i < Pixels);

}

24

void Inv_3(void){

Int32 i,j;

Uint32 temp;

i = 0;

j=Pixels-Pixels/576;

do{

temp=buffer_in[j];

buffer_out[i]=temp;

i++;

j++;

if(i%(Pixels/576)==0){j=Pixels-i-Pixels/576;}

} while (i < Pixels);

}

void main(void){

 /* Initialize BSL */

 EVMDM6437_init();

 video_loopback_test();

while (1){

//Copy();

//Inv_1();

//Inv_2();

Inv_3();

}

 printf("\n***ALL Tests Passed***\n");

 SW_BREAKPOINT;

}

25

Copy();

This function copies the signal from the input on the output. In this program

we are defining a space on memory for save the information input and

output. The input information is saved on the address 0x800CA800 and the

output information is saved on the address 0x80000000. In that case they

are not sharing the space on the memory and it’s for these that when quick

movements are, we can appreciate lost information.

The algorithm for do this is simply, we are copying all the values from the

buffer_in on the buffer_out in the same way. For do this, we can see on the

code that we need to define a local variable. We will use this for move

around both buffers and copy the values in the way that at the end both will

be the same.

On the figure bellow we can see the result.

Both are equal like we expected.

26

Inv_1():

This function is modifying the image repositioning the pixels. This reposition

consists in invert the image having the center like invert point.

For do this applications we need to define two variables more: i, j. This ones

are moving around the buffer for selected the value. The variable j is going

from the last position of the output buffer to the first one, while the i is

going from the first position of the input buffer to the last position. They are

decreasing and increasing one position, respectively, en each loop till finally

they move around all the positions.

On the figure bellow we can see the results:

The figures on the first row are corresponding to the buffer input, the first

and the last values respectively. On the second row are the values of the

output buffer, in this case the first figure shows the last values and the

second shows the first values.

For compare the results of both buffers we invert the x axe of the output so

the signal shape should be the same, and exactly we can see that are

equals. Finally, we can say that this is working well.

27

Inv_2()

With this application we want to flip horizontally the image. We need two

variables that are moving around the buffers. The variable i is always

increasing while the variable j is always decreasing. The difference between

this application and the previous is that we must to control the change of

the line and replace the position in the buffer_in to select the correct value.

The algorithm of this program consists in change the order of the pixels in

each line. So if we are copying on the buffer_out each pixel in ascendant

order we must to control when we start one line for replace the position on

the buffer_in to select the last value of the line. We can do this easily with

one line of code:

if(i%(Pixels/576)==0){ j=i+Pixels/576-1;}

The condition always it will be true when we start a new line and in this case

we are replacing the position of the buffer_out in the last position of this

row. We can see the result on the figures bellow:

28

In this figure are showing the 2880 values of both buffers, 8 periods are

shown and each period means one line. We can appreciate that the shape of

one line is invert. With this and watching the screen we can say that this is

working well.

29

Inv_3()

In this application, the last from the invert images, we want to flip vertically

the image. In this way, we want that the last line of the image be the first

one. Again we must to control when we are changing the line.

In this case, as we have done in the other cases, we define two variables.

The i is indicating in which position of the buffer_out we are and the j is

indicating which position we want to copy from buffer_in.

The initialization of j should be the first pixel of the last line. And each time

that we are starting a new line we need to replace the position on the buffer

in. The line of the code that is controlling this is:

Initialization:

j=Pixels-Pixels/576;

Control the change line:

if(i%(Pixels/576)==0){j=Pixels-i-Pixels/576;}

In the figures bellow we can see the result:

We can see how the shape it’s the same in each line but in a new place: The

first lines at the end.

30

Here we can see the visual effect of each program:

31

Inv2();

Copy();

Original Video_loopback();

Inv1();

Inv3();

PROGRAMS WITH TWO DSPs

After do the simples programs in one DSP we are ready for start to work

with two DSPs. In the final montage is not necessary to use the second

DSPs, the reason why we use is because we do not have a mirror projector

and the second DSP will behave like this and its output will recover the

original image. All devices are connected as shown in the following figure:

After see how should be the application we are ready to do it.

32

How should be:

This two DSP doesn’t have the same code. On the annex we can see the

code of the program that we run on the first one.

Main file of DSP1:

For try to understand better this code we hill explained for parts:

On the initial declarations we have the variable Pixels. This is used for

reserve the image on memory and shifts the image for copy on the output.

The image is saved on memory like an image 360 x 576 pixels like we can

see on the next figure:

We calculate the value of this variable in the next way:

207360360*576 ==×= columnsrowPixels

After that and using this variable we define two buffers: buffer_in and

buffer_out. The first one saves the input image and the second one save the

image output.

On the Final function is all the rearrange process. We thought with the

image like a groups of four lines because each four lines, the rearrange it’s

repeating. This division achieved with the sentence i% (Pixels/144), where

144=number_of_lines:4. In this way we will have the same values for the

lines at the same position in each block of values.

33

On the first part of this function we are copying the value selected from the

buffer_input to the next empty value of the buffer_output, after that we are

actualizing the values of i and j for copy the next time. The variable i will be

selected the next position while the variable j it will be increasing or

decreasing depending of the line. On the figure bellow we can in which lines

of this group of four this variable is increasing or decreasing:

The arrow is indicating the direction.

The last if from the code is controlling when we are finish the travel around

one lines. It’s easy to see that if we divided the number of pixels (Pixels) by

the numbers of rows, the result is the number of pixels in a line:

576
_

Pixels

rows

Pixels
linepixels ==

The first line of this group it will be the same on the output that in the input

so we want that when we start this line the value of i and j be the same j=i.

And how we see before both values are increasing, we are copying the line

exactly.

The third line should be the same that on the input but inverted. The value

of j should indicate the last position of this line and should be decreasing.

;1576/1_ −+=−+= Pixelsilinepixij

The second line of this block belongs to the odd lines of frame. The initial

value of j should indicate the first pixel of the line in the same position but

counting to the end and should be increasing so the result is j=Pixels-i;

34

And the fourth line of the group should have the values of the line of the

same position but counting to the end and should be inverted so:

;1576/1_ −+−=−+−= PixelsiPixelscolpixiPixelsj

Finally we can see that with this rearrange we prepare the information of the

signal to be send to the mirror projector.

35

Main file of DSP2:

void Final(void){

Int32 i,j;

Uint32 temp;

j = 0;

i = 0;

do{

temp=buffer_in[j];

 buffer_out[i]=temp;

i++;

if(i%(Pixels/144)<(3*Pixels/576) && i%(Pixels/144)>(Pixels/576)){ j--;}

else{ j++; }

if(i%360==0){

 if((i%(Pixels/144))/(Pixels/576)==0){ j=i; }

 else if((i%(Pixels/144))/(Pixels/576)==1){j=Pixels-i+Pixels/576-1;}

 else if((i%(Pixels/144))/(Pixels/576)==2){ j=i+Pixels/576-1;}

 else if((i%(Pixels/144))/(Pixels/576)==3){ j=Pixels-i; }

}

} while (i < Pixels);

}

36

The only change respect the code that we upload to the first DSP is the Final

function. Now we will explain the differences.

In the previous sections we have seen how the projector mirrors works. The

rearrange each four lines it is the same so we can work with groups of four

lines like in the case before. The value of i is always increasing while the

value of j it’s depending. On the figure bellow we can see how it is the

displacement en each line for this variable:

The rearrange for the even lines is the same for both DSPs, if we will

process this lines two times at the end we will have the original images.

On the case of the odd lines this doesn’t happens if we process the same

line two times on the same way, the result it will be the image inverted, so

we must to process the second line of this block like the forth line on the

block in the first DSP. The result is the code that we show before.

Results

After run both programs in the DSPs we see the results on the screen we

can appreciate that something is wrong, it’s not working well. On the figures

bellow we can see the result after each DSP from a real image.

37

After the first DSP

After the second DSP:

38

For analyse what’s wrong we used the program matlab for draw the values

from the buffers.

In this figure we can see for graphics. Each one is corresponding to one

buffer in order, first from the DSP1: buffer_in and buffer_out, and then from

the DSP2: buffer_in and buffer out.

Obviously, the first graphic and the last one are not the same, we can see it

this before on the image of the screen.

The most relevant information that we can obtain is the delay from the

output of the first DSP to the input of the second. This is a delay of 360

pixels, and we know that this number of pixels is the same as a line. So we

have one line delay.

As we don’t have oscilloscope we don’t know where the delay is occurred so

we will do two programs. If the delay is from the output of the DSP we must

to change the code of the program of the first DSP while if the delay it’s

from the input of the second DSP we should change the code of the program

from the second DSP. We will do both.

39

Rearrange from DSP1:

void Final(void){

Int32 i,j;

Uint32 temp;

j = 0;

i = 0;

do{

temp=buffer_in[j];

buffer_out[i]=temp;

i++;

if(i%(4*Pixels/576)<(3*Pixels/576) && i

%(4*Pixels/576)>(Pixels/576)) { j--; }

else{ j++; }

if(i%(Pixels/576)==0){

if((i%(Pixels/144))/(Pixels/576)==0){j=Pixels-i;}

else if((i%(Pixels/144))/(Pixels/576)==1){j=i+Pixels/576-1;}

else if((i%(Pixels/144))/(Pixels/576)==2){

j=Pixels+Pixels/576-i-1;}

else if((i%(Pixels/144))/(Pixels/576)==3){ j=i;}

}

} while (i < Pixels);

}

The change from the other program resides on the final function. We know

that we have a delay of one line, so the first line that we want to send is the

second one. In this way on the second DSP this will be processed on the

correct way.

40

We work again with groups of four lines because the process it periodic each

1440 pixels. Like on the other program the value of i is always increasing

while the value of j it’s depending. On the figure bellow we can see how it is

the displacement en each line for this variable:

The rearrange for the even lines is the same for both DSPs, if we will

process this lines two times at the end we will have the original images.

On this case when we change the line we rearrange the value of j like in the

program of the first DSP in the previous case but with three lines of delay.

So we are rearrange and saving in the first values of the buffer output the

values of the second lines, then the third an so on. The result that we obtain

we can see it on the next part.

Result:

The visual result that we obtain is shown on the figures bellow:

Original image

41

After the First DSP

After the second DSP

42

From matlab we will see that it is true that we are processing each line in his

place:

In that figure we have the shape of the two buffers that we are interested,

buffer_out from the DSP 1 and buffer in from the second DSP. We can see

that the delay already exist but on the values of the second line it will be

rearrange on his place on the second DSP.

Finally the result it is ok.

43

Rearrange from DSP2:

In this case we are changing the code of the Final function on the main file

for process the pixels correctly taking into account this delay. The code of

this function is:

void Final(void){

Int32 i,j;

Uint32 temp;

j = 0;

i = 0;

do{

temp=buffer_in[j];

buffer_out[i]=temp;

i++;

if(i%(Pixels/144)<(3*Pixels/576) && i%(Pixels/144)>(Pixels/576)){j++;}

 else{j--; }

 if(i%360==0){

if((i%(Pixels/144))/(Pixels/576)==0){j=Pixels-i+Pixels/576-1;}

else if((i%(Pixels/144))/(Pixels/576)==1){j=i;}

else if((i%(Pixels/144))/(Pixels/576)==2){j=Pixels-i; }

else if((i%(Pixels/144))/(Pixels/576)==3){j=i+Pixels/576-1; }

 }

} while (i < Pixels);

}

For explain the code we must to think again with groups of four lines. Like

on the other program the value of i is always increasing while the value of j

it’s depending. On the figure bellow we can see that for the first an fourth

line, the value of j is increasing and for the others is decreasing.

44

The rearrange for the even lines is the same for both DSPs, if we will

process this lines two times at the end we will have the original images.

The actualization of the value of j is similar to the other programs, we can

see that are the same values but rearranged to the line that corresponds

now.

Result:

On the figures bellow we can see which the visual effect in each part is:

Original:

45

After first DSP

After 2nd DSP

We can observe that the last image it’s exactly the same image that the

input.

46

With the help of matlab we can see better what’s happening. On the figure

bellow we are representing the shape of the first values of the buffer in, and

from the buffer out we are showing the corresponding values, with the

delay.

In this figure we can observe that the input image and the output image are

the same, the same shape is indicating the same image. And from the buffer

out of the first DSP to the buffer in of the second one we have this delay of

one line, but with our code the process is correct.

47

Problems:

Before to dispose the software matlab for analyze the values on the buffer,

we only could check that the memory was of the size that we defined but we

don’t really can appreciate what was happening. For this, we spent many

time trying to solve a problem that before we thought that was a problem of

synchronizing of the boards or delay. After, we realized that the lines were

not saving on the memory like we expect: 720 pixels per line. It was saving

the half number of pixels per line: 360. From that moment this was the

most important problem that we have.

 This apparently is not affecting to the image but the reality is that we are

losing much information. If we had had an input image where each column

is a color, we could really appreciate what happen with these rows and what

can we do, but we don’t dispose this tester. First off all we thought of

designing on the first DSP and place it in the second, but this is not possible

as they exit has the same problem.

In that moment we start to revise all the values of the initialization fields

and in every one the pixels per line was defined like 720 pixels.

The parameter PIX_LINES on the VPFE, which is defining the number of

pixels per line and the half lines per frame is initializing correctly but this is

disabled if the VD and HD are defined like an inputs, so we change the first

bit of the parameter SYN_MODE for change the direction to Output.

Unfortunately, this was not working.

After that we study the block diagrams that are on the manual of this VPFE

from Texas Instrument for try to find if it is some bit blocking this value, but

we didn’t find the solution.

We thought that maybe when the board it’s processing an image without

upload an application, the definition of the line was the correct, but the

reality is that the DSP has a program on the flash memory that is running

48

per defect when we connect the board to the alimentation and unfortunately

this program define the line like 360 pixels again.

The next step that we have done, and after make many tests, was check all

the values of the field if they have been uploaded correctly to the memory.

For this we find which address corresponds to each parameter and then see

that is correctly uploaded. All off them where save to the memory correctly,

only where some changes on some reserved bits.

The other problem that we have is the delay. Without an oscilloscope for see

how the analogical signal is we can know where exactly the problem is and

how to solve. Our solution was to change the code for adapt to this

circumstance for the application run well.

49

Conclusions:

This work is to create an application to connect a PAL signal in a projector.

Like we saw on the report, there are some problems yet. The first, and most

important, is the definition of pixels per line following, the delay between the

two boards.

The next step to continue this study should be to analyze the analogy

signals that on the input and output analogy each of the DSP. This can be

possible with an oscilloscope. In this way we can obtain more information,

about how is the analogy signal reconstruct and thus would be easier to find

a solution.

Finally, despite these problems, we managed to reconstruct the original

image and reproduced on a screen. This is after being processed twice, once

by placing the pixels and the second repositioned.

50

Annexes:

Schematic figure of TMS320DM6437:

51

Code video_loopback_test

/*

 * Video Loopback Test

 *

 */

#include "stdio.h"

#include "evmdm6437_dip.h"

#include "tvp5146.h"

#define NTSC 1

#define PAL 0

#define LOOPBACK 0

#define SVIDEO_OUT 1

#define COMPOSITE_OUT 0

#define mem_buffer_out 0x80000000 //Start address for the buffer_out

#define mem_buffer_in 0x800CA800 //Start address for the buffer_in

/* -- *

 * *

 * vpfe_init(ntsc/pal) *

 * *

 * -- */

static void vpfe_init(Uint32 ntsc_pal_mode)

{

 Uint32 video_buffer = mem_buffer_in;

 Uint32 width;

 Uint32 height;

 //Definition of the image in number of pixels

 if (ntsc_pal_mode == NTSC){

 width = 720;

52

 height = 480;

 } else {

 width = 720; //Number of pixels on a line

 height = 576; //Number of lines

 }

 VPFE_CCDC_PCR = 0x00000001; //CCD controller enabled

 VPFE_CCDC_SYN_MODE = 0x00032F85; // interlaced, with VD polarity as

//negative

 VPFE_CCDC_HD_VD_WID = 0;

 VPFE_CCDC_PIX_LINES = 0x02CF020D; //Defined the pixels per line and

the //half lines per frame

 /*

 * sph = 1, nph = 1440, according to page 32-33 of the CCDC spec

 * for BT.656 mode, this setting captures only the 720x480 of the

 * active NTSV video window

 */

 VPFE_CCDC_HORZ_INFO = width << 1; // Horizontal pixels that are

output //to the SDRAM

 VPFE_CCDC_HSIZE_OFF = width << 1; // Offset for each output line in SDRAM

 VPFE_CCDC_VERT_START = 0; // Vertical start line

 VPFE_CCDC_VERT_LINES = height >> 1; // Vertical lines that are output

to //the SDRAM

 VPFE_CCDC_CULLING = 0xFFFF00FF; // Disable culling

 /*

 * Interleave the two fields

 */

 VPFE_CCDC_SDOFST = 0x00000249; //How the values are save on the

//memory

 VPFE_CCDC_SDR_ADDR = video_buffer; //Start address save the input

values

 VPFE_CCDC_CLAMP = 0; //Clamp disabled

 VPFE_CCDC_DCSUB = 0;

 VPFE_CCDC_COLPTN = 0xEE44EE44; //Color pattern

 VPFE_CCDC_BLKCMP = 0; //Compensation of black, no activated

 VPFE_CCDC_FPC = 0; //Disable the replace of the pixels defined

53

//on the next line

 VPFE_CCDC_FPC_ADDR = 0; //Replace pixel x with the average of x-1

//and x+1

 VPFE_CCDC_VDINT = 0;

 VPFE_CCDC_ALAW = 0; //Apply gamma(A-law) disabled

 VPFE_CCDC_REC656IF = 0x00000003; //Enable de REC656 interface

and //FVH error correction

 /*

 * Input format is Cb:Y:Cr:Y, w/ Y in odd-pixel position

 */

 VPFE_CCDC_CCDCFG = 0x00000800; //Location of Y signal odd pixel

 VPFE_CCDC_FMTCFG = 0;

 VPFE_CCDC_FMT_HORZ = 0x000002D0; //Number of pixels on horizontal

//direction=720

 VPFE_CCDC_FMT_VERT = 0x00000240; //Number of pixels on vertical

//direction=576

 VPFE_CCDC_FMT_ADDR0 = 0;

 VPFE_CCDC_FMT_ADDR1 = 0;

 VPFE_CCDC_FMT_ADDR2 = 0;

 VPFE_CCDC_FMT_ADDR3 = 0;

 VPFE_CCDC_FMT_ADDR4 = 0;

 VPFE_CCDC_FMT_ADDR5 = 0;

 VPFE_CCDC_FMT_ADDR6 = 0;

 VPFE_CCDC_FMT_ADDR7 = 0;

 VPFE_CCDC_PRGEVEN_0 = 0;

 VPFE_CCDC_PRGEVEN_1 = 0;

 VPFE_CCDC_PRGODD_0 = 0;

 VPFE_CCDC_PRGODD_1 = 0;

 VPFE_CCDC_VP_OUT = 0x041A2D00;

 VPFE_RESZ_PCR=0; //Disabled resizer module

}

54

/* -- *

 * *

 * vpbe_init(colorbars/loopback, ntsc/pal, svideo/composite) *

 * *

 * -- */

static void vpbe_init(Uint32 colorbar_loopback_mode, Uint32 ntsc_pal_mode,

Uint32 output_mode)

{

 Uint32 video_buffer = mem_buffer_out;

 Uint32 basep_x;

 Uint32 basep_y;

 Uint32 width;

 Uint32 height;

 if (ntsc_pal_mode == NTSC)

 {

 basep_x = 122;

 basep_y = 18;

 width = 720;

 height = 480;

 }

 else

 {

 basep_x = 132;

 basep_y = 22;

 width = 720;

 height = 576;

 }

 /*

 * Setup VPBE

 */

 VPSS_CLK_CTRL= 0x00000018; //Enable DAC and VENC clock, both at 27 MHz

 VPBE_PCR = 0; // No clock div, clock enable

 /*

 * Setup OSD

55

 */

 VPBE_OSD_MODE = 0x000000fc; // Background color blue using clut in

// ROM0

 VPBE_OSD_OSDWIN0MD = 0; // Disable both OSD windows and cursor window

 VPBE_OSD_OSDWIN1MD = 0;

 VPBE_OSD_RECTCUR = 0; //Cursor displayed disabled

 VPBE_OSD_VIDWIN0OFST = width>>4 ; // line with in pixels/16

 VPBE_OSD_VIDWIN0ADR = video_buffer; //SDRAM source address Video

//Window 0

 VPBE_OSD_BASEPX = basep_x; //Sets the maximum image resolution

 VPBE_OSD_BASEPY = basep_y;

 VPBE_OSD_VIDWIN0XP = 0; //Start position

 VPBE_OSD_VIDWIN0YP = 0;

 VPBE_OSD_VIDWIN0XL = width; //Video window width, horizontal

//display in pixels

 VPBE_OSD_VIDWIN0YL = height >> 1; //Vertical display height

 VPBE_OSD_MISCCTL = 0; //Miscellaneous options

56

 VPBE_OSD_VIDWINMD = 0x00000003; // Disable vwindow 1 and enable

// vwindow 0. Frame mode with no

//up-scaling

 /*

 * Setup VENC

 */

 if (ntsc_pal_mode == NTSC)

 VPBE_VENC_VMOD = 0x00000003; // Standard NTSC interlaced output

 else

 VPBE_VENC_VMOD = 0x00000043; // Standard PAL interlaced output

 VPBE_VENC_VIDCTL = 0x030;

 VPBE_VENC_VDPRO = 0x00; //CBMD bit

//VDPRO es per als colors

 VPBE_VENC_DACTST = 0;

 VPBE_VENC_DACSEL = 0x00004210;

 /*

 * Choose Output mode

 */

 if (output_mode == COMPOSITE_OUT)

 VPBE_VENC_DACSEL = 0x00000000;

 else if (output_mode == SVIDEO_OUT)

 VPBE_VENC_DACSEL = 0x00004210;

}

57

/* -- *

 * *

 * video_loopback_test() *

 * *

 * -- */

Int16 video_loopback_test(){

 Int16 ntsc_pal_mode;

 Int16 output_mode;

 EVMDM6437_DIP_init();

 {

 /* Check Video Settings */

 ntsc_pal_mode = EVMDM6437_DIP_get(JP1_JUMPER); // NTSC or PAL

 output_mode = EVMDM6437_DIP_get(SW7_SWITCH); //SVideo/Composite

 if (ntsc_pal_mode == NTSC) {

 if (output_mode == COMPOSITE_OUT)

 printf(" Video Loopback test: [NTSC][COMPOSITE]\n");

 else if (output_mode == SVIDEO_OUT)

 printf(" Video Loopback test: [NTSC][S-VIDEO]\n");

 else

 return -1;

 }

 else if (ntsc_pal_mode == PAL)

 {

 if (output_mode == COMPOSITE_OUT)

 printf(" Video Loopback test: [PAL][COMPOSITE]\n");

 else if (output_mode == SVIDEO_OUT)

 printf(" Video Loopback test: [PAL][S-VIDEO]\n");

 else

 return -1;

 }

 else

 return -2;

 /* Setup Front-End */

58

 tvp5146_init(ntsc_pal_mode, output_mode);

 vpfe_init(ntsc_pal_mode);

 /* Setup Back-End */

 vpbe_init(LOOPBACK, ntsc_pal_mode, output_mode);

 } ;

 return 0;

}

59

Code tvp5146:

/*

 * Copyright 2006 by Spectrum Digital Incorporated.

 * All rights reserved. Property of Spectrum Digital Incorporated.

 */

/*

 * TVP5146 Video Decoder

 */

#include "tvp5146.h"

Uint8 rom_version;

Uint8 chipid_msb;

Uint8 chipid_lsb;

/* -- *

 * *

 * tvp5146_rset *

 * *

 * Set codec register regnum to value regval *

 * *

 * -- */

void tvp5146_rset(Uint8 regnum, Uint8 regval)

{

 Uint8 cmd[2];

 cmd[0] = regnum; // 8-bit Register Address

 cmd[1] = regval; // 8-bit Register Data

 EVMDM6437_I2C_write(TVP5146_I2C_ADDR, cmd, 2);

}

/* -- *

 * *

 * tvp5146_rget *

 * *

60

 * Return value of codec register regnum *

 * *

 * -- */

Uint8 tvp5146_rget(Uint8 regnum)

{

 Uint8 cmd[2];

 cmd[0] = regnum; // 8-bit Register Address

 cmd[1] = 0; // 8-bit Register Data

 EVMDM6437_I2C_write(TVP5146_I2C_ADDR, cmd, 1);

 EVMDM6437_I2C_read (TVP5146_I2C_ADDR, cmd, 1);

 return cmd[0];

}

61

/* -- *

 * *

 * tvp5146_init() *

 * *

 * Initialize the TVP5146 *

 * NTSC/PAL/SECAM 4x10-Bit Digital Video Decoder *

 * With Macrovision Detection, YPbPR/RBG Inputs *

 * -- */

void tvp5146_init(Uint32 ntsc_pal_mode, Uint32 input_mode)

{

 rom_version = tvp5146_rget(0x70);

 chipid_msb = tvp5146_rget(0x80);

 chipid_lsb = tvp5146_rget(0x81);

 _waitusec(1000); // wait 1 msec

 if (rom_version < 8)

 {

 tvp5146_rset(0xE8, 0x02); // Initalize TVP5146, must do after power on

 tvp5146_rset(0xE9, 0x00); // Skip if using TVP5146-M2

 tvp5146_rset(0xEA, 0x80);

 tvp5146_rset(0xE0, 0x01);

 tvp5146_rset(0xE8, 0x60);

 tvp5146_rset(0xE9, 0x00);

 tvp5146_rset(0xEA, 0xB0);

 tvp5146_rset(0xE0, 0x01);

 tvp5146_rset(0xE0, 0x00);

 _waitusec(1000); // wait 1 msec

 }

 switch(input_mode)

 {

 case SVIDEO_IN:

 tvp5146_rset(0x00, 0x46); // Input Video: S-video: VI_2_C(Y) VI_1_C(C)

 break;

62

 case COMPONENT_IN:

 tvp5146_rset(0x00, 0x05); // Input Video: CVBS : VI_2_B

 break;

 }

 switch(ntsc_pal_mode)

 {

 case NTSC:

 tvp5146_rset(0x02, 0x01);

 break;

 case PAL:

 tvp5146_rset(0x02, 0x02);

 break;

 }

 tvp5146_rset(0x34, 0x11); // Enabling clock & Y/CB/CR input format

 _waitusec(1000); // wait 1 msec

}

63

Code first DSP, how should be:

#include <stdio.h>

#include <stdlib.h>

#include "stdio.h"

#include "evmdm6437.h"

extern Int16 video_loopback_test();

//Definitions

#define Pixels 207360 //207360 number of pixels that we save on memory

Int32 buffer_out[Pixels]; //here is the output information

Int32 buffer_in[Pixels]; //here is the input information

//Charge the values from the initial address that is defined on video_loopback_test

file

#pragma DATA_SECTION(buffer_out,".ddr2") //buffer_out from 0x80000000

#pragma DATA_SECTION(buffer_in,".ddr2") //buffer_in from 0x800CA800

//Rearange function

void Final(void){

//local variables

Int32 i,j;

Uint32 temp;

j = 0; //used for select a value from the buffer_in

i = 0; //used for select a value from the buffer_out

do{

//Copy the value on the position j of the buffer_in on the position i

from //the buffer_out

temp=buffer_in[j];

buffer_out[i]=temp;

64

i++; //always are saving the next value on the buffer_out

//With j variable we select which value from the buffer in we want to

//copy on the buffer_out.

//j is this variable which is moving for rearrange the pixels.

if(i%(Pixels/144)<(Pixels/288)){ j++; }

else{ j--; }

if(i%(Pixels/576)==0){

//1st line of the group of four

if((i%(Pixels/144))/(Pixels/576)==0){ j=i;}

//2nd line of the group of four

else if((i%(Pixels/144))/(Pixels/576)==1){j=Pixels-i;}

65

//3rd line of the group of four

else if((i%(Pixels/144))/(Pixels/576)==2){j=i+Pixels/576-1;}

//4th line of the group of four

 else if((i%(Pixels/144))/(Pixels/576)==3){j=Pixels+Pixels/576-i-1;}

}

} while (i < Pixels);

}

void main(void){

 /* Initialize BSL */

 EVMDM6437_init();

//function from the video_loopback_test file

video_loopback_test();

while (1){

Final();

}

 printf("\n***ALL Tests Passed***\n");

 SW_BREAKPOINT;

}

66

	Application with:
	TMS320DM6437
	Diana Ripoll Pérez
	Prague 21-June_2009
	Thanks to:
	INDEX:
	Hardware:
	Software:

	Configuration:
	APPLICATION:
	PAL:
	REARRANGE:
	Video_loopback_test.
	One DSP:
	Invert program
	Inv_1():
	Inv_2()

	PROGRAMS WITH TWO DSPs
	How should be:
	Main file of DSP1:
	Main file of DSP2:
	Rearrange from DSP1:
	Rearrange from DSP2:

	Problems:
	Conclusions:
	Schematic figure of TMS320DM6437:
	Code video_loopback_test
	Code tvp5146:
	Code first DSP, how should be:

