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Tesi de Màster
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Preface

This master’s thesis falls into the field of computer science applied on mi-
croelectronics. The design process of Very-Large-Scale Integration (VLSI) cir-
cuits circuits is challenged by exponentially increasing integration densities and
shrinking characteristic geometries on a chip. The wires, rather than devices,
become the dominant factor in deciding the performance, power consumption,
and reliabilities of VLSI systems.

Placement and routing are two steps that produce the physical layout based
on the netlist information, and determine the performance of the circuit in terms
of the length of wires. The study of this thesis is concerned about net models
on wirelength estimation employed in placement. The final routed wirelength
in the later routing phase is needed to be efficiently approximated in earlier
placement phase. The accuracy and computational complexity of net models
are factors to be considered in this work.

From computer science point of view, the minimum amount of wires required
to interconnect n pins of a net is computed by construction of minimum Steiner
tree which is a combination of two polynomial-time graph algorithms: shortest
path and minimum spanning tree. However, the Steiner tree problem is NP-
complete, and thus optimization of Steiner tree wirelength (StWL) cost regarded
to be unpractical in placement.

The traditional approach is to employ Half-Perimeter Wirelength (HPWL)
heuristic which estimates the netlength as half-perimeter of bounding box en-
closing all the pins. One can easily see that HPWL gives the exact estimation
for 2-pin and 3-pin nets, but the error in the case of multi-pin nets can be sig-
nificant. The motivation to design a new net net model comes from necessity
to improve the HPWL net model for multi-pin nets.

A novel clustering approach to the problem of netlegnth modeling is proposed
in this thesis. A net is split into several subnets and the total HPWL of the
subnets presents the wirelength. Clustering idea supposed supposed to work,
because the HPWL measure is applied to subnets with smaller pincount than
the original ”unbroken” net. Moreover, the pins are clustered according to the
density of their positions and resulted clusters assumed to go along contours of
Steiner tree. The accuracy of the net model has been proved empirically and
has shown the superior results in comparison with HPWL.

In terms of computational time, a effective multi-clustering algorithm is
proposed for breaking the net into subnets. One of the main contributions of
the thesis concludes in linear algorithmic complexity on the number of pins.
The implementation of well-known k-means clustering approach is combined
with local search on the optimal number k of clusters.

In experiments, the clustering algorithm has been used to build a new netlist
where each original multi-pin net is substituted by subnets obtained by cluster-
ing. Since placement is typically proceeded in two global and detailed steps, the
new netlist is constructed after global placement and passed to detailed place-
ment. This experimental scheme has a practical advantages for physical design



community; our net model can be easily integrated and tested in any placement
framework regardless of internal implementation of the placer.

The experiments have been run on the most recent circuit benchmarks con-
taining up to 100 million of components and for three different type of placers.
Obtained results have shown that our implementation of StWL cost outperforms
the traditional HPWL-based approach in reduction of both wirelength and wire
delays, with no or little additional CPU time. Thus, this thesis gives a positive
answer to the key question in VLSI placement whether it is worth to replace
the common HPWL measure by Steiner tree in netlength modeling.
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Abbreviations and

Acronyms

VLSI

CAD

MST

SMT

RSMT

HPWL

StWL

rWL

MCN

Very-Large-Scale Integration

Computer Aided Design

Minimum Spanning Tree

Minimum Steiner Tree

Rectilinear Steiner Minimum Tree

Half-Perimeter Wirelength

Steiner tree wirelength

routed Wirelength

Multi-Clustering Net (model)
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Chapter 1

Introduction

This chapter starts with a short overview of the high-speed microelectronics
and introduces some basic concepts of the design process in Section 1.1. Special
attention is given to physical design phase which is presented in Section 1.2.

The research interest of the thesis is related with models for estimation the
wirelength needed to interconnect circuit components on the physical layout.
Such models applied in different levels of physical synthesis are briefly described
in Section 1.3, that will be required to introduce the statement of the problem
in Section 1.4.

1.1 Microelectronics

The phenomenal achievements have been happened in electronics over the past
three decades, mainly because of the advent of Very-Large-Scale Integration
(VLSI). The VLSI technology came with Computer Aided Design (CAD) that
has been enabling the constant growth in the complexity and performance of
integrated circuits. Many new applications and innovations powered by tran-
sistors continue coming in our daily lives and introduce new opportunities in
high-performance computing, telecommunications and consumer electronics.

The number of circuit components in a chip has been rising according to Moore’s
Law which states doubling roughly every 18 months. Now days Intel Corp. en-
ters billion-transistor era, releasing the ”Penryn” processor on 45 nm technology
with 820 million transistors [8].

To cope with the rapid and steady increase in circuit complexity, the abstraction
hierarchy is traditionally used to split VLSI design cycle into separate tasks. The
current design flow typically proceeds in the following sequence.

Behavioral level design creates the functional specification models of inte-
grated circuit in terms of input, output and timing of each block, without
describing its internal implementation. The area, power and other param-
eters are assigned to each block and should be maintained further. Such
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high level of abstraction allows to employ sophisticated data and control
representations for inspection the correct functioning of the circuit.

Logic design converts the behavioral specification into a register transfer level
(RTL) description including the control flow, word widths, register allo-
cation, arithmetic and logic operations. The logic design is simulated and
tested with the goal of minimization on the number of Boolean expres-
sions.

Circuit design transforms the logic expressions into a circuit representation
with components like cells, macros, gates, transistors, and interconnec-
tions along them collected in a netlist. Circuit simulation is used to verify
the correctness and timing of each component.

Physical design generates geometrical layout of the chip by representing cir-
cuit elements as rectangular shapes, and interconnections along them - as
wires in multiple metal layers. Compact arrangement of area and accurate
routing of wires evaluate the final performance of the circuit.

Therefore, the VLSI design process can be represented as transformation of
data, where a VLSI chip can be viewed behaviorally as a system of functional
restrictions, structurally as a family of logic gates, or physically as a population
of rectangular cells interconnected by wires. However, the success of this ap-
proach strongly depends on correlation between abstract models at the higher
level and physical implementation at the lower level.

In fact, today’s nanometer-scale silicon complexity makes existing abstractions
at earlier design stages largely incapable of simulating the performance, com-
plexity and reliability of the interconnect. Typically, the hierarchal structure of
the design flow is extended by verification design stages, and many iterations
over the flow sequence are required to meet the design constraints. The princi-
pal objective of VLSI CAD tools is to minimize both the time of each iteration
and the total number of iterations, thus reducing time-to-market.

Another critical factor in VLSI design process comes from the interconnect-to-
device delay ratio, which is expressed in dominance the interconnect delay over
the device delay. Thus, the VLSI system requires more time to send data from
one chip component to another than to produce the data by devices. This ratio
grows ever more problematic as design sizes increase. Due to rising interconnect
delay, the early physical design starts beforehand in the design cycle, in order to
get improved estimates of the performance of the circuit. As a result, high level
representations of the design receive a feedback from physical implementation
and identify some potential layout problems.

In conclusion, it is important to stress the crucial role of physical synthesis in the
current deep submicron design. The performance of the circuit can be evaluated
completely only in the last design phase, when circuit components are placed
on the layout and interconnects along them are routed as wires. Additionally,
reliable estimation of wire path and other physical effects definitely assist to fill
the gap between physical implementations and abstract models in early design
steps. In the future, such integration of physical design assumed to prevent
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iterations of the design steps by replacing verification procedures in different
design levels [9].

The overall scheme of the VLSI design cycle within verification and early phys-
ical design steps is presented in Appendix A. The physical design phase is
described in the next section.

1.2 Physical Design

Following logic synthesis and circuit design, circuit components are extracted
from a physical library and transformed into specific rectangular shapes of fixed
dimensions. These components are referred to as modules or cells, and intercon-
nections between them - as nets. The nets are collected in a netlist, and timing
constraints on signal prorogation paths along nets are also specified. The output
of the physical design stage is the layout of the circuit, where all the cells are
positioned on the chip without overlapping and all the interconnection paths
are completed.

Once the layout has been produced, one can ascertain the speed of the chip, its
power consumption and other performance characteristics. Let us see how the
performance constraints are formulated geometrically in physical design.

According to geometrical abstraction, circuit components are associated with
rectangular shapes regardless logic function intended inside. Instead, a critical
quantity controlling the performance is the amount of wire needed to intercon-
nect cells. Timing delay over the signal path regarded to be strongly consistent
with the path length: the shorter path the less time required for signal pro-
rogation. Therefore, the total wirelength serves as a primary cost function in
physical design that determines the performance speed of a chip.

However, the layout with short wirelength may have some local areas with
high congestion of wires. Due to very high utilization ratio in many integrated
circuits, congestion may happen in many areas of the chip, especially in areas
with high connectivity of cells. Thus, congestion appeared to be another typical
cost in physical design. Wirelength and congestion costs are dependent and
should be improved concurrently in design flow.

The important characteristic of the layout is routability, that means the ability to
pass wires along available routing channels. Accordingly, congestion considered
to be its direct measure, whereas wirelength - a consistent approximation. The
task of producing routable circuit with short wirelength is very complex and
computationally demanding, and traditionally broken into two steps. 1

Placement determines the positions of cells on the chip with minimum area
arrangement and the shortest estimated wirelength. Due to the vast space
of possible solutions, simple models of wirelength estimation are employed

1Indeed,integrated circuit is firstly partitioned into sub-circuits, referred to as modules.
Then Floorplanning assigns the modules along the layout with optimal arrangement in terms
of area and interconnections. The next two steps Placement and Routing complete the layout
for each module.
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to save runtime. Additionally, the measure of routability is selected as the
total wirelength of interconnects, although some congestion-aware tech-
niques are used in modern placers.

Routing receives the layout of cells with assigned positions that can not be
changed. The objective of routing is to complete the interconnections
between cells according to their positions and free available space by us-
ing the shortest possible wirelength measure. Routers take into account
both the total wirelength for performance optimization and congestion for
construction the physical path of wires on the layout.

The details of placement and routing algorithms will be given in the next chap-
ter, while the remainder of this section is addressed to the problem of coherence
between placement and routing.

Placement algorithms can afford to employ only estimation techniques of both
wirelength and congestion because of the huge number of objects to be posi-
tioned from scratch. Contrary to placers, routers utilize exact algorithms to
construct the shortest path of wires and evaluate congestion constructively.

For simplicity sake, placement can be viewed as a preparatory step for intercon-
nect optimization performed in routing phase. Contrary to routers, placers dot
not take into account such physical effects in interconnection path as detours of
wires due to congestion or the number of bends, but employ abstract models for
estimation the wirelength. The criteria to accuracy of these models is restricted
by consistency with the routed wirelength.

The estimation of the routing cost is crucial during placement. On one hand,
it is desirable to use models that provide an accurate estimation of the final
wirelength. On the other hand, the models must be simple enough for the
algorithms to have a manageable computational complexity. This trade-off is a
continuous area of research in physical synthesis.

The thesis is dedicated to the problem of minimizing the total routed wirelength
which is one of the fundamental goals in the VLSI placement stage. The next
section introduces basic wirelength models implied during different phases of
physical design. After defining the net model in terms of graphs, the description
will be focused on accuracy and computational complexity of the models.

1.3 Wirelength Net Models

From computer science point of view, algorithms of physical design operates
with connectivity graph based on the netlist information and project the graph
onto 2D space satisfying predefined interconnect constraints. Each node of the
graph a rectangular cell with width and height on the die. Edges of the graph
have a hyperedge structure and express a interconnection a certain number of
cells, referred to as terminals or pins. The number of pins corresponds to the
net degree. Therefore, a net model is responsible to interconnect all the pins of
the net using minimum amount of wire, which corresponds to graph problems
including minimum spanning tree and minimum steiner tree.
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Minimum Spanning Tree (MST) Given an edge-weighted graph G = {V,

E}, select a subset of edges E′ ⊆ E, such that E induces a tree and
the total cost of edges is minimum over all such trees [4]. The weights
are usually the length of edges. Either Prim’s or Kruskal’s algorithm
provides the best complexity O(n·log(n)) for the tree with n vertices. This
approach can produce good wirelength estimation in reasonable amount
of time.

Minimum Seiner Tree (SMT) Given an edge-weighted graph G = {V, E}
and a subset D ⊆ V , select a subset V ′ ⊆ V , such that D ⊆ V ′ and V ′

induces a tree of minimum cost over all such trees [4]. The set D includes
all pins of the net, and the set V ′ −D contains additional Steiner points.
It is easy to see that SMT is equivalent to MST if D = V . However, unlike
MST, SMT and many its variant are NP-complete [10].

Rectilinear Seiner Minimum Tree (RSMT) A Steiner tree whose edges
are constrained to be rectilinear is called a Rectilinear Steiner Tree (RST).
A RSMT is a RST with minimum cost among all RSTs.

RSMT gives the exact wirelength estimation for routing of multi-pin net. This
problem has traditionally been viewed as a Steiner tree problem [4]. Therefore,
routers employ Steiner tree Wirelength (StWL) model based on RSMT con-
struction. Before layout is completed by routing, the StWL model is also used
in other physical design tools, for example, for timing analysis.

The wirelength based on MST is rarely utilized in physical design as a net model,
because the MST length was proved by Hwang to be at most 3/2 times larger
than the RSMT length. As a result of this theoretical bound, MST serves as
either a fast estimation of RSMT, or a starting point to obtain RST by means
of local modifications.

However, construction of RSMT is still too computationally expensive for place-
ment algorithms, even using the most recent Steiner tree heuristics [11, 7]. A
simple and efficient Bounding Box heuristic is preferred to MST in placement.

Half-Perimeter Wirelength (HPWL) This model is the most popular net
model in placement and estimates the netlength by the half-perimeter
of the bounding box of a net. It has been proven that this technique
provides the optimal solution for 2-pin and 3-pin nets and a lower bound
for nets with higher degree, with respect to StWL. The HPWL is very
efficient, showing linear complexity O(n) on net degree. However, it can
significantly underestimate wirelength for multi-pin nets.

Weighted Wirelength (WWL) Cheng proposed a net weighting technique
to scale up the HPWL estimation. The net weights are degree and perime-
ter dependent constants, which are experimentally determined. However,
even for different nets with the same degree, the error in the HPWL esti-
mation can be very different. It is impossible to derive a single net weight
to accurately scale up the HPWL estimation for all nets.
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State-of-the-art placers and routers traditionally approximate the wirelength
with StWL and HPWL respectively. In placement, HPWL is the first-choice net
model, because it much more faster in comparison with StWL and empirically
proved to be well consistent with the final routed wirelength. The next example
of wirelength estimation underlines the main drawback of the HPWL model:
crucial underestimation for multi-pin nets.

Figure 1.1 presents the progression of net model usage in physical design on ex-
ample of a high degree net with 6 pins. The net is represented as a hyperedge in
the input of physical design cycle as shown in Figure 1.1(a). The HPWL estima-
tion of the netlength in placement phase gives 14 units in Figure 1.1(b). More
accurate and computationally expensive StWL model is used in routing phase
and evaluates the length of 17 units in Figure 1.1(c). Both HPWL and StWL
models approximate the final routed wirelength (rWL) in Figure 1.1(d), that is
always concerned with error due detours in path because of wire congestion.

Experience in physical design community confirms the HPWL model to be a
reasonable and efficient heuristic in placement [5, 12], although the netlength
underestimation is significant for multi-pin nets. This inaccuracy of HPWL
considered to be admitted, because the percentage of high degree nets in the
netlist is typically low and includes around 20%. The research direction of this
thesis goes against the main stream and explores the option of using the StWL
cost in placement.

If the traditional HPWL net model is replaced by StWL, can the final wirelength
be minimized, thus improving the performance of the chip? What kind of
heuristic can fit the computational constraints in placement phase and increase
the accuracy of estimation? What experimental scheme should validate our
approach for different types of placement algorithms? All these questions will
be considered in the next section.

(a) Physical Design input:
Hyperedge connection

(b) Placement:
Half-Perimeter of Bounding Box = 14

(c) Routing:
Rectilinear Steiner minimal tree = 17

(Steiner points as white circles)

(d) Routing:
Routed Wirelength = 18
(congested region in pink)

Figure 1.1: Wirelength estimation in physical design. Example of a net with 6
pins.
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1.4 Statement of the Problem

This thesis is situated on the placement phase of the physical design flow. The
strong interconnect issues needed to be efficiently modeled in early placement
phase and reflects the importance of the problem. The motivation comes from
the necessity to improve the traditional HPWL measure. The goal of the thesis
is to design a net model for approximation StWL rather than HPWL. The model
must be integrated in any available public placement tool and validated on the
academical circuit benchmarks.

StWL cost in placement

The thesis is based on assumption that StWL evaluates the final routed wire-
length better than HPWL, and our net model aims to approximate StWL.
Optimization of the StWL cost rather than HPWL believed to improve the
performance of the chip that will be verified by computing wire delays after
placement is finished.

The thesis does not address the problem of congestion estimation during place-
ment. This work examines only influence of the wirelength cost on placement
results. The combination of modeling Steiner tree wirelength and congestion-
aware technique assumed to consist a good framework for optimization the
routed wirelength in future. Such perspectives for placement algorithms un-
derline the importance of our research in StWL optimization.

Clustering approach

The contributions of this thesis is a novel clustering approach to evaluate the
length of a net. A simple geometrical heuristic is used to increase the accuracy of
HPWL, where bounding box that include pins of the net is divided into regions
accordingly to density of pins positions. In terms of net model, splitting the
net into several lower degree subnets, the total HPWL of the subnets estimates
wirelength significantly better than HPWL of the original net.

To be competitive in CPU time with the HPWL model, an efficient clustering
algorithm is proposed with complexity linear on the number of pins. As an
advantage of our Steiner tree heuristic, it is HPWL-based in the sense that the
length of the subnets is evaluated by HPWL. Thus, placer can continue employ
well-developed methods on HPWL minimization.

Experimental scheme

Practically, the proposed approach can be integrated in any placement tool by
transforming the circuit netlist between any consecutive placement stages ac-
cordingly to the new net model. The improvement in the final Steiner tree
wirelength and wire delays have been tested for the most recent circuit bench-
marks.
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1.5 Description of the Chapters

Chapter 2 introduces some basics of the VLSI placement and routing stages.
For each stage, formal definition of the problem and common algorithms are
presented. These algorithmic details are necessary to introduce the new net
model suitable for different placement approaches.

Chapter 3 explains the idea of clustering approach to netlength modeling and
describes the designed algorithm. It also proves the linear complexity of the net
model.

Chapter 4 presents experimental results on integration of our net model in
placement framework. We track the reduction in StWL rather than traditional
HPWL, and improvement in wire delays.

Finally, Chapter 5 presents the conclusions of this master’s thesis and future
research topics.
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Chapter 2

Place-and-Route Basics

Placement and routing are the two steps that produce the physical layout of a
circuit. The circuit in physical design is represented geometrically, with circuit
elements as rectangular cells on the fixed die, and interconnections as net in
the hyperedge format. According to such circuit abstraction, place-and-route
methods typically employ geometrical-based algorithms and graph algorithms,
in order to place the cells and optimize the interconnections, which in turn are
presented as a connectivity graph.

The cost function of algorithms for physical layout incorporate factors respon-
sible for the quality of the circuit, such as area, delay and routability. However,
the wirelength cost is the main objective in placement and routing which re-
garded to be consistent with all the costs mentioned above. Special attention
will be given to wirelength minimization and the difference of netlength model-
ing in placement and routing.

Although the research interest of the thesis falls into placement, the description
of routing phase is also given. In the current physical design, placers have be-
come more routability-oriented, and optimization of only the wirelength cost in
placement is not sufficient for achievement the routable circuits. The contribu-
tion of optimization the wirelength cost to the final performance of the circuit
will be on the focus of place-and-route description.

The goal of this Chapter is to overview basics of physical design which will be
necessary further, for introduction the proposed net model and description the
experimental framework. Sections 2.1 and 2.2 present placement and routing
steps respectively.

The important material in Section 2.1 is concerned about description of contem-
porary algorithms used in placement. The design of the net model presented in
this thesis is strongly correlated with algorithmic details and a particular im-
plementation of placers. The next Section 2.1 gives the necessary background
of placement phase in physical design.
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2.1 Placement

Placement is a fundamental problem in physical design because of serious inter-
connect issues induced delay, routability, and noise especially in deep-submicron
designs, which all have to be estimated or resolved in early placement phase.
The placement problem has become very active in recent years, and many new
academic placers for wirelength minimization were published since 2000. There
are many other publications to handle timing, routability and power dissipation.

Placers determine the interconnection of circuit components to the first order.
Consequently, routers receive fixed positions of cells and complete interconnec-
tions by constructing the exact wire passes. Thus, routers can not improve the
wirelength dramatically due to fixed placement of cells.

Other factors underlying the importance of placement are concerned with some
requirements to placement algorithms. Placement problem becomes signifi-
cantly larger, and placers must handle circuits with up to 100 million of cells.
Moreover, placement information is needed in early design stages, for exam-
ple, in logic synthesis. Therefore, scalable and compact placement solutions are
essential with nearly linear complexity of placement algorithm.

Two main performance cost functions are abstracted in placement. First, min-
imization of cycle time of the circuit is associated with the reduction the wire-
length (estimated), that force cells connected with nets to be placed near each
other. Typically, critical nets are considered notable in the netlist for high net
weights. Second, placers must ensure the routability of the nets. Although
short connections are advantageous for routing, the routing cost is contrary to
the wirelength cost for local regions of the layout with high connectivity density
of cells.

The next Section 2.1.1 presents the formal definition of the placement problem
and put the stress on description of the cost functions.

2.1.1 Placement Problem Definition

Given a netlist and fixed-shape cells, find the exact location of the cells to
minimize area and wirelength. The available layout region for placement is
presented as rectangular space with terminal input/output cells fixed on the
boundaries. The problem can be formulated as follows:

• Input:

– Blocks ( standard cells and macros ) B1, B2, ..., Bn

– Height and width for each rectangular block Bi

– Nets N1, N2, ...Nm

• Output:

– Coordinates (xi, yi) for each block Bi

– No overlaps between blocks
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– The total wire length is minimized

– The total area is minimized or given a fixed die

• Other considerations: timing, routability, clock, buffering and interac-
tion with physical synthesis.

Minimization of total occupied area means tight packing of cells. The most
critical objectives include wirelength and overlap costs. These two main cost
functions are opposite in action, since the shortest wirelength provokes the col-
lapse of the cells in the same location.

In the next Section, the placement algorithm will be considered only as a
wirelength-driven approach. To take into account other issues like routability
or timing, additional cost-aware technique are induced in placement. However,
this topic is out of the scope in this thesis.

Design Style Specific

Geometrical design of the circuit can be generated by using different design
styles which correspond to the physical implementation of rectangular shapes
and channels for passing wires. In this thesis, the methodology of standard
cells is considered, since it is very popular in the physical design and the most
academical benchmark circuits are presented in this format.

The standard cells hold the same height and have to be placed in predefined
rows. All rows are typically of the same width. Thus, circuit elements are ranged
only in width when mapped from the physical library. The wires are physically
routed along empty spaces over the standard cells rows. The standard cells are
designed such a way that the power and ground nets run horizontally through
the top and bottom of cells.

The physical properties of the standard cell design is critical for routing step,
whereas placement considers design specifics only in the last phase when cells
have to be fitted to rows exactly.

2.1.2 Global and Detailed Placement

Traditionally, placement is separated into two phases, global and detail place-
ment. The mail goal of global placement is to distribute the cells evenly over the
circuit layout, in order to minimize certain objectives such as wirelength. Over-
laps of the cells are admitted and constrained lightly. The next Section 2.1.3
is focused on overview of global placement algorithms, since they perform the
most of work in placement.

Detailed placement performs finer work on legalization of the cells fixing overlap-
ping. The minor task of detail placer is further improvement in wirelength and,
possibly, in timing and routability. However, detailed placers are restricted in
runtime and can be requested only to assign the cells positions without overlaps.

Current detailed placement algorithms employ greedy heuristics on local per-
turbation of nets for better placement. The reduction in wirelength can achieve
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(a) Bad Placement (b) Good Placement

Figure 2.1: (a) Bad and (b) Good Placement in terms of wirelength [1].

several percents in respect with wirelength after global placement. In this the-
sis, this ability of recent detailed placement tools is used to test the proposed
net model, by changing input netlist and testing how detailed placer improves
results due to these changes.

Before going to the next Section 2.1.3 describing placement algorithms, all in-
formation given above can be demonstrated in Figure 2.1. Standard cells design
is depicted with green rows and cells tightly placed on them; wires are denoted
with red lines. Consequently, the placement of cells is legalized and corresponds
to the detailed placement. The Figure shows the crucial role of wirelength cost
in producing the placement layout. Placers must tend to the good layout in
Figure2.1(a) rather than the disordered layout in Figure2.1(b).

2.1.3 Placement Algorithms

Global placers regarded to be more complex and more important in placement.
This Section overviews different approaches to perform global placement. The
constant challenge of the algorithms is scalability. The problem size of the
circuits is steadily increasing and getting closer to one billion of components,
whereas complexity of the algorithms must be nearly linear.

Placement approaches can be different in implementation, but all have two main
cost functions, wirelength of nets and overlaps of cells. The implementation of
the algorithm must concern the way of expressing and optimization of these two
costs.

The wirelength objective is traditionally approximated with HPWL measure.
Since the HPWL minimization placement problem is NP-hard [13] and inap-
proximable [14], placers optimize HPWL heuristically by applying such methods
as min-cut partitioning, quadratic or analytical solvers, or simulated annealing.
All the methods are described in the next Subsections.

In order to produce routable designs, placers typically combine HPWL cost
optimization with different congestion-aware techniques, for example, [15, 16,
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Algorithm 1 Simulated-Annealing Placement Algorithm
Require: A circuit
Ensure: Placement
1: Initialize temperature: T
2: Initialize placement: P (randomly)
3: while T < Tfinal do
4: while little overlapping do
5: Set new placement: Pnew = PERTRUB(P )
6: Compute changes in the cost: δC = COST(Pnew) - COST(P )
7: if δC < 0 then
8: P = Pnew

9: else
10: if RANDOM(0, 1) > eδC/T then
11: P = Pnew

12: end if
13: end if
14: T = SHEDULE(T )
15: end while
16: end while
17: return Placement P

17]. Since the approach presented in this thesis is based on minimization of
StWL, such techniques are not presented in this work, but the most recent
overview can be found in [18].

The further description of the algorithms is accompanied with correspondent
net models on wirelength estimation, which become the important part of the
algorithm. Most of the models tend to approximate the HPWL metric, contrary
to the new net model of the StWL cost proposed in the thesis. However, the
approaches on the netlength modeling introduced in this Section present the
background for the new net model, which will be necessary in the next Chapters.

Simulated-Annealing Placement

Simulated-annealing approach is widely used for circuit placement. This algo-
rithm simulates natural phenomenon of annealing process in crystals and proved
to find the global optimum if there is no limit in runtime. In practice, the main
problem of these algorithm is CPU time constraints. First efficient implementa-
tion was proposed in TimberWolf 3.2 placer [19], which has become a classical
implementation of the Simulated-Annealing approach.

The outline of the TimberWolf algorithm is presented in Algorithm 1. The
placement is firstly generated randomly and then improved iteratively with de-
creasing temperature. The state of the system, which is placement of the circuit,
is changed by perturbation function PERTRUB. The cost function COST estimates
the quality of the placement for the given temperature. The placement is up-
dated in two cases, if the improvement in cost is positive (line 8) or the system
is not cold enough to accept the random move (line 11).

The contribution of TimberWolf implementation consists in a good choice of
functions PERTRUB and SHEDULE which simulate freezing of the placement state-
based system. Particularly, the perturbation includes tree types of operations:
move a circuit block, interchange between blocks and interchange in orientation
for a block.
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Figure 2.2: Decomposition of a tree-pin net to two-pin connections.

The COST function incorporates typical placement objectives of wirelength, over-
lap penalization and timing violations. The wirelength is traditionally expressed
with the HPWL model, although it can be any net model which fits to runtime
bounds.

WLSA = HPWL (2.1)

Analytical Placement

The analytical approach employs methods of mathematical programming to
solve the placement problem. The cost of the algorithm is split into two wire-
length and overlap components as for other placers, but both cost functions must
be smoothly convex and continuously differentiable, in order to use differential
calculus.

The overlap component can be modeled by any heuristic that penalize the col-
lapse of cells. Typically, the bell function is used for this. The other component
of wirelength supposed to approximate the HPWL measure, which is not a con-
vex function. The great finding here is a Naylor function presents an elegant
way of expressing the wirelength by sum of log-exponential expressions.

Given a net with pin coordinates {(x1, y1), (x2, y2) . . . (xk, yk)}, the wirelength
objective is

WLAP (α) = α·(ln(
∑

exi/α)+ln(
∑

e−xi/α))+α·(ln(
∑

eyi/α)+ln(
∑

e−yi/α))
(2.2)

The function WLAP (α) converges to HPWL as α converges to 0.

Non-linear mathematical methods on optimization the differentiable cost func-
tion are used to cope with the optimization task. The most famous representa-
tives of analytical placement are mPL [20] and Aplace [16].

Quadratic Placement

Quadratic placers also belong to the group of analytical approaches, because
they use quadratic wirelength objective. Such abstraction gives inaccurate esti-
mate, but, instead, the wirelength can be minimized very efficiently by solving
a system of linear equations.

Quadratic placers can operate only with two-pin nets, so each net (originally
presented in the netlist as a hyperedge) is decomposed into a set of two-pin
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Algorithm 2 Quadratic Placement Algorithm
Require: A circuit
Ensure: Placement
1: Convert hyperedges in the netlist to 2-pin connections
2: Compute wirelength: WL =

P
i WLq(i) ∀ nets i

3: Placement P ← System of linear equation derived from WL
4: while little overlapping do
5: Compute wirelength: WL =

P
i WLq(i) ∀ nets i

6: Add overlap constraints (also quadratic): WL + Overlap
7: Placement P ← System of linear equation derived WL + Overlap
8: end while
9: return Placement P

connections. Figure 2.2 presents a net with three pins, and quadratic placement
approach computes the netlength as:

WLq =
3∑

i=1,j 6=i

wij · [(xi − xj)2 + (yi − yj)2] (2.3)

where wij are net weights. The adaptation to the HPWL metric consists in
proper calculating of net weights wij .

However, what happen if the net has more than three pins? Special net mod-
els for hyperedge decomposition problem are presented further. Before this
description, the sketch of the quadratic placement is depicted in Algorithm 2.

The initial placement can be computed regardless of any overlap constraints
(lines 1-3) if the circuit includes fixed pads in the netlist, which form the nu-
merical vector for the system of linear equation. The obtained initial placement
is full of overlapping. To spread cells over the layout, quadratic forces are in-
duced to remove overlaps, and the placement is recomputed in the while loop.

The quadratic approach is very popular in physical design. Sine the connectivity
matrix in the system of linear equation is sparse, the calculation of placement
solution can be performed efficiently by mathematical solver of system of linear
equation, for example, LASPack package [21].

In the next paragraphs, some net models for quadratic placement are presented,
that differ in the way of multi-pin net decomposition and calculating net weights
for simulating the HPWL measure.

Clique and Star models. We have seen how to translate a net with three
pins to a set of two-pin connections in Figure 2.2. Now we examine the general
case of a net with k pins and weight W . The clique and the star net models are
traditional for quadratic placement. The first model replaces a net by k(k−1)/2
two-pin nets forming a clique. The second introduces a fake star pin and yields
k two-pin nets. Figure 2.3 illustrates the case when k = 5.

The quadratic wirelength for a k-pin net is expressed as follows:

WLclique =
k∑

i=1,j 6=i

wclique · [(xi − xj)2 + (yi − yj)2] (2.4)
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Figure 2.3: Clique and Star net models [2] for 5-pin net.

WLstar =
k∑

i=1

wstar · [(xi − xstar)2 + (yi − ystar)2] (2.5)

One can readily see that the star node is a midpoint of all k pins, and the two
models are equivalent [2] when the weights are related like wstar = k · wclique.

The star model is preferred for multi-pin nets, since the number of two-pin
connections is equal to k, rather than k(k−1)/2 for the clique model (quadratic
dependency on k).

A quadratic cost function advantages the placement algorithm to be fast and ef-
fective. A number of net weighting heuristics were proposed to adjust quadratic
wirelength to the realistic linear wirelength. Factor 2/k is to adapt the total
net weight to the number of edges in a spanning tree connecting all pins [22].
The additional net weight λ can be used to linearize the quadratic length [23].
The most recent and successful technique to overcome quadratic nature was
proposed within the next net model.

Linear Bounding Box model. The authors in [3] showed that error in wire-
length estimation by the clique model can reach 150% for randomly generated

Figure 2.4: Bounding Box and Clique net models [3] for 5-pin net in x-direction.
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nets. They picked the HPWL metric and proposed a Bounding Box net model,
which is linear rather than quadratic and exactly equivalent to HPWL.

In the Bounding Box model, a hyperedge in the netlist is not transformed into
all possible two-point connections, as it is performed by the clique model. Only a
few characteristic pins are selected, as illustrated in Figure 2.4 a. Two boundary
pins a and b have lowest and highest X coordinates respectively. These two
pins are connected with each other, and all remaining k − 2 pins of the net are
connected with both outer pins a and b. That results in total number of two-pin
connections equal to 1+ 2(k− 2), which is linear on the number of pins k as for
the start model.

The quadratic wirelength for the decomposed net is:

WLbb
x =

1+2(k−2)∑
i=1

wbb
x,i · lx,i

2 (2.6)

Calculations are the same for Y direction. The linearization of the length WLbb
x

is achieved by assignment of weights selected like wbb
x,i = 1/[(k−1) · lx,i]. Finally,

the WLbb
x is exactly equivalent to the HPWL of the net.

Partition-based Placement

Partition-based placement algorithms decompose a given placement problem
to smaller subproblems by subdividing the placement region. Circuit cells are
assigned to subregions cutting the netlist hypergraph connections [24]. Such
min-cut placers generally use either bisection or quadrisection to divide the
placement area and netlist. Fiduccia-Mattheyses heuristic and derivatives [25,
26] are typically used for operations on the netlist. Additionally, some quadratic
placement and geometric partitioning methods [27] can be also utilized.

Figure 2.5 shows an example of partitioning processing from initial random
placement and two consistent bisections. The accompanying procedure in cir-
cuit partition is terminal propagation [28] where nodes external to the regions
being partitioned are propagated as fixed terminals to them. Consequently,
movable cells are positioned closer to their terminals in partitions, hence reduc-
ing wirelength.

The min-cut cost serves as an objective of the algorithm, so there is no implicit
net model like in quadratic placement framework. The main challenge is to
associate the min-cut cost with a selected netlength metric by performing a
weighted min-cut. Further, we overview some a method for proper calculation
of weights, in order to make equal min-cut cost to HWPL.

Weighted min-cut for HPWL. For each net in each partitioning block, one
must calculate the cost of all pins on the net being placed in partition 1 (w1),
the cost of all pins on the net being placed in partition 2 (w2) and the cost of all
pins on the net being split between partitions 1 and 2 (w12). For simplicity sake,

23



Figure 2.5: Min-cut placement approach [1].

we address a 3-case analysis [29], which minimize total HPWL during min-cut
placement.

Up to two hyperedges can be created in the partitioning block, one with weight
|w1 − w2| and the other with weight w12 − max(w1, w2). The only assumption
is that w12 ≥ max(w1, w2). The HPWL of the set of pins necessary to calculate
w12 is at least as large as that of w1 and w2 since it contains an additional points
- the centers of two partitioning blocks. More details are supported in [29].

In addition, we mention the authors of [30], who introduced a new terminal
propagation technique that allows the partitioner for better mapping net-cut to
HPWL.

Conclusion

Having in mind that the new thesis’ net model is oriented in approximation
of StWL cost, we should answer the question whether the contemporary net
models described above are able to simulate StWL. Such modeling is possible
with the only condition that one needs to build Steiner tree, in order to know the
subject of simulation. Contrary to the HPWL bounding box, the construction of
Steiner tree is NP cost problem. Some heuristic is required for either estimation
the StWL or emulating the paths of Steiner tree.

To evaluate the StWL cost, MST or even HPWL are typically used, but the
results are not satisfactory. The most recent heuristic in Steiner tree construc-
tion [7, 11] regarded to be still computationally expensive in placement [31].
Therefore, the new clustering approach to netlength modeling proposed in this
thesis can fill the gap on StWL minimization in placement.

The next Chapter directly addresses the new net model, whereas this Chapter
ends up with some short introduction to routing problem.
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2.2 Routing

Contrary to placement, routing is a well studied problem, and several hundred
articles have been published about all of its aspects. Since almost all problems
in routing are computationally hard, the researches have focused on heuristic
algorithms. Complete routing of all the connections cannot be guaranteed in
many cases because of hard physical interconnect issues. As a result, techniques
as rip-up and re-route are employed to removes some complex connections and
re-routes them in a different order.

2.2.1 Routing Problem Definition

Given a placement of circuit cells and a number of available metal layers, find a
valid pattern of horizontal and vertical wires that connect the pins of the nets.
The wirelength is estimated with StWL, but the netlength can deviate the paths
of Steiner tree due to congestion of wires.

Formulation of the routing problem is as follows:

• Input:

– Netlist N1, N2, ...Nm

– Timing budgets for, typically, critical nets

– Location of blocks B1, B2, ..., Bn (determined from placement step)

– rectangular shapes for each block Bi

• Output:

– Geometric layout of all nets.

• Objectives:

– Minimize the total wire length, the number of vias, or just completing
all connections without increasing the chip area.

– Each net meets its timing budget.

The traditional approach to routing divides it into two phases. The first stage,
called global routing, assigns a list of routing regions for each net without spec-
ifying the actual geometric layout of wires. The second stage, called detailed
routing, determines the exact route and layers for each net.

Conclusion

This chapter has presented placement and routing problems in physical design
showing the difference in interconnect optimization at each step. Placer can
afford only estimate the wirelength, and the netlength modeling problem is
translated into the task of approximation HPWL or StWL. In routing, physical
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effect of wires are considered which are congestion of wires and consequent
bends in wire paths. The other cost is the number of vias of wires that must be
considered and minimized.

Therefore, in order take into account complete routing cost in placement, placer
must simulate the behavior of router which is not possible. From this point of
view, the criteria of minimal StWL after placement seems to be reasonable for
validation the net model proposed in the thesis.
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Chapter 3

Multi-Clustering Net Model

This chapter starts with overview of Multi-Clustering Net (MCN ) model pro-
posed in the thesis. Section 3.1 presents the motivation of the new model
and demonstrates the reasoning of our clustering approach to approximate the
Steiner tree measure. Some basic concepts of designed algorithm and experi-
mental scheme are also shortly introduced.

The implementation of the net model is based on k-means clustering algo-
rithm [32] which is described in Section 3.2. This method came from data
mining and has been adopted for our needs of geometrical clustering of net
pins. It is able to produce clustering very fast for a given number k of clusters.

The whole clustering algorithm runs k-means implementation iteratively looking
for the optimal number of clusters k. Correspondent local search algorithm and
score function are described in Section 3.3.

The clustering algorithm is applied to a multi-pin net, which pins are connected
by hyperedge as defined in the input netlist. The output of the algorithm is a
union of subnets, also in the hyperedge format, that not only preserves connec-
tivity of all the pins, but also improves interconnection by reflecting geometrical
positions of the pins. The final Section 3.4 explains the way of representing the
subnets in the output netlist.

3.1 Overview

The thesis addresses the problem of wirelength evaluation for multi-pin nets
(more than three pins) in placement. The traditional HPWL model is adequate
for nets with two or three pins, but it can crucially underestimate wirelength
for nets with more pins. To overcome the deviation, a high degree net is broken
into several subnets by the clustering approach described further. In order to
estimate the netlength, the HPWL measure is applied to a resulting union of
the subnets.

On the MCN model, we assume that the pins with closest position form the
subnets. Furthermore, the Steiner tree of the original net is likely to be within
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HPWL = 14

RMST =  17

MCN WL = 8 + 3 + 7 = 18

MCN WL = 3 + 3 + 11 = 17MCN WL = 3 + 3 + 10 = 19
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Figure 3.1: Example of wirelength estimation for 6-pin net: (a) traditional
HPWL and RSMT measures; (b,c,d) Multi-Clustering Net model.

the HPWL bounding boxes of the subnets. The sum of the HPWL of the sub-
nets gives more accurate estimation, mainly because the subnets have smaller
pincount than the original net. Our empirical results demonstrate the efficiency
of the MCN heuristic in StWL approximation and prove more precision with re-
gard to the HPWL. The next example confirms the statements discussed above.

Motivation Example

Figure 3.1 illustrates how the wirelength can be estimated for a net with 6
pins. Figure 3.1(a) depicts two traditional measures RSMT and HPWL applied
to the net. The RSMT gives the exact value of 17 length units, whereas the
fast bounding box heuristic of HPWL concludes 14 units and undervalues the
netlength. One can easily see that pins placed inside the bounding box do not
contribute to the netlength estimation, and the only pins that determine the
length are positioned on the boundaries.

In order to take into account ”internal” pins and simulate ”internal” routes
of Steiner tree, the net is split into subnets (light rectangles) and one addi-
tional subnet (dark rectangle) is introduced to connect them, as shown in Fig-
ures 3.1(b,c,d). The subnets are selected with the main purpose to span regions
with the most density of pins. The implementation of pins clustering to sub-
nets will be presented in the next Section 3.2. Furthermore, we employ the
traditional HPWL measure to each subnet, although other metrics are possible.
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Figure 3.1(b) presents grouping the net into three subnets, and the netlength of
18 units reasonably approximates the exact Steiner tree length of 17 units. The
next Figures 3.1(c,d) depict the MCN approach for four and five subnets respec-
tively. Moreover, the MCN model is able to reach the exact RSMT wirelength
in the last case.

In result, each net model on Figures 3.1(b,c,d) is capable to approximate StWL
much more accurately than HPWL. However, how many subnets are necessary
to produce an optimum solution: three, four or five? This issue is tackled in the
next subsection.

Designed Algorithm

The MCN model aims at obtaining a better approximation of the netlength for
a given net. The accuracy of the wirelength estimation is increased by splitting
the original net into several subnets.

In this thesis, an optimization algorithm has been designed to explore the best
number of subnets. Internally, the problem is simplified to cluster the pins into
subsets by closest pins position. Given the number of subsets k, all the pins
of the net are divided into subsets by the well-known k-means algorithm [32].
The best configuration of subsets is selected based on a local search algorithm.
Iteratively, the increasing number of subsets is explored and the best one is
chosen. Sections 3.3 presents all the algorithmic details further.

When describing the algorithm, two terms subsets and subnets are widely used
in this work. In order to be clear, the formal difference between them is as follow-
ing. When pins clustering is performed, clusters are also referred to as subsets
of pins. Subsets mean only geometrical regions where the pins are grouped.
Once pins are assigned to subsets, the connectivity inside subsets and along
themselves can be assigned and expressed in terms of subnets. For example,
the subnets depicted in Figures 3.1(b,c,d) as light rectangles also present the
subsets, but the subnet of dark rectangle does not.

In this work, subnets are typically represented as hyperedges or bounding boxes
of the HPWL measure. The construction of the subnets is straightforward
from the subsets. The only problem lies in the way of connecting the subsets
along each other without inducing any new pins like the fake star-node in Star
net model. The proposed method of construction the subnets is described in
Section 3.4.

Experimental scheme

The experimental framework is an important issue in the thesis for validation the
MCN ideas, especially because the authors do not have a placement tool, where
the model can be induced and tested. However, there are many academical
placers available for the physical design community. These placers typically
operates in two steps global and detailed, and the input information for each
phase is the netlist of a circuit.
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Figure 3.2: Placement flow with the MCN model.

Due to separability of placement flow into two steps, one can avoid integration
of the net model in particular implementation of the placer. Instead, the netlist,
which contains all interconnection information, can be changed according to the
MCN algorithm. Therefore, the effect of the MCN approach on real placement
algorithms is examined by transforming a circuit netlist between global and
detailed placement steps.

The experimental scheme is based on the outline of Figure 3.2. The layout
produced by global placement is captured, the new modified netlist is built and
passed to detailed placement. In other words, the MCN algorithm transforms
the input netlist to the output netlist based on the input placement information.

Although all nets in the netlist are represented in hyperedge format, detailed
placers typically employ the HPWL measure to nets. Thus, if original multi-
pin net is replaced by union of subnets in the netlist according to the MCN
net model, the HPWL applied to the subnets exactly corresponds to the MCN
wirelength representation.

In conclusion, it is important to underline that the new net model has been
design, in order to be introduced in the placement framework for improvement
the wirelength expressed in StWL rather than HPWL. The placement results
obtained by following the scheme on Figure 3.2 must be compared with the
common two-phase placement flow without the block of the MCN model. These
results are presented in the next Chapter 4.

Moreover, the proposed approach to modeling StWL can not be considered as
a pure Steiner tree heuristic with computation of Steiner points and tree paths.
Instead, the MCN net model is practically oriented to simulate the StWL cost
in placement by means of fast clustering and HPWL heuristics. Consequently,
the accuracy of the net model can be proved only empirically.

3.2 K-means algorithm

The k-means clustering algorithm [32] is commonly used in data mining where
efficient algorithms were proposed to process large quantity of data [33]. The
clustering is stated as Classification problem for multivariate observations. Each
observation or data point is described with m variables, and the task is to group
data points such a way that similar data points are joined together.

The k-means algorithm is formulated as follows. Given a set of n data points
and an integer k, determine a set of k points, referred to as centroids of clusters,
such that the squared Euclidean distance from each data point to its nearest
centroids is minimized. The dimension of data space is determined by the
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Algorithm 3 K-means Algorithm
Require: A set of n points and the number of clusters k
Ensure: Clustering of points into k subsets
1: Initialize centroids of k clusters.
2: repeat
3: Each point finds out which centroid it is closest to.
4: Each cluster finds the centroid of the points it owns and jumps there.
5: until no jumps
6: return k subsets of points

number of variables that is equal to m, and the Euclidean distance is computed
in m-dimensional space.

The general description of k-means algorithm is presented in Algorithm 3. Ini-
tially, k points are chosen as the potential centers of the clusters in an appro-
priate way. The main part of computations is performed inside the loop, where
each of n points is assigned to the closest cluster. Then all centroids of k clusters
are updated as the center of gravity of the points of the cluster. The calculation
stops when a stable configuration is reached for all the centroids.

Such approach of iterative adaptation of centroids of clusters appeared to be very
efficient. The complexity of the algorithm is O(kni), where k is the number of
clusters, n is the number of points to be clustered, and i the number of iterations
to converge. In our case, k is the number of subsets of pins and n is the total
number of pins of the net, which both are typically small. Experimentally, the
algorithm converges very fast when n is small, thus showing linear complexity
on n.

In terms of clustering quality, the k-means algorithm does not guarantee the op-
timal solution. However, the obtained results considered to be reliable and very
close to the optimum. Since the algorithm is iterative in nature, its evolution
highly depends on the step of defining the first positions of centroids (line 1 in
Algorithm 3). The choice of the best initial configuration is out of the scope of
this thesis and can be found in the literature [32, 33]. The common approach
of randomization of the centroids is used for the MCN net model, where k pins
of a net are arbitrarily selected as initial centroids.

When the number of clusters is unknown, k-means algorithm typically is com-
bined with some heuristic, which introduces a cost function for estimation the
clustering quality and explores the best number of clusters interactively. Such
approach with wirelength-based cost function and local search algorithm has
been implemented in this work and can be found in the next Section 3.3. This
Section ends up with a small example which demonstrates the processing and
the power of the k-means algorithm.

Demonstration example

Figure 3.3 presents an example of the k-means algorithm when two clusters
(k = 2) are sought. A net with eight pins is depicted in Figure 3.3(a). The
algorithm starts in Figure 3.3(b) with random selection of two pins A and B

as the initial positions of centroids of clusters. Consequently, all the pins are
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Figure 3.3: K-means algorithm for k = 2: (a) example of a net with 8 pins,
(b,c,d) evolution of the algorithm.

assigned to two subsets S1 and S2 which is closest to, as shown with shadowed
circles. The classification of pins to the subsets looks like S1 = {A,C} and
S2 = {B,D,E, F, G,H}.
Figure 3.3(c) depicts the second iteration of the algorithm, when the centroids
have been re-computed and some pins change the subsets. Particularly, pin
B jumps from S2 to S1 subset, because the centroid of S1 has become closer
than the other. Figure 3.3(d) depicts the convergence when the centroids are
re-computed again and neither pin moves.

The final classification S1 = {A,B,C} and S2 = {D,E, F, G,H} can be pre-
dicted, since the example of the net is quite small and the pins are clearly
separated to top and bottom regions. On the other part, two initial centroids A

and B were selected rather close to each other and in the same top region, that
could affect the final solution and bring clustering to local optima. However,
the following evolution of the algorithm demonstrated the power of k-means
approach to produce expected results for the given example. In practice, the
random selection of initial centroids proved to work reasonably for the most
cases.

In conclusion of this Section, it is necessary to mention some extensions of the
k-means algorithm where the number of clusters k is not given and has to be
evaluated. The most famous algorithm is called ISODATA [32] which determines
the best number k internally by running the k-means algorithm several times.
The ISODATA algorithm is discarded for application in this thesis, because of
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Algorithm 4 Clustering Algorithm
Require: A net N
Ensure: A group of subsets of pins
1: Cost of clustering: Cost⇐ Cost of net N
2: Number of subsets: k ⇐ 2
3: repeat
4: centroids of subsets: {C1, . . . , Ck} ⇐ k random points
5: while changes in {S1, . . . , Sk} do
6: ∀i ∈ {1, . . . , k}, Si ⇐ Pins of net N closer to Ci

7: ∀i ∈ {1, . . . , k}, Ci ⇐ centroid of Si

8: end while
9: Cost⇐ Cost of the k subsets {S1, . . . , Sk}

10: k ⇐ k + 1
11: until no improvement in Cost
12: return {S1, . . . , Sk}

very strong computational demands.

Another approach consists in estimation of density distribution of data points
and prediction the number of clusters according to the density map. This heuris-
tic can provide different results depending on the given level of density. How-
ever, the density approach can be tested and adopted for the MCN model in
the future work.

In this thesis, we have chosen the classical way of determine the number of
clusters by iterations of the k-means algorithm. The description of the designed
implementation is presented in the next Section 3.3.

3.3 Clustering algorithm

The clustering algorithm is presented in Algorithm 4. The task is to group
pins of the targeted net into subsets with the closest positions. The cost of
the algorithm is a distribution of subsets balanced in terms of pins density.
This geometrical-based approach does not construct interconnection paths like
Steiner tree or even HPWL bounding box. Instead, the goal of clustering al-
gorithm can be viewed as reduction of problem size in netlength modeling ex-
pressed in splitting the original net into subnets with smaller pincount.

The algorithm assumes the targeted net as the initial solution of one cluster.
Then it iteratively explores several clustering by incrementing the number of
possible subsets in the outermost repeat loop. The k-means algorithm is ap-
plied in the innermost while loop to obtain the new clustering of the pins. The
calculations stop when there is no improvement in the cost, that corresponds to
local search algorithm manner.

A drawback of the k-means algorithm is that the number of clusters k must
be supplied as an input parameter. In other words, the number of subsets will
depend on the particular placement of net pins and can not be derived only
from net degree. To evaluate the clustering quality, we define a cost function
that aims at minimizing the total inter- and intra-clustering variance:
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Cost =
k∑

i=1

∑
xj∈Si

(xj − Ci)
2

︸ ︷︷ ︸
inter−clustering

+
∑

Ci∈C

(Ci − CT )2︸ ︷︷ ︸
intra−clustering

where k is the number of clusters, Ci is the centroid of the cluster Si, and CT

is the center of gravity of the centroids of the clusters.

The devision the cost into two components is common for clustering problem.
The inter-clustering variance penalizes far-away points and leads to more com-
pact clusters, whereas the intra-clustering variance constraints large connections
among clusters. The quadratic function emphasizes the penalty effect.

To compute the inter-clustering variance, the Star model [2] assumed to estimate
the distance along pins where the centroid is the star node. The star model is
also applied to calculate the intra-clustering variance. In this case, the center
of gravity CT of the centroids of the subsets corresponds to the star-node.

In terms of data mining, star-node corresponds to mean point of a given set
of points, that is the centroid of subset in our case. The distance to the mean
point is a typical score for clustering. Moreover, the proposed cost function can
be an advantage in application with the Star net model in quadratic placement.

Contrary to typical examples in processing large amount of data, the number
of net pins is comparable with the number of clusters. Cost function can even
be calculated for the number of clusters equal to the net degree. One can easily
see that the cost function gives the same value for two boundary cases when
k = 1 and k = n. Additionally, the inter-clustering variance is going down when
k is increasing, because pins are joint to more clusters and more closer to the
cluster centroid. The behavior of intra-clustering variance is opposite, and the
function is increasing with more clusters used in the algorithm. The difference
in two variances will be observed clearly on demonstration example described
in the next Subsection.

Therefore, the cost function of clustering score assumed to have ”smooth path”
to a global minimum which appears at the point of contradiction between two
variance components. This property validates the usage of the local search
algorithm in the clustering algorithm. Moreover, we experimentally observed
no significantly improvement on further exploration in larger number of subsets
after a worst solution is found.

In terms of performance, the complexity considered to be linear with regard
to the number of pins due to the small number of k-means algorithm runs and
the small number of explored subnets. The number of subnets does not exceed
6 in practice and is equal to 3-4 in average on the experiments. The following
example presents typical run of the clustering algorithm where net is finally split
into 3 subnets.
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Demonstration example

The MCN model operates in two independent steps, in order to spit a net
into subnets. First, pins of the net are grouped into subsets with the closest
positions. The clustering algorithm takes into account only placement of pins
and does not estimate the wirelength of path along pins. Second, connectivity
of pins is assigned when the pins have been divided into subsets, thus forming
the subnet connections.

Figures 3.4(a,b,c,d) show an example of the clustering algorithm during three
iterations. The centroids of the subsets are labeled with Ci where i is the number
of the subsets. CT corresponds to the center of gravity of the centroids. The two
elements in the cost correspond to the inter- (light color) and intra-clustering
(dark color) variance respectively.

The original net is assumed as the initial solution in Figure 3.4(a). Figure 3.4(b)
corresponds to the clustering into two subsets derived from the example shown
in Fig. 3.3. The algorithm stops when k = 4 in Figure 3.4(d) because the cost
is not improved. Finally, the solution with 3 subsets reported on Fig. 3.4(c) is
selected.

The last Figure 3.4(e) presents subnets, which are derived from the subsets of
pins obtained by the clustering algorithm. In this thesis, hyperedge is used to

(a) (c)

(e)(d)

(b)

CT
CT

CT

C1

Cost = 51.5 + 0 = 51.5 Cost = 12.5 + 10.5 = 23.0
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C C

C
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C
C

1 1

1

2
2

2

3

3

4

Cost = 8 + 15.8 = 23.8

Cost = 29.5 + 5.3 = 34.8

Figure 3.4: Clustering algorithm: (a) example of a net with 8 pins. Clustering
pins into (b) 2 subsets, (c) 3 subsets and (d) 4 subsets. (e) Resulting intercon-
nection of subsets with hyperedges for (c) solution.
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connect pins inside the subsets (light curves) rather than star or clique model.
The subsets are also connected by hyperedge (dark curve).

The details of construction of subnets are described in the next Section 3.4.
Special attention is given to the issue of interconnecting pins without inducing
any additional fake pins.

3.4 Construction of subnets

The MCN model is integrated in placement flow such a way that it changes the
netlist between global and detailed placement steps. Following the clustering
algorithm applied to nets in the input netlist, each of these nets must be replaced
by correspondent group of subnets in the output netlist. Thus, construction of
subnets is responsible for the format used to represent the subnets in the netlist.

Typically, all nets are written in the netlist as hyperedges. Although hyperedge
can be converted to the clique or star connection, the hyperedge format is al-
ways preferable to express the interconnection for placers, because it gives total
freedom to the posterior placement steps for conversion the hyperedge to any
model on wirelength estimation.

Figure 3.5 introduces to the problem of subnet assignment when the pins clus-
tering into subnets has been performed for a net with 9 pins. The picture on
the top depicts tree subsets of pins which are needed to be interconnected. If
only the pins in the subnets are connected, the original hyperedge connection
of all 9 pins will be lost. Thus, connectivity along the subnets is also required.

K-means Clustering
(k =3)

Net Model

Star-Star Net Model Hyper-Star Net Model Hyper-Hyper Net Model

Inner-Star fake-pin

Outer-Star fake-pin

Usual pin but the nearest one to Centroid of Clusters

Hyper-edge connection

Star-edge connection

Star-Hyper Net Model

Usual pin

Figure 3.5: Construction of subnets on example of a net with 9 pins.
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Four pictures on the bottom of Figure 3.5 show different combinations of inter-
connection the pins. One of the method is to induce a fake-pin for connecting
either pins in the subnets or the subnets themselves. Such approach has the
same disadvantage like the Star net model, it is necessary to introduce addi-
tional pin which should be considered by the placement algorithm later on in
an appropriate way.

The method used in this work is to compute for every subset a pin which is the
nearest to the centroid of the subsets. The last of four pictures presents the
resulted interconnection denoted as Hyper-Hyper Net Model.

This method does not work if spatial information about the pins is not avail-
able. But the MCN net model is aware of placement of pins and, thus, the
proposed approach is a reasonable for our case. Moreover, the nearest pins can
be easily calculated if the information after the run of the clustering algorithm
is accumulated.

Therefore, the construction of the subnets from the clustering solution of the
subsets proceeds in two steps:

• The pins of each subset are connected with a hyperedge.

• For each cluster, the closest pin to the center of gravity CT is selected.
The set of closest pins are interconnected with another hyperedge.

Assuming that a clustering into k subsets has been performed, k+1 new subnets
are created and neither additional fake-pin is introduced.

Conclusion

This Chapter has introduced basic ideas, algorithmic details and implementation
of the MCN approach to the netlength modeling which are necessary for the
next Chapter 4. Experimental framework and obtained results are presented
there.

Further, the MCN model can be viewed from practical point of view, that
is a ”black box” tool for converting the input netlist to the output netlist in
placement flow. In result, a proper placement step receives the modified netlist
where nets are represented such a way that their estimation of the wirelength
is improved.
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Chapter 4

Experimental Results

This Chapter start with description of experimental framework used in the
thesis. Section 4.1 explains how the MCN model can be introduced and tested
in placement flow. Academical resources used in this work are also presented:
several placement tools, three benchmark suits of circuits and a special tool for
evaluation StWL.

Before experiments on optimization StWL in placement with the MCN model,
this model is compared with HPWL in terms of accuracy in wirelength esti-
mation in Section 4.2. The wirelength of already produced placement layout
is estimated with both new MCN and traditional HPWL metrics. As a re-
sult important for further experiments, the MCN model empirically proved to
approximate StWL significantly better than HPWL.

Based on results obtained in Seciton 4.2, the next two Sections 4.3 and 4.4
demonstrate how to produce better placement with shorter wirelength and delays
by employing the MCN model in placement algorithms. The improvement is
tracked for different placers to show generality of our net model, and for different
benchmark suits to take into account some practical specificities.

Section 4.4 presents an extension of the basic experimental scheme. Since the
MCN approach improves the netlength estimation by reflecting the positions of
net pins, detailed placer can be run in a loop and adopt the MCN model to the
produced placement iteratively. Such approach may be practical, because the
runtime of detailed placer in placement flow is relatively small.

4.1 Experimental Framework

To test the application of our MCN model in existing placers, the net model is
integrated in placement flow between two placement steps. This intermediate
block is represented as a tool between global and detailed placers, which task is
to modify the netlist based on the global placement layout and transfer the new
netlist to detailed placement. Consequently, all positive benefits compared to
the common placement flow are produced because of the netlist modifications.
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Figure 4.1: Experimental scheme of testing the MCN model in placement flow.

The MCN block in placement flow is viewed as a stand-alone tool which changes
the netlist reflecting the placement of net pins. On the one hand, the MCN
approach is accomplished on the high level of transition of the netlist which
is a input/output quantity between placement steps. On the other hand, the
integration of the MCN model into low level implementation of either global
or detailed placer is not possible in this work, because academical placers are
available as binary rather than open-source tools.

Therefore, the model can be tested regardless of a particular implementation
of a placer. Considering this feature as an advantage, the net model has been
tested for different placement tools according to a simple experimental scheme.

Experimental Scheme

The experimental scheme is depicted in Figure 4.1. The Figure presents physical
design cycle with both placement and routing phases, where placement phase is
divided into global and detailed and the additional block with the MCN model is
introduced. For simplicity sake, the presented Layout Tool produces the output
physical layout of a circuit based on the input netlist.

The effect of the MCN model block can be viewed through data path lines of the
netlist. Contrary to Global Placer and Router, Detailed Placer operates with
the modified netlist. Thus, the detailed placer is forced to employ the MCN
model on wirelength estimation, because of the different input netlist.

Indeed, the detailed placement can be divided further into some internal blocks
which correspond to iterative steps of the algorithm. Consequently, the MCN
model may improve the wirelength estimation between these consistent steps by
reflecting changes in placement from iteration to iteration. Such refinement of
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the scheme can be performed in future work when designed our own placement
tool. In this thesis, we rely on the fact that detailed placer performs minor
changes in placement, as discussed in Section 2.1.2, and the layout received
from global placer captures relative positions of net pins consistently enough
with further placement changes.

Placement Tools

According the experimental scheme described above in Figure 4.1, global and
detailed placer are represented as ”black boxes”, and the MCN model communi-
cates with them through input/output lines of placement and netlist. However,
some algorithmic and implementation basics of the examined placement tools
are important to present for further explanation of the final results.

Three placement tools are used in this thesis, and all placers operates in two
global and detailed phases. Moreover, each global placer differs in type of em-
ployed placement algorithm, which are described in details in Section 2.1.2.

mPL 6 [20] employs analytical placement algorithm combined with hierarchi-
cal multi-level framework. For examined circuits, this placer has been able
to produce the best results.

FastPlace 3 [34] belongs to the class of quadratic placers and shows the best
runtime along all placers. Additionally, its detailed placement algorithm
has been demonstrated to be the most powerful along all detailed placers
in [35].

Capo 10.5 [31] is a partition-based placer oriented to routability optimiza-
tion. This tool utilize CPU time expensive methods on greedy swapping
of cells for the detailed placement.

These three placers have been run to demonstrate the performance of the MCN
model on the main experiments in Section 4.3.1, where obtained results expected
to be consistent for all the placers, in order to prove the generality of the MCN
model.

Placement Benchmarks

The current benchmarks used in physical design community for placement are
typically presented in BookShelf format [36]. All circuits correspond to design
style of the standard cells, as presented in Section 2.1.1. In this thesis, three
benchmark suites are tested with the purpose to validate the MCN approach
more absolutely. Figures of some circuits can be found in Appendix B, while
the description is listed below.

ISPD05 circuits [5] are the most recent benchmarks with sizes ranging from
210 thousand to 2.1 million objects. The circuit elements are mostly
standard cells, but there is sufficient quantity of macro blocks, that reflects
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the presence of IP blocks in the current VLSI circuits. The goal of testing
ISPD05 circuits is to present the efficiency of the MCN approach on the
state-of-the-art benchmarks.

PEKU circuits [6] belong to the class of artificial benchmarks designed with
a priori known optimal wirelength. These circuits were firstly presented in
[6], in order to show incapability of placers to reach the bound with optimal
wirelength. However, the property important for our experiments consists
in the large number of multi-pin nets in the circuit netlist. The objective
of experiments with PEKU benchmarks is to show superior results of the
MCN model, because of orientation of the net model to high-degree nets.

ISCAS99 circuits [37] are quite old examples with the small number of cells,
but only these benchmarks contain information for computing the wire
delays. This feature of ISCA99 circuits is used to show that reduction in
wirelength due to the MCN approach results in shorter wire delays.

The improvement in wirelength is reported for ISPD05 and PEKU circuits in
Section 4.1, whereas the complete set of results in reduction of wirelengh and
wire delays is given for ISCA99 benchmarks in Section 4.4.

Evaluator of Steiner tree Wirelength

The experimental objective is to produce placement layout with shorter wire-
length expressed in StWL rather that HPWL. Contrary to HPWL, computation
of the total StWL of nets can be computationally expensive due to NP cost of
Steiner tree construction.

The software GeoSteiner [38] for exact computation RSMT in not practical
for the examined circuits with up to 100 million of cells. The most recent
heuristics FastSteiner [7] and FLUTE [11] approximates RSMT with some error
in comparison with GeoSteiner, but in significantly less runtime. Typical error
for instances of VLSI circuits concludes less than 1% that is admissible for
our experiments. These two heuristics regarded to be equivalent [31], but the
choice has been fixed upon FastSteiner in this thesis, because of its open source
distribution.

In further Sections, StWL is referred to as the wirelength measured by Fast-
Steiner package. Consequently, the next Section 4.2 compares the traditional
HPWL net model and the new MCN model with respect to StWL.

4.2 Accuracy of Wirelength Estimation

When describing the MCN approach in Section 3.1, the improved wirelength
estimation by the new net model was demonstrated on the small example of the
net with 6 pins, depicted in Figure 3.1. However, placement tools operate with
circuits containing millions of nets, and the accuracy in estimation of the total
netlength of the circuit is of interest in practice. The goal of this Section is to
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ISPD05 Wirelength error (%)
bench. % nets all nets nets >3 pins

> 3 pins HPWL MCN HPWL MCN

adaptec1 32 -3.73 0.45 -11.46 1.37
adaptec2 23 -2.90 0.19 -12.54 0.81
adaptec3 24 -2.62 0.25 -10.62 1.00
adaptec4 21 -2.19 0.22 -10.07 1.02
bigblue1 27 -3.36 0.32 -12.18 1.14
bigblue2 20 -2.38 0.19 -11.50 0.93
bigblue3 18 -1.94 0.12 -10.44 0.65
bigblue4 22 -2.55 0.17 -11.25 0.75

Norm. -2.71% 0.24% -11.26% 0.96%

Table 4.1: Average error in wirelength estimation of HPWL and MCN models
in respect with FastSteiner [7] heuristic.

compare the accuracy of HPWL and MCN net models with regard to StWL on
examples of the VLSI circuits.

To show that the MCN model outperforms the traditional HPWL metric, the
experiments have been performed on the ISPD05 circuits placed by mPL 6,
although other benchmark suits or placers may be selected. The results are
summarized in Table 4.1 where the relative error in approximation of StWL,
average along all the nets, is presented in percents.

Important factor affecting the accuracy of estimates is a percentage of multi-
pin nets (more than 3 pins) in the circuit netlist. This number is reported in
the second column of the Table. Comparing circuits with different influence of
multi-pin nets, one can see that circuits with more number of high-degree nets in
the netlist have worse estimation of StWL, for instance, adaptec1 benchmark.

The average error is computed for all nets and for nets with more than three pins
separately. The numbers correspondent to MCN and HPWL models are denoted
in the Table as HPWL and MCN , respectively. The HPWL underestimates the
wirelength that is shown with negative numbers. Contrary to HPWL, the MCN
approach increases the accuracy consistently for all the circuits and improves
the estimation from −2.71% to 0.24% for all nets in respect with HPWL.

For both net models the lost of precision comes from multi-pin nets, as presented
in the last two columns of the Table. However, the percentage of these high-
degree nets in the circuit netlist account for 20 − 30%, in average 25%. This
factor of 25% or 1/4 is confirmed by normalized numbers in the last row of
the Table. Small amount of multi-pin nets produces a significant increment of
inaccuracy of −11.26% for HPWL measure, but the error computed for all nets
is only −2.71% that is about 4 times less. The same tendency is observed for
numbers correspondent to the MCN net model.

Such property of the netlist for VLSI circuit instances (most of the nets have 2-3
pins) allows HPWL to be efficient measure in placement regardless the crucial
underestimation for multi-pin nets. However, the results presented in the Table
4.1 show that the MCN model is able to estimate the same netlength with
considerably smaller error of 0.24% in average, in comparison with the HPWL
error of −2.71%.

The results obtained in this Section justify the MCN heuristic for the opti-
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mization of the StWL in placement. The rest Sections of this Chapters present
experiments where placers produce layouts with shorter wirelength and wire de-
lays by replacing the HPWL by the StWL cost (expressed by the MCN model).

4.3 Improvement in Wirelength

This Section reports about the main experimental results achieved in this work.
The tangible improvement in the wirelength with no or little CPU time over-
head according the scheme presented in Figure 4.1 validates the MCN approach
proposed in the thesis. The obtained results are collected in Tables 4.2 and 4.3
organized in the same manner. Fields of the tables are introduced before pre-
senting the results.

Notations in Tables

For each circuit the number of cells and average net degree are shown in the
columns called as # nodes and Avr. ND respectively. This statistic reflects
the size of the circuit and the netlist structure in terms of presence of multi-pin
nets. Particularly, the percentage of high-degree nets can serve as a predictor
of possible StWL improvement.

When stating the improvement in wirelength, wire delays or CPU time, two
placement flows are compared. First is the traditional flow with two global and
detailed placement steps, referenced in the tables as GP+DP. Second is the new
flow with our intermediate step (exactly depicted in in Figure 4.1), referenced
in the tables as MCN.

The wirelength reported in the tables is evaluated in both HPWL and StWL
format. For each circuit the wirelength is given in absolute numbers of dimen-
sionless units of BookShelf format [36], in order one can compare the numbers
obtained in our experiments with numbers of others placers and StWL opti-
mization strategies. The correspondent columns are referred to as HPWL and
StWL respectively.

The column CPU Ratio presents the overhead in runtime of the two placement
flows described above. The numbers less than 1.00 mean that the MCN flow
requires less time than the traditional flow. The total runtime includes the CPU
time spend by global placer, MCN tool on construction the new netlist and
detailed placer. Since the runtime of global placer is equal for both placement
flows, the difference arise due to MCN tool and detailed placer run. The first
component is additive and always leads to more time for the new placement flow,
whereas the second depends on implementation of detailed placement algorithm.

In practice, the contribution on the total CPU time of the MCN netlist con-
struction observed to be meaningless. This experimental artifact validates the
reasoning for the design of the clustering algorithm in Section 3.3, where the
k-means algorithm is iterated and the solution for the MCN model is selected
according to the local search algorithm. In other words, the MCN computation
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ISPD05 Statistics mPL 6

bench. #nodes Avr. HPWL (×108) StWL (×108) CPU

(×105) ND GP+DP MCN GP+DP MCN Ratio

adaptec1 2.1 4.3 0.78 0.79 0.88 0.86 1.00
adaptec2 2.6 4.0 0.92 0.93 1.07 1.03 1.00
adaptec3 4.5 4.0 2.14 2.16 2.40 2.32 1.00
adaptec4 5.0 3.7 1.94 1.95 2.13 2.06 0.99
bigblue1 2.8 4.0 0.97 0.99 1.11 1.07 1.00
bigblue2 5.6 3.7 1.52 1.53 1.75 1.70 0.96
bigblue3 11.0 3.4 3.44 3.48 4.07 3.95 0.98
bigblue4 22.8 4.0 8.30 8.37 9.41 9.15 0.95

Norm. 1.000 1.013 1.000 0.970 0.98

ISPD05 FastPlace 3

bench. HPWL (×108) StWL (×108) CPU
GP+DP MCN GP+DP MCN Ratio

adaptec1 0.80 0.83 0.90 0.89 1.01
adaptec2 0.94 0.97 1.10 1.08 0.96
adaptec3 2.14 2.20 2.39 2.37 0.93
adaptec4 2.01 2.06 2.19 2.18 0.95
bigblue1 0.98 1.02 1.12 1.11 0.97
bigblue2 1.56 1.59 1.78 1.76 0.99
bigblue3 3.77 3.78 4.36 4.28 0.94
bigblue4 8.60 8.62 9.58 9.41 0.94

Norm. 1.000 1.024 1.000 0.988 0.98

ISPD05 Capo 10.5

bench. HPWL (×108) StWL (×108) CPU
GP+DP MCN GP+DP MCN Ratio

adaptec1 0.88 0.89 0.98 0.97 1.13
adaptec2 0.99 1.00 1.15 1.13 1.13
adaptec3 2.44 2.50 2.62 2.58 1.15
adaptec4 2.16 2.19 2.36 2.34 1.17
bigblue1 1.08 1.09 1.22 1.20 1.15
bigblue2 1.62 1.64 1.85 1.83 1.14
bigblue3 4.30 4.35 4.99 4.91 1.14
bigblue4 9.74 9.80 10.8 10.6 1.15

Norm. 1.000 1.011 1.000 0.985 1.14

Table 4.2: MCN approach on ISPD05 circuits.

is allowed to spend more CPU time than a single run of the k-means algorithm,
nevertheless the netlist information of millions of nets is processed.

Every table of results in this Section contain the last row called Norm. which
corresponds to the normalized sum measure. The average numbers in two cer-
tain columns of the GP+DP and MCN flows are calculated for all the circuits. The
normalized value for the MCN column is computed by devision the second number
to the first, whereas the value of 1.00 is given to the GP+DP column. Values less
than 1.00 in MCN columns show improvement either in wirelength or CPU time
of the MCN approach in comparison with the traditional flow.

The next two Subsections 4.3.1 and 4.3.2 present the tables of results for academ-
ical ISPD05 benchmark suite and artificial PEKU benchmark suite respectively.

4.3.1 Experiments on ISPD05 circuits

The table 4.2 presents the results obtained on the most recent ISPD05 bench-
marks. The ISPD05 circuit includes circuits with number of cells up to 2 million
of cells as depicted in the second column of the table. Additionally, the circuits
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PEKU Statistics mPL 6

bench. #nodes Avr. HPWL (×106) StWL (×106) CPU

(×105) ND GP+DP MCN GP+DP MCN Ratio

dp01 1.3 111.7 0.91 0.92 2.96 2.62 1.00
dp05 2.9 167.5 1.95 1.96 7.41 6.59 1.01
dp10 7.0 261.7 5.62 5.52 24.77 23.76 1.04
dp15 16.3 401.5 11.99 11.77 69.92 65.23 0.98
dp18 21.2 458.3 16.19 14.43 99.48 86.71 1.00

Norm. 1.000 0.974 1.000 0.908 1.01

Table 4.3: MCN approach on PEKU circuits.

have the considerable number of multi-pin nets as confirms the average net
degree in the third column.

The main goal of these experiments is to demonstrate the performance of the
MCN approach on wirelength reduction for the state-of-the-art circuits in the
current physical design. Three placers mPL6 [20], FastPlace 3 [34] and Capo
10.5 [31]1 have been run and finally shown the similar results.

The total HPWL reasonably increases for all placers and circuits as shown in
the last row Norm., because the MCN model targets to simulate StWL rather
than HPWL. Consequently, each net is split into subnets according to the MCN
algorithm, that force pins to be compactly arranged inside subnets, but not in
the HPWL bounding box.

The main achievement is reduction in StWL which expressed in normalized sum
by 3.0%, 1.2% and 1.5% for mPL6, FastPlace and Capo respectively. These re-
sults corroborate the MCN approach for wirelength optimization in the current
placement framework, nevertheless the percentage of high-degree nets of the cir-
cuits is small and detailed placement algorithm (which process the MCN netlist)
is not so powerful as global placement.

In terms of CPU time, the runtime concerned with the MCN approach is better
by 2% in average for both mPL and FastPlace. But there is significant overhead
of 14% for Capo. As discussed above in the previous Subsection, the detailed
placement algorithm of Capo assumed to be more sensitive to the increment
on the number of nets due to net MCN netlist transformation rather than the
reduction in the average net degree. However, the runtime of constructing the
MCN netlist is less than 1% of overall placer CPU time for Capo as well as for
mPL or FastPlace.

In order to improve results of reduction in wirelength, the performance of the
model is examined on the PEKU circuits with the large number of multi-pin nets
in the next Section 4.3.2. These artificial benchmarks contain only multi-pin
nets, whereas the ISPD05 circuits tend to have low-pin nets.

45



4.3.2 Experiments on PEKU circuits

The table 4.3 reports the results on experiments with PEKU circuits. These
benchmarks are artificial and have been designed like a grid of multi-pin nets
crossing each other. The number of cell belongs to a wide range with the
maximum of 2 million, as depicted in the second column. Big numbers in
the second column show that PEKU circuits have very high-degree nets in the
netlist, and, thus, the MCN approach expected to show superior reduction in
StWL.

The mPL6 [20] placement tool is selected as global and detailed placer, because
it can work on PEKU benchmarks. FastPlace3 [34] fails on some circuits, and
Capo requires to much computational time.

The MCN strategy leads to superior results in StWL reduction which is im-
proved by 9.2% at the expense of 1% CPU time increase, as depited in the last
row of normalized sum. Additionally, the improvement in HPWL is observed
for some circuits, that underline more drawbacks of the HPWL measure applied
to multi-pin nets rather than positive correlation between StWL and HPWL.

However, the results presented in this Subsection can not be considered as a
strong argument for the MCN model to apply in real placement framework,
since typical academical and industrial circuits contain mainly low-pin nets. To
sum up experiments on ISPD05 and PEKU performed in this Section, the main
results are related with tangible reduction of StWL on ISPD05 circuits, whereas
the numbers obtained for PEKU benchmarks are intended for the demonstration
purpose.

4.4 Improvement in Wire Delays

This Section extends the experiments carried out in the previous Section 4.3.
The experimental objective is to examined the influence of wirelength reduction
on wire delays. We can figure out the correlation between the wirelength cost
function applied in physcial design and the delay cost function which directly
defines the speed of the circuit. Thus, the MCN model will be validated for
optimization the real performance of the circuit.

These experiments require a step of technology mapping for transforming the
logic of the circuit to the layout representation in the BookShelf format. The
0.13µm vxlib ALLIANCE library [39] has been used for technology mapping.
The technological parameters have been scaled down for the different technolo-
gies (65nm and 32nm), using the Predictive Technology Model [40]. For instance,
the wire capacitance and resistance for 65nm are 2.71Ω/µm and 0.19fF/µm,
respectively, that approximately correspond to M2/M3 metal layers of the 65nm
technology described in [41].

1ROOSTER feature is disabled in Capo, because ROOSTER is aimed strictly for routabil-
ity, and comparison in the wirelength is not fair(according to the personal reference to the
authors).
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ISCAS99 Statistics Wirelength

bench. #nodes Avr. StWL (×106) CPU

(×105) ND GP+DP MCN Ratio

b14 1 4.6 3.0 2.85 2.72 0.96
b15 1 7.3 3.2 4.81 4.69 0.98
b17 1 22.5 3.2 14.61 14.30 0.97
b20 1 8.9 3.1 5.77 5.65 0.98
b21 1 9.1 3.1 5.85 5.69 0.96
b22 1 13.4 3.1 7.41 7.25 0.97
s13207 2.7 2.8 1.49 1.38 0.99
s15850 10.7 2.9 1.95 1.88 0.97
s38584 10.0 2.9 6.00 5.94 0.99

Norm. 1.000 0.969 0.98

ISCAS99 65 nm 32 nm

bench. WNS (×103 ps) TNS (×106 ps) WNS (×103) ps TNS (×106 ps)
GP+DP MCN GP+DP MCN GP+DP MCN GP+DP MCN

b14 1 5.71 5.39 1.12 1.08 7.62 7.01 1.31 1.26
b15 1 6.85 6.69 1.93 1.89 8.33 8.03 2.36 2.27
b17 1 7.18 6.82 6.37 6.22 9.32 8.39 7.74 7.58
b20 1 8.04 8.05 2.56 2.51 10.27 9.12 2.99 2.87
b21 1 8.21 8.08 2.67 2.66 9.66 9.38 3.14 3.10
b22 1 9.53 9.60 4.35 4.27 10.59 10.61 5.03 4.94
s13207 2.88 2.74 0.44 0.43 3.01 0.95 0.50 0.49
s15850 3.94 3.85 1.20 1.22 9.58 9.39 5.50 4.93
s38584 0.99 5.01 4.17 3.63 13.96 13.57 9.24 7.36

Norm. 1.000 0.974 1.000 0.972 1.000 0.950 1.000 0.944

Table 4.4: MCN approach on ISCAS99 circuits.

The initial circuits have been obtained by using the tree-height reduction tech-
nique speed up [42] and the tree-mapping algorithm in the SIS tool [43]. A
square layout with 25% whitespace has been created, with the terminals uni-
formly distributed around the bounding box.

4.4.1 Experiments on ISCA99 circuits

The ISCAS99 benchmarks allow to track improvement not only in StWL but
also in delays. We selected the largest circuits and used FastPlace [34] as a
placement tool. Table 4.4 summarizes the results in the same manner as the
previous tables, but two additional values of the worst negative slack WNS and
the total negative slack TNS are also reported . These numbers are estimated
with the FastSteiner [7] package to build the pass of wires.

The same tendency is observed in wirelength and runtime improvement with
respect to the previous experiments on ISPD05 circuits. The StWL is reduced
by 3.1%, as reported in the last row of normalized sum.

The delays are presented in the Table for 65nm and 32nm technologies sepa-
rately. Although the MCN model is not a delay-oriented approach, the im-
provement in wirelength is also reflected in delays. The improvement in delays
is reported in two WNS and TNS columns of the Table.

As an important result of this Section, the reduction of delay in future semi-
conductor technologies (from 2.8% of improvement in 65nm to 5.6% in 32nm)
confirms the increasing relevance of interconnect optimization due to the dom-
inant role of wire delays in the physical design cycle.
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Figure 4.2: Iterative detailed placement on adaptec1 circuit.

4.5 Iterative Detailed Placer

This Section presents one possible improvement of the scheme described in
Fig. 4.1consists on the idea of feedback line (not shown in the scheme). We
can produce the MCN netlist and run detailed placer iteratively. The input
placement for building the netlist is the detailed placement produced in the
previous iteration. The proposed iterative approach is reasonable, because de-
tailed placement contributes a small portion in overall CPU time compared to
the global placement.

Figure 4.2 presents the results for adaptec1 circuit during 5 runs of the de-
tailed placer mPL6 [20]. We compare the iterative MCN approach (denoted as
MCN ) with an iterative scheme of the traditional flow (denoted as GP+DP).
Figure 4.2(a) shows the expected HPWL reduction due to the iterative appli-
cation of detailed placer. However, the MCN approach gives superior results in
StWL reduction because of employing the MCN model as plotted in Fig. 4.2(b).

Figures 4.2(c,d) present the main feature of the MCN approach. The StWL is
measured separately for low degree and multi-pin nets. The wirelength of low
degree nets for both MCN and GP+DP placement flows is being reduced at
the same ratio from iteration to iteration as shown on Fig. 4.2(c). However, the
MCN approach can improve the wirelength for high degree nets significantly,
plotted in Fig. 4.2(d).
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Conclusion

The conclusions concerned with the experiments performed in this Chapter are
moved to the final Chapter 5, where the direction line of future work is also
discussed.
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Chapter 5

Conclusions

5.1 Results

The experimental results presented in the previous Chapter 4 validate the ap-
plication of the proposed MCN model for reduction the StWL cost. The place-
ment framework includes the most recent ISPD05 benchmarks and placement
tools. The achieved improvement of 2 − 3% in wirelength is a typycal number
for demonstration of effectiveness of some optimization technique in placement.
The experiments on ISCA99 circuits complete the results for one of the most
important cost function in physical design - wire delays.

Two series of additional experiments have been run to show superior improve-
ments in StWL for some specific experimental needs. The reduction by 9%
has been obtained for the artificial PEKU circuits with very high-degree nets,
that corroborate the MCN model for handling multi-pin nets. Another type
of experiments on iterating the detailed placer have shown some perspectives
on using the MCN approach in placement algorithm, which are more powerful
than detailed placer.

The work presented in this thesis has been accepted as a regular paper [44] to
the IFIP International Conference on Very Large Scale Integration and will be
published in October 2008.

Contribution

The new clustering approach for better wirelength modeling in placement has
been proposed. We experimentally proved that our MCN model approximates
the Steiner tree wirelength more accurately than the traditional HPWL model.
Circuits with shorter wirelength and delays have been produced on the explored
placement flows. The main contribution of our work is formulated by the fol-
lowing statements.

Clustering approach. A clustering technique for the netlength modeling prob-
lem is introduced, and an efficient implementation with linear complex-
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ity on the number of pins is presented. When a net is split into several
lower degree subnets, the total HPWL of the subnets approximates RSMT
length significantly better than HPWL of the original net.

Practical StWL minimization. By transforming the netlist between global
and detailed placement stages accordingly to the MCN model, the total
StWL of all nets is improved with no or little penalty in runtime. The
proposed approach neither depends on any placement algorithm or RSMT
heuristic. In practice, it can be applied between any consecutive placement
steps.

5.2 Future Work

The MCN approach has been tested in placement framework and proceeded
in detailed placement phase. As future work, the net model can be integrated
in global placer to reach stronger results in wirelength optimization. Such ap-
proach seems to be promising, because the MCN model is HPWL-based and
global placement algorithms include a variety of well-developed techniques on
minimization of the HPWL cost.

The goal of optimization StWL can not be considered as decisive in physical
design cycle, since the final objective reflecting the performance of the produced
layout is routed wirelength. Thus, the approach in StWL minimization designed
in this thesis has to be combined with some techniques on estimation the routing
cost in placement.

In terms of implementation of the MCN clustering algorithm, it can be based on
ISODATA algorithm or implemented with precomputing the number of clusters
according to density distribution of pins. Additionally, the cost function of the
clustering can include more parameters relevant for the quality of clustering.

Finally, another line of investigation is to design a delay-aware clustering model,
in order to group critical pins to the same subnet. This new model applied in
placement expected to reduce delays on critical paths considerably, since most
timing violations come from critical long wires, which typically are multi-pin
nets.
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Appendix A

VLSI design cycle

Figure A.1: The scheme of VLSI design cycle [4].
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Appendix B

Figures of some benchmarks

Figure B.1: The layout of a circuit from ISPD05 benchmark suite with standard
cells (depicted with blue) and macro blocks [5]. adaptec1 circuit with 211447
cells and 221142 nets.

53



Figure B.2: A grid approach of artificial PEKU benchmarks to simulate nets
with many pins [6].
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