

PROYECTO DE FIN DE
CARRERA

TÍTULO: Implementation of a Public Key Infrastructure over Peer-to-Peer
network

TITULACIÓN: Ingeniería de Telecomunicaciones (segundo ciclo)

AUTOR: Xavi Barrera Quintanilla

DIRECTOR: Sergio Machado Sanchez

FECHA: 18 de Mayo del 2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons

https://core.ac.uk/display/301205929?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Título: Implementación de una Infraestructura de clave pública sobre una red
Peer-to-Peer

Autor: Xavi Barrera Quintanilla

Director: Sergio Machado Sanchez

Fecha: 18 de Mayo del 2007

Resumen

En este proyecto se ha desarrollado la aplicación PKI-P2P, esta aplicación
implementa una infraestructura de clave pública (PKI) sobre una red peer-to-
peer (P2P). Una PKI tiene como objetivo probar que una clave pública es
auténtica para un cierto usuario, porque la confianza que se tiene en una clave
pública es muy importante para la seguridad en los métodos criptográficos. Lo
normal es que el sistema sea centralizado y jerárquico en donde unos pocos
elementos llamados Autoridades de Certificación (AC) son los encargados de
validar la relación entre un usuario y su clave pública. En redes con una gran
cantidad de nodos la PKI tiene que atender muchas peticiones de autenticidad
de clave pública, por lo tanto, en este tipo de escenarios es mejor
descentralizar la PKI. Para ello todos los elementos de la PKI deberían ser
capaces de decidir si una clave pública es auténtica o no. Las redes
descentralizadas en donde todos los elementos son iguales son las llamadas
P2P, estas redes ofrecen algunas ventajas sobre los sistemas jerárquicos o
centralizados como: resistencia a fallos, distribución de carga, auto
administración y independencia de organización operativa.

La forma de implementar una PKI sobre una red P2P es descrita en el
documento de Thomas Wölfl “Public-Key-Infrastructure Based on a Peer-to-
Peer Network”, el autor de este documento desarrolló una aplicación Peer-to-
Peer-PKI consiguiendo búsqueda y transferencia eficiente de certificados y
recomendaciones. Se basa en una combinación del modelo de Maurers y el
protocolo escalable de búsqueda P2P de Chord. La red P2P utilizada es
Pastry mediante su implementación en java Freepastry, esto ha hecho que
todo el projecto se desarrolle en java. Pastry es un esquema genérico,
escalable y eficiente para aplicaciones P2P. Los nodos Pastry forman una red
overlay descentralizada, auto-organizada y tolerante a fallos.

Además para probar el funcionamiento de la aplicación PKI-P2P se ha
utilizado la red de pruebas PlanetLab. PlanetLab es una red global de
investigación para dar soporte al desarrollo de nuevos servicios de red. Gran
parte del tiempo se ha dedicado al estudio de PlanetLab, saber como funciona
para poder realizar las pruebas.

Title: Implementation of a Public Key Infrastructure over a Peer-to-Peer
network

Author: Xavi Barrera Quintanilla

Director: Sergio Machado Sanchez

Date: May, 18th 2007

Overview

In this project has developed the application PKI-P2P, this application
implements a Public Key Infrastructure (PKI) on a peer-to-peer (P2P) network.
A PKI has as an objective to prove whether a public key is authentic for a
certain user, because the confidence that has in a public key is very important
for the security in the cryptography methods. The normal thing is that the
system be centralized and hierarchical where a few elements called
Certification Authorities (CA) are the responsible for validating the relation
between a user and their public key. In networks with a large quantity of nodes
the PKI has to attend many public key authenticity petitions, therefore, in this
type of settings is better to decentralize the PKI. For it all the elements of the
PKI should be capable of deciding if a public key is authentic or not. The
networks decentralized where all the elements are equals are the P2P
networks, these networks offer some advantages on the hierarchical or
centralized systems as: fault resistance, load distribution, self administration
and independence of an operating organization.

The form to implement a PKI on a network P2P is described in the document of
Thomas Wölfl “Public-Key-Infrastructure Based on to Peer-to-Peer Network",
the auhor of this document developed to specialized Peer-to-Peer-PKI realizing
efficient search and transfer of certificates and trust-recommendations. It is
based on to combination of a logic calculus model for PKIs and a scalable P2P
lookup protocol. The network P2P utilized is Pastry by means of its
implementation in java Freepastry, this has done that the entire project has
been developed in java. Pastry is a generic, scalable and efficient substrate for
peer-to-peer applications. Pastry nodes form a decentralized, self-organizing
and fault-tolerant overlay network within the Internet.

Besides to test the operation of the application PKI-P2P the PlanetLab network
has been used. PlanetLab is a global research network that supports the
development of new network services. Great part of the time has been
dedicated to study of PlanetLab, to know as functions to be able to carry out
the tests.

//dedicatoria

INDEX

INTRODUCTION.. 1

CHAPTER 1. INTRODUCTION TO CRYPTOGRAPHY.................................. 3

1.1. The cryptography .. 3

1.2. Cipher Key Algorithms.. 4
1.2.1. Symmetric Key Cipher.. 4
1.2.2. Asymmetric Key Cipher .. 5
1.2.3. Hybrid Systems .. 6

1.3. Data Integrity.. 7

1.4. Autentication.. 8
1.4.1. Digital Signature ... 8
1.4.2. Digital Certificates... 9

1.5. Public Key Infrastructure.. 12
1.5.1. Alternatives... 14

CHAPTER 2. PASTRY.. 15

2.1. Introduction to the P2P networks .. 15

2.2. Design of Pastry .. 15
2.2.1. The nodeId.. 15
2.2.2. State Tables.. 16
2.2.3. Routing algorithm ... 16
2.2.4. Node arrival .. 17
2.2.5. Node departure... 18
2.2.6. Locality.. 19

2.3. FreePastry .. 21
2.3.1. Introduction... 21
2.3.2. Node creation ... 21
2.3.3. Sending a message.. 21
2.3.4. Implementation of an application on FreePastry.. 23

2.4. Past ... 23
2.4.1. Characteristics.. 23
2.4.2. Insertion of a new element in Past ... 24
2.4.3. Recover a Past object .. 24
2.4.4. Replica Diversion.. 24
2.4.5. File Diversion.. 25

CHAPTER 3. PKI-P2P APPLICATION ... 27

3.1. Introduction.. 27

3.2. Structure and design of the application.. 27
3.2.1. Cryptographic techniques used.. 28

3.3. PKI-P2P elements .. 30

3.3.1. User identifier.. 30
3.3.2. Public messages .. 31
3.3.3. Private Statements ... 32
3.3.4. Private View and Public View... 32
3.3.5. PAST in PKI-P2P.. 33

3.4. Trust Model .. 36
3.4.1. Insertion of the public key... 36
3.4.2. Self-signed certificates and digital signatures .. 36
3.4.3. Authentication process ... 37
3.4.4. Private messages shipment ... 40

CHAPTER 4. PLANETLAB... 41

4.1. Introduction.. 41

4.2. Membership.. 42

4.3. Elements... 42

4.4. Configuration ... 43
4.4.1. Use account.. 43
4.4.2. Slice expiration ... 45
4.4.3. Nodes management ... 46
4.4.4. Nodes access ... 47

4.5. PlanetLab tests .. 48
4.5.1. Vxargs: parallel ssh access .. 51
4.5.2. Start application.. 51
4.5.3. Logs .. 54

CONCLUSIONS... 55

Future works.. 56

Environmental Impact... 57

Personal Conclusions... 57

REFERENCES... 59

ACRONYMS .. 61

ANNEX A. TEST WITH 50 NODES.. 63

ANNEX B. PLANETLAB TOOLS... 64

A.1 Introduction.. 64

B.1 CoDeeN... 64
A. CoBlitz .. 65
B. CoDeploy .. 66
C. CoDNS.. 66
D. CoTop ... 66
E. CoMon .. 66

F. CoTest .. 67
G. CoViz .. 67

ANNEX C. SCRIPTS .. 69

ANNEX D. LOG4JAVA CONFIGURATON FILE.. 73

INDEX OF FIGURES

Fig 1.1 Symmetric Key Cipher.. 5
Fig 1.2 Asymmetric Key Cipher .. 6
Fig 1.3 hybrid system ... 7
Fig 1.4 Data Integrity .. 7
Fig 1.5 Suplantación de identidad .. 9
Fig 1.6 Digital Signature ... 9
Fig 1.7 Certificate example... 11
Fig 1.8 Chain of certificates.. 13
Fig 1.9 Public Key Infrastructure .. 14
Fig 2.1 Routing a message with key=1225... 16
Fig 2.2 Node arrival .. 18
Fig 2.3 Routing step distance. .. 20
Fig 2.4 Sending directly a JoinRequest message from A to B.......................... 22
Fig 2.5Route Message ... 22
Fig 3.1 Layers... 27
Fig 3.2 SubjectPublicKeyInfo syntax ... 28
Fig 3.3 PrivateKeyInfo syntax.. 29
Fig 3.4 PKICipher class.. 30
Fig 3.5 Cert... 31
Fig 3.6 Rec ... 31
Fig 3.7 Message Token.. 32
Fig 3.8 Private and Public View.. 33
Fig 3.9 SecretKey and Index k generation for a certificate 34
Fig 3.10 SecretjKey and Index K generation for a recommendation 34
Fig 3.11 Chain of certificates .. 37
Fig 3.12 Process to obtain the public key of Bob.. 37
Fig 3.13 Authentication process ... 38
Fig 4.1 Institutions and industrial reserach labs.. 41
Fig 4.2 Form for user account .. 43
Fig 4.3 PlanetLab user menu ... 44
Fig 4.4 User account information.. 45
Fig 4.5 Add nodes in PlanetLab ... 46
Fig 4.6 All nodes in PlanetLab.. 47
Fig 4.7 SSH public key ... 48
Fig 4.8 Bootstrap output terminal ... 52
Fig 4.9 vxargs output.. 53
Fig 4.10 Result folder ... 53
Fig 0.1 CPU Slice visualization... 68

Introduction 1

INTRODUCTION

Currently Internet is being increasingly more popular; the new technologies
cover each time more homes taking each time more importance in our lives.
The success of Internet is owed in part to that the TCP/IP protocol is free, there
is no proprietary of Internet, there is not any central authority, and any person
can be connected to Internet. This facility of access is the main attraction since
the commercial point of view but is also the cause that Internet be open to all
kinds of threats. It is not easy to intercept a communication through Internet but
is possible.

On the other hand techniques for the protection of the data in electronic
communications exist like for example the data encryption so that only the
recipient of those data can understand them. Other techniques are the
certificates and the digital signature that guarantee the identity of the subjects.
The technology PKI (Public Key Infrastructure) is a combination of all these
cryptographic technical that permit to the users to be authenticated, to utilize
certificates, to cipher, to decipher, to sign digitally information, to guarantee the
not repudiation,…

The main theme of this work is to apply the security of a Public Key
Infrastructure to a Peer-To-Peer (P2P) network. The objective is to create an
application in java [1] that provides all the functionalities of a PKI and
implements on the Pastry network. The Pastry network already is implemented
in the FreePastry package for which all the efforts have been centered in
implementing the PKI. Therefore the project has followed the document “Public-
Key-Infrastructure based on to Peer-to-Peer Network" of Thomas Wölfl [2], in
this document is explained how to integrate a PKI in a P2P network. Besides
implementing the PKI on Pastry, due to that a P2P network is composed of
various nodes, the tests of the application have done them on the PlanetLab
test network. Therefore a great part of the project has consisted of studying and
to evaluate this network of tests.

The report is comprised of 4 chapters that describe so much the part of the
project related to the PKI as the part of study of the PlanetLab. In the chapter 1
an introduction to cryptography is done explaining the cipher algorithms, the
digital certificate, the digital signature, etc… In the chapter 2 is entered in the
explanation of the Pastry network, in which consists, which are its
characteristics, which elements have, etc. Besides it is explained that is
FreePastry, and the DHT Past. In the chapter 3 is spoken in detail on the PKI-
P2P application that is implemented in this project, which are its functionalities,
which is the procedure of authentication, that elements intervene, etc. To finish
the chapter 4 tries to do an approximation to the PlanetLab network explaining
in which consists, how can be utilized, how are the nodes, the access to them,
how to upload files … creating thus a user manual.

CHAPTER 1. Introduction to cryptography 3

CHAPTER 1. Introduction to cryptography

1.1. The cryptography

The cryptography is the art or science to cipher information by means of
mathematical techniques, so that the result is only legible for the receiver. Its
purpose is to offer:

- Confidentiality: it guarantees that information is only legible for the parts
authorized to see it. This is obtained with the cipher of information by
means of cipher algorithms.

- Integrity: it guarantees that information has not been altered during the
transmission of this.

- Authentication: it implies to prove the identity of a part to the other part.
- Non-Repudiation: the sender can’t deny the emission of a message.
- No-Forward: it implies that an information or message can’t be

forwarded by which has captured a legal transaction.

Its history is very extensive [3], the cryptographic techniques already were used
at the time of the first Egyptian, Hebrew and Babylonian. The first cryptographic
system, denominated “the Scitala”, was used by the Spartans in 400a.C and
consisted of altering the order of the signs of a text. Its use was military, the
messages in “the Scitala” were written on a fabric that wraps up a stick. The
message only could be read when it was coiled on a stick of same thickness.
Another one of the first methods was the created one by Julio Cesar, based on
the substitution of each letter by which it beyond occupies three positions in the
alphabet.

The classic methods of the cryptography are not infallible; the message can be
obtained because sometimes the algorithm can be broken with a simple
calculation. At the present time, the new technologies have allowed to create
cryptographic systems more trustworthy and more complexes.

Its use has been and is very extensive in the military environment, but due to
the expansion of the network, the security also happens to be important in the
communications, due to the great amount of attacks and the different
mechanisms to alter the information of transit in the network.

A useful categorization of these attacks is in terms of passive attacks and active
attacks. Passive attacks are in the nature of monitoring of transmissions. The
goal of the attacker is to obtain information that is being transmitted. Two types
of passive attacks are release of message content; traffic analysis. A release of
message content is easily understood. A telephone conversation, an electronic
mail message, and a transferred file may contain sensitive or confidential
information.

4 Implementation of a PKI over a P2P network

The second passive attack, traffic analysis, is more subtle. Suppose that we
had a way of masking the contents of a message or other information traffic so
that Cuba, even if they capture the information, could not extract the real
information because of the use of encryption. The attacker could after a period
of time extract the information and messages, defeating the encryption process.

The second major category of attacks is active attacks. These attacks involve
some modification of the data stream or the creation of a false stream. It can be
subdivided into four categories: masquerade, replay, modification of message,
and denial of service.

A masquerade takes place when the attacker, under certain entity, pretends to
be a different entity, and therefore enabling an authorized entity to obtain extra
privileges. Replay involves the passive capture of a data unit and its
subsequent retransmission to produce an unauthorized effect.

Modification of service simply means that some portion of a legitimate message
is altered, or that messages are delayed or reordered, to produce an
unauthorized effect. The denial of service prevents or inhibits the normal use or
management of communications facilities. This is a very important and serious
possible attack. It could disrupt an entire network, either by disabling the
network or by overloading it with messages so as to degrade performance. The
attacker could target airports, financial centers, power companies, dams control
centers, etc. It is quite difficult to prevent active attacks. The goal is to detect
them and to recover from any disruption or delays caused by them.

Nowadays the cryptography tries to defend against any attack guaranteeing a
safe communication to us in networks even opened as it can be Internet.

1.2. Cipher Key Algorithms

A cipher algorithm [5] is a mathematical formula designed specifically to
obscure the value and content of data. Most valuable cipher algorithms use a
key as part of the formula. This key is used to encrypt the data and either that
key or a complementary key is needed to decrypt the data back to a useful
form. There are two types of ciphers: the symmetric key cipher and the
asymmetric key cipher.

1.2.1. Symmetric Key Cipher

A symmetric key cipher uses the same key to encrypt and decrypt data (see Fig
1.1). Therefore the encrypt algorithm and the decrypt algorithm are
complementary and this fact entails to that the sender and receiver must put in
agreement in a common secret key.

CHAPTER 1. Introduction to cryptography 5

A B
f(, ksecret)hello

ksecret ksecret

A B
f(, ksecret)hello

ksecret ksecret

Fig 1.1 Symmetric Key Cipher

Nowadays, the problem is that the computers can guess a key quickly; this
determines that the size of the secret key is important. Many cipher algorithms
increase their protection by increasing the size of the keys they use. However,
the larger the key, the more computing time is needed to encrypt and decrypt
data. So, choosing an appropriate cipher algorithm that strikes a balance
between your protection needs and the computational cost of protecting that
data is important. For example, the algorithm DES uses a key of 56 bits which
implies 72.057.594.037.927.936 possible keys. A conventional computer would
take days in guessing a key; a specialized computer can take hours. The most
recent algorithms like 3DES, Blowfish and IDEA use keys of 128bits, and with
this length already it is considered improbable that a machine can guess a key.

The easy implementation of these algorithms as well as the low computational
cost for encrypt of a text are an important advantages. In the other hand the
secret key has to be known by two points of communication, this is a serious
drawback because the secret key has to be share by a secure channel. The
security of theses algorithms is in secret key, the attacker prefers to try to
intercept the secret key instead of guessing it. A solution of this problem is the
use of asymmetric cipher key algorithm.

1.2.2. Asymmetric Key Cipher

The cryptographic algorithms based on asymmetric key cipher use a pair of
keys instead of a single key like the symmetric key ciphers. One of these keys
is shared with the rest of users, it’s a public key, and anybody can have
knowledge it. And the other is a private key, this implies that only the owner
must know it and must keep in a safe form.

An asymmetric key cipher uses two separate but related keys; one is used to
encrypt the data while the other is used to decrypt the data (see Fig 1.2)

6 Implementation of a PKI over a P2P network

A B
f(, kpublicB)hello

ksecretA

kpublicA

kpublicB

kprivateB

kpublicB

kpublicA

A B
f(, kpublicB)hello

ksecretA

kpublicA

kpublicB

kprivateB

kpublicB

kpublicA

Fig 1.2 Asymmetric Key Cipher

Node A wants to send an encrypted message to node B, but node A needs the
node B public key. The node A ciphers the message with de node B public key,
therefore the node B is the one able to decrypt the message by means of the
private key. The use of a pair of keys avoids the dangerous exchange of a
secret key; this is the principal purpose of this type of algorithms. The only
requirement of the asymmetric key algorithm is that the sender can obtain the
receiver public key.

One of the important characteristics of these algorithms is that they are based
on one-way functions, these functions have an easy computation but its inverse
function is extremely difficult. But its functions with a trap, this trap allow making
its inverse of simple way. In the algorithms of asymmetric key the trap is the
private key. In the same way which with the symmetrical key algorithm, the
security is in the keys, which implies that their length is important. In the case of
the asymmetric key algorithms the use of keys of 1024 bits is recommended,
because these algorithms are based on factorization of prime numbers

In these algorithms it doesn’t exist a secret key to share with the rest of nodes,
this is the great advantage of this system, but the drawback is that the
computational time is increased, furthermore the keys are more larger as well
as the encrypted messages.

Examples of asymmetric key algorithms are RSA and DSA.

1.2.3. Hybrid Systems

Some systems use both algorithms, symmetric and asymmetric, taking
advantage of the advantages that offer types both. A secret key is generated,
and the asymmetric key algorithm is used to share that secret key, leaving the
transmission of the information for the algorithm of symmetric key algorithm.

CHAPTER 1. Introduction to cryptography 7

A B
f(, kpublicB)ksecret

ksecret ksecret

kprivateA

kpublicA

kpublicB

kprivateB

kpublicB

kpublicA

f(, ksecret)hello

A B
f(, kpublicB) ksecret

ksecret ksecret

kprivateA

kpublicA

kpublicB

kprivateB

kpublicB

kpublicA

f(, hello ksecret)

Fig 1.3 hybrid system

Node A generate the secret key and encrypt it by means of the node B public
key, therefore the node B is the one able to decrypt the secret key (see Fig.
1.3).

Some tools like PGP or SSH using this type of hybrid systems.

1.3. Data Integrity

The integrity of the data is obtained applying Hash functions to a message. A
Hash function generates a cryptographic checksum from a text, all checksums
generates by Hash functions has the same size, therefore that applying to two
equal texts a Hash function will obtain two identical checksums, this property
prevent to find out some characteristic of the original text. In addition the
checksums are uniques, so that to obtain the same checksum it’s necessary to
apply the Hash function to the same input. Hash functions are also called one-
way functions because it is easy to determine the hash from the message but
mathematically infeasible to determine the message from the hash.

A B
f((h() + , kpublicB)hello

kprivateA

kpublicA

kpublicB

kprivateB

kpublicB

kpublicA

hello
A B

f((+ , kpublicB)h()hello

kprivateA

kpublicA

kpublicB

kprivateB

kpublicB

kpublicA

hello

Fig 1.4 Data Integrity

8 Implementation of a PKI over a P2P network

In order to obtain integrity in the transmission of a message it’s necessary to
apply a Hash function to the original message and encrypt the checksum with
the message and send it (see Fig. 1.4). The receiver decrypts the message and
it applied the same Hash function to the original message, and the new
checksum is generated. Next, the receiver has to compare both checksums, if
both are equal means that the sender is the one who claims to be.

For integrity, you can choose between two hash functions when setting policy:

• MD5: Message Digest 5 (MD5) is based on RFC 1321. MD5 completes
four passes over the data blocks, using a different numeric constant for
each word in the message on each pass. The number of 32-bit constants
used during the MD5 computation ultimately produces a 128-bit hash
that is used for the integrity check.

• SHA1: Secure Hash Algorithm 1 (SHA1) was developed by the National

Institute of Standards and Technology as described in Federal
Information Processing Standard (FIPS) PUB 180-1. The SHA process is
closely modeled after MD5. The SHA1 computation results in a 160-bit
hash that is used for the integrity check. Because longer hash lengths
provide greater security, SHA is stronger than MD5.

1.4. Autentication

Could it be that somebody intercept a secure communication and injects own
messages in order to the receiver thinks that these messages are of the
legitimate sender. This case creates a necessity of authentication of the sender.

One of the intentions of an authentication scheme is to detect if somebody has
modified the original message. For example an application would be the
authentication in the distribution of the public keys. The distribution of the public
key is difficult, because we cannot assure that if I obtain a public key its owner
is the real owner, therefore an authentication key system is necessary.

In order to authenticate a message the digital signatures are the better solution,
these signs are able to assure if a message comes from a sender or another
sender.

1.4.1. Digital Signature

In picture 1.5 the node A send an authentication message to node B, if node C
intercepts this authentication message and repeat it, the node C could to
replace the node A identity, although the node A include a password in the
message. Anything that is to send a text causes that the authentication fails.

CHAPTER 1. Introduction to cryptography 9

A

C

B

I’m A

I’m A

A

C

B

I’m A

I’m A

Fig 1.5 Suplantación de identidad

A solution is to verify that node A has a private key (because the node A is the
only that has the private key). The procedure would be: The node B sends a
code to node A (see Fig. 1.6). The node A encrypts this code by means of its
private key, the result is sent to node B. The node B decrypts the message with
the node A public key (the node A public key is shared with the rest of nodes)
and verifies if the code is the original code that the node B sent at first. So that
the node A it demonstrates to node B that really is the node A.

A B

code

ksa

kpa

ksb

kpb

f(code, ksa

A B

code

ksa

kpa

ksb

kpb

f(code, ksa

Fig 1.6 Digital Signature

In summary, the signature process consists in apply the Assymetric key
algorithm the other way around, encrypts the text with the private key and
decrypts with public key.

1.4.2. Digital Certificates

Normally the digital certificates are used to authenticate a public key. These
certificates contain the public key besides several information on the owner of
the key, and the most important thing, it is that a digital signature of a third party
entity includes. This third party entity is named Certificate Authorities (CA), and

10 Implementation of a PKI over a P2P network

also attests that the public key contained in the certificate belongs to the
person, organization, server or other entity noted in the certificate. A CA's
obligation in such schemes is to verify an applicant's credentials, so that users
and relying parties can trust the information in the CA's certificates. If the user
trusts the CA and can verify the CA's signature, then they can also verify that a
certain public key does indeed belong to whomever is identified in the
certificate. If the CA can be subverted, then the security of the entire system is
lost.

To obtain a digital certificate you must direct to CA and give the public key and
your personal information, the CA commission of creating the certificate and
signing it. There is assumed CA's hierarchic strict system for the issue of the
certificates, so that only a CA can emit certificates. There exist several formats
of digital certificate, but more commonly used it is the marked for the standard
X-509v3 [6].

X.509 was initially issued in 1988 and was begun in association with the X.500
standard and assumed a strict hierarchical system of certificate authorities
(CAs) for issuing the certificates. This contrasts with web of trust models, like
PGP, where anyone (not just special CAs) may sign, and thus attest to the
validity of others' key certificates. Version 3 of X.509 includes the flexibility to
support other topologies like bridges and meshes. It can be used in a peer-to-
peer, OpenPGP-like web of trust. The X.500 system has never been fully
implemented, and the IETF's Public-Key Infrastructure (X.509), or PKIX,
working group has adapted the standard to the more flexible organization of the
Internet. In fact, the term X.509 certificate usually refers to the IETF's PKIX
Certificate and CRL Profile of the X.509 v3 certificate standard, as specified in
RFC 3280, commonly referred to as PKIX for Public Key Infrastructure (X.509).

A certificate contains normally the name of the certified entity, personal
information (name, IP, DNI), a number of series, the expiry and creation date, a
copy of the public key, information of the CA, the CA's identifying and the digital
signature of the CA. Then there comes a part that contains the cipher
algorithms and Hash's functions that have to be in use for encrypt process.

La sintaxis del certificado se define utilizando ASN.1 (Abstract Syntax Notation
One). A continuación se muestra un ejemplo de certificado X.509 de
www.freesoft.org firmado por la empresa Thawte.

The syntax of the certificate is defined using ASN.1 (Abstract Syntax Notation
One). Later there appears an example of certificate X.509 of www.freesoft.org
signed by the Thawte Company.

http://en.wikipedia.org/wiki/1988
http://en.wikipedia.org/wiki/X.500
http://en.wikipedia.org/wiki/Certificate_authority
http://en.wikipedia.org/wiki/Web_of_trust
http://en.wikipedia.org/wiki/Pretty_Good_Privacy
http://en.wikipedia.org/wiki/Network_bridge
http://en.wikipedia.org/wiki/Mesh
http://en.wikipedia.org/wiki/OpenPGP
http://en.wikipedia.org/wiki/Web_of_trust
http://en.wikipedia.org/wiki/IETF
http://en.wikipedia.org/wiki/Certificate_revocation_list
http://tools.ietf.org/html/rfc3280
http://www.freesoft.org/

CHAPTER 1. Introduction to cryptography 11

Certificate:
 Data:
 Version: 1 (0x0)
 Serial Number: 7829 (0x1e95)
 Signature Algorithm: md5WithRSAEncryption
 Issuer: C=ZA, ST=Western Cape, L=Cape Town, O=Thawte
Consulting cc,
 OU=Certification Services Division,
 CN=Thawte Server CA/Email=server-certs@thawte.com
 Validity
 Not Before: Jul 9 16:04:02 1998 GMT
 Not After : Jul 9 16:04:02 1999 GMT
 Subject: C=US, ST=Maryland, L=Pasadena, O=Brent Baccala,
 OU=FreeSoft, CN=www.freesoft.org/Email=baccala@freesoft.org
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 RSA Public Key: (1024 bit)
 Modulus (1024 bit):
 00:b4:31:98:0a:c4:bc:62:c1:88:aa:dc:b0:c8:bb:
 33:35:19:d5:0c:64:b9:3d:41:b2:96:fc:f3:31:e1:
 66:36:d0:8e:56:12:44:ba:75:eb:e8:1c:9c:5b:66:
 70:33:52:14:c9:ec:4f:91:51:70:39:de:53:85:17:
 16:94:6e:ee:f4:d5:6f:d5:ca:b3:47:5e:1b:0c:7b:
 c5:cc:2b:6b:c1:90:c3:16:31:0d:bf:7a:c7:47:77:
 8f:a0:21:c7:4c:d0:16:65:00:c1:0f:d7:b8:80:e3:
 d2:75:6b:c1:ea:9e:5c:5c:ea:7d:c1:a1:10:bc:b8:
 e8:35:1c:9e:27:52:7e:41:8f
 Exponent: 65537 (0x10001)
 Signature Algorithm: md5WithRSAEncryption
 93:5f:8f:5f:c5:af:bf:0a:ab:a5:6d:fb:24:5f:b6:59:5d:9d:
 92:2e:4a:1b:8b:ac:7d:99:17:5d:cd:19:f6:ad:ef:63:2f:92:
 ab:2f:4b:cf:0a:13:90:ee:2c:0e:43:03:be:f6:ea:8e:9c:67:
 d0:a2:40:03:f7:ef:6a:15:09:79:a9:46:ed:b7:16:1b:41:72:
 0d:19:aa:ad:dd:9a:df:ab:97:50:65:f5:5e:85:a6:ef:19:d1:
 5a:de:9d:ea:63:cd:cb:cc:6d:5d:01:85:b5:6d:c8:f3:d9:f7:
 8f:0e:fc:ba:1f:34:e9:96:6e:6c:cf:f2:ef:9b:bf:de:b5:22:
 68:9f

Fig 1.7 Certificate example

lt was issued by Thawte (since acquired by Verisign), as stated in its Issuer
field. Its subject contains a lot of personal information, but the most important
part is the common name (CN) of www.freesoft.org - this is the part that must
match the host being authenticated. Next comes an RSA public key (modulus
and public exponent), followed by the signature, computed by taking an MD5
hash of the first part of the certificate and encrypting it with Thawte's RSA
private key

There is a special case of certificates, when the certificate is not signed by any
CA but by the owner of the public key. In this case we are speaking about self-
signed certificates.

http://en.wikipedia.org/wiki/Openssl
http://www.thawte.com/
http://www.verisign.com/

12 Implementation of a PKI over a P2P network

1.5. Public Key Infrastructure

A Public Key Infrastructure (PKI) [4] is a combination of hardware and software,
political and safety procedures that allow the execution of electronic
transactions with guarantees of cryptographic operations as the cipher, the
digital signature or non-repudiation.

Therefore in a PKI there will be had cipher algorithms, digital certificates, CAs,
Hash's functions and digital signatures. All this set of technologies based on
public key cryptography allows a user: to be authenticated opposite to the
others, non-repudiation (to prevent that once signed a document the signer
retracts or denies to have written it), the integrity of the information (to prevent
the deliberate or accidental modification of the signed information, during its
transport, storage or manipulation), and the agreement of secret keys to
guarantee the confidentiality of the interchanged information, it is signed or not.

The most important functionality is the authentication in order to provide a proof
of authenticity of the owner of a public key. For example, to a user A there
comes a public key of the user B, and user A throws a request to the PKI on this
user B public key. The PKI will provide proofs of authenticity to him to know if
the user B is the owner of the public key or not, this is done using digital signed
messages for the third user C. These messages are the digital certificates,
which contain the public key of the user B and are signed by a third entity, a CA.
But with the certificate only it is not sufficient, has to pass three proofs:

- Is the public key of the third entity authentic? It is necessary to verify the
digital signature.

- The certificate is valid or has expired?
- The user A trusts in the third entity.

To verify the digital signature can take us to another certificate, for example a
user C has signed the certificate, for what it is necessary to verify that the public
key of user C is really of user C. So that the second certificate is obtained, in
this new certificate another entity has signed, therefore also it is necessary to
apply the three proofs before mentioned. The result is that chain of certificates
is generated, for example some CAs are signed to others forming a chain of
certificates (see Fig. 1.8). These chains begin in a certificate called Trust
Anchor in which the user A trusts fully.

CHAPTER 1. Introduction to cryptography 13

A

Certificate B
Signed by C

Certificate C
Signed by D

Certificate D
Signed by E

...

PKIPKI
A

Certificate B
Signed by C

Certificate C
Signed by D

Certificate D
Signed by E

...

PKIPKI

Fig 1.8 Chain of certificates

In a PKI the cipher algorithms are the same and are known by all users, so that
the safety relapses into the private key of every user, therefore its must be
stored in an as sure as possible way. In addition, all the certificates of a PKI
only can be emitted by a recognized Certification Authority. Another important
aspect of a PKI is that does not need of the interchange of any type of secret
key in the establishment of a PKI safely communications, for which they are
considered to be very sure.

The habitual components in a PKI are:

- Certification Authority: it emits and revokes the certificates and the whole
confidence of the certificates relapses into it.

- Repositories: it is where there is stored all the information relative to the
PKI. The most important are the list of revoked certificates, which is
where the not valid certificates are included, and the repository of
certificates in which the valid certificates are included.

- Users or final entities: they possess one par of keys, public and private,
and a certificate associated with the public key.

- The risk authority: its manager of verifying the link between certificates
and the identity of his holders.

- The validation authority: it takes charge verifying the validity of the
certificates

14 Implementation of a PKI over a P2P network

A
C

D

F

B

E

revoked
certificates

valid
certificates

CA

CA

CA

CAs network

usersA
C

D

F

B

E

revoked
certificates

valid
certificates

CA

CA

CA

CAs network

users

Fig 1.9 Public Key Infrastructure

Nowadays, a PKI is very useful in nets as Internet since it is the only way of
giving confidence to the actors of the telematic relations, so much in the
business-to-business between companies, as in the trade to for minor, between
selling and Internet buying individuals.

The key is also in the confidence in a group of CAs throughout the world
recognized (as VeriSign) or locally accepted (as Camerfirma, ipsCA, FNMT,
ACE or FESTE in Spain) it is allowed that the involved entities could rely some
of others, neither in spite of physical contact nor previous link exist between the
parts.

1.5.1. Alternatives

An alternative approach to the problem of authentication of public key
information across time and space is the web of trust scheme, which uses self-
signed certificates and third party attestations of those certificates. Examples of
implementations of this approach are PGP (Pretty Good Privacy) and GnuPG
(The GNU Privacy Guard; a free implementation of OpenPGP, the standardized
specification of PGP). Because of PGP's (and clones) extensive use in email,
the Web of Trust originally implemented by PGP is the most widely deployed
bidirectional PKI.

A newer and rapidly growing alternative is the simple public key infrastructure
(SPKI) that grew out of 3 independent efforts to overcome the complexities of
X.509 and the anarchy of PGP's web of trust. SPKI binds people/systems
directly to keys using a local trust model, similar to PGP's web of trust, with the
addition of authorization integral to its design.

http://en.wikipedia.org/wiki/Web_of_trust
http://en.wikipedia.org/wiki/Public_key_certificate
http://en.wikipedia.org/wiki/Pretty_Good_Privacy
http://en.wikipedia.org/wiki/GnuPG
http://en.wikipedia.org/wiki/OpenPGP
http://en.wikipedia.org/wiki/Email
http://en.wikipedia.org/wiki/Simple_public_key_infrastructure
http://en.wikipedia.org/wiki/X.509
http://en.wikipedia.org/wiki/PGP
http://en.wikipedia.org/wiki/PGP
http://en.wikipedia.org/wiki/Web_of_trust

CHAPTER 2. Pastry 15

CHAPTER 2. Pastry

2.1. Introduction to the P2P networks

During the last years, applications like Napster, Gnutella or FreeNet have
popularized the P2P applications so much by the polemics by themes of
copyright as by the different interesting aspects that contribute. Some of these
aspects they are: decentralized control, self-organization, adaptation and
scalability. Nevertheless one of the big problems that have the programmers of
applications P2P is that of creating algorithms of routing and locating of objects
that be efficient.

Pastry [7], a generic peer-to-peer object location and routing scheme, based on
a self-organizing overlay network of nodes connected to the Internet. Pastry is
completely decentralized, fault-resilient, scalable, and reliable. Moreover, Pastry
has good route locality properties. Pastry is intended as general substrate for
the construction of a variety of peer-topeer Internet applications like global file
sharing, file storage, group communication and naming systems.

Each node in Pastry has a unique identifier; this identifier is called nodeId. The
main function of Pastry consists of, given a message with a key, a Pastry node
efficiently routes the message to the node with a nodeId that is numerically
closest to the key, among all currently live Pastry nodes. Therefore, we can say
that, a Pastry system is a overlay network of nodes self-organized, where each
node routes petitions of clients and relates to an or more local applications.

2.2. Design of Pastry

2.2.1. The nodeId

Each node in the Pastry peer-to-peer overlay network is assigned a 128-bit
node identifier (nodeId). The nodeId is used to indicate a node’s position in a
circular nodeId space, which ranges from 0 to 2128-1. The nodeId is assigned
randomly when a node joins the system. It is assumed that nodeIds are
generated such that the resulting set of nodeIds is uniformly distributed in the
128-bit nodeId space. For instance, nodeIds could be generated by computing a
cryptographic hash of the node’s public key or its IP address. Assuming a
network consisting of N nodes, Pastry can route to the numerically closest node
to a given key in less than log2

bN steps under normal operation (b is a
configuration parameter with typical value 4).

16 Implementation of a PKI over a P2P network

2.2.2. State Tables

To send a message to a node does lack to have knowledge of some of the
nodes that conform the network Pastry. For it two structures of data are created:
the routing table and the leafset. A node’s routing table, R, is organized into
[log2bN] dlog2bNe rows with 2b-1 entries each. The 2b-1 entries at row n of the
routing table each refer to a node whose nodeId shares the present node’s
nodeId in the first n digits, but whose n+1th digit has one of the 2b-1 possible
values other than the n+1th digit in the present node’s id.

1234 1200 1234 1220

msgmsg
key=1225key=1225

1234 1200 1234 1220

msgmsg
key=1225key=1225

Fig 2.1 Routing a message with key=1225.

In the figure 2.1 a graphic example can be observed of what has been
described further up. The node with nodeId 1234 should seek in its state tables
a node that share with the key a prefix that be a more long digit than the one
that shares, or that be more close to the key that it. The node with nodeId 1234
shares with the key the two first digits (12).

On the other hand, the leaf set L is the set of nodes numerically closest to local
node. This set is divided in two parts: the |L|/2 numerically closest larger
nodeIds, and the |L|/2 nodes with numerically closest smaller nodeIds, relative
to the present node’s nodeId. The leaf set is used during the message routing,
as described below. Typical values for |L| are 2b or 2x2b.

2.2.3. Routing algorithm

A Pastry node is able to route a message in an efficient way by means of the
state tables and the routing algorithm.

Next, the Pastry routing procedure is shown in pseudo code form:

R=>Routing table, L=>leafset, D=>key, A=>local nodeId

if (D is within range of our leafset){

Forward to Li,, where Li is the nodeId in leafset more numerically closest
to D.

} else {
 Use the routing table.

CHAPTER 2. Pastry 17

 We seek a node that shares a common prefix with the D by at least one
 more digit.

if (the entry is doesn’t empty){
 Forward message to the node of the entry.
} else {

 This is a rare case.The message is forwarded to a node that
 shares a prefix with the D at least as long as the A, and is
 numerically closer to the D than the present node’s id.

This simple routing procedure always converges, because each step takes the
message to a node that either shares a longer prefix with the key than the local
node, or shares as long a prefix with, but is numerically closer to the key than
the local node.

Three cases in the routing procedure can be differentiated:

- If the key is within range of the leafset, then the destination node is at
most one hop away.

- If a message is forwarded using the routing table, then the set of nodes
whose nodeIds have a longer prefix match with the key is reduced by a
factor 2b in each step, which means the destination is reached in log2

bN
steps.

- If the key is not covered by the leafset, but there is no routing table entry,
and assuming no recent failures, this means that a node with the
appropiate prefix does not exist.

The likelihood of this case given the uniform distribution of nodeIds,
depends on L. If L= 2b the probability of that this arise is smaller that 0’02,
and if L=2x2b, the probability is smaller that 0’006 (see [1]).
Nevertheless, when it happens, no more than one additional routing step
results with high probability.

In the event of many simultaneous node failures, the number of routing steps
required may be at worst linear in N, while the nodes are updating their state. In
this case, eventual message delivery is guaranteed unless L/2 nodes with
consecutive nodeIds fail simultaneously.

2.2.4. Node arrival

When a new node arrives, it needs to initialize its state tables, and then inform
other nodes of its presence. We assume the new node knows initially about a
nearby Pastry node A (known as the bootstrap node), according to the proximity
metric, that is already part of the system. Such a node can be located
automatically, for instance, using “expanding ring” IP multicast, or be obtained
by the system administrator through outside channels. Let us assume the new
node’s nodeId is X. First, the node X routes a join message with key equal to X,
but the node X can’t to route a message because it isn’t still a Pastry node.
Therefore, the node X asks A to route the message. Like any message, Pastry
routes the join message to the existing node Z whose nodeIds is numerically
closest to node X.

18 Implementation of a PKI over a P2P network

In response to receiving the join request, nodes A, Z, and all nodes
encountered on the path from A to Z send their state tables (see fig. 2.2).

X A

B

C

Z

Join msg key=X

Join msg key=X

Join msg key=X

Join msg key=X

Estado Z

Estado C

Estado B

Estado A
X A

B

C

Z

Join msg key=X

Join msg key=X

Join msg key=X

Join msg key=X

Estado Z

Estado C

Estado B

Estado A

Fig 2.2 Node arrival

The new node X inspects this information, may request state from additional
nodes, and then initializes its own state tables. First, to initialize the leafset, X
utilizes as base the leafset of Z, since Z is the node numerically more close to
X.

To initialize the routing table, uses all the routing tables that have sent him. For
the row 0 of the routing table (X0), X utilizes the row 0 from A (A0), because A
and X they share no prefix, therefore A0 is adequate for X0. For the row 1(X1),
the appropriate values would be those of B1, because A and B already they
share the first digit of their nodeId. Similarly, X obtains appropriate entries for
X2 from node C, the next node encountered along the route from A to Z, and so
on. If A and X to share prefix would not pass anything, for X0 would continue
being utilized A0, but where leaves A would be X.

Finally, X transmits a copy of its resulting state to each of the nodes found in its
leaf set, and routing table. Those nodes in turn update their own state based on
the information received. One can show that at this stage, the new node X is
able to route and receive messages, and participate in the Pastry network. The
total cost for a node join, in terms of the number of messages exchanged, is
O(log2

bN).

2.2.5. Node departure

A Pastry node is considered failed when its immediate neighbors in the nodeId
space can no longer communicate with the node. When this occurs every node
that contain the failed node in its leafset or its routing table should be brought
update. For instance, if a node X fails and there is a node A that has to X in its
leafset (L), A should eliminate it. To replace a failed node in the leaf set, its

CHAPTER 2. Pastry 19

neighbor in the nodeId space contacts the live node with the largest index on
the side of the failed node, and asks that node for its leafset. This procedure
guarantees that each node lazily repairs its leafset unless L/2 nodes with
adjacent nodeIds have failed simultaneously. Due to the diversity of nodes with
adjacent nodeIds, such a failure is very unlikely even for modest values of L.

The failure of a node that appears in the routing table of another node is
detected when that node attempts to contact the failed node and there is no
response. If the failed node is found in the routing table is not very serious but
must repair it: if the failed entry is the number d of the row l (Rd

l), then we
contact with another node of the same row l, for example the number i (Ri

l). To
this node Ri

l, we ask him on the node that has in the entry Rd
l of his routing

table. The local node uses the node that have in that entry to repair his entry
(before the node looks if is alive). If no node of the row l can be contacted, tries
with the nodes of the row l + 1. This procedure is highly likely to eventually find
an appropriate node if one exists.

2.2.6. Locality

Pastry routes always to the closest node numerically in an efficient way, but
besides, the route chosen for a message is likely to be “good” with respect to
the proximity metric. Pastry’s notion of network proximity is based on a scalar
proximity metric, such as the number of IP routing hops or geographic distance.
It is assumed that the application provides a function that allows each Pastry
node to determine the “distance” of a node with a given IP address to itself. A
node with a lower distance value is assumed to be more desirable.

Propiety 1: All routing table entries refer to a node that is near the present node,
according to the proximity metric. If it recalls the example of the previous
section, the new node X asks an existing node A to route a join message using
X as the key. The message follows a path through the nodes A, B, C… until
arriving at Z, which is the alive node with the numerically closest nodeId to X. It
is assumed that A is a closest node (in metric of proximity) to X; also is
assumed that this property was maintained before X did join. If this complies,
the entries of the row 0 of A (A0), they are close to A, and since A is close to X,
A0 will be nearby also to X. For the time being the property is maintained. For
the row 1 of X (X1) is caught the row 1 of B (B1); these entries are close to B,
but does not seem that they be going to be near X since is not known how
closely is B of X. In reality the entries tend to be reasonably close to X,
because the distance that there is of B to B1 is larger than that of B to X. As a
consequence we have that B1 is a good option for X1. This argument applies
to the following levels of the board of route

After X has initialized its state in this fashion, its routing table approximate the
desired locality property. However, the quality of this approximation must be
improved to avoid cascading errors that could eventually lead to poor route
locality. For this purpose, there is a second stage in which X requests the state
from each of the nodes in its routing table. It then compares the distance of

20 Implementation of a PKI over a P2P network

corresponding entries found in those nodes’ routing tables, respectively, and
updates its own state with any closer nodes it finds.

X
A

Level 0

Level 1

Level 2 z

X
A

Level 0

Level 1

Level 2 z

Fig 2.3 Routing step distance.

In the figure 2.3, a representation of the routing of the join message from A to Z
can be seen. Each step travels through an upper distance and this does that to
each hop we approach more quickly to node Z. Each circle represents the
average distances to which are the entries of a certain row of each node that go
finding in the path. For example, the level0 circle, represents the entries of the
row 0 of the node A; the level1 circle, represents the entries of the row 1 of the
node B; and so on. Observing well the figure can be seen that X always is
inside the circles, what means that all those levels are adequate for their routing
table. Nevertheless X does not remain in the center of the circles; this gives rise
to the phase 2 described previously, where the node X asks the state of each
entry that discovers in the phase 1.

Experimental results in [1] show that this procedure maintains the locality
property in the routing table and neighborhood sets with high fidelity.

Propiety 2: The entries in the routing table of each Pastry node are chosen to
be close to the present node, according to the proximity metric, among all
nodes with the desired nodeId prefix. As a result, in each routing step, a
message is forwarded to a relatively close node with a nodeId that shares a
longer common prefix or is numerically closer to the key than the local node.
That is, each step moves the message closer to the destination in the nodeId
space, while traveling the least possible distance in the proximity space.

Besides, like Pastry only uses local information in the routing, causes that the
next hop in the route be chosen without a global sense of direction. This
procedure clearly does not guarantee that the shortest path from source to
destination is chosen; however, it does give rise to relatively good routes.

Propiety 3: Among a set of k nodes with nodeIds nearby numerically to the key,
Pastry tends to route toward the most nearby one in terms of metric of proximity

CHAPTER 2. Pastry 21

Some P2P applications we have built using Pastry, they replicates the files on a
set of k nodes that have the nodeId nearby numerically to the key. An example
of these applications is PAST [9] that replicates its files to assure a high
availability in spite of failures in the nodes. Thanks to these properties of Pastry,
the node that reaches a message in the next step is the most nearby one
numerically in nodeId, and the most nearby one in terms of the proximity metric.
This is very useful in applications as PAST, since to recover a file that be in a
next node in metric, minimizes the latency and network load in the client.

2.3. FreePastry

2.3.1. Introduction

Two implementations of Pastry are currently available for download: FreePastry
from Rice University and SimPastry/VisPastry from Microsoft Research. The
initial releases of both implementations support a semantically similar API. A
joint, language independent API for Pastry is currently being defined and will be
supported by future releases of both implementations. FreePastry has chosen
because is implemented in java while Simpastry/Vispastry is based on C.

FreePastry [8] is an open-source implementation of Pastry intended for
deployment in the Internet. The initial release of FreePastry is intended primarily
as a tool that allows interested parties to evaluate Pastry, to perform further
research and development in P2P substrates, and as a platform for the
development of applications. Plans for later releases are to provide a fully
secure implementation that is suitable for a full-scale deployment in the Internet.

2.3.2. Node creation

To create a node in FreePastry the method newNode (NodeHandle Bootstrap)
of the class PastryNodeFactory is used. To this method is necessary to pass
him the object NodeHandle of the node that will do of bootstrap. An object
NodeHandle serves to handle to a node remotely, for example, to obtain its
NodeId.

The method newNode returns directly an object PastryNode that represents the
node that has been created. All the process of join is carried out of automatic
form inside the own program FreePastry.

2.3.3. Sending a message

There are two forms to send a Pastry message Pastry: the first one is to route
the message by the Pastry network according to a key given; the second is that
be sent the message directly to destiny. This last option is used when the node

22 Implementation of a PKI over a P2P network

destiny is already known and the message wants to be sent directly toward him,
without they have that to use the state tables neither the routing algorithm of
Pastry (see Fig. 2.4).

Fig 2.4 Sending directly a JoinRequest message from A to B.

In FreePastry to send a message in this way is used the method
recieveMessage (Message msg) of the class NodeHandle, in the figure 2.2 an
example of sending is shown. To this method not one must pass him any type
of key, only one must pass him the message that wants to be sent. An object of
the class NodeHandle always goes connected with a Pastry node, and serves
to the other nodes to manipulate diverse aspects, for example: to obtain the
nodeId of the node, to do that receive a message, to know if the node is alive…

On the other hand, if the destiny is not known, or the node wants to route a
message throught the Pastry network, the message is must to put in a Pastry
message of type RouteMessage, and to send it by means of the method
routeMsg (ID key, Message msg, Credentials cred, SendOptions opt). The
destiny of the message will be the node that has the nodeId more numerically
closest to the key. In the figure 2.5 the routing of a JoinRequest message is
shown, the node destiny will be B due to that the key of the message is the
identifier of B.

Fig 2.5Route Message

CHAPTER 2. Pastry 23

2.3.4. Implementation of an application on FreePastry

To create an application on FreePastry it is necessary:

- Create a class that inherit of the PastryAppl class.
- Besides an Address class must be created, this class is specific for the

new application.
- Each Pastry node that wants to use this new application should be

incorporated in a new object of this application.

By means of this new class the nodeId of the node can be agreed, also its
Leafset, its RouteTable, etc... As well as also to send and to receive messages.

2.4. Past

PAST [9], a large-scale peer-to-peer persistent storage utility. Past is an
application that runs on the nodes of the Pastry network. PAST is based on a
self-organizing, Internetbased overlay network of storage nodes that
cooperatively route file queries, store multiple replicas of files, and cache
additional copies of popular files. It implements a DHT (Distributed Hash Table)
allows the storage with replication of objects among the nodes that form the
Pastry network.

The DHT are an implementation of the Hash Tables (HT) in distributed and not
centralized environments. Its function is storing information, of any type,
carrying out an association Key-Data. To agree to the information, the data,
only we need to know the Key that has associate.

2.4.1. Characteristics

The PAST system is composed of nodes connected to the Internet, where each
node is capable of initiating and routing client requests to insert or retrieve files.
Optionally, nodes may also contribute storage to the system. The PAST nodes
form a self-organizing overlay network. Inserted files are replicated across
multiple nodes for availability. With high probability, the set of nodes over which
a file is replicated is diverse in terms of geographic location, ownership,
administration, network connectivity, rule of law, etc.

Past permits to a user to store an object in the Pastry network of a distributed
form. This object should inherit of the ContentHashPastContent class. So that
all the objects stored with Past are ContentHashPastContent objects. In the
PAST system, storage nodes and files are each assigned uniformly distributed
identifiers (160bits in FreePastry), and replicas of a file are stored at nodes
whose identifier matches most closely the file’s identifier.

Past stores any object permitting you replicate in diverse nodes. The number of
desired replicas (k) is determined in the Past implementation:

24 Implementation of a PKI over a P2P network

PastImpl(Node node, StorageManager manager, int k, java.lang.String instance)

This method returns the Past object for a node, with this Past object the
ContentHashPastContent objects can be inserted and recovered.

The most significant drawback of Past is the fact of be able modify/eliminate no
object once inserted.

2.4.2. Insertion of a new element in Past

First the Past object that wants to be stored should be created, subsequently to
create an identifier for that object and finally the node must to call the insert
method through the Past instance:

insert(PastContent obj, Continuation command)

During an insert operation, PAST stores the file on the k PAST nodes whose
nodeIds are numerically closest to the 160 bits of the file’s fileId. This invariant
is maintained over the lifetime of a file, despite the arrival, failure and recovery
of PAST nodes. For the reasons outlined above, with high probability, the k
replicas are stored on a diverse set of PAST nodes.

This guarantees that any node can recover the inserted element if knows the
identifier associated to the object and besides that at least one of the nodes that
contain a replica be active in Pastry.

2.4.3. Recover a Past object

To recover a Past object is necessary to know previously the associated 160
bits identifier to that object. If the identifier is known only remains to call to the
function of the Past class:

lookup(Id id, Continuation command)

This method retrieves a copy of the file identified by fileId if it exists in PAST
and if one of the k nodes that store the file is reachable via the Internet. The file
is normally retrieved from a live node “near” the PAST node issuing the lookup
(in terms of the proximity metric), among the nodes that store the file.

2.4.4. Replica Diversion

The responsibilities of the storage management are to (1) balance the
remaining free storage space among nodes in the PAST network as the
system-wide storage utilization is approaching 100%; and, (2) to maintain the
invariant that copies of each file are maintained by the k nodes with nodeIds
closest to the fileId. Goals (1) and (2) appear to be conflicting, since requiring

http://www.cs.rice.edu/CS/Systems/Pastry/FreePastry/javadoc/rice/p2p/commonapi/Node.html
http://www.cs.rice.edu/CS/Systems/Pastry/FreePastry/javadoc/rice/persistence/StorageManager.html
http://www.epostmail.org/javadoc/rice/p2p/past/PastContent.html
http://www.epostmail.org/javadoc/rice/Continuation.html
http://www.epostmail.org/javadoc/rice/p2p/commonapi/Id.html
http://www.epostmail.org/javadoc/rice/Continuation.html

CHAPTER 2. Pastry 25

that a file is stored on k nodes closest to its fileId leaves no room for any explicit
load balancing. PAST resolves this conflict in two ways.

First, PAST allows a node that is not one of the k numerically closest nodes to
the fileId to alternatively store the file, if it is in the leaf set of one of those k
nodes.This process is called replica diversion and its purpose is to
accommodate differences in the storage capacity and utilization of nodes within
a leaf set. For example, if a node A cannot store the replica, this node must to
pass the replica to another node B. So that the node A maintains a pointer to
the node B to redirect all the Past requests that receive on that object that now
has the node B. Replica diversion must be done with care, to ensure that the file
availability is not degraded.

2.4.5. File Diversion

The other solution is called File Diversion, it is performed when a node’s entire
leaf set is reaching capacity. Its purpose is to achieve more global load
balancing across large portions of the nodeId space. A file is diverted to a
different part of the nodeId space by choosing a different salt in the generation
of its fileId.

File diversion consists of recalculate the identifier of Past object, so that other
number of replicas are chosen more nearby nodes to identifier of object Past. If
after 3 File Diversion not yet the object has been able to be stored Past is sent
a message to emitter indicating that has been impossible to store the Past
object.

CHAPTER 3. PKI-P2P application 27

CHAPTER 3. PKI-P2P application

3.1. Introduction

The purpose of this project is to implement an application that have the
functionalities of a PKI and that function on a P2P network, therefore the name
is PKI-P2P. The motive to utilize a P2P network is for the advantages that can
contribute due to the decentralization of the information. These advantages are
a great failure resistance, load distribution, storage with redundancy and it can
be self-organized. These characteristics help favorably to the security and
operation of a PKI.

The main objective of PKI-P2P is to permit to a user to verify that a public key is
of whom says to be, permitting thus sure transactions of information between
two users. In this chapter all the elements that form the application PKI-P2P as
is explained in detail, well as also its procedures and functionalities.

3.2. Structure and design of the application

The implemented PKI model is based on the Thomas Wölf document [2]. In this
document Thomas Wölf describes the protocol and procedures of a PKI on a
Chord P2P network P2P, besides the characteristics of the PKI are based on
the model of Maurer [2]. According to the document, this model is used due to
its strong theoretical bases and its ability to shape the relations of confidence.
An important aspect on the Maurer model is that does not speak of
revokate/expiration of the certificates, so that the application PKI-P2P does not
have la certificates revoked list neither controls the expiration of these.

PKI-P2P is based on the network Pastry instead of Chord owed in greater part
to a greater knowledge of Pastry and its software already implemented in java
(FreePastry). All the application this programmed in java and contains three
representative main classes of each one of the functional layers that has the
application. These classes are PKIApp, P2PApp, PKICipher (see Fig. 3.1).

PKI Functions

Pastry Functions Cryptography

PKI Functions

Pastry Functions Cryptography

Fig 3.1 Layers

28 Implementation of a PKI over a P2P network

PKICipher contains all the methods and cryptographic techniques used by PKI-
P2P. P2PApp contains all the methods and functionalities that allow the
communication between nodes through the Pastry network. And finally PKIApp
contains all the own methods of a PKI.

3.2.1. Cryptographic techniques used

PKI-P2P uses all types of cryptographic techniques to carry out its assignment.
Mainly it is based on the asymmetric key algorithm so that each node of the
network should have a key pair: a public key and a private key. These keys are
generated at start of the application using the asymmetric algorithm RSA and
they are kept in a directory called keystore. To generate the keys makes use of
the KeyPairGeneration class and its generateKeyPair() method, to this class
only one must indicate it that algorithm wants to be used and the length of the
keys in bits.

The public key is stored in X.509 format and with *.publica extension. The X.509
codification is carried out by means of the class X509EncodedKeySpec. This
class represents the ASN.1 encoding of a public key, encoded according to the
ASN.1 type SubjectPublicKeyInfo. The SubjectPublicKeyInfo syntax is defined
in the X.509 standard as follows:

On the other han
*.privada extens
security of PKI-P
local node shou
PKCS8Encoded
private key, en
PrivateKeyInfo s

SubjectPublicKeyInfo ::= SEQUENCE {
algorithm AlgorithmIdentifier,

subjectPublicKey BIT STRING }

Fig 3.2 SubjectPublicKeyInfo syntax

d, the private key is codified in PKS8 format and is stored with
ion. The PKS8 codification is necessary because all the
2P falls in the private key of each node, nobody except the
ld know this key. The codification is carried out using the

KeySpec class. This class represents the ASN.1 encoding of a
coded according to the ASN.1 type PrivateKeyInfo. The
yntax is defined in the PKCS#8 standard as follows:

CHAPTER 3. PKI-P2P application 29

To cipher mes
the computati
key algorithm
DES-RSA, wh
so that only th
of the class S
key algorithm
class is gener
DES are obta
and they retur

Also it makes
MD5. By mea
array of bytes
the input byte
the same leng

Besides using
bytes (for exa
RSA private k
class that per
With this met
structure is im
signature, the
node of the s
object Signed

PrivateKeyInfo ::= SEQUENCE {
 version Version,
 privateKeyAlgorithm PrivateKeyAlgorithmIdentifier,
 privateKey PrivateKey,
 attributes [0] IMPLICIT Attributes OPTIONAL }

 Version ::= INTEGER

 PrivateKeyAlgorithmIdentifier ::= AlgorithmIdentifier

 PrivateKey ::= OCTET STRING

 Attributes ::= SET OF Attribute

 Fig 3.3 PrivateKeyInfo syntax

sages or text the symmetric key algporithm DES is used because
onal cost of encrypt with RSA is more raised that with a symmetric
 as DES. To share the secret key makes use of a hybrid system
ere the secret key is encrypted with the public key of the receiver
e receiver can decipher it. The secret key is generated by means
ecretKeyFactory to which only should be passed the symmetric

 used. To cipher and to decipher the Cipher class is used, this
ic because from there the ciphers and the dechipers for RSA and
ined. The ciphers encrypt an array of bytes that could be a text,
n another array of completely intelligible bytes.

 use of Hash functions, in PKI-P2P the Hash function used is
ns of the MessageDigest class can be done the checksum of an
, the result is a block of bytes, and it does not matter the length of
s array, because MD5 will generate always a block of bytes with
th.

 multiple algorithms, PKI-P2P permits to sign digitally an array of
mple a text, or a code ...). The signature is carried out with the
ey of the user, and the result is an array of intelligible bytes. The
mits to sign digitally is Signature by means of its sign () method.
hod a structure of data is created to transport the signature, this

plemented in the SignedData class and contains: the digital
 public key of the issuer, the nodeId of the issuer, the nodeId of
ubject. In each certificate and recommendation is included an

Data doing the function of digital signature.

30 Implementation of a PKI over a P2P network

Symmetric Cipher - DES

Asymmetric Cipher - RSA

Hash Functions

Digital Signature

PKICipher

Symmetric Cipher - DES

Asymmetric Cipher - RSA

Hash Functions

Digital Signature

PKICipher

Fig 3.4 PKICipher class

All the methods that permit to carry out all the cryptographic functions
previously mentioned are implemented inside the PKICipher class (see Fig.
3.4); this class is one of the three layers that constitute the PKI-P2P program.

3.3. PKI-P2P elements

The PKI-P2P users have the objective to maintain a sure communication, for it,
the most critical point is to ascertain if the public key that obtain of the recipient,
really is of the recipient. In this public key authentication process to take part
various elements that will mention in this section and that are necessary to carry
out the key authentication.

As it has been able to be seen in the previous section, in PKI-P2P has several
cryptographic techniques to maintain insurances the transactions among the
users. Besides these techniques there are other elements that have been
implemented and are necessary, for example the messages that exchange the
nodes or the objects that represent the confidence that has a user before the
others, or the protocol communications that follow the nodes, the storage of the
data,... In the next sections all these elements that to take parts in PKI-P2P are
explained.

3.3.1. User identifier

Each user of PKI-P2P has a unique identifier, this identifier is the same one
utilized for the Pastry nodes. This identifier is of 160 bits and is implemented in
the NodeId class of the FreePastry package. Using the same identifiers of
Pastry we assure us that for each Pastry node there can be a PKI-P2P user.

CHAPTER 3. PKI-P2P application 31

3.3.2. Public messages

Each use of PKI-P2P can generate some objects that are public; this means
that these objects are accessible by other users of the network. According to
the Thomas Wölf article these objects are called public messages, wich
represent the only information communicated between nodes of PKI-P2P, but in
PKI-P2P these public messages are inserted directly in Past to be able to share
them with the remainder of the nodes. There are two types of public messages:

- Certifcate: This message represents a digitally signed certificate, issued
by node X. The certificate attests thecbinding of node Y (subject of the
certificate) to public key PY. The digital signature of the message is valid,
if node X is the authentic owner of public key PX, i.e. the digital signature
can be validated via public key PX.

Cert Identifier Subject Public Key Subject

Identifier Issuer Public Key Issuer

Cert Identifier Subject Public Key Subject

Identifier Issuer Public Key Issuer

Fig 3.5 Cert

- Recomendaciones: This message type is used to transport a

recommendation of level i for node Y (subject). It is issued and digitally
signed by node X. The digital signature of the message is valid, iff node
X is the authentic owner of public key PX, i.e. the digital signature can be
validated via public key PX. The purpose of this level i is to indicate the
level of confidence that a node X has in node Y.

Rec Identifier Subject Trust Level

Identifier Issuer Public Key Issuer

Rec Identifier Subject Trust Level

Identifier Issuer Public Key Issuer

Fig 3.6 Rec

These public messages are not transmitted in clear, when a node wants to
transmit a certificate or a recommendation ciphers the message by means of a
symmetrical key algorithm. Besides each public message has associate a key
(not the cipher key) that is used to generate the index of public message. This
index is unique, and is used when a node wants to seek a certificate or a
recommendation of a certain user.

32 Implementation of a PKI over a P2P network

Once it a public message is encrypted and generated its index all message is
included inside another structure of data. This new object is called "Message
Token" (see Fig. 3.7), and is the real message that exchanges the nodes of the
PKI-P2P.

Message Token Identifier Subject

Encript (public message)

Index

Message Token Identifier Subject

Encript (public message)

Index

Fig 3.7 Message Token

The public messages of the PKI-P2P are signed for nodes, there is no type of
certification element of confidence type CA, in this model of PKI all the nodes
are equals and they can sign so many certificates and recommendations as
they desire.

3.3.3. Private Statements

Private statements are used to describe a node’s belief in other nodes of PKI-
P2P. They are not accessible for any other node except the local one, which
produces these statements. There are two types of private statements in PKI-
P2P:

- Authenticity (Aut): This statement type denotes the local node’s
conviction that node X is the authentic owner of public key PX. Aut
contains a nodeId of a node X and its public key.

- Trust: This message type denotes the local node’s trust in a certain node
X with level i. It is used to represent the node’s degree of belief in node X
to act in accordance with its security requirements.

3.3.4. Private View and Public View

So much the public messages, as the private objects should be stored in some
place. Each node has two spaces where to keep these elements, the private
view and the public view. In the private view each node keeps the objects
authenticity and trust and in the public view the certificates and
recommendations are kept.

The private view is easy to implement since can be perfectly a folder by name
"private view" where the node keep the private statements because the node
hasn’t to share with nobody. But in the case of the public view is something
more complicated to implement because the public messages should be visible
and accessible for all the nodes. The way to do that all the public messages is

CHAPTER 3. PKI-P2P application 33

accessible for all the nodes of PKI-P2P is utilizing Past (the DHT implemented
of Pastry).

With Past a node can insert a public message and to share it with the remainder
of the nodes of the network. The DHT already takes charge of distributing fairly
the public messages among the nodes that compose the P2P network. Past
also creates automatically a folder in the local node where will keep the
assigned public messages.

In summary, each node will have two folders, one the private view that consists
of a folder that stores the private statements, and the other the public view that
is a folder that is created for Past automatically where the public messages are
stored (see Fig. 3.8).

Fig 3.8 Private and Public View

3.3.5. PAST in PKI-P2P

The public messages are inserted in an object of the MessageToken class,
these objects can be emitted for each user of the network and they should be at
the disposal of any user, are public. For it the storage of this type of objects is
distributed among all the PKI-P2P nodes by means of the utilization of the DHT
Past. A Past object is an instance of the PastContent class, so that any object
that be wanted to insert in Past should inherit of that class. In PKI-P2P there are
three types of objects that are distributed to the other nodes by means of Past:
the Message Tokens, the public keys of each node, and the digital signatures
that does each user on a certificate. Each one of them it is represented in the
PKIPastContent, KeyPastContent and PruebaPastContent classes respectively
and the three inherit of PastContent.

In PKI-P2P three functions of Past are utilized that basically are: insert (),
lookup () and exists ().

- Insert (): this method is used when, for example, a MessageToken wants
to be inserted in Past.

34 Implementation of a PKI over a P2P network

- Lookup (): when wants to recover for example a MessageToken of Past.
- Exists (): permits to know if a specific object already exists in Past from

its identifier, because in Past only there can be an object by identifier.

3.3.5.1. Insertion of a public message

To insert a public message in Past, first of all and by security reasons, the node
should encrypt the certificate or recommendation by means of an symmetric key
algorithm and to include it in a Message Token next to an message index. The
indices of message are unique for each public message and they are generated
of two different ways as is a matter of a certificate or recommendation:

- For a certificate, a Hash function must apply to the identifier of the node
(nodeId) more the public key of the node. The secret key for cipher the
public messages is generated from the result of Hash function. And
finally it applies a Hash function to the secret key generating thus the
index of the public message.

digest = Hash(NodeId_Bob + PublicKey_Bob)
SecretKey
Index_k

= genSecretKey (digest)
= Hash (SecretKey)

Fig 3.9 SecretKey and Index k generation for a certificate

- For a recommendation one must continue the same steps that for a

certificate, but the first Hash function only applies to the nodeId because
in a recommendation does not have public key.

digest = Hash(NodeId_Bob)
SecretKey
Index_k

= genSecretKey (digest)
= Hash (SecretKey)

Fig 3.10 SecretjKey and Index K generation for a recommendation

The node that want to insert a Message Token in Past should use the
place_msg_token(MessageToken mtoken) function of the P2PPKI class (or to
lower level the insert () method of the PastImpl class). The Message Token
objects inherit of the PastContent objects so that a Message Token is apt for to
be distributed in Past. The index of public message generated will be utilized to
generate the identifier that associates to Past object inserted.

CHAPTER 3. PKI-P2P application 35

3.3.5.2. Recovery of a public message

Para recuperar un mensaje público se debe generar el identificador de objeto
Past ligado a ese mensaje público. Para ello se deben de seguir los pasos
descritos en el apartado anterior, por ejemplo para recuperar un certificado:

To recover a public message the identifier of Past object should be generated,
this identifier is linked with the public message. To that purpose the steps
described in the previous section should be continued, for example to recover a
certificate:

- Checksum = Hash (nodeId + public key of this node).
- Secret Key = encrypt(checksum) This secret key allows to decrypt the

Message Token once is recovered.
- Index of Message Token = Hash(secret key)
- With this index the identifier necessary to recover the Message Token is

generated.

The only requirement to obtain a certificate is to know the public key
beforehand. If the user doesn’t has the public key, this can be obtained of Past
before recover a Message Token.

3.3.5.3. Digital Signatures

Due to that in Past an object must have only an identifier, is not possible to
have various certificates with different digital signatures of a determined node, a
node can have only a digital certificate. It is neither possible that a certificate
contain all the digital signatures, because in Past the objects cannot be
modified. So that the digital signatures also are inserted in Past, instead of
including the digital signatures inside a certificate.

When a user A wants to sign a certificate of a user B creates a SignedData
object (representative of a digital signature). This object is inserted in Past. So
that when a user wants to verify the digital signatures of a certificate will have to
obtain of Past the certificate and each one of the digital signatures.

3.3.5.4. Comunication between nodes

Besides being communicated for Past with the public messages, the nodes
need a communication more direct node to node without any DHT by middle.
For example just before sending an encrypted message with DES to a node,
this node should know the secret key, therefore this key must be sent it through
the Pastry network. Or another case is once has been verified that the public
key of a node is authentic; all the next communication is done through
conventional messages through Pastry. Exactly for these two cases two
messages has been defined:

36 Implementation of a PKI over a P2P network

- SimetricKey: is utilized to transport a DES secret key encrypted with the
public key of the recipient so that only the recipient can decipher the
content of the message and to obtain the secret key.

- TextMessage: this message contains text encrypted with DES. These

messages are used to exchange text between two users of sure form, so
that all the text that is sent cannot be read by third people.

3.4. Trust Model

In this section the functionalities utilized to authenticate a public key are
detailed.

3.4.1. Insertion of the public key

Once it starts the application, if is the first time that a node agrees to the Pastry
network, the RSA key pair are created for that node and the public key is
inserted in Past to share it with the remainder of users of the network. For the
insertion in Past the public key is put in a KeyPastContent object, and the
identifier of this Past object is generated from the identifier of Pastry node
(nodeId).

3.4.2. Self-signed certificates and digital signatures
Besides creating the RSA key pair a self-signed certificate is created with the
public key of the node. A self-signed certificate is when a user signs itself
digitally its own certificate. The utility that have these self-signed certificates is
that of guaranteeing a "Trust Anchor" in a chain of certificates. As already it has
been explained previously, in PKI-P2P the nodes are the responsible for
creating chains of certificates, any node can sign digitally a certificate. So that
when a node A receives a certificate of B that contains a firm of C, the node A
should verify that really the firm is of C. Therefore the node A should obtain the
certificate of C that this signed by the node D, and again will have to verify the
firm of C obtaining the certificate of D that this signed by E, and so on what It
creates a chain of certificates. The final element of this chain is called "Trust
Anchor".

A self-signed certificate is a "Trust Anchor" because the digital signature is of
the own node to that the certificate refers, the chain cannot be continued. In the
case to obtain a self-signed certificate, the decision to trust or not in that digital
signature falls in the user of the application. With these self-signed certificates a
"Trust Anchor" is assured in these chains of certificates (see Fig. 3.11).

CHAPTER 3. PKI-P2P application 37

Cert B
Sign C

Cert A
Sign B

Cert C
Sign D

Cert D
Sign E

Cert E
Sign F ...

Cert Z
Sign Z

Trust Anchor

Cert B
Sign C

Cert A
Sign B

Cert C
Sign D

Cert D
Sign E

Cert E
Sign F ...

Cert Z
Sign Z

Trust Anchor

Fig 3.11 Chain of certificates

Other "Trust Anchor" elements are the Aut private objects of PKI-P2P, these
objects indicate full confidence of a user toward another user with a determined
key public. So that if a certificate of the node B is obtained with a certain public
key and looking at you Private View is found an Aut of B with the same public
key, does not do lack to verify the digital signature of the certificate because
already is trusted fully in that public key.

3.4.3. Authentication process

At this moment a user can establish a sure communication with another user of
the Pastry network that have the software PKI-P2P. For example a user Alice
wants to send a “Hello!” message to a user Bob of sure form. First Alice should
obtain the public key of Bob (see Fig. 3.12) and to verify if really belongs to said
user. To obtain the public key, Alice does a petition to the DHT Past of the Past
object with identifier the Bob NodeId. Past will return to Alice a KeyPastContent
object that contains the key of Bob. Now Alice already has the public key of
Bob, only remains to verify if the key is really of Bob.

Alice

PublicKey Bob
PASTPAST

Lookup (NodeId Bob)
Alice

PublicKey Bob
PASTPAST

Lookup (NodeId Bob)

Fig 3.12 Process to obtain the public key of Bob

To verify the key the is_authentic method of the PKIApp class is called. This
method verifies if a public key is authentic or not. If the public key is authentic
this key is saved in the keystore. This method follows the next steps:

38 Implementation of a PKI over a P2P network

Fig 3.13 Authentication process

Step 1: Looking at Private View
First Alice look at if has already an Aut of Bob, because an Aut indicates that
Alice trusts fully in that public key. To know if an Aut exists the
is_authenticity_contained() method is called and returns TRUE or FALSE
according to if the Aut has been found or not. If an Aut of Bob is found, the
public key is kept in the Keystore. If an Aut doesn’t is found, Alice must passed
to step 2.

Step 2: Recovery of a certificate of Bob and all digital signatures
To obtain the certificate a petition to Past is done, the necessary identifier is
created from the nodeId of Bob and its public key. At the same time that the
petition of the certificate is done the petition of its digital firms is done. The
certificate that is received is a self-certificate; this means that has been signed
by Bob. Subsequently the digital signatures are obtained, that are formed as a
SignedData objects.

Now may pass two things: Alice receives the digital signatures or there are not
digital signatures in Past. If Alice have not been received a digital signature,

CHAPTER 3. PKI-P2P application 39

only remains to trust in the self-certificate of Bob, this decision remains in the
user of the application and what causes is to carry out the question: "¿It trusts
in the self-certificate of Bob? yes/no". If Alice decides to trust in the self-
certificate will be kept the public key of Bob in the keystore and an Aut of Bob
will be generated, otherwise the public key is considered not valid/authentic.

Step 3: Verifify of the digital signatures
If Alice has received some digital signatures, a signature is chosen. Alice
verifies that the issuer of the signature is who says to be, this causes calling of
the is_authentic() method, so that each element of the chain of certificates is
authenticated. Until a "Trust Anchor" is not found the authentication process
does not finalize for each element of the chain of certificates. If the issuer of
certificate of Bob can not be authenticated, another signature is chosen and the
process is repeated. If do not remain firms, the public key of Bob is considered
not valid/authentic.

If a user X is found that has digitally signed and is authentic, subsequently Alice
should look at if that user X is of confidence in an equal or greater level that 1.
For it the is_trusted() method is called. This method begins calling the
is_trusted_contained() method to look at if Alice has a Trust object of the user X
in the Private View. A Trust object contains the user identifier and the level of
confidence that has Alice in that user.

If a Trust object of user X is found, Alice should to verify that the level of that
Trust is greater or equal as 1. So that if complies that:

- The user X that signs the public key of Bob is really that user.
- If Alice trusts in X in a greater level or equal to 1.

Alice will give for authenticates the public key of Bob and will keep it in its
keystore, besides will generate an Aut of Bob with that public key.

In the case that Alice’s Private View hasn’t a Trust object of user X, a
recommendation of X should be obtained of Past and the digital sigantures
associates to that recommendation. The recommendation that is obtained is a
self-signed recommendation by X. If is impossible to obtain a ditital signatures
for the recommendation of X, the application asks to Alice if trusts in the self-
signed recommendation, the decision to generate a Trust fall in the user of the
application.

If signs arrive Alice should looks a field that indicates the trust level that has the
issuer in the node X. Alice must seek a user that trust in X in a greater level or
equal to 2 and that be possible to verify its authenticity by means of the
is_authentic() method. If a user that comply these conditions is found an Trust
object of user X will be generated. If Alice manages to generate a Trust of X will
be able to verify that Alice trusts in the user X in a greater level or equal to 1
and will be able to generate an Aut of Bob.

Continuing these three steps Alice can determine if the public key of Bob
received is of confidence or not.

40 Implementation of a PKI over a P2P network

3.4.4. Private messages shipment

Once a user has trusted in a public key will make use of this key to send for
example private messages. But the private messages will not be encrypted
directly with the RSA algorithm and with the public key but makes use of a
hybrid DES-RSA algorithm. In this hybrid algorithm a DES secret key is
generated and is shared with the other user making use of the RSA algorithm,
signing the secret key with the public key of the recipient. The recipient will
make use of its private key for decrypt the secret key, and with this key the
nodes can begin the shipment of private messages.

When a user wants to send a private message to another user should encrypt
that message with DES using the secret key shared previously. So that the
recipient will be able decrypt with its copy of the secret key, only they two are
able decrypt the sent messages because only they two have a copy of the
secret key. The shipment of the secret key among user is carried out by means
of a Pastry message described in the SimetricKey class. And the shipment of
encrypted messages with DES is carried out by means of Pastry messages
described in the TextMessage class.

Chapter 4. PlanetLab 41

CHAPTER 4. PlanetLab

4.1. Introduction

PlanetLab [10] is a global network to give support to new services that are
developing at present. PlanetLab was launched in 2003 and since then more
than 1000 researchers at top academic institutions and industrial research labs
have used it, mainly to develop new technologies and services for distributed
storage, P2P networks, Distributed Hash Tables, network mapping and query
processing.

Nowadays PlanetLab is formed by 780 nodes distributed in 382 points of the
planet (see Fig. 4.1)., where the majority are public institutions such as
Princeton University, Cambridge University or UPC. Besides also they form
PlanetLab some investigation centers like Intel Research or HP Labs.

Fig 4.1 Institutions and industrial reserach labs

All these centers and institutions form the PlanetLab Consortium. The
PlanetLab Consortium is a collection of academic, industrial, and government
institutions cooperating to support and enhance the PlanetLab overlay network.
It is responsible for overseeing the long-term growth of PlanetLab's hardware
infrastructure; designing and evolving its software architecture; providing day-to-
day operational support; and defining policies that govern appropriate use. The
PlanetLab Consortium is managed by Princeton University, the University of
California at Berkeley, and the University of Washington. Princeton currently
hosts the Consortium. Larry Peterson currently serves as the Consortium's
Director. Institutions join the Consortium by signing a membership agreement
and connecting two or more nodes to the PlanetLab infrastructure. Individuals
that want to use PlanetLab should arrange to do so through their home
institution.

42 Implementation of a PKI over a P2P network

Each node of PlanetLab has installed common software that works on Linux.
This software takes charge of monitoring the state of the node, its activity, the
resources, etc.

All in all, the main idea is to be able to reproduce Internet to scale to carry out a
tests that would have an a lot more high price if were done in the real Internet.

4.2. Membership

The consortium includes five membership levels:

- Charter ($300k annual dues)
o Permanent seat on Steering Committee.
o Unlimited number of slices.
o Access to PlanetLabe events, research papers, and working

groups.
- Full ($75k annual dues)

o Rotating seat on Steering Committee.
o 10 slices.
o Access to PlanetLab events, research papers, and working

groups.
- Associate ($25k annual dues)

o 2 slices.
o Access to PlanetLab events, research papers, and working

groups.
- Sponsor ($10k annual dues)

o Access to PlanetLab events and research papers.
- Acacdemic (no annual dues)

o Seat on Steering Committee by invitation.
o 10 slices.
o Access to PlanetLab events, research papers, and working

groups.

4.3. Elements

Subsequently the elements that to take part in the PlanetLab network are
detailed:

- Site: A site is a physical location where PlanetLab nodes are located
(e.g. Princeton University or HP Labs). Abbreviated versions of site
names prefix all slice names.

- Node: A node is a dedicated server that runs components of PlanetLab
services.

- Slice: A slice is a set of allocated resources distributed across
PlanetLab. To most users, a slice means UNIX shell access to a number
of PlanetLab nodes. PIs are responsible for creating slices and assigning
them to their users. After being assigned to a slice, a user may then
assign nodes to it. After nodes have been assigned to a slice, virtual

Chapter 4. PlanetLab 43

servers for that slice are created on each of the assigned nodes. Slices
have a finite lifetime and must be periodically renewed to remain valid.

- Sliver: A set of allocated resources on a single PlanetLab node.
- Virtual Server (Vserver): Slivers are currently implemented as Linux-

Vservers, which implements both namespace and performance isolation
among slivers on a single machine.

- Principal Investigator (PI): The PIs at each site are responsible for
managing slices and users at each site. PIs are legally responsible for
the behavior of the slices that they create. Most sites have only one PI
(typically a faculty member at an educational institution or a project
manager at a commercial institution).

- Technical Contact (Tech Contact): Each site is required to have at
least one Technical Contact who is responsible for installation,
maintenance, and monitoring of the site's nodes.

- User: A user is anyone who develops and deploys applications on
PlanetLab. PIs may also be users.

4.4. Configuration

4.4.1. Use account

First of all an account of user must be created (see Fig. 4.2) in the web:
www.planet-lab.org. For can be registered and to be a user of PlanetLab should
belong to some of the adhering institutions, because is the PI of the center the
responsible for to give out the slice to each user.

Fig 4.2 Form for user account

http://www.linux-vserver.org/
http://www.linux-vserver.org/

44 Implementation of a PKI over a P2P network

Once the registration this fact, the petition of registration is sent directly to PI,
and if the PI seems him well gives you a Slice. To enter to Slice and to
negotiate it one must authenticate with a login and a password (defined in the
user account registration). Once a user is authenticated appears in the right part
of the web a menu of PlanetLab user (see Fig. 4.3):

Fig 4.3 PlanetLab user menu

Since this menu is able:

- Sites: is a search engine of Sites besides the listing of all the existing
Sites in PlanetLab. Selecting a Site permits you to see information on
that Site: an abbreviated name, the URL, the login base, the latitude, the
longitude, maximum slice count, maximum sliver count, technical
contact, PI contacts, the address where the Site is found, the nodes that
form it, and the Slice that have been created in that Site.

- My Site: permits to see information of your Site of the same form that
with other Sites. Besides the name of your Slice appears here, this is a
link since which you can access to your slice.

- Nodes: Here all the nodes that form PlanetLab can be seen nodes that.
If click on a node the information of that node can be seen like: the
institution they belong, which is its IP, its state, if there are more nodes in
that institution, the name of host, etc.

- My Site Nodes: from here the nodes that belong to Site of the user can
be seen and the state in which they are found. For example if my Site is
the UPC will appear the nodes of PlanetLab that belong to the UPC.

- Add Node: from here a new machine can be added to Site.
- Users: is a search engine of the PlanetLab users, only the mail address

of that user must put so that show you information about that user.
- Me: here all the information of our user is found: personal data,

information of the RSA public key, the Site that belongs, the role and the
Slice that is assigned to user (see Fig. 4.4).

Chapter 4. PlanetLab 45

Fig 4.4 User account information

- Slices: from here all the Slices that exist in PlanetLab can be seen, to

whom they belong and a brief description of each one.
- Sirius: this option serves to choose hourly stripes for our Slice where will

be given him a priority in terms of CPU.
- Log out: serves for log out of the system.

4.4.2. Slice expiration

A very important aspect in PlanetLab is that the user Slice is not infinite, has a
validity period. So that the user must renew the Slice periodically. This is thus
because the nodes of PlanetLab is a resource that is shared for all the users.
So that if there is a user that time ago that does not work with its Slice is better
to erase it and to leave the free resources for other users.

46 Implementation of a PKI over a P2P network

4.4.3. Nodes management

To be able to work with the PlanetLab nodes first one must add them one to
one to our Slice. For it the user must go to the Me option, to select our Slice,
and to choose the Manage Nodes option. In the Manage Nodes option appears
all the nodes that have been assigned to Slice, and the nodes can be added or
erased (see Fig. 4.5).

Fig 4.5 Add nodes in PlanetLab

Not all the nodes are equals, so that some nodes can be more loaded than
other. Besides one must keep in mind the state in which these nodes are found,
each node always is in one of these states:

- Boot: This state cooresponds with nodes that have sucessfully installed,

and can be chain booted to the runtime node kernel.
- Install: The install state cooresponds to a new node that has not yet been

installed, but record of it does exist. When the boot manager starts, and
the node is in this state, the user is prompted to continue with the
installation. The intention here is to prevent a non-PlanetLab machine
(like a user's desktop machine) from becoming inadvertantly wiped and
installed with the PlanetLab node software.

- ReInstall: In this state, a node will reinstall the node software, erasing
anything that might have been on the disk before.

- Debug: Regardless of whether or not a machine has been installed, this
state sets up a node to be debugged by administrators.

So that is important that the nodes that be added to our slice has the boot state.
The state of the nodes can not be known from My Site Nodes option, the user
must go to the Nodes option. In that section a list of all the PlanetLab nodes and
their states is found (see Fig. 4.6).

Chapter 4. PlanetLab 47

Fig 4.6 All nodes in PlanetLab

This implies that the nodes must to be added manually one to one of manual,
the great objection is that if a user desire to do a test with 400 nodes, the user
must repeat the operation to add a node 400 times. Besides the user should be
sure that the nodes are in the boot state.

4.4.4. Nodes access

The access to the PlanetLab nodes is carried out by means of SSH. Therefore it
must to have a SSH client besides generating a RSA key pair to be
authenticated in the nodes of the system. To create a RSA key pair the program
ssh-keygen can be used:

 ssh-keygen –t rsa –f ~/.ssh/<nombre_clave>

The ssh-keygen program will ask for a passprhase, is recommendable by
themes of security that has 10-30 characters. The ssh-keygen will generate a
key pair: a public key with extension *. pub and a private key. The RSA public
key must be distributed to the PlanetLab nodes of our slice, for it the user must
upload the key to the PlanetLab web and the PlanetLab system already takes
charge of distributing it. For upload the key the user must go to Me option and
press on the Manage Keys option. Since there the key can be uploaded to the
web or can erase an old key (see Fig. 4.7).

48 Implementation of a PKI over a P2P network

Fig 4.7 SSH public key

The distribution of the RSA public key RSA is not instantaneous, can delay
some minutes. On the other hand, the RSA private key will be utilized to be
authenticated in each SSH access. An example of SSH access:

 ssh –l <nombre_slice> -i <clave_privada> <IP o nombre_Host>

Once done this command would be being agreed remotely to node. For each
SSH access to the PlanetLab node the user must introduce the passphrase, if
this wants to be avoided, a solution is to write the following commands
sequence at start of each session:

 eval ‘ssh-agent’
 ssh-add

The objection of this access method is that if for example a test with 100 nodes
wants to be done, and you want to agree to each one of these nodes, should do
the SSH access one by one. This aspect complicates and does difficult the tests
with a large quantity of nodes. The solution to this problem is use programs that
permit SSH parallel accesses; an example of these programs is vxargs.

4.5. PlanetLab tests

One of the objections of PlanetLab is that the node to that agrees does not
contain anything, for example the java virtual machine does not have it installed.
So that the users should upload to the nodes all that is needed to execute their
applications.

To copy the files and necessary programs to a PlanetLab node an option is to
utilize the scp command. This command permits to copy files between two
machines utilizing ssh for which offers the same security that ssh. In the case of
this project one must copy to the PlanetLab nodes the java binary, the jar files
and necessary configuration file, and the folder with the java classes. So that in
this case the unique program that should be installed in the remote machines is
the java.

Chapter 4. PlanetLab 49

An example of upload a file to a node would be:

 scp freepastry.jar upc_epsc@131.232.34.56:freepastry.jar

Where upc_epsc is the name of the slice and 131.232.34.56 is the IP adress of
the remote node. When the user wants to copy a folder the option –r must put:

 scp –r application upc_epsc@131.232.34.56:application

With this command the folder application and all ist contained is copied to node
with IP address 131.232.34.56.

The objection to do it by means of scp is that for each file or folder that be
wanted to upload the user must do a command. So that to write a command for
all the necessary files and later for each node is very thorny. The solution is the
creating a script that does it all for each node, so that only one must write the
script and then be to executed it only once. This script copies the files and
necessary folders in a sequential and automatic form.

A script is a file written in shell language and with extension *.sh, that contains
commands and structures. The scripts can be as simple as a succession of
commands, or as complex as be wanted. With the text editor the scripts can be
created, for example one very simple would be:

 echo “hello world!”
 exit

For execute the script first the user must change the permission:

 chmod 755 prueba.sh

Next execute it:

 ./prueba.sh

This test script the unique thing that causes is show the text "hello world!" in the
linux terminal.

To copy files to the PlanetLab nodes and to install the java, the script used is
not very complicated. Subsequently the script used can be seen:

 for node in 138.232.66.194 200.19.159.35 192.41.135.218
 do
 scp jre-1_5_0_11.bin upc_epsc@$node:jre-1_5_0_11.bin $j2re
 scp installjava.sh upc_epsc@$node:installjava.sh
 scp FreePastry.jar upc_epsc@$node:FreePastry.jar
 scp log4j.jar upc_epsc@$node:log4j.jar
 scp bcprov-jdk.jar upc_epsc@$node:bcprov-jdk.jar
 scp xmlpull.jar upc_epsc@$node:xmlpull.jar
 scp xpp3-1.1.4.zip upc_epsc@$node:xpp3-1.1.4.zip

mailto:upc_epsc@131.232.34.56:freepastry.jar
mailto:upc_epsc@131.232.34.56:aplicacion
mailto:upc_epsc@$node:bcprov-jdk.jar
mailto:upc_epsc@$node:xmlpull.jar
mailto:upc_epsc@$node:xpp3-1.1.4.zip

50 Implementation of a PKI over a P2P network

 scp log4j.properties upc_epsc@$node:log4j.properties

 scp –r application upc_epsc@$node:application
 scp –r crypto upc_epsc@$node:crypto
 scp –r distapplication upc_epsc@$node:disapplication
 scp –r messaging upc_epsc@$node:messaging
 scp –r PKIObjects upc_epsc@$node:PKIObjects
 scp –r privateView upc_epsc@$node:privateView

 ssh –x upc_epsc@$node “./installjava $j2re”
 done

This script copies all the jar files, configuration files and necessary folders to
execute the PKI-P2P application to the nodes 138.232.66.194, 200.19.159.35
and 192.41.135.218. Besides, the java is installed in the remote node.

To install the java makes use of the installjava.sh script that is executed directly
in the remote machine by means of the ssh –x command. This script contains
the following thing:

 j2re=$1
 echo Installing java.bin
 echo “yes” > yes
 sh $j2re < yes
 rm yes
 mv jre1.5.0_11/ java/

 echo Setting Environments variables
 echo “CLASSPATH=.:\$HOME/java/lib
 export CLASSPATH
 JAVA_HOME=\$HOME/java
 export JAVA_HOME
 JDK_HOME=\$JAVA_HOME
 export JDK_HOME
 PATH=.:\$JAVA_HOME
 export PATH” >> .bashrc
 source .bashrc

This script has been obtained of a PlanetLab tutorial and what causes is to
install the java in a node besides configuring all the environment variables
required.

All in all, if 20 nodes are needed to do a test, with these two scripts all
necessary files are copied to those 20 nodes. Besides the java are installed,
and leaves those nodes ready for execute the PKI-P2P application.

To execute the PKI-P2P application the best option is to execute it in a
simultaneous way by means of vxargs. Because the scripts execute the
commands in a sequential way and due to that the PKI-P2P application never
finishes. When the PKI-P2P application is executed in first node, the script

mailto:upc_epsc@$node:log4j.properties

Chapter 4. PlanetLab 51

would not pass never to be executed to a second node. Because in a script until
a command doesn’t finished the following command is not executed.

4.5.1. Vxargs: parallel ssh access

Vxargs [12] is a small application written in python that permits to execute ssh
commands in parallel and simultaneous form in diverse nodes. Vxargs is
executed from prompt and must pass him a text file with the IP addresses of the
nodes that user wants to agree.

For example if you want to do a test with 100 nodes the vxargs program is very
useful once those 100 nodes already have all that is needed to begin the test
(that the nodes have the java installed, the necessary files, etc…). The vxargs
in our case is utilized to execute the PKI-P2P application and also is utilized
once finalized the test for stop the application in each node (although this has
also done by means of script).

To execute vxargs only the user must put the following command:

 python vxargs-0.3.3.py –a node.txt –o /home/result ssh –x upc_epsc@{}
 “command “

Where node.txt is the file where the IP adreesses of the machines that user
wants to agree are specified (an IP by line). “Result” is a folder where vxargs
kepts the files that contain the output of each node. The "ssh –x" command is
utilized to execute a command in a remote machine, the IP of the remote
machine is specified by means of {} and the command is among quotation
marks.

Once the vxargs is executed a black screen is shown with the different nodes to
the user is being agreed, and the prompt of each node appears. All these
outputs are kept in the Result folder, by if the output of each node wants to be
analyzed subsequently.

4.5.2. Start application

As the application works on Pastry network is interesting to do that a node be
always the bootsrap. So that first a bootstrap node can be launched, for
example the node with IP 138.232.66.194:

 ssh –l upc_epsc –i clave_rsa 138.232.66.194

Once we have agreed to future bootstrap node the user must execute the PKI-
P2P application:

 java –cp .:FreePastry-1.4.4.jar:log4j-1.2.14.jar:xmlpull.jar:xpp3-
 1.1.4.zip:bcprov-jdk15-134.jar distapplication/DistPKIDHT 9001
 138.232.66.194 9001

52 Implementation of a PKI over a P2P network

To execute the DistPKIDHT class the user must pass him the parameters:

- Local Port: in this case is 9001
- IP Address of the bootstrap node: as there is not bootstrap node we put

the IP of the local node
- Port of the bootstrap node

Besides the user must specify the jar files that the application uses:

- FreePastry-1.4.4.jar: where all the functions of Pastry are implemented.
- log4j-1.2.14.jar: where are the functions for the log of java
- xmlpull.jar and xpp3-1.1.4.zip: these two are necessary for the Past

operation.
- bcprov-jdk15-134.jar: is utilized for cryptographic algorithms.

Once the bootstrap node is in operation, the PKI-P2P application creates a new
Pastry ring. Subsequently the user must execute the other nodes that want to
intervene in the test; this is done by means of the vxargs:

 python vxargs-0.3.3.py –a node.txt –o /homeresult ssh –x upc_epsc@{}
 “java –cp .:FreePastry-1.4.4.jar:log4j-1.2.14.jar:xmlpull.jar:xpp3-
 1.1.4.zip:bcprov-jdk15-134.jar distapplication/DistPKIDHT 9001
 138.232.66.194 9001

The result is the following one:

Fig 4.8 Bootstrap output terminal

Chapter 4. PlanetLab 53

The nodes contact with the bootstrap by means of the IP address and the port
that has been provided them, so that instead of creating a new Pastry ring
Pastry the nodes are added to ring created by the bootstrap node. In the
previous image can be observed like little by little the bootstrap node goes
recognizing the nodes and goes them adding to its leafset and its routing table.
This shows that the nodes are communicating through the PlanetLab network.

Fig 4.9 vxargs output

As it can be seen in the previous image, all the nodes communicate among
them, and they are added each other in the routing tables and leafset. In the
vxargs screen the output of line commands of each node can be seen but only
the most recent line, so that costs to continue the thread of what this happening
in each node, this is an objection of the vxargs. To see the complete output of
each node, the vxargs save these outputs as files *.out at final of the session in
the folder /result. In the following image can be seen the files *.out generated in
one of the tests.

Fig 4.10 Result folder

Also *.err files are generated, these files are destined to communicate to user
the failures in the SSH connection. If it has happened no error the file is
maintained blank.

54 Implementation of a PKI over a P2P network

4.5.3. Logs

The vxargs provide a log system by means of the *.out files, but If the user not
wants to use the vxargs, the PKI-P2P application has an own log system that
provides the log4java [11] package.

Inserting log statements into your code is a low-tech method for debugging it. It
may also be the only way because debuggers are not always available or
applicable. This is often the case for distributed applications.

On the other hand, some people argue that log statements pollute source code
and decrease legibility. (We believe that the contrary is true). In the Java
language where a preprocessor is not available, log statements increase the
size of the code and reduce its speed, even when logging is turned off. Given
that a reasonably sized application may contain thousands of log statements,
speed is of particular importance.

With log4java it is possible to enable logging at runtime without modifying the
application binary. The log4java package is designed so that these statements
can remain in shipped code without incurring a heavy performance cost.
Logging behavior can be controlled by editing a configuration file, without
touching the application binary.

CONCLUSIONS 55

CONCLUSIONS

The work would be able to divide into two large blocks, a first block in which a
study of the characteristics of a PKI is done and is implemented in Java on the
Pastry P2P network. And another great block in which a study to the PlanetLab
is done and as to utilize it to carry out tests with its nodes.

As it has been able to be seen in this memory, an application on FreePastry has
been implemented that provides all the functionalities of a PKI: permits the
cipher of data achieving thus a sure communication among nodes, also permits
the distribution of the certificates of each user among the remainder of nodes,
besides each node can sign the certificates that want. Due to the lack of CA’s
that accredit the relations between public keys and users a public key
authentication mechanism has been implemented making use of self-signed
certificates and recommendations. The process of authentication has tried to
continue as faithfully as possible to Thomas Wölfl document.

The great problem that has arisen in the implementation of PKI-P2P is the
distribution of the self-signed certificates and recommendations. To be able to
cause to arrive the certificates and recommendations to all the nodes of the
network Pastry from distributed form, the best solution passes for utilize a DHT.
In FreePastry the only DHT that to have implemented is Past. But the problem
is that Past does not fit with the needs that have PKI-P2P. It has two large
objections: any object that is inserted in Past cannot be modified and can
neither be eliminated. So that if a node obtains a self-signed certificate, trusts in
that certificate, and wants to sign it, will not be able to insert again in Past with
the same identifier, would have that to insert it as a new Past object with a
totally different identifier. This it is the reason by the one that opted for including
in Past the self-signed certificates by a band and later by another band each
one of the signs that the nodes go generating. All this has complicated enough
the development of the application and its operation.

A solution for this problem would be to create an own DHT on FreePastry that
to comply strictly with the needs that has PKI-P2P but would be to be deviated a
little of the project objectives due to the difficulty that implies the implementation
of a DHT since 0.

In conclusion would be able to say that the PKI-P2P application would be able
to improve substituting the DHT Past or seeking new solutions, but at present
permits that a node authenticates the public key of another node and that the
two nodes can maintain an exchange of sure and encrypted data on an
insecure channel.

With respect to the part of the PlanetLab, the objective was to evaluate the
PLanetLab system to be able to carry out tests with a great number of nodes in
a simple way and remotely with SSH since your PC. After knowing a little how
functions, and to have done some tests on its nodes would be able to say that if

56 Implementation of a PKI over a P2P network

complies like network of tests but is not what was expected. PlanetLab is a
network that at present has 786 nodes; this implies that only tests with that
number of nodes can be done. This it is an objection if what intends is to carry
out software tests to great scale with 1000 nodes, 10.000 nodes… to emulate a
little better the behavior of the application in a network as Internet where there
are thousands and thousands of potential users.

Another small objection is the fact that not all the nodes are accessible in a
same instant of time; many of them are being reinstalled, or debugging, so that
they cannot be utilized. This implies two things, the first one, is that the number
of nodes for to do the tests is less than 786, and the other that only the nodes
with de boot state can to be used therefore a user must do a prior selection of
the nodes. Besides a user must add the nodes one to one by hand to your slice,
because only you will be able to agree for SSH to the nodes that have added to
your slice. Therefore if a test with many nodes wants to be carried out, if is the
first time, turns out to be difficult to have that to add all those nodes one to one
since the PlanetLab web.

Another aspect of PlanetLab that does heavy the execution of a test is that the
nodes are empty of software, for example they do not have installed the java
virtual machine. So that the user should upload all that is needed to carry out
the test to each one of the nodes, here is where is necessary to utilize the
scripts and the vxargs application to speed up all the process to copy files. In
tests of 10 or 20 nodes delays 10 or 20 minutes in having the ready nodes to
carry out the test, but for tests with hundreds of nodes the time of wait is
extended.

The conclusion is that to carry out tests in PlanetLab implies to dedicate
previously a time to add nodes to slice, to prepare those nodes uploading all the
necessary files and to leave them ready for the tests. If it will improve in the web
the way to add the nodes and all the nodes are 100% functional the service of
PlanetLab as tests network would improve a lot.

If tests with a great number of nodes want to be carried out the PlanetLab
network is not the solution, but PLanetLab goes growing day by day
incorporating new sites and adding new nodes to service. And at present the
PlanetLab software that incorporate the nodes is changing of the version 3 to
the version 4 for which perhaps in a future all these small objections are solved.

Future works

An urgent improvement is to improve the adaptation of Past to the PKI-P2P
application because its operation doesn’t work properly as it has been
mentioned before. Also it would be able to find out an alternative to current Past
implementation, a DHT on Pastry that adapted better to the needs of PKI-P2P.

The PKI-P2P graphic interface has been implemented quickly, almost at
deadline. This is why it must be taken into account to develop a much more
user-friendly frontend.

CONCLUSIONS 57

A pending interesting task is to utilize the PKI-P2P application to distribute the
user register in SIP applications. The normal thing in SIP is that the users be
registered in a well known central server; the idea is to utilize PKI-P2P so that
the register information is distributed among all the SIP users instead of its
centralized in a server.

Environmental Impact

The fast technological development that has carried out the humans has
contributed in a great consumption of the natural resources to a so high rhythm
that the planet does not give time to be regenerated. This has caused that in
recent years be spoken constantly of the environmental impact caused by the
new technologies. Therefore it is very important to carry out an evaluation of the
environmental impact of every project be done.

Due to that the project is only developed with software the impact
mediambiental is minimum. The only natural resource that has been utilized is
the electric power that supply the PC since which develops the project. But on
the other hand working with PlanetLab, the expense of electric power already
most is raised, because there is almost 800 nodes that are the 24 hours power
on.

Personal Conclusions

The theme of this project i have liked because intervene two very important
aspects nowadays that are: the P2P networks and their security. The networks
P2P are utilized for millons of people everywhere thanks to the success that
have had programs as Napster or Emule. At first the security characteristics of
in P2P networks were forgot or tried punctual form. Nowadays the P2P
reserachers are working in the security in P2P networks; a critical theme for
example is the anonymity of the users.

The project has contributed me much knowledge on security in the networks,
knowledge that already had studied before but that have been deepened and
applied in an environment as critical as are the P2P networks. The part of
PlanetLab investigation has also turned out me interesting and has contributed
me knowledge of Linux and SSH.

Besides it has motivated me the fact to implement the application on Pastry
because is a P2P network that already knew and that I find very interesting by
its characteristics and by its routing algorithm.

REFERENCES 59

REFERENCES

[1] Eckel, B., “Thinking in java”

[2] Wölfl, T., “Public-Key-Infrastructure Basedcon a Peer-to-Peer Network”

[3] Introduction to Cryptography,
URL<http://rinconquevedo.iespana.es/rinconquevedo/criptografia/introduccion.h
tm>
May, 18th 2007

[4] Introduction to Public Key Infrastructure
URL<http://www.mug.org.ar/Infraestructura/ArticInfraestructura/1166.aspx>
May, 18th 2007

[5] Introduction to Cipher Algorithms,
URL<http://publib.boulder.ibm.com/infocenter/tpfhelp/current/index.jsp?topic=/c
om.ibm.ztpf-ztpfdf.doc_put.03/gtps5/s5cphr1.html>
May, 18th 2007

[6] Introduction to X.509, URL <http://es.wikipedia.org/wiki/X.509>
May, 18th 2007

[7] Pastry, A. Rowstron and P. Druschel, "Pastry: Scalable, decentralized object
location and routing for large-scale peer-to-peer systems". IFIP/ACM
International Conference on Distributed Systems Platforms (Middleware),
Heidelberg, Germany, pages 329-350, November, 2001.

[8] FreePastry, URL <http://freepastry.org/>
May, 18th 2007

[9] Past, P. Druschel and A. Rowstron, "PAST: A large-scale, persistent peer-
to-peer storage utility", HotOS VIII, Schoss Elmau, Germany, May 2001.

[10] PlanetLab, URL <http://www.planet-lab.org>
May, 18th 2007

[11] Log4java, URL <http://logging.apache.org/log4j/docs/index.html>
May, 18th 2007

[12] Vxargs, URL <http://dharma.cis.upenn.edu/planetlab/vxargs/>
May, 18th 2007

[13] CoDeen, URL <http://codeen.cs.princeton.edu/>
May, 18th 2007

[14] Eclipse, URL <http://www.eclipse.org/>
May, 18th 2007

http://rinconquevedo.iespana.es/rinconquevedo/criptografia/introduccion.htm
http://rinconquevedo.iespana.es/rinconquevedo/criptografia/introduccion.htm
http://www.mug.org.ar/Infraestructura/ArticInfraestructura/1166.aspx
http://freepastry.org/
http://www.planet-lab.org/

ACRONYMS 61

ACRONYMS

ASN.1 Abstract Syntax Notation
CA Certificate Atuthority
CN Common Name
DES Data Encryption Standard
DHT Distributed Hash Tables
DSA Digital Signature Algorithm
HT Hash Tables
IETF Internet Engineering Task Force
IP Internet Protocol
MD5 Message Digest 5
P2P Peer-to-Peer
PC Personal Computer
PGP Pretty Good Privacy
PI Principal INvestigator
PKI Public Key Infrastructure
RSA Rivest Shamir Adelman
SHA1 Secure Hash Algorithm 1
SSH Secure Shell
TCP Transport Control Protocol
UPC Polytechnic University of Catalonia

Annex 63

ANNEX A. Test with 50 nodes

64 Implementation of a PKI over a P2P network

ANNEX B. PlanetLab tools

A.1 Introduction

There are applicationts that improve the experience when working with
PlanetLab, they make easier to work with this platform. Some of them are listed
below:

- pSSH (Parallel-SSH): Permits to execute SSH commands in parallel up
to 30 nodes.

- Vxargs: vxargs is inspired by xargs and pssh. It provides the parallel
versions of any arbitrary command, including ssh, rsync, scp, wget, curl,
and whatever. One reason to use it is to control a large set of machines
in the wide-area network.

- Nixes: This program helps in the installation, maintenance and control of
applications in PlanetLab.

- Application Manager: This application is a code that runs on a web-PHP
server, and works with PostgreSQL databases.

- LibHttpd++: LibHTTPD can be used to add basic web server capabilities
to an application or embedded device. The library handles both static
and dynamically generated content, has very low overheads, and
provides many features to simplify the creation of web based application
interfaces.

- ASD (Asyncron Sensor Daemon): API to know the state of variables in a
PlanetLab node.

- SliceTools: set of tools to configure and to manage slices.
- PlanetLab toolkit: Simpler version of the pSSH.

Due to the change of PlanetLab software in the nodes (the version 3.0 to the
4.0), the majority of these tools they are not currently working. Previously in the
PlanetLab web there was a 'user tools' section where all these applications
were found and many more but due to the change of software this section has
disappeared.

The only tools that have been able to be utilized they are vxargs during the tests
and the set of tools CoDeen.

B.1 CoDeeN

CoDeeN is an academic testbed Content Distribution Network (CDN) built on
top of PlanetLab by the Network Systems Group at Princeton University. This
testbed CDN consists of a network of high-performance proxy servers.
Currently, proxy servers have been deployed on many PlanetLab nodes. These
proxy servers behave both as request redirectors and server surrogates. They
cooperate with each other and collectively provide a fast and robust web

http://unixhelp.ed.ac.uk/CGI/man-cgi?xargs
http://www.theether.org/pssh/
http://www.planet-lab.org/
http://www.cs.princeton.edu/nsg/
http://fall.cs.princeton.edu/codeen/

Annex 65

content delivery service to CoDeeN users. A number of projects are related to
CoDeeN, including the following:

• CoBlitz, a scalable Web-based distribution service for large files.
• CoDeploy, an efficient synchronization tool for PlanetLab slices.
• CoDNS, a fast and reliable name lookup service.
• CoTop, a command-line activity monitoring tool for PlanetLab.
• CoMon, a Web-based general node/slice monitor that monitors most

PlanetLab nodes.
• CoTest, a login debugging tool that tries to be human-friendly.
• CoViz, a visualization tool graphically displaying PlanetLab activity.

 A. CoBlitz

CoBlitz provides a means to scalably serve large files over an HTTP content
distribution network. It requires no modification of clients or servers, since all of
the necessary support is located on the content distribution network itself. While
it is built using the CoDeeN network running on PlanetLab, it does not require
you to actively use CoDeeN or to join PlanetLab.

You add the prefix http://coblitz.codeen.org:3125/ to the URL you want to serve,
and CoBlitz does the rest. CoBlitz uses the same underlying infrastructure as
CoDeploy, but is being made available for public access. To give a high-level
description of how it operates:

- When clients request a large file, they are really contacting a special
agent that resides on the CDN node. This agent looks like a standard
Web server.

- The agent converts the single request from the client into a stream of
requests for smaller pieces (chunks) of the file. These requests are
spread, in parallel, to other peer CDN nodes.

- These peers request the chunks from the origin server, using the byte-
range support in HTTP. The peers not only send the request back to the
original agent, but also cache their chunks.

- The agent reassembles the chunks and sends them back to the client in
order, making it appear like one seamless download.

This approach has several benefits:

- As peers join/leave the CDN, only the missing parts of the large file need
to be re-requested, instead of doing whole-file caching.

- Large files can be spread across the main memory of many nodes,
reducing the memory pressure on any single node, and reducing the
number of disk accesses needed to serve the file.

- Since we use HTTP as the underlying protocol, no changes are required
to clients or servers. All CoBlitz support is on the CDN itself.

http://codeen.cs.princeton.edu/coblitz/
http://codeen.cs.princeton.edu/codeploy/
http://codeen.cs.princeton.edu/codns/
http://codeen.cs.princeton.edu/cotop/
http://comon.cs.princeton.edu/
http://codeen.cs.princeton.edu/cotest/
http://codeen.cs.princeton.edu/coviz/

66 Implementation of a PKI over a P2P network

 B. CoDeploy

CoDeploy provides a means to efficiently and scalably distribute content from
one source to many receivers. In practice, what this means for PlanetLab is that
it allows you to push content to hundreds of PlanetLab nodes without having to
consume lots of bandwidth at the source. In general, these techniques can be
used for efficient peer-to-peer hosting of arbitrary content. CoDeploy uses a
number of techniques to perform this distribution efficiently, such as:

- Using HTTP caching via the CoDeeN content distribution network.
- Splitting large files into multiple pieces so that even files that are

hundreds of megabytes can be handled efficiently.
- Locating suitable CoDeeN nodes via a "peer review" system.

 C. CoDNS

The CoDNS service provides cooperative name lookups to provide a faster,
more reliable DNS lookup service. It is a thin wrapper for name lookup which
dramatically reduces the client side latency while consuming minimal resources.
We have found that nameservers often experience local failures, resulting in
clients incurring many seconds of delay, even for cached records. In that case,
a typical 50 ms lookup suddenly increases by a factor of 100 or more. CoDNS
solves this problem by redirecting the lookup query to a healthy peer node when
the local nameserver starts to reveal failures. This masks off the long latency in
name lookups caused by local failures and provides consistently fast, reliable
response to virtually all name lookup requests.

 D. CoTop

CoTop provides a top-like monitoring tool for PlanetLab. What this means is that
instead of seeing processes and their properties, you see information about
slices. This approach provides a means of seeing what slices are consuming
resources on each node, without requiring access to information about all
processes.

CoTop is intended to be very similar to the standard top. When you run it, you'll
see a summary of the system at the top, followed by a number of rows. On each
row, you will see the summary for one slice on the node. These rows are sorted
by CPU consumption by default, but the sort key can be changed by pressing
numbers in the range of '2'-'0' (all numbers except '1').

 E. CoMon

CoMon provides a monitoring statistics for PlanetLab at both a node level and a
slice level. It can be used to see what is affecting the performance of nodes,
and to examine the resource profiles of individual experiments.

Annex 67

The status page provides several views of PlanetLab, including node-centric,
slice-centric, and others. To see more views, click on any of the links shown in
the "Summaries:" line at the top of each page. Also available are pages
showing the nodes with problems, and the slices with problems, which can be
useful for general problem monitoring.

 F. CoTest

CoTest is a login debugging tool for PlanetLab. If you are having problems
logging into a node, you can run CoTest to see what various data sources think
about the node in question. The output is meant to be human-friendly. This tool
gets its inspiration from Neil Spring's "why" script.

You download CoTest, compile it, and run it on the command line. You provide
it your slice name, and a list of nodes, and for each node, it provides some
information about any problems the node is experiencing. It currently pulls data
from two sources - the CoMon and CoTop. It uses a fairly simple process to
determine what problems might be occurring, and while it's not perfect, it should
be reasonably accurate.

 G. CoViz
CoViz provides some visualizations of PlanetLab usage. The visualizations
show various metrics of PlanetLab activity, and are updated every 5 minutes.
The underlying data is taken from the CoMon project.

The goal of CoViz is to be useful to several communities, while being visually
interesting as well. All of the data shown in CoViz is meant to be useful for
administering PlanetLab -- it quickly shows what experiments may be acting
strangely, without providing an overwhelming level of detail. It also presents a
sense of proportion, to see how the overall resources are being used. We have
found that this kind of "feel" is hard to achieve just by examining the raw data in
CoMon. Finally, CoViz is meant to provide some "eye candy" for PlanetLab,
since most network monitoring is relatively visually unappealing. CoViz also
provides an auto-updating slide show.

CoViz uses the TreeMap visualization format developed by Professor Ben
Schneiderman of UMD, and the TreeMap library developed by his research
group. In this format, a rectangle is repeatedly subdivided to show individual
elements, with the size of each area related to its importance. One fairly popular
use of this technique is the "Map of the Market" from SmartMoney. Brent Chun
previously used this technique for PlanetLab visualization.

We currently have eight different visualizations, in three categories: resources,
efficiency, and usage. The resources category refers to the bandwidth, CPU,
and memory used by the various slices. Efficiency refers to how much
bandwidth each slice is generating or consuming for the amount of CPU or

http://summer.cs.princeton.edu/status/
http://summer.cs.princeton.edu/status/index_slice.html
http://summer.cs.princeton.edu/status/index_nodeprobs.html
http://summer.cs.princeton.edu/status/index_sliceprobs.html
http://comon.cs.princeton.edu/
http://codeen.cs.princeton.edu/cotop/
http://summer.cs.princeton.edu/status/slideshow.cgi

68 Implementation of a PKI over a P2P network

memory used. Finally, usage refers to how different sites are using PlanetLab in
terms of experiments, nodes, and number of slivers.

Each rectangle contains one label and two values. The label is is the name of
the slice or site, and the two resources reflect the values used to create the
visualization. The first value is what is used to determine the size of each
rectangle. The second value is what determines the rectangle's color. The
specifics of each visualization are given below, but the general trend is that red
is worrisome, black is unsurprising, and green is desirable.

Fig 0.1 CPU Slice visualization

An example of visualization is the previous image. This image shows the CPU
consumption of each active slice on PlanetLab. The size of each rectangle
reflects the slice's fraction of total CPU consumption on PlanetLab. Slices that
consume less than 0.2% of the aggregate CPU are coalesced into a box
labeled "Others". The size value is the total aggregate CPU used across
PlanetLab, in the unit of CPU powers. For example, if a slice is running on 7
nodes and using 30% of each node, we say that it is using 2.1 total CPUs. The
color value reflects how much above (red) or below (green) the current usage is
compared to the weekly mean. CoViz calculates the standard deviation of
usage over the past week, and use this to select color. Two standard deviations
results in a shade of 50% red or green, while four or more deviations results in a
100% red or green. No color is assigned to the "others" rectangle, since we do
not keep track of the average of the coalesced slices.

Annex 69

ANNEX C. Scripts

This script installs and configures the java. Parameters: IP address of the node,
binary file of java, jar file of FreePastry, jar file of log4java, script that installs the
java, and the file for the configuration of Java variables.

T

node="$1"
j2re="$2"
fpastry="$3"
log4="$4"
installjava="$5"
variable="$6"

echo Starting instalation...
echo $node
echo $j2re
echo $fpastry
echo $log4
echo $installjava
echo $variable

 echo =============================
 echo $node
 echo Copying J2RE to $node
 scp $j2re upc_epsc@$node:$j2re
 echo Copying script installjava
 scp $installjava upc_epsc@$node:$installjava
 echo Copying $fpastry
 scp $fpastry upc_epsc@$node:$fpastry
 echo Copying $log4
 scp $log4 upc_epsc@$node:$log4
 echo Copying script java.sh
 scp $variable upc_epsc@$node:$variable
 echo Entering at $node
 ssh -x upc_epsc@$node "echo Installing J2RE at $node; ./$installjava $j2re"
 echo =============================

his script installs the java in the node. Parameters: binary file of java.

j2re=$1
echo Installing java.bin
echo "yes" > yes
sh $j2re < yes
rm yes
echo Rename dir jre1.5.0_11/ to java/
mv jre1.5.0_11/ java/
su -c 'cp /home/upc_epsc/java.sh /etc/profile.d'

echo Setting Environments variables
echo "CLASSPATH=.:\$HOME/java/lib

70 Implementation of a PKI over a P2P network

This sc

j2re="
fpastry
log4="
install
variab

echo S

echo $
echo $
echo $
echo $
echo $

for no

do

done

export CLASSPATH

JAVA_HOME=\$HOME/java
export JAVA_HOME

JDK_HOME=\$JAVA_HOME
export JDK_HOME

PATH=.:\$PATH:\$JAVA_HOME/bin
export PATH" >> .bashrc

source .bashrc

ript installs and configures the java for several nodes by sequential way.

$1"
="$2"
$3"
java="$4"
le="$5"

tarting instalation...

j2re
fpastry
log4
installjava
variable

de in 138.232.66.194 200.19.159.35 138.232.66.195 200.19.159.36

echo =============================
echo $node
echo Copying J2RE to $node
scp $j2re upc_epsc@$node:$j2re
echo Copying script installjava
scp $installjava upc_epsc@$node:$installjava
echo Copying $fpastry
scp $fpastry upc_epsc@$node:$fpastry
echo Copying $log4
scp $log4 upc_epsc@$node:$log4
echo Copying script java.sh
scp $variable upc_epsc@$node:$variable
echo Entering at $node
ssh -x upc_epsc@$node "echo Installing J2RE at $node; ./$installjava $j2re"
echo =============================

Annex 71

This script copies all that is needed to PlanetLab node and executes the PKI-
P2P application. Parameters: IP Address of the bootstrap node and the port of
the local node.

node="$1"
boot="$2"
port="$3"

echo Starting instalation...
echo $node

 echo =============================
 echo $node
 ssh -x upc_epsc@$node "rm -R application; rm -R distapplication; rm -R
crypto; rm -R Messaging; rm -R PKIObjects; rm -r privateView"
 echo Copiando carpetas to $node
 scp -r application upc_epsc@$node:application
 scp -r crypto upc_epsc@$node:crypto
 scp -r distapplication upc_epsc@$node:distapplication
 scp -r Messaging upc_epsc@$node:Messaging
 scp -r PKIObjects upc_epsc@$node:PKIObjects
 scp -r privateView upc_epsc@$node:privateView
 scp bcprov-jdk15-134.jar upc_epsc@$node:bcprov-jdk15-134.jar
 scp log4j.properties upc_epsc@$node:log4j.properties
 scp xmlpull.jar upc_epsc@$node:xmlpull.jar
 scp xpp3-1.1.4.zip upc_epsc@$node:xpp3-1.1.4.zip
 echo Ejecutando demopastry en $node con bootsrap $boot
 ssh -x upc_epsc@$node "echo ejecutando aplicacion at $node; java -cp
 .:FreePastry-1.4.4.jar:log4j-1.2.14.jar:xmlpull.jar:xpp3-1.1.4.zip:bcprov-
 jdk15-134.jar distapplication/DistPKIDHT $port $boot 9001"

 echo =============================

This script stops the PKI-P2P application in the PlanetLab nodes.

echo Starting pastry...
for node in 138.232.66.194 200.19.159.35
do
 ssh -x upc_epsc@$node "echo cerrando aplicacion at $node; killall java"
done

Annex 73

ANNEX D. Log4Java configuraton file

log4j.rootCategory=ALL, Default
log4j.appender.Default=org.apache.log4j.FileAppender
log4j.appender.Default.Threshold=INFO
log4j.appender.Default.ImmediateFlush=true
log4j.appender.Default.file=resultado.txt
log4j.appender.Default.layout=org.apache.log4j.PatternLayout
log4j.appender.Default.layout.ConversionPattern=%d %-5p
%C.%M(%L)===> %m%n
log4j.appender.Default.append=false

	Introduction to cryptography
	Pastry
	PKI-P2P application
	PlanetLab
	Future works
	Environmental Impact
	Personal Conclusions

