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CHAPTER 1

Introduction

This chapter begins with the aim of the Thesis and its research interest. Reading this section
is key to understand the motivation and goals of the entire document. Section 1.2 is a short
description of the content in all chapters.

1.1 Aim of this Thesis

Rendering complex models is still an open issue. The improvements in graphics hardware only
cannot deal with the even bigger growth in complexity of the models. Therefore, software
solutions are needed to take advantage of the new hardware and optimize the rendering.

One of the most commonly used techniques is LOD (level of detail). LOD-based techniques
are a very well studied field, but there are still problems that have yet to be solved. There are
many methods to render low resolution models, but they can be classified into two categories:

• Geometrically based methods

• Image or shading based methods

Geometrical methods tend to be intensive hardware using. This usually leads to a lower
performance in rendering time or memory use. Image based methods, on the other hand, have
a very good performance, but artifacts or non correct shapes might be visible in the silhouette
and also zooming in. We here present a real time technique capable of solving those problems.

Our approach consists in a ray casting technique to render triangular Bézier patches in real
time. It is based in the articles [2] and [5] to implement a fast ray-surface intersection tech-
nique. In these articles they adapt Newton’s method to implement the intersections achieving
interactive framerates ray casting different surfaces, such as NURBS and square Bézier patches.
In order to be able to model any shape, a trimming is needed. Also, the authors do not use
any graphic acceleration.

The main contributions of our approach are adapting Newton’s method to perform inter-
sections with triangular Bézier patches and taking advantage of graphics hardware.

1



2 CHAPTER 1. INTRODUCTION

The surfaces used and its shading is based in the work of Vlachos et. al. in the article [9].
The use of triangular Bézier patches allows modeling any shape without trimming the surfaces,
which make them more suitable than square ones. Adapting Newton’s method to calculate the
intersections between rays and triangular Bézier patches allows very fast computations and its
our first major contribution.

Using GPU we achieve a boost in performance, as seen in the results chapter. In order to
be able to use it, the rendering technique has to be adapted. This adaptation is the second
major contribution in this Thesis.

Finally, we also contribute adapting the normal mapping technique to shade the models
and, thus, achieve even greater detail.

1.2 Outline of this document

In chapter 2 we describe the state of the art in our area of research in computer graphics. It
is divided into two sections. The first one consists in a series of basic concepts. In the second
one we describe various articles that contain the theoretical basis used in this Thesis. These
In particular, the articles [5], [2] and [9] contain the most part of the previous work in our
approach.

Chapter 3 contains the details of the implementation of our approach. In section 3.1 and
subsections, we describe in depth our ray tracing technique, which is the central part of this
Thesis. In further sections we describe how we perform the shading, the implemented optimiza-
tions and the formats supported to read 3D models.

Chapter 4 displays the results of various executions to show the implemented techniques.
We focus in the aspects commented in previous chapters. There are three sections, one for each
step in the implementation process. The first step contains the results of our approach executing
a CPU implementation, whereas the other steps are GPU implementations. A comparison is
also displayed.

In the final chapter, we discuss about the work done in all previous chapters. It is the
chapter where all conclusions and future work are.



CHAPTER 2

State of the art

This chapter is divided into two subsections. In the first one, we will discuss about basic
concepts and common computer graphics current techniques. These are well known concepts
and techniques in computer graphics, which are used in our work. In the second section, specific
articles will be explained in depth. These articles are the theoretical basis of this Thesis, and
we will focus on the parts that will be used in our approach.

2.1 Basic concepts

In the following subsections we will describe basic concepts and techniques. Since our work
is deeply related with Newton’s method and Bézier patches, subsections 2.1.1 and 2.1.2 are
especially important.

2.1.1 Newton method

The Newton method is an iterative algorithm used to find successively better approximations
to the roots of a real valued function. This method is often used to solve real valued functions
very fast when exactitude is not mandatory.

Newton’s method requires an initial guess of the result. If this initial guess is within a few
iterations of the solution, Newton’s method might be already close enough to the root. Basically,
how quickly and precise are the solutions are depends on the problem. Unfortunately, when
iteration begins far from the desired root, Newton’s method can easily become unstable or
even not converge in a solution. The biggest advantage in computer science is the use of easy
computation, using only a sum, a derivative and a fraction in every step. The main idea of
Newton’s method is summarized in Fig. 2.1.

Given a function f(x) and its derivative f ′(x), we begin with a first guess x0.

x1 = x0 −
f(x0)

f ′(x0)
(2.1)

The process is repeated until a sufficiently accurate value is reached :

3



4 CHAPTER 2. STATE OF THE ART

Figure 2.1: Generic iteration of Newton’s method.

xn+1 = xn −
f(xn)

f ′(xn)
(2.2)

There are essentially two practical considerations that have to be taken into account when
using this method:

• The convergence is not assured. More specifically, when the derivative is zero or close to
zero, the tangent line is nearly horizontal, so the solution found will then be even further
than in the previous iteration.

• If the initial value is too far from the root, Newton’s method may take too many it-
erations to converge or even fail. For this reason, Newton’s method is often used as a
local technique for small domains of the function. To avoid failure of convergence, most
implementations put a limit on the number of iterations.

Those considerations are solvable and we will talk about them on further sections.

2.1.2 Bézier surfaces

A Bézier surface is a mathematical description of a surface very used in computer graphics. It
has many variants developed during the years, that restrict the surface behavior or the data
input.

Normally, Bézier surfaces used in 3D computer graphics have a function B(u, v) that trans-
forms coordinates in a 2D space into a 3D space combining parameters in 3D. This 2D space is
known as Parametric Space, and the 3D parameters are also called control points. The number
of control points and the way the B function is built determines the properties of the surface,
but what they all have in common is that the resultant surface adapts its shape to the given
control points, as can be seen in Fig. 2.4, where the blue mesh in Fig. 2.2(b) contains the control
points of the Bézier surface.

The general B(u,v) function can be described as:

B(u, v) =

n∑
i=0

m∑
j=0

Fn
i (u)Fm

j (v)ki,j (2.3)

where ki,j are the parameters or control points and F is:
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(a) Mesh in parametric coordi-
nates.

(b) Resultant 3D mesh.

Figure 2.2: Coordinates transformation.

Fn
i (x) =

(
n

i

)
xi(1− x)n−i (2.4)

Bézier surfaces can be of any degree but bicubic Bézier surfaces generally provide enough
degrees of freedom for most applications. In Fig. 2.3 we see an example of a bicubic Bézier
surface.

Figure 2.3: Bicubic Bézier surface.

When we talk about a Bézier patch, we mean the portion of the surface where the parametric
coordinates have values from 0 to 1, both included. This way we can distinguish a triangular
Bézier patch as in Fig. 2.4(a) from a rectangular patch as in Fig. 2.4(b), for example.

The difference between a rectangular and a triangular patch comes from the B function
and the number of control points. A rectangular patch can be expressed using two triangular
patches, and a triangular patch can be expressed with a trimmed rectangular patch. Trimming
a Bézier patch means to restrict the parametric coordinates that can be used.

In computer graphics, Bézier patches are still used, as they are much smoother and compact
than triangle meshes. Unfortunately, their difficulty to rasterize or calculate intersections with
them make rendering them complicated.
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(a) Triangular Bézier patch. (b) Rectangular Bézier patch.

Figure 2.4: Bézier patches.

2.1.3 Bump mapping

Bump mapping is a computer graphics technique to make a rendered surface look more realistic
rendering less geometry. The main idea is to render the details of a high resolution mesh into a
texture and then apply it to a low resolution version of the mesh combined with an algorithm
executed in the GPU. Bump mapping is usually combined with other techniques, such as texture
mapping. The combination of these two gives the application an excellent visual quality with
much fewer triangles, which leads to lower memory and bus bandwidth use and, finally, a better
performance in rendering speed.

Bump mapping is the common name for three different techniques: normal mapping, dis-
placement mapping and parallax mapping, explained in sections 2.1.3.1, 2.1.3.2 and 2.1.3.3
respectively. The difference between the methods is the algorithm executed in the GPU and
the place in the graphics pipeline.

2.1.3.1 Normal mapping

Normal mapping is a bump mapping techinque used for faking the lighting of bumps and dents.
This technique is used so that much more detail can be seen without using more polygons.

The idea is very simple. From a high resolution mesh we generate a texture that codifies the
normal orientation in each fragment. Then we apply this texture to a low resolution version of
the model and, using a fragment program, we substitute the normal obtained by low resolution
geometry for the one codified in the texture before lighting calculations. This way, all low
resolution fragments have the same normals as the high resolution ones, and thus, the shading
reveals many details lost in the simplification of the mesh. In Fig. 2.6 we can see a comparison
between a high detailed mesh, a low detailed mesh without normal mapping and the same low
detail mesh rendered using normal mapping.

There are two variants to generate and apply the normal texture: in object space and in
tangent space. We describe them now.

2.1.3.1.1 Object space Object space is a reference system to represent normals. This
reference system is aligned with the whole object, so all normals in the object are expressed
from the same coordinates system.

This normal space has advantages for shading:
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Figure 2.5: Example of normal mapping.

• No need to transform coordinates for light shading.

• Easy implementation for static objects.

Nevertheless, it has its disadvantages:

• When using animated objects, normals have to be stored for every key-frame.

• Higher time overhead and lower precision for animation due to interpolation between
key-frames.

• Hard to reuse normals with other differently shaped objects.

In object space, normals don’t have to be transformed. It’s the simplest way to implement
normal mapping. The biggest inconvenient is animation in objects. If an object is animated,
a normal texture has to be stored for every key-frame and then interpolated. Clearly it’s not
an efficient method since a lot of memory will be needed and there will be an overhead for
interpolation. For this reasons, object space is more commonly used in inanimated objects.

2.1.3.1.2 Tangent space Tangent space is the other reference system to represent normals.
This reference system is aligned with the plane tangent with the surface on every point.

As lighting is usually expressed in world space, transformations have to be made to have
coordinates space coherence. Converting light rays to tangent space is most common.

This normal space has several advantages for shading:

• No need to adapt any algorithm to support animation.

• Higher normal data compression rates.

• Maps created in this space can be reused easily in other shapes.

And it also has its disadvantages:

• Slightly lower performance than object space.

• Harder to avoid smoothing problems and harder to interpolate correctly.
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2.1.3.1.3 Comparison between object space and tangent space For animated ones,
tangent space is the best option, though not exempt of problems. Light rays are in world space,
but the normals stored in the normal map are in tangent space. When a normal-mapped model
is being rendered, the light rays must be converted from world space into tangent space, using
the tangent basis to get there. At that point the incoming light rays are compared against
the directions of the normals in the normal map, and this determines how much each pixel of
the mesh is going to be lit. Alternatively, instead of converting the light rays some shaders
will convert the normals in the normal map from tangent space into world space. Then those
world-space normals are compared against the light rays, and the model is lit appropriately.

Figure 2.6 shows the difference

(a) Normal map in object space. (b) Normal map in tangent space.

Figure 2.6: Normal spaces comparison.

2.1.3.2 Displacement mapping

Displacement mapping is a bump mapping technique that uses a texture or height map to
displace vertices in a mesh to change its shape. One of the first architectures including dis-
placement mapping is described in the article [4]. It’s mostly used to create details in low
resolution meshes to make it as similar as possible as the high resolution version of the mesh.
It is very useful to represent and compress terrain information, as in Fig. 2.7. In this case, the
texture is called height map, and the vertices in the mesh are displaced vertically depending on
the grayscale value in the height map.

Figure 2.7: Example of height map terrain.
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Displacement mapping is also used to create details in objects. In this case, they are
combined with a progressive view dependent tessellation of the mesh sent to render. The new
vertices created by the tessellation are displaced following an algorithm that uses the texture
that contains the details of the high resolution mesh to make the tessellated mesh look like it.
In Fig. 2.8 we see the comparison between using displacement mapping or not in an object.

(a) Without displacement map-
ping.

(b) With displacement mapping.

Figure 2.8: Comparison between using or not displacement mapping.

This technique can be performed either in CPU or in GPU, but CPU versions are too slow, so
not very used. GPU versions are comparatively fast, but still too slow for many applications,
due to the large amount of time required in the tessellation process and displacement of all
vertices when high detail tessellation is performed.

Until recently, displacement mapping in real time was unfeasible due to the complexity
and the lack of supporting hardware. Since Nvidia 8800 series, though, geometry shading is
available. This hardware allows to program geometry shaders that can create multiple primitives
for every primitive sent to the GPU. Using this feature, algorithms can be written to perform
displacement mapping by reading the texture and creating multiple primitives and displacing
the vertices to create a high detailed mesh in rendering time. This detail can even achieve
subpixel precision.

Depending on the application, such level of detail can be necessary. In animation films
industry, where real time rendering is not mandatory but visual quality is, this technique is now
commonly applied. In gaming industry, though, it is still not very used due to the overhead
in rendering time. In any case, real time displacement mapping performs view dependent
tessellation, subdividing only the closest primitives to the camera.

Even though it is relatively new and the hardware still is too slow for real time applications,
displacement mapping in real time is becoming possible, and some game engines, such as Unigine
[1], already support it, as shown in Fig. 2.9.

Figure 2.9: Displacement mapping comparison. Image extracted from Unigine engine.
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Displacement mapping is supported since shader model 4.0 in Direct3D 10 and OpenGL
3.2, and geometry shaders can be written in the most common shading languages, namely Cg,
HLSL and GLSL, among others.

2.1.3.3 Parallax mapping

Parallax mapping is an evolution of normal mapping techniques widely used in many 3D ren-
dering applications and computer graphics in general. The goal is to give more apparent depth
and thus, greater realism, to the rendered scene with the same geometry and a low impact on
performance. It was first introduced by Tomomichi Kaneko et al. [6] in 2001.

The main idea in parallax mapping is displacing the texture coordinates at a point on the
rendered polygon by a function of the view angle in tangent space and the value of the height
map at that point. The optical illusion is more visible at steeper view-angles, when the texture
coordinates are displaced more, giving the illusion of depth. In Fig. 2.10 we see a comparison
of a scene using or not parallax mapping. In the one where parallax mapping is activated,
the depth optical illusion indicates that they are very detailed walls, but in fact they are flat
polygons.

(a) Parallax mapping not acti-
vated.

(b) Parallax mapping activated.

Figure 2.10: Comparison of a scene with and without parallax mapping. Image extracted from Irrlicht
3D engine.

The first version of parallax mapping is a single step process that does not account for occlu-
sion. Further enhancements have been made to incorporate this effects and improve silhouette
rendering, in iterative approaches. These enhancements lead to Steep Parallax Mapping tech-
nique, by Morgan McGuire et al. in [7]. Steep parallax mapping traces a ray along the height
map stored in the texture and iterates over it to find a collision. This means that it is a slightly
slower technique, but its results have a better visual quality. In Fig. 2.11 we see a comparison
of a scene rendered using parallax mapping and steep parallax mapping. An excellent optical
illusion is achieved, since it appears that a complex scene is rendered, but in fact just a single
quadrilateral and two textures are sent to the GPU.

2.1.3.4 Comparatives

There are two main criteria to compare the techniques explained before: performance and visual
quality. Developers have to choose between them depending on the application and its needs,
and unfortunately, the ones with best visual quality are also the slowest. This is the ranking
from fastest to slowest and also from lower to better visual quality:

1. Normal mapping.

2. Parallax mapping.

3. Displacement mapping.
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(a) Parallax mapped. (b) Steep parallax mapped.

Figure 2.11: Comparison between parallax mapping and steep parallax mapping. Image extracted from
Brown University Graphics Group.

Normal mapping and parallax mapping have both very performances and very little overhead
time, but parallax mapping delivers a better visual quality, specially steep parallax mapping
version. For this reason, parallax mapping is one of the most used techniques is real time
rendering. In Fig. 2.12 we see a visual comparison that indicates that steep parallax mapping
has a better visual quality.

(a) Texture mapped. (b) Normal mapped. (c) Parallax mapped. (d) Steep parallax map-
ped.

Figure 2.12: Comparison between techniques.

Nowadays, displacement mapping is rarely used for real time applications because it is a
newer technique and geometric shaders are much more recent. Other applications that don’t
work in real time do take advantage of this technique. In particular, film industry makes an
intensive use of it. Its visual quality is much better, and it becomes clear when looking at the
silhouettes, as can be seen in Fig. 2.13.

2.1.4 Surfaces in modelling

Nowadays many components like car bodies and technical surfaces such as an F1 chassis are
designed using Computer Aided Design (CAD) systems. Those programs implement tools for
surface designing based on well known mathematical descriptions. Those surfaces are typically
Non-uniform rational Basis-splines (NURBS).

When modeling, designers need to have control of two basic aspects: the general shape of
the surface, and its curvature. The shape is controlled by various coordinates called Control
Points, or even with a polygon called Control Polygon.
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(a) Using normal mapping. (b) Using displacement mapping.

Figure 2.13: Comparison between using or not displacement mapping.

Figure 2.14: Surface design controls.

The normal continuity and smoothness is assured by the mathematical description of the
NURBS, in fact, that’s the most important reason why this is the most used surface in designing.
In the past, Bézier surfaces were very popular, but their smoothness and continuity problems
with neighbor surfaces demanded evolutions, so Splines and B-Splines (Basis-Splines) were
developed, and then finally NURBS.

2.1.4.1 B-Splines

As described in section 2.2.1, a Bézier surface is a mathematical description for a surface used
in computer graphics. A B-Spline is basically a set of connected Bézier surfaces with parametric
continuity, which means that no sharp edges connect two Bézier surfaces.

B-Splines came from the big challenge of generating an accurate surface with a single Bézier
surface. It was easier to design by segments or piece-wisely than a whole, but then the problem
was correctly connecting all parts. B-Splines solve that problem by restricting the coordinates
of the control points of all adjacent surfaces. This way, linear continuity is assured.

2.1.4.2 NURBS

Non-uniform rational Basis-Splines (NURBS) is a mathematical model developed to generate
and represent surfaces. It is commonly used in computer design and computer graphics because
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Figure 2.15: Surface modelled using B-splines.

of its great flexibility and precision for handling both analytic and freeform shapes.
As a matter of fact, this need for handling freeform surfaces is the origin of the NURBS,

which came as an evolution of B-Splines in the automobile and aerospace industry. NURBS
provide more flexibility and precision for surface developing than B-Splines. For example, a
sphere can be represented with NURBS, but not with B-Splines.

Figure 2.16: Objects modelled using NURBS.

2.1.4.3 Uses and rendering

The most benefited by Bézier surfaces and NURBS is the industry. Engineers can now precisely
design every piece from a wing to a screw and even control physical models scanning and
comparing them with the virtual ones.
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So the use is clearly surface designing, and the rendering is made with basically two different
techniques: Ray-Tracing and surface triangle meshing. Ray-Tracing consists in calculating the
intersection with the surface of the ray created from the observer to every pixel in the screen,
while surface triangle meshing consists in creating a triangle mesh from the surface. This last
method is very easy when creating a mesh in the parametric space and then transforming it
to 3D space using the B function, as explained in section 2.2.1. Triangle meshing is useful for
real-time applications, but for visual quality and correctness, Ray-Tracing is usually better. In
Fig. 2.17 we see an example of triangle meshing a square Bézier patch.

Figure 2.17: Example of triangle meshing.

Some non real time applications developers prefer to use Triangle meshing and subdivide
triangles to pixel or even subpixel level to achieve the same precision as Ray-Tracing. This
is particularly true for animation films industry. The reason for that is to be able to reuse
previous tools and methods developed for triangle meshes.

In Fig. 2.18 we see an example of an object modeled with NURBS using Blender.

Figure 2.18: Sphere modelled with NURBS. Source Blender.

2.2 Previous work

In this subsection we will describe various papers that conform the basis of our work. PN
Triangles and its evolution, curved PN Triangles, are the surfaces we use in our approach, and
the Newton’s method adaptation described in the last two articles is also key in this Thesis.
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2.2.1 PN Triangles

PN Triangles are basically Bézier triangular patches with a B function that has 10 3D coordi-
nates as parameters, being:

B(u, v) = b300u
3 + b030v

3 + b003w
3 +

3b210u
2v + 3b120uv

2 + 3b201u
2w +

3b102uw
2 + 3b021v

2w + 3b012uw
2 +

6b111uwv

where w = 1− u− v and where b300, b030, b003, b210, b120, b201, b021, b102, b012 and b111 are the
10 points that define the function B.

So this function generates Bézier surfaces, but with some interesting properties:

• All surfaces generated include points b300, b030, b003.

• All generated points are included in the convex hull.

• If we consider only values for u,v and w between 0 and 1, the limits of the surface will be
characterized by b300, b030, b003.

Those properties and the fact that the generated patches are triangular, as shown in
Fig. 2.19(b), make them ideal for computer graphics, since nowadays it’s deeply related with
triangular meshes. In Fig. 2.19 we see a control points mesh and the PN Triangle generated.

(a) Control points mesh. (b) PN Triangle generated.

Figure 2.19: PN Triangle and its control points mesh.

The contribution of the PN Triangles are the automatic generation of the control points
using only local data. The main idea is to place the control points along the plane described
by the vertices and normals in the input triangle, as shown in Fig. 2.20

Mathematically, control points are placed following the formulas:
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(a) Input triangle. (b) Generated control point coordi-
nates.

Figure 2.20: Automatic coordinates generation.

b300 = P1

b030 = P2

b003 = P3

wij = (Pj − Pi) ∗Ni ∈ R
b210 = (2P1 + P2 − w12N1)/3

b120 = (2P2 + P1 − w21N2)/3

b021 = (2P2 + P3 − w23N2)/3

b012 = (2P3 + P2 − w32N3)/3

b102 = (2P3 + P1 − w31N3)/3

b201 = (2P1 + P3 − w13N1)/3

E = (b210 + b120 + b021 + b012 + b102 + b201)/6

V = (P1 + P2 + P3)

b111 = E + (E − V )/2

If the input normals are calculated as the mean of the normals of all triangles surrounding
each vertex, some information about the neighbors is stored. This is the information that
Gouraud shading technique uses to smooth lighting, and it’s the same principle to create Bézier
patches that better adjusts to the general shape of the triangle mesh. This way, an object
rendered using PN Triangles created from a triangle mesh is reasonably good approximation of
how the object would look like if it was modeled using more complex surface models.

2.2.2 Curved PN Triangles

Curved PN Triangles [9] is the solution of the biggest problem of PN Triangles, which is the
normal discontinuity of neighbor PN Triangles in a mesh, as can be seen in Fig. 2.21.

This happens because PN Triangles build triangular Bézier patches from local information
only, not taking into account adjacent surfaces information as we would in NURBS or splines.
This way, PN Triangles are built very fast, but the junctures between neighbors are visible
because of the normal discontinuity.

The authors propose to apply another triangular Bézier patch to store the normals in the
PN Triangle. This patch is quadratic, and not cubic, for simplicity reasons. In Fig. 2.22 we see
an example of a quadratic triangular patch.
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Figure 2.21: Example of normal discontinuities.

Figure 2.22: Normal triangular patch.

This is how the authors propose to calculate the coordinates of the control points in the
quadratic patch:

n200 = N1

n020 = N2

n002 = N3

vij = 2
(Pj − Pi) ∗ (Ni +Nj)

(Pj − Pi) ∗ (Pj − Pi)
∈ R

n110 = h110/||h110||, h110 = N1 +N2 − v12(P2 − P1)

n011 = h011/||h011||, h011 = N2 +N3 − v23(P3 − P2)

n101 = h101/||h101||, h101 = N3 +N1 − v31(P1 − P3)

So, this triangular patch is only used to calculate the normals on every point. The key idea
is that all normals on each vertex of the original mesh are created by the sum of all normals
of the triangles surrounding the vertex, so this local normal has actually some information of
the neighbor triangles. This way, while building the quadratic normal patch for two adjacent
triangles T1 and T2 only with local information, the normals of the vertices in the edge splitting
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them have the same local information for T1 and T2, so the normal smoothness is assured.
Briefly, Curved PN Triangles are the combination of two triangular Bézier patches, one

for geometry and one for the normals. From the parametric coordinates we can obtain 3D
coordinates using the cubic patch and its normal using the quadratic patch. In Fig. 2.23 we
see a comparison between a Phong shaded mesh, an object rendered using PN Triangles built
from the previous mesh and the same object rendered using curved PN Triangles.

Figure 2.23: Visual results.

2.2.3 Generic Mesh Refinement

The article [3] talks about a generic technique to implement a progressive refinement of a mesh.
The main idea is to use nowadays graphics capacities to displace vertexes and, using some
information about the shape of the detailed surface, approximate the painted mesh.

Figure 2.24: Main idea.

In order to do this displacement in a GPU-friendly way, the authors propose to send tes-
selated triangles as a Vertex Buffer Object (VBO) to the GPU and paint them. Then, design
vertex shaders that combine some information to move the tesselated triangles to where they
belong. These tesselated triangles are called Refinement Pattern, and the basic simple mesh is
called Coarse Mesh.

This information depends on the specific technique used to parametrize the detailed sur-
face. For representing a surface following a sinusoidal pattern, we only need to send the sinus
amplitude and the angle for each vertex or write a method in the vertex shader to calculate the
angle from some information. The result of this example is Fig. 2.25.

Figure 2.25: Main idea.
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If what needs to be refined is a Curved PN Triangle, there are two groups of parameters
to send to the shader: the ones that concern the general shape of the Bézier surface, and the
ones that concern how each vertex has to be moved. For every triangle of the coarse mesh
we calculate its Curved PN Triangle, and in rendering time we send for each coarse triangle
its patch descriptions, and for every tesselated triangle of the Refinement Pattern (RP) its
parametric coordinates. Then, in the vertex shader we calculate its position thanks to the
function that transforms from parametric to 3D coordinates and its normal using the normal
patch transform function. In Fig. 2.26 we see a comparison between the coarse mesh and the
refined mesh using a 16x16 Refinement Pattern.

(a) Coarse mesh. (b) Refined mesh using a 16x16 RP.

Figure 2.26: Comparison between Coarse Mesh and refined mesh.

This article proposes a generic method to render progressively refined meshes. The authors
state that it is a cheap method to tessellate triangle meshes, but nowadays hardware improves
this technique. Its bandwidth use is not negligible, as the authors state, when sending a new
RP with all its parameters to the GPU.

2.2.4 Interactive Ray Tracing of Trimmed Bicubic Bézier Surfaces
without Triangulation

The article [5] presents a technique to render Bézier surfaces interactively using ray tracing.
The main idea to render these surfaces quickly is to use Newton’s method to find intersections
between rays and the surface.

Ray casting is generally a slow technique. One of the first optimizations that are mandatory
for real time ray casting is a bounding volume hierarchy. This allows to discard intersections
very quickly performing a simple and fast ray-volume intersection. In their case, they use AABB
(Axis Aligned Bounding Boxes) because it adapts well into the other parts of their algorithm.
This is done in a preprocess.

Once a ray has tested positive for ray-bounding volume intersection, the actual ray-Bézier
surface intersection must be computed. This consists in solving the system of equations:{

B(u, v) = P

P ∈ ray
(2.5)

where B(u, v) is the cubic Bézier function, and u and v the parametric coordinates, our un-
knowns.
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Solving this system has two major problems: B(u, v) is a cubic function, which means
expansive calculations, and finding a proper representation for the ray.

The authors propose to represent the ray as the intersection of two orthogonal planes:{
N1P + d1 = 0

N2P + d2 = 0
(2.6)

where N1 and N2 are the normals of the planes and their dot product is 0. P is a point in the
ray.

Now, they can express the system of equations the following way:{
N1B(u, v) + d1 = 0

N2B(u, v) + d2 = 0
(2.7)

At this point, solving this system of equations is still too expansive because of the cubic
function. Now, what the authors propose is to use Newton’s method in order to accelerate the
computation. This method requires a small adaptation in order to apply it in the problem.

The first element needed to adapt Newton’s method is to define the function to solve. In
this case, the function is the system of equations that needs to be solved. The authors build a
matrix and call it R:

R =

(
N1B(u, v) + d1
N2B(u, v) + d2

)
(2.8)

The next element is the Jacobian matrix, which has the partial derivatives of both variables
for both equations:

J =

(
N1Bu(u, v) N1Bv(u, v)
N2Bu(u, v) N2Bv(u, v)

)
(2.9)

where Bu and Bv are the partial derivatives in the corresponding parametric direction.
With all these elements together, the Newton iteration can be expressed as:

(
un+1

vn+1

)
=

(
un
vn

)
− J−1R(un, vn) (2.10)

Now, the initial guess must be close enough in order to find proper solutions. Provided that
a bounding volume hierarchy has been precomputed, the authors propose to use the center of
the enclosed parametric domain as the initial guess for the Newton iteration.

At this point, the authors have a fast method to perform a fast ray tracing of Bézier surfaces.
But rendering Bézier surfaces themselves might not be very useful. The goal is to render objects
described with Bézier surfaces.

The authors render objects described with bicubic square Bézier patches. One of the prob-
lems that appear using square patches is that there are unfeasible shapes (i.e. a triangle).
Therefore, they need a method to trim the patches.

During the preprocessing step, surface areas are classified and marked if trimming is needed.
The area to be trimmed is also calculated in preprocessing time and defined with a curve in
parametric coordinates. Then, in rendering time, for those areas that do need to be trimmed,
an additional test is performed. This test is a 2D point-in-curve, positive when the point is
inside the curve. This way, only points within the trimmed parametric coordinates will be
rendered. The result is that all shapes can be rendered.
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This ray casting is performed in CPU, and thus, it is still slow. Nowadays processors are
multi cored, which means that they are capable of parallel task performing. The authors take
advantage of the parallelism using SIMD (Single Instruction Multiple Data) instructions. These
kind of instructions mean basically that every instruction is executed independently from the
rest, but the whole system shares the data. This suits perfectly for ray casting, since every ray
can be processed independently from the rest, sharing only the scene data. Using a cluster of
standard PC and this technique, Ingo Wald et al. in [11] and [10] achieve a more than an order
of magnitude speed up.

The results shown in Tab. 2.1 show how this technique achieves interactive rendering times
using very little memory consumption for even complex models. Models rendered are shown in
Fig. 2.27.

Figure 2.27: Models rendered for results.

Models Patches Trims B-Boxes Memory
consump-
tion

Preproces-
sing
time(min)

Average
Framer-
ate

Teapot 32 - 2736 150 kB 0:01 9.1 fps
Cessna 1555 - 53216 3.2 MB 0:03 4.2 fps
Chezzboard 16182 - 227794 15.6 MB 0:13 6.7 fps
VW Polo 11576 38556 448500 28.3 MB 5:26 5.1 fps

Table 2.1: Results table

Although it is a very fast technique, it still has drawbacks. First, using quadrilateral Bézier
patches limit the shapes that can be modeled, and trimming them adds an overhead in rendering
time. Furthermore, the authors do not use graphics hardware acceleration, as they execute all
the algorithms in CPU. Also, these framerates are achieved rendering at a fixed resolution of
512x512 pixels, which is very low for nowadays standards.

2.2.5 Practical Ray Tracing of Trimmed NURBS Surfaces

The article [2] presents a technique to render NURBS interactively using ray tracing. It is
similar to the work described in section 2.2.4. Like in previously described article, the authors
take advantage of Newton’s method to find intersections between rays and the surface very fast.

The main differences between both articles are the surfaces rendered and the time to render
them. In previous case are trimmed square Bézier patches, and in this one the authors propose
to render trimmed NURBS. Also, this technique is not performed in real time, as is the previous
one.

The article is divided in three parts:

1. Ray tracing NURBS

2. Trimming
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3. Results

Ray tracing process is very similar to the previous article. At preprocessing time, NURBS
are flattened. The idea is very similar to the Bézier patch subdivision, and it is done to assure
that Newton’s method will converge quickly. To flatten the NURBS, the mesh control is refined.
When refining it, the authors subdivide the NURBS patch into several subpatches. This allows
to create a VBH (bounding volume hierarchy) used to store the initial solutions for Newton’s
method. The subdividing and refining of the control mesh is done until each subpatch meets
some flatness criteria, so the authors can assure it is a good initial guess.

These criteria is based in heuristics that work with the curvature of the knot vectors. This
heuristic value is given by:

n1 = C1 ∗max[t1,t1+1)[curvature(c(t))] ∗ arclen(c(t))[t1,t1+1) (2.11)

which is basically a measure of the B-spline c(t) curvature.
The authors also use AABB as bounding volumes and the ray-NURBS intersection is cal-

culated using the same adapted Newton’s method as in the previously described article.
The second main part of the article is trimming. To perform the trimming, the authors use

curves that consist in piecewise linear segments in parametric space. The orientation of the
curves determine which region of the surface is to be kept. In order to be able to any shape,
they build trimming hierarchy. In Fig. 2.28 we see an example of how a trimming hierarchy is
built.

Figure 2.28: A set of trimming curves and the resulting hierarchy. Image extracted from [2]

The third main part of the article is the results. In Tab. 2.2 we see some of the most relevant
results of the executions of this technique for the models shown in Fig. 2.29

(a) Teapot. (b) Crank. (c) Allblade.

Figure 2.29: Models used in the results.
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Statistics Teapot Crank Allblade

Number of surfaces 32 73 351
Number of trims 0 64 0
Total time(sec.) 14 40 61
Total NURBS time(sec.) 9.35 20.82 43.46
Avg time per NURBS(sec.) 2.17 e-5 1.59 e-5 1.86 e-5

Table 2.2: Results table

In Fig. 2.30 we see a scene that contains NURBS primitives and has been rendered using
the authors method.

Figure 2.30: Scene ray traced using the authors method. Image extracted from the article [2]

This article has some drawbacks. The most important is that it does not work in real time.
It is a very fast method to render NURBS, but still the previous article can work in interactive
framerates.

Also, a very important part in the article is related to how to subdivide the NURBS to
guarantee the convergence of Newton’s method. Although it is true that Newton’s method
works better subdividing the surface, their heuristic method does not mathematically assure
the convergence nor the correctness of the solution found.
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CHAPTER 3

Implementation

In this chapter we will see all necessary implementation details to understand how the Thesis
works, including various definitions. This chapter is key for the Thesis results to be understood.

3.1 Ray tracing method

Our goal is to render curved PN Triangles in real time. Our options are essentially two:
ray casting the Bézier patches or remeshing into a triangular mesh. As explained in section
2.1.4.3, triangle meshing consists in creating a triangle mesh from the surface to render it using
conventional algorithms and techniques. If we want to render the triangle meshed patch in real
time, only a limited amount of triangles can be obtained due to memory and processing time
limitations. Therefore, meshing the patches has some drawbacks:

• Imprecise silhouettes.

• Finite precision when zooming in.

For these reasons, we choose to use the ray casting method. It’s not exempt of drawbacks
also, namely it’s rendering speed. In fact, our challenge is being able to ray cast curved PN
Triangles scenes with interactive framerates.

Ray casting a scene fast is a challenge itself, but since PN Triangles have cubic Bézier
functions, calculating the intersection of a ray with the Bézier patch is a time-consuming task,
so intersecting all rays becomes an even greater one.

The exact calculation of the ray-surface intersection consists in solving the cubic Bézier
function for every ray and every frame. This computation is too expensive in time and thus,
our first step is simplifying it.

Newton’s method offers the possibility of solving ray-surface intersections using only sums,
differences and multiplications. In section 3.1.3 we describe how to adapt Newton’s method
to our problem. This method offers very fast results, but has mainly one problem: it needs
sufficiently good initial approximations in order to get correct results.

25
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A good initial approximation for the Newton method is a u and v close to the solution (u′v′)
such that applying the Bézier function B(u′, v′), the obtained point is in the ray. In order to
get good initial approximations, we need an automatic method.

In a triangle, the barycenter is the center of mass, which means that it is placed in the mean
of all points coordinates. For our purposes, it’s the point that reduces the distance the most
to all other points in average, so it’s the best initial approximation for our Newton’s method
implementation. Still, the barycenter could be a bad initial approximation for the furthest
points and thus, lead to a bad ray-surface intersection.

The solution to this last problem is to subdivide the Bézier patch into smaller sub-patches
and store the barycenter of the sub-patch as the initial approximation for that area of the
surface. If the patches are not deformed in rendering time, this can be calculated in prepro-
cessing time. The details about how to subdivide are explained in section 3.1.4. This allows us
to have better initial approximations for all points. Note that we are interested in the initial
approximations only, so the sub-patches are not stored. Theoretically, there is no limit for how
many subdivisions can be created from a Bézier patch, which means that there is no limit for
the precision. In chapter 4, we show that there is a practical limit.

Once the calculation problem is out, we can focus on improving ray tracing rendering itself.
Checking for every ray the intersections for all Bézier patches or sub-patches is not a very
good solution because, even though the use of Newton’s method boosts the speed, it is still
too slow. The first improvement will be to include bounding volumes and perform a very fast
ray-bounding volume test before performing the ray-patch intersection if positive. Bounding
volume creation can be done in preprocessing time because a bounding volume does not change
in rendering time, so we are not time restricted to create them.

Ray-bounding volume test and the rendering can be performed in a traditional way, in CPU,
or in a more modern way, in the GPU using the depth buffer and programming a fragment
shader. Following subsections 3.1.1 and 3.1.2 describe the details of both ways to solve the
problem.

3.1.1 CPU Ray-bounding volume test

In our case, axis aligned bounding boxes (AABB) are a fairly good option because they are very
fast to test an intersection with and trivial to build. This fact overcomes the drawback of not
spatially adjusting particularly well to the Bézier patch and thus, giving many false positives.
Also, this drawback is less determinant the more subdivided the patches are.

Bézier triangular patches have the interesting property that all the points in the patch are
contained in the convex hull of the control points, which means that an AABB built to contain
them is also containing all Bézier patch points. This way, AABB are valid for our purposes.

Once AABB are found, the next step is defining a fast ray-AABB intersection test. We
implement the algorithm described in article [12]. The method consists in first expressing the
ray as an origin point Po plus a displacement along a vector λv, decomposed as:

Px = Pox + λ ~vx

Py = Poy + λ~vy

Pz = Poz + λ~vz

(3.1)

The origin point for all rays is the camera position, and ~v is the normalized vector from the
origin to the pixel position in scene coordinates.

Once the rays are defined, the method begins by calculating the λi to all supporting planes
of the AABB in every axis i. We call minimum planes the ones that have lowest coordinate
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value for each axis in the AABB, and we call maximum planes the other three. As AABB are
aligned with with the axis, λi can be calculated using:


λminx

=
(AABBminx−Pox )

~vx

λminy
=

(AABBminy−Poy )

~vy

λminz =
(AABBminz−Poz )

~vz

(3.2)

and 
λmaxx

=
(AABBmaxx−Pox )

~vx

λmaxy =
(AABBmaxy−Poy )

~vy

λmaxz
=

(AABBmaxz−Poz )
~vz

(3.3)

where AABBmini
and AABBmaxi

are the minimum maximum values of the AABB vertices in
the axis i.

Then, we select the maximum value of λmin from the three minimum planes and the mini-
mum value of λmax from the three maximum planes.

A ray intersects the AABB if and only if λmin < λmax. If the condition is not satisfied,
there is no intersection, and if it is, the intersection is located in Po + λmin~v.

3.1.2 GPU Ray casting

In GPU ray tracing we don’t have to worry with ray-bounding volumes intersection tests al-
gorithms because it is done by hardware with the depth buffer. Every pixel that passes depth
test, would pass also a ray-bounding volume test. This way we can improve our bounding
volumes to make them more efficient and more adjusted to the Bézier patch. In section 3.1.2.2
we explain the bounding volumes used.

Ray casting itself is performed in a fragment shader. There is some information that the
shader needs in order to be able to trace rays in every fragment, which is: the observer 3D
coordinates and the fragment 3D coordinates. These coordinates can be calculated in CPU and
sent, or calculated directly in GPU. For performance reasons, the best option is the second.

Observers coordinates can be retrieved from camera position and sent to the GPU with a
uniform variable, but calculating the fragments 3D position is not so trivial. The technique
to obtain them comes from real time volume rendering, and the idea is painting the bounding
volumes vertices with specific colors in a way that the fragment position can be interpolated
locally using the interpolation of the colors as local coordinates information and sending infor-
mation about the whereabouts of the bounding volume in the scene, so global 3D coordinates
can be obtained. In our approach, we have implemented two techniques using two different
bounding volumes: AABB (axis aligned bounding box) and triangular prisms.

3.1.2.1 AABB

AABB are the simplest volumes to build. Our only restriction is to assure that the whole Bézier
patch has to be contained in the AABB. Containing all control points of the triangular Bézier
patch assures that the restriction is accomplished. Hence, we simply have to create an AABB
that contains all control points.

Rendering it correctly for our purposes is not so trivial. We need to give the fragment
shader enough information to be able to calculate the fragment position in 3D in a very fast
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way. A possibility could be to use inverse Projection and Modelview matrices, but there is a
faster solution using the AABB vertex colors.

We can set the vertices with the lowest X with red value 0, the vertices with the lowest Y
with green value 0 and the vertices with the lowest Z with blue value 0, and on the contrary,
color values set to 1. This way, we obtain a colored AABB as in Fig. 3.1. In that figure, control
vertices are rendered as blue spheres, and one of them is displaced along the positive Z axis.
3.1(a) is the frontal view of the AABB, and the displaced control vertex can be seen because it
is tangent to the faces of the AABB, and 3.1(b) shows the same AABB rotated where the rest
of the control points can be seen as they are tangent to the back face.

(a) Frontal view of the AABB. (b) Rear view of the AABB.

Figure 3.1: AABB sent to the GPU.

The color interpolation is done automatically by hardware. In the fragment shader we can
interpret the color of the fragment as local coordinates. This allows us to place the fragment
in object coordinates, but we are still not able to place the fragments in the scene coordinates.
The AABB is displaced in the scene by a translation. Countering this translation we could be
able to position the fragment in scene coordinates. This can be calculated knowing where the
minimum and the maximum vertices are, using the formula:

Fragmentposition = glColor(Vmax − Vmin) + Vmin (3.4)

where glColor is the color of the fragment, and Vmin and Vmax are the minimum and maximum
coordinate values of the vertices in the AABB.

3.1.2.2 Triangular prisms bounding volumes

There is a big overload in fragment processing since that is where intersections of rays with
Bézier patches are calculated. Hence, reducing the number of fragments is deeply related
with augmenting the rendering speed. Our approach to reduce fragments is to send another
bounding volume to render that adjusts better to the Bézier triangular patch. In summary, we
have implemented another bounding volume shape to optimize the rendering process.

This shape is a triangular prism. As our Bézier patches are triangular, a triangular prism
will adjust better in general than an axis aligned bounding box. This can be false in some cases,
but as we comment in other sections, Bézier patches can be subdivided. The more subdivided
a Bézier patch is, the more triangular the subpatches are. Therefore, we also have to introduce
some criteria to decide if a triangular patch adjusts well to its contained Bézier patch or not.

Our method to build the triangular prism consists in four steps:

1. Finding the equations of the planes for the five faces.
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2. Finding the intersections of the planes, which are the vertices of the triangular prism.

3. Creating the structure to be able to send it to the GPU.

4. Coloring the vertices.

The first step begins by finding the orthogonal vector to the vectors
−−−−−→
P300P003 and

−−−−−→
P300P030

using the cross product, as seen in Fig. 3.2. We call this vector
−→
N .

Figure 3.2: Calculating the normal.

We use
−→
N as the normal for one of the triangular faces and −

−→
N for the other. Once

−→
N is

found, we can calculate the other three normals. Basically we calculate the cross product of
−→
N

and
−−−−−→
P300P003,

−→
N and

−−−−−→
P300P030 and

−→
N and

−−−−−→
P030P003 to obtain

−→
N1,
−→
N2 and

−→
N3 respectively. In

Fig. 3.3 we see how we calculate them. The obtained vectors are displayed in green.

(a) N1. (b) N2. (c) N3.

Figure 3.3: Calculating the normals of the planes.

Once the normals are calculated, we need to obtain the independent term of the planes.
The restriction to build the bounding volume is that in order to fit all Bézier patch in the
volume, it has to be convex and all control points must be inside the volume. This can be done
iteratively. For every face of the triangular prism, we calculate a provisional independent term
of its supporting plane using one of the control points. Then, we calculate the signed distance
of every plane to all the control points. Once we find the furthest point to every plane, we
recalculate the plane equation with it.
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The second step is to find intersections of the planes. Our implementation consists in using
the Jordan-Gauss method to solve this system of equations for every set of three intersecting
planes, Pi, Pj and Pk: 

NiP + di = 0

NjP + dj = 0

NkP + dk = 0

(3.5)

where P is the point where the three planes intersect, our unknown.
In this set of three planes, there is always the supporting plane of one of the two triangu-

lar faces and two other planes supporting a quadrilateral face. All combinations have to be
calculated to find the six vertices of the triangular prism.

The third step requires deciding which structure is better. Our shape is composed by two
triangles and three quadrilateral faces. Rendering APIs work best with triangles, and even
better with triangle strips. Our shape can be expressed using a single triangle strip, so that is
what we will use. In Fig. 3.4 we show an unpacked triangular prism and the order to store the
vertices to be able to send them as a triangle strip in rendering time. Unfortunately, there is no
way to express it as a triangle strip without repeating at least one vertex. If we choose carefully
the vertex to repeat, only a triangle degenerated into a segment will be rendered, creating very
few fragments, so the impact is negligible.

Figure 3.4: Triangle strip of the triangular prism.

The last point is coloring vertices so that the same technique to calculate the fragment
position in the scene as we did when using AABB. First, we have to find minimum and max-
imum coordinate values of the calculated vertices. Then, we assign to each vertex its color
interpolating the three components of the coordinates, as in Fig. 3.5:

PrismV ertexi.red = (PrismV ertexi.x−minx)/(maxx −minx) (3.6)

PrismV ertexi.green = (PrismV ertexi.y −miny)/(maxy −miny) (3.7)

PrismV ertexi.blue = (PrismV ertexi.z −minz)/(maxz −minz) (3.8)

3.1.3 Newton method applied to PN Triangles

Our method to calculate the intersections of rays with the Bézier patch is very similar to the one
described in [5] and commented in section 2.2.4. The goal is to solve the system of equations:{

B(u, v) = P

P ∈ ray
(3.9)

where B(u, v) is the cubic Bézier function of our triangular Bézier patch, and u and v are our
unknowns in parametric coordinates.
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Figure 3.5: Example of a triangular prism.

We can resolve this system using Newton’s method expressed as in [5]:

(
un+1

vn+1

)
=

(
un
vn

)
− J−1

(
N1B(u, v) + d1
N2B(u, v) + d2

)
(3.10)

where J is the Jacobian matrix containing the partial derivatives of

(
N1B(u, v) + d1
N2B(u, v) + d2

)
.

In order to accelerate the execution, we can precalculate many coefficients. We can rewrite
B(u, v) function to eliminate w, since w = 1− u− v:

B(u, v) = b003(1− 3u− 3v + 3u2 + 3v2 + 6uv − u3 − v3 − 3uv2 − 3u2v) +

b300u
3 + b030v

3 + 3b210u
2v + 3b120uv

2 + 3b201(u2 − u3 − u2v) +

3b102(u+ u3 + uv2 − 2u2 − 2uv + 2u2v) + 3b021(v2 − uv2 − v3) +

3b012(v + u2v + v3 − 2uv − 2v2 + 2uv2) + 6b111(uv − u2v − uv2)

Now we can reorder it to isolate u and v:

B(u, v) = (b300 − b003 − 3b201 + 3b102)u3 +

(b030 − b003 − 3b021 + 3b012)v3 +

(3b210 − 3b003 − 3b201 + 6b102 + 3b012 − 6b111)u2v +

(3b120 − 3b003 + 3b102 − 3b021 + 6b012 − 6b111)uv2 +

(3b003 + 3b201 − 6b102)u2 +

(3b003 + 3b021 − 6b012)v2 +

(6b003 − 6b102 − 6b012 + 6b111)uv +

(3b102 − 3b003)u+

(3b012 − 3b003)v +

b003

Now, we can rewrite B(u, v):
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B(u, v) = Q30u
3 +Q03v

3 +Q21u
2v +Q12uv

2 +

Q20u
2 +Q02v

2 +Q11uv +Q10u+Q01v +Q00

where Qij are constants obtained from grouping u and v factors:

Q30 = P300 − P003 − 3P201 + 3P102

Q03 = P030 − P003 − 3P021 + 3P012

Q21 = 3P210 − 3P003 − 3P201 + 6P102 + 3P012 − 6P111

Q12 = 3P120 − 3P003 + 3P102 − 3P021 + 6P012 − 6P111

Q20 = 3P003 + 3P201 − 6P102

Q02 = 3P003 + 3P021 − 6P012

Q11 = 6P003 − 6P102 − 6P012 + 6P111

Q10 = 3P102 − 3P003

Q01 = 3P012 − 3P003

Q00 = P003

And thus, partial derivatives of B(u, v) can be written in the following form:

Bu(u, v) = 3Q30u
2 + 2Q21uv +Q12v

2 + 2Q20u+Q11v +Q10

Bv(u, v) = 3Q03v
2 +Q21u

2 + 2Q12uv + 2Q02v +Q11u+Q01

3.1.3.1 Solutions tests

As seen in section 2.1.1, the key for this method to work properly is to have good initial
approximations, which is why we need to subdivide Bézier patches. This being done, Newton’s
method can still give wrong results i.e. when a ray does not intersect the Bézier patch. Thus,
a test has to be made to check the solution obtained after the iterations.

First, a point inside the Bézier patch can only have coordinates such as 0 <= u <= 1,
0 <= v <= 1 and 0 <= w <= 1. Any obtained solution that is not contained in that range is
not valid. Because of limited precision, this condition must be relaxed. In our implementation,
we use the condition −0.0001 <= u <= 1.0001, −0.0001 <= v <= 1.0001 and −0.0001 <=
w <= 1.0001. As these are parametric coordinates values, it is not dependent on the scale of
the rendered scene.

Still, precision errors cause artifacts, so we perform another test. 3D points obtained by
performing B(u, v) must be inside both planes that describe the ray. Therefore, the distance
from the point to the plane must be 0. We accept small computation errors in this test also,
but as this test works in scene coordinates, it is dependent on the scale of the rendered object.
The test is the following:

abs(dot(N1, B(u, v)) + d1) < error

abs(dot(N2, B(u, v)) + d2) < error

where N1 and N2 are the normals of the planes that describe the ray, d1 and d2 are their
independent terms, and error is the scale-dependent accepted error.
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3.1.4 Bézier patches subdivision

A method to reduce precision errors and other artifacts is subdividing a Bézier patch into
multiple sub-patches. The application of this technique will be explained in further sections.

There are infinite ways to subdivide a triangular Bézier patch, even infinite for every number
of resultant sub-patches. De Casteljau’s method to subdivide patches is well known, and for
triangular patches it divides them into three sub-patches. We will first explain the 2D De
Casteljau subdivision, which is easier to understand.

For a Bézier curve as shown in yellow in Fig. 3.6 we have four control points b1, b2, b3 and
b4, shown in blue. Then, we select a t from 0 to 1, and we take the points b1i , t-proportional of
the distance between bi and bi+1, shown in red. We repeat the process using the red points to
create the green ones, and we repeat it to create the black one.

Figure 3.6: De Casteljau 2D subdivision scheme.

By construction, De Casteljau proves that the black point belongs to the Bézier curve, and
that the Bézier curve formed with the control points b0, b10, b20 and b30 and the Bézier curve with
control points b30, b21, b12 and b3 together form the same curve as the original for any t.

For Bézier patches the method can be extrapolated, but with a 2-dimensional t. In Fig. 3.7
we show an example of the De Casteljau’s method choosing a t = (0.33, 0.33), and in Fig. 3.8
we show the resultant sons.

(a) Red points (b) Green points. (c) Black point.

Figure 3.7: Example of a De Casteljau’s subdivision.

As seen in the figures, this method creates 3 sub-patches, but the problem is that as they
become more and more obtuse as they are recursively subdivided. We chose to divide in half
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(a) First son (b) Second son. (c) Third son.

Figure 3.8: Example of a De Casteljau’s subdivisions resultant sub-patches.

the original Bézier patch into two sub-patches to have a finer control of the total number of
patches in a scene. It is also important to prevent having very obtuse sub-patches because it
can lead to computation errors due to lack of sufficient precision.

Our approach is to discard one of the sub-patches and construct the remaining two so that
they cover all the original patch. This can be done choosing wisely t. If we choose t1 = (0.5, 0.0),
t2 = (0.0, 0.5) or t3 = (0.5, 0.5), the conditions are satisfied.

Choosing which one of those values for ti determines the shape of the sub-patches. The
best way to avoid having very obtuse sub-patches is to choose to divide the longest side of the
Bézier patch in half, as in Fig. 3.9. The length of the sum of all edges of the control points
mesh in every side determines which is the longest side in the PN Triangle. In the figure, the
longest side is the one formed by the edges of the control points mesh A, B and C.

(a) Input control points defining a
Bézier patch.

(b) Longest edge is the sum of A,B
and C. The division is made by the
red axis.

Figure 3.9: Choosing the side to subdivide.

Once the longest side is determined, we can determine t, by choosing from the ti values the
one that is in the longest side.

Then, we create the three sets of points: the red points, the green points and the black
point. We fill these sets recursively following the De Casteljeau method using the selected t, as
in Fig. 3.10.

Once all sets are filled, dividing the surface is a question of choosing which ones correspond
to each sub-patch, and what we need to create a sub-patch is essentially ten points. Both of
the sub-patches will have 4 of the original control points, 3 red points, 2 green points and the
black point.
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(a) Red points. (b) Green points. (c) Black point.

Figure 3.10: Set filling process.

(a) First sub-patch. (b) Second sub-patch.

Figure 3.11: Sub-patches.

The criteria to build these ten-point sets are the following:

• Common for both sub-patches

Add the black point.

Add the green point opposite to the green edge where the black point lays.

Add the red point opposite to the red edge where last added point lays.

Add the original control point opposite to the control mesh edge where last added
point lays.

• For first son

Add all vertices in the positive subspace in parametric coordinates of the line formed
by the last added point and the black point.

• For second son

Add all vertices in the negative subspace in parametric coordinates of the line formed
by the last added point and the black point.

Subdividing Bézier patches is an expensive task in terms of time. Since typically the shape
of the PN Triangles do not change in rendering time, it can be done in pre-processing time.
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3.2 Normal shading

In this section we discuss how to shade the PN Triangles. We propose two methods: one using
the approach described in the article [9], and another using normal mapping.

3.2.1 Quadratic triangular patch

As discussed in the article [9], PN Triangles don’t have normal continuity. For that reason,
they propose to use another triangular Bézier patch to calculate the normals in every point.
This patch is a quadratic Bézier patch. To distinguish between them, we will call the bicubic
Bézier patch as geometric patch and the quadratic patch as normal patch.

Calculating the normal patch can be done in preprocessing time. As explained in the article,
the reflection A′ of a vector A across a plane with a normal direction B is A′ = A− 2vB where
v = (B ·A)/(B ·B). Using this formula, the authors define the method to calculate the control
points using the following formulas:

n200 = N1

n020 = N2

n002 = N3

vij = 2
(Pj − Pi) ∗ (Ni +Nj)

(Pj − Pi) ∗ (Pj − Pi)
∈ R

n110 = h110/||h110||, h110 = N1 +N2 − v12(P2 − P1)

n011 = h011/||h011||, h011 = N2 +N3 − v23(P3 − P2)

n101 = h101/||h101||, h101 = N3 +N1 − v31(P1 − P3)

where N1, N2 and N3 are the normals of the three input vertices.
Then, in rendering time we have to calculate the normal values for each fragment. As

discussed in previous sections, using Newton’s method we obtain u and v. They are used to be
able to discard fragments that do not belong to the geometric patch. We can use them also to
calculate the normal in each fragment using the B function of the normal patch:

B(u, v) = n200u
2 + n020v

2 + n002w
2 + n110uv + n011vw + n101uw (3.11)

where w = 1− u− v.

3.2.2 Normal mapping

Instead of using the shading proposed in the article [9], we can also shade the PN Triangles
using normal mapping. What we need to use this technique, is a high resolution model, a
low resolution version of the model, a program to generate the texture map and a shader
implementing normal mapping.

In the implementation aspect, the main differences between this technique and the one
explained in previous subsection are: reading the model and extracting normals. If we want
to use normal mapping, we need to read the texture coordinates for every vertex from the file.
Once in rendering time, three pairs of texture coordinates are sent for every PN Triangle, two
for every vertex in the original mesh. Then, in the shader the texture coordinates T can be
calculated as:
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T = tex1u+ tex2v + tex3w (3.12)

where texi is a vector of length 2, containing the texture coordinates.
This is the formula to interpolate texture coordinates in a triangle. As we can see in Fig. 3.12,

using this formula and using correctly the three read texture coordinates, we can interpolate
the texture coordinates.

(a) Correspondance in parametric
space.

(b) Texture coordinates in 3D
space.

Figure 3.12: Texture coordinates interpolation.

Once the texture coordinates are calculated, we extract the texture value, which is a normal
value. In our approach, we have implemented normal mapping in object space. This way, the
only step left is to calculate the lighting using the normal read from the texture.

3.3 Shader optimizations

In this section we will discuss about the optimizations implemented in the shaders. The first
optimization increases performance whereas the second one increases visual correctness.

3.3.1 MAD

MAD is short for multiply then add. Nowadays graphics cards hardware allow a sum in the
same cycle that a multiplication is executed. Therefore, programming shaders that group
multiplications and sums is more optimal.

To use MADs we need to decompose the calculations and group them by a multiplication
and a sum. In our shader, we have several calculations that can be transformed into MADs,
for example:

B(u, v) = Q30u
3 +Q03v

3 +Q21u
2v +Q12uv

2 +

Q20u
2 +Q02v

2 +Q11uv +Q10u+Q01v +Q00

Bu(u, v) = 3Q30u
2 + 2Q21uv +Q12v

2 + 2Q20u+Q11v +Q10

Bv(u, v) = 3Q03v
2 +Q21u

2 + 2Q12uv + 2Q02v +Q11u+Q01

These are the calculations executed inside every Newton’s iteration. Optimizing them would
boost the performance, since they are executed several times for every fragment.

Horner’s rule states that given any polynomial function:
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p(x) = anx
n + an−1x

n−1 + ...+ a0 (3.13)

it can be rewritten as:
p(x) = ((anx+ an−1)x+ ...)x+ a0 (3.14)

This way, our calculations can be grouped the following way:

B(u, v) = ((Q30u+Q21v +Q20)u+ (Q12v +Q11)v +Q10)u+

((Q30v +Q02)v +Q01)v +Q00

Bu(u, v) = (2(Q21v +Q20) + 3Q30u)u+ (Q12v +Q11)v +Q10

Bv(u, v) = (2(Q12u+Q02) + 3Q03v)v + (Q21u+Q11)u+Q01

In our shader, the unoptimized code to calculate the B function and its derivatives is the
following:

0 dBu=Q30 *3.0*u*u + Q21 *2.0*u*v + Q12*v*v + Q20 *2.0*u + Q11*v + Q10;

dBv=Q03 *3.0*v*v + Q21*u*u + Q12 *2.0*u*v + Q02 *2.0*v + Q11*u + Q01;

Buv=Q30*u*u*u + Q03*v*v*v + Q21*u*u*v + Q12*u*v*v + Q20*u*u + Q02*v*v +

Q11*u*v + Q10*u + Q01*v + Q00;

Code 3.1: B function and its partial derivatives

And rewritten to optimize it using MADs is the following:

0 dBu=Q21*v + Q20;

aux=Q30*u*3.0;

dBu =2.0* dBu + aux;

aux=Q12*v + Q11;

aux=v*aux + Q10;

5 dBu=dBu*u + aux;

dBv=Q12*u + Q02;

aux=Q03 *3.0*v;

dBv =2.0* dBv + aux;

10 aux=Q21*u + Q11;

aux=aux*u + Q01;

dBv=v*dBv + aux;

Buv=Q21*v + Q20;

15 Buv=Q30*u + Buv;

aux=Q12*v + Q11;

aux=aux*v + Q10;

Buv=u*Buv + aux;

aux=Q03*v + Q02;

20 aux=v*aux + Q01;

aux=v*aux + Q00;

Buv=u*Buv + aux;

Code 3.2: B function and its partial derivatives written using MADs

3.3.2 Multiple seeds

Sometimes Newton’s method gives not good enough results. As seen in previous sections, this
can happen for several reasons. The result of it is that the fragment shader will detect it wrong
and the fragment will be discarded. Therefore, some fragments will not be painted, and thus,
the resultant image can have holes.
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Avoiding this problem is not trivial. Precision is bounded by hardware, and improving
Newton’s methods accuracy means executing many more iterations, which leads to lower per-
formance. Nevertheless, there is a way to eliminate the holes without dramatically reducing
performance.

As seen in previous sections, placing correctly the initial guess for Newton’s method is
crucial for the method to converge correctly and in few iterations. Placing it in the barycenter
in parametric coordinates of the triangular Bézier patch is the best option in mean for all points,
but it might be a poor guess for the furthest. In the vast majority of cases, if the method does
not converge fast for a fragment, it means that the fragment is far from the initial guess.

This way, the solution is to have multiple initial guesses (or seeds) for every Bézier triangular
patch. Placing these seeds in the furthest points allows Newton’s method to converge in many
points where it would, otherwise, fail. The furthest points are the vertices of the patch in
parametric coordinates.

The difference in the shader implementation is that we try with all seeds before discarding
a fragment. If a fragment is discarded after some Newton’s iterations, we change the seed and
start over. This is done with all seeds, so a fragment is only discarded after failing with all
seeds.

Executing this many Newton’s iterations leads to a slower performance, but this happens
only in a few fragments. In general Newton’s method converge with the first seed.

3.4 File formats

There are many formats that describe models. In this Thesis we implement a reader that
supports ply format. It is a well known format in research, and many of the commonly employed
models are described in that format.

This format consists in a header, a series of 3D coordinates, and a series of indexes that
describe the triangles. If the model has an associated texture for normal mapping, the header
is slightly different, and the texture coordinates are described along with the indexes to the
vertices. The header is formed in the following way:

0 ply

format ascii 1.0

comments

element vertex n

property float x

5 property float y

property float z

element face m

property list uchar int vertex_indices

property list uchar float texcoord

10 end_header

where n is the number of vertices and m is the number of faces.
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CHAPTER 4

Results

In this chapter we show the results of various executions of our approach. We divide the results
in three steps to be able to compare different aspects. Specially important is the difference in
implementing our approach in CPU or in GPU.

All executions are performed using a laptop with a Dual core 2.1GHz processor, 4GB of
RAM memory and an ATI Mobility Radeon HD 4330 graphics card. All images rendered have
a resolution of 800x600.

4.1 CPU ray tracing a single PN Triangle

In this section we will show the results of the CPU implementation executed to render a single
triangular Bézier patch. No multi threading or other kinds of optimizations are implemented
since the goal is to be able to compare the increment in efficiency by executing the method
in GPU. Although optimizing CPU ray tracing can achieve good increments, our approach
implemented in GPU can increment performance some orders of magnitude more. There are
many reasons for this big increase, but the major reason is that GPU implementation uses a
dedicated specific hardware that performs most of the time-consuming operations.

Precision and correctness in our approach depends on various factors, and one of them is
the camera position. For example, in Fig. 4.1 we see the same triangular patch rendered from
two different points of view. In Fig. 4.1(b) the lower part is rendered incorrectly due to lack of
precision.

As performance in time is also view-dependent, in this section all tables show the mean of
ten executions from ten different points of view, the same for every execution. Also, to be able
to compare properly, all single triangular Bézier patches in this section and the next one have
the same control points.

4.1.1 Subdivision

To solve precision problems, we can subdivide the patch. This has an impact in rendering.
Tab 4.1 and graph 4.2 show how the rendering time depends on the number of subdivisions.

41
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(a) Rendered correctly (b) Rendered with errors

Figure 4.1: Correctness depending on the point of view.

As the subdivisions grow exponentially, the rendering time also does. Ray-box intersections
decrease as we increase the subdivision level because bounding volumes adjust better to the
patch and more false positives are discarded. Ray-patch intersections decrease slightly because
of precision, specially in the silhouette of the patch.

Figure 4.2: Rendering time depending on the number of subdivisions.

Stats Num
patches

Num sub-
patches

Ray-Box in-
tersections

Ray-patch
intersections

Rendering
time (ms.)

1 1 262778 58030.7 4120.7
CPU 1 4 189044 53361.7 4873.9

1 16 171629 53054.2 10826.9

Table 4.1: Comparison between subdivision levels

In Fig. 4.3 we see a close up to an area where artifacts appear. When not subdividing as in
subfigure 4.3(a), the artifacts are visible, but subdividing they can be eliminated. Nevertheless,
subdividing only is no guarantee of correctness, and it causes a drop in performance. This way,
combining subdivision with other methods might be the best option to obtain visual correctness
without increasing much rendering time.
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(a) No subdivision (b) 4 subpatches

Figure 4.3: Visual correctness depending on the subdivision level.

4.1.2 Performance

Another method to increase visual quality and reduce artifacts is to increase the number of
Newton’s iterations. In Tab. 4.2 we show the performance of our approach implemented in
CPU comparing with different number of Newton’s iterations.

Statistics Num
patches

Num sub-
patches

Ray-Box in-
tersections

Ray-patch in-
tersections

Rendering
time (ms.)

1 1 262778 58030.7 4120.7
4 iterations 1 4 189044 53361.7 4873.9

1 16 171629 53054.2 10826.9
1 1 262778 58172.4 6055.5

6 iterations 1 4 189044 53938.7 6258.6
1 16 171629 53036.8 12066.3
1 1 262778 57722.7 7254.5

8 iterations 1 4 189044 53671.9 7153.7
1 16 171629 53011.1 13401.4

Table 4.2: Executions showing performance in CPU

As was expected, increasing the number of Newton’s iterations slows dramatically the ren-
dering speed. In Fig. 4.4 we show the visual difference between executing four Newton iterations
and eight. Figure 4.4(a) is a render with four iterations and artifacts can be seen in the lower
part. Figure 4.4(b) is a rendering with eight iterations where many artifacts disappear.

These results indicate that to achieve visual correctness, the best solution is a combination
of augmenting the subdivision level and the number of Newton’s iterations. The problem
is that both of the solutions increase the rendering time. From Tab. 4.2 we can obtain the
best combination. All non visually correct results have to be discarded. Not subdividing,
for example, is not an option for any number of Newton’s iterations since the results are not
visually correct. For 4 and 6 iterations, both not subdividing and subdividing into 4 subpatches
do not give acceptable results. This way, we have as possible combinations: 4 iterations and 16
subpatches, 6 iterations and 16 subpatches, 8 iterations and 4 subpatches, and 8 iterations and
16 subpatches. The fastest option is 8 iterations and 4 subpatches.
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(a) 4 iterations (b) 8 iterations

Figure 4.4: Correctness depending on the number of Neton’s iterations.

4.2 GPU ray tracing a single PN Triangle

Implementing our approach using graphics hardware is more efficient and allows a better per-
formance in rendering time. In this section we display comparisons between CPU and GPU
implementations, and between different optimizations of the GPU implementation.

Table 4.3 shows a comparison between the same algorithm, implemented in CPU and GPU.
The number of Newton iterations is four for both cases.

Statistics Num
patches

Num sub-
patches

Ray-Box in-
tersections

Ray-patch
intersections

Rendering
time (ms.)

1 1 262778 58030.7 4120.7
CPU 1 4 189044 53361.7 4873.9

1 16 171629 53054.2 10826.9
1 1 429445 95344.7 2.5

GPU 1 4 256037 116375 2.7
1 16 193147 125090 4

Table 4.3: Comparison between CPU and GPU implementations

The big difference can be explained mainly by the fact that we use specific hardware to
perform operations that are otherwise executed software-wise. For example, in GPU imple-
mentation, there is no need to perform a ray-volume intersection test, since every fragment is
essentially a ray-volume intersection. Also, we don’t have to test every pixel with a ray-volume
test to many volumes. Only fragments can be pixels where rays intersect volumes, and every
fragment is associated to only one bounding volume.

This causes another big difference between CPU and GPU implementations. In the last
case, performance is not tied to subdivision as strongly as in CPU implementation. Figure 4.5
shows the framerate performance of the GPU implementation depending on the subdivision
level.

As we can see, framerate is tied to the number of bounding volumes sent to the GPU, but
have a different relationship than in CPU. The rendering time is related both to the number
of fragments rendered and the use of the bus bandwidth, although for few Bézier patches
the bus bandwidth use is negligible. An exponential growth of the Bézier patches causes an
exponential growth of the bus bandwidth use, but not such a big growth of fragments. For
example, Fig. 4.5 shows that sending four subpatches for the Bézier patch increments the



4.2. GPU RAY TRACING A SINGLE PN TRIANGLE 45

Figure 4.5: Framerate depending on the number of subdivisions.

performance. In that case, the bounding volumes adjust better to the Bézier patch leading
to render fewer fragments. Despite of that, subdividing increments the number of rendered
fragments since bounding volumes intersect between them. This means that in some occasions
multiple fragments are rendered for the same pixel occluded by the nearest. As the number of
fragments is related with the framerate, subdivision causes the technique to slow down for this
reason also.

In terms of visual correctness, there is no difference between CPU and GPU implementations
since they are essentially equivalent.

4.2.1 Bounding volumes

In this subsection we compare the two bounding volumes implemented for GPU: AABB and
triangular prisms. In order to compare them better, tests calculate the framerate instead of
the rendering time. Tests calculate the mean of a hundred frames in every camera position,
for a hundred camera positions and we now label ray-box intersections as Box fragments and
ray-patch intersections as Rendered fragments. As ray tracing is done for every fragment, the
concepts are equivalent.

In Tab. 4.4 we show the comparison between performances using AABB and triangular
prisms bounding volumes.

Statistics Num patches Num sub-
patches

Box frag-
ments

Rendered
fragments

FPS

1 1 409695 114413 79.5858
AABB 1 4 281531 148333 104.596

1 16 221826 155761 105.324
1 1 206460 112325 119.529

Prism 1 4 145710 124666 152.55
1 16 124838 120057 134.979

Table 4.4: Comparison between triangular prisms and AABB bounding volumes

From the table we can see that triangular prisms are clearly better than AABB. As in general
triangular prisms adjust better to Bézier surfaces, they produce less fragments, so they increase
the framerate. We can also see that subdivision produces less occluded fragments with triangu-
lar prisms, which explains why using these bounding volumes we render less fragments. Because
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they adjust differently, the relationship between subdivision level and framerate changes. Fig-
ure 4.6 shows how the number of fragments decreases the more subdivided the Bézier patch
is.

Figure 4.6: Fragments depending on the number of subdivisions.

Figure 4.7 shows the impact of the subdivision related to the framerate. As we can see,
for low levels of subdivision, incrementing the subdivision level rises the performance. This is
due to reducing the number of fragments. Nevertheless, incrementing too much the number
of subdivisions causes a slowdown due to the rise of the geometry and other information sent.
This rise causes a higher use of the graphics hardware and the bus bandwidth, slowing the
execution down progressively along with the number of bounding volumes sent. As all Bézier
patches and subpatches are divided in half in every subdivision level, the number of subpatches
grows exponentially, which is reflected in the performance. Figures 4.6 and 4.7 show that
reducing drastically the number of fragments compensates the rise of information sent. On the
other hand, when the subdivision level grows high, the bounding volumes already adjusted well,
causing a low reduction of fragments. This low reduction cannot compensate the rise of the
information sent, and the whole system slows down.

Figure 4.7: Framerate depending on the number of subdivisions.

From this point on, we always use triangle prisms for all results as they are much better
bounding volumes than AABB.

4.2.2 Optimizations

The first optimization used is back face culling (BFC). Table 4.5 shows a comparison of the
performance using or not BFC. This optimization offered by OpenGL consists in discarding the
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back faces of every rendered triangle. This means discarding many fragments before they get
to the fragment shader. We can use this OpenGL optimization since there are no fragments
generated by back faces that are not generated with front faces. Because the performance of
our approach depends much on the number of fragments, BFC can speed up the rendering
process. As expected, the increment in rendering speed is notorious. In our tests, we achieve
approximately a 40% performance boost.

Statistics Num
patches

Num sub-
patches

Box frag-
ments

Rendered
fragments

FPS

1 1 206460 112325 119.529
No BFC 1 4 145710 124666 152.55

1 16 124838 120057 134.979
1 1 137966 74833.4 167.792

BFC 1 4 101338 86807.4 198.084
1 16 85700.9 82378.7 203.572

Table 4.5: Performance comparison using BFC or not.

Our second optimization consists in using MADs to achieve an increment in rendering speed.
Table 4.6 shows a comparison between shaders, one without using MADs and the other one
using them. As we can see, we achieve an increment of around 10% .

Statistics Num
patches

Num sub-
patches

Box frag-
ments

Rendered
fragments

FPS

1 1 137966 74833.4 167.792
No MAD 1 4 101338 86807.4 198.084

1 16 85700.9 82378.7 203.572
1 1 137966 74833.4 181.933

MAD 1 4 101338 86807.4 211.781
1 16 85700.9 82378.7 219.321

Table 4.6: Performance comparison using MAD or not.

Now, we can compare the first implementation with AABB and no optimizations with the
best we have achieved. Table 4.7 shows this comparison. An increment of more than 100% is
achieved. As referring to visual quality, the successive improvements do not have any impact.

Statistics Num
patches

Num sub-
patches

Box frag-
ments

Rendered
fragments

FPS

1 1 409695 114413 79.5858
Not optimized 1 4 281531 148333 104.596

1 16 221826 155761 105.324
1 1 137966 74833.4 181.933

Optimized 1 4 101338 86807.4 211.781
1 16 85700.9 82378.7 219.321

Table 4.7: Comparison between the first implementation and the most optimized version
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4.2.3 Performance

As done in previous section with the CPU implementation, we need to choose the parameters
that optimize the performance of our approach without compromising visual correctness. Ta-
ble 4.8 shows different tests executed different parameters. From these results and the ones
explained in previous subsections, we conclude that 4 iterations and 16 subpatches is the best
option.

Statistics Num
patches

Num sub-
patches

Box frag-
ments

Rendered
fragments

FPS

1 1 137966 74833.4 181.933
4 iterations 1 4 101338 86807.4 211.781

1 16 85700.9 82378.7 219.321
1 1 137966 74987.9 149.618

6 iterations 1 4 101338 86842 177.555
1 16 85700.9 82388.9 183.354
1 1 137966 75021.2 121.75

8 iterations 1 4 101338 86851.3 147.611
1 16 85700.9 82390.7 157.357

Table 4.8: Performance related with the number of Newton iterations

4.3 GPU ray tracing a PN Triangle mesh

In this section, we show the results of the implementation of our approach rendering two different
3D models. The first model represents a rock with 500 faces and the second one represents a
horse with 96966 faces.

Figure 4.11(a) shows the rock rendered as a triangle mesh and as PN triangles.

(a) Triangle mesh. (b) PN triangles.

Figure 4.8: Comparison between techniques.

As we can see, the PN triangles version does not give a very good visual quality because of
the normals discontinuity. For this reason we implemented the curved PN triangles rendering.
Figure 4.9 shows the difference between the three methods. Curved PN triangles offer a much
better quality because of the normal continuity and smoothness.

Table 4.9 shows the different performances using the three techniques. From the results in
this table, we can conclude that in performance terms, the difference between rendering PN
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(a) Triangle mesh. (b) PN triangles. (c) Curved PN triangles.

Figure 4.9: Comparison between techniques.

triangles and curved PN triangles is negligible. We can also observe that our approach can
render 3D objects using curved PN triangles with high interactive framerates.

Statistics Num
patches

Num sub-
patches

Subdivision
level

Box frag-
ments

Rendered
fragments

FPS

Triangle 500 - - - 41535.4 521.849
mesh

500 500 0 86396.7 59873.6 138.141
PN 500 2000 2 78059.8 67708.8 115.255
triangles 500 8000 4 70644.3 67522.3 51.7642

500 500 0 86302.2 59813.9 140.358
Curved PN 500 2000 2 78059.8 67708.9 110.622
triangles 500 8000 4 70644.3 67522.2 47.1471

Table 4.9: Performance comparison rendering the rock 3D model

In Tab. 4.9 we also show the dependence of the framerate to the subdivision level for every
technique. There is no subdivision when rendering triangle meshes and, consequently, the
rendering speed is independent. This is not the case when rendering Bézier patches. Every
subdivision level divides patches into two subpatches, so the number of patches is multiplied
by the same number. This time, as every Bézier patch is rendered in a small number of pixels,
incrementing the subdivision level does not cause a major drop in the number of fragments.
In fact, incrementing the number of subpatches can even increase the number of fragments
processed by fragment shader since many of them can overlap in one pixel. Augmenting the
number of bounding volumes, augments also the number of overlapped fragments. This leads
to a slower performance because the number of processed fragments in the frame does not drop.

The horse model is a high detail model, which means that rendering it is a time consuming
task. In order to use our technique there is no need for such detail because curved PN triangles
are smooth both in normal continuity and geometrically in the silhouette. Therefore, we created
a low detail version of the horse triangle mesh and performed all tests with it. Figure 4.10
shows the difference of the results rendering curved PN triangles generated from high and low
resulution versions of the model.

In visual correctness terms, to render correctly we use the parameters and results obtained
in previous section. This way, Fig. 4.11 is the rendering of both models with four Newton’s
iterations and four subdivision levels. As we can see in the figure, some artifacts are visible
producing holes in the models. This means that we need to optimize our technique to eliminate
the artifacts and achieve correct results, which is what we discuss in next subsection.
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(a) High detail triangle mesh. (b) Curved PN triangles generated
by high detail mesh.

(c) Low detail triangle mesh. (d) Curved PN triangles generated
by low detail mesh.

Figure 4.10: Horse rendered using triangle mesh and Bézier patches.

4.3.1 Optimizations

Since the goal is to achieve correct images, there are essentially two solutions: subdividing
only when needed, and changing the parameters. Both solutions are compatible and we have
implemented them. In this subsection we will have a look at the first one and in the next
subsection the second one.

Very deformed Bézier patches are more likely to produce errors in rendering than planar
ones. Therefore, identifying the most triangle-like patches allows us to stop subdividing them.
Table 4.10 shows the impact of this optimization.

And for the horse, Tab. 4.11 shows the results.

As we can see, it is an easy optimization with few changes on the code that has no impact
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(a) Rock model. (b) Horse model.

Figure 4.11: 3D models rendered using our approach.

Rock Num
patches

Num sub-
patches

Subdivision
level

Box frag-
ments

Rendered
fragments

FPS

500 500 0 86302.2 59813.9 140.358
Totally 500 2000 2 78059.8 67708.9 110.622
subdivided 500 8000 4 70644.3 67522.2 47.1471

500 500 0 86302.2 59813.9 140.358
Partially 500 1970 2 78097.7 67664.5 115.851
subdivided 500 6503 4 71035.1 67389.3 52.356

Table 4.10: Performance comparison rendering the rock 3D model subdividing totally and partially

Horse Num
patches

Num sub-
patches

Subdivision
level

Box frag-
ments

Rendered
fragments

FPS

2000 2000 0 48711.2 35803.9 100.735
Totally 2000 8000 2 43120.7 38281.6 42.6333
subdivided 2000 32000 4 38864.2 37546.9 13.2073

2000 2000 0 48711.2 35803.9 100.735
Partially 2000 7644 2 43073.7 38020.9 44.0313
subdivided 2000 21964 4 32102.3 30408.3 18.4815

Table 4.11: Performance comparison rendering the horse 3D model subdividing totally and partially

on visual correctness ans it has an impact on speed. Although low or nonexistent for low levels
of subdivision, for greater ones the impact of the optimization increases. From this point on,
we will always use partial subdivision.

The second optimization consists in using the idea of multiple seeds. This way, we have
four seeds: the same as in previous versions and three more, one for each vertex of the trian-
gular Bézier patch. As we can see in Tab. 4.12 and 4.13 multiple seeds optimization is much
more stable to subdivision in framerate terms. This happens because the number of rendered
fragments is also more stable, and as the fragment shader has a bigger load, it is much more
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fragment limited.

Rock Num
patches

Num sub-
patches

Subdivision
level

Box frag-
ments

Rendered
fragments

FPS

500 500 0 86302.2 59813.9 140.358
Single 500 1970 2 78097.7 67664.5 115.851
seed 500 6503 4 71035.1 67389.3 52.356

500 500 0 86396.7 62282.5 59.6103
Multiple 500 1970 2 78097.7 69522.2 55.1245
seeds 500 6503 4 71035.1 68105.4 39.4463

Table 4.12: Performance comparison rendering the rock 3D model using single and multiple seeds

Horse Num
patches

Num sub-
patches

Subdivision
level

Box frag-
ments

Rendered
fragments

FPS

2000 2000 0 48711.2 35803.9 100.735
Single 2000 7644 2 43073.7 38020.9 44.0313
seed 2000 21964 4 32102.3 30408.3 18.4815

2000 2000 0 48429.2 35146 58.844
Multiple 2000 7644 2 43073.7 38238.3 33.8689
seeds 2000 21964 4 39611.2 37507.2 17.3512

Table 4.13: Performance comparison rendering the horse 3D model using single and multiple seeds

Although rendering with multiple seeds performs slower, the visual correctness is much
better. Figure 4.12 shows the different results obtained changing the number of subdivisions
using single and multiple seeds. As we can see, with multiple seeds we obtain correct images
with only two levels of subdivision whereas with only one seed we do not achieve them even with
four levels of subdivision. This means that multiple seeds is both an optimization in correctness
and in speed, taking into account Tab. 4.12.
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(a) Single seed and no subdivision. (b) Single seed and 2 subdivision
levels.

(c) Single seed and 4 subdivision
levels.

(d) Multiple seeds and no subdivi-
sion.

(e) Multiple seeds and 2 subdivi-
sion levels.

(f) Multiple seeds and 4 subdivision
levels.

Figure 4.12: Comparison between single and multiple seeds.
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CHAPTER 5

Conclusions

In this chapter we discuss the work explained in previous chapters. In the first section, we sum-
marize the main contributions in our research, and state some conclusions about the obtained
results, comparing them with what we expected. The second section is a list of future work to
improve the quality of present results.

5.1 Thesis Contributions

The main contribution of this Thesis is adapting Newton’s method to calculate intersections
between a ray and a triangular Bézier patch in an efficient GPU implementation. Calculating
the intersections in the fragment shader speeds up our approach thanks to the intensive use of
the graphics hardware.

In our approach we have adapted the ideas described in articles [2] and [5] to be able to
implement them in efficient fragment shaders that renders curved PN triangles. Our results
prove that our approach is much faster. In the results chapter we have seen that our approach
is able to render 3D models within interactive framerates converting the triangle mesh into
curved PN triangles. In contrast with CPU version, GPU approach can render some orders of
magnitude faster.

Even though the intensive use of graphics hardware already achieves very good results, it is
a hardware optimized for rendering triangles. This means that if we had an optimized hardware
for our approach we would be able to render much quicker. For example, Newton’s iterations
could be executed in hardware and multiple seeds optimization could be parallelized.

Also, our tests were executed in a laptop with a slow graphics card. We could get much
better framerates with a newer one, especially if early depth test is available. This optimization
would drastically reduce the number of processed fragments and thus, boosting the framerate.

In conclusion, our approach has proven efficient and could be used in many scenarios. The
adaptation from any existing graphical software should be quick since few changes would be
needed. Our software automatically converts triangle meshes in ply format into lists of trian-
gular Bézier surfaces and the shader that renders them is already implemented. Therefore, the

55
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integration of our technique into another graphics software consists only in sending the geom-
etry and information generated by our file reader and including our fragment shader correctly
initialized.

In comparison with the expected, the results are satisfactory. We are able to render objects
with infinite detail in real time, and there no or very little artifacts seen.

5.2 Future work

Our approach provides u and v coordinates as a side result of the ray casting process. We could
easily use those coordinates to implement many texture techniques such as texture mapping,
normal mapping or parallax mapping to increment realism and detail with few rendering time
overhead.

Another side result of our approach is the first and second derivatives. With these we could
obtain information about the curvature in each point. This could be used to implement a simple
version of an ambient occlusion, providing a much better illumination. As the most part of the
calculations are already done, the impact in performance should be low, whereas the visual
quality should improve notably.

Combining those techniques should provide high visual quality renders with similar perfor-
mances and few changes in the code.
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Shaders

A.1 Vertex Shader

0 void main(void)
{

gl_FrontColor = gl_Color;

gl_Position = ftransform ();

5
}

Code A.1: Vertex shader

A.2 Fragment Shader

A.2.1 Single seed

0 /∗ Fragment shader ∗/

uniform vec3 minp; // Bounding volume minimum coord ina te s
uniform vec3 maxp; // Bounding volume maximum coord ina te s
uniform vec3 obs; // Observers coord ina te s

5 uniform vec4 color;

//Constants o f the Bezier patch
uniform vec3 Q30;

uniform vec3 Q03;

10 uniform vec3 Q21;

uniform vec3 Q12;

uniform vec3 Q20;

uniform vec3 Q02;

uniform vec3 Q11;

15 uniform vec3 Q10;

uniform vec3 Q01;

57
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uniform vec3 Q00;

//Constants o f the normal patch
20 uniform vec3 n200;

uniform vec3 n020;

uniform vec3 n002;

uniform vec3 n110;

uniform vec3 n011;

25 uniform vec3 n101;

//Seeds
uniform vec2 nas;

uniform vec2 nas1;

30 uniform vec2 nas2;

uniform vec2 nas3;

// Prec i s ion
uniform f loat error;

35

void main()

{

40 // Fragment coord ina te s in scene coord ina te s
vec3 pos=maxp -minp;

pos.xyz = gl_Color.rgb*(pos.xyz)+minp.xyz;

vec3 ray = pos -obs;

45
// Planes P1 and P2
vec3 N1=cross(ray ,vec3 (-1.0));

vec3 N2=cross(ray ,N1);

f loat d1=-dot(N1,obs);

50 f loat d2=-dot(N2,obs);

// Var iab l e s d e c l a r a t i on s
vec2 res=vec2(nas.x,nas.y);

mat2 inverseJacob;

55 vec2 R;

vec3 dBu;

vec3 dBv;

vec3 Buv;

f loat inverseConstant;

60 vec3 aux;

f loat u;

f loat v;

65 for( int i=0;i<4;i++){

u=res.x;

v=res.y;

70 // Par t i a l d e r i v a t i v e o f B by u
dBu=Q21*v + Q20;

aux=Q30*u*3.0;

dBu =2.0* dBu + aux;

aux=Q12*v + Q11;

75 aux=v*aux + Q10;

dBu=dBu*u + aux;

// Par t i a l d e r i v a t i v e o f B by v
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aux=Q12*u + Q02;

80 dBv=Q03 *3.0*v;

dBv =2.0* aux + dBv;

aux=Q21*u + Q11;

aux=aux*u + Q01;

dBv=v*dBv + aux;

85
// Der i va t i v e o f B
Buv=Q21*v + Q20;

Buv=Q30*u + Buv;

aux=Q12*v + Q11;

90 aux=aux*v + Q10;

Buv=u*Buv + aux;

aux=Q03*v + Q02;

aux=v*aux + Q01;

aux=v*aux + Q00;

95 Buv=u*Buv + aux;

R= vec2(dot(N1,Buv)+d1 , dot(N2 ,Buv)+d2);

f loat dotN1Bu=dot(N1,dBu);

100 f loat dotN1Bv=dot(N1,dBv);

f loat dotN2Bu=dot(N2,dBu);

f loat dotN2Bv=dot(N2,dBv);

inverseConstant =(1.0/ ( dotN1Bu*dotN2Bv - dotN1Bv*dotN2Bu ) );

105 inverseJacob=mat2( dotN2Bv*inverseConstant , -dotN2Bu*

inverseConstant ,

-dotN1Bv*inverseConstant , dotN1Bu*

inverseConstant);

// Newton ’ s i t e r a t i o n
res= res - inverseJacob*R;

110
}

f loat w=1.0-res.x-res.y;

115 // Condition to d i scard t h i s seed
i f (res.x>= -0.0001 && res.x <=1.0001 && res.y>= -0.0001 && res.y

<=1.0001 && w>= -0.0001 && abs(dot(N1 , Buv)+d1)<error && abs(

dot(N2 , Buv)+d2)<error){

vec3 N=n200*res.x*res.x + n020*res.y*res.y + n002*w*w + n110*

res.x*res.y + n011*res.y*w + n101*res.x*w;

vec3 l2=vec3 (0.0 ,0.0 , -1.0);

120 f loat lconst=abs(dot(normalize(N),l2));

gl_FragColor = vec4(lconst*color.x,lconst*color.y,lconst*color.

z,color.w);

}

// Discarding the fragment
else

125 discard;

130 }

Code A.2: Fragment shader
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A.2.2 Multiple seeds

0 /∗ Fragment shader ∗/

uniform vec3 minp; // Bounding volume minimum coord ina te s
uniform vec3 maxp; // Bounding volume maximum coord ina te s
uniform vec3 obs; // Observers coord ina te s

5 uniform vec4 color;

//Constants o f the Bezier patch
uniform vec3 Q30;

uniform vec3 Q03;

10 uniform vec3 Q21;

uniform vec3 Q12;

uniform vec3 Q20;

uniform vec3 Q02;

uniform vec3 Q11;

15 uniform vec3 Q10;

uniform vec3 Q01;

uniform vec3 Q00;

//Constants o f the normal patch
20 uniform vec3 n200;

uniform vec3 n020;

uniform vec3 n002;

uniform vec3 n110;

uniform vec3 n011;

25 uniform vec3 n101;

//Seeds
uniform vec2 nas;

uniform vec2 nas1;

30 uniform vec2 nas2;

uniform vec2 nas3;

// Prec i s ion
uniform f loat error;

35

void main()

{

40 // Fragment coord ina te s in scene coord ina te s
vec3 pos=maxp -minp;

pos.xyz = gl_Color.rgb*(pos.xyz)+minp.xyz;

vec3 ray = pos -obs;

45
// Planes P1 and P2
vec3 N1=cross(ray ,vec3 (-1.0));

vec3 N2=cross(ray ,N1);

f loat d1=-dot(N1,obs);

50 f loat d2=-dot(N2,obs);

// Var iab l e s d e c l a r a t i on s
vec2 res=vec2(nas.x,nas.y);

mat2 inverseJacob;

55 vec2 R;

vec3 dBu;

vec3 dBv;

vec3 Buv;

f loat inverseConstant;
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60 vec3 aux;

f loat u;

f loat v;

65 for( int i=0;i<4;i++){

u=res.x;

v=res.y;

70 // Par t i a l d e r i v a t i v e o f B by u
dBu=Q21*v + Q20;

aux=Q30*u*3.0;

dBu =2.0* dBu + aux;

aux=Q12*v + Q11;

75 aux=v*aux + Q10;

dBu=dBu*u + aux;

// Par t i a l d e r i v a t i v e o f B by v
aux=Q12*u + Q02;

80 dBv=Q03 *3.0*v;

dBv =2.0* aux + dBv;

aux=Q21*u + Q11;

aux=aux*u + Q01;

dBv=v*dBv + aux;

85
// Der i va t i v e o f B
Buv=Q21*v + Q20;

Buv=Q30*u + Buv;

aux=Q12*v + Q11;

90 aux=aux*v + Q10;

Buv=u*Buv + aux;

aux=Q03*v + Q02;

aux=v*aux + Q01;

aux=v*aux + Q00;

95 Buv=u*Buv + aux;

R= vec2(dot(N1,Buv)+d1 , dot(N2 ,Buv)+d2);

f loat dotN1Bu=dot(N1,dBu);

100 f loat dotN1Bv=dot(N1,dBv);

f loat dotN2Bu=dot(N2,dBu);

f loat dotN2Bv=dot(N2,dBv);

inverseConstant =(1.0/ ( dotN1Bu*dotN2Bv - dotN1Bv*dotN2Bu ) );

105 inverseJacob=mat2( dotN2Bv*inverseConstant , -dotN2Bu*

inverseConstant ,

-dotN1Bv*inverseConstant , dotN1Bu*

inverseConstant);

// Newton ’ s i t e r a t i o n
res= res - inverseJacob*R;

110
}

f loat w=1.0-res.x-res.y;

115 // Condition to d i scard t h i s seed
i f (res.x>= -0.0001 && res.x <=1.0001 && res.y>= -0.0001 && res.y

<=1.0001 && w>= -0.0001 && abs(dot(N1 , Buv)+d1)<error && abs(

dot(N2 , Buv)+d2)<error){
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vec3 N=n200*res.x*res.x + n020*res.y*res.y + n002*w*w + n110*

res.x*res.y + n011*res.y*w + n101*res.x*w;

vec3 l2=vec3 (0.0 ,0.0 , -1.0);

120 f loat lconst=abs(dot(normalize(N),l2));

gl_FragColor = vec4(lconst*color.x,lconst*color.y,lconst*color.

z,color.w);

}

// Repeating the process with another seed
else {

125
vec2 res=vec2(nas1.x,nas1.y);

for( int i=0;i<4;i++){

u=res.x;

130 v=res.y;

dBu=Q21*v + Q20;

aux=Q30*u*3.0;

dBu =2.0* dBu + aux;

aux=Q12*v + Q11;

135 aux=v*aux + Q10;

dBu=dBu*u + aux;

aux=Q12*u + Q02;

dBv=Q03 *3.0*v;

140 dBv =2.0* aux + dBv;

aux=Q21*u + Q11;

aux=aux*u + Q01;

dBv=v*dBv + aux;

145 Buv=Q21*v + Q20;

Buv=Q30*u + Buv;

aux=Q12*v + Q11;

aux=aux*v + Q10;

Buv=u*Buv + aux;

150 aux=Q03*v + Q02;

aux=v*aux + Q01;

aux=v*aux + Q00;

Buv=u*Buv + aux;

155 R= vec2(dot(N1,Buv)+d1 , dot(N2 ,Buv)+d2);

f loat dotN1Bu=dot(N1,dBu);

f loat dotN1Bv=dot(N1,dBv);

f loat dotN2Bu=dot(N2,dBu);

160 f loat dotN2Bv=dot(N2,dBv);

inverseConstant =(1.0/ ( dotN1Bu*dotN2Bv - dotN1Bv*dotN2Bu )

);

inverseJacob=mat2( dotN2Bv*inverseConstant , -dotN2Bu*

inverseConstant ,

-dotN1Bv*inverseConstant , dotN1Bu*

inverseConstant);

165
res= res - inverseJacob*R;

}

170 f loat w=1.0-res.x-res.y;

i f (res.x>= -0.0001 && res.x <=1.0001 && res.y>= -0.0001 && res.y

<=1.0001 && w>= -0.0001 && abs(dot(N1 , Buv)+d1)<error && abs

(dot(N2 , Buv)+d2)<error){



A.2. FRAGMENT SHADER 63

vec3 N=n200*res.x*res.x + n020*res.y*res.y + n002*w*w + n110

*res.x*res.y + n011*res.y*w + n101*res.x*w;

175 vec3 l2=vec3 (0.0 ,0.0 , -1.0);

f loat lconst=abs(dot(normalize(N),l2));

gl_FragColor = vec4(lconst*color.x,lconst*color.y,lconst*

color.z,color.w);

}

else {
180

vec2 res=vec2(nas2.x,nas2.y);

for( int i=0;i<4;i++){

u=res.x;

185 v=res.y;

dBu=Q21*v + Q20;

aux=Q30*u*3.0;

dBu =2.0* dBu + aux;

aux=Q12*v + Q11;

190 aux=v*aux + Q10;

dBu=dBu*u + aux;

aux=Q12*u + Q02;

dBv=Q03 *3.0*v;

195 dBv =2.0* aux + dBv;

aux=Q21*u + Q11;

aux=aux*u + Q01;

dBv=v*dBv + aux;

200 Buv=Q21*v + Q20;

Buv=Q30*u + Buv;

aux=Q12*v + Q11;

aux=aux*v + Q10;

Buv=u*Buv + aux;

205 aux=Q03*v + Q02;

aux=v*aux + Q01;

aux=v*aux + Q00;

Buv=u*Buv + aux;

210 R= vec2(dot(N1,Buv)+d1 , dot(N2 ,Buv)+d2);

f loat dotN1Bu=dot(N1,dBu);

f loat dotN1Bv=dot(N1,dBv);

f loat dotN2Bu=dot(N2,dBu);

215 f loat dotN2Bv=dot(N2,dBv);

inverseConstant =(1.0/ ( dotN1Bu*dotN2Bv - dotN1Bv*dotN2Bu

) );

inverseJacob=mat2( dotN2Bv*inverseConstant , -dotN2Bu*

inverseConstant ,

-dotN1Bv*inverseConstant , dotN1Bu*

inverseConstant);

220
res= res - inverseJacob*R;

}

225 f loat w=1.0-res.x-res.y;

i f (res.x>= -0.0001 && res.x <=1.0001 && res.y>= -0.0001 && res.

y <=1.0001 && w>= -0.0001 && abs(dot(N1 , Buv)+d1)<error &&

abs(dot(N2 , Buv)+d2)<error){
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vec3 N=n200*res.x*res.x + n020*res.y*res.y + n002*w*w +

n110*res.x*res.y + n011*res.y*w + n101*res.x*w;

230 vec3 l2=vec3 (0.0 ,0.0 , -1.0);

f loat lconst=abs(dot(normalize(N),l2));

gl_FragColor = vec4(lconst*color.x,lconst*color.y,lconst*

color.z,color.w);

}

else {
235 vec2 res=vec2(nas3.x,nas3.y);

for( int i=0;i<4;i++){

u=res.x;

v=res.y;

240 dBu=Q21*v + Q20;

aux=Q30*u*3.0;

dBu =2.0* dBu + aux;

aux=Q12*v + Q11;

aux=v*aux + Q10;

245 dBu=dBu*u + aux;

aux=Q12*u + Q02;

dBv=Q03 *3.0*v;

dBv =2.0* aux + dBv;

250 aux=Q21*u + Q11;

aux=aux*u + Q01;

dBv=v*dBv + aux;

Buv=Q21*v + Q20;

255 Buv=Q30*u + Buv;

aux=Q12*v + Q11;

aux=aux*v + Q10;

Buv=u*Buv + aux;

aux=Q03*v + Q02;

260 aux=v*aux + Q01;

aux=v*aux + Q00;

Buv=u*Buv + aux;

R= vec2(dot(N1,Buv)+d1 , dot(N2,Buv)+d2);

265
f loat dotN1Bu=dot(N1,dBu);

f loat dotN1Bv=dot(N1,dBv);

f loat dotN2Bu=dot(N2,dBu);

f loat dotN2Bv=dot(N2,dBv);

270 inverseConstant =(1.0/ ( dotN1Bu*dotN2Bv - dotN1Bv*

dotN2Bu ) );

inverseJacob=mat2( dotN2Bv*inverseConstant , -

dotN2Bu*inverseConstant ,

-dotN1Bv*inverseConstant , dotN1Bu*

inverseConstant);

275 res= res - inverseJacob*R;

}

f loat w=1.0-res.x-res.y;

280
i f (res.x>= -0.0001 && res.x <=1.0001 && res.y>= -0.0001 &&

res.y <=1.0001 && w>= -0.0001 && abs(dot(N1, Buv)+d1)<

error && abs(dot(N2, Buv)+d2)<error){
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vec3 N=n200*res.x*res.x + n020*res.y*res.y + n002*w*w

+ n110*res.x*res.y + n011*res.y*w + n101*res.x*w;

vec3 l2=vec3 (0.0 ,0.0 , -1.0);

285 f loat lconst=abs(dot(normalize(N),l2));

gl_FragColor = vec4(lconst*color.x,lconst*color.y,

lconst*color.z,color.w);

}

// Al l seeds have been t r i ed , we d i scard the fragment
else {

290 discard;

}

}

}

}

295 }

Code A.3: Fragment shader
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