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Abstract

This thesis discusses the performance of different line voltage stability indices previously
studied in literature including Lmn Index, Fast Voltage Stability Index (FVSI), Voltage
Collapse Point Indicators (VCPI), and LQP Index, as well as the traditional Jacobian index
based on the minimum eigenvalue of the Jacobian matrix. The indices were tested in a small
5-bus system and in a larger 39-bus system. The simulation tool used was RTDS® and the
indices where computed using the control blocks components in order to monitor the values in
real time. This method was chosen to have the indices values available for future control
algorithm development. All the indices were found consistent with their theoretical
background and the performance comparison was based on three characteristics: their
accuracy, robustness to uncertainty and usable for control purposes. From the results and
based on these comparison characteristics, VCPI (p) was found to have the best performance
from the indices studied.
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1. Introduction

In recent years, several blackouts related to voltage stability problems have occurred in many
countries. In particular, 2003 was an intense year regarding blackouts with a total of 6 major
ones affecting the US, the UK, Denmark, Sweden and Italy. The U.S.-Canadian blackout of
August 14th, 2003 affected approximately 50 million people in eight U.S. states and two
Canadian provinces. In the same year, on September 23rd 2003, the Swedish/Danish system
went down affecting 2.4 million customers and five days later, September 28th, another major
blackout occurred in continental Europe which resulted in a complete loss of power
throughout Italy.

In order to understand why these failures are happening, it should be taken into account that
nowadays power systems have to operate closer to their limits. There is an ever-increasing
power demand, which could in a near future expect a higher rise with the establishment of
electrical vehicles. At the same time, transmission networks are not enlarged due to economic
and environmental considerations and few lines are constructed. In addition, the growing
usage of renewable energy tends to make the networks more stressed, since these sources
have a higher dynamic and stochastic behaviour. Finally, another factor is the liberalisation of
electricity supply industry (deregulation), which has resulted in a significant increase in inter-
area or cross-border trades, which are not always well accounted for when planning system
security.

As mentioned above, the actual scene is no longer the same as it used to be and power
systems ought to adapt to this new situation. In [1], after analysing the sequence of events that
preceded these recent catastrophic failures, the following conclusion was drawn. The root
causes of these blackouts were among others a shortage of reliable real-time data, no time to
take decisive and suitable remedial action against unfolding events and a lack of properly
automated and coordinated controls to take immediate action to prevent cascading.

Because power systems are operating closer to their limits, voltage stability assessment and
control, although not a new issue, is now receiving a special attention. As defined in [2],
voltage stability is the ability of a power system to maintain steady acceptable voltages at all
buses in the system under normal operating conditions and after being subjected to a
disturbance. The study of voltage stability can be analysed under different approaches, but
specially, the assessment of how close the system is to voltage collapse can be very useful for
operators. This information on the proximity of voltage instability can be given through
Voltage Stability Indices. These indices can be used online to enable the operators to take
action or even to automate control actions to prevent voltage collapse from happening or
offline for the designing and planning stages.
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There are many studies on traditional Voltage Stability Indices (VSI) and some comparisons
papers between them can be found in the literature, such as [9], [11]-[14] and [48]. Recently,
with the development of the Phasor Measurement Units (PMU) technology, new methods are
evolving to implement Wide Area Monitoring Systems (WAMSs). These new algorithms use
voltages and currents provided by the PMU (synchronized to within a microsecond) to assess
the stability of the power system, as in [29] and [30]-[40].

The main objective of this thesis is to describe, analyse and compare the performance of
traditional Voltage Stability Indices. Simulations will be done using RTDS®, a Real-Time
Digital Simulator installed at the Institute for Automation of Complex Power Systems at the
E.ON Research Center at RWTH Aachen University, and two test networks: a 5-bus system
and a 39-bus system. The computation of the indices will be done using RTDS® and MatLab.

The remaining of this thesis comprehends seven chapters.

Chapter 2 recalls a voltage stability overview. In this respect, basic definitions on voltage
stability, a classification of instabilities and a description of different analysis methods are
given.

Chapter 3 deals with traditional voltage stability indices, their classification, a presentation of
some examples of each category and a comparison between them.

Chapter 4 details the methods for voltage stability assessment using PMU-based analysis.

Chapter 5 is devoted to summarize and compare both types of indices and methods
(traditional versus PMU-based).

The topic addressed in Chapter 6 has to do with the description of the test network used for
the simulations and how the different indices were implemented.

The purpose of Chapter 7 is to present the different test systems and cases used, show the
simulation results and compare the different indices’ behaviour.

Finally, general conclusions as well as future work directions are presented in Chapter 8.
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2. Voltage stability overview

Before defining voltage stability, an overview on power system stability and its classification
should be given in order to get a global perspective. The proposed definition in [4] describes
power system stability as the ability of an electric power system, for a given initial operating
condition, to regain a state of operating equilibrium after being subjected to a physical
disturbance, with most system variables bounded so that practically the entire system remains
intact.

A power system is a high-order multivariable nonlinear system that operates in a constantly
changing environment with a dynamic response influenced by a wide array of devices.
Because of this high dimensionality and complexity, there is a need to classify power system
stability into appropriate categories to identify the factors that contribute to the instability.
The classification of power system stability, shown in Fig.2.1, considers the system variable
(rotor angle, frequency or voltage), the size of the disturbance (small or large) and the time
span (short-term or long-term).

Power System
Stability
Rotor Angle Frequency Voltage
Stability Stability Stability
I I
Small Disturbance Transient Large Disturbance Small Disturbance
Angle Stability Stability Voltage Stability Voltage Stability
[ ] | |
' | |
Short-term Short-term Long-term Short-term Long-term

Fig. 2.1 Classification of power system stability [4]

This classification is done to identify the instability causes, apply an appropriate analysis and
develop corrective measures. However, in many situations, in particular in highly stressed
systems and cascading events, one form of instability may lead to another or a form of
instability may not occur as a single type but a combination of several. However, the
classification still remains a helpful tool to understand the underlying problem and operate
accordingly.

The following sections will discuss voltage stability definitions and classification. For rotor
angle stability and frequency stability definitions and considerations refer to [2] and [4].
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2.1. Voltage stability definitions

One of the most common and accepted definitions of voltage stability states that voltage
stability is the ability of a power system to maintain steady acceptable voltage at all buses in
the system under normal operating conditions and after being subjected to a disturbance. A
system enters a state of voltage instability when a disturbance, increase in load demand or
change in system conditions, causes a progressive and uncontrollable drop in voltage [2].
Voltage stability depends on the ability to maintain or restore equilibrium between load
demand and load supply from the power system.

According to [3], voltage instability stems from the attempt of load dynamics to restore power
consumption beyond the capability of the combined transmission and generation system.
Instability occurs in the form of a progressive fall or rise of voltages of some buses. A
possible outcome of voltage instability is loss of load in an area, or tripping of transmission
lines and other elements by their protective systems.

The main factor causing instability is the inability of the power system to meet the demand for
the reactive power. The reactive power can be supplied by generators through transmission
networks or compensated directly at load buses by compensators such as shunt capacitors.
There are two side effects of reactive power transmission: transmission losses and voltage
drops. In response to a disturbance, power consumed by the loads tends to be restored by the
action of motor slip adjustment, distribution voltage regulators, tap-changing transformers and
thermostats. Therefore, restored loads increase the stress on the high voltage network by
increasing the reactive power consumption and causing further voltage reduction [4]. It is
judged that a system is voltage unstable if, for at least one bus in the system, the bus voltage
magnitude decreases as the reactive power injection in the same bus is increased [2].

The term voltage collapse refers to the process by which the sequence of events
accompanying voltage instability leads to a blackout or abnormally low voltages in a
significant part of the power system [4]. In complex practical power systems, many factors
contribute to the process of system collapse because of voltage instability: strength of
transmission system, power-transfer levels, load characteristics, generator reactive power
capability limits and characteristics of reactive power compensating devices [2].

2.2. Classification

For analysis purposes, voltage stability can be classified, as seen in Fig.2.1, in two ways:
according to the time frame of their evolution (long-term or short-term voltage stability) or to
the disturbance (large disturbance or small disturbance voltage stability).

Short-term voltage stability involves a fast phenomenon with a timeframe in the order of
fractions of a second to a few seconds. In some studies it is also referred as transient voltage
stability, but in [4] it is recommended not to use this name to distinguish this type of stability
with the transient rotor angle stability. Short-term stability problems are usually related to the
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rapid response of voltage controllers such as generators’ automatic voltage regulator (AVR)
and power electronics converters like flexible AC transmission system (FACTS) or high
voltage DC (HVDC) links. The analysis requires a solution of appropriate system differential
equations [2].

On the other hand, long-term voltage stability involves slower acting equipment such as load
recovery by the action of on-load tap changer or through load self-restoration and delayed
corrective control actions such as shunt compensation switching or load shedding. The study
period of interest may extend to several or many minutes. The modelling of long-term voltage
stability requires consideration of transformer tap changers, characteristics of static loads,
manual control actions of operators and automatic generation control.

Fig. 2.2 presents power system components and controls that play a role in voltage stability
and their time frame. The figure was taken from [8] but adapting the notation of transient
voltage stability to short-term voltage stability.

Short-term voltage stability Long-term voltage stability
Induction Motor Dynamics Load/Power Transfer Increase
Generator/Excitation Dynamics LTC Transf. & Dist. Voltage Reg.
Prime Mover control Load Diversity/Thermostat
Mech. Switched Capacitors/Reactors Excitation Limiting Gas Turbine Startup
Undervoltage load shedding Powerplant Operator
SVC Generation Change/AGC
Generator Inertial Dynamies Boiler Dynamics Line/Transf. Overload
DC DC Converter LTCs System Operator
Protective Relaying Including Overload Protection
1 minute 10 minutes 1 hour
T T T T T T
0.1 1 10 100 1000 10000
Time [s]

Fig. 2.2 Power system components and controls time frame [8]

For analysis purposes, it is also useful to classify voltage stability into small and large
disturbances. Large-disturbance voltage stability refers to the system’s ability to maintain
steady voltages following large disturbances such as system faults, loss of generation, or
circuit contingencies and the period of interest may extend from a few seconds to tens of
minutes. Large-disturbance voltage stability can be studied using non-linear time domain
simulations in the short-term time frame and load flow analysis in the long-term time frame.
On the other hand, Small-disturbance voltage stability refers to the system’s ability to
maintain steady voltages when subjected to small perturbations such as incremental changes
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in system load [4]. Usually, the analysis of small-disturbances is done in steady state with the
power system linearized around an operating point.

2.3. Voltage stability analysis

2.3.1. Power-flow analysis

In large complex networks, power-flow analysis, also known as load-flow, is commonly used.
In this section an introduction to power-flow analysis and its application to voltage stability
will be given in order to understand the voltage stability indices exposed in the next chapter.

The power-flow (load-flow) analysis involves the calculation of power flows and voltages of
a transmission network for specified terminal or bus conditions. The system is assumed to be
balanced. Associated with each bus are four quantities: active power P, reactive power Q,
voltage magnitude V, and voltage angle 4. The relationships between network bus voltages
and currents can be represented by node equations [2]. The network equations in terms of
node admittance matrix can be written as:

11 = [Y1[V] (2.1)

If n is the total number of nodes, I is the vector (n x 1) of current phasors flowing into the
network, Y (n x n) is the admittance matrix with Y;; being the self-admittance of node i (sum
of all the admittances of node i) and Y;; being the mutual admittance between nodes i and j
(negative of the sum of all admittances between nodes i and j), and V the vector of voltage
phasors to ground at node i.

Equation (2.1) would be linear if injections I were known, but, in practice, are not known for
most nodes. The current at any node k is related to P, Q and V as follows:

[, =i (2.2)

The relations between P, Q, V and | are defined by the characteristics of the devices
connected to the nodes, which makes the problem nonlinear and have to solved using
techniques such as Gauss-Seidel or Newton-Raphson method.

The Newton-Raphson method is an iterative technique for solving nonlinear equations. Using
this method, the model can be linearized around a given point the following way:

opP oprP
AP] |38 av|(n6
[AQ = oo a0 vl (23)

a6 ov
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oP 0P

Where gg gg is called the Jacobian matrix, AP is the incremental change in bus real

20 v
power, AQ is the incremental change in bus reactive power injection, A8 is the bus voltage

angle and AV, the incremental change in bus voltage magnitude.

Equation (2.3) requires the solution of sparse linear matrix equations, which can be done
using sparsity-oriented triangular factorization.

The Jacobian can provide useful information about voltage stability. System voltage stability
is affected by both P and Q. However, at each operating point we may keep P constant and
evaluate voltage stability by considering the incremental relationship between Q and V. Based
on these considerations, AP in (2.3) is set to 0. Then,

AQ = JRAV (2.4)
Where,

Jr = Uov = JoalrgJev] (2.5)

And J; is the reduced Jacobian matrix of the system.

Voltage stability characteristics can be determined by computing the eigenvalues and
eigenvectors of this reduced Jacobian matrix defined by (2.5). Given an eigenvalue A; of the
ith mode of the Q-V response, if it is greater than 0, then the modal voltage and modal
reactive power are along the same direction which yields to a voltage stable system. If 4; < 0,
the modal voltage and modal reactive power are along opposite directions which indicates an
unstable system. The magnitude of A; determinates the degree of stability. When 4; = 0,
voltage collapses because any change in the modal reactive power causes an infinite change in
the modal voltage.

In conclusion, the Jacobian matrix allows defining the voltage collapse point as a system
loadability limit in which the minimum magnitude of the eigenvalues of the power flow
Jacobian matrix is zero.

2.3.2. PV and QV curves

Before detailing more complex and sophisticated analysis methods, a simple example is given
using PV and QV curves, which are a traditional method for illustrating the voltage instability
phenomenon.
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EZ0 |47

% X 4’—l P+Q

Fig. 2.3 Two-bus system

The model in Fig.2.3 considers a constant voltage source of magnitude E and a purely reactive
transmission impedance jX. Using the load flow equations:

P =—""sinf (2.6)

V2 EV
Q= -t 70056 (2.7)

Where P is the active power consumed by the load, Q is the reactive power consumed by the
load, V the load bus voltage and 6 the phase angle difference between the load and generator
busses. Solving (2.6) and (2.7) with respect to V, the following equation is obtained:

E2 E%
Vz\/?—QXi\/T—XZPZ—XEZQ (2.8)

The solutions to this load voltage are often presented in PV or QV curves, also known as nose
curves or voltage profiles. In Fig. 2.4, different PV curves are shown. A constant power
factor, i.e, Q = P - tan® has been assumed for each curve.

Fig. 2.4 PV curves [3]

Equation (2.8) yields two solutions of voltages to any set of load flow, represented by the
upper and lower parts of the PV-curve. The upper voltage solution, which is corresponding to
“+” sign in equation (2.8) is stable, while the lower voltage, corresponding to “-” sign, is
unstable [3]. The tip of the “nose curve” is called the maximum loading point or critical point.
Operation near the stability limit is impractical and sufficient power margin, that is, distance
to the limit, has to be allowed [2], as represented in Fig.2.5.
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P
vV act Puargin

P?Hﬂ. r

—_—

Fig. 2.5 Power margin [2]

Often, a more useful characteristic for certain aspects of voltage stability analysis is the Q-V
curves. These can be used for assessing the requirements for reactive power compensation
since they show the sensitivity and variation of bus voltages with respect to reactive power
injections or absorptions.

Q (VA

Total Reactive Power

i
dg

i\— =0 = Voltage Stability Limit

| d¥

»
g

Bus Voltage Magnitude W (pu)

Fig. 2.6 Q-V curve [3]

Fig. 2.6 shows a Q-V curve. Similar to the P-V curves, Q-V curves have a voltage stability
limit, which is the bottom of the curve, where dQ/dV is equal to zero. The right hand side is
stable since an increase in Q is accompanied by an increase in V. The left hand side is
unstable since an increase in Q represents a decrease in V, which is one of the instability
factors described in section 2.1 that judges that a system is voltage unstable if, for at least one
bus in the system, the bus voltage magnitude decreases as the reactive power injection in the
same bus is increased.

In [2] it was seen that complex power systems have similar PV characteristics to those of
simple radial systems such as the one in Fig. 2.3. That is the reason why, PV-curves play a
major role in understanding and explaining voltage stability and are widely used for its study.
From a PV curve, the variation of bus voltages with load, distance to instability and critical
voltage at which instability occurs may be determined. However, it is not necessarily the most
efficient way of studying voltage stability since it requires a lot of computations for large
complex networks. In the following section other analysis methods will be presented.
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2.3.3. Analysis methods

Voltage instability is a dynamic phenomenon which may involve the interaction of many
devices. It may occur in different time frames and involve different parts of the system with
nonlinear behaviours due to interaction of different elements in power systems. This
complexity makes it hard to assess stability and many different approaches have been
proposed in literature. Due to this complexity and difficulties, some assumptions and/or
simplifications have to be made, which provides each method with its own characteristics.
Therefore, each analysis presents advantages and weaknesses. A good understanding on the
underlying assumptions is needed in order to choose to most appropriate method for the
characteristics of each analysis.

The following sections give an overview of methods used to analyse voltage instability
scenarios and assess system security. The first section is devoted to distinguish between static,
dynamic and quasi-steady-state analysis, the second to the purpose of the analysis that can be
study the reaction of the system to contingencies or determine how far it is from its loadability
limit.

2.3.3.1. Static, dynamic and quasi-steady-state analysis

There are two main approaches of voltage stability analysis in nonlinear power systems:
dynamic and static. Although they are classified as two different analyses, the two approaches
should be used in a complementary manner depending on the study interest.

The dynamic analysis implies the use of a model characterized by non-linear differential and
algebraic equations which include generators dynamics or tap changing transformers. The
overall system equations may be expressed in the following general form [2]:

x=f(x,V) (2.9)

And a set of algebraic equations:
I(x,V) =Y,V (2.10)

With a set of known initial conditions (x,, V,), where x is the state vector of the system, V the
bus voltage vector, I the current injection vector and Yy the network node admittance matrix.
It should also be stated that Yy, is a function of bus voltages and time, and I is a function of the
system states and the bus voltage vector.

Equations (2.9) and (2.10) can be solved in time-domain using numerical integration methods
such as Euler or Runge-Kutta. This approach requires a lot of computations as well as
calculation time and does not provide information regarding the sensitivity or degree of
instability [6]. However, it provides the most accurate response of the actual dynamics of
voltage stability when appropriate modelling is included. In practice, dynamic simulation is
used in applied in essential studies relating to coordination of protections and controls and in
large-disturbance and short-term voltage stability analysis to capture the performance and
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interactions of such devices as motors, under load transformer tap changers, and generator
field-current limiters.

The static analysis involves only the solution of algebraic equations and therefore is
computationally much more efficient than the dynamic analysis. Static analysis captures
snapshots of system conditions at various time frames along the time-domain trajectory [2].
At each time frame, time derivatives of the state variables in Equation (2.9) are assumed to be
zero. Although voltage stability is a dynamic phenomenon by nature, static analyses are used
in many studies, due to its lower computation time and useful information for voltage stability
assessment.

The quasi-steady state (QSS) analysis consists in simulating the long-term dynamics with the
short-term dynamics replaced by their equilibrium equations. QSS long-term simulation offers
an interesting compromise between the efficiency of static methods and the advantages of
time-domain methods [5].

The quasi-steady state description of a power system is given by the following differential-
algebraic equations,

x=flx,y, 1) (2.11)
0=g(xy 1) (2.12)

where X represents the system state variables, y the algebraic variables and A a parameter or
set of parameters that slowly change in time. This allows the system to move from one
equilibrium point to another. [14]

2.3.3.2. Contingency analysis and loadability limit

As presented in [5] a power system analysis has to deal with several aspects, which are
classified in four categories: contingency analysis, loadability limit determination,
determination of security limits and preventive and corrective control.

Contingency analysis [5] aims at analysing the system response to large disturbances that may
lead to instability and collapse. The system is considered secure if it can withstand each set of
credible incidents, referred to as contingencies. For long-term voltage stability analysis, the
credible contingencies are outages of transmission and generation facilities; the sequence of
events leading to such outages does not really matter. For short-term voltage stability, the
system response to short-circuits is investigated in addition to outages.

While contingency analysis focus on a particular operating point, loadability limit
determination deals with how far a system can move from this operating point and still remain
in a stable state. Most of the voltage stability indices presented in the following chapters deal
with this type of analysis.
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After studying how the system reacts to different contingencies it is interesting to determine
security limits. This analysis aims to account for the maximum stress that the system can
accept, taking into account contingencies. Once the security limits are calculated it is useful to
determine the best control actions to correct a weak situation. Preventive controls deal with
actions to be taken in a precontingency situation in order to increase the security margin with
respect to one (or several) “limiting” contingency (or contingencies). Corrective controls, on
the other hand, deal with actions taken in a given postdisturbance configuration in order to
restore system stability [5].
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3. Voltage stability indices

In voltage stability analysis, it is useful to assess voltage stability of power systems by means
of voltage stability indices (VSI), scalar magnitudes that can be monitored as system
parameters change. Operators can use these indices to know how close the system is to
voltage collapse in an intuitive manner and react accordingly.

After a literature research on voltage stability indices, a lack of an organized, detailed and
complete classification of these indices was noticed. Although some comparison papers
between indices has been found ([9]-[14]), the global picture of the classification,
characteristics and differences was still missing. The purpose of this chapter is to give a
unified and wide perspective of the actual state of VSI, including the most recent proposed
indices.

The broader classification proposed in this thesis is based in [9] and [10], having adopted the
notation of the first one, Jacobian matrix based VSI and system variables based VSI. Jacobian
matrix based VSIs can calculate the voltage collapse point or maximum loadability limit and
determine the voltage stability margin, for that, the computation time is high; hence, they are
not suitable for online assessment. On the other hand, system variables based VSIs, which use
the elements of the admittance matrix and some system variables such as bus voltages or
power flow through lines, require less computation and, therefore, are adequate for online
monitoring. The disadvantage of these indices is that they cannot accurately estimate the
margin, so they can just present critical lines and buses.

This classification felt natural as they represented the two voltage stability aspects defined in
[2]: proximity to voltage collapse (How close is the system to voltage instability?) and
mechanism of voltage instability (What are the voltage-weak areas?).

Jacobian matrix-based VSI System variables-based VSI
More amount of computing time Less amount of computing time
Offline use Online use
Determine voltage stability margin: Determine weak buses or lines:

Proximity to voltage collapse Mechanism of voltage instability

Fig. 3.1 Comparison on VSI

In the following sections the different indices on each category will be presented.
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3.1. Jacobian matrix-based VSI

As seen in Section 2.3.1., the voltage collapse point is a system loadability limit in which the
minimum magnitude of the eigenvalues of the power flow Jacobian matrix is zero. In [15], the
minimum singular value of the Jacobian matrix was used as an indicator of voltage stability.
This index, however, cannot accurately estimate the collapse point because it shows a very
non-linear behaviour near that point. Based on the power flow Jacobian matrix, some other
indices have been proposed trying to avoid this non-linearity problem.

In this section the main power-flow analysis-based VSI are presented: test function, second
order index, tangent vector and V/VO0. A detailed description on more VSI based on power
flow analysis can be found in [14].

3.1.1. Test function

A test function based on the Jacobian matrix has been presented in [16]. When the system
load increases the test function display a quadratic (or quartic) shape. This can be used to
predict the voltage collapse point by fitting the test function using a quadratic (or quartic)
model. It is shown that the test function is more reliable than eigen/singular value of Jacobian
matrix [9].

The test function is defined by:

tue = lef J el (3.1)

where, J represents the system Jacobian, e; is the I™ unit vector, i.e., a vector with all entries
zero except the 1™ row, and Jy,, is defined by:

Jie = U —ee))] +eef, (3.2)

where, | represents the identity matrix. Equation (3.2) can be interpreted as a modified
Jacobian matrix with the 1™ row removed and replaced by row ef. J is singular at the voltage
collapse point, but matrix J;; is guaranteed not singular if the I"and k™ are chosen so that they
correspond to non-zero entries in the zero eigenvectors v and w associated with the zero
eigenvalue of J [14]. Furthermore, if [ = k = ¢, where ¢ corresponds to the maximum entry in
v, the test function becomes the critical test function:

lee = |eg}jc_clec| (33)

The Jacobian matrices and test function family are functions of system variables and
parameters. As the parameter A changes and approaches the collapse point, the system
variables change and as a result the critical test function t.. displays a quadratic shape as a
function of the load margin:

A) = at?, (3.4)
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Where a is a scalar constant. This characteristic allows the use of t.. for determining the
system proximity to voltage collapse, but it makes it difficult to detect the critical bus c, since
several buses should be monitored at the same time and that would increase the computational
costs.

3.1.2. Second order index

In [17], a voltage stability index based on the maximum singular value of the inverse Jacobian
matrix and its derivative has been presented. It is known as second order performance index
or index i. This index tries to overcome the difficulties of first order indices such as the
minimum singular value index, which are inadequate in presence of non-linearity or
discontinuities.

The index is based on the maximum singular value of the inverse Jacobian matrix (o,,,x) and
its derivative respect to the total system load (A;,t4:)- The index is defined as:

. 1 Omax
= T — 35)
0 /dltotal
where i, is the value of # in the initial operating point. At the initial operating
dltotal

point the index value is 1 and at the collapse point is 0. Because this index presents a linear
trend, it can provide useful information regarding the distance to voltage collapse. It also
overcomes the problem with non-linearity, since a quick increase in o, IS compensated by

i i i damax
the high value of the derivative /dﬂtotaz [9], [17].

3.1.3. Tangent vector

The voltage stability index proposed in [19] is based on the tangent vector, which gives
information on how system variables are affected by changing the load A. The vector elements
are the sensitivity of state variables including the bus voltage magnitudes and angles with
respect to the load increase. It is known that they tend to infinity as the voltage collapse point
is approached and therefore, can be used as an index to assess how far away the system is to
that point. The tangent vector index is defined as:

av; -1

(3.6)

Where V; is the voltage at bus i and A, the load. As the system approaches voltage collapse

% — oo and, therefore, TVI; — 0.
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3.1.4. VIVO

A rather simple index to define and compute is presented in [20], the ratio V/V0. V is the bus
voltage value known from load flow or state estimation studies. VO are obtained solving load
flow for the system at an identical state but with all loads set to zero. The ratio V/VO at each
node yields a voltage stability map of the system, allowing detection of weak spots. A
problem with this index is that it presents a highly nonlinear profile with respect to changes
on the system parameter, not allowing for accurate predictions of proximity to collapse [14].

3.1.5. Comparison between Jacobian matrix-based VSI

Some comparison between these indices can be found in [14]. The following table compares
the presented indices according to their computational costs, the accuracy of collapse
predictions and the adequacy to nonlinearities.

Computational Accuracy of collapse Adequacy to
costs predictions nonlinearities
Mmlmum +++ + +
eigenvalue
Test function ++ +++ ++
Index i -
++++ ++++ +++
Second method
Tangent vector + +++ ++
V/VO + + +

Fig. 3.2 Table comparison (+:poor, ++:regular, +++:good, ++++:exceptional)

3.2. System variables-based VSI

Besides the above indices that are based on power flow analysis and the Jacobian matrix,
there are many other indices which use direct measurements, such as bus voltages and
elements of the admittance matrix. These require less computational efforts and are suitable
for a fast diagnosis of system condition and contingency ranking. These indices are based on
the condition existing in maximum loadability point of a two-bus system. In this simple
system, they tend to a known value as a loadability limit is approached, but may have some
different and unpredictable values in the loadability limits when used in larger networks.
Therefore, they cannot estimate the voltage stability margin, but can be used to determine
critical lines or critical buses in a given load level [9].

These indices have been classified in two groups as in [12]: bus voltage computation indices
(or nodal voltage stability indices) and line stability indices. Some comparison can be found
in [12] and [13]. This chapter will combine both and present the most important indices in
each group with references to their original developers.
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3.2.1. Bus voltage computation indices

3.2.1.1. L index

The L index was first described in [22] and it is based on a hybrid representation of the
transmission system with the following set of equations:

VL] [IL] [ZLL FLG] [IL]

=H = 3.7
6] = o] = [Ke Yoo lve 3.7
Where,

V., I, are the voltage and current vectors at the load buses

Vs, I are the voltage and current vectors at the generator buses

Z11, Kg1 F1Lg Yse are the sub-matrices of the hybrid matrix H.

The H matrix can be evaluated using a partial inversion of the Y bus matrix, where the
voltages at the load buses are exchanged against their currents. This representation can then
be used to define a voltage stability indicator at each load bus:

L= |1 +5 (3.8)
Where,
Voj = — Liec EiVi (3.9)
Thus, the index can also be expressed in power terms as following:
_ | _Si+
L = T (3.10)
where S;, = S; + Sjcor * indicates the complex conjugate of the vector,
Sicorr = (Bictoads 235V 3.11
Qjcorr — (ZleL.oquZ,,*V)_j ( . )
i=j = =t
and,
_ 1
Yije =7 (3.12)

The complex term S, represents the contributions of the other loads in the system to the
index evaluated at node j.

When a load bus approaches a collapse point, the index value is 1. The nodes with the higher
value are considered the weaker buses of the system.
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3.2.1.2. Voltage Collapse Index (VCI)

This index has been taken from [23], but the notation of VSI has been changed to VCI
(voltage collapse index) as in [13] in order to distinguish it from the general reference to other
voltage stability indices. The index derives from the observation that when the load apparent
power changes, load voltage and current change as well to satisfy the relationship:

Si = ViIi (313)

Using Taylor’s theorem, the relationship between incremental changes in V; and I; due to
incremental change in S; can be written as:

_ aS;
- aI;

dS;

AS; v,

Al; + —AV; + higher order terms (3.14)

Taking into account eq. 3.13, where the magnitude of load apparent power S; is the product of
load voltage magnitude and load current magnitude, and neglecting higher order terms, eq.
3.14 can be written as:

When the load of a bus approaches the critical value AS; approaches zero. Therefore, to assure
stability:

0 < V,AL; + LAV, (3.16)
If eq.3.16 is divided by V;Al;:

0<1+ % (3.17)
Then, a VSl at a bus i is defined by:

ver =1+ %]a (3.18)

At no load, VCI equals unity and at the voltage collapse point its value is zero. This
evaluation of this VSI is very simple and it only requires the magnitude of bus voltage and
load current at two different operating points. It is raised to a power of a (>1) in order to give
a more or less linear characteristic to the index. The value of a may depend on the system.

3.2.1.3. Stability Index (SI)

In [21], a voltage stability index for radial distribution networks is presented. Given a two-bus
distribution system like the one in Fig. 3.3:
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V, 20 V<8

P+jQ

Fig. 3.3 Two-bus system

Then, the a VSI is defined as,
SI(r) = 2V2V? — V4 — 2V2(PR + QX) — |Z|2(P? + Q?) (3.19)

After the load flow study, the voltages of all nodes and the branch currents are known, then P
and Q can be calculated at the receiving end of each line and finally eq. 3.19 can be easily
computed. It is considered that the node with the minimum value of the stability index is the
most sensitive to voltage collapse.

This VSI has been developed from the mostly used quadratic equation to calculate the line
sending end voltages in load flow analysis which can be written as:

V4 + 2V2(PR + QX) — V2V2 + (P2 + Q)|Z|> = 0 (3.20)

From eq. 3.20, line receiving end active and reactive power can be written as:

P = (—cos OV;2 + \/cos20V* — V& — |Z]2Q2 — 2V2QX + V2V2)/|Z| (3.21)

Q = (—sin @V + /sin20V* — Vj* — |Z|2P2 — 2V2PR + V2V2)/|Z| (3.22)
The condition for the solution existence is therefore:
cos?0V* — V* — |Z|2Q2 — 2V2QX + VZV2 > 0 (3.23)
sin?0V* — V4 —|Z|?P?2 — 2V2PR+ V2VZ > 0 (3.24)
The sum of both equations is then,
2V2VZ — V& — 2VA(PR + QX) — |Z|2(P2 + Q%) = 0 (3.25)

which is the VSI previously described.

3.2.2. Line stability indices

Most of line stability indices are formulated based on the power transmission concept in a
single line. A single line in an interconnected network is illustrated in Fig. 3.4
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V26, V26,

}—‘ Z=RHjX —'j ,
Sy =P +jO,

Fig. 3.4 Two bus system

Where,

V, and V, are the sending end and receiving end voltages, respectively.
&, and &, are the phase angle at the sending and receiving buses.

Z is the line impedance.

R is the line resistance.

X is the line reactance.

0 is the line impedance angle.

Q.- is the reactive power at the receiving end.

PB. is the active power at the receiving end.

3.2.2.1. Lmn Index

This index proposed in [24] is based on the concept of power flow through a single line and
adopting the technique of reducing a power system network into a single line.

From the power flow equations,

|VS||VT' |Vr

Sy = 2(60 — 65+ 6,) — 460 (3.26)
If this equation is separated in real and reactive power, then,
2
P = %cos(@ — 85+ 6,) — %cose (3.27)
VSVr
Q, =—==sin(6 — 5, + 6,.) — —smH (3.28)

Defining § = 8 — &, and solving eq. for V., then,

Vesin(0—8)+{[Vssin(0-8)]2—42Qsin8}>°
2sinf

Vr:

(3.29)

If we substitute Zsin6 = X and consider the condition that the value of the square root has to
be positive,
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[Vesin(6 — 6)]? —4Q,X =0 (3.30)

Or otherwise,

__ 4XQr
Lonn = [Vs sin(6—68)]? =1 (3:31)

This VSI is used to find the stability index for each line connection between two bus bars in
an interconnected network. As long as L,,, remains less than 1 the system is stable.

3.2.2.2. Line Voltage Stability Index (LVSI)

A similar index is proposed in [42], but from the viewpoint of the relationship between the
lines reactive power and the bus voltage at the sending end. The index is defined as:
47P.

= <
LVSI Vc0s@ 57 < 1

3.2.2.3. LQP Index

This index defined in [25] uses the same concept as in the previous index Lmn. Using the
same notation, the proposed index is calculated as following:

LQP = 4 (%) (% P +Q j) (3.32)

3.2.2.4. Fast Voltage Stability Index (FVSI)

This index proposed by [26] stands for Fast Voltage Stability Index (FVSI) and it is also
based on the concept of power flow through a single line. It is developed starting by taking
the sending bus as the reference and using the general current equation:

_ Vs20-V 26

REIX (3.33)
The roots for the receiving voltage can be written as:
(%sin 6+cos 6)Vsi\/[(§sin 6+cos 6)VS]2—4(X+¥)Qr
V= (3.34)

2

To obtain real roots for V., the discriminant has to be set greater than or equal to zero, then:

4Z2QrX
V2 (Rsind+Xcos8)? —

(3.35)

Since the angle difference is normally very small, the following simplification is done:

=0 - sind =0&coséd =1 (3.36)
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Then a stability index is calculated as:

2
FVSI,, = 4122)% (3.37)

The line that exhibits FVSI closest to 1 is the weakest of the system.

3.2.2.5. Voltage Collapse Point Indicators (VCPI)

The Voltage Collapse Point Indicators (VCPI) proposed in [27] are based on the concept of
maximum power transferred through a line.

Pr

VCPI(1) = (3.38)
VCPI(2) = —%— (3.39)
r(max)

The numerator is the real or reactive power transferred to the receiving end and it depends on
system parameters, network topology, interconnections and load demand of the system. The
denominator is the maximum power that can be transferred to the receiving end at a particular
instant. It can be calculated the following way:

V&  cos®
Z 4cos? (G_T(D)

(3.40)

P r(max) —

V¢  sind

Z 4cos? (Q_Tqb)

Qr(max) = (3.41)

where @ is the load impedance ® = tan™1(Q,./P.).
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3.3. Table summary

In order to give the reader a clear overview on the voltage stability indices presented in this
chapter a table summary has been included (Fig.3.5). This table presents the indices classified
with the reference to their original publication, the formulas to compute them and their
stability condition.

.. . nstabl tabl
Publication Index Calculation - ab € 5 a_b_e
condition condition
. _ Quadratic .
_ T 1
Test function [16] tee = |elj) e shape Linear shape
n
-i Second order 1 Omax
3 : [17] LT Aoma i=0 0<i<l1
-8 index 0 /4 Arorar
c
2 avy ™t
2 Tangent vector [19] TVI, = |— TVI; - 0 TVI; #0
§ da
V/IVO [20] V/IVO VIO - 0 VIVO - 1
. S
L index [22] L = > L=1 L<1
YV
1,AV 1"
VCI [23] Vel = [1 + —] VCI=0 0<VCI<1
VAl
Bus
- SI(r) = 2V2V2 — V#
S
S Sl [21] —2VZ(PR + QX) SI<0 SI>0
(72}
@
o] 2
g —1ZI*(P* + @)
i)
£ L 24 L e,
mn mn =T . o 2 mn mn S
g [24] [V, sin(8 — 6)]? L > 1 L =1
=
3 X X
c‘,”>)\ LQP [25] LQP =4 (W) (V?PL’Z + Q,-) LQP >1 LEP <1
Line
472Q,
FVSI [26] FVSI,, = X FVSI > 1 FVSI <1
b
VCPI [27] VCPI(1) = VCPI > 1 vepI <1
r(max)

Fig. 3.5 Table summary
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4. PMU-based voltage stability analysis

The development of phasor measurement technology together with other advances in
computational facilities, networking infrastructure and communications has opened new
perspectives for wide-area monitoring and control [29]. This fact has enabled the development
of new methods for assessing voltage stability. This chapter will firstly present phasor
measurements units and its characteristics and secondly, will deal with the different methods
that have evolved using this technology.

4.1. Synchrophasors and phasor measurement units
An AC waveform can be mathematically represented by the following equation:
x(t) = Xyycos(wt+ @) (4.1)
where:
X, 1S the magnitude of the sinusoidal waveform
w is the angular frequency given by w = 2rf and f being the frequency in Hz
@ is the angular starting point for the waveform.

The representation of power system sinusoidal signals is commonly done in phasor notation.
The waveform is then represented as X = X,,, Z¢. The phasor representation of a sinusoid is
independent of its frequency and the phase angle ¢ of the phasor is determined by the starting
time (t= 0) of the sinusoid.

]

'/
'

' FET T
' - -
' -

' R

[

[

Ve

0

e

‘

o)

Fig. 4.1 Phasor representation of waveforms
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The standard [28] defines the synchronized phasors (or synchrophasor) as a complex number
representation of the fundamental frequency component of either a voltage or a current, with a
time label defining the time instant for which the phasor measurement is performed. The
synchrophasor representation X of a signal x(t) is the complex value given by:

X=X+ jX; = (XT’;) (ej“’) = (XT’;‘) (cos @ + jsing) (4.2)

Xm
V2
phase angle relative to a cosine function at nominal system frequency synchronized to

universal time coordinated (UTC).

where ( ) is the RMS (Root Mean Square) value of the signal x(t) and ¢ is its instantaneous

Note that the synchrophasor standard defines the phasor refered to the RMS value. Therefore,

it should be taken into account that v2 should be multiplied to the synchrophasor value when
computing the actual phasor magnitude.

Phasor Measurement Units (PMUSs) units are devices that provide real time measurement of
positive sequence voltages and currents at power system substations. Typically the
measurement windows are one cycle of the fundamental frequency. Through the use of
integral GPS (Global Positioning System) satellite receiver-clocks, PMUs sample
synchronously at selected locations throughout the power system. Data from substations are
collected at a suitable site, and by aligning the time stamps of the measurements a coherent
picture of the state of the power system is created [46]. Therefore a wide implementation of
PMU offers new opportunities in power system monitoring, protection, analysis and control.

The commercialization of PMU together with high-speed communications networks makes it
possible to build wide area monitoring systems (WAMSSs), which takes snapshots of the
power system variables within one second and provides new perspectives for early detection
and prevention of voltage instability. As stated in [29], PMU-based voltage instability
monitoring can be classified in two broad categories: methods based on local measurements
and methods based on the observability of the whole region. The first, need few or no
information exchange between the monitoring locations, while the second one requires time-
synchronized measurements. The following sections will provide information on both types
and will expose different methods of each type.

4.2. Methods based on local measurements

PMU-methods based on local measurements, can be implemented in a distributed manner and
require few or no information exchange between monitoring locations. These methods
accommodate the time skew of SCADA data and no time synchronization is needed [29].
Most of these methods rely on the Thevenin impedance matching condition or its extensions
and are based on the assumption that voltage instability is closely related to maximum
loadability of a transmission network. Figure 4.1 shows a load bus and the rest of the system
treated as a Thevenin equivalent.
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U
S L Zi

Fig. 4.1 Load bus Thevenin equivalent [43]

The receiving and sending currents for the power system as shown in Fig. 4.1 are

E-Ug

Sk — * __ 27 Y kNx

o -k =G0 (4.3)
Equation (4.2) can be written as follows:

(E—=Up) Up = SiZrn” = 0 (4.4)

For a given power S, the phasor equation (4.3) permits at most two voltage solutions Uj,.
Maximum power transfer occurs when these solutions become equal:

(E—-Up)" = Uy (4.5)

Equation (4.4) leads to the following result:

|Z| = |Zrn] (4.6)

Therefore, when the magnitude of the load impedance becomes equal to the magnitude of the
Thevenin’s impedance, the system reaches the maximum deliverable power. The impedance
Z,, is the ratio between the voltage VV and current I phasors measured at the bus through PMU.
When the loading is normal, |Z,| > |Z7| and are equal at the point of collapse. Therefore,
calculating the distance between Z;, and Z;;, can be used as a voltage stability index to assess
the closeness to voltage instability. This section will present both, on one hand, different
methods to calculate the Thevenin equivalent and on the other hand, indices or criterions used
once the equivalent is calculated to assess proximity to instability. The first three sections will
deal with calculating the Thevenin equivalent, which can be done by least square method,
though the use of both ends of a transmission corridor or using an approximation. The
following sections will present voltage stability indices or margins that can be used once the
Thevenin is computed.

4.2.1. Thevenin equivalent using least-square method

In [33], the measurements collected from one load bus are used to obtain the Thevenin
equivalent of the system seen from the bus, as well as the impedance of the load. Therefore, it
must use successive measurements and the parameters of the Thevenin are estimated using a
least-square method once a couple of sets of measurements are available.
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Considering the circuit in Figure 4.1

E.=V+2Z1 4.7
Where

Er = Et,r +jEt,i, Zy = Ry +jX; (4-8)

V=V+jV,l=1I+]] 4.9

Assuming that the phasor measurements taken at time sample k are
V=Vi+ Vi, I = Ly + jlig (4.10)

Equations (4.3) can be written in matrix form as:

Vi = Hyxy (4.11)
where
Et,rk
Et ik V. ] [1 0 —lLy i
= "y = s Hy = 4.12
i Ry YeZ vl ™ T lo 1 Iy —Iy (4.12)
Xtk

With the sequences of voltage and current phasor measurements the Thevenin parameters can
be estimated using the recursive least square (RLS) method:

X = Xg—1 + GV — Hg Xp—1) (4.13)

Gy = Py_1Hy(AI + HI Py_1H )™t (4.14)
1

P =~ ~- GiHi)Pr—1 (4.15)

The relation between the calculated Z,, and Z, is then used as an index to assess how close
the system is to collapse.

The weakness of this method is that it requires successive measures from the same load bus
and making the assumption that the Thevenin equivalent remains constant in these successive
measures.

4.2.2. Thevenin equivalent-Transmission corridors

This method, taken from [36], obtains the Thevenin equivalent using measurements taken at a
single line but from both ends of the transmission corridor. This way the time delay of least-
square estimation is avoided.

The method calculates the Thevenin equivalent in two steps as seen in Fig. 4.2.
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Fig. 4.2 First step calculation

First, the parameters of a T-equivalent of the transmission corridor can be determined through
a direct calculation from the PMU measurements vy, v, 1; I,:

Zr=2 ke (4.16)
ll—lz

Ty = 22220 (4.17)
" =11

7, =2 (4.18)

Zgis assumed to be known since it typically comprises the step-up transformers and short
transmission line to the beginning of the transmission corridor and Ejis calculated as:

Then, the second step calculates the Thevenin equivalent shown in Fig. 4.3.
Zth i

22
———<—

N
&N

i O

Fig. 4.3 : Second step calculation

The equations used to compute the voltage and impedance equivalent are the following:

I =%+ —— (4.20)
Zsh ZTT+Zg

= Zin+Z

Eop = v, 22 (4.21)

Based on this Thevenin equivalent, stability analysis can then be performed. In terms of load
impedance in percentage, stability margin can be expressed as:
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MARGIN, = 100(1 — kcrit) (4.22)
Zp
kerie = 7, (4-23)

4.2.3. Thevenin equivalent-Approximate approach

The buses in an interconnected power system can generally be classified into three categories:
generator bus, load bus and tie bus (without generators and loads connecting to it). A
generator bus will become a load bus if its power capacity limit is reached. Since the injection
currents to the tie buses are zero, the injection currents into the three types of buses can be
generally expressed as [45],

—iy, Yio Yir Yiel[ve
0 (=1|Yr. Yrr Yrg||Vr (4.24)
g Yoo Yor YeellVe

where the Y matrix is known as the system admittance matrix, V and | stand for the voltage
and current vectors, and the subscript L, T and G represent load bus, tie bus and generator
bus, respectively.

According to (4.23), the load bus voltages can be expressed as

V, = Eopen —Zl (4.25)
where
Zyy, = Yy, = Yir Yo Yr )7} (4.26)
Eopen = Z1,(YirYrr Yre — Yi6)Ve (4.27)
Then, (4.24) can be rewritten as
Vi = Eopeni = ZiviilLi — Dita,izj ZijilLj (4.28)

where Z,,;; denotes the ith diagonal element of Z,,, Z;, ;; is the i-j element of Z,,, E,pen,; IS
the open-circuit voltage of load i, n is the number of load buses, and V;; and I;; are the voltage
and current of load i, respectively.

In (4.27), V;; consists of three terms: the open-circuit voltage, the voltage related to the self-
impedance Z,,; and the coupling voltage related to the mutual-impedance Z,,;;, which
represents the impact of other loads on load i [45].

In [45] an approximate approach is presented to combine the coupling term with the open-
circuit voltage to form the equivalent voltage, which is shown Fig. 4.4.
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le

q,i

Fig. 4.4 Equivalent circuit combining the coupling voltage with the open voltage [45]

The equivalent is written as:

Eeq,i = Eopen,i - Ecouple,i (4.29)
where

Ecouple,i = ?I:l,iqtj ZLLjiILj (4.30)
Then, the following equivalent equation is obtained

V= Eeq,i - ZquLi (4.31)
where

Zeq = ZyLii (4.32)

With this approach, Z,, is calculated though the network parameters and it is constant if the
network topology, transformer and line parameters and generator’s bus types do not change.
Then, E,,,; is computed using equation (4.30). The advantage of this method is that it only
requires one-time measurement using the voltage and current gathered from the PMU at the
studied load bus.

4.2.4. Voltage Instability Predictor (VIP)

In [34], the same concept as in least-square method is used but proximity in expressed in
terms of power margin. The VIP method also tracks the distance between Z;, and Z;j. Since
the proximity to instability in terms of distance between two voltage curves or impedance
curves is not intuitive, a more useful measure is proposed. The VIP measures the proximity to
collapse in terms of power margin.

The power margin is expressed as:

As = VeZrnli)® (4.33)

4ZTh

A problem with the VIP method is the same as in the RLS method since the Thevenin
equivalent seen from any given bus is not observable. There are more unknowns than there
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are equations, which mean that there is an infinite set of Thevenin equivalents that could all
produce the same results as the one that is observed. This is solved by taking measurements at
two or more different times, and treating the Thevenin equivalent as a constant.

4.2.5. Voltage Stability Load Bus Index (VSLBI)

In [37], the Thevenin equivalent is calculated using the RLS method explained in section
4.2.1 and then a voltage stability load bus index (VSLBI) is defined as:

_ i)l
VSLBI = oo (4.34)

Where V; (k) is the amplitude of the load bus voltage i at time step k and AV;(k) = Zpp, I, is
the voltage drop across the Thevenin equivalent impedance Z,,. If the value approaches 1, the
system may be close to instability. This index can be calculated in each load bus and then a
system voltage stability index can be defined as the smallest of all VSLBI:

VSI = mingeq,, VSLBI; (4.35)

4.2.6. S Difference Criterion (SDC)

The S difference criterion (SDC) method proposed in [38] and [39] uses consecutive
measurements of the apparent power S in a line’s relay points. It is based in the fact that in the
vicinity of voltage instability an increase in the apparent power flow at the sending end of the
line no longer yields an increase in the received power. Therefore, at the voltage instability
point, AS = 0.

The apparent power supplied at the receiving end can be written as:

An increase in the apparent power loading in the time interval between ¢, and ¢, = t, + At
is:

Sike1 = Sji + 8Sjxr1 = Uik + AU perr) Tjige + Aljigsn) =
Sik + AU pialige + Ui Aligrs + AU 1ALy (4.37)
The term +Al7j,k+1AI_jl-,k+1*can be neglected, since it represents a very small value.
Then,
ASijv1 = AU salii + UppBli e (4.38)

Since it is known that AS_J-,,(+1 = 0 at the point of collapse, an index can be defined dividing
Equation (4.23) by U, ;AL 41 -
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SCD = 1+ diksilite 4 4 goio (4.39)

Uj A gyq

4.3. Methods based on the observability of the whole region

On the other hand, PMU-methods based on the observability of the whole region require time-
synchronized measurements and offer the potential advantages of wide-area monitoring [29].

4.3.1. Sensitivities

A PMU-method based on the observability of the whole region is presented in [29]-[31]. The
work focuses on detecting the onset of voltage instability triggered by a large disturbance. The
method fits a set of algebraic equations to the sampled states, computed from PMUs
measurements and performs an efficient sensitivity computation, which tracks the eigenvalue
movement around a maximum load power point.

As seen in Section 2.3.1, voltage stability can be determined by computing the eigenvalues
and eigenvectors of the reduced Jacobian matrix. Given an eigenvalue A; of the ith mode of
the Q-V response, if it is greater than 0, then the modal voltage and modal reactive power are
along the same direction which yields to a voltage stable system. If 1; < 0, the modal voltage
and modal reactive power are along opposite directions which indicates an unstable system.
Therefore, the change of sign of the eigenvalue can indicate the pass from a stable to an
unstable point. This fact is used in [28] to assess voltage stability.

It is stated in [29]-[31], that in order to detect this change in sign, there is no need to explicitly
compute the eigenvalues. Instead, sensitivities involving the inverse Jacobian can be used.

Given the static model of a power system:

0=g(y) (4.40)

where X represents the state vector of the system and vy, the algebraic variables such as the
active and reactive power consumed by the loads.

The sensitivities of the total reactive power generation to individual load reactive powers can
be obtained using the following formula:

Saga = —9q(9x) ' VxQy (4.41)

Where, V,.Q denotes the gradient of @, with respect to x, g, is the Jacobian of g with respect
to g and the load reactive powers are grouped into ¢ = [Q; ... Qx].

Computing Sogq requires solving one linear system with gfas a matrix of coefficients and
V,Qg as independent term.



PMU-based voltage stability analysis 39

4.3.2. Sum of the absolute values Index

The new method developed in [40] relies on measurements taken at current time and it is
based on the fact that the amplitude of the complex voltage drop on the Thevenin’s impedance
is equal to the amplitude of the voltage at the node at the point of maximum loadability, the
nose of the PV curve. The assumption made is the generator nearest to a load can give
information comparable with the Thevenin’s voltage.

The method defines the distance to a generator as the sum of the absolute values of the
complex voltage drop for each line along the shortest path from a node to the generator.
Nearest generator is the one this defined distance is minimum. Only generators that are in PV
mode, controlling the active power and voltage at its output, should be considered for this
calculation.

The voltage stability index is defined as:

VS, = A"T"k (4.42)

Where V, is the voltage at node k and AV, is the distance to the nearest generator as described
in the paper. This distance approximates the voltage drop across the Thevenin’s impedance.

The minimum value of VSI represents the weakest bus of the system. If no assumption were
made, it would be one at the maximum loadability point, therefore, a margin should be given,
and the real maximum loadability point value will be greater than one.

Weakness of the method is also presented in the paper. Firstly, by using a global index, the
location of the problem is not visible and secondly, a bad bus index that does not evolve taken
as the global index could hide bad evolutions elsewhere.

4.3.3. Voltage Collapse Proximity Indicator (VCPI)

The technique described in [32] uses the voltage magnitude and voltage angle information at
buses provided by PMUs, but also the network admittance matrix to predict proximity to
voltage collapse.

The proposed index at bus k is calculated as:

YN=1Vin
VCPI, = |1 — —m=k (4.43)
Vi
Where:
Vi = o, (4.44)
m — Zﬂyzlykj m '

V} is the voltage phasor at bus k
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Y.m 1S the admittance between buses k and m

The index varies from 0 to 1, being 1 if the voltage at the bus has collapsed.

4.3.4. Margin Voltage Stability Index (MVSI)

Another method based also on time-synchronized phasor measurements and network
parameters is proposed in [10].

The index is based on the maximum transferable power through a transmission line and is
expressed as:

_ : Pmargin Qmargin Smargin
MVSI o mln( Pmax ’ Qmax ’ Smax ) (4'45)

where

Pmargin = Ppax — P (4.46)

Qmargin = Qmax — 0 (4.47)

Smargin = Smax — S (4.48)
and

v vZ
Bnax = ax2z Q X (4.49)
v P2x
Qmax = x V2 (4.50)

S _ (1-sin@)v2
max = 5(cosf)2X

(4.51)

In larger interconnected power systems the equivalent source voltage and equivalent
impedance has to be calculated in each bus in order to calculate eq. (), () and (). The system
admittance matrix can be calculated as:

i Yio Yir Yiel[Ve
ir|=\Yr. Yrr Yre||Vr (4.52)
ig Yoo Yer YeellVe
vL - ZLLiL + ZLTiT + HLGvG (453)
Where,
Zy, = (Yo, = YirYer Yp) 7t (4.54)
Zir = _ZLLYLTYTT_l (4-55)
Hy = Zy, (Yir Y Yo — Yig) (4.56)
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Then for a given bus j, the equivalent voltage source and line impedance can be calculated
with the following equations:

=S *
Veq,- = legzl HLijUGk + Z?Izl,l’i]' ZLLji ( L) (457)

vy
Zeqj = Z1Ljj (4.58)

The load bus with the lowest MVSI has the smallest load margin and, therefore, is the closest
to voltage collapse.
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4.4. Table summary

Similar to the previous Fig. 3.5 in chapter 3.3, the table, Fig. 4.5, aims to summarize and offer
a general overview of the presented PMU-methods. It uses the adopted classification, local
measurements and observability of the whole network. It should be noted that in the local
measurements type has been classified in methods to calculate the Thevenin equivalent and
actual indices that are used once the Thevenin has been calculated. The original papers that
presented these indices used one of the mentioned methods to estimate the Thevenin
equivalent.

Type INET Ref. Calculation

X = X1 + G Vi = Hxk—1)
RLS [33] Gy = Pk—111‘1k(/u + Hi Py H) ™
Py = 1(1 — GkHg)Pia

c
2
)
‘_3'5 _ Zp 1
k= Transmissi T S
1] —_— 4 =
S ransmission [36] o s
o e corridors 2. T4
£ = . = Zin+ 2,
@ [ th = Vs =
e > 7,
o &
§ = Eeq,i = Eopen,i - Ecouple,i
. . N
o Approximation [45] Eeouptes = Z Zuly,
© =L
(&)
3
Vie — Zonli)?
VIP [34] as = e Tl
[ 7]
3 140
=2 VSLBI, = ———
S VSLBI [37] = AV (o)
£
AU oLk
SDC [38]-[39] SCD = 14—tk
Uj iBljijers
< Sensitivities [29]-[31] Soga = ~91 (D) V.0,
o
2
e
Q Vi
S) Sum of absolute values [40] VSl = —
< AV
2
[«5)
=
S Irvn=; 44
_ _ _m#
2 VCPI [32] veer, = |1 e
=
[
c
% _ . Pmargin Qmargin Smargin
Qo MVSI [10] VSI = min( , , )
O Pmax Qmax Smax

Fig. 4.5 PMU-methods table summary
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5. Stability Indices and methods comparison

In the previous chapters, different indices and methods to assess voltage stability were
presented. Since there has been a large amount of information given, this chapter aims to
provide a summary of the indices and methods and present their main characteristics and
difference. The three main types of indices were classified in Jacobian matrix-based, System
parameters-based and PMU methods. From the system parameters, two subtypes were
presented, line and bus indices; and the PMU methods are classified in two subtypes, local
measurements and observability.

Jacobian matrix based VSIs can calculate the voltage collapse point or maximum loadability
limit and determine the voltage stability margin, for that, the computation time is high; hence,
they are not suitable for online assessment. They also present a high nonlinear profile near the
voltage collapse point and they do not offer information on weak area or buses of the system,
just a general view of the whole system. Therefore, they do not provide enough information to
know where in the system there is a problem, and are difficult to use for control purposes.

On the other hand, system variables based VSIs, which use the elements of the admittance
matrix and some system variables such as bus voltages or power flow through lines, require
less computation and, therefore, are adequate for online monitoring. The disadvantage of
these indices is that they cannot accurately estimate the margin, so they can just present
critical lines and buses. By ranking the critical lines and buses, decisions on where to place
shunt FACTS controllers, as done in [48], can be made. Some studies on how uncertainty
affects line indices are pursued in [49], but conclude that more tests should be done in order to
draw a general conclusion.

As stated in [29], PMU-based voltage instability monitoring can be classified in two broad
categories: methods based on local measurements and methods based on the observability of
the whole region. PMU-methods based on local measurements, can be implemented in a
distributed manner and require few or no information exchange between monitoring locations.
These methods accommodate the time skew of SCADA data and no time synchronization is
needed [29]. Most of these methods rely on the Thevenin impedance matching condition or its
extensions and are based on the assumption that voltage instability is closely related to
maximum loadability of a transmission network. Three methods to compute the Thevenin
equivalent are presented: RLS, Transmission corridor method and Approximation method.
Once the Thevenin has been computed, there are several indices that can provide information
on voltage stability; VSLBI and SLD, among others.

On the other hand, PMU-methods based on the observability of the whole region require time-
synchronized measurements and offer the potential advantages of wide-area monitoring [29].
Therefore, the measurements require to be processed in a centralized manner.
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Type

Jacobian
matrix-based

Index
Test function

Second order

Tangent vector

Characteristics

Compute the whole network.
Centralized measurements.
High computational costs.

Non-linearity near voltage collapse.
Difficult to use for control purposes.

VIVO
“ L index Easy to compute.
E 2 g Small computational costs.
2838 Vel i ission-radi ini
2.2 m § Better results in transmission-radial networks than in interconnected networks.
"N © =
= Sl
Lmn
&%
% g LVSI Easy to compute.
g o Small computational costs.
g 2 LQP Good for control purposes:
£ g FVsI Identifies the weakest line in the network. FACTS placement.
§ - Distributed measurements.
wn
VCPI
@ VIP
5® &, Distributed measurements and processing.
=33¢ VSLBI Usable for control purposes
£ SDC
> Sensitivities
g Sum of absolute
g value Centralized measurements and processing.
= VCPI
b -
o Margin VSI

Fig.

5.1 Index classification and comparison
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6. Implementation of Voltage Stability Indices and test networks

The software used to simulate the networks is RSCAD, which is the Graphical User Interface
of RTDS, a Real-Time Digital Simulator designed to study electromagnetic transient
phenomena. Two test networks have been used to implement some of indices presented in
previous chapters, a small 5-bus test network and a large 39-bus test network.

This chapter will, firstly, introduce the RTDS and its characteristics; then, a detailed
description of both test-networks will be presented, and finally, how the different indices have
been implemented will be exposed and what cases have been studied.

6.1. Introduction to RTDS

RTDS stands for Real-Time Digital Simulator and it is designed to study electromagnetic
transient phenomena in real-time. RTDS is an effective tool for modelling and simulating
power and control systems, and is especially useful for large systems. RTDS is comprised of
both specially designed hardware and software.

RTDS hardware (Fig. 6.1) is based on Digital Signal Processor (DSP) and Reduced
Instruction Set Computer (RISC), and utilizes advanced parallel processing techniques in
order to achieve the computation speeds required to maintain continuous real—time operation
[41]. Digital simulators compute the state of the power system model only at discrete instants
in time. The time between these discrete instants is referred to as the simulation time—step
(At). By definition, in order to operate in real—time a 50 psec time—step would require that all
computations for the system solution be complete in less than 50 psec of actual time.

Fig. 6.1 RTDS hardware at E.ON ACS Institute
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In order to realize and maintain the required computation rates for real—time operation, many
high speed processors operating in parallel are utilized by the RTDS. Two types of processor
cards may be installed in each RTDS rack: 3PC and RPC. The Triple Processor Card (3PC)
contains three Analogue Devices ADSP 21062 digital signal processors. The ADSP 21062
DSP clock speed is 40 MHz. The RISC Processor Card (RPC) contains two PowerPC
750CXe RISC processors operating at a clock speed of 600 MHz. The RTDS Simulator can
be configured as 3PC only or as a combination of 3PC and RPC [41].

RTDS software includes a Graphical User Interface (GUI), referred to as RSCAD, through
which includes a model library of power and control system components. The overall network
solution technique employed in RTDS is based on nodal analysis and the algorithms used are
those introduced in the paper “Digital Computer Solution of Electromagnetic Transients in
Single and Multiphase Networks” by H.W. Dommel, which is used in virtually all digital
simulation programs designed for the study of electromagnetic transients [41].

R

Fig. 6.2 RSCAD Software modules

RSCAD is composed of several modules as shown in Fig.6.2. The File Manager represents
the entry point to the RSCAD interface software and it is used for project and case
management and facilitates information exchange between RTDS users. The Draft module is
used for circuit assembly and parameter entry. The Draft screen is divided into two sections:
the library section and the circuit assembly section. The T—Line is used to define the
properties of overhead transmission lines and underground cables respectively. The RunTime
is used to control the simulation case(s) being performed on the RTDS hardware. Simulation
control, including start / stop commands, sequence initiation, set point adjustment, fault
application, breaker operation, etc. are performed through the RunTime Operator’s Console.
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Additionally, on line metering and data acquisition and disturbance recording functions are
available in RunTime. Finally, MultiPlot is used for post processing and analysis of results
captured and stored during a simulation study [41].

6.2. 5-bus test system

A first 5-bus test system network taken from [43] was provided by ACS. The network
consists of two synchronous generators, two step-up transformers and three constant power
loads as depicted in Figure 6.3. Three PMU units are assumed to be installed at all the load
buses and measure the voltage and current phasors.

1.6+j0.8
Fig. 6.3 5-bus test network [43]

The reference voltage and the reference power are chosen by 230 kV and 100 MVA,
respectively. Two synchronous machines are chosen as the generator model for the power
sources at bus 4 and bus 5 with the IEEE Type AC1 excitation system and gas governor
control models. The ratios of the step-up transformers are chosen by 13.8/230 kV and its wire
style is Y-A [43]. The transmission lines are modelled as ideal RLC with the values shown in
Fig. 6.4. The system modelled in RSCAD is shown in Fig. 6.5.

Line From To Resistance (2) Reactance (H)

1 2 1 21,16 0,421
2 3 1 52,9 0,589
3 2 3 42,32 0,505
4 4 2 - 0,0252
5 5 3 - 0,505

Fig.6.4 Network data for 5-bus test system
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Fig. 6.5 RSCAD Draft of 5-bus test system

6.3. 39-bus test system

The 39-bus system used to implement the different indices is the IEEE 10-Generator 39 Bus
System, also known as New-England Power System. The parameters are taken from [47] and
the network in RSCAD was provided by ACS. The full system parameters can be found in
Appendix A. Fig.6.6 shows the global network diagram and Fig.6.7, some snapshots of the
view of the system modelled in RSCAD.

Fig. 6.6 39-bus test network [47]
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ald .
el |1 #= 7

Fig. 6.5 RSCAD Draft of parts of the 39-bus test system

6.4. Index implementation

The implementation of the different voltage stability indices has been done using two
different approaches depending on the type of index. For the line stability indices, the
implementation was done directly on RTDS using the control components blocks. This
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approach allows viewing the indices in RunTime and makes them available to use in control
strategy design that could feed the indices results back to the generators.

The second method used to calculate the indices was gathering the data from RTDS RunTime
and exporting them into MatLab, where they are computed. This was done for the Jacobian
index implementation, since the control blocks were insufficient to calculate it due to their
more sophisticated computation. The main code was provided by T. Junjie from ACS and |
just adapted it to this Thesis needs.

The following table (Fig.6.5.1) summarizes the computed indices and informs on the method
used to compute them.

Index type Index Implementation
Jacobian index Minimum eigenvalue RTDS simulation values
of the Jacobian matrix + MatLab code
Lmn
FVSI (with and without approximation)
Line indices VCPI (p) and VCPI(I) RTDS using the control blocks
LVSI
LQP

Fig. 6.5.1 Indices and implementation used in each case

6.4.1. Jacobian index implementation

Using the PMU component (Fig.6.6), the magnitude and angle at each node was obtained.
The data was saved and loaded in MatLab, where the calculation of the Jacobian matrix is
done and the minimum eigenvalue computed. The MatLab code can be found in Appendix B.
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Fig.. 6.6 PMU component in Draft

6.4.2. Line index implementation

The line index implementation in RTDS has been done using the control blocks of the library.
This implementation allows viewing the indices in RunTime and makes them available to use
in control strategy design that could feed the indices results back to the generators.
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The following table (Fig.6.7) shows the block diagram of each implemented index using the
control components of the RSCAD library.
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LQP = 4(%) (zPt+@)

Fig. 6.7 Implementation of line indices in RSCAD

6.5. Simulation Cases

In the previous sections the two bus systems have been presented, as well as the
implementation of the indices. In this section, the simulation cases used and the indices
computed in each of them are summarized in Fig.6.8 in order to give a first entire view of the
simulation before presenting the results in the following chapter.

Test
> Cases Indices
network
. Jacobian, Lmn, LQP, FVSI,
. 0,
Case 1: Large load increase (5%) VCPI, VCPI(2)
. Jacobian, Lmn, LQP, FVSI,
. 0
. Case 2: Small load increase (2,5%) VCPI, VCPI(2)
. Jacobian, Lmn, LQP, VCPI,
. 0
Case 3: Very small load increase (0,1%) VCPI()
. Jacobian, Lmn, LQP, VCPI,
4: Onl I %
Case 4: Only Q load increase (5%) VCPI(2)
39-bUs Case 1: Large load increase (10%) Jacobian, Lmn, VCPI
Case 2: Small load increase (1%) Jacobian, Lmn, VCPI

Fig. 6.8 Simulation cases and indices summary

As shown in Fig.6.8, and previously stated, two test networks have been used, a 5-bus and a
39-bus. The 5-bus network has been studied using four cases, depending on their load
increase at each step change: large (5%), small(2,5%) and very small(0,1%), as well as a case
where only the reactive power was increased by 5%. On the other side, the 39-bus system
used two cases: a large load increase (10%) and a small load increase (1%). The load increase
is constant and is computed as the stated percentage of the load base case.
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7. Simulation results

7.1. 5-bus test network

For the 5-bus test network, four cases have been studied. Starting from a steady state base
case, the 5-bus test system in Fig. 6.3, the active and/or reactive power consumption of the
loads at bus 1, bus 2 and bus 3 are increased. At a certain operating point the two generators
cannot sustain the voltage with sufficient reactive power anymore due to the increasing loads,
and then the voltage collapses. In case 1, the active and reactive power load are increased
stepwise by 5 % every 5 s and by 2.5% in case 2, as shown in Fig.7.1. Case 3 represents a
very small load increase, 0,1% of the load base every 0,109 seconds and in case 4 the active
power remains constant and the reactive power is increased by 5% of the load base every 10
seconds, as shown in Fig.7.2.

P (MW) Q(Mvar)  AP(MW)  AQ(MVar)  AP(MW)  AQ(MVar)
1 160 80 8 4 4 2
2 200 100 10 5 5 2,5
3 370 130 19 7 9,5 3,5
Total 730 310

Fig.7.1 Load in base case and load increase information for case 1 and 2

Load in base case Very small load Only Q load
increase (0,1%0) increase (5%0)
P (MW) Q(MvVar) AP(MW) AQ(MVar) AP(MW) AQ(MVar)
1 160 80 0,16 0,08 0 4
2 200 100 0,2 0,1 0 5
3 370 130 0,37 0,13 0 7
Total 730 310

Fig.7.2 Load in base case and load increase information for case 3 and 4

7.1.1. Simulation Case 1: 5-Bus system with 5% load increase

As previously mentioned, the first case in the 5-Bus system increases the load at each load
node by a constant rate of 5% of the load base case every 5 seconds. The simulation runs for
50 seconds. The voltage collapse point is observed at the 4™ load increase, 20 seconds after
the simulation begins. Fig. 7.2 illustrates the active and reactive power at the load buses; Fig.
7.3 shows the node voltages and Fig.7.4, the branch currents.
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Fig. 7.3 Active and reactive power consumed by the loads (PloadN: Active power consumed by the
load bus N; QloadN: Reactive power consumed by load bus N)
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Fig. 7.4 Node voltages (N1: Voltage at Node 1, N4: VVoltage at Node 2, N7: Voltage at Node 3)
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Fig. 7.5 Branch currents (IANM: Branch current in phase A between nodes N and M)
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7.1.1.1. Jacobian matrix index

After gathering the voltage measurements, magnitude and phase from the PMU component in
RTDS, the data is loaded into MATLAB to calculate the eigenvalues of the Jacobian matrix
and the minimum value is plotted at each load step (Fig 7.6).

20

O e > - -

Jacobian Matrix
N
o o

Minimum eigenvalue of the

-100

Number of load increasing

Fig. 7.6 Minimum eigenvalue of the Jacobian Matrix at each load step

Fig 7.6 shows how the minimum eigenvalues are positive while the system is stable and how
the eigenvalues become negative when the system turns unstable. As mentioned in chapter
3.1., this index presents nonlinearity near the voltage collapse point, which can also be
noticed in the simulation results. As commented earlier, this index is a global index and
therefore, it does not provide any information on the location of the weak bus or line of the
system and just gives information on the global system, making it difficult to apply any
control strategy to avoid voltage collapse from happening.

o 1,4 yv—==0,0942x+1,3297
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ez O
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£
s 0
0 1 2 3 4 5
Number of load increasing

Fig. 7.7 Minimum eigenvalue of the Jacobian Matrix in the stable region.

Fig. 7.7 plots the results on the stable region. In this region, the index is linear, which can be
used to know how far the system is to voltage collapse. Although the theoretical approach
states that zero is the limit of the stable region, in this particular case, the index changes from
0,95 to -34,5 in the voltage collapse load step change. For this reason, the use of this index in
real-time operations, it should be taken into account the results of offline simulations to fix
the practical limit index to calculate the margin.
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7.1.1.2. Line indices

Using the implementation in RSCAD of the line stability indices as described in chapter 6.4.1,
the different line indices can be monitored in Runtime as any other control signal and
therefore, their plots can be directly observed. The following figures Fig.7.8-Fig7.10 show the
Index-Time plots for this case.

These indices were developed for steady state analysis. In dynamic analysis, they present a
transient period presenting oscillations before the steady state value is reached and a
nonlinearity near the voltage collapse point. All of these indices should cross 1 at the voltage
collapse point. This is true for most of them: Lmn, FVSI without approximation and both
VCPI. LQP is passes 1 at the voltage collapse point, but remains under 1 in its steady state
value. On the other hand, these results show that the approximation used to compute the FVSI
is not acceptable in this case, since the difference on the values used with and without
approximation are too big.
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Fig. 7.9 FVSI results (left-with approximation, right-without)
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Fig. 7.10 VCPI results (left-power, right-loss)

As described earlier, these indices are useful to determine the weakest line of the system.
These results show that all indices agree in the ranking of the weakest lines in the system as
gathered in Fig. 7.11: Line 2-1 is the weakest line of the system, followed by line 3-1 and
finally 2-3.

Lmn LQP FVSI VCPI(p) VCPI(l)
2-1 1 1 1 1 1
3-1 2 2 2 2 2
2-3 3 3 3 3 3

Fig. 7.11 Ranking of weakest lines of the system

After gathering the data from the Runtime, the steady state values where saved and plotted, as
shown in the following figures Fig.12-Fig.14.

1,2 1,2
1 - 4 Y 'y 3 1 =
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0 2 4 6 8 10 0 2 4 6 8 10
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Fig. 7.12 Steady state values Lmn and LQP indices
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Fig. 7.14 Steady state values FVSI indices

A global index, defined by the maximum line index of the system can be also computed as
shown in Fig.15. The value at number of load increasing 5 is not plotted since the steady state
value is not reached.
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Fig. 7.15 Steady state values for global system indices

In order to compare the performance of these indices, several quantitative measures have been
summarized in the following table Fig.17: Last value before voltage collapse occurs, first
value after voltage collapse, increase of value at the voltage collapse point and linearity in the
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stable region. The quantitative value for assessing the linearity is R? obtained by a standard
linear regression in Excel, which is shown in Fig.7.16.

Steady State Values-Global Indices-Stable region

0,9
y = 0,0481x + 0,6345 .
08 P
0.7 v = 0.0628x +0,4213
— / R? = 0,9984
) 0,6 / y = 0,0497x + 0,2499
(—>‘_j 0’5 — R2 — 0,9971 + VCPI
5 04 o = VCPI2
2 0s /C.,/ . LQpP
' :% y =0,0343x + 0,2235 x Lmn
0,2 R7=0,9997 *  FVSI
y =0,0509x + 0,1714
0,1 R7=0,9902
O T T T T 1
0 1 2 3 4 5

Number of load incresasing

Fig. 7.16 Steady state values for global system indices in stable region and linear line tendency

calculation
Last value before First value after Increase of value at the Linearity in the
voltage collapse voltage collapse voltage collapse point stable region
VCPI(p) 0,828047 1,00393 0,175883 0,9995
VCPI(2)(I) 0,380708 1,55145 1,170742 0,9902
LQP 0,675284 0,946578 0,271294 0,9984
Lmn 0,451693 0,997581 0,545888 0,9971
FVSI 0,361822 0,555516 0,193694 0,9992
Last value before First value after Increase of value at the Linearity in the
voltage collapse voltage collapse voltage collapse point stable region
green 0,7-1 >1 <0,2 >0,999
orange 0,5-0,69 0,9-1 0,2-0,6 0,99-0,998
red 0-0,49 <0,9 >0,6 <0,99

Fig. 7.17 Quantitative values indices comparison and colour interval classification

The quantitative values in the table above have been classified in three categories: good
(oreen), neutral (orange) and bad (red). The values classification for each colour has been
defined as shown in Fig.7.17, and will remain this way for the rest of the cases. The reasons
for these values classification is explained next. For the last value before voltage collapse a
good value is one near 1 because it alerts that the system is close to collapse. For the first
value after voltage collapse, a value above 1 clearly indicates that the system has crossed its
voltage stability limit. The increase value, should not be very high, in order to maintain as
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much as possible the linear trend of the index although crossing a nonlinearity point. Finally,
the linearity at the stable region could help calculate the voltage stability margin.

Analysing the quantitative values in Fig.7.17, the index that provides the most useful
information is VCPI(p), which has a good value for all of the categories, the second best
indices will be LQP and Lmn, followed by VCPI(2)(l) and FVSI.

7.1.2. Simulation Case 2: 5 Bus system with 2,5% load increase

As previously mentioned, the second case in the 5-Bus system increases the load at each load
node by a constant rate of 2,5% of the load base case every 5 seconds. The simulation runs for
60 seconds. The voltage collapse point is observed at the 9" load increase, 50 seconds after
the simulation begins. Fig. 7.18 illustrates the active and reactive power at the load buses;
Fig.7.19 shows the node voltages and Fig.7.20, the branch currents.
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Fig. 7.18 Active and reactive power consumed by the loads (PloadN: Active power consumed by the
load bus N; QloadN: Reactive power consumed by load bus N)
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Fig. 7.19 Node voltages (N1: Voltage at Node 1, N4: Voltage at Node 2, N7: Voltage at Node 3)
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Fig. 7.20 Branch currents (IANM: Branch current in phase A between nodes N and M)

7.1.2.1.

#1Branch Currents: = |

[T

Jacobian matrix index

As done in case 1, the eigenvalues of the Jacobian matrix are computed and the minimum
value is plotted at each load step in Fig 7.21. The figure also shows how the minimum
eigenvalues are positive while the system is stable and how the eigenvalues become negative
when the system turns unstable. In this case, the index also presents a high drop when
crossing the voltage stability limit (Fig.7.21) and has a linear trend in the stable region

(Fig.7.22).
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Fig. 7.21 Minimum eigenvalue of the Jacobian Matrix at each load step
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Fig.7.22 Minimum eigenvalue of the Jacobian Matrix in the stable region

7.1.2.2. Line indices

As in the previous case, the implementation of the line stability indices was done using the
control blocks as described in chapter 6.4.1 and the line indices were monitored in Runtime,
obtaining their plots. The following figures Fig.7.23-Fig7.25 show the Index-Time plots for

this case.

As already noticed in the previous case, the indices present a transient period before they
become stable, since the increment is smaller than in the previous case, the pic value at each
load increase is also smaller. At the voltage collapse point it also presents a unregularly form
and it does not reach the steady state value in that interval. It is also observed that the FVSI
approximation index has a mean relative error of 16% in the values in the stable region and

after the voltage collapse it is even greater, with a relative error of 45%.
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Fig. 7.23 Lmn and LQP results



Simulation results 64

Subystem (10T sNas B Subsystem #1|CTLsVars @) ]
[P Rt P \ FABTITE|Fuslits Fusizaz

o — o
bt AP—F | V‘\ij

m_n_m_/\_‘/
2 =

40

Fig. 7.24 FVSI results (left-with approximation, right-without)

F#ICTLSMars o FCTLE NS o
[FEPET uron s R [ e

- 1*—'”_‘;% - )

o | ! 1 1 i
o 10 E] £l “ L] L o " @ » - w

Fig. 7.25 VCPI results (left-power, right-loss)

These results show that all indices agree in the ranking of the weakest lines in the system: 2-1
is the weakest line of the system, followed by line 3-1 and finally 2-3. Fig.7.26-Fig.28 show
the steady state values of each index and line.
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Fig. 7.26 Steady state values Lmn and LQP indices
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Fig. 7.28 Steady state values VCPI indices

A global index, defined by the maximum line index of the system can be also computed as
shown in Fig.7.29. Note that the value at number of load increasing 10 is not plotted since the

steady state value is not reached.

1,6
X
1,4
1,2
1 % = FVSI
b °
5 038 T e 4 Lmn
= ° ° x
° ° x x x LQP
0,6 % x x ]
L L e * VCPI2
0,4 —A &
’ . A A " ™ [ o VCPI
A T
0,2 X X
0
0 2 4 6 8 10 12
Number of load increasing

Fig. 7.29 Steady state values for global system indices

In order to compare the performance of these indices, the same quantitative measures as in
case 1 have been summarized in the following table Fig.31: Last value before voltage collapse
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occurs, first value after voltage collapse, increase of value at the voltage collapse point and
linearity in the stable region (R?), which is shown in Fig.30.
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Fig. 7.30 Steady state values for global system indices in stable region and linear line tendency

calculation
Last value before First value after Increase of value at the Linearity in the
voltage collapse voltage collapse voltage collapse point stable region
VCPI(p) 0,853651 1,00108 0,147429 0,9995
VCPI(2)(I) 0,418139 1,50854 1,090401 0,9855
LQP 0,711157
Lmn 0,482533
FVSI 0,380585 0,543011 0,162426 0,9992

Fig. 7.31 Quantitative values indices comparison

The results obtained are similar to the ones in case 1. Analysing the quantitative values in
Fig.7.31, the index that provides the most useful information is also VCPI(p), which has a
good value for all of the categories, the second best indices will be LQP and Lmn, followed
by VCPI(2)(l) and FVSI.

7.1.3. Simulation Case 3: Very small load increase

As previously mentioned, the third case in the 5-Bus system increases the load at each load
node by a constant rate of 0,1% of the load base case every 0,109 seconds. The simulation
runs for 50 seconds. The voltage collapse point is approximately 25 seconds after the
simulation begins. Fig. 7.32 illustrates the active and reactive power at the load buses and
Fig.7.33 shows the node voltages.
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Fig. 7.32 Active and reactive power consumed by the loads (PloadN: Active power consumed by the

load bus N; QloadN: Reactive power consumed by load bus N)
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Fig. 7.33 Node voltages (N1: Voltage at Node 1,' N4: Voltage at Node 2, N7: Voltage at Node 3)

7.1.3.1. Jacobian matrix index

As done in case 1 and 2, the eigenvalues of the Jacobian matrix are computed and the
minimum value is plotted at each load step in Fig 7.34. The main characteristics of the
minimum eigenvalues of the Jacobian matrix are repeated in this case: positive values in the
stable region, negative values in the unstable region, linearity in the stable region and high
drop near the voltage collapse point. Because the step load change is much smaller and the
Jacobian is computed at each of this load step changes, the form of the function can be better

observed than in the past cases. The values in the stable region are plotted separately again in
Fig.7.35 to view the line form better.
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Fig. 7.34 Minimum eigenvalue of the Jacobian Matrix at each load step
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Fig. 7.35 Minimum eigenvalue of the Jacobian Matrix at each load step in the stable region
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7.1.3.2. Line indices

Again, the line indices are plotted in the RunTime. As in the Jacobian matrix index, the form
of functions can be clearer observed (Fig.7.36-Fig.7.37), since there are more steps and
therefore, more points computed. The steady state values where not computed since the plots
in Runtime already offer this information.
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Fig. 7.37 VCPI resulté (left-power, right-loss)
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7.1.4. Simulation Case 4: Only reactive power increasing

As previously mentioned, the fourth case in the 5-Bus system increases the reactive power at
each load node by a constant rate of 5% of the load base case every 10 seconds. The
simulation runs for 150 seconds. The voltage collapse point is observed 120 seconds after the
simulation begins. Fig. 7.38 illustrates the active and reactive power at the load buses and
Fig.7.39 shows the node voltages.
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Fig. 7.38 Active and reactive power consumed by the loads (PloadN: Active power consumed by the
load bus N; QloadN: Reactive power consumed by load bus N)

Subisystem =1 Node Vohages ‘Blo
[STFET)

0 [LULUA ]

a0

o £

Fig. 7.39 Node voltage (N1: Voltage at Node 1)



Simulation results

71

7.1.4.1.

Jacobian matrix index

As in all of the previous cases, the first figure plots the minimum eigenvalue of the Jacobian
matrix at each load step and second one, the minimum eigenvalue in the stable region.
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Fig. 7.40 Minimum eigenvalue of the Jacobian Matrix at each load step (left)
and in the stable region only(right)
7.1.4.2. Line indices

Again, the line indices are plotted in the RunTime (Fig.7.41-Fig.7.42), and the values at each
loading point are saved and plotted separately (Fig.7.43-7.44).
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Fig. 7.41 Lmn and LQP results
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Fig. 7.43 Lmn and LQP steady state results
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Fig. 7.44 VVCPI results (left-power, right-loss)

As done in all of the other cases, a global index is computed by taking the maxim value of the
line stability indices at each load step (Fig.7.45), and the quantitative values analysed are also
set in a Table (Fig.7.47).
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Fig. 7.45 Steady state values for global system indices
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Fig. 7.46 Steady state values for global system indices in stable region and linear line tendency

calculation
Last value before First value after Increase of value at the Linearity in the
voltage collapse voltage collapse voltage collapse point stable region
VCPI(p) 0,887821 0,997218 0,109397 0,9978
VCPI(2)(I) 0,461411 1,40829 0,946879 0,9656
LQP 0,799553 0,978309 0,178756 0,9989
Lmn 0,693662 1,01701 0,323348 0,9983

Fig.7.47 Quantitative values for Case 4
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7.1.5. Case comparison

This chapter aims to compare the indices values in two cases: Case 2, where P and Q are
increased by 2,5% at each load step and Case 4, where only Q is increased by 5% every load
step. In order to compare these cases, two x axis have been chose. First the line indices are
compared based on the apparent power (pu) and secondly, based on the apparent power
margin (pu). At the end, the values for the Jacobian matrix index on both cases are also
commented. The purpose of this comparison is to know if given an index value, it can be
assessed the proximity to voltage collapse without knowing the nature of the load.

By looking at Fig.7.48-Fig.7.51, it can be seen that the system can reach 1,23 pu in apparent
power generation in Case 2, while it can only reach 1,105 pu in Case 4. This is natural as the
system for the same apparent power consumption, is weaker if it has more reactive power.
The apparent power increase for the Case 2 is 0,025 and 0,011 for Case 4.

The procedure to quantify the independence on the nature of the load near the voltage collapse
point will be the following: First, considering the last value before collapse in Case 2, the
nearest index value to that from Case 4 will be considered and the maximum apparent load
increase before collapse from that point will be computed and compared to the one from Case
2. For example, in Fig. the last value before collapse in case 2 is 0,71, the nearest index value
in case 4 is 0,69. From this point, the system has four increases before collapse, which is an
increase of 0,044, while in case 2 the increase is 0,025. This method is done in all of the
indices and the results can be found in Fig.7.52.
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Fig.7.48 LQP versus apparent power (pu) in cases 2 and 4.
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Fig.7.49 Lmn versus apparent power (pu) in cases 2 and 4.
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Fig.7.50 VCPI versus apparent power (pu) in cases 2 and 4.
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Fig.7.51 VCPI(2) versus apparent power (pu) in cases 2 and 4.
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Index Last vaIL{e before Neares_t similar Increase of app_arent power Increase of app_arent power
collapse in case 2 value in case 4 before collapse in case 4 (pu)  before collapse in case 2 (pu)
VCPI(p) 0,85 0,86 0,022 0,025
VCPI(2)(I) 0,42 0,42 0,022 0,025
LQP 0,71 0,69 0,044 0,025
Lmn 0,48 0,49 0,066 0,025

Fig.7.52 Dependence on the index value to the nature of the load

From the results in Fig.7.52 it can be seen that VCPI indices have similar increase of apparent
power before collapse for a same index value, while LQP and Lmn differ more, 0,044 and
0,066, respectively, compared to 0,025.

A more qualitative way of looking at this aspect is by plotting the indices and their apparent
power margin, computed as the difference between their currents apparent power (pu) and the
apparent power flow just before the voltage collapse point, as done in Fig.7.53-Fig.7.54 In
Fig.7.53 can be seen that when getting close to the voltage collapse point, the two cases have
really close values. That is, the index is not dependant on the load nature near the voltage
collapse and that a value above 0,8 means that the system has less than 0,04 of apparent
power margin regardless if it is just the reactive power increasing or if it is both, the active
and reactive that are doing so.
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Fig.7.53 VCPI indices values in cases 2 and 4 versus the apparent power margin

On the other hand, it is shown in Fig.7.54 and Fig.7.55, that Lmn and LQP indices are
dependent on the nature of the load near the voltage collapse point. For example, in Fig.7.55,
a value of 0,5 for the Lmn index, can mean either that is about to collapse if it comes from an
increase of reactive and active power, or it can mean it still has 0,05 apparent power margin,
if the increase is just produced by an increase in the reactive power. In conclusion, the Lmn
and LQP values themself do not provide information on how far the system is to voltage
collapse if the nature of the increasing load is unknown.
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From these graphics, it can also be viewed, the point where both lines cross, that is, the point
where the apparent power margin is the same regardless the case. This allows to define
general intervals of margin, for example, LQP values higher than 0,6 means there is less than
0,06 apparent power margin before voltage collapse, lower than 0,6 the margin is more than
0,06. This can be done for all of the indices, as shown in Fig. 7.56.

Index Index value Apparent power margin interval (pu)
>0,8 <0,04
VCPI(p)
<0,8 >0,04
>0.6 <0,06
LQP
<06 >0,06
>0,4 <0,08
Lmn
<0,4 >0,08
>0,38 <0,015
VCPI(2)(I)
<0,38 >0,015

Fig.7.56 Apparent power margin interval (pu) for each index value

From this results, it could be used all the voltage stability indices in a complementary manner;
since their results have different apparent power margin intervals. This way, smaller intervals
could be defined based on the combination of indices, the following way (Fig.7.57):

| Index values - Apparent power margin interval (pu) |
Lmn<0,4 >0,08
Lmn>0,4 & LQP<0,6 [0,6, 0,8]
LQP>0,6 & VCPI<0,8 [0,6, 0,4]
VCPI>0,8 & VCPI(2)<0,38 [0,4, 0,015]
VCPI(2)>0,38 <0,015

Fig.7.57 Apparent power margin interval (pu) for each index value

To validate these results, more cases should be tested, since in this thesis only two cases have
been compared. The further studies should include the analysis of uncertainty of load
increases by using some random method or Monte Carlo simulations, similar of what has been
done in [49]. This way, intervals of confidence for each of the apparent power margin
intervals could be computed and the probability of the real system being in that interval could
be assessed.

In addition, to see what the difference is between case 2 and case 4, the quantitative values
used in the previous chapters are written together in a table (Fig. 7.58). First, the last value
before voltage collapse, it can be noticed, that all indices present a higher value in the case
where only Q is increased. Second, the first value after voltage collapse is lower for the
VCPI(1) and VCPI(2) in Case 4, but higher for Lmn and LQP. Next, the increase of value at
the voltage collapse point decreases in all of the indices if the only power increased is the
reactive one. Finally, the linearity in the stable region is also negatively affected by Case 4,
having lower R? values in that case.
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Last value before First value after Increase of value at the Linearity in the
voltage collapse voltage collapse voltage collapse point stable region
VCPI(p) 0,853651 1,00108 0,147429 0,9995
Case 2
VCPI(p) 0,887821 0,109397
Case 4
VCPIR)() 0,418139 1,50854 1,090401 0,9855
Case 2
VCPI(2)(1) 0,461411 1,40829 0,946879 0,9656
Case 4
LQP
Case 2 0,711157
LQP 0,799553 0,178756
Case 4
Lmn
Case 2 0,482533
Lmn
Case 4 1,01701

Fig.7.58 Quantitative values comparison between case 2 and case 4

Regarding the minimum eigenvalue of the Jacobian matrix, Fig.7.59 shows how they compare
on the same apparent power base. It can be seen, that in both cases the value of the minimum
eigenvalue provides information on how stable the system is at that point. Values above 1,2
indicate in both cases a stable system, where values below 1 indicate, the system is at three
load increases to voltage collapse. Therefore, in this cases the Jacobian index value provides
information on the stability of the system with independence on the case.
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Fig.7.59 Jacobian matrix index values comparison between case 2 and case 4
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7.2. 39-bus test network

For the 39-bus test network, two cases have been studied. Starting from a steady state base
case, the active and reactive power consumption of the loads at the load buses are increased.
At a certain operating point the two generators cannot sustain the voltage with sufficient
reactive power anymore due to the increasing loads, and then the voltage collapses. In case 1,
the active and reactive power load are increased stepwise by 10 % of the base case every 5 s
and by 1% every 0.5 seconds in case 2.

7.2.1. Simulation Case 1

As previously mentioned, the first case in the 39-Bus system increases the load at each load
node by a constant rate of 10% of the load base case every 5 seconds. The simulation runs for
50 seconds. The voltage collapse point is observed at the 4™ load increase, 20 seconds after
the simulation begins. Fig.7.60 and Fig.7.61 illustrate the active and reactive power at the load
buses and Fig.7.62 shows the node voltages.
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Fig. 7.60 Active and reactive power consumed at the load buses (1) (PloadN: Active power consumed by the
load bus N; QloadN: Reactive power consumed by load bus N)
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Fig. 7.61 Active and reactive power consumed at the load buses (2) (PloadN: Active power consumed by the
load bus N; QloadN: Reactive power consumed by load bus N)
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| Fig. 7.62 Node voltages (AN: Voltage at node N)

7.2.1.1. Jacobian matrix index

Fig 7.63 shows that the results for the large 39-test network are also similar to the results
obtained in the simulations done using the 5-bus test system. The minimum eigenvalues are
positive while the system is stable, and the eigenvalues become negative when the system
turns unstable, after the fourth load increase. As commented earlier, this index is a global
index and therefore, it does not provide any information on the location of the weak bus or
line of the system and just gives information on the global system, making it difficult to apply
any control strategy to avoid voltage collapse from happening.
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Fig. 7.63 Minimum eigenvalue of the Jacobian Matrix at each load step

7.2.1.2. Line indices

The 39-bus system has 46 lines. For this system, two line stability indices were used: the
VCPI and the Lmn. Each line index was calculated using the control blocks components
presented in chapter 6.4.2. The following plots were obtained in the Runtime simulation
(Fig.7.64-Fig.67). These indices can be useful in such a large network, since they provide
information on the weakest lines of the system.
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Fig. 7.64 Lmn values at each line of the system (1)
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Fig. 7.67 VCPI values at each line of the system (2)
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The steady state values of the five weakest lines according to each index are plotted in
Fig.7.68. They show a similar form to the VCPI and Lmn indices at the 5-bus system.

Weakest lines VCPI Weakest line Lmn
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Fig. 7.68 Steady state values for the five weakest lines according to VCPI and Lmn indices

It can also be computed a global index taking the maximum value of all the line indices at
each load step, which is shown in Fig.7.69.

Global index
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Fig. 7.69 Global index of Lmn and VCPI

As done in the previous 5-bus system, a quantitative comparison has been done in Fig. 7.71
with the following criterion: last value before voltage collapse, first value after voltage
collapse, increase of value at the voltage collapse point and linearity in the stable region,
showed in Fig.7.70.
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Fig. 7.70 Global index of Lmn and VCPI in stable region

Last value before First value after Increase of value at the Linearity in the stable
voltage collapse voltage collapse voltage collapse point region (R?)
VCPI(p) 0,461012 1,00997 0,548958 0,9896
Lmn 0,763824 2,39181 1,627986 0,9923

Fig. 7.71 Quantitative values comparison VCPI and Lmn

In the 5-bus test system all indices agreed in the ranking of the weakest line of the system,
since it was a small network. In the 39-bus system is not exactly the same, so a comment on
how they differ should be made. The two following tables (Fig.7.72 and 7.73) present the top
ten weakest lines at load increasing 1 and 4, respectively.

Top weakest lines at number of load increasing 1

VCPI Lmn
Rank Line Value Rank Line Value
1 6-31 0,318381 1 6-31 0,545797
2 10-32 0,254699 2 23-36 0,44818
3 23-36 0,241149 3 10-32 0,426735
4 20-34 0,202423 4 25-37 0,387046
5 25-37 0,18717 5 23-24 0,366693
6 23-24 0,180128 6 20-34 0,348165
7 2-30 0,167367 7 2-30 0,330201
8 16-19 0,161817 8 16-19 0,302908
9 19-33 0,155822 9 19-33 0,26951
10 22-35 0,154898 10 22-35 0,267445

Fig. 7.72 Top ten weakest lines at load increasing 1-VCPI and Lmn
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Top weakest lines at number of load increasing 4

VCPI Lmn
Rank Line Value Rank Line Value
1 6-31 0,406629 1 6-31 0,763824
2 10-32 0,327218 2 10-32 0,598301
3 23-36 0,289609 3 23-36 0,563995
4 20-34 0,243751 4 25-37 0,518577
5 25-37 0,236027 5 23-24 0,491121
6 2-30 0,22111 6 2-30 0,482443
7 23-24 0,219992 7 20-34 0,447542
8 16-19 0,202212 8 1-2 0,442755
9 22-35 0,196697 9 16-19 0,405155
10 19-33 0,1941 10 19-33 0,358089

Fig. 7.73 Top ten weakest lines at load increasing 4-VCPI and Lmn

It can be noticed that the same lines are set to be the top ten weakest lines of the system using
either one of the line stability indices. To see how they differ in terms of their ranking the
following table (Fig.7.74), presents the rank difference for these top lines. The maximum rank
difference between the indices is 2 at line 20-34, which is considered to be the fourth weakest
line for VCPI and the sixth for Lmn rank. This shows that both indices agree on the ranking of
line indices for the top ten weakest lines.

VCPI Rank Line Lmn Rank Line _Rank
difference
1 6-31 1 6-31 0
2 10-32 3 10-32 1
3 23-36 2 23-36 1
4 20-34 6 20-34 2
5 25-37 4 25-37 1
6 23-24 5 23-24 1
7 2-30 7 2-30 0
8 16-19 8 16-19 0
9 19-33 9 19-33 0
10 22-35 10 22-35 0

Fig. 7.74 Top ten weakest lines rank difference-VCPI and Lmn

Taking into account all of the lines, the rank difference between them is calculated in
Fig.7.75. It shows that the maximum difference is 28 at line 8-9, the mean difference is 3,78
and the standard deviation 5,22.
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VCPI Rank Line Lmn Rank . Rl
difference
15 29-38 11 29-38 4
25 28-29 23 28-29 2
24 26-29 21 26-29 3
44 26-28 42 26-28 2
20 26-27 26 26-27 6
5 25-37 4 25-37 1
14 25-26 13 25-26 1
46 24-16 45 24-16 1
3 23-36 2 23-36 1
6 23-24 5 23-24 1
10 22-35 10 22-35 0
42 22-23 43 22-23 1
12 21-22 12 21-22 0
4 20-34 6 20-34 2
9 19-33 9 19-33 0
39 19-20 32 19-20 7
35 17-27 30 17-27 5
40 17-18 38 17-18 2
21 16-21 19 16-21 2
8 16-19 8 16-19 0
34 16-17 31 16-17 3
38 15-16 27 15-16 11
32 14-15 28 14-15 4
26 13-14 20 13-14 6
45 1213 46 12-13 1
22 11-12 44 11-12 22
2 1032 3 10-32 1
31 10-13 33 10-13 2
30 10-11 34 10-11 4
36 9-39 41 9-39 5
1 6-31 1 6-31 0
28 6-11 24 6-11 4
27 4-14 22 4-14 5
41 3-18 37 3-18 4
7 2-30 7 2-30 0
43 2-25 40 225 3
23 1-39 17 1-39 6
11 8-9 39 8-9 28
37 7-8 36 7-8 1
17 6-7 16 6-7 1
19 5-8 18 5-8 1
33 5-6 35 5-6 2
29 4-5 25 4-5 4
18 3-4 29 3-4 11
13 2-3 15 2-3 2
16 1-2 14 1-2 2

Fig. 7.75 Rank difference between VCPI and Lmn
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Other graphics that are interesting to comment are Fig. 7.76 and Fig.7.77. In this graphic all of
the lines VCPI values are plotted in the first four load increases. It provides interesting
information in a very visual way on how the increase in the loads affects each line and which
ones are the weakest. It can also be viewed how the rankings change in every situation. For
example, line 1-2, at the beginning of the load increase is not a weak line, but the change from

load increase 3 to load increase 4 makes it turn into one.
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7.2.2. Simulation case 2

The second case in the 39-Bus system increases the load at each load node by a constant rate
of 1% of the load base case every 0,5 seconds. The simulation runs for 50 seconds. The
voltage collapse point is observed approximately 20 seconds after the simulation begins.
Fig.7.78 and Fig.7.79 illustrate the active and reactive power at the load buses and Fig. 7.80
shows the node voltages.
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Fig. 7.78 Real and reactive power at the load buses (1)
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7.2.2.1. Jacobian matrix index

As done in case 1, the eigenvalues of the Jacobian matrix are computed and the minimum
value is plotted at each load step in Fig 7.81. It is clearly seen how there is a high drop around
the voltage collapse point that changes from 7 to -16 in just one second. The values in the
stable region are plotted separately again in Fig.7.82 to view its shape better. In this case, the
index also provides the expected form of positive values on the stable region and negative
values on the unstable region.
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1.2.2.2.

Line indices

Again, the line indices are plotted in the RunTime. As in the Jacobian matrix index, the form
of functions can be clearer observed (Fig.7.83-Fig.7.86), since there are more steps and
therefore, more points computed. The steady state values where not computed since the plots
in Runtime already offer this information. These figures show clearly the shape of the indices
values and the point of collapse is clearly observed 20 seconds from the start of the
simulation. The voltage collapse point presents an unstable shape and the index values are
higher than previously, with some of them crossing 1 and other just increasing their value.
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8. Conclusions and Future Work

This thesis compares the performance of different line voltage stability indices including
Lmn, FVSI, VCPI, and LQP, as well as the traditional Jacobian index based on the minimum
eigenvalue of the Jacobian matrix. The indices were tested in a small 5-bus system and in a
larger 39-bus system. The simulation tool used was RTDS® and the indices where computed
using the control blocks components in order to monitor the values in Runtime. This method
was chosen to have the indices values available for future control algorithm development.

In terms of their general performance, all indices are coherent with their theoretical
background. When the system is stable, these line indices present values well below 0 and
cross 1 at the voltage collapse point. On the other hand, the minimum eigenvalue index also is
consistent with its theoretical background, moving from a positive value, when the system is
stable, into a negative value, after the system has collapsed.

Analysing further the results of the Jacobian matrix index, it can be stated that, this index is a
global index and therefore, it does not provide any information on the location of the weak
bus or line of the system. Therefore, it is not possible to apply a control strategy to avoid
voltage collapse from happening. It also presents nonlinearity near the voltage collapse point,
making it difficult to know how far the system is to voltage collapse considering the limit to
be the theoretical 0, since it crosses this point with short notice.

To better predict the point of collapse with the Jacobian value, the values for each system
have to be studied separately, since the last value before collapse, also depends on the system.
In the 5-bus system the value is 0,88, where for the 39 bus system is around 8,15. The
comparison between Case 2 and Case 4 on the 5-bus system shows that the index value itself
provides information on the stability of the system, regardless of the nature of the load, if both
active and reactive power are increasing (Case 2) or if it is only the reactive that is doing so
(Case 4). In our simulations, minimum eigenvalues above 1,2 indicate in both cases a stable
system, where values below 1 indicate, the system is at three load increases to voltage
collapse. This statement should be validated with further tests using different load profiles.

Taking into account the results from the line stability indices: Lmn, LQP, FVSI, VCPI (p) and
VCPI (I), several conclusions can be drawn. First of all, FVSI, which is an approximation of
the Lmn index, cannot be considered a valid approximation, since in the simulations the index
has a mean relative error of 16% and 45% in the unstable one.

Secondly, in general terms, all indices provide the same ranking for detecting the weakest
lines in the 5-bus system. This information can be used to place shunt FACTS controllers, as
done in [48]. For the 39-bus system, VCPI (p) and Lmn have the same top ten weakest lines
of the system, with a maximum difference of their ranking in two places. For the overall
system, with 46 lines, the mean difference between their ranking is 3,78 and the standard
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deviation 5,22. These results show that both indices present a similar classification of the lines
regarding their weakness.

Next, from the comparison of the quantitative values used, the indices can be classified in
terms of their usefulness of their direct values. This does not mean that by having a bad rating
in this category the index is useless, but that their values have to be better adjusted to assess
how far the system is to collapse. The quantitative values used to assess this characteristic
were: last value before voltage collapse occurs, first value after voltage collapse, increase of
value at the voltage collapse point and linearity in the stable region. From this point of view,
the best index was VCPI (p), followed by LQP, Lmn and VCPI (2)(I), respectively. It was
also noticed, that Lmn and LQP have a better response when the increased is just from
reactive power, than when it comes from both, while VCPI (p) and VCPI (I) have present a
decrease in their performance.

Another aspect that was analysed, was how the index was independent upon the nature of the
power, whether the increase was from both active and reactive, or if it was just due to the
increase of reactive. This should be understood as how much does the index tells about the
stability of the system by itself, without viewing any other measure or parameter of the
system. From this point of view, the best results were obtained by the Jacobian index and
VCPI (p), followed by VCPI (I), LQP and finally, Lmn.

This comparison also showed how the complementary use of the indices values could provide
information on the apparent power margin interval valid for both cases. This way, smaller
intervals could be defined based on the combination of indices, the way it was shown in
(Fig.7.57). To validate these results, more cases should be tested, since in this thesis only two
cases have been compared. The further studies should include the analysis of uncertainty of
load increases by using some random method or Monte Carlo simulations, similar of what has
been done in [49]. This way, intervals of confidence for each of the apparent power margin
intervals could be computed and the probability of the real system being in that interval could
be assessed.

To summarize the performance of the different indices from the results mention above, the
following table (Fig.8.1) shows their ranking on three characteristics defined as follows:
accuracy (usefulness of their direct values), robustness to uncertainty (independence on the
nature of the load increase) and usable for control purposes (detection of weak lines).
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Minimum eigenvalue

Jacobian

. of the Jacobian + +++ +
index i

matrix

Lmn + + +++

o VCPI (p) +++ +++ +++

Line indices
VCP'(') + ++ +++
LQP ++ + 4+

Fig.8.1. Comparison on VSI regarding their accuracy, robustness to uncertainty and usable for control
purposes (+:poor, ++:regular, +++:good)

Interesting future developments based on this thesis will be provided before coming to an end.
The first immediate development could be transfer the control blocks of the different line
indices into a component using the Chuilder program in RTDS. This action will make the line
indices component easier to work with and less prone to errors. Complementary to this work,
it could also be relevant to develop and test control algorithms using the results of the line
stability indices.

Secondly, it would also be interesting to build index components using the same program, the
CBuilder in RTDS) for the rest of the presented indices, such as all the PMU-based voltage
stability analysis. This will enable us to implement and analyse control algorithms based on
them. Also, further comparisons on voltage stability indices could be done, for example, line
stability indices versus the PMU-based voltage stability. It could also be worth to compare the
results obtained using different Thevenin equivalent methods (RLS, Transmission corridors
and Approximation) or by choosing one Thevenin equivalent method, and then, comparing
the different indices.

Additionally, it is proposed to compare how the different indices in more realistic
environments, where the load is not increased stepwise, but introducing uncertainty to it, for
example by performing Monte Carlo simulations[49]. This could be done in RTDS, by
creating random load increasing number with a particular random distribution in MatLab and
then saving the results in a file and use it as the input for the dynamic load component. These
results would help in the verification of the independence of the indices values of the nature
of the load increase and whether they provide useful information by themselves.

Finally, other encouraged works will be studies on how the indices react to contingencies and
faults or compare the effectiveness of placing shunt FACTS controllers at the weakest
bus/line, similar to what is being introduced in [48].
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Appendix

A. 39-bus system parameters

The complete 39-bus system parameters are provided below. They are given in per unit on a
60Hz and 100MVA base.

Generators: Two-axis model of the synchronous machines is shown in the table below.

No x’d xX’q xd Xq T'do T’qo Xl

Unit

1 500,0 0 0,006 0,008 0,02 0,019 7,0 0,7 0,003
2 30,3 0 0,0697 0,170 0,295 0,282 6,56 15 0,035
3 35,8 0 0,0531 0,0876 0,2495 0,237 5,7 15 0,0304
4 28,6 0 0,0436 0,166 0,262 0,258 5,69 15  0,0295
5 26,0 0 0,132 0,166 0,67 0,62 54 0,44 0,054
6 34,8 0 0,05 0,0814 0254 0,241 7,3 0,4  0,0224
7 26,4 0 0,049 0,186 0,295 0,292 5,66 15 0,0322
8 24,3 0 0,057 10,0911 0,29 0,280 6,7 0,41 0,028
9 34,5 0 0,057 0,0587 0,2103 0,205 4,79 1,96  0,0298
10 42,0 0 0,031 0,008 0,1 0,069 10,2 0,0 0,0125

Lines/Transformers: The network data for this system is shown in the Table below.

Line Data Transformer Tap

From To R X B Magnitude Angle
1 2 0,0035 0,0411 0,6987 0,0000 0,0000
1 39 0,0010 0,0250 0,7500 0,0000 0,0000
2 3 0,0013 0,0151 0,2572 0,0000 0,0000
2 25 0,0070 0,0086 0,1460 0,0000 0,0000
3 4 0,0013 0,0213 0,2214 0,0000 0,0000
3 18 0,0011 0,0133 0,2138 0,0000 0,0000
4 5 0,0008 0,0128 0,1342 0,0000 0,0000
4 14 0,0008 0,0129 0,1382 0,0000 0,0000
5 0,0002 0,0026 0,0434 0,0000 0,0000
5 0,0008 0,0112 0,1476 0,0000 0,0000
6 0,0006 0,0092 0,1130 0,0000 0,0000
6 11 0,0007 0,0082 0,1389 0,0000 0,0000
7 0,0004 0,0046 0,0780 0,0000 0,0000
8 0,0023 0,0363 0,3804 0,0000 0,0000
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9 39 0,0010 0,0250 1,2000 0,0000 0,0000
10 11 0,0004 0,0043 0,0729 0,0000 0,0000
10 13 0,0004 0,0043 0,0729 0,0000 0,0000
13 14 0,0009 0,0101 0,1723 0,0000 0,0000
14 15 0,0018 0,0217 0,3660 0,0000 0,0000
15 16 0,0009 0,0094 0,1710 0,0000 0,0000
16 17 0,0007 0,0089 0,1342 0,0000 0,0000
16 19 0,0016 0,0195 0,3040 0,0000 0,0000
16 21 0,0008 0,0135 0,2548 0,0000 0,0000
16 24 0,0003 0,0059 0,0680 0,0000 0,0000
17 18 0,0007 0,0082 0,1319 0,0000 0,0000
17 27 0,0013 0,0173 0,3216 0,0000 0,0000
21 22 0,0008 0,0140 0,2565 0,0000 0,0000
22 23 0,0006 0,0096 0,1846 0,0000 0,0000
23 24 0,0022 0,0350 0,3610 0,0000 0,0000
25 26 0,0032 0,0323 0,5130 0,0000 0,0000
26 27 0,0014 0,0147 0,2396 0,0000 0,0000
26 28 0,0043 0,0474 0,7802 0,0000 0,0000
26 29 0,0057 0,0625 1,0290 0,0000 0,0000
28 29 0,0014 0,0151 0,2490 0,0000 0,0000
12 11 0,0016 0,0435 0,0000 1,0060 0,0000
12 13 0,0016 0,0435 0,0000 1,0060 0,0000
6 31 0,0000 0,0250 0,0000 1,0700 0,0000
10 32 0,0000 0,0200 0,0000 1,0700 0,0000
19 33 0,0007 0,0142 0,0000 1,0700 0,0000
20 34 0,0009 0,0180 0,0000 1,0090 0,0000
22 35 0,0000 0,0143 0,0000 1,0250 0,0000
23 36 0,0005 0,0272 0,0000 1,0000 0,0000
25 37 0,0006 0,0232 0,0000 1,0250 0,0000
2 30 0,0000 0,0181 0,0000 1,0250 0,0000
29 38 0,0008 0,0156 0,0000 1,0250 0,0000
19 20 0,0007 0,0138 0,0000 1,0600 0,0000

Power and Voltage set points

Bus Type Voltage(pu) Load Generator
MW MVar MW MVar Unit No
1 PQ - 0,0 0,0 0,0 0,0
2 PQ - 0,0 0,0 0,0 0,0
3 PQ - 322,0 2,4 0,0 0,0
4 PQ - 500,0 184,0 0,0 0,0
5 PQ - 0,0 0,0 0,0 0,0
6 PQ - 0,0 0,0 0,0 0,0
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7 PQ - 233,8 84,0 0,0 0,0
8 PQ - 522,0 176,0 0,0 0,0
9 PQ - 0,0 0,0 0,0 0,0
10 PQ - 0,0 0,0 0,0 0,0
11 PQ - 0,0 0,0 0,0 0,0
12 PQ - 75 88,0 0,0 0,0
13 PQ - 0,0 0,0 0,0 0,0
14 PQ - 0,0 0,0 0,0 0,0
15 PQ - 320,0 153,0 0,0 0,0
16 PQ - 329,0 32,3 0,0 0,0
17 PQ - 0,0 0,0 0,0 0,0
18 PQ - 158,0 30,0 0,0 0,0
19 PQ - 0,0 0,0 0,0 0,0
20 PQ - 628,0 103,0 0,0 0,0
21 PQ - 274,0 115,0 0,0 0,0
22 PQ - 0,0 0,0 0,0 0,0
23 PQ - 2475 84,6 0,0 0,0
24 PQ - 308,6 -92,0 0,0 0,0
25 PQ - 224,0 47,2 0,0 0,0
26 PQ - 139,0 17,0 0,0 0,0
27 PQ - 281,0 75,5 0,0 0,0
28 PQ - 206,0 27,9 0,0 0,0
29 PQ - 283,5 26,9 0,0 0,0
30 PV 1,0475 0,0 0,0 250,0 - Genl0
31 PV 0,9820 9,2 4,6 - - Gen2
32 PV 0,9831 0,0 0,0 650,0 - Gen3
33 PV 0,9972 0,0 0,0 632,0 - Gend
34 PV 1,0123 0,0 0,0 508,0 - Gen5
35 PV 1,0493 0,0 0,0 650,0 - Gené
36 PV 1,0635 0,0 0,0 560,0 - Gen7
37 PV 1,0278 0,0 0,0 540,0 - Gend
38 PV 1,0265 0,0 0,0 830,0 - Gen9
39 PV 1,0300 1104,0 250,0 1000,0 - Genl

B. Minimum eigenvalue of the Jacobian Matrix-MatLab code

The main code was provided by T. Junjie from ACS and | just adapted the code to this Thesis

needs.

clear;

simulation_num=1;

GN(3,3)=0; BN(3,3)=0;

H(6,6)=0;

Node num =3;
Branch_num=3;
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Branch_first(1)=1; Branch_end(1)=2; Branch_R(1)=21.16;

Branch_X(1)=0.421*2*pi*50; Branch_Brab(1)=0; Branch_k(1)=1;
Branch_first(2)=1; Branch_end(2)=3; Branch_R(2)=52.9;
Branch_X(2)=0.589*2*pi*50; Branch_Brab(2)=0; Branch_k(2)=1;

Branch_first(3)=2; Branch_end(3)=3; Branch_R(3)=42.32;
Branch_X(3)=0.505*2*pi ; Branch_Brab(3)=0; Branch_k(3)=1;

for bra_num=l1:Branch_num
Branch_R(bra_num)=Branch_R(bra_num);
Branch_X(bra_num)=Branch_X(bra_num);
Branch_Brab(bra_num)=Branch_Brab(bra_num);
end

MeaNum=0;

NOdePQNum=0;

BraPQNum=0;

BralNum=0;

NodeVNum=0 ;

for i=1:Node_num

MeaNum=MeaNum+1;

Measure_Firstnode(MeaNum)=i;
Measure_Endnode(MeaNum)=i ;
Measure_type(MeaNum)=2;
NOdePQNum=NOdePQNum+1;
MeaNum=MeaNum+1;
Measure_Firstnode(MeaNum)=i;
Measure_Endnode(MeaNum)=i ;
Measure_type(MeaNum)=3;

end

for L= 1:Branch_num
i=Branch_first(L);
J=Branch_end(L);
R=Branch_R(L);
X=Branch_X(L);
k=Branch_k(L);
bm=Branch_Brab(L);
BN(i,i)= BN(i,i) + bm;
BN(.J)= BN(.j) + bm;
if k==1
GN(i,J)=CGN(i,J)-R/(R*R + X*X);
GN(J, 1)=GN(i,j);
BNCi,j)=BN(i,j)+X/(R*R + X*X);
BN, 1)=BN(1.J);

end
if k~=1
GN(i,j) = GN(@i,J) - RZ(R*R + X*X)*Kk);
GN(,1) = GN(i,jJ);
BN(i,j) = BN(i,j) + X/((R*R+ X*X)*k);
BN(J,1) = BN(i,jJ);
GN(i,i) = GN(i,i) + R *(1-K)/((R*R + X*X)*k*K);
BN(i,i) = BN(i,i) - X*(1-K)Z((R*R+ X*X)*k*Kk);
GNGi.jJ) = GN@(.§) + R *(k-1)7((R*R + X*X)*k);
BN(,J3) = BN@.J) - X*(k-1)/((R*R+ X*X)*k);
end

end

for i=1:Node_num
for j=1:Node_ num
if i—=j
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p=1;
Points= 500;

for p=1:Points

load magnitude9.txt;

load phase9.txt;
mag(:,1:3)=magnitude9(p,2:4);

ang(:,1:3)=phase9(p,2:4);
for sim_num=l:simulation_num

Node V=mag(sim_num,:);
Node A=ang(sim_num,:);
reference_angle=Node_A(3);
for i1=1:3

Node_ A(i)=reference_angle-Node A(1);
end
end

for i=1:Node_num
Vi=Node V(1);
Ai=Node_ A(1);
Node P(1)=0;
Node Q(i1)=0;
for j=1:Node_ num
Vj=Node V(J);
Aj=Node_A(J);
Al J=Ai-Aj;
Node_P(i)=Node_P(i)+ Vi*Vj*(GN(i,j)*cos(Aij)+BN(i,j)*sin(Aij));
Node_Q(i)=Node_Q(i)+ Vi*Vj*(GN(i,j)*sin(Aij)-BN(i,j)*cos(Ai}));
end;
end;

for i=1:MeaNum
iNo=Measure_Firstnode(i);
JNo=Measure_Endnode(i);

if Measure_type(i)==2
Vi=Node_V(iNo);
Ai=Node_A(iNoO);
Pi=Node_ P(iNo);
Qi=Node_Q(iNo);
VNo=2*iNo-1;
ANo=2*iNo;
H(i,VNo)=(GN(iNo,iNo) * Vi * Vi + Pi)/Vi;
H(i,ANo)=-BN(iNo, iNo) * Vi * Vi - Qi;
for j=1:Node_num
ifT iNo~=j
Vj=Node V(J);
Aj=Node A(});
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AiJ=Ail - Aj;
VNo= 2 * j -1;
ANo= 2 * j;
H(i,VNo)= Vi * (GN(iNo,j) * cos(Aij) + BN(iNo,j) * sin(Ai}));
H(i,ANo)= Vi * Vj * (GN(iNo, j)*sin(Aij) - BN(iNo,j) * cos(Aij));
end;
end;

end

if Measure_type(i)==3

Vi=Node_V(iNo);
Ai=Node_A(iINO);
Pi=Node_P(iNo);
Qi=Node_Q(iNo);
VNo=2*iNo-1;
ANo=2*iNo;
H(i, VNo)= (-BN(iNo,iNo) * Vi
H(i, ANo)= -GN(iNo, iNo) * Vi
for j=1:Node_ num

if iNo~=j

Vj=Node V(J);

Aj=Node_A(J);

Aij=Ai - Aj;

VNo= 2 * j -1;

ANo= 2 * j;

H(i, VNo)= Vi * (GN(iNo,j) * sin(Aij) - BN(iNo,j) * cos(Aij));

H(i, ANo)= -Vi * Vj * (GN(iNo,j)*cos(Aij) + BN(iNo,j) * sin(Aij));
end;
end;

% %
<<
+ +

TO
. i\
N
<

end
end

for nms=1:3

JP_a(nms,nms)=H(2*nms-1,2*nms) ;
JP_V(nms,nms)=H(2*nms-1,2*nms-1) ;
JQ_a(nms,nms)=H(2*nms,2*nms) ;
JQ_V(nms,nms)=H(2*nms,2*nms-1) ;

end

J_R=JQ_V-JQ_a*inv(JP_a)*JP_V;

Index H_true(sim_num)=min(eig(J_R));
Index_Det(sim_num)=det(H);
J(p)=Index_H_true(sim_num);

p=p+1;

end
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