
Title: Too much duplicating patterns represent non-
regular languages

Author: Ramos Garrido, Lander

Advisor: Godoy Balil, Guillem

Department: Llenguatges i Sistemes Informàtics

Academic year: 2010/11

MSc in Applied
Mathematics

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons

https://core.ac.uk/display/301205474?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Universitat Politècnica de Catalunya

Facultat de Matemàtiques i Estad́ıstica

Tesi de màster

Too Much Duplicating Patterns
Represent Non-Regular Languages

Lander Ramos Garrido

Advisor: Guillem Godoy Balil

Llenguatges i Sistemes Informàtics

Abstract

A constrained term pattern s : ϕ represents the language of all instances of the
term s satisfying the constraint ϕ. For each variable in s, this constraint specifies
the language of its allowed substitutions.

Regularity of languages represented by sets of patterns has been studied for a long
time. This problem is known to be co-NP-complete when the constraints allow each
variable to be replaced by any term over a fixed signature, and EXPTIME-complete
when the constraints restrict each variable to a regular set.

Duplicated variables in the terms of the patterns are often the cause of non-
regularity. This is because duplications force to test equalities between subterms.
In fact, for the specific classes of constraints mentioned above, if all patterns are
linear, then the represented language is necessarily regular. In this paper we focus
on the opposite case, that is when there are patterns with “too much” duplicated
variables.

We prove that when each pattern of a set has a duplicated variable constrained to
an infinite language, then the language represented by the set is necessarily non-
regular. We prove this result independently on the kind of constraints used, just
assuming that they are mappings from variables to arbitrary languages.

Our result provides an efficient procedure for detecting, in some cases, non-
regularity of images of regular languages under tree homomorphisms.

Contents

Introduction 1

Chapter 1. Preliminaries 3
1.1. Terms 3
1.2. Positions 4
1.3. Subterms 4
1.4. Functions on terms 5
1.5. Substitutions 6
1.6. Automata 6
1.7. Tree Homomorphisms 9

Chapter 2. Non-regular sets of patterns 13
2.1. Too much duplicating sets of patterns 13
2.2. Uneven terms 14
2.3. Non-regularity proof 16

Chapter 3. Non-regularity detection for tree homomorphisms 19
3.1. Recursive pattern descriptions 19
3.2. The algorithm 21

Chapter 4. Conclusions 25

References 27

1

Introduction

A constrainted term pattern (or just a pattern) is a pair s : ϕ, where s is a term
and ϕ maps each variable occurring in s to a term language. The pattern s : ϕ
represents the language of all terms obtained from s by replacing each variable
x occurring in s by a term in ϕ(x). Thus, ϕ constraints the instances of s by
restricting the possible substitutions of each variable.

Patterns are a widely used formalism in computer science to represent languages.
As with many other representation formalisms, one is frequently interested in solv-
ing questions like whether a given term belongs to a language, or set inclusion
between languages. Another important question is to determine whether the lan-
guage represented by a set of patterns is (tree) regular, i.e. recognizable by a tree
automaton [CDG+07]. This question is relevant because regularity allows a more
tractable representation formalism with better properties for the represented lan-
guage.

The expressive power and decidable properties of patterns depend on the mechanism
used to describe the constraints. For example, for unrestricted patterns, i.e. when
we allow to replace each variable by any term over a fixed signature, regularity has
been proved co-NP-complete [VG92, KR99]. And it is EXPTIME-complete when
the constraints restrict each variable to a regular set [GGM09].

Terms with variables occurring at least twice in the term and constrained to an
infinite language are often the cause of non-regularity. For example, a pattern of
the form f(x, x) : ϕ, where ϕ maps x to an infinite language, represents a non-
regular set, since tree automata have a finite number of states and cannot test for
equalities between subterms.

In contrast to patterns with duplicated variables, linear patterns, i.e. the ones where
each variable occurs at most once in the term, increase the chance of regularity.
For example, for unrestricted patterns and for patterns with regular constraints, if
all patterns are linear, then the represented language is necessarily regular.

In this paper we focus on proving non-regularity when the patterns of a given set
have “too much” duplicated variables. More precisely, we prove that when each
pattern of a set has a duplicated variable constrained to an infinite language, then
the language represented by the set is necessarily non-regular. This property holds

1

2 INTRODUCTION

independently on the kind of constraints used, i.e. we just assume that they are
mappings from variables to arbitrary languages.

Finally, we apply our result to show an efficient (linear time) algorithm that detects,
in some cases, non-regularity of images of regular languages under tree homomor-
phisms. The general case of testing regularity of the image of a regular language
by a tree homomorphism has been proven to be decidable, but its time complexity
has not yet been proved better than a tower of three exponentials [GGRÀ10]. In
fact, this more general problem is EXPTIME-hard [GGM09].

The results presented here have been obtained working with Carles Creus and
Guillem Godoy, and have been submitted to the Journal of Applicable Algebra in
Engineering Communication and Computing [CGR].

The paper is structured as follows. In Chapter 1 we present basic preliminar def-
initions used in the rest of the paper. In Chapter 2 we define pattern, too much
duplicating sets of patterns, and prove that they always represent non-regular lan-
guages. In Chapter 3 we apply our result on patterns to detect, in some cases,
the non-regularity of the image of a regular language by a tree homomorphism. In
Chapter 4 we conclude.

Chapter 1

Preliminaries

We denote by N the set of positive integers. We denote the set of finite sequences
over N by N∗, and the empty sequence by λ. We denote such sequences as positive
integers separated by points, as in the following example:

Example 1.1. Examples of sequences in N∗ are λ, 1, 2, 10, 1.1, 2.4 and 1.2.3.n
for n ∈ N. Infinite sequences like 1.1.1.1. . . . are not in N∗.

The powerset of a set S is denoted by 2S .

1.1. Terms

A ranked signature is a couple (Σ,Arity), where Σ is a finite set and Arity is a
mapping from Σ into N. The arity of a symbol f ∈ Σ is Arity(f). The set of
symbols of arity m is denoted by Σ(m). We sometimes denote Σ explicitly as
{f1 : m1, . . . , fn : mn}, where f1, . . . , fn are the function symbols and m1, . . . ,mn

are the corresponding arities. Symbols in Σ(0), called constants, are denoted by
a, b, c, d, e, with possible subscripts. Elements of arity p are called p− ary symbols.
We assume that Σ contains at least one constant. The elements of a set X of
variable symbols are denoted by x, y, z with possible subscripts. We assume that
X and Σ are disjoint.

The set T (Σ,X) of terms over Σ and X , is the smallest set satisfying:

• Σ(0) ⊆ T (Σ,X)
• X ⊆ T (Σ,X)
• if m ≥ 1, f ∈ Σ(m), and t1, . . . , tm ∈ T (Σ,X) then f(t1, . . . , tm) ∈ T (Σ,X)

The set of variables occurring in a term t is denoted vars(t). A term t is called
linear if each variable occurs at most once in t. A term t is called ground if t
contains no variables. The set of all ground terms over Σ is denoted T (Σ).

Example 1.2. Let Σ = {f : 2, a : 0, b : 0} and X = {x, y}. Examples of terms in
T (Σ,X) are:

• t1 = a

3

4 1. PRELIMINARIES

• t2 = f(a, a)
• t3 = f(b, x)
• t4 = f(a, f(a, b))
• t5 = f(f(a, x), f(b, x))

Examples like f , x(a) or g(c) are not terms in T (Σ,X), since either the arity does
not match, or there are symbols not in Σ nor X .

Terms t1, t2 and t4 are ground terms. The term t3 is linear, but the term t5 is non
linear. Terms can be represented in a graphical way. For example, the term t4 is
represented by:

f

a f

a b

1.2. Positions

A position is a sequence of natural numbers, i.e. an element of N∗. Given two
positions p and p′, we denote as p.p′ the concatenation of the positions p and p′.

The set of positions of a term t, denoted Pos(t), is the smallest set defined by:

• λ ∈ Pos(t)
• If t = f(t1, . . . , tm) and m ≥ 1 then ∀i ∈ {1, . . . ,m}, {i.p | p ∈ Pos(ti)} ⊂
Pos(t).

Example 1.3. The positions of the terms in Example 1.2 are:

• Pos(t1) = {λ}
• Pos(t2) = {λ, 1, 2}
• Pos(t3) = {λ, 1, 2}
• Pos(t4) = {λ, 1, 2, 2.1, 2.2}
• Pos(t5) = {λ, 1, 1.1, 1.2, 2, 2.1, 2.2}

The length of a position is denoted as |p|. It can be defined recursively as |λ| = 0
and |i.p| = 1 + |p|. A position p1 is a prefix of a position p, denoted p1 ≤ p, if there
is a position p2 such that p1.p2 = p holds. Also, p1 is a proper prefix of p, denoted
p1 < p, if p1 ≤ p and p1 6= p hold. Two positions p, p′ are parallel, denoted by p||p′,
if p 6≤ p′ and p′ 6≤ p hold.

1.3. Subterms

The subterm of a term t at a position p, denoted t|p, is defined recursively as follows:

• t|λ = t
• f(t1, . . . , tm)|i.p = ti|p

1.4. FUNCTIONS ON TERMS 5

The replacement of a term t at a position p by a term s, denoted t[s]p, is defined
recursively as follows:

• t[s]λ = s
• f(t1, . . . , tm)[s]i.p = f(t1, . . . , ti[s]p, . . . , tm)

The root of a term t = f(t1, . . . , tm) is root(t) = f . A term t over Σ can be seen
as a function from its set of positions into Σ. For this reason, we shall denote by
t(p) the symbol labeling t at position p, i.e. t(p) = root(t|p).

Example 1.4. Let Σ = {f : 2, g : 1, a : 0} and X = {x} be signatures. Let t be the
following term over T (Σ,X):

f

g

g

a

f

g

x

b

The subterm of t at position 2.1 is s := t|2.1 = g(x). The replacement t[s]2 is
f(g(g(a)), g(x)). The root of t is f and the root of s is g. We can also see s as a
function from {λ, 1} to Σ ∪ X , defined as s(λ) = g and s(1) = x.

1.4. Functions on terms

The height of a term t, denoted height(t), is defined recursively as follows:

• height(t) = 0 if t ∈ Σ(0),
• height(t) = 0 if t ∈ X ,
• height(f(t1, . . . , tm)) = 1 + max(height(t1), . . . , height(tm)) if root(t) ∈

Σ(i), with i ≥ 1.

Example 1.5. Let Σ = {f : 2, g : 1, a : 0} and X = {x} be signatures. Let t be the
following term over T (Σ,X):

f

g

g

a

f

g

x

b

Then height(t) = 3. The corresponding heights of each subterm are:

• height(t|1) = 2
• height(t|1.1) = 1
• height(t|1.1.1) = 0

6 1. PRELIMINARIES

• height(t|2) = 2
• height(t|2.1) = 1
• height(t|2.1.1) = 0
• height(t|2.2) = 0

1.5. Substitutions

A substitution σ is a mapping from variables in X to terms in T (Σ). We denote
a substitution σ as σ = {x1 7→ t1, . . . , xn 7→ tn}, where xi ∈ X and ti ∈ T (Σ) for
i ∈ {1, . . . , n}, meaning that σ(xi) = ti. A substitution can be extended to terms
in T (Σ,X) in such a way that by σ(f(t1, . . . , tm)) = f(σ(t1), . . . , σ(tm)) for terms
different from variables.

Example 1.6. Let Σ = {f : 2, g : 1, a : 0} and X = {x, y} be signatures. Let σ be
{x 7→ f(b, g(a)), y 7→ a}, and let t be the following term:

f

x f

g

x

y

Then σ(t) will be the following term:

f

f

b g

a

f

g

f

b g

a

a

1.6. Automata

A tree automaton (TA) is a tuple A = 〈Q,Σ, F,∆〉, where Q is a set of states, Σ is a
ranked signature, F ⊆ Q is the subset of final states (also called accepting states),
and ∆ is a set of rules of the form f(q1, . . . , qm) → q, where q1, . . . , qm, q ∈ Q and
f ∈ Σ(m). A Deterministic and Complete Tree Automata (DCTA) satisfies that
given a symbol f ∈ Σ(m), and a sequence of m states q1, . . . , qm, there exists a
unique rule (f(q1, . . . , qm)→ q) in ∆.

1.6. AUTOMATA 7

The size of A is defined by |A| = |Q|. Note that the actual size of an automaton
(i.e., the number of rules) might be exponential on the number of states, but in this
paper we will have enough with this definition.

Tree automata over a signature Σ run on ground terms over Σ. An automaton
starts at the leaves and moves upward, associating along a run a state with each
subterm inductively. Intuitively, we can apply a rule r := (f(q1, . . . , qm)→ q) ∈ ∆
to a term t in T (Σ ∪ Q) in the following way: if there is a position p ∈ Pos(t)
such that t|p = f(q1, . . . , qm), then we can apply the rule r to t, obtaining a term
t′ = t[q]p.

Example 1.7. Let A = 〈Q,Σ, F,∆〉 a TA where F = Q = {q}, Σ = {f : 2, a : 0}
and ∆ = {a→ q, f(q, q)→ q}. Then, we can apply rules to the following term t:

f

f

a a

a

Obtaining the following sequence of terms:

f(f(a, a), a)→ f(f(a, a), q))→ f(f(q, a), q))→ f(f(q, q), q)→ f(q, q)→ q

This intuitive concept can be expressed using runs, defined as follows:

A run r of a TA A on a term t is a function r : Pos(t)→ Q satisfying that, for each
position p ∈ Pos(t), if t|p is of the form f(t1, . . . , tm), then there exists a rule of the
form f(q1, . . . , qm) → q in ∆ such that r(p.1) = q1, . . . , r(p.m) = qm and r(p) = q
hold.

Note that, in the case of Deterministic Tree Automata (DCTA), given a term t
there exists a unique run r on t. This fact can be proven inductively, starting on
the leaves of the term, where we will only be able to apply one rule. In the case
of the term t of the Example 1.7, the run r of A on t is defined by r(λ) = r(1) =
r(1.1) = r(1.2) = r(2) = q.

A run can also be expressed as a labeled tree, i.e. a term with unfixed rank. The
set of positions of a run r on a term t will be Pos(t), and the label of each position
p ∈ Pos(t) will be r(p). In the previous example, we can express r as the following
tree:

q

q

q q

q

A run r is accepting if r(λ) is accepting. A term t is accepted or recognized by A
if there exists an accepting run of A on t. In the case of DTA, a term t is accepted
by A if the unique run r of A on t is such that r(λ) ∈ F

8 1. PRELIMINARIES

Example 1.8. Let A = 〈Q,Σ, F,∆〉 be a TA where Q = {q0, q1}, F = {q0},
Σ = {f : 2, a : 0, b : 0}, and ∆ is the following set of rules:

• a→ q1

• b→ q0

• f(q0, q0)→ q0

• f(q0, q1)→ q1

• f(q1, q0)→ q1

• f(q1, q1)→ q0

Note that A only accepts the terms over Σ having an even number of a’s.

Example 1.9. Let A = 〈Q,Σ, F,∆〉 be a TA where Q = {qa, qf , qg}, F = {qg},
Σ = {a : 0, g : 1, f : 2} and ∆ is the following set of rules:

• a→ qa
• g(qa)→ qg
• g(qf)→ qg
• g(qg)→ qg
• f(qa, qa)→ qf
• f(qa, qf)→ qf
• f(qa, qg)→ qf

• f(qf , qa)→ qf
• f(qf , qf)→ qf
• f(qf , qg)→ qf
• f(qg, qa)→ qf
• f(qg, qf)→ qf
• f(qg, qg)→ qf

Some examples of terms recognized by A are g(a), g(g(a)), g(f(a, a)) and
g(f(a, g(a))), with runs qg(qa), qg(qg(qa)), qg(qf (qa, qa)) and qg(qf (qa, qg(qa))) re-
spectively. On the other hand, it is not difficult to see that terms like f(a, a), a,
f(g(a), a) or f(a, f(a, a)) are not recognized by A, since there does not exist a run
r on any of those terms holding r(λ) = qg.

A language over Σ is a set of ground terms. The language recognized by A, denoted
L(A), is the set of terms accepted by A. By L(A, q) we denote the set of terms for
which there exists a run r of A holding r(λ) = q.

Example 1.10. In the Example 1.9 it is straightforward to see that L(A, q) = {a},
L(A, qf) is the set of terms whose root is f , and L(A, qg) is the set of terms whose
root is g. Therefore the language recognized by A is the language {g(t) | t ∈ T (Σ)}.

We say that a language L is regular if there exists a TA A such that L(A) = L.

Example 1.11. Some examples of regular languages are ∅, recognized by an au-
tomaton with no accepting states, T (Σ), recognized by an automaton in which every
state is accepting, all the finite languages, and the set of terms whose root belongs
to a subset of Σ, like the one of the Example 1.9.

A classical example of non-regular language is the set of complete terms over Σ =
{f : 2, a : 0}, i.e., the smallest language L such that:

• a ∈ L
• If t ∈ L, then f(t, t) ∈ L

1.7. TREE HOMOMORPHISMS 9

This language is well known to be non-regular, as stated in [GGJ09]. In order to
prove this fact, we proceed by contradiction and supose that there exists a DCTA
A recognizing L. The size of A must be finite. Since there are infinite complete
terms, by the pigeonhole principle there exist two different terms, t1 and t2, having
accepting runs reaching the same state. Since f(t1, t1) is also complete, it must be
accepted by A. Hence, the uncomplete tree f(t1, t2) must also be accepted, which is
a contradiction.

Given a TA A, a term t and a run r of A on t, we define r|p as the run of A on
t|p described by r|p(p′) = r(p.p′). In addition, given a run r′ of A on a term t′

and satisfying r′(λ) = r(p), we define r[r′]p as the run of A on t[t′]p described by
r[r′]p(p

′) = r(p′) for positions p′ holding p 6≤ p′, and by r[r′]p(p.p
′) = r′(p′).

1.7. Tree Homomorphisms

Tree homomorphisms are a generalization of homomorphisms for words to the case
of arbitrary ranked alphabets. In the word case, it is known that the class of
regular sets is closed under application of homomorphisms and inverse homomor-
phisms. The situation is different in the tree case because whereas recognizable
tree languages are closed under inverse homomorphisms, they are closed only under
particular homomorphisms, like for example linear homomorphisms (duplication of
terms does not take place). First, we define tree homomorphisms.

Let Σ,Σ′ be two signatures. A tree homomorphism is a function φ : T (Σ)→ T (Σ′)
which can be defined as follows.

Let Xm represent the set of variables {x1, . . . , xm} for each natural number m. The
definition of a tree homomorphism φ : T (Σ) → T (Σ′) requires to define another
function φΣ, which given a symbol f ∈ Σ(m), it maps f into a term tf ∈ T (Σ′,Xm)

After that, we can define recursively φ(t), where t ∈ T (Σ), as follows:

• φ(a) = ta if a ∈ Σ(0)

• φ(f(t1, . . . , tm)) = {x1 7→ φ(t1), . . . , xm 7→ φ(tm)}(tf) otherwise

Example 1.12. Let Σ = {h : 3, a : 0, b : 0} and Σ′ = {f : 2, a : 0, b : 0}. Let us
consider the tree homomorphism φ determined by φΣ defined by:

• φΣ(h) = f(x1, f(x2, x3))
• φΣ(a) = a
• φΣ(b) = b

For instance, let t be the following term over Σ:

h

a h

b b b

a

10 1. PRELIMINARIES

Then, φ(t) will be the following term over Σ′:

f

a f

f

b f

b b

a

As we can see, the homomorphism φ defines a transformation from ternary trees
into binary trees.

We can extend the definition of a homomorphism to languages in the natural way.
Given a language L ⊆ T (Σ), we define φ(L) as {φ(t) | t ∈ L}. The following
example shows that tree homomorphisms do not always preserve recognizability.

Example 1.13. Let Σ = {g : 1, a : 0} and Σ′ = {f : 2, a : 0}. Let L the language
gn(a), i.e., T (Σ). It is straightforward to see that L is regular, beause it is the
language recognized by A = 〈{q},Σ, {q},∆〉, where ∆ = {a→ q, g(q)→ q}.

Now let φ be the homomorphism determined by φΣ defined by:

• φΣ(a) = a
• φΣ(g) = f(x1, x1)

It is easy to see that φ(L) is the set of complete terms over T (Σ′). In Example 1.11
we saw that this language is not regular. Therefore homomorphisms do not always
preserve regularity.

Example 1.14. Let A = 〈Q,Σ, F,∆〉 be the automaton of Example 1.8. Consider
the tree homomorphism φ : T (Σ)→ T ({g : 2, a : 0}) determined by φΣ defined by:

• φΣ(a) = a
• φΣ(b) = a
• φΣ(f) = g(x1, x1)

Note that φ(L(A)) is again the set of complete trees over binary g and nullary a,
which is not regular, according to Example 1.11.

We show graphically how this tree homomorphism transforms a term in T (Σ) to a
term in T ({g : 2, a : 0}):

φ

f

f

b a

a

= g

φ

f

b a

φ

f

b a

= g

g

φ

b

φ

b

g

φ

b

φ

b

= g

g

a a

g

a a

1.7. TREE HOMOMORPHISMS 11

A tree homomorphism φ is linear if for each f ∈ Σ of arity m, φΣ(f) = tf is a linear
term in T (Σ′,Xm), i.e., each variable appears at most once in tf . If φ is a linear
tree homomorphism and L is a regular language, then φ(L) is a regular language.
The proof of this fact can be found in [CDG+07].

Chapter 2

Non-regular sets of patterns

In this chapter we will prove the non-regularity of a set of patterns when they
hold some properties, namely that they have duplicated variables constrained to
infinite languages. We first give a formal definition of our problem in Section 2.1.
In Section 2.2 we define some properties on ground terms that will easen the proof
of non-regularity, which is given in Section 2.3.

2.1. Too much duplicating sets of patterns

We define a pattern as a term plus constraints for the variables occurring in the
term. The constraint of a variable is an arbitrary language of ground terms. An
instance of the pattern is obtained by applying a substitution, where each vari-
able must be replaced by a term belonging to the corresponding constraint to the
variable.

Definition 2.1. A pattern is a pair s : ϕ where s is a term in T (Σ,X) and ϕ is a
function ϕ : vars(s)→ 2T (Σ), i.e. a function mapping each variable occurring in s
to an arbitrary language of ground terms.

The language defined by s : ϕ, denoted L(s : ϕ), is {t | ∃σ : (t = σ(s) ∧ ∀x ∈
vars(s) : (σ(x) ∈ ϕ(x)))}. A term t is an instance of s : ϕ if t is in L(s : ϕ). The
language defined by a set of patterns S is

⋃
s:ϕ∈S L(s : ϕ).

Example 2.2. In all the examples of this section, we will use the signature Σ =
{a : 0, f : 2}.

Consider the pattern s : ϕ = x : {x 7→ {f(t, t) | t ∈ T (Σ)}}. Note that L(s : ϕ) =
{f(t, t) | t ∈ T (Σ)} is not regular althought s is linear.

Consider the set of patterns S = {f(x, x) : {x 7→ T (Σ)}, y : {y 7→ T (Σ)}} Note
that L(S) = T (Σ) is regular although S contains a pattern with a duplicated variable
constrained to an infinite language. This is because the language of the other pattern
is regular and contains the language of the first pattern.

Consider the set of patterns S = {f(x, x) : {x 7→ T (Σ)}, y : {y 7→ {f(t1, t2) |
t1, t2 ∈ T (Σ) ∧ t1 6= t2}}}. Note that L(S) = T (Σ) \ {a} is regular although S

13

14 2. NON-REGULAR SETS OF PATTERNS

contains two patterns with disjoint associated languages, and one of them has a
duplicated variable constrained to an infinite language.

In this paper we focus on patterns that have duplicated variables constrained to an
infinite language, which are defined as follows.

Definition 2.3. A pattern s : ϕ is too much duplicating if L(s : ϕ) is not empty
and there exists a variable x occurring in at least two different positions of s such
that |ϕ(x)| is infinite.

A non-empty finite set of patterns S is strongly too much duplicating if each s : ϕ
in S is too much duplicating.

A non-empty finite set of patterns S is weakly too much duplicating if for each s : ϕ
in S, either s : ϕ is too much duplicating or L(s : ϕ) is finite, and at least one of
the patterns in S is too much duplicating.

2.2. Uneven terms

In this Subsection we give some properties on ground terms. These properties are
later used in the proof of non-regularity of strongly too much duplicating set of
patterns. We start by defining a set of positions of a term having “tall enough”
subterms.

Definition 2.4. Let t be a term in T (Σ). Let h,H be natural numbers. We define
PoshH(t) as the set of positions p in Pos(t) satisfying |p| ≤ h and height(t|p) ≥ H.

Note that PoshH(t) is closed by prefix and (height(t) < H ⇔ PoshH(t) = ∅) holds.
The following statements are also straightforward.

Example 2.5.

• If t = f(a, a), h = 2 and H = 3, then PoshH(t) = ∅, because height(t) = 1 <
H = 3.

• Let t be the following term:
f

f

a a

a

Let h = 1 and H = 2, then PoshH(t) = {λ} because |λ| = 0 ≤ h = 1 and
height(t|λ) = 2 ≥ H = 2. No other position p fullfils the conditions.
• Let t be as in the previous case, h = 1 and H = 1, then PoshH(t) = {λ, 1}

follows similarly to the previous case. But, if we take h = 0 and H = 1, then
PoshH(t) = {λ} since |1| = 1 > h = 0.

Lemma 2.6. Let h be a natural number. Then, there exists a natural number K
such that, for all term t in T (Σ) and all natural number H, |PoshH(t)| < K holds.

2.2. UNEVEN TERMS 15

Proof. Since the signature Σ is finite and the arity of each function symbol is
finite, then the number of different positions p satisfying |p| ≤ h in terms t ∈ T (Σ)
is bounded. ut

Lemma 2.7. Let h,H be natural numbers. Let t, s be terms of T (Σ). Let p
be a position of t satisfying height(t|p) < height(s) and p /∈ PoshH(t). Then
PoshH(t) ⊆ PoshH(t[s]p).

Proof. We consider any position p̄ in PoshH(t) and prove p̄ ∈ PoshH(t[s]p). Note
that height(t|p̄) ≥ H and |p̄| ≤ h. Moreover, since p /∈ PoshH(t) holds, either
|p| > h or height(t|p) < H hold. Thus, p cannot be a prefix of p̄. Moreover, since
height(t|p) < height(s) holds, height(t|p̄) ≤ height(t[s]p|p̄) also holds. Thus,
H ≤ height(t[s]p|p̄) holds, and hence p̄ ∈ PoshH(t[s]p) follows. ut

Now we define the set of uneven terms. An uneven term t is a ground term such
that it is guaranteed that it has subterms with different height at the positions of
PoshH(t). This property is later used to show that a specific term cannot be an
instance of some patterns with duplicated variables.

Definition 2.8. Let h,H be natural numbers. We define UhH as the set of terms t
satisfying that for each pair of different positions p1, p2 ∈ PoshH(t), height(t|p1) 6=
height(t|p2) holds.

The following property and example are straightforward by the definition of UhH .

Proposition 2.9. Let h,H be natural numbers. Let t be a term satisfying
height(t) < H. Then t ∈ UhH .

Proof. Since height(t) < H, PoshH(t) is empty, and hence, t ∈ UhH trivially
holds. ut

Example 2.10.

• Let t be the following term:
f

f

a a

f

a a

Then t ∈ U1
2 holds because Pos1

2(t) = {λ} holds and hence there are no two
different positions in Pos1

2(t). But t /∈ U1
1 because Pos1

1(t) = {λ, 1, 2} and
height(t|1) = height(t|2) holds.
• If t = f(a, a) then t ∈ Uh2 , for all h ≥ 0, as stated in Proposition 2.9.

We now give two lemmas with important properties on uneven terms. First we
show that the positions of a term having subterms with equal height cannot be
in PoshH , if the term is uneven. Next, we show which conditions must hold in a
replacement of a subterm in order to preserve the unevenness.

16 2. NON-REGULAR SETS OF PATTERNS

Lemma 2.11. Let h,H be natural numbers. Let t be a term in UhH . Let p1, . . . , pm
be different positions in Pos(t), with m ≥ 2, and satisfying |p1|, . . . , |pm| ≤ h and
t|p1 = . . . = t|pm . Then, p1, . . . , pm 6∈ PoshH(t) holds.

Proof. Since t|p1 = . . . = t|pm holds, height(t|p1) = . . . = height(t|pm)
also holds. Hence, since |p1|, . . . , |pm| ≤ h, either all p1, . . . , pm are in
PoshH(t) or none of them is. The first case is not possible, since otherwise, all
height(t|p1), . . . , height(t|pm) should be different because t is in UhH . ut

Proposition 2.12. Let t, s be terms in T (Σ), and let p be a position of t satisfying
height(t) > |p|+height(t|p) and height(t) > |p|+height(s). Then, height(t) =
height(t[s]p) holds.

Proof. Note that height(t) = Maxp̄∈Pos(t)|p̄| holds. By the assumption
height(t) > |p| + height(t|p) the position with maximum length in Pos(t) is also
a position in Pos(t[s]p). By the assumption height(t) > |p|+ height(s), there are
no larger positions in Pos(t[s]p). Thus, height(t) = height(t[s]p) follows. ut

Lemma 2.13. Let h,H be natural numbers. Let t be a term in UhH . Let s be a term
in T (Σ), and let p be a position of t satisfying |p| ≤ h and height(t|p), height(s) <
H − h. Then t[s]p ∈ UhH .

Proof. In order to conclude, we must prove that, for any two different positions
p1, p2 in PoshH(t[s]p), height(t[s]p|p1) 6= height(t[s]p|p2) holds. To this end, it
suffices to see that, for each position p̄ in PoshH(t[s]p), p̄ is also in PoshH(t) and
height(t[s]p|p̄) = height(t|p̄) holds. This is vacuously true for positions p̄ parallel
with p. The case where p is a prefix of p̄ is not possible because, since p̄ is in
PoshH(t[s]p), height(t[s]p|p̄) ≥ H ≥ H − h > height(s) holds. In the case where p̄
is a proper prefix of p, height(t[s]p|p̄) = height(t|p̄) follows from Proposition 2.12.

ut

2.3. Non-regularity proof

In order to prove non-regularity of a strongly too much duplicating set of patterns
S = {s1 : ϕ1, . . . , sn : ϕn}, we proceed by contradiction by assuming that a tree
automaton A recognizes L(S). We construct a specific term of the language, and
thus recognized by A, and modify it in such a way that its set PoshH increases until
it is no longer an instance of any si : ϕi, but A still recognizes it. To this end, we
add a new position p to PoshH by replacing the subterm at position p by a big term.
This big term is obtained by using the traditional concept of pumping, for which
we introduce the following notation:

Definition 2.14. Let t be a term in T (Σ). Let A be a TA. Let r be a run of A on
t. Let p1, p2 be positions in Pos(t) such that p1 < p2 and r(p1) = r(p2). Then we
recursively define Pumping(t, p1, p2, n) = Pumping(t[t|p1]p2 , p1, p2, n − 1) for n > 0
and Pumping(t, p1, p2, 0) = t. Similarly, we recursively define Pumping(r, p1, p2, n) =
Pumping(r[r|p1]p2 , p1, p2, n− 1) for n > 0 and Pumping(r, p1, p2, 0) = r.

2.3. NON-REGULARITY PROOF 17

Note that Pumping(r, p1, p2, n) is a run of A on Pumping(t, p1, p2, n), and that when
r is accepting, so is Pumping(r, p1, p2, n).

Lemma 2.15. Let A be a TA. Let h,H be natural numbers. Let t be a term in
UhH ∩ L(A). Let p be a position satisfying |p| ≤ h and h+ |A| ≤ height(t|p) < H.

Then, there exists a term t̃ in UhH ∩ L(A) such that PoshH(t) (PoshH(t̃).

Proof. Let r be an accepting run of A on t. Since |p| ≤ h and h+|A| ≤ height(t|p)
hold, by the pigeonhole principle there exist positions p0, p1, p2 satisfying p ≤ p0 ≤
p1 < p2, |p0| = h and r(p1) = r(p2).

We define t̃ = Pumping(t, p1, p2, max(height(t), H)). Since
Pumping(r, p1, p2, max(height(t), H)) is an accepting run of A on t̃, t̃ is in
L(A).

Now, we prove PoshH(t) (PoshH(t̃). First, note that all positions p′ parallel with
p0 satisfy that t|p′ = t̃|p′ , thus p′ ∈ PoshH(t) if and only if p′ ∈ PoshH(t̃), for such p′.
Second, since |p0| = h holds, any position p′ having p0 as a proper prefix is neither
in PoshH(t) nor PoshH(t̃). Third, since height(t̃|p0) > H holds, any prefix p̄ of p0

is in PoshH(t̃). In summary, since p is a prefix of p0 and not in PoshH(t), it follows
PoshH(t) (PoshH(t̃).

It rests to see t̃ ∈ UhH , i.e. to prove that for two different positions p̄1, p̄2 in PoshH(t̃),
height(t̃|p̄1) 6= height(t̃|p̄2) holds. This fact is vacuously true when either p̄1 < p̄2

or p̄2 < p̄1 or both p̄1 and p̄2 are parallel with p0. Since |p0| = h, the case where
p0 is a proper prefix of either p̄1 or p̄2 is not possible by the definition of PoshH(t̃).
In the case where either p̄1 or p̄2, say p̄1, is a prefix of p0, and p̄2 is not, this fact
follows from height(t̃|p̄2) ≤ height(t) < height(t̃|p0) ≤ height(t̃|p̄1). ut

Theorem 2.16. Let {s1 : ϕ1, . . . , sn : ϕn} be a strongly too much duplicating set
of patterns over Σ ∪ V.

Then, L({s1 : ϕ1, . . . , sn : ϕn}) is not regular.

Proof. We prove it by contradiction by assuming that L({s1 : ϕ1, . . . , sn : ϕn})
is regular. Let A be a TA satisfying L(A) = L({s1 : ϕ1, . . . , sn : ϕn}). Let h
be max({height(s1), . . . , height(sn)}), and let x1, . . . , xn be variables occurring
at least twice in s1, . . . , sn, respectively, and satisfying |ϕ1(x1)| = |ϕ2(x2)| =
. . . = |ϕn(xn)| = ∞. Let t1, . . . , tn be terms in ϕ1(x1), . . . , ϕn(xn), respec-
tively, satisfying height(t1), . . . , height(tn) ≥ h + |A|. Let hmin be the height
of a term with minimum height in L({s1 : ϕ1, . . . , sn : ϕn}). Let H be
1 + max(hmin, h+ max(height(t1), . . . , height(tn))).

Note that UhH∩L(A) is not empty, since a term tmin in L({s1 : ϕ1, . . . , sn : ϕn}) with
minimal height satisfies height(tmin) = hmin < H, and hence, by Proposition 2.9,
tmin ∈ UhH holds. Let tmax be a term in UhH ∩L(A) with maximal |PoshH(tmax)|. Note
that this term exists since by Lemma 2.6, the set {|PoshH(t)|

∣∣ t ∈ UhH ∩ L(A)} is
bounded. Since tmax is in L(A), there exists an i in {1, . . . , n}, such that tmax ∈
L(si : ϕi) holds. Let p1, . . . , pm be the positions where xi occurs in si. Note that

18 2. NON-REGULAR SETS OF PATTERNS

m ≥ 2 and tmax|p1 = tmax|p2 = . . . = tmax|pm hold. Thus, since tmax ∈ UhH holds, by
Lemma 2.11 p1, . . . , pm 6∈ PoshH(tmax) holds.

We define a new term t as tmax if height(tmax|p1) ≥ h + |A| holds, and as
tmax[ti]p1 . . . [ti]pm otherwise. We show that, in any case, p1, . . . , pm 6∈ PoshH(t),
PoshH(tmax) ⊆ PoshH(t) and t ∈ UhH ∩ L(A) hold. In the first case, these facts are
vacuously true. In the second case, the fact p1, . . . , pm 6∈ PoshH(t) follows from
height(ti) < H. The fact PoshH(tmax) ⊆ PoshH(t) follows from the repeated appli-
cation of Lemma 2.7, which can be applied because height(tmax|p1) < h + |A| ≤
height(ti) and p1, . . . , pm 6∈ PoshH(tmax) hold. The fact t ∈ UhH follows by repeated
application of Lemma 2.13, which can be applied because |p1|, . . . , |pm| ≤ h and
height(tmax|p1) < h + |A| ≤ height(ti) < H − h. The fact t ∈ L(A) follows from
t ∈ L(si : ϕi).

By Lemma 2.15 applied to t at position p1, there exists a term t̃ in UhH ∩L(A) such
that PoshH(t) (PoshH(t̃). Note that PoshH(tmax) ⊆ PoshH(t) (PoshH(t̃) holds. This
is in contradiction with the definition of tmax. ut

Corollary 2.17. Let {s1 : ϕ1, . . . , sn : ϕn} be a weakly too much duplicating set of
patterns over Σ ∪ V.

Then, L({s1 : ϕ1, . . . , sn : ϕn}) is not regular.

Proof. Since S := {s1 : ϕ1, . . . , sn : ϕn} is a weakly too much duplicating set of
patterns, it can be expressed as the union of two sets, S1 ∪ S2, where S1 contains
all the too much duplicating patterns of S, and S2 all the patterns generating a
finite language. By Theorem 2.16, L(S1) is not regular. Moreover, L(S2) is finite,
and the union of a finite language with a non-regular one is not regular. Therefore,
L(S) is not regular. ut

Chapter 3

Non-regularity detection for tree
homomorphisms

In this chapter we e show how to use the result of the previous chapter to conclude
non-regularity, in some cases, of images of regular languages by tree homomor-
phisms.

3.1. Recursive pattern descriptions

We start by defining another kind of patterns which define non-regular languages.

Definition 3.1. A pattern s : ϕ is a quasi too much duplicating pattern if there
exists a variable x appearing in some positions of s such that there exists a weakly
too much duplicating set of patterns S holding L(S) = ϕ(x).

Example 3.2. Using the signature of the previous examples, we define the following
pattern s : ϕ as s = f(x, y), ϕ(x) = {f(t, t) | t ∈ T (Σ)} and ϕ(y) = T (Σ). Note
that L(s : ϕ) = {f(f(t1, t1), t2) | t1, t2 ∈ T (Σ)}. It is clear that s : ϕ is not a
too much duplicating pattern since s is linear. But note that the language of the
allowed substitutions for x is the set of terms of the form f(t, t), which can be
expressed with the weakly (in fact, strongly) too much duplicating set of patterns
{f(z, z) : {z 7→ T (Σ)}}. Therefore, s : ϕ is a quasi too much duplicating pattern.

The expressive power of sets of quasi too much duplicating patterns is the same as
for weakly too much duplicating sets of patterns, as stated in the following lemma
and corollary.

Lemma 3.3. Let s : ϕ be a quasi too much duplicating pattern. Then, there exists
a weakly too much duplicating set of patterns S̄ holding L(S̄) = L(s : ϕ).

Proof. Let x be a variable appearing in some positions of s and such that there
exists a weakly too much duplicating set of patterns S = {s1 : ϕ1, . . . , sn : ϕn}
holding L(S) = ϕ(x). Without loss of generality, we assume that vars(si) and
vars(s) are disjoint for i ∈ {1, . . . , n}. Let p1, . . . , pk be all the positions of s where
x occurs. Let s̄i be s[si]p1 . . . [si]pk for i ∈ {1, . . . , n}. Let ϕ̄i be such that ϕ̄i(y) =

19

20 3. NON-REGULARITY DETECTION FOR TREE HOMOMORPHISMS

ϕi(y) if y ∈ vars(si), for i ∈ {1, . . . , n}, and ϕ̄i(y) = ϕ(y) if y ∈ vars(s) \ {x}. We
define S̄ as {s̄1 : ϕ̄1, . . . , s̄n : ϕ̄n}. It is obvious that L(S̄) = L(s : ϕ) holds and, by
construction, S̄ is a weakly too much duplicating set of patterns. ut

Example 3.4. Using the signature of the previous examples, we define the follow-
ing quasi too much duplicating pattern s : ϕ as s = f(x, y) and ϕ(x) = ϕ(y) =
{f(a, f(t, t)) | t ∈ T (Σ)} ∪ {f(f(t, t), a) | t ∈ T (Σ)}. We now show that we can
replace the x appearing in s in order to get a weakly too much duplicating set of
patterns S̄ generating the same language.

In our case, the weakly too much duplicating set of patterns S = {s1 : ϕ1, s2 : ϕ2},
with s1 = f(a, f(z1, z1)), s2 = f(f(z2, z2), a) and ϕ1(z1) = ϕ2(z2) = T (Σ), satifies
that L(S) = ϕ(x). We can define S̄ replacing the occurrences of x in s as follows:
{s[s1]1 : ϕ̄1, s[s2]1 : ϕ̄2}, with ϕ̄1(y) = ϕ̄2(y) = ϕ(y) and ϕ̄1(z1) = ϕ̄2(z2) =
T (Σ). Note that s[s1]1 = f(f(a, f(z1, z1)), y) and s[s2]1 = f(f(f(z2, z2), a), y). It
is obvious that L(S̄) = L(s : ϕ).

The following corollary follows directly from Lemma 3.3 and the definition of weakly
too much duplicating set of patterns.

Corollary 3.5. Let S be a set of patterns {s1 : ϕ1, . . . , sn : ϕn} such that for each
i ∈ {1, . . . , n}, si : ϕi is either a too much duplicating pattern, or a quasi too much
duplicating pattern, or a pattern holding that L(si : ϕi) is finite. Moreover, we
assume that there exists a j ∈ {1, . . . , n}, such that L(si : ϕi) is not finite.

Then, there exists a weakly too much duplicating set of patterns S̄ such that L(S) =
L(S̄).

We use the new pattern-based formalism of the following Definition 3.6 to express
the input of the problem, i.e. images of regular languages under tree homomor-
phisms. The reason to introduce this new formalism is that it is closer to our
notion of weakly too much duplicating set of patterns than the original problem.
In Lemma 3.8, we show that the original problem can actually be expressed in
terms of this new formalism.

Definition 3.6. An abstract pattern is a pair s : ϕ where s is a term and ϕ maps
each variable occurring in s to a variable ranging over languages.

A recursive pattern-description (RPD) is a set of equations L = {L1 = S1, . . . , Lm =
Sm} over variables L1, . . . , Lm (the Li are not languages, but syntactic variables
ranging over languages), where each Si is a set of abstract patterns {s1 : ϕ1, . . . , sn :
ϕn} satisfying that, for each k ∈ {1, . . . , n} and for each x ∈ vars(sk), there exists
a j ∈ {1, . . . ,m} such that ϕk(x) = Lj holds.

Note that descriptions like L = {x : {x 7→ L}} do not determine a language.
Nevertheless, over RPD we are able to detect some cases of non-regularity for the
minimal solution.

Example 3.7. Using the signature of the previous examples, we define the following
RPD L = {L1 = {a : {}, f(x1, x1) : {x1 7→ L1}}}. It is easy to see that the only
solution for L1 is the language of complete trees.

3.2. THE ALGORITHM 21

Now let L′ be {L2 = S2, L3 = S3}, with S2 = {a : {}, f(x2, x2) : {x2 7→ L3}} and
S3 = {f(x3, x3) : {x3 7→ L2}}. As before, L′ has only one solution, by assigning
the language of complete trees with even height to L2, and the language of complete
trees with odd height to L3.

Lemma 3.8. Let A be a TA and φ a tree homomorphism. Let {q1, . . . , qm} be the
set of states of A. Then, there exists an RPD L = {Lq1 = Sq1 , . . . , Lqm = Sqm} such
that Lq1 := φ(L(A, q1)), . . . , Lqm := φ(L(A, qm)) is the minimal solution of L.

Proof. Let A be 〈Q,Σ, F,∆〉 more explicitly written. For each q in Q, we define
Sq as the following set of abstract patterns:{
φ(f(x1, . . . , xk)) : ϕ

∣∣ f(q1, . . . , qk)→ q ∈ ∆ ∧ ϕ(x1) = Lq1 , . . . , ϕ(xk) = Lqk}
}

By construction, it is straightforward that Lq1 := φ(L(A, q1)), . . . , Lqm :=
φ(L(A, qm)) is the minimal solution of L. ut

Example 3.9. Let A be a TA defined as 〈{q, qf},Σ, {qf},∆〉, where Σ = {a : 0, g :
1, f : 2} and ∆ = {a→ q, g(q)→ q, f(q, q)→ qf}. The language recognized by A
is {f(gn(a), gm(a)) | n,m ≥ 0}. Let φ be a tree homomorphism defined as φ(a) = a,
φ(g(x)) = f(φ(x), φ(x)) and φ(f(x1, x2)) = φ(x1). Then, φ(L(A)) is the language
of complete trees over the signature {a : 0, f : 2}.

Using the construction detailed in the proof of Lemma 3.8, we define the RPD L =
{Lq = {a : {}, f(x, x) : {x 7→ Lq}}, Lqf = {x1 : {x1 7→ Lq}}}. Note that the only
solution for L maps Lq and Lqf to the language of complete trees over the signature
{a : 0, f : 2}, as in Example 3.7. Recall that φ(L(A)) is precisely this language.

3.2. The algorithm

We now show an algorithm that, using the previous results, allows us to conclude
in some cases the non-regularity of the images of regular languages under tree ho-
momorphisms, by using the RPD representation. In the description of the algorithm
we deliberately confuse the variables Lq1 , . . . , Lqm with the list of languages which
are the minimal solution of L. The algorithm proceeds as follows:

(1) Input: A TA A = 〈Q,Σ, F,∆〉 and a tree homomorphism φ.
(2) Construct L = {Lq1 = Sq1 , . . . , Lqm = Sqm} from A and φ according to

Lemma 3.8.
(3) Detect which languages Lq are empty.
(4) Detect which languages Lq are infinite.
(5) For each Lq = Sq in L detect which patterns in Sq are too much duplicating.

It suffices to test for each pattern s : ϕ whether ϕ maps a variable occurring
twice in s to an infinite Lq′ , and each variable occurring in s to a non-empty
language.

(6) Iteratively:
• Mark as weakly too much duplicating each infinite Lq holding that each

of the patterns in Sq has been detected as either too much duplicating,
or quasi too much duplicating, or generating a finite language.

22 3. NON-REGULARITY DETECTION FOR TREE HOMOMORPHISMS

• Detect which patterns of each Sq are quasi too much duplicating. It
suffices to test for each pattern s : ϕ whether ϕ maps a variable occurring
in s to an Lq′ which has been marked as weakly too much duplicating,
and each variable occurring in s to a non-empty language.

(7) Output ‘‘Non-regular’’ if for all qf in F , either Lqf has been marked as
weakly too much duplicating or finite, and at least one of them has been
marked as weakly too much duplicating. Otherwise output ‘‘Do not know’’.

The algorithm can be implemented in linear time using proper data structures and
well known algorithms like Strongly Connected Components, in order to detect
cycles and infinite languages, and Topological Sort, in order to mark weakly too
much duplicating languages.

Example 3.10. We show an execution of the algorithm with the RPD L = {Lq =
Sq, Lqf = Sqf } resulting from the TA and tree homomorphism of Example 3.9.

• The algorithm detects Lq and Lqf as non-empty.
• Next, it detects Lq as infinite since it has a self-loop, and Lqf is also detected

as infinite since Sqf contains a pattern with a variable constrained to Lq.
• Next, it detects the pattern f(x, x) : {x 7→ Lq} in Sq as a too much duplicating

pattern.
• At the first iteration step, Lq is marked as weakly too much duplicating since

the pattern a : {} generates a finite language and the pattern f(x, x) : {x 7→
Lq} has been detected as too much duplicating. In the same iteration, the
pattern x1 : {x1 7→ Lq} of Sqf is detected as quasi too much duplicating.
• At the second iteration step, Lqf is marked as weakly too much duplicating

since the pattern x1 : {x1 7→ Lq} of Sqf has been detected as quasi too much du-
plicating. The algorithm outputs ‘‘Non-regular’’ since Lqf has been marked
as weakly too much duplicating.

Non-regularity may not always be detected, since neither all non-regular languages
are weakly too much duplicating nor the algorithm detects all the languages which
can be represented by a weakly too much duplicating set of patterns. This is shown
in the following example.

Example 3.11. Let A be a TA defined as 〈{q, qf},Σ, {qf},∆〉, where Σ = {a :
0, g : 1, f1 : 1, f2 : 2} and ∆ = {a → q, g(q) → q, f1(q) → qf , f2(q, q) → qf}.
The language recognized by A is {f1(gn(a)) | n ≥ 0}∪{f2(gn(a), gm(a)) | n,m ≥ 0}.
Let φ be a tree homomorphism defined as φ(a) = a, φ(g(x)) = g(φ(x)), φ(f1(x)) =
f(φ(x), f(a, a)) and φ(f2(x, y)) = f(φ(x), f(φ(y), φ(y))), using a new function sym-
bol f with arity 2.

It is easy to see that φ(L(A)) can be described with the weakly too much duplicating
set of patterns {f(x, f(y, y)) : ϕ}, where ϕ(x) = ϕ(y) = {gn(a) | n ≥ 0}, which
is therefore non-regular by Corollary 2.17. Yet, using the construction detailed
in the proof of Lemma 3.8, the algorithm would not be able to conclude the non-
regularity. First, we would express the input as the RPD L = {Lq = {a : {}, g(x) :
{x 7→ Lq}}, Lqf = {f(x, f(a, a)) : {x 7→ Lq}, f(x, f(y, y)) : {x 7→ Lq, y 7→
Lq}}}. The algorithm would correctly detect Lq and Lqf as infinite, and the pattern
f(x, f(y, y)) : {x 7→ Lq, y 7→ Lq} as too much duplicating, but neither Lq nor Lqf

3.2. THE ALGORITHM 23

could be marked as weakly too much duplicating. In the case of Lqf this is because
the pattern f(x, f(a, a)) : {x 7→ Lq} represents an infinite language but it is not
detected as too much duplicating neither quasi too much duplicating.

Chapter 4

Conclusions

In spite of the high complexity for deciding regularity of languages represented by
patterns and images of regular languages by tree homomorphisms, we have provided
a very efficient procedure (linear time) for detecting non-regularity in some cases.
It would be interesting to study alternative procedures for detecting regularity in
some cases in an efficient way.

Our result of non-regularity of weakly too much duplicating sets of patterns is inde-
pendent from the mechanism used for representing the constraints. Thus, it might
be possible to apply it to other formalisms than images of tree homomorphisms,
and this deserves further study.

25

References

[CDG+07] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Ti-

son, and M. Tommasi, Tree automata techniques and applications, Available at
http://www.grappa.univ-lille3.fr/tata, 2007.

[CGR] C. Creus, G. Godoy, and L. Ramos, Too much duplicating patterns represent non-

regular languages, Applicable Algebra in Engineering Communication and Computing,
Submitted.

[GGJ09] A. Gascón, G. Godoy, and F. Jacquemard, Closure of tree automata languages under
innermost rewriting, Electron. Notes Theor. Comput. Sci. 237 (2009), 23–38.

[GGM09] O. Giménez, G. Godoy, and S. Maneth, Deciding regularity of the set of instances of

a set of terms with regular constraints is exptime-complete, CoRR abs/0911.3674
(2009).

[GGRÀ10] G. Godoy, O. Giménez, L. Ramos, and C. Àlvarez, The hom problem is decidable,
STOC, 2010, pp. 485–494.

[KR99] G. Kucherov and M. Rusinowitch, Patterns in words versus patterns in trees: A brief

survey and new results, Ershov Memorial Conference, Springer, 1999, pp. 283–296.
[VG92] S. Vágvölgyi and R. Gilleron, For a rewrite system it is decidable whether the set of

irreducible, ground terms is regognizable, Bulletin of the EATCS 48 (1992), 197–209.

27

	Introduction
	Chapter 1. Preliminaries
	1.1. Terms
	1.2. Positions
	1.3. Subterms
	1.4. Functions on terms
	1.5. Substitutions
	1.6. Automata
	1.7. Tree Homomorphisms

	Chapter 2. Non-regular sets of patterns
	2.1. Too much duplicating sets of patterns
	2.2. Uneven terms
	2.3. Non-regularity proof

	Chapter 3. Non-regularity detection for tree homomorphisms
	3.1. Recursive pattern descriptions
	3.2. The algorithm

	Chapter 4. Conclusions
	References

