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Abstract

As technologies quickly evolve and computers and devices become more powerful and
economical, paths of research appear allowing a new mass of researchers the chance
to work on technologies that were only available to few. This is the case for wireless
communications technologies. The practical research was very costly in terms of time
and also money, sometimes even being necessary to build prototype circuit boards for
testing a possible model. Actual commodity computers have become powerful enough
to be able to undertake the signal processing tasks that have always been done by
dedicated devices. Cheap computers like the ones we use at home are now able to
do the necessary computation that these dedicated devices are doing. This is what
Software Defined Radio (SDR) is all about. The translation of the signal processing
into software run by a regular computer opens up a huge number of possibilities at an
affordable price. Now we can access to all the parameters that were embedded and
invariable before. Thanks to SDR now we can analyze and change every value of the
system.

This project will try to get a grip of the state of the art in both wireless communi-
cation technology and SDR projects. With that objective in mind, in this project an
implementation of a wireless communications system will be made. For the physical
layer of this system Orthogonal Frequency-Division Multiplexing (OFDM) was chosen
as the transmission multiplexing method. This choice has been made because of the
advantages that OFDM has shown in terms of channel capacity. It has proven its
importance by gaining relevance in two of the most important technologies for the 4th
generation of wireless communications: WiMAX and LTE. The software toolkit that
has been used for the implementation of the prototype has been GNU Radio; an open
source project that is being used by many researchers and manufacturers all over the
world, and that is growing steadily in source code available and in active members and
projects using it.

The implemented prototype communication system has been a prove of concept that
has shown that it is possible to run a communication system of a certain complexity all
in software with not much more than commodity equipment. The prototype has shown
a very good behaviour in some parts of the system such as the synchronization, and
has also shown weaknesses in other parts, like the return channel or the equalization.
The data rate achieved in one channel has been 95.2 Kbps, which is a positive result
given the context it is in.



Kurzfassung

Durch die rasante Weiterentwicklung der Technologie und dadurch dass Computer
und Geräte immer leistungsfähiger und billiger werden, ergeben sich heute viele neue
Forschungswege die früher nur wengigen Forscher vorbehalten waren. Dies gilt auch
im Gebiet der drahtlosen Kommunikationstechnik. Die praktische Forschung in diesem
Gebiet war früher sehr teuer und zeitaufwändig. Manchmal war es sogar notwendig
neue Hardware-Prototypen zu bauen um neue Technologien zu testen. Gewöhnliche
standard PC’s, wie die die wir Zuhause benutzen, sind heute in der Lage die komplette
Signalverarbeitung zu übernehmen welche früher von speziellen Geräten erledigt wurde.
Die Signalverarbeitung in Software wird als Software Defined Radio (SDR) bezeichnet.
Durch die Verwendung von standard PC’s hierfür eröffnen sich eine große Zahl an
neuen preiswerten Möglichkeiten für die Forschung. Dank SDR ist es nun möglich
alle Parameter frei zu wählen welche vorher fest in einem Gerät definiert waren, des
Weiteren können alle Werte des gesamten Systems analysiert und verändert werden.

In diesem Projekt wird versucht die neuste Technologie in den Bereichen der drahtlo-
sen Kommunikationstechnik sowie von SDR-Projekten aufzunehmen. Mit diesem Ziel
vor Augen wurde in diesem Projekt ein drahtloses Kommunikationssystem aufgebaut.
Für die physikalische Übertragungsschicht wurde OFDM als Mehrkanalübertragungs-
methode gewählt. Diese Auswahl wurde getroffen, da es bei OFDM viele Vorteile hin-
sichtlich der hohe spektrale Effizienz gibt. In der vierten Generation der drahtlosen Da-
tenübertragungstechniken gibt es zwei maßgebliche Standards wie WiMAX und LTE
die sich durchgesetzt haben. Das Software-Toolkit das für die Implementierung des
Prototypen verwendet wurde ist GNU Radio, ein Open-Source Projekt das von vielen
Entwicklern und Herstellern auf der ganzen Welt verwendet wird und das ständig an
Möglichkeiten und aktiven Mitgliedern wächst.

Der entwickelte Prototyp hat gezeigt dass es möglich ist ein komplexes Kommunika-
tionssystem mittels Software zu beschreiben und mit handelsüblichem Equipment zu
betreiben. Der Prototyp zeigt ein gutes Verhalten in einigen Bereichen des Systems wie
zum Beispiel bei der Synchronisation. Auch wurden Schwachstellen aufgezeigt in ande-
ren Bereichen des Systems wie zum Beispiel beim Rückkanal und der Entzerrungsphase.
Die ereichte Datenrate in einem Kanal beträgt 95.2 Kbps was ein positives Ergebnis
hinsichtlich der Möglichkeiten darstellt.
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1 Introduction

This chapter gives an overview of the objectives of this project, as well as the different tasks that

will be necessary to fulfill these objectives. The chapter is divided in the motivation section 1.1

and the tasks and contents section 1.2. In the motivation I explain the interests that made us

decide for this project, introducing also the context in which it has been thought. The tasks and

contents section will explain the different proposed tasks for this project and will locate them

in the different chapters and sections of the project.

1.1 Motivation

This project has been conceived as the result of putting many ideas in the practice. It started

with the objective of covering and gaining experience in some fields of interest in wireless commu-

nications such as SDR or the implementation of a communications system based on the OFDM

modulation.

The first idea that starts shaping this project is the importance that SDR has acquired in

the last years. As of today it has become a tool that allows researchers great freedom at a very

moderate price. Some years ago, the leap between the theoretical part of a technology and its

practical implementation was very big, both in terms of requirements and specially costs. The

proliferation of SDR projects, specially based on open source software, and the interest from

the academic and industrial community for its utilization have created a relatively simple and

comparatively very affordable solution for the implementation and testing of a very large number

of wireless technologies. One of the objectives of this project is to gain knowledge about actual

SDR projects, its state of the art and the possibilities it offers.

Another important point for the development of this project, more specifically its practical

part, is our interest for the GNU Radio project, the chosen implementation platform and one

of the most developed and active toolkits for the development of SDR applications as of today.

This thesis will allow us to gain experience and get acquainted with GNU Radio: its structure,

its programming, its advantages and its limitations. The implementation of the communication

system in the GNU Radio environment is the perfect way of getting to understand this tooklit.

In order to finish shaping this project the content of the implementation should be decided.

The most attractive technology for us was OFDM. It has a very good behaviour in terms of

spectral efficiency and it is a very hot technology that has found its way into the most important

standards for wireless communications in this new generation called 4G, in which the main

standards are the IEEE 802.16 (Worldwide Interoperability for Microwave Access (WiMAX))

and the 3GPP’s Long Term Evolution (LTE).

1



1 Introduction

Finally, a motivation point that has a slight futuristic component is the inclusion of the

implemented prototype in one of the lectures or laboratory courses of out institute, allowing

students to experiment with these technologies. The simple mechanics of software radio can

give the prototype high learning potential for its versatility and possibilities of costumization.

1.2 Tasks and contents

For this project a communications system will be implemented. This communications system

will include a physical layer based on the OFDM multiplexing method, thus being comparable

to actual technologies such as WiMAX or LTE. This communications system will be enhanced

with a reliable communications channel based on a Forward Error Correction (FEC) mechanism

and a retransmission of wrongly received packets protocol (Automatic Repeat reQuest (ARQ)).

The first part of this thesis is the theoretical part, in which the technologies that will be used

during the implementation are explained. I will try to project the role that these technologies

will play in the implementation throughout the theoretical explanation. These part is included

in chapter 2.

Chapter 3 is dedicated to introduce the concepts and ideas behind the chosen software toolkit

for the implementation: GNU Radio. This chapter will explain the structure of GNU Radio with

the objective of giving the reader a general idea of the possibilities of GNU Radio. This chapter

can be specially useful for people interested in starting a SDR project that are considering GNU

Radio as their platform.

The implementation chapter 4 details the steps followed for the set up and creation of the

prototype. First of all an estimation is made of the possibilities of successfully implementing

such a system. Then each of the steps followed for the implementation of the system is explained,

with its key points with the results extracted after each step.

In the end, chapter 5 summarizes the work done and provides some suggestions for the future

development of this project.
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2 Theoretical concepts

This chapter explains the theory behind this project. First of all, in section 2.1 I will explain the

basic concepts and ideas behind SDR, as well as some brief information about the state of the

art in available SDR platforms. Afterwards, in section 2.2 I will explain the different concepts

that OFDM is built upon as well as the reasons that made us choose OFDM as the multiplexing

method that will be implemented. Finally, in section 2.3 I will explain the mechanisms used to

provide a reliable channel in the communications, which are the FEC protocol and the ARQ

protocol.

2.1 Software Defined Radio

SDR is a concept that has been used since the early nineties. Its original purpose was the creation

of a device capable of emulating many radios working at different frequencies. However, it has

evolved and is still doing so into a tool which has a much broader use. Software defined radio

nowadays is a tool that helps the wireless and mobile communications industry in many aspects.

2.1.1 Basic principle and differences to analog radios

The basic principle of SDR is the reduction to the minimum of the hadware dedicated to signal

processing parts and its translation into software that should be runnable by an all-purpose

commodity PC. The signal should be generated digitally and dealt with in the PC as much as

possible, undergoing modulators, filters, FFT blocks and even amplifiers, all of them done in

software, until the signal is ready to be sent. Then, the software gives place to the hardware,

which has the function of transforming the digital samples in an analog signal and modulating

the baseband signal to the desired carrier frequency to be sent. The last stage would be sending

it to the antenna. The concept of SDR is very different to the traditional radios that we have

been using until now. Traditional radios rely on dedicated hardware for all its functions and

each hardware part has a very concrete and fixed function. The same processor in the PC used

by SDR will take care of all the signal processing, and it will be the software the one responsible

of dictating the function that will be computed. Figure 2.1 show a block diagram of a software

defined radio.

Not having dedicated hardware has a very important advantage in relation to traditional

radios. All parameters that the radio uses are set in software, and they are all configurable

through software. This makes the development and research of new applications a lot easier,

faster and cheaper, as we can use software radio as a prototype where we can test all kinds of

variations and configurations. We will not need to make or order hardware in order to try new

3
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Figure 2.1: Module diagram of a SDR sender and receiver

configurations or variations of any kind. Another advantage is the possibility of having a radio

that can work as many radios, as the same device can use different radio technologies without

any change in the hardware. This application was one of the first objectives of software radio,

but for a number of reasons that I will explain in the next paragraphs, it is still not a very

interesting solution.

Software radio has some hardware requirements. It will require some ADC and DAC hardware,

as well as RF module dedicated to the modulation to the desired transmission or receiving

frequency. These elements and a PC with enough computational power to run the software are

the only hardware that we need. If we need to speak in numbers, we should differentiate if the

radio will be used for narrow band applications or for wide band. For narrow band applications

a regular Pentium PC should have more than enough capacity to meet the requirements. If,

however, the application that we want to implement uses up a bigger part of the spectrum

for example, a receiver of multiple FM channels at the same time, the requirements get much

bigger and we might need powerful PCs in order to process all the data that we are using in the

required time [17]. In our application we will be implementing a communications system based

on OFDM, which is also a wide band application. We will see in a latter chapter 4 the impact

of the computation in the amount of spectrum that can be used.

Not all aspects of software radio are positive. There are also a number of challenges that have

been reducing the use of SDR to a limited number of applications. The first of them all is the

power consumption of a SDR device. As we have seen in the hardware requirements, we will in

many cases need powerful computers to run an application. This means that we will need an

amount of power that would never be achievable by a handheld device. The power consumption

of SDR devices is not comparable to the power needed by the radios that nowadays work in

hardware. Another important drawback is that even if the power needed could be reduced,

the size of the hardware needed to process the signal is also much bigger than the dedicated

hardware of the traditional radios. This is why the project of having a portable device based on

SDR that can be used as many different radios has not evolved very much, and the use of SDR

has been reduced to research or applications in the base station, instead of the mobile terminal,

where the power requirements are not so critical at the moment.

4
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2.1.2 Different software defined radios available

Many SDR projects can be found in the web. Most of them consist on a free software, most

of the time open source that is constantly being modified, plus a hardware part that must be

purchased and takes care of the RF part of the transmission. However this hardware is usually

not directly related to the software project. Some of the examples that follow this model are

GNU Radio [15] or SDR4all [23], which additionally share some of the hardware. Another model

is the one followed by the developers of HPSDR [1], which do not rely in the use of a PC for the

software radio. These two different approaches will be briefly explained in this section.

The first kind of SDR project that we are interested in is the one which is the most software-

based. This orientation focuses on having a robust and well designed modular software that

will take care of all the signal processing and the generation of the baseband signal that we

want to send, and then the hardware would be taking care of modulating the baseband signal

to the desired carrier frequency. In this kind of project the user community will take part in the

creation of the software, that will be open source. Each user will be able to create his or her

own software applications based on the existing source code, and the users will use a more or

less standardized hardware for running their applications. Usually the software contains drivers

to run a limited number of RF hardware devices that will be compatible with the software in an

easy way. Both GNU Radio and DSR4all use the hardware designed by Ettus Research LLC,

which is called [2], and in the case of GNU Radio, it provides drivers for it in the software.

The adaptation time to this kind of projects is fairly low, as some examples work practically

out of the box and the complexity of the applications can grow slowly according to the level of

understanding of the users. GNU Radio is probably the most advanced project in this area and

the easiest to start with.

The other completely different kind of SDR project is the one being developed under the name

of HPSDR. It is both a hardware and software project, and it parts from a completely different

concept. It will not be using a PC for the whole computation, but instead a number of different

boards equipped with FPGAs will take care of the different computations that need to be done.

This project has started focusing in the development of the basic hardware and encourages its

users to develop more hardware boards for more specific operations. Once some of the hardware

has been tested now the software part is getting more importance. This project seems to be a

bit slow in its development stage and seems to need a fairly big adaptation time as well as some

hardware and software knowledge.

2.2 OFDM

2.2.1 Multiple subcarriers and orthogonality

OFDM stands for Orthogonal Frequency Division Multiplexing, and it is the modulation used

for the data transmission in the system developed for this project. As its name reveals, OFDM is

a multiplexing method, which means that different data channels share the bandwidth available.

In the particular case of OFDM the signal is made of independent channels. Each of them will
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use a fraction of the available bandwidth. Each of this independent channels is called sub-

carrier and transports data that is modulated in the amplitude and phase of the signal. All sub-

carriers together form the OFDM carrier. OFDM is called orthogonal because all subcarriers are

orthogonal to each other. This orthogonality can be achieved by multiplexing the subcarriers

by Frequency-division multiplexing (FDM), which is called multi-carrier transmission or by

using Code Division multiplexing (CDM), which is called multi-code transmission. The OFDM

transmission system that has been implemented in this project uses multi-carrier transmission.

Therefore it uses the same concept as FDM, which assign different frequencies to different signals.

Each sub-carrier will use a range of the frequencies available to transmit data, that will travel

in the phase of the signal.

This thesis implements a communication system that uses an OFDM multiplexing method for

various reasons. First of all, the prototype built for this project had the objective of simulating

the lower layers of the ones used by next generation mobile communications (4G), and some

of the most important technologies in that field, which are WiMAX and LTE. They both use

OFDM as an important part of them [6]. WiMAX stands for Worldwide Interoperability for

Microwave Access and is specified in the IEEE 802.16 standard [9]. WiMAX uses OFDM as its

multiplexing method in its physical layer. LTE uses OFDM for its downlink, that is from the

base station to the terminal, and a precoded version of OFDM called Single Carrier Frequency

Division Multiple Access (SC-FDMA). OFDM is also used in many other technologies, like

ADSL, digital radio (Digital Audio Broadcasting (DAB)), terrestrial digital TV (Digital Video

Broadcasting - Terrestrial (DVB-T)) and terrestrial mobile TV (Digital Video Broadcasting -

Handheld (DVB-H)).

The OFDM modulation method relies on the orthogonality between its subcarriers to achieve a

good spectral performance. In the case of multi-carrier transmission the chosen frequencies must

be orthogonal between each other. This means all frequencies must be multiples of the inverse

of the symbol duration. The orthogonality of the frequencies used reduces greatly the cross-

talk interference between sub-carriers and increases the spectrum utilisation. It also allows the

sender and receiver to be simpler than in the case of FDM. An example of this simplicity is that

FDM uses a different filter for each used sub-channel, while OFDM can work with one filter for

all subcarriers. The disadvantage of OFDM is that it requires a good frequency synchronisation

mechanism, because as the subcarriers are very close to one another small frequency deviations

can cause important inter-carrier interference (ICI), i.e. cross-talk between subcarriers. These

kind of interferences are mostly caused by Doppler shift due to movement, specially when there

are reflexions caused by multipath.

Each of the OFDM subcarriers has a range of frequencies assigned to it, and all of them

together fill the spectrum used for the OFDM carrier, that is the bandwidth available. The

data in bits will be split among the subcarriers by using a serial to parallel converter and for

each subcarrier it is independently modulated using, in most cases, a Quadrature amplitude

modulation (QAM) or a Phase-shift keying (PSK) modulation. Then, the OFDM carrier is

created with all the modulated subcarriers by using an inverse Fast Fourier Transform (iFFT)

module that calculates the time-domain signal with all subcarriers to create a single broad-band

6
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Figure 2.2: OFDM modulator module diagram

Figure 2.3: OFDM demodulator module diagram

complex signal containing all data belonging to all subcarriers: the OFDM carrier signal. This

signal will be used to modulate an Radio Frequency (RF) carrier.

The receiver will separate the received signal in its real and imaginary parts, then they will

be low-pass filtered to eliminate mirrored frequencies of the carrier frequency (2fc). Afterwards,

they will be quantified with Analog to Digital Converters (ADCs) and then the frequency-domain

signals will be calculated with an Fast Fourier Transform (FFT) module. The FFT module will

output the different streams corresponding to the subcarriers used and the data in each of them

will be independently demodulated using the appropriate symbol detector that corresponds to

the modulation used to map the bits into symbols in the modulator module. This functionality

has not been implemented in the prototype but is proposed as a future development. Obviously,

the sender and the receiver must know the modulation used for each subcarrier in order to

demodulate its data correctly. Figure 2.2 and Figure 2.3 show the block diagrams of the OFDM

modulator and demodulator.

2.2.2 Delay spread and cyclic prefix

In wireless communication systems the received signal will always be received many times due to

the multipath propagation. This effect gives as a result in the receiver a number of signals with

different amounts of delay respect the first multipath signal, that usually corresponds with the

line of sight path. The difference of delay between the first of the multipath components and the

last one is called delay spread. The effect of delay spread is specially present in urban environ-

ments, in which the number of multipath components is higher than in rural environments, but

7
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Figure 2.4: Signal in the presence of ISI

Figure 2.5: The effect of adding a cyclic prefix to a signal

also in environments where sender or receiver are moving at high speeds. This scenario could

cause the multipath echoes to have important delays in time, as the target might be moving

close to some of the multipath components and far from others. The problems that delay spread

can cause are basically two. First of all the different echoes that arrive at different times can

come with a different phase in respect to the main signal and they can cause some distortion

in the main component. The second problem is the effect that the delayed echoes can cause in

the next transmitted symbol. This is called intersymbol interference (ISI). Figure 2.4 shows the

effect that multipath echoes can cause on a transmitted signal.

The solution that OFDM proposes to reduce the effect of the multipath propagation in the

form of ISI is the addition of some redundancy in the transmitted signal called cyclic prefix (CP).

This redundancy is applied to the signal in the time domain and it is meant to create a kind

of guard band at the beginning of each symbol that will protect the transmitted symbol from

the echoes that cause ISI. The objective of the cyclic prefix is to provide some guard time

between symbols that will be discarded by the receiver and will contain the undesired remains

of the echoes of the previous symbol. The best way to provide this guard time is to add to

the beginning of the symbol a prefix containing the last bits of the same symbol that is being

sent. This method is also good for the sender, because it will also have it easier to generate the

signal. We have to keep in mind that the oscillators in the sender behave better with a relatively

constant rate of bits to send than constantly switching between sending and not sending data.

Figure 2.5 shows how the signal looks like with the inclusion of the cyclic prefix. We see that

the effect of the ISI is nullified by the CP.

2.2.3 Synchronization and channel equalization

In most wireless systems synchronization plays a very important role in the receiver side. The

receiver needs to find the beginning of each symbol correctly. In OFDM systems it includes
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finding the right time delay, the frequency deviation of each of the different subcarriers and

finally the phase shift of each of the symbols that travel in the subcarriers. All those parameters

need to be found by doing some calculations on the incoming signal. More concretely, on

some redundancy that is added to the data signal in order to find all these parameters. These

redundancy is often referred to as pilots or preamble depending on its situation in the whole

transmitted signal.

Pilots are used in many OFDM communication systems and they are known symbols that

are sent in some of the subcarriers of the ones used in the transmission. The pilot signals

will be known by the receiver, and by looking for them in the received signal all parameters

regarding synchronization and equalization will be deduced. The density of pilots in the signal

will be proportional to the quality of the synchronization process, but it will also be inversely

proportional to the amount of data transmitted. That is the reason why choosing a convenient

density of pilots is an important part of the design of the application. Obviously, the quality

and variance of the channel will be the key factors that will influence the amount of redundancy

dedicated to synchronization in the form of pilots.

Similarly to pilots, preamble redundancy also works in multiple frequencies at the same time.

In the case of preambles, the synchronization data will occupy the whole time slot of an OFDM

symbol. During the time the preamble is being transmitted all subcarriers will contain preamble

data. This method has some advantages and also some weaknesses compared to the pilots

one. In this case the information provided by the preamble will give more accurate information

regarding all subcarriers. For example, we can find out if there is one subcarrier that fails to

send any data or that shows a wrong behaviour. On the other hand, when no preamble data is

being sent the system will not be calculating any parameters regarding synchronization, so the

updating of the channel data is slower than with the pilots.

The usual procedure for finding the frequency shift is by correlating the signal with itself with

a certain delay, and the resulting signal will show a peak from which the frequency and time

delay will be extracted. Different algorithms will use slightly different systems, but most of

them, including the one used in the implementation, use this correlation method.

The equalization process is usually a simple combination of an amplitude normalizer and a

phase corrector. The amplitude in systems that use PSK as modulation for each subcarrier is

as simple as amplifying or attenuating all the symbols to the same amplitude. The procedure

for finding the phase shift a bit more complicated but it is also similar in most implementations,

with some small differences. What the method will do is calculating the expected phase delay

between each of the subcarriers. In the case of the synchronization with preambles, the phase

difference between subcarriers is extracted from the known symbols of the preamble, and then

applied to all the following symbols until the next preamble comes. In the case of using pilots,

the difference in phase will be computed by using interpolation between the pilots, which will

estimate the expected phase difference between each of the subcarriers. Then the correction is

done by rotating the received symbols according to its phase shift.
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2.2.4 Phase modulation in the subcarriers

In previous sections we have seen that the information in OFDM systems is transmitted in

different frequencies called subcarriers. This section explains how exactly does the information

travel in each of these subcarriers.

Each subcarrier is independent from all other subcarriers in terms of how the data of one or

another subcarrier is transmitted. Each subcarrier can use a different modulation to transmit

the data assigned to it, and the receiver will not depend on any information about the other

subcarriers to be able to receive the data belonging to a subcarrier. The sender will be able to

modulate the data that goes to one subcarrier with any digital modulation. This decision must

be shared by the sender and the receiver, but not by the other subcarriers. As an example, we

could use binary phase-shift keying (BPSK) for the transmission of some of the subcarriers and

Quadrature Phase-shift keying (QPSK) or QAM for some others, and we would only need to

make sure the receiver knows which subcarriers use which modulation. This method helps us

optimize each subcarrier by using modulations that fit the subcarrier’s SNR. The subcarriers

that have better channel conditions could use modulations with more bits per symbol, while

subcarriers with lower SNR in the channel could use modulations that are easier to receive, such

as BPSK.

2.3 Reliable transmission

One of the objectives of this project is to provide a communication system that offers reliability

in the transmission. For that purpose some mechanisms and protocols are necessary. The

improvement of the channel that will be implemented to make it reliable has two stages. First of

all a method to correct transmission errors will be implemented in order to fix wrongly received

packets. It is the FEC mechanism. The information needed for this fix will be contained in

the data sent. Of course, as there is a trade-off between redundancy and data rate sent this

method will have a limited capacity for fixing errors. The second method is the request of

retransmission of frames that couldn’t be fixed by the FEC. The union of these two mechanisms

is very commonly used in many communication systems and provides reliable communications

with good performance of the channel.

2.3.1 Forward Error Correction (FEC)

FEC is one of the most widely used mechanisms to improve the capacity of a channel and thus

increase the rate of received data packets in noisy communications, specially in wireless links

such as satellite communications, WiMAX, and many other applications. Its basic concept is

the addition of redundancy in the transmitted data that will be useful to fix errors produced

in the transmission. The correction will not rely on any additional information but the data

transmitted itself. This process is known as channel coding [12].

There are two different ways to apply channel coding to a stream of data: Block coding and

convolutional coding. Block coding takes small chunks of data of a fixed size (usually up to few
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hundreds of bytes) and apply redundancy that contains information about the whole block of

data. Therefore, each block is independent from all other blocks. Convolutional coding operates

on serial data. It will take data in continuously and the redundancy will use a number of

bits (called constraint length and represented with the letter L or K ) to generate the output

bits. Another important value is the code rate, which shows the relationship between input and

output bits. All FEC implementations can be characterized by the parameters n, k and m. The

following formulae show the relationship between the constraint length or the code rate and

these three basic parameters.

• n = number of output bits

• n = number of output bits

• m = number of memory registers

L = k(m− 1) (2.1)

code rate =
k

n
(2.2)

Choosing the value of the parameters chosen for the FEC system we want to implement

is a very important task in the design of a communications system. There are several issues

that must be taken into account. First of all, the characteristics of the channel that we will

work on should be known. Then a set of parameters must be chosen in order to find the best

performance. The first trade-off that we will face is the threshold SNR of the channel. FEC

implementations usually work well in environments with up to a certain SNR. If the SNR falls

lower than that threshold the performance of the FEC algorithm is likely to fall down to a point

of not performing well at all, outputting data worse than the received in its input in most cases.

The second fact that we need to take into account is that adding more redundancy will increase

the amount of data to be sent, and that will affect directly the throughput of the channel.

Finally, bigger values of m also increase the complexity of the decoder exponentially. To give a

general idea of this magnitude, most applications use constraint lengths up to a value of 9 bits

(data from 1999) [12].

The FEC implementation of this project will use a convolutional code encoding with a Viterbi

decoding mechanism. Viterbi decoding was developed by Andrew J. Viterbi and first published

in IEEE Transactions on Information Theory in 1967 [8]. Viterbi decoders are one of the two

mechanisms to decode data encoded with convolutional codes. The other mechanism is sequen-

tial decoding. The main advantage of Viterbi decoders is that the decoding takes a fixed amount

of time to conclude. That helps us estimate the feasibility of its inclusion in our system. It is

also well suited for hardware implementations.

Viterbi decoding can work on soft bits and hard bits. The data that it works with can be

almost analog and the outputted data will be digital. If we use hard bits as input for the Viterbi

decoder there must be a decision block before the decoder that takes analog received data in
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its input and outputs one of the possible symbols received, which will probably be the one that

is closest to the analog data received. When the Viterbi decoder works with soft bits it will

quantify the analog data first and then work with the quantified values directly, which usually

improves its performance.

Explaining the way the Viterbi decoder works is not a target of this thesis, but I will try to

explain very briefly its basic idea in this paragraph. For more information refer to [12]. The

main idea of the Viterbi decoding algorithm is to find the stream of data that was sent among

all possible streams sent. This is calculated in a rather simple way thanks to the way the data

is encoded by the convolutional code algorithm. Each symbol received at the decoder will be

followed by another symbol with a fixed known probability. This way, if we receive two symbols

that should not come one after the other we detect a possible error. Each time a new symbol

comes a path is drawn for all the possible sequences of received symbols and its count of possible

errors. In the end the path that accumulated the least amount of errors is the path chosen.

According to the success rate of the received data, the use of FEC algorithms can be seen as an

increase of the channel’s SNR. As an example, a convolutional code with rate 1
2 with constraint

length of 7 can be seen as an increase of 5 dB in the channel’s SNR. This way of analyzing

the behaviour of the algorithm can be useful for knowing the increase of the performance that

we achieve by using the FEC. Then we can decide on its need or we can modify some of its

parameters if necessary.

2.3.2 Retransmission of data

The need of a reliable channel requests the use of some algorithm to make sure all data is

received correctly. Therefore a retransmission algorithm is needed in the data link layer, which

will be used once the data packets have been received and after they have been validated with

a redundancy check mechanism such as Checksum or CRC.

There are many different algorithms that can be used for this purpose. The most simple one

is the ARQ protocol, which starts a timer in the receiver that waits for the next data packet

to be received. If the data packet is received on time the receiver sends an acknowledgement

message requesting the next data packet. After a certain time, if the expected packet has not

been received the receiver will consider the expected packet lost and will send a message to the

sender requesting the same packet that was expected. This is the basic idea. From this simple

idea many enhancements have been made in the field of retransmission of lost packets. Some of

them are meant to reduce the number of messages sent by inserting the acknowledging messages

in the uplink channel, which is called piggybacking.

Another protocol for resending lost packets is the Sliding Window Protocol [11]. It has not

been implemented in this project but it is a very broadly used protocol for retransmission that is

present is many wireless communication systems. This protocol will acknowledge many received

packets at the same time by sending only one acknowledge message. In this case, if the packets

have not been received before the time out, the acknowledge message will only acknowledge the
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last packet received before the first missing packet. This protocol also saves traffic of acknowledge

messages in the system.
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This chapter presents the platform used for the implementation of the communication system.

This platform is GNU Radio, a free software toolkit that allows the implementation of SDR. It

is distributed under the GNU General Public License. GNU Radio’s target users are hobbyists,

academics and researchers. GNU Radio was started in 2001 by John Gillmore and Eric Blossom,

and it has been growing in members and amount of source code. Nowadays it has a large and

active community and provides many examples and reference systems and applications for Global

System for Mobile communications (GSM), OFDM, High-definition television (HDTV), etc.

In section 3.1 I will explain the concept and basic ideas behind GNU Radio. Then, in section

3.2 I will explain the requirements of all GNU Radio based systems, and I will also explain the

hardware peripheral that is most commonly used for the RF part of the system, the Universal

Software Radio Peripheral (USRP). After introducing GNU Radio in a theoretical way, and in

order to consolidate the previously explained ideas I will present an example application and

finally, in section 3.3 I will introduce GNU Radio Companion (GRC), the graphical interface of

GNU Radio. Additionally, in appendix A 5 I will give some insight on advanced concepts for

developing more complex implementations.

3.1 GNU Radio concept

GNU Radio is a software toolkit designed to allow users to create SDR implementations. It

provides mechanisms and tools to create customized and also a great amount of source code

modules that can be used as a part of a customized radio as well as stand-alone examples.

GNU Radio is used by a large community of hobbyists, academic researchers and commercial

companies, specially for prototyping and testing possible implementations.

The software in GNU Radio is divided in modules. These modules can be divided in two

large groups. The modules that take care of the signal processing needed in the system are

programmed in C++. These signal processing modules can be signal filters, equalizers, FFT

modules and so on. The other group of modules include the software needed to interconnect

these signal processing modules and configure them according to out needs. These last ones are

programmed in Python and they act as some kind of glue that makes the whole system one

unit [14]. The possibilities that Python provides for configuration without the need of compiling

every time a change is made in a parameter are very convenient for quick reconfigurations and

tests. GNU Radio modules are able to operate with infinite streams of data of a certain type.

The most common types of data that we will use are complex, short and float. Many GNU

Radio applications keep running forever, when the streams of data are infinite. If the stream
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Figure 3.1: Graph representation of a GNU Radio application

has a finite number of bytes the application will finish once the data has been consumed out of

the system.

In a GNU Radio application the software modules can also be differentiated in three classes:

Source modules, which provide a stream or signal into the system. Examples of source modules

are file sources, that get data from a file and insert in into the system, or random data generators,

that generate and output a stream of data according to some criteria established by us. The

second group of modules are sink modules. They are the contrary of source modules. They

receive an a stream of data and consume it. Some examples for these modules are the trivial

null sink, which consumes the signal without doing anything, file sinks that insert the data from

the stream into a file or even graphical spectrum analyzers, that convert the signal received into

spectral data and present it to the user in a graphical way as a real spectrum analyzer would

do. The last kind of modules are the modules with both input and output ports. They receive

streams from their input ports, convert it into a different stream by applying a conversion or

a filter and output the result through their output ports. Examples of these modules are band

pass filters, Fourier transformation modules, operators or data converters.

We are able to create GNU Radio applications by joining blocks. The union of these blocks

creates a graph. We can see a simple example of one of these graphs in Figure 3.1. In the

figure we can see various modules with their parameters and the connections between them.

The graph representation is important to understand how GNU Radio executes each module in

the system. All GNU Radio applications have one thing in common. All applications have a top

block class that contains an initialization method that will create the instances on the needed

modules, build the graph and initialize the parameters of these modules. This initialization

method will be called from the main method when we run the application and only after it

finishes its execution the system created will be ready to be used. When the application is

running GNU Radio will execute the code of the blocks sequentially according to the graph. In

the case of the application in Figure 3.1 we would need a Python script to create instances of

all these modules, initialize all the parameters that we can see and join them with the connect

to build the graph.
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3.2 Requirements of GNU Radio

Software Defined Radio applications are meant to substitute most of the signal processing in the

system with software that will run in commodity computers, but they still need interfaces able

to send and/or receive data that travels wirelessly through the air. This section explains what

we can do with GNU Radio, and why we need to do it. First of all, if we have an application

running infinitely this means that a regular processor will have to deal with the signal or signals

in real time. Each application will have a certain degree of complexity and of signal processing

to be done that will be translated in requirements. That is why requirements are a critical factor

in SDR and, therefore in GNU Radio. SDR has gained popularity during the last ten years due

to the fast increase in computation speed in commodity computers.

The requirements of a simple GNU Radio application like the one we have seen in Figure 3.1

are basically any computer, as there are no complicated operations to be done, such as Fourier

transformations, and a sound card that will be the responsible of acting as the RF interface.

However more complicated applications, such as the implementation made for this project, have

much higher computational requirements, because they use many signals and algorithms at the

same time and are they must work in real time. The transmissions at higher frequencies also

requires special hardware. GNU Radio is meant to work with additional hardware that takes

care of translating the software generated digital signal into an analog signal centred in the

desired frequency. For a small number of applications working at frequencies up to a few KHz

a sound card would be enough, but for most other applications an external device is needed

for this function. There is not a very large market for such devices, as there is not too many

people working with SDR. However, GNU Radio implements software modules for one of these

devices, the USRP. With a USRP we will be able to implement radios operating on frequencies

up to some GHz. I will explain the characteristics and possibilities of the USRP in the next

subsection.

Another issue related to the computational requirements of GNU Radio applications is the

duality of using Python generated code and C++. There is a fraction of the GNU Radio users

that find the fact of using both languages at the same time a cause of performace loss. According

to the developers of GNU Radio Python should only be used to create and configure the graph,

and then the rest of the work should be done by the C++ modules. However there is an ongoing

initiative meant to allow GNU Radio applications to run only in C++. This can speed up certain

applications, but apparently, it would not represent a very big improvement to well programmed

applications that use Python and C++.

3.2.1 The USRP2 peripheral

The USRP is a device designed by Ettus Research with the objective of providing the conversion

between the digital baseband signal that is processed in the host computer and the analog

intermediate frequency (IF) signal when necessary. It is also responsible of modulating and

demodulating the signal to and from the carrier frequency for sending and receiving [10]. The

USRP has been specifically developed for SDR and it is highly compatible with GNU Radio. It
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Figure 3.2: Front view of a USRP2 device

is also used in other SDR projects such as SDR4All [23]. Actually there are two different versions

of the USRP in the market: the USRP and the USRP2. For this project two USRP2 devices

have been used.

The USRP consists of a motherboard, which contains an FPGA that takes care of the high

bandwidth math and some ADCs and Digital to Analog Converters (DACs) able to provide

bandwidths of around 30 MHz. The FPGA’s software can be programmed and stored in an SD

card that is inserted in the slot on the front panel on the USRP2. The front view of the USRP2

can be seen in Figure 3.2. The motherboard will be connected to a daughterboard, that will

take care of the analog part of the transmission and reception; the closest stage to the antenna.

There are several daughterboards available for the USRP family [3]. Each one of them is able

to operate at a certain range of frequencies. Actually, we can find daughterboards that operate

in frequencies that span from the 0 Hz to the 5.85 GHz. All USRPs’ daughterboards include

a power supply and one or various antenna connectors, depending on its characteristics. The

daughterboard used for this project in both USRP2 devices is the RFX2400 that operates in the

industrial, scientific and medical (ISM) band.

The FPGA in the motherboard of the USRP contains digital down converters (DDC) and

digital up converters (DUC) that converts the IF signal to the base band and vice versa and

decimates it to achieve data rates that are suitable for the PC. This achievable data rate is one

of the main differences between the USRP and USRP2. The first version is connected to the PC

through a USB 2.0 interface. This connection has proven to be a bottleneck in applications that

require large data rates, and that is why the USRP2 has substituted this USB 2.0 connection

with a Gigabit Ethernet interface. The USRP2 also includes higher speed and higher precision

ADCs and DACs that allow the simultaneous sending and receiving of bandwidths up to 50 MHz.

Finally the FPGA in USRP2 is also more powerful [2], which allow the use of the USRP2 as a

standalone system that can be used without a host computer in some cases.

Figure 3.3 shows the look of the USRP2 devices together with the host computers that they

use in this project’s implementation.
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Figure 3.3: USRP2 devices with their host PCs

3.3 GNU Radio’s graphical interface

A very useful extension that GNU Radio provides is called GRC and it provides a graphical

interface that allows its users to easily create GNU Radio applications. GRC has a list of available

modules that can be inserted in the application by only clicking on them. These modules can

also be configured, and GRC even tells you if the configured parameters are correct. Then, the

modules can be connected together also very easily. Afterwards, GRC will build the needed

python code that will run the application.

The use of GRC has both advantages and disadvantages, but if it is used correctly it can be

a good tool to save a lot of time and to avoid unnecessary mistakes. The main advantages it

offers are the simple setup of a system, thanks to its graphical and easy to understand interface,

the real time verification of the configured parameters, as it shows the parameters that are not

correctly configured and where they are, making it very easy to locate configuration problems.

Another advantage is the easy way of inserting and testing new modules in the system; New

modules can be added to the system very easily in order to test their behaviour. However

GRC also has some disadvantages. GRC only works with the modules and parameters and

offers almost no place for customization of a module out of the configuration of the parameters.

During the implementation of a module GRC is not recommended, as every time the module is

modified one should take care of also modifying the files that allow this module to be controlled

from GRC.

We can say that GRC is a very interesting tool in some environments but it should be left

out in other environments. In an educational environment GRC would allow students to control

and create GNU Radio applications with a very short learning period, and with very success-

ful results, as students would be able to understand all the stages of the system, control the

different parameters and see the results in a very short period of time. However, in a research

context, where the researcher is adding and customizing modules in all levels GRC would not be

recommended, as it adds overhead time to the research process, specially when the researcher

already knows GNU Radio well. GRC would be only useful to build test applications and then

use the Python code automatically generated by GRC as the starting point for the development
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of more complex applications. Custom made modules can be added to GRC by creating an

XML file that describes the module.

In the next section we will see a simple example GNU Radio application built with GRC, and

in Figure 3.4 we will see how the GRC interface looks like for the sender in that application.

3.4 Basic example application: moving peak

In order to get familiarized with the structure of a GNU Radio application, in this section I

explain the first steps that we have to do with GNU Radio to set up a running application.

Before starting I want to explain the equipment and software that has been used for this test

application. A GNU/Linux PC with the Ubuntu 8.10 (intrepid ibex) distribution. The PC

used has 2Gb of RAM memory with a double core Intel Core 2 Duo processor at 2,33 GHz

(each processor). Two Gigabit Ethernet network interfaces connect two USRP2 devices with

one daughterboard each: the RFX2400 2250 - 2900 MHz Transceiver. This daughterboard allows

us to work in the ISM band between 2.4 GHz and 2.5 GHz. With this equipment, the PC works

with an average occupation of memory below 50% and with both processors working at around

60%.

The installation of GNU Radio can be done in various manners. Some Linux distributions

include GNU Radio in its repositories. Ubuntu is one of them. The GNUradio version that can

be found in Ubuntu’s repository is relatively old and it lacks some of the GNU Radio modules.

However, instead of using the distribution’s repositories we use the GNU Radio repository, which

hosts the last and complete version of the software. This repository can be found by using

the software subversion. Then, the installation process is very simple. After all the required

applications are available, the common installation commands suffice: ./configuration, make,

make install.

The application that I will show in this example will generate a simple sinusoidal signal that

will have a time-varying frequency. This signal will then be sent to the USRP2, and another

USRP2 will then act as a spectrum analyzer showing the spectrum where we will try to identify

our sinusoidal signal. This signal will be a vector of 256 values that represent the spectre that I

want to see in the receiver side. This vector will consist (in this example) of only one "1" value

and the rest 0 values. This is meant to create a spectrum that consists of only one peak at a

given frequency in an instant. The "1" symbol will occupy different positions in the vector as

time goes by, so we will try to see this peak in the receiver side move according to the position

of the "1" symbol in the inputted vector.

The first considerations that we have to make are related to the hardware limitations that we

have. The most important of all is that as we only have a daughterboard for the USRP2 that

works at 2.250 to 2900 MHz. So the frequencies that I will be using will be around 2.4 GHz.

The input data is taken from a file. This file contains values of type short (1 byte each) that

will be inputted to an iFFT module. To do that first of all the raw short data stream will have

to be converted into a vector of 256 complex values, which is the expected input of the iFFT

module. For that purpose we will use a module to convert short data into float data, another
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Figure 3.4: Module layout of the sender built with GRC

module will convert the stream of float data into a stream of complex data, and finally another

module will take the stream of complex values and group them into groups of 256 values, thus

creating the vector that will be used as the input of the iFFT module. The file source module

has two important parameters that must be configured, as is the filename, the kind of data

that we take from it (short: 1 byte, int: 2 bytes, float: 4 bytes, complex: 8 bytes) and repeat,

which outputs the contents of the file repeatedly, giving the application infinite duration. The

type conversion modules that convert the short data stream to the complex data stream are

as simple as their names indicate. The module that transforms a stream of data into vectors

is also very simple and you can only set the size of the outputted vector. The FFT module

is more complex than the ones previously seen. It can compute the FFT and iFFT with the

desired number of samples. The input can be float (only allowing forward FFT) or complex

(allowing both forward and reverse FFT). Then there is also a configurable window parameter

which is a Blackman-Harris 1024 by default. The last parameter that can be edited is the shift

parameter, that will move the correspondence of the 1st value of the vector or the middle value

to the reference frequency.

The resulting timely signal that comes from the iFFT module will be sent to the USRP2 to be

sent to the air. For this purpose the USRP2’s parameters must be configured correctly. In order

to find the USRP2 in the system (Gigabit Ethernet interface), the first parameters that must be

configured are the interface and the MAC address of the USRP2 board. Usually the interface

name will suffice to identify the board, but both can be set. In order to use this interface the

application that we run in GNU Radio will need root permissions. The next parameter is the

kind of data that we are going to send to the USRP2. It can be a complex or short value. Then

there is an interpolation rate, that modifies the behaviour of the FPGA of the USRP2 and will

limit the usable bandwidth and the data rate. The usable bandwidth that we will output are

100 MHz, that is set by the divided by the interpolation rate, which in this case is 16, so the

resulting bandwidth will be 6.25 MHz. In Figure 3.4 we can see all these modules as they appear

in GRC’s interface with it’s parameters.

In order to see the resulting signal we will use one of the many sample applications that come

with GNU Radio, which is a graphical software spectrum analyzer. We can see in the resulting

spectrum in Figure 3.5. In order to show the total bandwidth available in the picture, Figure 3.5
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Figure 3.5: Resulting signal of the moving peak example

shows the peak as it moves from the last position to the first one. During some samples we can

see the peak disappearing through one of the ends of the use band and appearing in the other

end. The picture shows the maximum available bandwidth of 6.25 MHz. The carrier frequency

also appears in the centre of the spectrum.
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This chapter describes the implemented communications system in detail. First of all in section

4.1 the objectives of the implementation will be explained. Then the requirements of these

objectives will be studied and compared to the resources available. This will set some limitations

in the systems that can be built with our resources. After that, the rest of the sections explain the

software implementation of the different parts of the communication system: in section 4.2 the

OFDM modulator and demodulator will be described. Section 4.3 explains the used modules that

implement the synchronization protocol. Section 4.4 explains the implementation of a forward

error correction mechanism in the data transmission chain, and Section 4.5 describes the simple

protocol used to resend wrongly received packets. Finally, in section 4.6 the performance of the

system that we want to implement will be studied and compared with a theoretical measure of

the maximum performance achievable. Some physical and mathematical measures will be made

of the performance that our system can achieve given our used resources.

4.1 Objectives, resources and limitations

The main idea for the implementation of this project is that the implemented communication

system resembles the lower OSI layers of WiMAX. The reason for it is that WiMAX is one of

the most important technologies used in the next generation of mobile communications (4G)

[6]. Therefore, the implementation is focused on a communication system based on the OFDM

multiplexing mechanism, that is the chosen multiplexing mechanism in WiMAX and other 4G

technologies.

The WiMAX parameters that are set in the standard [9] are related to many different fields.

Some of them are standardized sets of parameters that have been chosen to allow a limited

number of standardized system configurations. Depending on the application one of these con-

figurations or another will be chosen. Table 4.1 shows some of these parameters that have been a

reference for the chosen parameters of the implemented system. Other WiMAX parameters are

requirements that must be fulfilled to grant a correct behaviour of the system in the presence

of certain problems for the signal transmission. These include, for example, the update rate

needed for the channel estimation and equalization when in the presence of Doppler [13] effect

due to a fast moving terminal. These kind of values are less important in the implementation,

as we can not reproduce these special channel conditions and the focus of the project is not the

simulation of all possible case scenarios.

The resources that SDR requires vary greatly with the application that we want to implement.

The reason that SDR has not become a major area of study until around year 2000 [21] lies in part

in the fact that SDR requires for many applications a very big amount of computational power,
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Table 4.1: Standard sets of parameters for various OFDM configurations [19]

Parameters Values

System bandwidth (MHz) 1.25 2.5 5 10 20

Sampling frequency (Fs, MHz) 1.429 2.857 5.714 11.429 22.857

Sample time (
1

Fs
, nsec) 700 350 175 88 44

FFT size (NFFT ) 128 256 512 1024 2048
Subcarrier frequency spacing 100.8 µs

Useful symbol time (Tb =
1

f
) 11.16071429 kHz

Guard time (Tg =
Tb

8
) 11.2 µs

OFDM symbol time (Ts = Tb + Tg) 100.8 µs

which also includes an important expense of power consumption. The computational power

requirements have also played an important role in the implementation of the radio prototype

for this project.

The computational resources available were two Pentium Core 2 Personal Computers (PCs)

which ran the GNU Radio software and two USRP2 [2] devices. One of the PC+USRP2 systems

ran the sender’s software and the other ran the receiver’s software. The computational power of

the two PCs has been a factor that has influenced the OFDM parameters used in the implemen-

tation. The computational resources allow different configurations for OFDM implementations,

but they also have some boundaries. The computational power available limits the amount of

FFT that can be computed in a limited time or some other operations that require a lot of

resources in a short time. The USRP2 devices [2] are equipped with an RFX2400 daughter-

board [3] that allows us to work in the frequency range from 2.3 to 2.9GHz. The connection

between the PC and the USRP is done with a Gigabit Ethernet connection. The observed be-

haviour of the USRPs and the PCs together shows that the limit in out application is always

set by the computational resources in the PC. As a matter of fact, only a fraction of the total

bandwidth provided by the USRPs is used, and the Gigabit Ethernet is also not fully used.

4.2 OFDM

4.2.1 GNU Radio’s OFDM modules

GNU Radio includes some software modules dedicated to the OFDM modulation. In order to

show their basic use and as a kind of documentation for customised OFDM implementations and

variations, an example application is available in the gnuradio’s examples directory. This exam-

ple application (benchmark_ofdm.py) is a simple OFDM system with transmitter and receiver

that runs entirely in software and simulates the whole transmission chain, including the channel.

This example has been used as the base source code for the implemented OFDM communication

system. In this section I will detail the different modules that intervene in the OFDM commu-

nication and will explain the setup of the sender and the receiver, and the modifications needed

to convert the software example into a real wireless OFDM system transmitting through an air
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Figure 4.1: OFDM System’s module hierarchy

interface between the two USRPs. First of all I will explain the GNU Radio’s OFDM modules,

and afterwards, I will explain the process of modulation and demodulation implemented in GNU

Radio, giving some insight in its capabilities and limitations.

Taking a look at benchmark_ofdm.py we can see that it has a lot less lines of code than the

expected for the software implementation of an OFDM system. Of course, the source code is

divided in many files, that are hierarchically sorted in different abstraction levels. The uppermost

levels will set the most general parameters like the total amount of data to be sent or the size

of the packets, while as we go deep in the hierarchy more specific paremeters can be set such as

USRP-related parameters or the digital modulation that will carry the data in the subcarriers.

Figure 4.1 shows the most important blocks and connections in the hierarchy that I will explain

in this section. The coloured boxes represent source code files. The ones painted green are

written in Python, whereas the ones painted pink are written in C++. The white boxes are

instances of modules that are used in the file. The next paragraphs will describe the modules

that appear in the figure, both its functionality and its relationships with the rest of the modules

in the system.

The uppermost level of the hierarchy shown in Figure 4.1 corresponds to the Python file

benchmark_ofdm.py. This is the executable file that needs to be run to start the whole system.

In the picture we see that it contains the instances of a transmit path and a receive path. This

corresponds to the original source code that doesn’t transmit through the air, and thus also

doesn’t use the USRPs. Instead of that, it uses a simulated channel that we see in the module

called ’channel’. The ’throttle’ module controls the speed of the transmission by configuring the

maximum sample rate available.

The whole communication system can be seen as abstraction defined in benchmark_ofdm.py.

This means that somewhere in the file the information to transmit must be acquired, somewhere

it must be sent, received and finally validated or outputted. The first stage, the acquisition of the

information to send will happen directly within the python code of benchmark_ofdm.py. Test

data will be created to fill the packets that will be transmitted in the system. This operation

doesn’t require a lot of computational power, so a dedicated C++ module for it is not necessary.
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The creation of the test data is made in python and inserted in the module chain through a

send function.

The channel that the implementation will use is the air, as the signal is going to be sent and

received by the USRPs antennae. The room of the laboratory where the USRPs are placed will

provide a channel with multipath echoes that will have a very short time delay. Additionally, the

USRPs will be static, so the Doppler effect will also be non existant. The most relevant cause

of interferences in the channel will be the shared frequency band with the laboratory’s wireless

Local Area Network (LAN). The knowledge of the channel and some notion of the values of its

parameters is very useful for setting the parameters of the system, for example, the length of

the cyclic prefix. In the original version of benchmark_ofdm.py there is a module called channel

that simulates a channel with some parameters such as SNR, frequency deviation and phase

deviation.

The parameters that can be configured in the uppermost level of the file hierarchy are related

to the modules existing in benchmark_ofdm.py. Related to the formation of the data packets

is packet size, the throttle can be configured with its maximum sample rate, and the channel

with its signal to noise ratio (SNR), frequency offset that it introduces and the clock difference

between the transmitter and receiver. A part from that, there is also a parameter that sets

the total number of Megabytes that are to be transmitted. This parameter belongs to the

global execution of the programme and not directly to any module. The rest of the configurable

parameters of the system are defined in deeper levels of the hierarchy. At the moment of the

execution of the programme by running benchmark_ofdm.py, these other parameters that belong

to other modules will also be set, and they will be sent through the hierarchy until they reach

their target module. This makes the execution a lot easier, as we can set all the configurable

parameters at the same time and they will find its destination automatically.

The next level in the hierarchy is also consisting entirely of python files. In this level, the two

most relevant files are transmit_path.py and receive_path.py. Both files are independent

of the used channel. This way if we want to change the channel we only need to modify

the uppermost level. In transmit_path.py we can see that it is simply defining an OFDM

modulator and giving it some new parameters. One of them is the number of messages that

the modulator should buffer and the other one is called ’padding for USRP’, which makes sure

that the data that is sent to the USRP is multiple of 128 samples, which the USRP needs to

process the data correctly. The receive_path.py file is very similar to transmit_path.py. It

defines an OFDM demodulator and a module called ’probe’ that is used for detecting if there is

a transmission going on. The modulator and demodulator in this level will be explained in the

two next subsections.

The separation of the one file benchmark_ofdm.py into two files is a simple process, but it has

some small issues that should be taken into account. The objective of this process is to remove

the module channel and in its place have a sender that includes transmit_path connected to

an output module that should be the Universal Software Radio Peripheral 2 (USRP2) software

module dedicated to sending data through the USRP2. Similar to the sender, the receiver

should contain the USRP2 software module dedicated to receiving data from the USRP2 and

25



4 Implementation

then receive_path. This can be done easily, but the things to take into account are two. First of

all, the number of samples delivered to the USRP2 per second should be the same as the ones

received by the USRP2 in the receiver side. This can be done with the previously mentioned

throttle module in both sides configured at the same sample rate. The second thing that must be

done is configure the USRPs correctly. This is done by using the functions set_freq, set_gain,

etc that set the parameters needed for the use of a USRP2 in the system. Finally the parameter

that sets the USRP2’s ethernet interface should be made configurable for convenience. Some of

the examples that GNU Radio provides that use USRP2 implement this functions, so they can

be taken as an example.

4.2.2 OFDM modulator’s implementation

The OFDM modulator is located in the python file ofdm.py together with the OFDM demod-

ulator. As we can see in Figure 4.1 it interconnects some blocks that are defined in C++.

Looking at the definition of the modulator in the python file we can see that it has no input

and one output, that is the complex modulated signal at baseband. The modulator includes a

send function that takes as a paremeter the payload that needs to be sent and sends it to the

first module of its module chain, pkt_input.

The modulator’s send function uses a very common method for inserting data in a mod-

ule chain. In this case this module chain will be the one in the modulator itself. The send

function receives as a parameter the payload that needs to be sent. This payload will be con-

verted into a data packet by calling a function named make_packet from the Python module

ofdm_packet_utils. This function will calculate and add the Cyclic Redundancy Check (CRC)

and the header to the payload that will be used in the end of the receiver to check the validity

of the received frame. The send function will not return any value. Instead, it will finish by

calling insert_tail, a function belonging to the modulator’s first module’s queue of messages.

This function will put the data that needs to be outputted in the end of these queue of messages,

and the module itself will access to this data automatically. This method suggests that there

are some buffers in the system, which will play a critical role in certain parts of the development

of the prototype.

The first module that the modulator implements is the so called pkt_input module. It

is the first C++ module that appears in the system and the C++ file that defines it is

gr_ofdm_mapper_bcv.cc. As its name says, this is a file dedicated to OFDM modulations

and it takes a stream of bytes and maps it to a vector of complex symbols according to a spec-

ified constellation. These symbols are suitable to be used as the input for the iFFT module

included in an OFDM modulator. The output of this module has two different exits. One is the

actual data, which will be outputted in a vector of the size of the iFFT, and the other one is a

vector of characters that will contain one character for each OFDM symbol outputted. It will

contain ’1’ if the OFDM symbol is the first of the frame and ’0’ in other cases. This way the

preambles module will know where the preamble goes, as it always will be at the beginning of

the frame.
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The next module in ofdm.py is preambles and it is defined in the C++ file gr_ofdm_insert_

preambles.cc. This module is the responsible of adding one preamble to each OFDM frame

that we want to send. The information in the preamble is a known sequence of symbols that

is constructed from a vector of ones and negative ones that has been randomly generated and

is stored in the file ofdm.py. The input of this module is made to fit with the output of the

pkt_input module. This way, the first input port will contain OFDM symbols and through the

second one it will receive the character that marks the beginning of the frame. If it is the case,

it will buffer the OFDM data symbol, output a preamble and then output the buffered data

symbol. This module has the same outputs as its previous module, but in this case only the

first port will be used.

The next step is the Fourier transformation and it is done by the iFFT module that is defined

in the C++ file gr_fft_vcc.cc. This module takes a vector of complex values and computes

the FFT. It is used both for the computation of the FFT and the iFFT just by editing its

parameters. It also allows us to set other parameters such as the window used [18] or if the FFT

should be shifted.

After the Fourier transformation, the redundancy belonging to the cyclic prefix must be added

to the OFDM signal. This is the job of the next module in the modulator, cp_adder. This

module is also defined in C++ in the file gr_ofdm_cyclic_prefixer.cc. It does a very simple

job. It takes the OFDM symbol from its input port and copies the last symbols (the number

of symbols to copy is specified in the cp_size parameter) at the beginning of the symbol, thus

creating a symbol with a size that is the sum of the size of the inputted symbol and the size of

the cyclic prefix.

Finally, after the FFT, the OFDM symbols are amplified by a multiplication with a constant

value. The resulting signal contains the payload, which has been transformed into a data packet,

then the redundancy corresponding to the preambles for the synchronization and equalization,

then the redundancy corresponding to the cyclic prefix and finally some amplification. The

OFDM signal is now ready to be sent to the channel in the uppermost layer of the application,

which, in our case, will be the air by using the USRP2 that will send the modulated baseband

signal at the transmit frequency, which is 2.5 GHz.

4.2.3 OFDM demodulator’s implementation

The demodulator is made of many C++ and Python files. Each of the files that make the

demodulator plays a role in the complete demodulation process. This section explains how all

the files that make the demodulator are joined and what is their job. In other sections I will

give some more detailed information about certain parts of the demodulation process, such as

synchronization.

Like the modulator, the demodulator is firstly defined in the file ofdm.py. The demodulator

has both input and output. Its input comes, in most cases, from the output of the channel.

Its output port will contain the demodulated signal. However, the most commonly used output

mechanism is the parallell mechanism to the send function that is explained for the modulator.
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Figure 4.2: Block diagram of the ofdm_receiver module

The output data will be sent to a handler via a callback function. There is a function running

in a separate thread that monitors the queue of demodulated data packets. Once a new packet

enters this queue it will be taken by this function that will check the correctness of the data

in the packet by looking at the CRC code. Afterwards it will call the previously mentioned

callback function with the payload as a parameter. The callback function will be executed in

the uppermost level of the blocks hierarchy, in the ofdm.py file.

The inner structure of the demodulator has two big parts, corresponding to the two blocks

that are defined in ofdm.py and that can be seen in Figure 4.1. One of them, ofdm_receiver,

takes care of the synchronization and equalization of the CRC signal, while the second module,

ofdm_frame_sink, is a state machine that demaps the symbols into bits, checks the validity of

the synchronized frames and sends them to a superior layer by adding them to the queue of

received data packets.

The demodulator’s ofdm_receiver module is defined in a Python file that includes a number

of modules. The fact that the demodulator has one extra layer of Python files is a hint of

the complexity of the demodulator. Figure 4.2 shows the blocks that make the ofdm_receiver

module. The blue arrow in the figure shows the path the signal follows, while the black arrows

carry other kinds of data that are not the actual OFDM signal.

The first module of the receiver is a simple Fourier filter on the input signal coming from

the antenna that takes the bandwidth corresponding to the number of carriers that contain

actual data, which is usually less than the size of the FFT and in our implementation it was

200 used subcarriers for an FFT of 256 subcarriers. Once the signal has been filtered it is fed

into the synchronization block. There some calculations will be made to find the right frequency

offset and the beginning of the frames. The synchronization block will be explained in the next

section. The synchronized signal will then travel in vectors of the size of the FFT to the Fourier

transformation module that will output a signal in the frequency domain. Each frequency is a

subcarrier and contains information in its phase according to the digital modulation applied to

each of the subcarriers; in our case, all of them are modulated with BPSK. The last part of the

synchronization will be finding the beginning of the frames and equalizing each subcarrier.

The second module that makes the OFDM demodulator is less complex than its preceding

one. The frame_sink module is defined in C++ and looks more or less like a state machine.

This state machine has three states. One of them is sync search, in which the algorithm looks
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Figure 4.3: Block representation of the state machine in the frame_sink module

for the flag in the second input indicating the beginning of the frame. Once it is found it will

arrive in the have sync state. Then it will let the preamble through. Afterwards the algorithm

will demap the symbols and check the bytes corresponding to the header of the data. The

header is built in a way that the first and the last half are exactly the same, so this is the way

it validates the header. If the header is correct, the state machine will move to the next state,

which is called have header. There, the algorithm will demap the rest of the frame and insert

the resulting data bits in the output queue. As I explained before, that queue is monitored by a

thread that will take the data, validate it and send the results to the upper layers of the system.

Throughout the duration of the have sync and have header states, the algorithm will constantly

look for beginning of frame flags in its input port. In case it finds one it will detect an error and

reset the state machine to the sync search state. Figure 4.3 shows the behaviour of the state

machine in the frame_sink module.

4.3 Synchronization

GNU Radio has three different synchronization mechanisms implemented for OFDM. One

of them is the Maximum Likelihood (ML) synchronization [5], the other one is based in the

correlation of pseudorandom noise (PN) numbers [7].The third one is an enhanced version of

the PN mechanism that uses initial cross-correlation. This enhanced PN synchronization is

still showing some flaws and it is not fully usable. One last synchronization method called

fixed synchronization is also in development, but its use is not recommended and there is no

29



4 Implementation

documentation for it, so I will not comment on it. This leaves us with two main synchronization

mechanisms that will be explained in the next subsections. PN and ML.

4.3.1 Pseudorandom Noise implementation

The chosen synchronization mechanism for the prototype has been the PN synchronization. The

synchronization takes place in the ofdm_receiver module, and it affects most of its modules.

The first thing that is done is finding the frequency deviation of the frames from the carrier

frequency. Then, the signal will be sampled according to the frequency deviation and then this

signal in the time domain will be transformed to the frequency domain with the FFT. The

last stage is finding the start of the frame by using the information contained in the preambles

and equalizing each subcarrier in amplitude and phase to correct the distortion caused by the

channel.

If we observe Figure 4.2 we can see that the input of the ofdm_sync_pn module is the signal,

but the output doesn’t include the signal. Looking at the Python source code and knowing

the functionality of its modules we can see that the outputs will be on the one hand a timing

signal coming from a peak detection and on the other hand the frequency correction value. The

process that the synchronizer follows to find the frequency offset is as follows. First it correlates

the input signal with its own conjugate with a delay of half the size of the FFT. The result

of this operation will give a maximum when the correlation members are the first and second

half of the preamble. The angle of the correlated complex signal will then be extracted. This

angle is used for frequency correction by using a sample and hold module controlled by the

peak detector. When a peak is detected, the sample and hold will output the angle, which is

the frequency offset of the signal. The ofdm_sampler module will use that frequency offset to

sample the signal that comes straight from the channel. The output of the ofdm_sampler is

the signal sampled in vectors of the size of the FFT. These vectors will be transformed in the

FFT module. Then they will go to the ofdm_frame_acquisition module. This module will find

the start of the frame based on two known symbols, that will be BPSK PN sequences. PN

sequences look like random sequences but are deterministically generated. The input signal will

be correlated with these known symbols. This uses the information provided by the indication

of the beginning of a preamble that the module receives from its second input. The maximum

correlation will give the start of the frame. After this, the same frame_acquisition module will

use one of the known symbols to estimate the channel response and apply a 1-tap equalization

on all subcarriers. This is supposed to help correct amplitude and phase distortion caused by

the channel. The synchronized and equalized signal will then exit the ofdm_receiver ready to

be demapped in the next stage of the demodulation process.

4.3.2 Maximum Likelihood synchronization implementation

The ML synchronization method is another working synchronization method that GNU Radio

provides. It works differently to the previously explained PN synchronization method. As
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this method has not been used for the implementation, it will not be explained in such detail.

However, a module scheme is available in [20], and the theoretical documentation is in [5].

First of all, changing between one synchronization module and another is as simple as changing

the value of a variable in the ofdm_receiver.py Python file. The ML is one of the synchroniza-

tion modules that is supported by GNU Radio, so it doesn’t require any special configuration.

However, some aspects will need to be taken into account. The ML synchronization module uses

the redundancy in the cyclic prefix to find the synchronization instead of using the preambles.

This means that we need to keep in mind the length of the cyclic prefix, as it is a very important

parameter in the robustness of the synchronization. The order of magnitude of the length of

the cyclic prefix to achieve good performance of both time and frequency estimators is about 4

or 5 samples for good SNR environments (more than 15dB) or 12 to 15 samples for low SNR

channels (4dB) [5]. The estimation of the channel would improve by adding pilots to the OFDM

signal for the synchronizer to use, but at the moment it is still not implemented in the GNU

Radio ML synchonization.

4.3.3 Synchronization Performance and Measurements

The PN synchronization mechanism has proven to be a good algorithm for our system. It has

shown robustness in finding the beginning of the frames correctly. However, there are some

indicators that bring us to think that the equalization process could be improved, as we are

receiving the symbols with a very low SNR and with some important phase deviation. This can

also be caused by the channel, but the equalization is one of the parts of the system that has a

weak performance. Figure 4.4 shows a constellation diagram of the received symbols after the

equalization stage. There we can see the poor performance of the equalization in both amplitude

and phase.

Another parameter that has a direct relationship with the performance of the synchronization

is the cyclic prefix. The size of the cyclic prefix is a key factor in the performance of the system,

as it can occupy up to 20% or 30% of the overall sent data of the system. Figure 4.5 shows how

the size of the prefix affects the overall throughput of the system.

Looking at 4.5 we can see how the size of the cyclic prefix influences the throughput in the

system. The measurements have all been made during the same amount of time and with the

same packet size. It can be seen that in out environment there is not a minimum size of the cyclic

prefix to make the system work. The system will work correctly even if there is only one bit of

cyclic prefix, which is the minimum size allowed by the software. Usually, such a graph would

show the opposite behaviour, because the effect of the CP helps the successful synchronization,

but in this case the CP is is most cases a factor that adds overhead making frames larger instead

of a beneficial factor that helps improve the correct synchronization. This fact can be explained

by the behaviour of the channel in our laboratory environment. The possible multipath echoes

received in the receiver side will have extremely low delays or low power delay spread that will

almost not cause any interference between SNR symbols. This would be very different in an

open air environment with far scatter effects. These results are fitting with the throughput
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Figure 4.4: Constellation diagram with sent symbols (in red) and received symbols (in blue)
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Figure 4.5: Dependence of the size of the cyclic prefix in the throughput of the system
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results that we will see in the next section, where we see that the loss of synchronization is not

a major cause of transmission errors, proving that the synchronization is robust in the system.

4.4 Forward error correction

In order to improve the throughput in our communication system we need to add a FEC system

that will try to solve the transmission errors caused by the channel. GNU Radio provides

some modules that are specifically created for this purpose. This section explains how these

modules work and how they have been assembled in the communication system, as well as the

improvements achieved by using FEC.

4.4.1 GNU Radio’s trellis library

The FEC modules are implemented in software package called trellis because it includes modules

that use trellis codes for FEC. This library is an implementation of a Finite State Machine (FSM)

that works for all the offered FEC possibilities. This FSM has been implemented in GNU Radio

with the objective of simplifying the implementation of any FEC method in any system. This

way once the FSM is added to a system, changing the encoding and decoding for the FEC will

only be a matter of configuring the FEC. The actual possibilities that the trellis library offers

are trellis encoders that use convolutional codes (CC) for the encoding and Viterbi decoders [12].

There is an attempt of adding a turbo code (TC) based FEC option in the trellis library, but it

is still not recommended or well documented, so it has not been used. The configuration that

has been used is a trellis encoder with a Viterbi decoder.

The trellis encoder’s FSM needs to be defined with the parameters it will use. There are

basically two ways of defining these parameters: one of them is to define the number of input

symbols, the number of output symbols and the next state and the output state matrix. The

other way of defining the FSM is by giving the size of the modulation and the number of shift

registers used. This second method is more understandable in a hardware way, but even if we

use it the constructor of the class will translate those parameters into the input, output and

matrixes parameters. Our implementation uses two possible input symbols, four possible states

and four possible output symbols. This means that a hardware implementation would need to

use two shift registers for that purpose. With this parameters the FEC encoder is characterized.

Now we have to add this module in the sender in order to send encoded OFDM frames.

The Viterbi decoder is also implemented in the trellis library and is also characterized as a

FSM. For this reason, the parameters used by the decoder are very similar to the ones used by

the encoder, with the exception that the decoder needs to understand the symbols that come

to its input port. This means that another needed parameter for the Viterbi decoder is the

constellation used in the input. In our case, the BPSK constellation.
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Figure 4.6: Layered structure of the sender’s module chains

Figure 4.7: Layered structure of the receiver’s module chains

4.4.2 Implemented modules for FEC

The modular structure of the implementation of both the sender and the receiver and the

implementation of the FEC modules show that there are (both in the case of the sender and in

the case of the receiver) two chains of modules. The sender and the receiver have each a chain

of modules that starts with the payload bits and ends in the antenna (in the case of the sender)

or the opposite in the case of the receiver. Then, there is the chain of modules that is needed

for FEC. Figure 4.6 and Figure 4.7 show how the module chains will be assembled; both for the

sender and for the receiver.

As we can see in the Figures 4.6 and 4.7, the chains of modules are not assembled into a single

chain. Instead, the used strategy has been to run through one chain, return the resulting data

to the Python script, and then sending this data to the next chain of modules. This has both

advantages and disadvantages. The advantages it offers is a very good modularity, as the FEC

works more or less as a plugin that can be added or removed without disrupting the modulator
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Figure 4.8: Fraction of data packet size dedicated to payload (blue) and frame error rate (pink) in the prototype.
The rest is occupied by the header, CRC32 and the preamble

or the demodulator. On the other hand, it might also be source of delays in the system, as data

is buffered and not passed from one module chain to the other until a whole frame has been

processed, and then it is enqueued before being processed by the other chain of modules.

In order to use the FEC modules in this independent way I have created two modules. One

of them is a message queue that will receive a message from a send function and will send it

to the next module without applying any transformation to the input data. The name of this

module is marcos_msg_q. The other module does the opposite function. It stores the messages

in a queue that will trigger a callback function in the Python script. The name of this module is

marcos_frame_sink. These two modules act like a door to and from a module chain. They are

not only usable for FEC, they can be used in any system in order to move data from a Python

script to a module chain and vice versa. Both modules are implemented in C++ and can be

found in the gnuradio-core library.

4.4.3 Performance and measurements for the FEC

The performance of the communications system has some meaning after the implementation of

the FEC. This section analyzes the performance of the system and shows the measurements

done to it that are related to the FEC. We will see the impact of the low SNR observed in the

received signal and how the FEC improves the throughput. Figure 4.8 shows a plot in which we

can see some relevant parameters that depend on the chosen size of the payload.

The first plot that we can see is the plot showing two measurements. First of all, in blue, we can

see the graph with the fraction of the data packet dedicated to payload. In this implementation

the data dedicated to synchronization and CRC is fixed. For each frame one OFDM symbol will

be dedicated to synchronization and equalization and four bytes will be dedicated to the CRC.

This means that the bigger the frame is, the better it will perform in terms of useful data to
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Figure 4.9: Throughput achieved by the prototype depending on the size of the payload of the frames

redundancy ratio. Unfortunately, the size of the frames can not be pushed to the limit because

of various reasons. First of all, a big frame can takes longer to be transmitted, and by the time

the transmission comes to an end, the synchronization could be lost. If this should happen, the

throughput would fall. This would be a problem in channels that change rapidly. An example of

these channels would be a channel in which the mobile terminal is moving. In our test scenario,

the channel is the air and the environment is the laboratory, an indoor space with very few

disruptions. The only cause that can interfere is the wireless LAN in the room, but it would not

change the channel’s impulse response for good. It would just generate interference when there

is activity in the network. This is why the graph shows that for bigger frame sizes we approach

to the limit of 0.5. This is because the used FEC has a rate of 1
2 , meaning that for each bit that

we want to send, two bits will be generated by the FEC encoder.

The pink graph is the frame error rate achieved, this is the number of frames that have been

decoded correctly by the FEC decoder. This graph shows that the error rate becomes higher

with the frame size. This results can be easily understood. The cause of this increase in the

frame error rate with the size can be caused by two factors. One of them is the possible loss

of synchronization, and the other one is the presence of a burst of interference that causes

enough erroneous bits to make the FEC decoder fail in the decoding process. Although both of

these reasons are logical and understandable, the synchronization failure seems more unlikely,

as it depends on the overall channel behaviour more than on the interferences. If the loss of

synchronization should be the problem, there should be a clear increase in frame loss from the

point the synchronization starts to fail. Also, knowing that the channel is more or less invariant

and knowing that the sychronization and channel estimation has been proven robust in most of

the tests it makes us think that the reason are the interferences caused by the low SNR of the

signal that we receive. Another factor that can be extracted from the graph is that the increase

of the frame error rate is lower than the increase of the frame size. It brings us to push the

frame size bigger. Figure 4.9 will show how that is translated into throughput.
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Table 4.2: Chosen set of parameters for the implemented prototype and performace measures

Parameter Values

Payload size 400 Bytes

System bandwidth 610 KHz
FFT Size 256

Used carriers 200
Carrier frequency 2.5 GHz

Throughput 95.2 Kbps

Frame error rate 45.6%
% of payload in frame 48%

BER (bit error rate) 0.83%

Spectral efficiency 0.156 bps
Hz

The throughput graph in Figure 4.9 shows some interesting results. The first thing that

we observe is that it is constantly increasing, so this means bigger frames will give better

results. However, we can not increase the size of the frame unendlessly. For bigger frames

we have observed that the computational resources used increase to the point of using up all

the computation capacity of the used PCs. The performance of the system with 2000 bytes of

payload starts to show flaws in the receiver, probably caused by the extra computation needed

for the FEC decoding. Should we increase the payload size to 4000 bytes, the system would

return errors and it would cease to receive frames. It also seems to have problems with the

buffer sizes at that time. However, the packet size should be kept high in order to achieve

good throughputs. This is, of course, only applicable to the laboratory’s environment or similar

indoor environments, as the channel is a critical factor in the performance of the system with

the frame size. We have chosen a packet size of 400 bytes, as it shows good results both in frame

error rate, and throughput. Table 4.2 shows the set of values used for these measurements as

well as the achieved throughput with those parameters and the spectral efficiency, that due to

its limitations is lower than other similar wireless systems like WiMAX, that is said to achieve

spectral efficiencies of more than 1
bps

Hz
.

4.5 Automatic repeat request protocol

The ARQ protocol is the Media Access Control (MAC) protocol meant to ensure the reliable

transmission by requesting re-sends of the erroneously received frames. This section explains

how this protocol has been implemented. This section will also explain the aspects of GNU

Radio that make the implementation of real time protocols in GNU Radio systems complicated.

4.5.1 The uplink channel

The first think that we needed to implement in order to have a real time system was an uplink

channel. Before starting with the implementation of the MAC layer, the communication system

was a unidirectional sender and receiver system, where the receiver never sent anything back to
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the sender. Therefore, in order to implement the ARQ protocol, the first ting needed was an

uplink channel.

The logical method for the implementation of an uplink channel was either time-division

duplexing (TDD) or frequency-division duplexing (FDD). If we choose TDD as the desired

way of implementing the uplink channel we will find a deep problem with the structure of

GNU Radio. GNU Radio’s architecture is aimed at streaming applications. Some of the first

examples that were implemented for GNU Radio are things like FM radio decoder. That kind

of applications don’t need a return channel, and GNU Radio is not well prepared to handle

it successfully. GNU Radio’s scheduler relies on a steady stream of input data to processing

blocks [16]. There are also many modules in the developed prototype that include buffers, and

the creation of the OFDM frames is not usually synchronised to anything in particular. There

are no simple means of synchronizing the creation of new data frames to certain events such

as the reception of a packet. However, some new modules are being implemented by the GNU

Radio developers to make GNU Radio friendly to TDD systems. These new modules are called

M-blocks, which stands for message blocks. The inclusion of these M-blocks will probably include

important changes in the Field-Programmable Gate Array (FPGA) in the USRP. There is also

the intention of making the GNU Radio all-C++, thus changing the Python code for C++. This

measure would probably make changes in the structure of the systems easier, as there would

not be such a strong dependence with how the modules are defined. The unfriendliness of GNU

Radio scheduler made us discard TDD as the chosen duplexing method.

The next option was FDD. We have seen in [3] that the USRP allows full duplex commu-

nications. The method proposed by the USRP manufacturer is FDD. There are some values

that are important to study the possible implementation of FDD in our system. The daughter-

board that we have been using is the RFX2400. It has an analog frequency range of 2.3 GHz

to 2.9 GHz. The daughterboards have a maximum transmission and receiving bandwidth of

30 MHz. This means that both channels (downlink and uplink) must be fit in these 30 MHz. In

our implementation, the bandwidth used is a scarce resource, as more bandwidth means more

computation needed for processing the data in the whole frequency band. The fact that we are

using a bandwith of 610 KHz means that we can not use all the bandwidth that we want. The

biggest issue that FDD would introduce in our system is a tradeoff between the bandwidth used

for a channel and the separation between the uplink and downlink channels. The USRP that

we are using has the transmission and reception antenna connectors phisically separated. This

introduces some isolation between the channels. However it is not always enough to balance the

difference in power of the incoming and the outcoming signals. In the ideal case of having the

whole 30 MHz available for our transmission and reception channels, we would need to find a

suitable balance between the bandwidth dedicated to each of the channels and the bandwidth

dedicated to isolation. This bandwidth would be left unused between the two channels in order

to improve the inter-channel interference caused by the big difference in power of the sent signal

and the received one. The biggest problem in our implementation is that we are using an OFDM

based communication system with tight bandwidth resources. OFDM is a broad spectrum mod-

ulation, which means that it needs to use a relatively broad frequency band in order to achieve
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good throughput. In our system the high computational power caused by FFT computations

and FEC decoding reduces the available bandwidth of the receiver. For this reason and due

to lack of time to re-structure the system, the FDD solution has also been discarded. Instead,

an auxiliary solution will be implemented based on wired Ethernet for the uplink channel and

the FDD based uplink channel will be proposed in the outlook as a possible solution for further

developments of the prototype.

The chosen return channel has been implemented through Ethernet. The data that needs to be

transfered back to the sender will be transfered through Ethernet. To enable that communication

Ethernet sockets have been created in the Python file of the top layer of the communication

system. The data sent to the sender by the receiver will not look like an OFDM symbol. The

needed data will be transmitted through the uplink channel in raw text format. In the next

section we will see how this auxiliary solution works.

4.5.2 Protocol implementation

The implementation of the ARQ protocol has used the Ethernet as the transmission method.

The implementation in the receiver sends an Ethernet message back to the sender through the

Ethernet socket when it receives a packet. The content of the message is the next message to

be sent by the sender. On the other side, the sender monitors the Ethernet socket to detect

incoming frames. Once a frame arrives it stores the next packet number that it needs to send

and sends a packet with that number. This mechanism has a problem. The delay between the

sending of one packet and the next causes the synchronization to be lost in many cases. This

causes the system to stop working as it should. The best performance has been achieved when

the sender has been sending packets all the time and only updating the packet number that was

being sent when an acknowledge message was received. One problem of this mechanism is that

the buffering of data packets that GNU Radio makes. Most of the time GNU Radio generates

a huge number of packets in a row (all of them with the same packet number) and then the

updating of the packet number has to wait until all this packets have been sent. This updating

of the packet number can take up to few minutes of time to occur.

The dual channel mode implemented in this prototype can only be considered a proof of

concept, but it still can not be used as a first final version. With some fine tuning of the

parameters of the system, such as delay between sending of packets, the performance of the

duplex communication can be improved a little bit, but always reducing the performance of the

simplex system. Therefore, no measurements have been made of the throughput of the system

with the ARQ protocol because its behaviour has not been good enough. In the case of using

the prototype for an educational purpose such as a laboratory course, the uplink channel should

work through FDD or TDD. This and the lack of time are the reasons why not a lot of effort

has been dedicated to this topic.
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4.6 Performance measurements and comparisons

This section puts into context the achieved performance of the communications system. It

will tell the causes of the problems found and it will compare some values with theoretical

measurements or other similar communication systems.

First of all I would like to measure the theoretical capacity of the channel used and compare

it with the capacity achieved. From that overall measurement I will mention the problems the

system has and I will deduct some interesting conclusions, that can be translated into future

developments of the project.

The capacity of a communications channel can be described by the Shannon-Hartley theorem

that depends on the SNR of the channel [22]:

C = Blog2(1 +
S

N
) (4.1)

Using the used bandwidth 610 KHz and the approximate SNR in linear scale, that was, roughly

said, around 3 dB that is 2 in linear scale. This rough measure is made by supposing a mean

amplitude of the noise of around half of the signal mean amplitude. From Figure 4.4 we could

say that the signal has amplitude 0.5 in absolute value and the noise around 0.25. Making use

of this roughly approximated data, we have the following result:

C = 610Klog2(1 + 2) = 966.83 Kbps (4.2)

This result is the maximum achievable channel capacity supposing that the channel is the one

we observed in Figure 4.4. In the presence of a better communication channel with about 30 dB

of SNR, the theoretical capacity of the channel would increase to around 2.4 Mbps.

The measurements of the throughput have been much lower than the maximum set by the

Shannon-Hartley theorem. The measured data comes from calculating the number received

frames per second and multiply that number by the number of bits of data in one frame.

Therefore, the goodput that comes from the payload of the successfully received frames is:

goodput = 29.75
frames

second
3200 bits = 95.2 Kbps (4.3)

This result is not a bad result taking into consideration that the total amount of data dedicated

to the payload is close to 30% of the total sent data. On Figure 4.10 we can see how the overhead

is distributed:

Figure 4.10 shows how the sent data (in samples) is distributed for each frame. The configu-

ration that the picture shows is the same one that gave the measured throughput. It is a case

scenario that should be usable not only in the laboratory, but also in outdoor environments,

due to its large cyclic prefix. However, we have seen in Section 4.3.3 that the cyclic prefix can

be reduced almost completely for the indoor environment. By doing this we should be able

to improve the percentage of payload data to around 47% of the total amount sent. Another

fact that limits the throughput is the amount of the total data sent that is dedicated to the

redundancy added by the FEC.

40



4 Implementation

Figure 4.10: Distribution of the data sent for each OFDM frame

Finally, the spectral efficiency has been obtained from the goodput and the bandwidth with

this formula:

SE =
goodput

bandwidth
=

95.2 Kbps

610 KHz
= 0.156

Kbps

Hz
(4.4)

This value is not very high. One of the main reasons that the spectral efficiency has not

reached levels similar to WiMAX (can reach more than 1Kbps
Hz

) or other wireless systems is

because we are using a BPSK modulation for the subcarriers, which only carries one bit for each

symbol. Other systems use at least QPSK and often 16QAM or 64QAM, which transmit 2, 4

or 6 bits in each symbol, respectively. Unfortunately, in our system we still can not implement

such modulations for the subcarriers because of the low SNR in the channel. If we look at the

constellation graph in Figure 4.4 we will easily see it is not wise to introduce a more complex

modulation. If the SNR in the system improves, we will see how the spectral efficiency improves

considerably.
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In this chapter I will explain briefly all the tasks that were realized for the completion of the

project. I will explain what this project has allowed and what the knowledge gained through

its realisation can be used for. Additionally, I will talk about the problems and limitations

found during the realisation of the project and I will propose some ways for improving the

implementation and its possible use in future lectures or practical courses.

This project has been conceived in order to implement a system that will allow us to ex-

periment with state of the art technology of wireless communications. The technologies and

protocols that have been dealt with for this project are the ones that our wireless devices will be

using in the next years, and they are also technologies that are being studied and taught in elec-

trical engineering courses. These facts motivate the creation of this project. The objective is to

have a working prototype system for wireless communications using OFDM in its physical layer

and reliable data transmission provided by an error correction mechanism and a retransmission

request protocol in the data link layer.

The first steps towards the realization of this project where both theoretical and practical.

The ideas behind OFDM had to be clear in order to successfully implement it in software and a

basic knowledge of the platform used was also a requirement. Thus, the first stage of the project

was to familiarize myself with the tools and technologies that I would be using from that point

on. The installation of the GNU Radio software was not very complicated, but it was not trivial,

as there were many versions available. In order to get familiarized with the environment, I tried

to run and understand basic examples.

Luckily, GNU Radio provides some examples that can be successfully executed without chang-

ing any line of code. This was a very convenient fact that compensated the scarce documentation

that GNU Radio provides. The problem of documentation makes the implementation slower,

as in order to understand the behaviour of a module it is sometimes needed to apply reverse

engineering from the working examples.

After experimenting with the first applications, and in order to understand more the behav-

iour of the USRP2 boards that I was going to use I decided to make a test application that

would create a signal with a peak that moved along the usable spectrum. This is the example

application explained in section 3.4. This application was implemented by using existing mod-

ules provided by GNU Radio and creating a Python script that would create the flow graph an

set the parameters for each used module. This application proved to be of great importance

because of the experience gained with the Python scripts and because of the things we learned

by it. We could understand some of the limitations of the USRP2 boards in terms of distortion.

We used a spectrum analyzer to see how the signal was transmitted in all the frequencies that

we would later use in the final implementation.
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Figure 5.1: Spectrum of the OFDM signal with 1’s and 0’s in its subcarriers

The next step was the implementation of a transmitter that would send constant values in

each of the subcarriers of an OFDM signal. This example was implemented in order to see

how the OFDM signal was transmitted by the USRP2 boards and to check the bandwidth

limitations that we would probably have. The SNR in the subcarriers was also analyzed by

comparing subcarriers with and without signal. The results where positive and helped us see

that the centre frequencies and the edges of the used spectrum would probably have a worse

behaviour. Figure 5.1 shows a capture of this spectrum where these facts can be seen.

After studying the previous applications a working version of the real OFDM transmitter was

implemented. It used BPSK in all of its subcarriers. The receiver was at that time implemented

in the same process as the sender, as we were using one of the Python Scrips included with

GNU Radio, so it required the separation of the application for sender and receiver and the

setup of the synchronization phase. It presented some complications mostly because of the

badly documented synchronization modules, that had to be understood mostly through their

source code. In this case the modules started to get complicated and a deeper understanding of

how GNU Radio works was necessary. In Figure 5.2 we can see how the preambles were found

by the correlation in the synchronization process.

With the synchronization successfully running the next step was the implementation of the

FEC algorithm. This task proved to be the most complicated. Unfortunately the implementation

of the trellis package of GNU Radio didn’t support FEC with soft bits with BPSK in the

subcarriers. This fact and the fact that the OFDM modules were bound together in a way that

it was hard to insert new modules between them made the implementation of the FEC algorithm

complicated.

In the end, the ARQ protocol was implemented, but the problems that GNU Radio has

with TDD and the lack of bandwidth that would allow us to use FDD forced the protocol to

run through an auxiliary wired connection encapsulated in Ethernet frames. Additionally the

performance shown by the use of the dual channel was deceiving and it was left as a pending

issue due to lack of more time to dedicate to that cause.

The most interesting enhancement that can be made to the implementation is the implemen-

tation of the duplex mode via wireless. From my experience I could say that the way that looks
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Figure 5.2: Synchronization of the preambles

more realistic is by implementing it by using FDD. GNU Radio supports FDD so the GNU

Radio architecture wouldn’t need any changes. Then, there should be a balance point between

the bandwidth dedicated to the transmitted OFDM signal, the free bandwidth that would avoid

interference between the sending and receiving signal and the computational resources used.

Another interesting enhancement for the system would be the possibility to allow multiple

users to be transmitting to the same receiver, and also the use of different modulations for

each of the subcarriers. This would make the system interesting allowing us to test the channel

capacity and the behaviour of the system in different load situations.

Finally, this communications system can be used for lectures or practical courses, allowing

users to rapidly understand many of the concepts explained in the lessons that are critical in

wireless communications. For that purpose I would propose the inclusion of this prototype in

the modules that can be controlled by GNU Radio’s graphical interface, the GRC. By doing

that the learning time needed to understand the usage of the application would be shortened a

great deal, allowing lecturers and students to spend their time optimally in the concepts related

to the wireless communications and not in learning how to interpret Python code.
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Appendix A: Advanced GNU Radio concepts

This section briefly explains some concepts that are not necessary to know for the basic usage

of GNU Radio, but they become necessary as we start developing new modules or when we

want to understand in detail the behaviour of each of the modules in terms of buffering, CPU

load or time it takes to complete it’s job. First I will give some insight into the creation of new

C++ signal processing modules. Afterwards I will explain some concepts about GNU Radio’s

scheduler.

A.1 Creation of new C++ signal processing modules

As GNU Radio is free software it allows its users to modify and create everything about it.

However, it tries to encourage its users to create new software modules by providing some

documentation for it [4]. For the creation of new modules a few things must be taken into

account by the programmer. First of all the modules will have to be defined in C++ and they

must be derived classes of the class gr_block or one of its subclasses. This procedure converts

the class into a GNU Radio block by defining things like its name or inputs and outputs in

a standardized way. Secondly, all modules must contain a method called general_work that

will compute the results that will be outputted from the data read from the input streams.

After creating the C++ block following these guidelines we also need to create a file that acts

as a kind of glue between Python and C++ code. It is the Simplified Wrapper and Interface

Generator (SWIG) .i file. This file looks like a header file and it is used by Python to understand

the module’s ports and parameters, as well as its default values.

The creation of a new module is not a complicated task, but it can become tricky because of

the few documentation for it. The same way the creation of a new module requires to follow

some rules, if we want to create a new package we must also learn how to do it by looking at

other modules and doing reverse engineering. My experience working on this project made me

come to the conclusion that customizing GNU Radio is easiest by using a simple module as an

example and editing its contents. It has proven to be the easiest and quickest way to have a

custom module in the system.

A.2 Flowgraphs and scheduler

For applications that have significant constraints, let it be time constraints or computational

ones, we will understand that the performance of each module according to these constraints is

a key factor for the success of our application. GNU Radio has been working on the scheduling

algorithm, as it has been very commented due to its impact on the performance of applications.
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Originally the whole flow graph of GNU Radio was run through one single thread, but since 2008

a new scheduler has been implemented in order to allow one thread per block, thus increasing

the control over the scheduler. It is important to keep in mind the scheduling problems that

can occur in the programming stage. A good application will keep a balance throughout the

modules and its buffers in order to avoid modules becoming bottlenecks.
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