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Abstract 

This thesis is part of a research study by the German Federal Ministry of 

Food, Agriculture and Consumer Protection (BMELV), aiming energy savings 

by producing milk and whey concentrates instead of milk powders, whose 

production process is highly energy intensive.  

Although the new proposal is more sustainable, higher logistic efforts are 

likely to be necessary. The main objective of this study is to evaluate the 

trade-off between quality level of the product and logistic costs throughout 

the whole supply chain, and for that purpose, a simulation study has been 

implemented using the software Plant Simulation. 

The current process for powders has been compared to 4 alternative 

processes for concentrates; which combined with two parameters (delivery 

frequency and cooling temperature) generate 16 different scenarios.  

In order to design the simulation model, a top-down approach is used, 

allowing to independently model each of the processes involved, as well as 

to easily modify the model for more advanced stages of the bio-processing 

research. The simulation model is highly focused on individual batch quality, 

by means of quality prediction models, and batch traceability, both intrinsic to 

the model and its dynamic behavior (programmed by methods). 

Finally, the simulation outcomes for each scenario, i.e. average product 

quality and total costs, have been compared to the powders reference 

scenario. 
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1 Introduction 

1.1 Problem definition 

This thesis is part of a research study by the German Federal Ministry of 

Food, Agriculture and Consumer Protection (BMELV), aiming energy savings 

by producing milk and whey concentrates instead of milk powders.  

The global project is motivated by the current trends in industry such as 

environmental friendly production processes, as well as energy and 

emissions savings; furthermore these have become environmental, 

commercial and economical priorities for all industry sectors (Kulozik and 

Grunow, 2011). 

Additionally for the food industry, not only sustainability is expected but also 

high quality and safety requirements as well as product traceability; to the 

point that these are criteria affecting the consumer demand (Van der Vorst et 

al., 2009). 

Hence, the main objective of the research is to procure a competitive 

advantage for the German dairy industry by means of innovations in the 

process technologies of semi-finished products and evidence of their  

lastingness (Kulozik and Grunow, 2011). 

Milk powders are a commonly used semi-finished product in the dairy 

industry, used by bakery, cheese and milk producers among others. The 

general simplified overview of the process starts with the transportation of the 



  1 Introduction 

2 
 

milk from the farm to the dairy plant, where it is dehydrated (water extraction) 

and afterwards sold as powder to the dairy producers, who will re-hydrate the 

powders (water addition) to obtain the final product. 

The production process used in the current industry for powders, as 

explained in figure 1.1, has two different stages of water extraction: 

concentration by evaporation (alternatively reverse osmosis) and drying. 

 

Figure 1.1  Current dairy production general process for milk powder 

 

Thus, after the milking in the farms, the milk is transported to the dairy plant, 

then concentrated up to 55% dry matter and finally dried (spray drying 

process) before it can be sent to the customer. It is in this last processing 

step, the drying, where the semi-finished product with up to 97% dry matter 

can be obtained, nonetheless it requires almost 99% of the total energy used 

in the dairy process (Kulozik and Grunow,2011).  

The basis of the new proposal consists in the elimination of the drying 

process, obtaining as final semi-finished product milk concentrate instead of 

milk powder, as shown in figure 1.2. 
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Figure 1.2  New proposal general process for milk concentrates 

 

Hence, when delivered from the farm, the milk would be concentrated by 

reverse osmosis. As a result, concentrates would only have approximately 

40% dry matter, fact that involves some positive and negative consequences.  

Some of the main advantages of the concentrates are the lower energy 

consumption in the dairy process as intended, as well as the possibility to 

avoid the nowadays existing problem of clumping (grouping of the powder 

particles while storage or transportation) or re-dispersion (problems when 

mixing the powders with water again to obtain the final product) (Kulozik and 

Grunow, 2011).  

On the other hand, the disadvantages are the two main consequences of 

higher water content. First, concentrates would have approximately a 2,5 

times higher volume than powders, and consequently transportation and 

storage costs would increase. Furthermore, concentrates would have faster 

quality deterioration and therefore a shorter shelf-life. 

As follows, the main points to cover within the different thesis in the study as 

described in the project proposal by Kulozik and Grunow (2011) are: 
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 Alternative processes for concentrates that allow these to be 

transported and storage at room temperature likewise powders are (up 

to 4 months). 

 Energy savings and suitable methods to value those savings, 

especially when new means are necessary or when a conflict 

regarding the aim appears, for instance the conflict between mass 

reduction, lastingness and quality. 

 Adequate logistics for concentrates, taking into consideration the 

additional energy and costs needed, as well as methods to value the 

extra resources, also regarding quality and safety requirements.  

This thesis in particular is focused on the last point; that is the quality 

modeling of milk concentrates versus milk powders throughout the whole milk 

supply chain, depending on different process variations.  

 

1.2 Research design 

The research design can be divided in two main parts: first the study and 

analysis of the current milk powder supply chains, secondly the analysis and 

evaluation of the aimed new SC for concentrates. 

As for the powders SC, the objective is to simulate a general system 

representing the standard conditions in Germany, under the assumption of a 

‘best practice’ SC scenario, referring to a feasible SC configuration and 

operational management and control of all SC stages that achieves the best 
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outcome for the whole system (Van der Vorst, 2000). This first simulation 

model is to be considered the basis scenario for the evaluation of the 

concentrates SCs and will be used as reference. 

Accordingly, concentrate’s SCs are to be simulated for different scenarios, 

these including key environmental and operational parameters, in order to 

evaluate the logistical and quality impacts of milk concentrates in reference to 

the basis scenario. 

 

1.3 Outline 

The reminder of the thesis is structured in six chapters as follows: in chapter 

2 the state of the art will be described in addition to general background 

information on the most relevant investigation papers and recent publications 

on which the research is based. That includes literature on Food Supply 

Chains and the special requirements and conditions that should be 

considered in addition to general SCM; Simulation Environments used in 

other studies for FSC and the appropriate modeling of quality. 

In chapter 3 the methodology used will be characterized, that is the reference 

scenario will be justified accordingly to the industry description, what will lead 

to the simulation model description. Finally, the model will be verified and 

validated in order to present the obtained results.  

Furthermore, in chapter 4, the results will be analyzed to finally, come to the 

conclusions in chapter 5. Ideas for further research as well as the limitations 

of the study will be explained in chapter 6. 
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2 Review of literature and research 

2.1 Food supply chain management 

As mentioned in the introduction, consumer demand has become more 

demanding regarding food quality, integrity, safety, sustainability, diversity 

and associated information services in the past years (Van der Vorst et al., 

2009). This trend among consumers gains even more importance after 

recent accidents, likewise the E. coli crisis in Germany in May 2011. 

According to Van der Vorst et al. (2005), the food industry is becoming an 

interconnected system with a large variety of complex relationships, reflected 

by the formation of FSCNs via alliances, horizontal and vertical cooperation, 

and forward and backward integration in the supply chain (see figure 2.1). 

 

Figure 2.1  SC Diagram: processor’s perspective (Van der Vorst et al. 2005) 
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FSC are also referred to by the term of agri-food supply chains (ASC), which 

refers to the activities from production to distribution with the objective to 

bring agricultural products from the farm to the table; moreover, these are 

formed by the organizations responsible for production (farmers), distribution, 

processing, and marketing of agricultural products to the final consumers 

(Aramyan et al., 2006). 

Several authors and papers have recently focused on the peculiar features 

FSCs present with respect to other goods chains, for example Akkerman and 

van Donk (2007) consider following points the most important peculiarities: 

 Limited time of storing due to limited shelf life and need for dedicated 

equipment and space 

 ast processing by means of traced and high-quality systems and 

sequence dependent setup times.  

Blackburn and Scudder (2009) show that conventional supply chain 

strategies are inappropriate for FSC because the main focus should relay in 

product value deterioration, which decays significantly over time in the SC 

and is highly temperature and humidity dependent.  

Moreover, Van der Vorst et al. (2009) explain that equally important as the 

analysis of efficiency and responsiveness requirements is theanalysis of food 

quality change and environmental load of FSC.  

As for the food quality change or food decay, the intrinsic focus on product 

quality makes the design of FSCs further complicated (Van der Vorst and 
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Beulens, 2002; Luning and Marcelis, 2006). For that reason, special attention 

is paid to this matter in chapter 2.2. 

Regarding environmental load, sustainability in FSC focuses on the reduction 

of product waste, number of miles a product has travelled before it reaches 

the consumers’ plate (food miles) and all greenhouse gas emissions related 

to the business processes in the SCN (carbon footprint) (Van Donselaar et 

al., 2006). 

Furthermore, Zanoni and Zavanella (2011) consider energy a key element 

within FSCs, due to the fact that it is necessary to guarantee quality-based 

processes. Moreover, they explain that the use of energy implies the 

consumption of resources, which directly affects the FSC’s performances, 

including sustainability and economical. 

Van der Vorst (2000) organizes some of the main particular requirements of 

FSC by Van Rijn and Schijns (1993), Rutten (1995) and Den Ouden et al. 

(1996) in table 2.1 and categorizes them according to the Supply Chain stage 

involved. 

As Van der Vorst et al. (2009) conclude, further research in FSC should 

focus on improving the logistics performance in addition to the environmental 

sustainability and food quality preservation. 
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Table 2.1  Overview of the main FSCs characteristics (Van der Vorst, 2000) 

SC stage    Product and process characteristics 

Overall 

 

 Shelf life  and quality decay for raw materials, intermediates 
and finished products throughout the SC 

 

 Recycling of materials required 

Growers 
Producers 

 

 Long production throughput times  
 

 Seasonality in production 

Auctions 
Retailers 

 

 Variability of quality and quantity of supply (farm-based  inputs)  
 

 Seasonal supply of products requires global (yearly) sourcing 
 

 Conditioned transportation and storage means  

Food 
industry 

 High volume, low variety production systems 
 

 Focus on capacity utilization due to the highly sophisticated 
capital-intensive machinery   

 

 Variable process yield in quantity and quality due to biological 
variations 

 

 Possible delay in planned production because of quality 
controls 

 

 Alternative installations and recipes, and cleaning and 
processing times depending on the product 

 
 

 Necessity for lot traceability of work in process due to quality 
and environmental requirements and product responsibility 
 

 

 Limited storage capacity when raw material and/or products 
need to be kept in special facilities 

 
 

2.2 Modeling of quality 

As mentioned in the previous section, food quality is of extremely importance 

for FSC and therefore a very relevant characteristic in plenty of research 

papers.  



2 Review of literature and research 

10 
 

Due to the importance of product quality in the food industry, Trienekens and 

Zuurbier (2008) expect quality assurance to dominate production and 

distribution processes, in addition to the increasing efficiency and cost 

reduction motivated by the costs for certification, auditing and quality 

assurance (Akkerman et al., 2010). 

Food quality is not only a performance measure, but also directly related to 

other food attributes like integrity and safety (Van der Vorst et al., 2009).  

In order to quantify the product’s quality level and as explained by Grunert 

(2005),it should be taken into consideration the fact that food quality usually 

refers to the physical properties of food products, as well as to the product 

perception by the final customer, which can include microbial aspects, texture 

or flavor among others. 

Nevertheless, Rong et al., (2010) consider that regarding the wide range of 

product characteristics, most quality prediction models use one leading 

quality characteristic for each given product. 

Especially in fresh food products, food quality is determined by biological 

variations, in addition to time and environmental conditions, i.e. temperature, 

humidity and presence of contaminants, all factors that can be influenced by 

following characteristics, according to Van der Vorst et al., (2009): 

 Packaging material 

 Loading processes 

 Temperature conditioned transportation means and warehouses 
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Some authors focus on the modeling of food quality change by using time 

temperature indicators (TTI) in order to trace the temperature conditions of 

each product batch individually throughout distribution (Taoukis and Labuza, 

1999; Schouten et al., 2002; Tijskens, 2004). 

Obviously, temperature is an important factor in controlling product quality in 

supply chains. The rate of quality degradation k is therefore often based on 

the Arrhenius equation, a formula for the temperature dependence of a 

chemical reaction. The general form of this equation is:   

q = k0∙e-(𝐸𝑎/RT) 

where k0 is a constant, Ea the activation energy (an empirical parameter 

characterizing the exponential temperature dependence), R the gas constant, 

and T the absolute temperature (Rong et al., 2010). 

 

Figure 2.2  Illustration of quality degradation of food products (Rong et al., 
2010) 
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The above presented equation leads to the quantification of the quality 

change during a specified time period for each possible storage or 

transportation temperature (Rong et al., 2010): 

q =𝑞0∙exp[ k0∙t∙e-(𝐸𝑎/RT)] 

Accurate shelf-life prediction is an important aspect of food science, not only 

to corporations but to governments and the general public as well. A 

premature loss of shelf-life can lead to a loss of consumer confidence and of 

revenues to the food manufacturer. Shelf-life testing also allows the company 

to minimize costs in formulation and packaging. (Fu and Labuza, 1993). 

Moreover, in the recent years, next to high quality levels, the need for an 

accurate chain control and its monitoring has emerged as one of the most 

critical issues (Montanari, 2008). The precautionary principle in the General 

Food Law requires food business operators to ensure food safety in the food 

chain (EC Regulation, 2002), that is traceability of food products has become 

a crucial matter.  According to ISO Quality Standards, traceability is defined 

as: “the ability to trace the history, application or location of an entity by 

means of recorded information” (ISO 8402:1994). 

In the food chain, traceability means the ability to trace and follow a food, 

feed, food-producing animal or substance through all stages of production 

and distribution (Manikas and Manos, 2008). 
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2.3 Simulation environments for FSC 

The VDI (Association of German Engineers) guideline 3633 defines 

simulation as the emulation of a system, including its dynamic processes, in 

a model one can experiment with. It aims at achieving results that can be 

transferred to a real world installation and at defining the preparation, 

execution and evaluation of experiments within a simulation model.  

According to Huang et al. (2003), discrete event simulation is a natural 

approach for supporting supply chain network design, due to the difficulty to 

perform an analytic evaluation because of their complexity. Nevertheless, 

discrete event simulations tend to stress logistics analysis rather than product 

quality or sustainability (Van der Vorst et al., 2009). 

Usually, SCs are cost or service driven but, recently environmental 

considerations in the SCP models are gaining importance by the addition of 

environmental constraints to (Subramanian et al., 2010), by developing multi-

objective functions including profitability and sustainability (Quariguasi et al., 

2008), or by using simulation to evaluate trade-offs between environmental 

and economic performance (Akkerman and van Donk, 2010). 

Especially for FSC Simulation, time and temperatures become two essential 

factors. For exemple, Van Donselaar et al.(2006) use time-dependent quality 

information in the design of perishable inventory management systems. 

Moreover, Zanoni and Zavanella (2011) explain the need to model the chain 

itself for the optimization of the FSC, taking into consideration the 
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temperature set and its impact on quality, energy and associated costs, 

referring to the fact that the lower the temperature, the higher the energy 

required and the longer the product life. 

In addition, high demands are set on model transparency and completeness. 

Transparency refers to the insight into model components and their workings, 

whereas completeness addresses a full overview of design parameters (Van 

der Vorst et al., 2009). This leads to following requirements on simulation 

model design according to Van der Zee and Van der Vorst (2005): 

 Model elements and relationships: Hierarchy and coordination are 

important decision variables, which require an explicit definition of 

actors, roles, control policies, processes and flows in the model. 

Therefore agents, jobs and flows can be used. 

 Model dynamics: stock levels and lead times are an important issue 

given the many parties involved; therefore timing and execution of 

decision activities should be explicit. This requires the ability to 

determine the dynamic system state and calculate the values of 

multiple performance indicators at all times. As Van der Vorst et al. 

(1999) remark, the model should be able to calculate the state, time 

and place of each business entity after each transition. 

 This can be realized by the job execution, which can be triggered by 

multiple causes and have processing times depending on the entities 

processed and process capacity. 
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 User interface: The need for the chain partners to get involved in the 

simulation study is required for two reasons: to consider the solution 

trust-worthy and a better acceptance of the study’s outcomes; and 

secondly to achieve a better solution in terms of model correctness 

and quality of the scenarios (McHaney and Cronan, 1998; Bell et 

al.,1999; Robinson, 2002). Therefore, an explicit representation of 

decision variables leads to visibility and better understanding of all 

processes in the model. The authors suggest the use of basic logistic 

terminology and recognizable building blocks. 

 Ease of modeling scenarios: Given the complexity of the SC and the 

large number of possible scenarios, the choice of building blocks, the 

time required to adapt them to model specific requirements and the 

possibility to reuse models should be taken into consideration in order 

to increase the speed of modeling and analyzing alternative scenarios. 

Also Beamon and Chen (2001) and Kleijnen and Smits (2003) introduce 

the need for the model to allow for the tradeoff between logistical costs, 

service, and product quality indicators. Moreover, they explain that the 

agreement on a FSCN scenario is reached based on the evaluation of the 

consequences of KPI (defined by Fortuin (1988) as variables indicating 

the effectiveness and/or efficiency of a part of or the whole of the 

processes or systems compared with to a given norm/target or plan), 

given the restrictions set by the available resources. 



2 Review of literature and research 

16 
 

Whereas traditional performance measurement systems are based on 

costing and accounting systems, the special characteristics of  FSCs 

require a more balanced set of economic and operational measures 

(Lohman et al. 2004). The choice of KPI should include investment and 

operational costs, as well as customer service, that is on-time delivery 

and product quality. 

Some of the main ideas used as reference for this thesis can be found in 

different case studies by several authors:  

Van der Vorst et al., (2008) use following key performance indicators to 

measure effectiveness and efficiency of alternative designs:    

 Distribution costs, including transport and warehousing only. 

 Energy and emissions during distribution. 

 Product quality when arriving at the retail store, measured by the 

remaining number of days until the predetermined BBD (remaining 

selling time), the remaining keepability of the product at a storage 

temperature of 4ºC and the percentage of products for which the 

BBD is not reached yet, but the quality state is no longer 

acceptable. 

Van der Vorst et al., (1999) use business entities to represent an information 

flow and / or goods flow. For that purpose, each business entity has a unique 

identification, a time stamp (keep track of the connection between input and 
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processed entities for tracking, tracing and performance measurement) as 

well as descriptive attributes. 

For the case study by Wang et al., (2011), the determination of the delivery 

frequency is essential: it will affect the transportation cost and the quality 

deterioration. The simulated scenarios consist on the combination of two 

possible temperatures for chilling and two different packaging materials. 
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3 Methodology 

In order to fulfill the assignments of this thesis, the working methodology 

comprises several stages, these including research and familiarization with 

the industry, literature research on FSC, quality simulation and simulation 

environments, as well as the familiarization with the software Plant 

Simulation and the learning of the specific programming language SimTalk. 

The overall simulation methodology starts with a first impression of the real-

world installation, followed by some information and data collection for the 

creation of the new model. These are then abstracted to become a simulation 

model according to the aims of the simulation studies, followed by the 

interpretation of the data produced in the simulation run (Tecnomatix Plant 

Simulation Help). 

 

3.1 Top down approach  

After the initial background research on the general project and the 

objectives to be covered within this study, and in order to guarantee model 

transparency and completeness, a top down design is chosen.  

For this purpose, the first model, that is the top layer, consists of a general 

milk supply chain only including the farms, the dairy plant, the distribution 

center (DC) and two different customers, as well as the transportation 

between parties. (See figure 3.1). 
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Each of the SC stages is modeled by a different frame within Plant 

Simulation, fact that allows to subsequently modeling the different processes 

in each stage with so many details as necessary. 

Afterwards, all the processes involved are modeled in the corresponding 

frames, building the second layer. The connections between frames are 

modeled by interfaces. 

 

Figure 3.1  Top layer of the simulation model: CHAIN 

 

Some of the frames contain more simply-modeled processes, which are 

completely implemented in the second layer, as in the case of the farms; 

other frames contain more complex structures. 

 In these cases, sub-frames are built, as for example the transport frame, 

which contains three different sub-frames (building the third and last layer): 
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loading process, transportation and unloading process; as shown in figure 

3.2. 

 

Figure 3.2  Second layer of the simulation model: Transport 

 

3.2 Use of frames and operational blocks 

Furthermore, working with different frames provides the possibility to use 

these as blocks, which can be used repeatedly; for instance in the case of 

the transport frame (first layer) or the quality control frame, used in the dairy 

plant and the DC (second layer). 

The same idea, creating a new operational block with the basic options of the 

software, is also used for the main elements of the process. In other words, 

most of the processing and storage steps, or even some stages in the SC, 

have certain common attributes and characteristics. These are modeled in a 

generic operational block (group of several basic Plant Simulation structures 

or objects), which can be later modified to fit the specific needs of the 

represented stage by only changing the parameters, avoiding the 

implementation of the whole block from the beginning every time. 
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Both, frames and operational blocks, are implemented in the class library of 

the model, and can be used when needed by adding these to the model. 

Some of the advantages of this procedure are the high flexibility provided to 

the model, since it is easier to partly modify the simulation model by adding 

or deleting operational blocks; as well as the possibility to built an operational 

block and test it for correct computation (verification) instead of testing every 

object in the model.  

 

3.3 Model dynamics implementation 

In order to properly model the simulation dynamics, chiefly information flows 

such as process and storage timings, lead times, stock levels, etc. the option 

Method provided in Plan Simulation is used. 

The object Method is executed during the simulation run and allows to 

program controls which will affect other objects’ behaviors. In this study, a 

Method can be triggered in three different circumstances: 

 In the beginning of a process: The method is in this case an entrance 

control and starts executing every time a part is starting a process. 

 At the end of a process: The method is in this case an exit control and 

starts executing every time a part is leaving a process. 

 Continuous run: The method is triggered by the init method, that is, 

every time the simulation starts (play button), and it runs during the 

total simulation time, until the simulation is stopped (stop button). 
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The general structure of the methods is explained in figure 3.3: 

 

Figure 3.3  Structure of the Method 
 

Regarding the implementation of the different methods, two different 

methodologies were used, once for continuous running methods and a 

different one for entrance and exit controls. 

Regarding the continuous run methods, these are implemented in the frame 

were they are to be executed. In order to address the different process steps, 

global variables, parts, etc. absolute paths were needed, that is the location 

of the object was described by the names of all the frames involved 

beginning from the class library. 

 For instance, to address the loading process in the transportation from the 

Farm to the Dairy, following path was needed:  

.classLibrary.Frame.subFrame.object  .powders.CHAIN.Transport.load 

As for the entrance and exit controls, they are also built in the class library 

and used in a similar way than the operational blocks. In this case, 

anonymous identifiers are used to address the objects, fact that provides the 

possibility of a more flexible and simpler programming. 
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Table 3.1  Anonymous identifiers 

Identifier Addressed object 
 

@ designates the part (entity) that triggered the control 

? designates the process  that triggered the control 

~ returns the frame within which the Method object is located 

root designates the topmost frame in the hierarchy of frames 

self designates the currently executed method 
 

3.4 Factorial design 

 With the simulation results, a full factorial design will be conducted for the 

quality KPI having as two level factors the cooling (low: cooling, high: room 

temperature) and the delivery frequency from the farm (low: 1day, high: 2 

days) for each possible production process. 

The statistical analysis will be performed by a free version of the software 

MiniTab and should serve only as a possibility to analyze the simulation 

outcome, meaning, the results themselves do not have much value, since the 

process are still in research and most of the real data is still missing  
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4 Simulation study 

4.1 Scope 

In this chapter the complete model, as well as the simulation study are 

described in detail. 

 For this purpose, the model is justified in section 4. 2 with an industry 

description in addition to an extended overview of the main processes 

(4.2.1), moreover the specific objectives, as well as the definition of the key 

performance parameters (KPI) and the selected scenario parameters are 

defined in section 4.2.2. Furthermore, overall model assumptions are 

presented in section 4.2.3 to conclude with the presentation of the several 

existing numerical quality models for liquid milk, powders and concentrates 

as well as the justification for the selected models and assumptions (4.2.4). 

In section 4.3, the complete model is to be described: first of all, the material 

flow objects (4.3.1) and the mobile units (4.3.2) used in the model will be 

introduced together with their attributes and properties, as well as how the 

quality  methods are implemented (4.3.3); to continue with the top layer, the 

chain (4.3.4), which is common for powders and concentrates; followed by 

the second-layer frames in detail: farms (4.3.5), transport from the farm to the 

dairy plant (4.3.6), dairy production processes (4.3.7), transport from the 

dairy to the DC (4.3.8), DC (4.3.9) and finally transport from the DC to the 

customer (4.3.10).  
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Regarding the 6 above mentioned sub-sections, firstly, the stage for powders 

is described and in second place the possibilities and variations for each 

concentrate production process will be discussed. Additionally, global 

variables and their calculations will be justified in section 4.3.11. 

The remaining section of chapter 4 is dedicated to the model verification 

(4.4.1) and the model validation (4.4.2). 

  

4.2 Modeling 

4.2.1 Industry description 

A very simplified industry description of the dairy processing, regarding the 

part dedicated to milk powders, and the description of the concentrates 

research project is given respectively in figures 4.1 and 4.2. 
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Figure 4.1  Schematic overview of the powders production process 
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Figure 4.2  Schematic overview of the concentrates production process 
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4.2.2 Objectives, scenarios and key performance parameters  

The specific objectives of the simulation modeling are to contrast and 

compare the advantages and disadvantages of the possible new production 

processes for milk concentrates, both between themselves and in 

comparison with the actual conditions of milk powders; as well as the 

quantification of these. In order to do so, different scenarios will be modeled.  

The outcome of the simulation should serve as a first evaluation of the 

proposal feasibility, and if so, it should provide some directions on which of 

the concentrate production process better fits the industry needs. 

Regarding the early stage of the project, the simulation is also to be 

considered a basis to work on, meaning it should be adapted to the concrete 

chain characteristics to achieve more accurate results on more advanced 

stages.  

Turning to the scenario definition, the simulation study involves five different 

situations: the fist scenario (S0) intends to illustrate the average German SC 

for powders, describing the industry and its processes the way they currently 

are. S0 is to be considered the reference scenario and will be the basis to 

evaluate scenarios S1 to S4. Also the comparison between these will be 

based on S0. 

Hence, scenarios S1 to S4 will represent the four alternative processes to 

produce milk concentrates which are being studied by the department of food 

engineering at the Technical University Munich. 
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Firstly we can distinguish between processes having the heating and/or the 

filtration process in the first stage followed by the concentration process in 

the second stage (S1 and S2). On the contrary, in the first stage of S3 and 

S4, the concentration and the filtration processes take place, followed by the 

heating process, as shown in Figure 4.3. 

Thus, the specific order of the necessary processes will affect the conditions 

under which the milk is to be processed in the remaining stages, in addition 

to accordingly temperatures and processing time requirements. The exact 

characteristics of each process will be described in section 4.3.5. 

 

Figure 4.3  Process diagram for scenarios S2 to S4 

 

Hence, to quantitatively measure the differences between scenarios, two key 

performance indicators (KPI) will be taken into account: total cost (TC) of the 

supply chain and average quality (Q) of the semi-finished product (powders 

or concentrates) when delivered to the customer.  
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As for the total costs, the focus will rely on the differences between powders 

and concentrates, and only those processes being different will be taken into 

consideration. The studied TQ will be a relative measure, that is, all 

scenarios will be compared to the same reference and will include 

production, transport, required cooling for transport , storage, required 

cooling for storage and waste. 

Regarding the choice of the average quality as a KPI, it is a crucial matter for 

concentrates to provide similar quality characteristics than powders under 

similar storage conditions to fairly compare the TC. Therefore, the 

arithmetical mean of all delivered batches will be calculated by the simulation 

program. 

Furthermore, two different model parameters will be included in the 

simulation study: delivery frequency from the farm to the dairy plant, as well 

as transportation and storage cooling; both of them having to possible 

configurations. 

The delivery frequency from the farm to the dairy represent the most 

common practice in the sector (Bylun, 1995), and can be either one or two 

days (1d or 2d). This will affect the milk quality when arriving at the dairy, that 

is, milk delivered to the dairy daily will have better quality but will require 

more transportation efforts; on the other hand, farms delivering milk only 

every two days will provide lower quality but transportation savings. 

In addition, the transportation and storage cooling option or the room 

temperature option (room temperature: RT or cooling: COLD) will have 
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similar consequences regarding the tradeoff between quality and energy or 

transportation efforts. 

In brief the scenario and parameters overview is shown in table 4.1, where 

scenarios can be identified by their code according to the above mentioned 

abbreviations as follows: process.deliveryFrequency.cooling 

Table 4.1  Scenario and parameters overview 

 

 

4.2.3 Overall model assumptions 

The model has been implemented under some general assumptions, which 

apply to the total simulation time and are common for all the processes. 

Firstly, the time format used in the implementation for all processes is given 

by Plant Simulation as follows:  

DDDD:HH:MM:SS (in words,  days:hours:minutes:seconds). 

Furthermore, the simulation run starts with an empty system, that is, the first 

part enters the system at time 0:00:00:00, what implies that all the machines, 

buffers, trucks, etc. are empty, included the DC. Since that means there is no 

safety stock hold at the DC and it would be possible for the first orders to 
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have stock outs, the data collection from the simulation run should not be 

taken into account until the system has reached a steady state. This happens 

after the 25th day in the simulation time. 

The simulation horizon should be 1 year (365 days) in order to compare 

annual costs, nevertheless, in order to avoid the consideration of the data 

collected during the unstable period, the time horizon is extended. 

Hence, the acceptable error is set at 2%, meaning the simulation should run 

for at least 1250 so that the unsteady period represents 2% of the simulation 

time. Finally, simulation time horizon is fixed at 4 years (1640 days) with 

1.71% error; simulation results are then divided by 4 to obtain the mean 

annual data. 

Regarding the fact, that no real data is available yet, some of the processes 

and their characteristics are implemented by using stochastic models. 

This applies especially to three kinds of processes: 

 Processes that are not computer controlled for instance biological 

processes such as milking; in terms of milk quantity obtained at the 

farm and initial temperature of the milk. 

 Production process variability is considered by using stochastic 

models for the achieved temperature of a batch when being processed 

or for the actual % of volume reduction. 

 Customer demand, regarding order quantity. 
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Since probability distributions are computer-generated, the stochastic models 

used in the simulation are based on pseudo-random numbers. These are 

created by seed values, which generate independent random number 

streams by using different seed values. 

Because there is no available data yet, this model uses only normal 

distributions that may represent reality, what should be later changed to fit a 

specific SC. Normal distributions are implemented in Plant Simulation as 

follows:   [Stream, Mean, Std. Deviation, Lower Bound, Upper Bound] 

Furthermore, in order to properly describe the dynamic behavior of the SC, 

some auxiliary objects have been implemented, meaning they do not 

represent any real process, but are necessary for the adequate simulation 

calculations and functionality. These objects are included in the methods and 

have a processing time of 0,1 seconds so that they can fulfill their auxiliary 

mission but do not compromise the timing of the model. 

Moreover, three specific parameters are assumed to be constant for the 

model: room temperature is set at 20ºC, what also applies for transportation 

and storage facilities without cooling installations; machines are available 

99,5% of the simulation time in order to take into consideration possible 

break downs, reparation and maintenance tasks, etc.; and finally, the model 

is based on the assumption that trucks travel at a mean speed of 80 km/h; 

that is transportation time can be defined by the length of the transportation 

process, or in other words, by the distance between facilities. 
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4.2.4 Quality models 

As explained in section 2.2, the Arrhenius model will be used for the quality 

decay during the simulation run.  

As determined by Fu et al. (1991), the microorganism Pseudonomas fragi is 

a good indicator of the quality level because of its prevalence and active 

growth in dairy products. 

In the research they determined an empirical model for milk flasks incubated 

at 4ºC during 50 hours and then cooled in four different scenarios. The 

obtained kinetic parameters provided following model with a 95% confidence 

interval and R2=0,984:    

∆q = exp[− exp(30,10) ∙ t ∙ exp(−8,9 ∙ 103/T)] 

As for the powders and concentrates, and because of the lack of empirical 

models, the activation energy was altered. 

The activation energy measures the exponential temperature dependence, in 

other words, how the substance reacts to temperature (Zanoni and 

Zavanella, 2011).  

Because this reaction is highly dependent on the substance’s water content 

(Bylund, 1995), it is reasonable to use a lower Ea value for powders than for 

concentrates. Without any scientific basis and only for this particular 

simulation study, so that the model consistency could be proved and a 
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reasonable outcome would be obtained (otherwise all the batches could 

finish the process with zero quality level), following Ea values were used: 

Ea(powders)=23,1 kJ/mol:    ∆q = exp[− exp(23,10) ∙ t ∙ exp(−8,9 ∙ 103/T)] 

Ea(powders)=28,1 kJ/mol:    ∆q = exp[− exp(28,10) ∙ t ∙ exp(−8,9 ∙ 103/T)] 

The value for powders (difference to the milk value of 7 kJ/mol) was fixed 

arbitrarily to represent a 98% dry matter content , so that for a 30% dry 

matter content a difference regarding the milk value of approximately 2 

kJ/mol was calculated, that is 28,1 kJ/mol. 

 

4.3 Simulation model  

4.3.1 Material flow objects 

The different processes included in the model are represented by several 

material flow objects, which simulate the flow of materials through the chain. 

A brief description of the most important ones is given according to the 

Tecnomatix PlantSimulation Help: 

 Source  

The Source produces all kinds of MUs in a single station, has a capacity of 

one and no processing time.  
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 Drain 

It is the object responsible for removing the parts (produced by the source) 

from the model after they have been processed. 

 SingleProc 

Production processes and machines are represented by a SingleProc, a 

single station for processing one part, which it received from its predecessor, 

then processed and finally passed on to the successor. 

In order to properly represent the characteristics of each one of the 

production processes, following attributes are defined for all the SingleProcs 

(see table 4.2): 

Table 4.2  Attributes of the SingleProc 

Attribute Description 

Processing time Required time to process one part  

Failure rate All machines are available 99,5% of the total time 

Temperature Working temperature of the machine in ºC 

Weight reduction Weight reduction in % of the initial volume when 
leaving the machine 

 

 

 Buffer 

The storage elements are represented by Buffers, accomplishing tow 

different missions: temporarily holding parts when the following component 

fails and passing parts on when the preceding component stops working. Its 

attributes are explained in table 4.3 and have several similarities with the 

SingleProc’s attributes. 
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Table 4.3  Attributes of the Buffer 

Attribute Description 

Processing time Required time to process one part  (if necessary) 

Temperature Working temperature of the machine in ºC 

Exit strategy All Buffers use Queue behavior ( FIFO strategy) 
 

 Track 

Transportation distances between parties are represented by Tracks, which 

have a defined direction (one way) and following attributes (see table 4.4): 

Table 4.4  Attributes of the Track 

Attribute Description 

Length Transportation distance in meters 

Speed Speed of the trucks placed on the track in m/s 

Temperature Transport temperature in ºC 
 

 Connector 

Connections between two objects in the same frame on which the parts 

move from object to object; as well as connections between an object and an 

exit or entrance of a frame are represented by Connectors. These also show 

the direction of the connection. 

 Interface 

Transitions between frames are modeled with the object Interface, which are 

the places at which the MUs pass from one frame to another in the simulation 

model.  
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Each material flow object has its own identifying icon, as shown in figure 4.4: 

 

Figure 4.4  Flow object icons overview 
      

4.3.2 Moving units: entities and containers 

In order to represent the different stages and the dynamics of the model, two 

kinds of moving units (MUs) are used: entities and containers. 

 Entities   

The product flow is represented by entities. These are moving material flow 

objects without loading capacity that move through a plant on the material 

flow objects proper, representing parts being produced, processed and 

transported (Tecnomatix Plant Simulation Help).  

In this case, entities will represent the liquid milk, the milk powders, the milk 

concentrates or any intermediate state involved in the process. 

For that purpose, entities are defined with following embedded attributes (see 

table 4.5).  

In addition, other attributes are related to entities with the only purpose to 

store data for concrete methods. These do not represent any real attribute 

and will be described in the corresponding method explanation along section 

4.2. 
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Table 4.5  Attributes of the entity 

Attribute Description 

Temperature Current Temperature of the entity in ºC 

Weight Weight of the entity in kg 

Trace Traceability table containing the complete process data  

Quality Relative quality level regarding the initial quality in % 
 

Because of the large number of entities being processed at some point of the 

system at the same time, it is not possible to address the entities directly; 

hence, they will be called by the anonymous identifier “@” in entrance or exit 

controls. 

 Containers 

Now turning to the containers, these are moving material flow objects for 

transporting other MUs (entities in this case), which can be used to model 

pallets, bins, boxes, etc. or as in this study, trucks. 

During a simulation run Plant Simulation passes the container along from 

material flow object to material flow object along the existing connectors or 

according to programmed methods. 

In line with the entities attributes, the containers’ attributes are described in 

table 4.6. 

Likewise the entities, other attributes for internal methods’ calculation are 

implemented and the addressing of the containers is made by the 

anonymous identifier “@”. 
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Table 4.6  Attributes of the container 

Attribute Description 

Capacity 
 

Truck loading capacity (number of entities) 
 

Customer Destination of the product (only for trucks between 
DC and Customer) (*) 

 

 

(*) Two different definitions of the container are implemented in the class 

library: the container provides transportation between the farms and the dairy 

as well as from the dairy to the DC, and the container_c, represents the 

transport from DC to the corresponding final customer. Characteristics like 

transportation temperature and transportation time are included in the road 

object; loading and unloading times in the process itself and will be explained 

in the corresponding section. 

 

4.3.4 Implementation of quality models 

The quality of the milk products should be intrinsic the process as introduced 

in the literature review section, and for that purpose, the new quality level is 

calculated by the program every time an entity leaves a material flow 

element, that is a SingleProc or a Buffer. 

Thus, a global method is implemented in the class library and linked to all the 

exit controls where needed. The method is named “TQSL” (Temperature, 

Quality, Shelf-Life) and is structured in following steps: 
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1) Declaration of local variables (see figure 4.5):  

 

Figure 4.5  TQSL: local variables 
 

In order to program the necessary calculations some auxiliary variables are 

implemented only for this method, for instance: 

 dT: differential of temperature (T) to include process variability 

 dQ: differential of quality between the quality of the processed entity and 
the quality before entering the machine. 

 t: time interval in which the entity has been processed in the machine. 

 i: local counter for the traceability table. 

 days: conversion variable for t (seconds to days). 
 

2) Calculation of time and temperature 

As explained in section 4.2.4, the chosen quality model calculates the quality 

variation in a time interval. In order to calculate this interval, every material 

flow object with the exit control TQSL has also an entrance control “entrance” 

(see in figure 4.6) in which the point in time when an entity (@) triggers the 

control is saved in the entity’s attribute “in”. This attribute was not included in 

the previous section since it is only used for this particular calculation. 
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Figure 4.6  Method entrance 
 

Afterwards, when the exit control is triggered and once the local variables 

have been declared, the time interval is calculated and stored in variable “t” [ 

t = tout - tin ]. Then, it is transformed from seconds to days and stored in 

variable “days”, as shown in figure 4.7. 

 

Figure 4.7  TQSL: time and temperature 
 

The next step consists on getting the temperature information from the 

processing machine or buffer (?) and store it in the entity’s (@) temperature 

attribute with some random variation provided by a normal distribution 

calculated in dT ~ N (1;03) and seed value 1 (see figure 4.7). 

3) Calculation of the new quality level 

Thereafter the quality change (dQ) can be calculated according to the quality 

model formula, as shown in figure 4.8; and multiplied by the previous quality 
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level of the entity (stored in the attribute “Quality”: @.Quality); in order to 

obtain the new quality level. 

 

Figure 4.8  TQSL: quality level 
 

4) Calculation of the weight reduction 

It is also in this method where the weight reduction, as a consequence of the 

water extraction in the evaporation and drying processes, is taken into 

account.  

 

Figure 4.9  TQSL: weight reduction 
 

The new weight is calculated and stored by multiplying the current weight 

(@.w) by the reduction factor stored in the machine (?.Wred) and then 

multiplied by a normal distribution in order to add process variability, with 

seed value 4, mean 1,01 and standard deviation 0,001 (see figure 4.9). 

5) Traceability table 

Finally, all the process information and data is recorded in the traceability 

table owned by each entity (see figure 4.10). First of all, the last row 

containing information is located by means of the dimension of the current 
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table (@.Trace.yDim) and then the last process data is recorded in the next 

row (@.Trace.yDim+1), by columns:  

 processing machine (?.name) 

 process starting time (@.in) 

 process finishing time (simTime) 

 process T (?.Temperature)  

 final quality level (@.Quality)  

 final weight (@.w)  
 

 

Figure 4.10  TQSL: traceability table 

Finally, all exit controls need to include the command @.move in order for 

the entity or moving unit being processed to move to the next station; 

otherwise the object is hold by the exit control and not allowed to continue 

with the process. 
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4.3.4 Supply Chain (top frame) 

As introduced in chapter 3, the first frame found in the class library, that is the 

top layer, is named CHAIN and represents a general SC for milk powder 

production in Germany. 

The frame CHAIN has no function itself other than containing all the other 

process-specific frames, including (see Figure 3.1): 

 Farms (five in total, 3 regular farms and 2 big farms) 

 Transportation from each farm to the dairy plant 

 Dairy plant 

 Transportation from the dairy plant to the DC 

 Distribution center 

 Transportation from the DC to the appropriate customer 

 Customers (two different customers with different requirements) 

In addition, the frame CHAIN contains several other elements that keep the 

cohesion of the simulation calculations. 

For instance, the Event Controller (EC) is placed as well in the top layer and 

it coordinates and synchronizes the different events taking place during a 

simulation run within all frames (Tecnomatix Plant Simulation Help). It is here 

where the simulation horizon, the simulation speed and the reset 

characteristics can be set. Moreover, the init Method is placed as well in the 
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frame CHAIN, since it is a general Method activated by the EC; which, in this 

case, initializes the global model variables (see 4.3.11). 

 

4.3.5 Farms 

The simulation model contains five farms, three of them considered regular 

farms, regarding the milk quantity they provide and two of them implemented 

in the class library as BigFarms, because of a grater milk quantity production. 

The structure of these frames consists of the source (cows), which generates 

the entities representing the milk bulks, the chilling facilities where the milk is 

treated and storage after the milking of the cows, and the method attributes 

(see Figure 4.11).  

 

Figure 4.11  Frame Farms 
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For a better understanding of the simulated process, each stage is described 

in detail: 

 Cows (source) 

For this study, the starting point of an entity in the system is considered to be 

the moment right after the cow milking is finished, that is the first moment in 

time when the milk is available. 

Thus, the source represents this milking output; it produces MUs in a single 

station but has a capacity of one and no processing time (Tecnomatix Plant 

Simulation Help). In this case, the source produces only one kind of entities 

(named milk in the class library).  

According to the Dairy Handbook by Bylund (1995), usual practice is to milk 

cows by a machine once a day, fact that is represented by the source 

interval, which is set to one day (1:00:00:00) equally for all the farms (see 

Figure 4.12). 

To avoid the blocking of the reception at the dairy and add some realism into 

the model, each source starts producing milk entities at a different time, 

which is specified in the start box of the source dialog (see Figure 4.10). This 

represents the fact that due to different milking systems, machines, number 

of cows in the farm, time of the milking, etc. every farm will finish the milking 

process at a different time.  

Hence the farms start at time 0, 3 hours and 8 hours for the regular farms, as 

well as 6 and 10 hours for the bigger farms. 
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After the entity “milk” is produced it leaves the source triggering the exit 

control driven by the method attributes. 

 

Figure 4.12  Source (cows) dialog example 
 

 Attributes (method) 

Once the entity has been introduced in the system, some of its attributes 

need to be set, as in the case of temperature and weight. These are 

implemented in the method “attributes” shown in figure 4.13. 

As for the temperature, it is set to 37ºC, which is the temperature at what milk 

leaves the udder (Bylund, 1995). Nevertheless, cows corporal temperature is 

approximately 38,6ºC which in addition to different milking processes and 

different cow characteristics can lead to some temperature variation. In order 

to take this fact into account, some random temperature variation is added to 



4 Simulation Study 

49 
 

the 37ºC, following a normal distribution with seed value 3, mean 0,1ºC and 

standard deviation 0,05ºC.  

Turning to the weight attribute, and under the assumption that a regular farm 

has 500 cows producing between 28 and 30 liters each, every entity leaving 

the milking process represents the outcome of the whole farm and is 

approximately 1500 liters.  

Thus, raw milk density is 1,028 kg/l at a temperature of 38ºC (Bylund,1995)  

that is 1466,3 kg.  All in all, the attribute weight is implemented by the 

addition of the initial estimation of 1500 kg to a normal distribution with seed 

value 2, mean 100 kg and standard deviation 35 kg. 

Because the name “weight” is used by Plant Simulation for the units’ 

definition and not allowed to be used anywhere else, in the programming of 

the methods from now on, the attribute weight is called by the name “w”. 

 

Figure 4.13  Method attributes 

 

 Chilling (SingleProc) 

As explained by Bylund (1995), the milk should be chilled to below 4°C 

immediately after milking and be kept at this temperature all the way to the 
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dairy; that is the cold chain cannot be broken. Otherwise micro-organisms in 

milk would start to multiply affecting milk quality (see figure 4.14). 

 

Figure 4.14  Influence of temperature on bacterial growth in raw milk (Bylund, 
1995) 

 

This is represented in the simulation by the chilling process, which is a 

SingleProc machine, with a processing time of 1 hour (1:00:00), entrance 

control “entrance” and exit control “TQSL”. 

The chilling process represents the need for a fast cooling below 4ºC, which 

is more energy intensive; the rest of the storage time (until the milk is picked 

up for transportation) is also at the same temperature but consists only in 

maintaining it and is included in the transport frame. 

Once the entity leaves the chilling station and completes the exit control 

TQSL it is passed on by the corresponding interface to the next frame, in this 

case, the fist transport frame. 
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4.3.6 Transport from farm to dairy 

The transport frame consists of two sub-frames, the loading and the 

unloading process, in addition to a track object in between them. Because 

the simulation model includes five farms under the assumption that they have 

all different locations, this three parts structure is repeated for each farm, 

representing the different transport conditions for each one of them (see 

figure 4.15). 

 

Figure 4.15  Frame Transport (farm to dairy) 
 

As mentioned above, the transport frame contains three parts, which 

represent three different processes happening in three different places, thus, 

the sub-frame load_farm models the loading dock at the farm, the track 



4 Simulation Study 

52 
 

models the road transportation and finally, the sub-frame unload_farm 

represents the unloading dock at the dairy plant. 

 Loading process (load_farm) 

The loading process is modeled by a Buffer and three SingleProcs, as shown 

in figure 4.16. 

The Buffer represents the storage time after the chilling process and the milk 

pick up for transportation, hence the temperature in the Buffer is kept at 4ºC 

as explained in the chilling process. 

 

Figure 4.16  Frame load_farm 
 

When leaving the Buffer, entities are delivered to SingleProc1 if the delivery 

frequency parameter is one day, or alternatively, to SingleProc1 and 

SingleProc2 if the delivery frequency parameter is two days. 

As explained in the general model assumptions, these two objects do not 

represent any real process and have only an auxiliary function with 0,1 
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seconds processing time, thus, they do not have any entrance or exit controls 

and do not affect the quality of the entities. 

Afterwards, when the milk bulks have to be transported, the milk entities in 

SingleProc1 and/or Singleproc2 are loaded onto a container placed in the 

SingleProc named “Assembly”. This station has a processing time of 20 

minutes and represents the actual loading process. 

Because the entities receive the move-order from the method load, it is not 

necessary to bind the SingleProcs and the Assambly with a connector. 

 Finally, the truck, modeled by the container and the entities, is passed by the 

interface to the next frame. 

In order to control the loading process, two continuously running methods are 

used: firstly the init method, which function is to execute the method “load” as 

soon as the simulation run begins (see figure 4.17).  

 

Figure 4.17  Method init (load_farm) 
 

The second and more important method is the method “load”, shown in figure 

4.18. The first condition in the method holds it until the entities are ready to 

be transported (once a day or every two days depending on the scenario) 

and until the previous truck has left (only as a safety command to assure the 

functionality of the model in extreme cases). Once all the conditions are 
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fulfilled, the arrival of a truck to the loading dock is modeled by creating a 

container at the “Assembly”.  

For the purpose of keeping track of the number of trucks needed in each 

scenario, a global variable is used and updated here, what will be described 

in detail in section 4.3.11. 

Finally, the milk entities are loaded onto the container by moving them on the 

Assembly’s content (container) and will leave the frame by the Interface. 

The last command of the method starts the method execution again, that is 

the method starts running from the top line again; in other words, the method 

will then wait until the next shipment is available and then start the process 

again. 

 

Figure 4.18 Method load 
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 Road transport (Transport_FD) 

The transportation between Farms and Dairy is modeled by a track object 

and is characterized by two parameters: transportation time and 

transportation temperature. 

As for the transportation time, as already explained in the general 

assumptions, the mean speed of the trucks is set at 80 km/h, so that the 

actual distance between the farm and the dairy plant is what determines the 

transportation time. The distances and transportation times are shown in 

table 4.7: 

Table 4.7  Transportation times and distances 

 Time [hh:mm:ss] Time [h] Distance [km] 
Farm1 3:20:00 3,33 266,67 
Farm2 2:05:00 2,08 166,67 
Farm3 2:46:40 2,78 222,22 
BigFarm1 1:40:00 1,67 133,33 
BigFarm2 2:36:15 2,60 208,33 

 

Regarding the transportation temperature, it is set at 4ºC for all the farms, as 

for the chilling and storage processes. 

Similarly to the general method entrance, tracks a the same entrance 

method, called “entrance_transport” with the only difference that the 

information is stored at the containers attribute “in” and not in the entities. 

As for the exit control, the necessary information is also stored in the 

containers attributes (see figure 4.19), for instance the transportation time is 

stored at the container’s  attribute (@) “transport” and the transportation 
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temperature is obtained from the track’s attribute (?) “Temperature” and is 

then stored at the container’s attribute (@) “Temperature”. The container’s 

attributes will be used in the next frame to update the quality level of the 

entity by using the method TQSL.  

 

Figure 4.19  Method Tt_Transport 
 

As usual in exit controls, the final order is to move, in this case the container, 

to the next station, which is here the “unload” frame. 

 

 Unloading process (unload_farm) 

The last step in the transportation frame is the unloading process, which is 

implemented in the frame named “unload_farm”. It consist of a SingleProc, a 

Buffer, a Drain and the unload method, as shown in figure 4.20. 

Once the loaded container enters the frame by the interface, it is placed in 

the SingleProc, representing the dock in order to unload the milk. After the 

processing time of 30 minutes is over, the exit control “unload” is triggered 

(see figure 4.21). 
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Figure 4.20  Frame unload_farm 
 

The method “unload” consist of a while-loop, with the condition that at least 

one moving unit is placed at the SingleProc. When this condition is true, for 

instance when a loaded container arrives to the dairy dock, the method gets 

the transportation T from the container (@.Temperature) and stores it in the 

entity’s attribute (@.cont.) “T_transport. The same procedure is used for the 

transportation time: the container’s information (@.transport) is stored in the 

entity’s attribute “transportTime”. 

Finally, the entities (@.cont) are moved to the Buffer so that they can 

continue the process and the container (@) is moved to the drain. 

 

 

Figure 4.21  Method unload 
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Once the entities are in the Buffer, which is an auxiliary object with no 

processing time, the exit control “Qtransport” is triggered, which is very 

similar to the method TQSL, but instead of using the characteristics of the 

current machine (here the auxiliary Buffer) it uses the information stored in 

the entity to update both, quality level and traceability table to finally get to 

the dairy plant by the interface. 

 

4.3.7 Dairy plant 

The dairy plant frame is divided in three parts as shown in figures 4.22 and 

4.23: first the milk arriving from the dairy is tested for appropriate quality 

conditions, which is implemented in the sub-frame “QControl1”. The second 

part of figure 4.19 is the production process itself, where the processing for 

powders and concentrates is different and therefore implemented in two 

models. Finally, in figure 4.20 an auxiliary process is implemented, which 

does not represent any real process but it is used to model the transition from 

the milk entities to the 25kg-bag entity. 

 

Figure 4.22  Frame Dairy (I) 
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Figure 4.23  Frame Dairy (II) 
 

 Quality Control 

Regarding the quality control sub-frame, it is composed of a buffer, a 

SingleProc, a drain and two methods (see figure 4.24).  

 

Figure 4.24  Frame QControl    
 

The entities coming from the transportation frame are then moved to the 

auxiliary Buffer (capacity 1 and processing time 0,1 seconds). The exit 

control QControl is then triggered and the entity is passed on either to the 

SingleProc “ok” or to the drain “Waste1” according to its quality level (see 

figure 4.25). Only batches with a quality level equal or greater than 95 can 

continue the process; entities not reaching this level are considered waste, 
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since it is important to have high quality raw milk before starting the 

production process (Kessler, 2002). 

 

Figure 4.25  Method QControl 
 

Entities with good quality level leave the quality control through the interface 

in order to continue the process, batches removed from the process are 

taken into account by the drain’s entrance control “waste”, where the global 

variable “kgWaste” is updated (explained in detail in section 4.3.10). 

 Dairy production process 

Each one of the processing steps is modeled by a SingleProc, which its 

attributes processing time and temperature and respectively the entrance 

and exit controls “entrance” and “TQSL”. 

The above mentioned attributes are implemented differently for each 

scenario regarding process steps, processing times and processing 

temperatures, as shown in table 4.8 (Kessler, 2002).  

Nevertheless, the four different processes are still under research and no 

empiric data exists yet. For that reason, the times and temperatures used are 
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only general descriptions on the different treatments by Kessler (2002) and 

approximate data. 

In addition, the first and final step are equal for all scenarios, that is the 

standardization, with a processing time of 21 minutes at a temperature of 

55ºC; and the packaging, with a processing time of 2 minutes at 28ºC.  

Table 4.8  Processing characteristics 

  
time [s] temperature [ºC] 

S0 
Pasteurization 1200 85 
Evaporation 720 70 
spray drying 180 195 

S1 
pasteurization Uht 15 135 
aseptical concentration 900 45 

S2 
MF filtration 120 55 
KZE Heating 90 95 
aseptical concentration 900 45 

S3 
Concentration 720 49 
MF filtration 120 55 
KZE Heating 90 95 

S4 
MF filtration 120 55 
Concentration 720 42 
KZE Heating 90 95 

 

 Auxiliary packaging process 

Once the entities have been processed and packaged, the entities’ attributes 

have to be changed in order to reflect the current product characteristics, as 

shown in figure 4.21. 

Firstly, after the packaging process, the entities are moved to the auxiliary 

Buffer triggering the entrance control “batch” (see figure 4.26), which divides 

to powder or concentrate batch in 10 kg groups. For this purpose, the result 
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of the entire division of the entity’s weight (@.w) by 10 (k) is the amount of 

new entities that will be created in the Buffer (implemented in the for-loop), 

the rest of the entire division, as well as the decimal part of the weight 

attribute are considered waste produced along the production process. 

 

Figure 4.26  Method batch 
 

As an illustration, if an entity with 478,35 kg arrives to the auxiliary buffer, 

when triggering the batch method, these will be the values in the method: 

n = 479 – 1 = 478 kg 

k = 478 // 10 = 47  

 kgwaste* = 478,35 – (479 – 1) + (478 \\ 10) = 0,35 + 8 = 8,35 kg 
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This means, that a maximum of 9,99 kg could be considered waste in 

batches with mean weight of 251,6 kg. In the worst case scenario, 3,97% of 

waste is generated in the production process. 

This waste percentage can be narrowed if necessary, by smaller grouping; 

that is dividing in groups of 5 kg or even smaller. In this study it was not 

possible to do so because of the educational license restriction to 1000 

objects in the model. 

Once the new k entities are created in the Buffer, the former milk entity is 

destroyed and eliminated from the model. Before that, the traceability table is 

stored in the variable “data”. By leaving the Buffer, the exit control 

“w_change” is triggered where the new entities are given the necessary 

attributes: the weight (@.w) is set at 10 kg and the traceability information 

(@.trace) is copied from the table stored in “data” (see figure 4.27). 

 

Figure 4.27  Method w_change 
 

To continue the process, the entity also needs a quality level and its 

temperature, information that can be copied from the last stage representing 
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a real part of the process, here the packaging. This data can be obtained 

from the traceability table by using a counter (i) to access the last row of the 

table (@.Trace.yDim) and then coping the data stored in the temperature and 

quality columns (4 and 5) to the temperature (@.Temperature) and quality 

(@.Quality) attributes. 

Finally, the new complete entities are moved to the buffer “packs”, where 

they are grouped into 250 kg batches, which represent a pallet containing 10 

bags of 25 kg each. For that purpose, the exit control “Bags”, shown in figure 

4.28, holds the 10 kg entities in “packs” until the buffer capacity of 25 is 

reached, that is a total weight of 250 kg is grouped together, and then 

creates a new entity in the buffer “dock”. 

 By using a similar procedure to the one in method w_change, traceability 

table, current temperature and quality level are stored in the new entity’s 

attributes. Finally, the 25 (packs.capacity) old 10 kg entities are deleted. 

 

Figure 4.28  Method Bags 
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Once the 250 kg entity leaves the buffer “dock”, the exit control “w_change1” 

is triggered and the entity’s weight (@.w) is set at 250 kg (see figure 4.29). 

 

Figure 4.29  Method w_change1 
 

Finally, the auxiliary process is finished and the entities are moved to the 

next station on the next frame. 

A schematic diagram of the auxiliary process is shown in figure 4.30: 

 

Figure 4.30  Packaging auxiliary process 

 

4.3.8 Transport from dairy to DC 

The frame “Transport” is used again to model the transportation between 

dairy and DC, but unlike the frame in section 4.3.6, only one load and one 

track are needed in addition to the unload process (see figure 4.31). 
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Figure 4.31  Frame Transport1 
 

 Loading process (load) 

The loading process at the dairy is modeled in the frame “load” and consists 

of two buffers, two SingleProcs, one source and three methods, as shown in 

figure 4.32: 

 

Figure 4.32  Frame load 

The 250 kg entities arrive to the Storage by the interface and are stored until 

the method load moves them to the Buffer, which represents the order set up 

in pallets. 

The method “load” (see figure 4.33) is a continuously running method 

initiated by the init method that holds entities in the “Storage” buffer until a 

container is available at the “Assembly” (Assembly.occupied), until the Buffer 

is empty (Buffer.empty) and until there are enough 250 kg entities in the 

“Storage” to fill the container’s capacity (Assembly.cont.capacity). 
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Figure 4.33  Method load 
 

When all conditions are satisfied, the Buffer’s capacity is set to match the 

container’s capacity and then filled with entities from the “Storage”, 

representing the set up process. 

Afterwards, all the entities in the “Buffer” are loaded onto the container 

(Assambly.cont) so that when this is full, the truck, that is, container and 

entities is move to the station “exit” and then leave the frame by the interface. 
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As for the containers, these are created by the source, which produces one 

container a day and are then moved to the “Assembly”. In order for the” load” 

method to work properly, the containers should only move to the Assembly 

when there is at least one entity in the “Storage”. Otherwise, one of the 

conditions of the “load” method would not be fulfilled. 

For that purpose, the method “truck_frequency” is implemented as an exit 

control for the Source (see figure 4.34). 

 

Figure 4.34  Method truck_frequency 
 

 Road transport (Transport_DDC) 

The transportation between the Dairy and the DC is modeled by a track 

object and characterized by its transportation time and transportation 

temperature. 

The transportation time is 1:44:10 (1,74 hours), which means a distance of 

138,89 km with a speed of 80 km/h. As for the temperature, depending on 

the scenario being studied will be room temperature or cooling temperature. 

Likewise section 4.3.6, methods “entrance_transport” and “Tt_Transport” are 

used as entrance and exit controls respectively. 
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 Unloading process (unload) 

The unloading process is implemented in the frame “unload” and has already 

been described in section 4.3.6. 

 

4.3.9 Distribution Center (DC) 

The Distribution Center (DC) frame consists of three different parts: the 

reception and storage of the entities, the order set up for customer 1 and the 

order set up for customer 2 (see figure 4.35). 

 

Figure 4.35  Frame DC 
 

When the entities arrive to the DC, they firstly go through the frame 

“QControl”, which works in the same way as explained in section 4.3.7 but 
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with a different quality level requirement: entities with a quality level smaller 

than 58 points are removed from the process and become waste. 

Those entities which fulfill the quality requirements are moved to the 

“reception” buffer, where they will be classified by the method “q_distribution” 

(see figure 4.36) according to their quality: entities with a quality level greater 

or equal to 63 points are moved to buffer “A_quality” and the reminding 

entities are moved to buffer “B_quality”. 

 

Figure 4.36  Method q_distribution 

 

Once the entities are stored at the respective buffers, two parallel processes 

run for customer 1 (blue in figure 4.33) and customer 2 (yellow in figure 4.33). 

 Customer 1 

The DC objects modeling the distribution for customer 1 are shown in 

figure 4.37: 
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Figure 4.37  Frame DC: Customer 1 
 

Entities with appropriate quality level for customer 1 are stored in 

“A_quality” until an order is placed. 

The source “Demand1” starts the information flow by processing the 

customer’s orders. This is modeled by a truck “container_c” arriving to 

“order1”. Customer 1 uses a periodic review system and places one order 

a week and the order quantity is variable.  

The order quantity is modeled by the container’s attribute “K”, and is set 

by the source’s exit control “d1”, which modifies it according to a normal 

distribution with seed number 2, mean 12 and standard deviation 1 (see 

figure 4.38). 

 

Figure 4.38  Method d1 
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The rest of the dynamics are managed by the method “setup1” (see figure 

4.39), a continuously running method initiated by the method init. 

 

Figure 4.39 Method setup1 

 

The method “setup1” holds the entities at “A_quality” until an empty container 

arrives to “order1” to then set Buffer1’s capacity to match the order quantity 

(container’s attribute K). 

Once the necessary number of entities is available at “A_quality”, these are 

moved to “Buffer1” until full capacity is reached; that is, the order quantity is 

now available and set up.  
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Immediately afterwards, the prepared entities (Buffer1.cont.) are loaded onto 

the container waiting in order1 (order1.cont), which is then tagged by setting 

quality “A” to the attribute “customer”.  

Finally, the truck (container and entities) leave the DC through the object 

“exit1” and the interface. 

 Customer 2 

Customer 2 operates in a very similar way to costumer 1, that is with a 

periodic review model: orders are placed every six days and the order 

quantity is set by the method “d2” likewise method “d1” but with mean 15 and 

standard deviation 1,5. 

Since customer 2 has lower quality requirements, when there are not enough 

entities available at “B_quality” it is also possible to serve entities from 

“A_quality”. This is also implemented in method “setup2”, as shown in figure 

4.40, adding some extra commands in comparison to “setup1”. 

The initial conditions to start the method are the maintained, as well as the 

loading from “Buffer2” onto the container waiting in “order2”, nevertheless the 

filling of “Buffer2” is implemented differently. 
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Figure 4.40  Method setup2 (abstract) 
 

The main difference relays in the origin of the entities to fulfill the order 

request: if there are enough entities available at “B_quality” 

(B_quality.numMU)  to fill Buffer 2, these entities are then moved from 

“B_Quality” to “Buffer2” until the maximum capacity is reached. 

Otherwise, in the case that there are not enough entities at  “B_quality” and 

there is no order to be served to customer1, also entities from “A_quality” will 

be used. An overview in form of a diagram is shown in figure 4.41: 
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Figure 4.41  Diagram for method setup2  
 

 Quality change 

Because entities can be stored for a long time at the DC, the method 

“old_stock” is implemented in order to eliminate entities which no longer fulfill 

the quality requirements (see figure 4.42). 

When either “A_quality” or “B_quality” are full, the oldest entities (FIFO 

stragegy), which are the most likely to have suffered quality decay, are 

checked: if A quality entities do no longer have a quality level grater then 

61.5 points but still above 58, these are moved to “B_quality”; otherwise they 
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are removed from the system by the Drain, as well as B quality entities with 

quality level below 58 are removed from “B_quality”.  

 

Figure 4.42  Method old_stock 
 

In addition, the method “old_stock” helps to prevent the software from 

collapsing because the number of objects exceeded 1000 as foreseen in the 

educational license. 
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Orders, that is loaded containers with its respective “customer” attribute exit 

the frame DC by the interface and move forward to the transportation frame. 

The same structure of the frame is used for scenarios S1 to S4 except for the 

demand times, which are shorter for concentrates because of following 

assumption: dairy product manufacturers need a determined quantity of 

milk’s dry matter to produce the finished products, independently of the water 

content of the semi-finished product (powders or concentrates). 

Hence, since concentrates have a much higher water content than powders, 

dairy manufacturers will need a higher quantity of 250kg bags to keep the 

same production level. For that reason, the periodic system review for both 

customers still apply, but the order interval is reduced to 4 days for customer 

1 and 3 days for customer 2. 

4.3.10 Transport from DC to customer 

The transport frame is used one last time to model the transportation from 

the DC to the final customer, even though in this case the loading process is 

not included here but in the DC frame (see figure 4.43). 

  

Figure 4.43  Frame Transport2 
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The transport is modeled by a track object and characterized by its 

transportation time and transportation temperature. 

The transportation time is 2:46:40 (2,78 hours), which means a distance of 

222,22 km with a speed of 80 km/h. As for the temperature, depending on 

the scenario being studied will be room temperature or cooling temperature. 

Likewise section 4.3.6, methods “entrance_transport” and “Tt_Transport” are 

used as entrance and exit controls respectively. 

Once the trucks are at the end of the truck object, they are passed on to the 

SingleProc “destination”, which does not represent any real process but 

triggers the exit control “customer”, which will read the container’s attribute 

“customer” and move the trucks to c1 or c2 respectively (see figure 4.44). 

 

Figure 4.44 Method customer 
 

Afterwards, the containers enter the frame unload and continue the process 

as explained in section 4.3.6 to finally leave the simulation model by the 

drains “Customer1” or “Customer2”. 
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4.3.11 Global variables 

In order to quantitatively compare the different scenarios, some general 

variables are introduced in the model to obtain general data from every 

calculation run (see table 4.9).  

Table 4.9 Global variables: SC 

Name Description 

Batches 
Number of batches delivered to the customers 

(number of 250 kg entities) 

Trucks 
Total number of trucks used in all the transport 

frames 

TQ 
Total quality (addition of the entity’s quality 

attribute) when delivered to the customer 

kgWaste Total weight of waste at the quality controls in kg 

kgWasteDC Total weight of waste generated at the DC in kg 
 

These will be used to calculate the defined KPI, such as mean quality; and 

are implemented in several methods: “batches” and “TQ” are implemented in 

the method “batch_TQ” as an entrance control at the drains “customer1” and 

“customer2”; the global variable “trucks” is updated every time the method 

“load” is executed, that is, every time a container is created in the system; 

and finally, “kgWaste” and “kgWasteDC” are implemented in the method 

“Waste”, which is used as an entrance control for the drains “Waste” in the 

“QControl” frames and in Drain at the DC. 

In addition, the working times of every process step (see table 4.10) is also 

calculated by the method “energy”, partially shown in figure 4.45. 
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Table 4.10  Global variables: time 

Name Processes involved Description 

chilling Chilling (Farm, Farm1, 
Farm2, BigFarm, BigFarm1) 

Computation of cooling time for 
the chilling process 

Ctrans Transport_FD (1 to 5) Time of refrigerated transportation  

production 
SingleProcs in frame Dairy 
(names depend on the 
scenario) 

Production energy consumption 
time 

Trans Transport_DDC Time of refrigerated transportation 
in the Si.jd .COLD scenarios 

storage A_quality, B_quality (frame 
DC) 

Time of refrigerated storage in the 
Si.jd.COLD scenarios 

trans1 Transport_DCC Time of refrigerated transportation 
in the Si.jd.COLD scenarios 

 

 

Figure 4.45 Method energy 
 

The method “energy” is called by  the method init when the Event Controller 

has reached the simulation time horizon, that is after 1460 simulation days. 
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4.4 Model verification and validation 

4.4.1 Verification 

Law and Kelton (2000) define verification as the determination of the model 

correctness, that is, whether the model has been correctly implemented in 

the simulation software, i.e. debugging the program. 

The authors present several methods for the verification of simulation 

computer programs: 

 Write and debug the computer program in modules or subprograms 

(technique1): The use of frames included in a top-down approach 

allowed to test each frame individually before adding it to the general 

model. 

 Trace the state of the simulated system, i.e., the contents of the event 

list, the state variables, etc. and compare them to hand calculations 

(technique 4): because of the model complexity, a simulation run for e 

for only one entity was performed(see figure 4.46), in order to be able 

to calculate the state of the system by hand (see table 4.11). 
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Table 4.11  Hand calculations for a single entity 

    start finish 

Farm 
cows 0:00:00 0:00:00 
chilling 0:00:00 1:00:00 

Transport 

Buffer 1:00:00 1:20:00 
SingleProc1 1:20:00 1:20:00.1 
Assembly 1:20:00.1 1:20:00.2 
Transport_FD1 1:20:00.2 4:40:00.2 
SingleProc 4:40:00.2 5:10:00.2 
Buffer 5:10:00.2 5:10:00.2 

Dairy 

Buffer 5:10:00.2 5:10:00.3 
ok 5:10:00.3 5:10:00.4 
Standarization 5:10:00.4 5:31:00.4 
pasteurization 5:31:00.4 5:51:00.4 
evaporation 5:51:00.4 6:03:00.4 
spray drying 6:03:00.4 6:06:00.4 
packaging 6:06:00.4 6:08:00.4 
Buffer 6:08:00.4 6:08:00.5 
packs 6:08:00.5 6:08:00.6 
dock 6:08:00.6 6:08:00.7 

Transport1 

Storage 6:08:00.7 6:09:00.7 
Assembly 6:09:00.7 6:09:00.8 
Exit 6:09:00.8 6:09:01.1 
Transport_DDC 6:09:01.1 7:53:11.1 
SingleProc 7:53:11.1 8:23:11.1 
Buffer 8:23:11.1 8:23:11.1 

DC 

Buffer 8:23:11.1 8:23:11.2 
ok 8:23:11.2 8:23:11.3 
Reception 8:23:11.3 8:23:11.6 
A_quality 8:23:11.6 3:00:00:00.0 
Buffer1 3:00:00:00.0 3:00:01:00.1 
Order1 3:00:01:00.1 3:00:01:00.2 
Exit1 3:00:01:00.2 3:00:01:00.3 

Transport2 

Transport_DCC 3:00:01:00.3 3:02:46:40.3 
Destination 3:02:46:40.3 3:02:46:40.4 
c1 3:02:46:40.4 3:02:46:40.5 
SingleProc 3:02:46:40.5 3:03:16:40.5 
Buffer 3:03:16:40.5 3:03:16:40.6 
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Figure 4.46  Trace of the single entity’s simulation 
 

The simulation program ends at time 3:03:16:40.3 while the calculations end 

at time 3:03:16:40.6. The error at the simulation end is 0,3 seconds which is 

completely tolerable, even so some other small discrepancies along the 

processes. 

The timing discrepancies are due to the stochastic failure definition of the 

machines, which was not contemplated in the hand calculations as well as to 

the auxiliary steps with processing times shorter than 1 second 

For those process steps representing a real process, that is, for those 

suffering quality decay, also the quality level is calculated and compared to 

the one obtained from the software (see table 4.12). 
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Table 4.12  Hand calculation of the quality decay 

  t t [days] T[ºC] T[K] Dq quality 
chilling 1:00:00 0,0417 4 277 0,994 99,44 
Buffer 20:00 0,0033 4 277 1,000 99,40 
Transport_FD1 3:20:00 0,1389 4 277 0,981 97,55 
Standarization 21:00 0,0146 55 328 0,749 73,05 
pasteurization 20:00 0,0139 85 358 0,998 72,87 
evaporation 12:00 0,0083 70 343 1,000 72,83 
spray drying 3:00 0,0021 195 468 0,882 64,25 
packaging 2:00 0,0014 28 301 1,000 64,25 
Transport_DDC 1:44:10 0,0723 20 293 1,000 64,24 
A_quality 2:15:36:49.4 2,6506 20 293 0,998 64,12 
Transport_DCC 2:46:40 0,1157 20 293 1,000 64,12 
 

Even though there is a small difference between the quality level calculated 

by PlantSimulation (65,79) and the one calculated by hand (64,12) the error 

represents approximately 2,5% and is due to the fact that the method “TQSL” 

includes temperatures random variation in the transportation frames, fact that 

can easily be observed from figure 4.46, for instance the entity has a 

temperature of 4,51ºC when transported  from the farm to the dairy instead of 

4ºC. 

In conclusion, despite the little discrepancies in both calculations and due to 

the fact that in both cases the source of error has been identified; the model 

is verified. 
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4.4.2 Validation 

According to Fishman and Kiviat (1968), validation is the process of 

determining the accuracy of the system representation by the model in order 

to fulfill the particular objectives of the study. 

Furthermore, Law and Kelton (2000), affirm that it would be possible to use 

the model to make decisions about the system when this has been validated, 

and add some general perspectives on validation such as the fact that a 

complete validation is only possible if a version of the system currently exists, 

or that complex system can only approximately be modeled. 

Hence, the presented simulation model cannot be validated so far, since the 

real system for concentrates is still been investigated and some data 

information is still missing. Furthermore, the model should be suited to a 

specific SC and their needs, so that validation is not completely possible at 

this stage but will be in the future. 
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5 Results and conclusions 

5.1 Results 

The simulation results are presented in order from S0 to S4, including: 

absolute results (see tables 5.1 - 5.3, 5.5, 5.7 and 5.9), the relative results in 

percentages (see tables 5.4, 5.6, 5.8 and 5.10), as well as the normal graph 

and the effects graph from the factorial design with the parameters delivery 

frequency and cooling ( see figures 5.1 - 5.8). 

 S0 (reference scenario): 

Table 5.1  Results S0.2d.RT: SC 

scenario S0.2d.RT 
batches 5.813 
trucks 5.149 
TQ 383.232,68 
Q 65,927 
C1 2.774 
C2 3.039 
kgWaste 80.530 
kgWasteDC 180.500 

 
 

Table 5.2  Results S0.2d.RT: transport 

transportation  time [h] 
farm to dairy 8412,500 
dairy to DC 2532,986 
DC to customer 2109,028 
Production 5756,883 
Storage 46020,091 
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 S1 

 

Table 5.3  Results S1 

scenario S1.1d.RT S1.1d.COLD S1.2d.RT S1.2d.COLD 
batches 10.254 11.197 10.533 9.815 
trucks 8.764 8.786 5.120 5.118 
TQ 605.930,71 678.798,78 623.629,88 606.112,81 
Q 59,092 60,623 59,207 61,754 
C1 3.218 4.178 3.426 2.745 
C2 7.036 7.080 7.107 7.070 
kgWaste 75.200 74.211 72.746 73.996 
kgWasteDC 971.500 679.750 905.000 1.080.000 
production [h] 4662,056 
storage [h] 67147,218 70017,9404 66841,14786 67181,6334 
 

 

Table 5.4  Results S1 in percentage 

scenario S1.1d.RT S1.1d.COLD S1.2d.RT S1.2d.COLD 
batches 176% 193% 181% 169% 
trucks 170% 171% 99% 99% 
TQ 158% 177% 163% 158% 
Q 90% 92% 90% 94% 
C1 116% 151% 124% 99% 
C2 232% 233% 234% 233% 
kgWaste 93% 92% 90% 92% 
kgWasteDC 538% 377% 501% 598% 
production [h] 81% 
storage [h] 146% 152% 145% 146% 
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Figure 5.1  S1 effects normal graph 
 

 

 

Figure 5.2  S1 effects 
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 S2 

 

Table 5.5  Results S2 

scenario S2.1d.RT S2.1d.COLD S2.2d.RT S2.2d.COLD 
batches 11.197 11.208 11.229 11.209 
trucks 8.769 8.766 5.114 5.111 
TQ 674.402,43 713.874,01 677.631,95 714.969,17 
Q 60,231 63,693 60,347 63,785 
C1 4.175 4.177 4.207 4.194 
C2 7.022 7.031 7.022 7.015 
kgWaste 41.244 49.076 51.435 42.982 
kgWasteDC 770.000 759.750 752.500 765.500 
production [h] 5047,174 
storage [h] 43020,343 41234,8863 41657,73978 39678,87 
 

 

Table 5.6 Results S2 in percentage 

scenario S2.1d.RT S2.1d.COLD S2.2d.RT S2.2d.COLD 
batches 193% 193% 193% 193% 
trucks 170% 170% 99% 99% 
TQ 176% 186% 177% 187% 
Q 91% 97% 92% 97% 
C1 151% 151% 152% 151% 
C2 231% 231% 231% 231% 
kgWaste 51% 61% 64% 53% 
kgWasteDC 427% 421% 417% 424% 
production [h] 88% 
storage [h] 93% 90% 91% 86% 
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Figure 5.3  S2 effects normal graph 

 

 

 

Figure 5.4  S2 Effects 
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 S3 

Table 5.7  Results S3 

scenario S3.1d.RT S3.1d.COLD S3.2d.RT S3.2d.COLD 
batches 11.199 11.223 11.217 11.231 
trucks 8.763 8.761 5.115 5.115 
TQ 702.703,90 744.365,57 709.552,40 745.552,47 
Q 62,747 66,325 63,257 66,383 
C1 4.207 4.185 4.185 4.157 
C2 6.992 7.038 7.032 7.074 
kgWaste 39.492 40.378 43.958 44.029 
kgWasteDC 771.500 764.500 762.750 758.750 
production [h] 4682,000 
storage [h] 36689,584 36251,5236 35705,32622 35843,2113 

 

 

Table 5.8 Results S3 in percentage 

scenario S3.1d.RT S3.1d.COLD S3.2d.RT S3.2d.COLD 
batches 193% 193% 193% 193% 
trucks 170% 170% 99% 99% 
TQ 183% 194% 185% 195% 
Q 95% 101% 96% 101% 
C1 152% 151% 151% 150% 
C2 230% 232% 231% 233% 
kgWaste 49% 50% 55% 55% 
kgWasteDC 427% 424% 423% 420% 
production [h] 81% 
storage [h] 80% 79% 78% 78% 
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Figure 5.5  S3 effects normal graph 
 

 

 

Figure 5.6  S3 effects 
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 S4 

Table 5.10  Results S4 

scenario S4.1d.RT S4.1d.COLD S4.2d.RT S4.2d.COLD 
batches 11.215 11.195 11.241 11.250 
trucks 8.764 8.766 5.112 5.116 
TQ 697.949,74 736.503,95 700.260,95 740.852,82 
Q 62,234 65,789 62,295 65,854 
C1 4.175 4.171 4.183 4.194 
C2 7.040 7.024 7.058 7.056 
kgWaste 42.469 44.587 49.844 46.683 
kgWasteDC 764.000 767.500 750.500 751.500 
production [h] 4681,674 
storage [h] 36586,857 36342,9582 36395,00947 36319,1614 

 

 

Table 5.11  Results S4 in percentage 

Scenario S4.1d.RT S4.1d.COLD S4.2d.RT S4.2d.COLD 
Batches 193% 193% 193% 194% 
Trucks 170% 170% 99% 99% 
TQ 182% 192% 183% 193% 
Q 94% 100% 94% 100% 
C1 151% 150% 151% 151% 
C2 232% 231% 232% 232% 
kgWaste 53% 55% 62% 58% 
kgWasteDC 423% 425% 416% 416% 
production [h] 81% 
storage [h] 80% 79% 79% 79% 
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Figure 5.7  S4 effects normal graph 
 

 

 

Figure 5.8  S4 effects 
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5.2 Results: TC analysis 

The KPI Total Cost is calculated as following: 

production + transport + cooling transport + storage + cooling storage + waste 

For that purpose, in table 5.12 an overview of the times for each of the 

parameters analyzed is presented, where the results are standardized, that 

is, the absolute value is divided by the number of batches obtaining [process 

hours/batches] which is proportional by a factor of 1/250 to [process 

hours/kg]. 

Table 5.12  Standardized times 

  production transport 
cooling 

transport 
storage 

cooling 
storage 

waste wasteDC 

S0.2d.RT 0,9903 2,2457 1,4472 7,9168 0,0000 13,8534 31,0511 
S1.1d.RT 0,4547 2,0935 1,6408 6,5484 0,0000 7,3337 94,7435 

S1.1d.COLD 0,4164 1,9172 1,9172 6,2533 6,2533 6,6278 60,7082 
S1.2d.RT 0,4426 1,2394 0,7987 6,3459 0,0000 6,9065 85,9204 

S1.2d.COLD 0,4750 1,3301 1,3301 6,8448 6,8448 7,5391 110,0357 
S2.1d.RT 0,4508 1,5026 1,5026 3,8421 0,0000 3,6835 68,7684 

S2.1d.COLD 0,4503 1,9153 1,9153 3,6791 3,6791 4,3787 67,7864 
S2.2d.RT 0,4495 1,1626 0,7492 3,7098 0,0000 4,5806 67,0140 

S2.2d.COLD 0,4503 1,1646 1,1646 3,5399 3,5399 3,8346 68,2933 
S3.1d.RT 0,4181 1,5024 0,7512 3,2761 0,0000 3,5264 68,8901 

S3.1d.COLD 0,4172 1,9128 1,9128 3,2301 3,2301 3,5978 68,1190 
S3.2d.RT 0,4174 1,1638 1,5000 3,1831 0,0000 3,9189 67,9995 

S3.2d.COLD 0,4169 1,1624 1,1624 3,1915 3,1915 3,9203 67,5585 
S4.1d.RT 0,4174 1,5002 0,7501 3,2623 0,0000 3,5214 68,7918 

S4.1d.COLD 0,4182 1,9176 1,9176 3,2464 3,2464 3,6068 68,2894 
S4.2d.RT 0,4165 1,1613 1,4968 3,2377 0,0000 3,9105 67,8543 

S4.2d.COLD 0,4161 1,1604 1,1604 3,2284 3,2284 3,9137 67,4444 
 

In order to evaluate the obtained results, more detailed information is 

needed, for instance, energy consumption of each of the process machines 
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for the production times and the storage times at the DC, cooling cost during 

transportation, etc. 

A possibility would be, as used by Zanoni and Zavanella (2011) to estimate 

the costs as shown in table 5.13: 

Table 5.13  Cost calculation (Zaononi and Zavanella, 2011) 

production  
cooling transport  
cooling storage 

Transport Storage Waste 

 

SEC·ec·d (A) 
 

K·d/Q (B) 
 

K·d/Q+Q/2·hs (C) 
 

d/Q·p·dq (D) 

 

Where: SEC (Specific Energy Consumption) is the energy required to 

produce or to refrigerate a kg [kWh/kg], ec is the cost of energy [€/kWh] and 

K is the set-up cost at each location [€]. 

It should also be taken into consideration that, under the assumption that 

final producers need a specific amount of dry matter per product kg, 1 kg 

powders (98% dry matter) is equivalent to approximately 3 kg concentrates 

(30% dry matter). For instance, the relative TC for S1.1d.COLD would be: 

Table 5.14  Example of relative TC calculation 

  production transport 
cooling 

transport 
storage 

cooling 
storage 

waste wasteDC 

S0.2d.RT 1,0000 1,0000 1,0000 1,0000 - 1,0000 1,0000 
S1.1d.COLD 0,4204 0,8537 1,3248 0,7899 6,2533 0,4784 1,9551 
eqivalent 
S1.1d.COLD 

1,2613 2,5611 3,9744 2,3696 18,7598 1,4353 5,8653 
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Using the equivalent relation shown in table 5.14, the relative TC comparing 

S1.1d.COLD to the reference scenario would be: 

TC = (1,26+3,97+18,76)·A + 2,56·B + 2,37·C + (1,4+5,87)·D 

TC = 24·A + 2,56·B + 2,37·C + 7,3·D 

 

5.3 Results interpretation and conclusions 

As mentioned in the previous sections, part of the data used for the 

simulation model is fictional, since the empirical data has not been collected 

yet, e.g. the fictional customers and their demands, as well as some of the 

processing times. For that reason, analysis and interpretation of the results 

should not serve for further research phases yet, but only to prove that the 

model outcome is reasonable. 

For that purpose, and under all the assumptions made for the model and 

describe in chapter 4, following is observed: 

 From the factorial design can be determined that the factor “delivery 

frequency” is not significant for any of the process variations (S1 to 

S4). Regarding the factor “cooling”, the results show that it is 

significant in scenarios S2 and S4 but not in S1 and S3. 

 From the TC analysis can be concluded that transport, storage and 

waste increase considerably for the concentrates respect to powders, 

since factor B, C and D remain equal for all the scenarios. Regarding 
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the significant increased observed in the production and cooling 

energy, it is not possible to evaluate it yet, since the factor A includes 

the SEC, which has to be determined for concentrates yet and is 

substantially different from powders, fact that motivated indeed the 

global project. In conclusion, the objective is to determine whether the 

trade-off between the energy part and the logistic cost turns out 

positive for the new SC; i.e. for the case of scenario S1.1d.COLD, if: 
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6 Model limitations and further research 

As already mentioned through the thesis, some improvements can be made 

to the simulation model: 

 Empirical data 

In the following research stages empirical data will be available and should 

be incorporated to the model, as well as more detailed processing when 

necessary, by adding frames on the already existing layer. 

Empirical data should also provide another verification possibility, i.e. the 

comparison between these and the simulation outcomes, which should be 

similar. Otherwise, the source of the discrepancy should be found. 

Moreover, experts on the matter, such as the partner chair, responsible for 

the bio-processing and food engineering, or the industry partners should 

understand the simulation model and validate it after the appropriate data 

has been introduced. 

 Modeling with full license 

The model’s accuracy could be improved by adding some more sophisticated 

processes, which requires a higher operation capacity than the provided by 

the educational license (1000 objects). 

Thus, the continuous flow characteristic of some of the processes involved in 

the dairy industry could be implemented by using a method that divides 

entities, likewise the method “batch”. 
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The entities could be stored in an intermediate buffer before entering a 

continuous process and then be divided into the necessary amount of smaller 

entities, to properly characterize the continuous flow. 

Furthermore, turning to the “batch” method, the waste produced at the dairy 

could be reduced to fit the real process by grouping the entities in smaller 

portions (10 kg grouping used in the method). 

 Demand and service level 

Accurate demand estimations could be used in the implementation of the 

sources at the DC; moreover, once some of the scenarios have been 

dismissed and the research is at a more advanced state, the stock level 

could be taken as a parameter to study, especially regarding the 

concentrates’ shelf-life. At this stage, also the study of the service level at the 

DC could become an interesting KPI for the simulation study. 

 Other factors 

Other factors considered at the beginning of this thesis that could be worth 

investigating in the future are the packaging materials used for concentrates, 

the delivery frequencies from the DC to the different costumers or the 

reutilization of waste at some stages for low-quality concentrates. 
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