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Introduction 

 

There is strong evidence that most of the global warming observed in the past years is attributable 

to human activities and that the greenhouse gas making the largest contribution from human 

activities is carbon dioxide (CO2). It is released by the burning of biomass or fossil fuel as 

gasoline, diesel or natural gas used, among others, to power vehicles (1).   

With the aim to reduce such source of greenhouse gases (GHG), worldwide policies on emissions 

reduction have been created over the pasts 20-30 years. The stringencies of these regulations 

regarding the emissions limits have risen in an exponential way during the last years and are 

expected to continue like this in the following decades.  

 

Such regulations strongly influence automobile manufacturers, who have to ensure that their 

vehicles meet GHG regulations corresponding to the markets where their vehicles are sold. While 

at the same time, giving optimal customer value in terms of price, safety, performance, 

drivability, comfort, roominess, convenience…Pursuing maximum company profits1.  

 

Although it seems that automobile manufacturers have an immense amount of options when 

designing and projecting a car,  in practice there are many constrains from market acceptance 

which reduce automatically such amount of possible choices. For example, a car without power 

steering will emit fewer emissions but will be unmarketable.  Therefore, the real available options 

are limited and can be listed, classified, featured and used to elaborate alternative scenarios, as 

will be done in this Thesis.  

 

Regulations vary from region to region and the competitiveness in such a global market, lead 

companies to work in highly challenging conditions. Standards are very complex and so it cannot 

be assumed that a specific emission limits from one regulation is more stringent than another. As 

a consequence if a vehicle meets what apparently is the more stringent regulation, it will not 

automatically meet any other. Case per case study has to be done since differences in regulations 

procedures are huge and heterogenic among types of vehicles (petrol vehicles, diesel vehicles, 

                                                 
1 Such word will be used along the document to refer the car manufacturer revenue or turnover 
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Flex Fuel Vehicles FFVs, automatic/manual transmission vehicles, EVs, PHEVs...).  As an 

example, Alternative Fuel Vehicles AFVs emissions limits are quite different among regulations 

because not clear and absolute effectiveness on GHG reduction is found in such class of vehicles, 

as CNG and LPG vehicles: While tank-to-wheel emissions are quite well known (cleaner 

combustion), well-to-wheel emissions strictly depend on fuel production and transport methods 

which are considered in some studies to counteract the beneficial effect of a cleaner combustions 

due to spills and leakages (2). 

 

There are several ways to reduce emission but some of them may worsen vehicle features as 

performance. Consequently, customers are not willing to pay the same for a car with lower 

performance, leading most probably to a reduction in company profits. However, such reduction 

on price and profits may not happen if the customer finds that the save in fuel consumption 

overcomes the loss in performance.    

 

The main work of this Thesis is to understand how regulations are stablished worldwide and to 

analyse the possible choices regarding low emissions technologies to meet such regulations (or 

not, if can be avoided) maximizing the companies’ margin profit taking into account customer 

value and production costs. 

 

The subject integrates engineering/scientific investigation with an economic evaluation and 

includes the development of two tools: 

1. A tool that finds the best combination of low GHG emissions technologies that should be 

applied to a given car. This will be called “package model”. 

2.  A tool that optimizes an automobile manufacturer fleet with the aim of obtaining the 

maximum revenue, in a business perspective. This will be called “fleet model”. 

This is done by associating to each technology a level of CO2 reduction and cost, which may 

have synergies with other technologies and vary depending on the year as they become cheaper 

on the future. Emissions limits also vary along the years. Three coefficients assess the profit 

margin related to a technology package.  All possible combinations are assessed and only the 

ones who best fit the criteria are automatically selected by the model and shown as a result. 
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The document focuses on the two main regulations of concern: 

 European regulations and  

 US CAFE regulations  

However, some comment is given about other important regulations as Chinese, Brazilian and 

other US standards. Besides, only two reference cars will be taken into the “package model” 

study: Midsize2 1.4NA MT and Midsize 1.3T AT while the “fleet model” calculations will work 

as well on a limited number of combinations chosen previously as the best ones.  

 

The content of the Thesis is divided in four main chapters where the two first chapters deal with 

the framework of the issue and the last two chapters describe the approach and the tools.  

1. A hint to longitudinal dynamics and an analysis of the main sources of inefficiencies 

along with some explanation of simulation software.  

2. An explanation of the regulations and their features. How to deal with every type of car 

and the flexibilities. Comparison among regulations.  

3. The package model: A complete explanation of how the model will be developed in order 

to find the technologies that best-fit the needs. Cheapest package, most cost effective 

package, most profitable packages are the main optimization criteria. Results and 

conclusions are given along with more intuitive explanations of the entire subject and a 

detailed explanation of the technologies considered in the models. 

4. The fleet model: The description of the model that figure out which is the best group of 

car models that should be marketed, i.e. the optimal fleet in terms of revenue.   

The data used for the calculations are almost entirely taken from federal registers, official 

regulations and reports belonging to state agencies or agenizes that work for them. The most up-

to-date information has been used since regulations, costs estimations and technologies are 

continuously being updated.  

 

  

                                                 
2 For confidentiality reasons, the model will be called “Midsize”. 
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1. Hint to FC/CO2 related to vehicles - review of longitudinal vehicle 

dynamics and FC/CO2 simulations  

 

This chapter, along with the second chapter, present a base knowledge to understand what is done 

in the chapter three and four. On one hand, explain the sources of tailpipe emissions and give the 

physical sense to the low FC technologies showed on the chapter three and, on the other hand 

give an overview of the simulation methods that can be used to asses emissions reduction 

depending on technologies applied and the driving cycle. Furthermore, indications on some other 

important remarks on the subject of the paper are given. 

 

The link between FC and CO2 emissions is explained in the chapter 2.2. Basically, when talking 

about one specific fuel, the relation between FC and tailpipe CO2 emissions is usually simplified 

by a constant proportional relation. 

 

1.1 Longitudinal dynamics  

 

In order to understand the way in which energy (or power) is used in the car, longitudinal 

dynamics are useful. The equations of the longitudinal dynamics are exposed bellow so that the 

different contributing terms can be analysed. 

 − =           Equation 1-1 

        

Which multiplied by the speed of the car is: 

 − =         Equation 1-2 

Where: 

: Traction force available at the wheels 

: Running resistance force 
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: Equivalent simplified inertia mass of the translating mass and all the rotating masses (i.e. 

wheels, shafts…) �
: Vehicle acceleration �: Vehicle speed 

: Traction power available at the wheels 

: Running resistance power  

 

And: 

 = −          Equation 1-3 = = −         Equation 1-4 = + +         Equation 1-5 = + +         Equation 1-6 

Where: 

: Power supplied by the engine to the crankshaft axis.  

: Power delivered to the engine in form of fuel. � : Fuel conversion efficiency. Composed by � − , ��  and � .  � − : Air fuel efficiency. Evaluate the effects of the actual properties of the fluid on the 

performance which basically decreases with the increase of temperature 

 ��: Thermodynamic efficiency. Evaluate the effects of different aspects which summarised are: 

Incomplete combustion, head transfer to the walls, gas flow into crevice regions and leakage and 

exhaust blowdown loss. � : Mechanical efficiency. Evaluate the effects of the pumping losses due to drawing of the fresh 

mixture through the intake, losses due to friction resistance between elements with relative 

motion in the engine and the power used to drive the car accessories.   

: Power losses through the driveline. Corresponds to the sum of  which is the power loss 

due to frictions in the gearbox,  which is the power loss due to frictions along the driveline 

and   which is the power loss due to parasitic frictions in the brakes. 
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: Power needed to overcome the drag resistance of the air � : Power needed to overcome the rolling resistance due to the energy absorption of the tires. 

: Power needed to overcome the slope of the road.  

 

Modifying the above equations we may get that the power delivered to the engine in form of fuel 

 is: 

 = + + + + + +−       Equation 1-7 

 

The power   Has a direct proportional relation to the volume/mass of fuel consumed by the car 

per unit of time. Therefore, the equation expresses clearly the different terms which   has a 

contribution on the resultant value of the fuel consumption or CO2 emissions as stated in the 

chapter 2.2. Of course, the terms relating to the speed � , acceleration 
�
 and climbing resistance 

 are terms that should not be considered because they depend only on external inputs (driver 

and road) which are given by the road circumstances and not modifiable by the Automobile 

manufacturer.  

Any other element in the equation may be improved in order to lower the FC. It should be bear in 

mind that the terms  � − ���  account for many sources of losses, especially ��� . In the 

following pages it will be commented in a greater extension. 

 

  



  
Page 8 

 

  

1.2 Analysing the inefficiencies  

 

Any of the elements seen on the previous section is analysed in order to give an overview a 

classification and the physical explanation of the low CO2 technologies applied on the model in 

the chapter 3, where much specific explanation is given.  

At this point a classification can be done between terms contributing to: 

 A more efficient generation of the power needed to move the car. This is: Improvement 

of any of the terms linked to the fuel consumption efficiency � = ���  � −  defined 

before.  

 A more efficient generation of the power needed to drive its auxiliary loads. This is: 

Improvement of �  linked to auxiliary loads. 

 Lower the energy needed to move the car, usually called vehicle energy demand.  

 Other particular sources of CO2 reduction. 

1.2.1 A more efficient generation of the power needed to move the car  

 

An exhaustive analysis of each one of the efficiencies making up the fuel consumption efficiency 

is out of the scope of this Thesis but a more practical, intuitive explanation will be given. To this 

purpose the BSFC map will be introduced. 

 

The efficiency in the generation of the power to move the car is the fuel conversion 

efficiency � and its components which have been defined before � = ���  � − .  The 

definitions given in the previous chapter tell by themselves how to improve any of the 

efficiencies ���  � − . So for example an injection system which enforces the complete 

combustion of the charge in the right time will raise the thermodynamic efficiency and an 

improved lubricant which lowers the friction between piston and liner will raise the mechanical 

efficiency.  

 

Here the analysis will be focused on understanding the BSFC map, its relation to  �   and its link 

to vehicle FC.     
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The BSFC is defined as: 

 =            Equation 1-8 

 

Where: 

: Stands for Brake Specific Fuel Consumption which is the mass of fuel injected per unit of 

output energy in the crankshaft. [g/kW·h]. Called   in the following subchapters. �: Is the specific energy of the fuel. In the given equation, in [kW·h/g] 

 

Thus, � is inversely proportional to  which means, of course, that the greatest values of �  

the lowest values of  .  

Given an engine, the fuel consumption efficiency is not at all a constant value. It ranges among a 

great amount of values depending on the engine working point.  So any engine has a fuel 

consumption efficiency map or rather, more commonly, a BSFC map. 
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Figure 1-1 BSFC fuel map for a Saturn 1.9L (95 kW) DOHC SI engine (3) 

 
The Figure 1-1 shows that two different engine working points with same output power may have 

absolutely different FC. The BSFC map gives the instantaneous FC of the car when the engine is 

working in a given conditions of torque and speed. Therefore, it is very important to minimise the 

values of the BSFC map by applying engine technologies or moving the working points to a more 

efficient working points.  Therefore the labour of Automobile manufacturers to this concern is 

based on: 

 Modify the de fuel consumption map in such a way that  values are lower in the 

most-probable working points improving  ���  � −  by: Improved turbocharging 

(Higher pressures, dual stage turbocharging…); use of VVA; improved injection systems; 

higher compression ratios; lower frictions; cylinder deactivation; use of Diesel engines ; 

combination of an electric power source with the ICE… 

 Modify the path that the working points follow in the BSFC map by: Modifying the 

transmission ratios; add more gears; stablishing an intelligent ECO-Schedule of gear 
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shifts when AT; using a fastest gear shifting mechanism when AT; using of Continuous 

Variable Transmission… 

 

All the design improvements pointed out here are explained in greater detail in the chapter 3. Any 

of these design modifications involve not only a variation on the FC but also a variation on the 

performance, cost, NVH of the car and customer satisfaction; consequently the Automobile 

manufacturer must pursue a trade-off among FC performance and customer interests. Gearbox 

design has special influence on this. 

 

1.2.2 A more efficient generation of the power needed to drive its auxiliary loads 

 

Some power needs to be delivered by the crankshaft to accessories in mechanical or electrical 

ways (being the upstream source always mechanical): 

 Mechanically: such as water pump, oil pump, valve train, A/C system, HPS and the 

alternator. 

 Electrically: Accessories feed by the alternator such as lighting, EPS, ECU’s and other 

loads that may be driven mechanically or electrically depending on the manufacturer’s 

choice which has significant implications on terms of vehicles hybridization and FC.  

 

The auxiliary loads have been considered in the past as a very small “loss” of energy and so there 

was not major concern on trying to improve its efficiency. However, with the newer more-

stringent regulations on CO2 tailpipe emissions, Automobile manufacturers have enter in a new 

path of FC reduction based on reducing these auxiliaries loads by: 

 Lower friction components, with an obvious reduction on waste of energy and  

 Using intelligent systems that do not waste energy if not needed, which may be performed 

by mechanical clutches or electrification of the system.  

 Electrification of driving elements provide as well a higher range of driving working 

points adapted to the necessities. The introduction of electrified-driven auxiliary loads 

able the use of further electrification technologies as Start&Stop and beyond which 

further reduce both the losses of auxiliary loads and ICE loads by combination the action 
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of Electric motor when the ICE works on low efficiency points of the BSFC map or 

switching the engine off and disconnecting it when car is stopped or slowing down. 

Electrification in massive way leads to the possibility of ICE engine removal from the 

vehicle and therefore none tailpipe emissions. Furthermore, intelligent systems may aid a 

quick warm-up period. 

 

1.2.3 Lower the energy needed to move the car. Introduction to Coast down coefficients.  

 

Aerodynamic load: If the driving conditions as acceleration and climbing resistance are skipped, 

aerodynamic resistance is the main source of power that the engine has to overcome specially in 

high speed cycles. Only the frontal area  and the drag coefficient  may be improved by the 

Automobile manufacturer. To this concern, the frontal area is highly limited by the car 

size/segment, which is a customer/market requirement but the drag coefficient is something that 

can be improved.  

 = �          Equation 1-9 

Where � id the air’s density and � the speed of the car. 

 

Rolling resistance load:  It is not negligible at all, this loss belongs to the hysteresis cycle of the 

tires and tire companies are working very hard to improve the rolling resistance coefficients  

and . 

 = +          Equation 1-10 

 

Driveline Resistance load and brake resistance load: They are far less important as the previous 

but Automobile manufacturers are already projecting new designs to improve these losses. The 

driveline resistance coefficients are   and .  is the resident brake toque. 
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= +          Equation 1-11 

 =           Equation 1-12 

 

Gearbox resistance load: Usually considered as part of the engine efficiency. High efficiency 

gearboxes are being projected by Automobile manufacturers which may include ultra-finishing of 

the surfaces, high efficiency bearings, and improved gear packages. Higher-number of gears 

gearboxes may be detrimental due to an increase number of steps. 

  = ( − )         Equation 1-13 

 

All them (removing the  )  are usually summed up and calculated in an experimental way 

which is called Coast Down method that is the actual procedure to  find the driving resistance 

that the test bench has to simulate during the emissions measuring test driving cycles procedures. 

The test is especially useful because is an easy way to measure these inefficiencies and see 

consequences on changes in the design. It is used as well for computer simulation as shown in the  

(4)Figure 1-2. 

  = + + +         Equation 1-14 

 

The coast down method is performed to obtain the coefficients of the Equation 1-15. There are 

different methodologies to obtain the values but all they are based on a free slowdown of a car 

from a given high speed to a lower speed and measure speed and time. Later the curve can be 

plotted and coefficients obtained. 

  = + +         Equation 1-15 
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Finally, the resistance due to the inertia of the car: It is very important to bear in mind that 

vehicle mass is the most important contributing term on  but not the only one. All rotating 

elements contribute to an increase of this equivalent mass .  

 =           Equation 1-16 

 

 

1.2.4 Other particular CO2 reduction sources 

 

Some FC reduction sources are not clearly specified in the equations described up to now. Some 

comments on them are given here. 

 

1.2.4.1 Brake regenerating 

 

Besides the elements given in the  Equation 1-7, there is an extra term which accounts for the FC: 

The braking. Braking is a source of loss of energy, actually braking is defined as the loss of 

vehicle’s kinetic energy. Although braking (as the speed or the climbing resistance) is a factor 

given by the external conditions, Automobile manufacturers can take advantage of this source of 

energy loss by regenerating it. Reducing thus the amount of power lost during braking by keeping 

it and using it when more convenient.  

 

There are several regenerating levels associated to the technology used as 

electrification/hybridization of the car. Mild and Micro hybrid vehicles just recover a small 

amount of energy while Strong hybrids (P2Hybrids, PowerSplit, PHEV..) and EV recover much 

more but it always depends on the specific technology applied and the braking level.  To this it 

should be said that the recovering capacity of the batteries is limited and thus, beyond a specific 

braking level (which is rather low) and given a SOC and other battery conditions, the power 

delivered to the batteries remains below the amount of kinetic power dissipated. Adding the fact 

that the charging/discharging efficiency of the batteries is around 80% to 90%  in li-ion and 50% 
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to 92% in Pb-Acid batteries and the conversion to mechanical or other electrical forms has an 

associated efficiency, the energy regenerating level is limited (5).  

 

Micro hybrid vehicles do not have a specific starter-generator as all the other HEV but instead, an 

intelligent alternator which charges the 12-24V common Pb battery only when more convenient 

(i.e. during braking or when working in the most efficient BSFC map points). On the other hand, 

from Mild hybrids to EV there is a specific starter-generator that besides charging the batteries 

has a launch function helping the ICE in an amount of power related to the degree of 

Hybridization.  Further information on this issue can be found on the chapter 3. 

 

1.2.4.2 Start and Stop Technology 

 

It is based on the switch off of the engine when the engine is at idle and the car is stopped. In this 

way, a great amount of the energy is spent to maintain the engine on idling is suppressed and 

only energy for electric devices as EPS, lighting…is used. Of course this technology has a greater 

potential as the percentage of time on which the vehicle is stopped increase, as in city driving 

cycles. 

 

1.2.4.3 Special technologies 

 

Other FC reduction sources that are neither showed directly nor implicit in any of the parameters 

of the equations described up to now: 

Solar reflective paint, Active Seat ventilation, Passive cabin ventilation: They are based on the 

reduction of the A/C system by conditioning the car in a more efficient way. 

Solar panels: Based on the charge of batteries thanks to the sun, a both cost free and emissions 

free source of energy. 

Waste head recovery: Based on the recovery of tailpipe head gases by using usually a Rankine 

cycle. 

Active engine/gearbox warm-up: It reduces the period of time that the engine works in cold 

conditions by warming it. 
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1.2.4.4 Tailpipe CO2 emissions reduction due to use of cleaner fuel 

 

The use of a different fuel may improve the fuel conversions efficiency, giving more energy per 

mass of fuel burned, as Diesel engines. However, such concept doesn’t take into account how 

clean the fuel burns; fuels differ on compositions and chemical structure. Such fact leads to 

cleaner combustion of some fuels i.e. a fewer emissions of CO2 per unit of energy delivered when 

burned.  

 

Diesel engines emit a higher amount of GHG per unit of energy delivered. Nevertheless it is more 

than outweighed by the higher efficiency. 

 

The table 1-1 shows how clean is each fuel in terms of tailpipe emissions of CO2. If fuel 

efficiency is considered constant, NG vehicles are by far cleaner than others. Followed by LPG 

vehicles, gasoline engines and lastly, diesel engines. Nevertheless fuel efficiency is not 

maintained constant and therefore not further conclusions can be made with just this information. 

 

Since fuel properties change among production methods, estimates on their characteristics do 

vary among countries. In this case, EPA estimates are showed and so they are mainly valid in US. 

Whereas probably well approximated for other regions. 

 

Table 1-1 Tailpipe emissions per unit of energy delivered of different fuels (6) 

 
gCO2/kwh 

CNG 180,3 

Gasoline 239,9 

Diesel 248,3 

LPG 214,6 

 

Nevertheless, upstream emissions, which are related to the production and transport methods of 

every type of fuel, may counteract the beneficial of cleaner combustions. Furthermore, emissions 
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on harmful gases do vary among different fuels. Those facts give rise to many differences on 

regulations among regions because not clear and “universal” evaluation on all this items can be 

done. 

1.3 CO2 Emissions variation due to driving conditions and test cycle 

conditions  

 

As said, the driving conditions are external factor given by the road and the driver and therefore 

they cannot be modified by the Automobile manufacturer. Neither the homologating test cycles 

can be modified apparently (in practice, they are modified in some way, see chapter 2.4.3). 

However, different regulations use diverse driving cycles, which gives rise to variant FC results 

as can be deduced by the  Equation 1-7 e.g. higher number of accelerations lead to more FC.  

 

The driving conditions do influence both the final FC and the contribution of each source of FC 

to the total FC. For example, high speed driving cycle will carry a high FC due to aerodynamic 

losses and a cycle with high transitory working conditions will be highly influenced by the kind 

of injection (port or direct injection) resulting in a greater FC the port injection due to major 

difficulty to control film thickness on intake ducts (4).  

 

Therefore Automobile manufacturers should do a great effort to understand and asses the several 

FC sources and its behaviour to the different driving cycles in order to invest on them for 

regulations compliance and customer satisfaction. Furthermore, more discussion about test cycles 

is given on the chapter 2.3.3, 2.4.1and 2.7. 
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1.4 Hint to low FC reduction technologies simulation software – Ricardo 

Data Visualization Tool DVT 

1.4.1 FC and CO2 emissions simulation procedures 

 

The BSFC map has been introduced in the chapter 1.2. It is a powerful tool to forecast by 

simulation the FC and CO2 emissions of any car.  If the BSFC map of an engine is known, given 

a car and a driving cycle (speed vs time and gear vs time in the case of MT), the working point 

for any instant (Torque and engine speed) is known and the total or cumulative FC on the whole 

cycle can be calculated as integrating the instantaneous FC values over the time (4).  

 [ ] = ∫ [ ] ∙ [ ]        Equation 1-17 

 

Where BSFC (  is found from the engine torque  , the engine speed �   , the reference cycle 

and car characteristics’ (Coast down coefficients, gear ratios…). On the other hand,   is the 

torque times the engine speed. The figure 1-2 depicts it: 

 

 

 

Figure 1-2 Simplified schematic model to calculate FC by simulation methods (4) 

Where: � : Angular speed of the wheels � : Selected gearbox ratio (depending on the gear) � : Driveline ratio 

: Wheel actual radius 
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Therefore, more in detail, any of the parameters in the figure do modify the working point and so, 

the FC. Special attention to the gear ratios should be taken because it varies depending on the 

selected gear.  

 

Of course, the cumulative fuel consumption can be expressed in many units by simple unit 

conversion. So, if volume of fuel is the desired output, [ ] should be divided by the density of 

the fuel used. In the case that the FC should be given in terms of range so for example [l/100km], 

the cumulative FC of the cycle should be divided by the total running distance. Besides, it can be 

converted to CO2 emissions.  More discussion on this issue is given in the chapter 2.2. 

 

In addition to this procedure, in which the reference driving cycle is supposed to be exactly the 

same as the actual driving cycle, there are other methods to assess the fact that driver cannot 

follow exactly the reference cycle and therefore an error is introduced. They are based in an 

integral proportional control. 

 

Furthermore, it is important to bear in mind that if the warm up period has to be taken into 

account (to best-match real world), then the BSFC map can be modified or multiplied by a 

enrichment coefficient during the warm-up period to assess the increase of FC during that period. 

Furthermore, since BSFC maps are built in steady state conditions, transients are not taken into 

account neither the effect of engine temperature or climatic conditions. However, different 

approaches may be made to include them in some degree. 

 

Finally, the effects of transitory power loss to accessories and the use of hybrid technologies and 

intelligent controls can also be taken into account but the model becomes more and more 

complex.  However, many agenizes have developed very complex models in order to assess the 

FC improvement of certain technologies in certain vehicles in order to save money by avoiding 

making expensive real tests. An example of these models is the DVT which includes a metric 

performance module apart of FC/CO2 module. This software has been used during the 

development of this Thesis for academic purposes and it is introduced in the chapter 1.4.2.  
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Thanks to the several agencies who have developed very complex models to asses improvement 

on FC due to present and future technologies, information could be gather to the purpose of the 

development of this paper.  

 

 

 

1.4.2 Ricardo Data Visualization Tool DVT 

 

The Data Visualization Tool allows the user to efficiently assess the effects of various 

combinations of future technologies on GHG emissions and other vehicle performance metrics. 

The Data Visualization Tool design space encompasses many combinations of vehicle class, 

engine, transmission, and other design parameters. It uses the Response Surface Model (RSM) set 

generated by the  Complex Systems approach to represent the vehicle performance simulation 

results over the design space studied for light duty vehicles in the 2020–2025 timeframe (7). 

 

Many companies and agenizes as NHTSA, ICCT have worked with this tool for many purposes. 

Actually according to ICCT (8), the regression equations used in this Thesis for CO2 emissions 

conversion among different test cycles (see chapter 3.7.4.3 ), were obtained thanks to this tool. 

Furthermore many of the data used for modelling technologies CO2 reduction in this document, 

were obtained from studies which used DVT as a base. Therefore, Data Visualization Tool as 

well as other software developed by Ricardo has become well-known among professionals on 

this issue. 

 

For this reason, it has been considered interesting to download the tool and play with it by doing 

some model runs. Unfortunately the free license does not include a lot of possible packages and it 

does not include costs, which made not possible to take data for the analysis of this Thesis, 

nevertheless it was a great experience.  

 

It is a quite intuitive interface and so only some pictures will be used to explain its functioning. 

Of course the scope of this Thesis is not to show how this software works but rather a quick 

review of the tool utility and its potential so if more detailed information is required, see (8). 
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Data query 

Three areas have been highlighted in the figure 1-3. They are: Vehicle and technology selection, 

highlighted in black. Output variables selection, highlighted in red. Reference Car tuning, 

highlighted in orange. 

 

 

Figure 1-3 DVT Interface. Data query window. 

 

Vehicle and technology selection; the user has to specify the reference car (or reference class) 

and its technologies: 

 The vehicle class: Small car (Toyota Yaris), Standard car (Toyota Camry), Full size car 

(Chrysler 300)… 

 The architecture: Conventional SS, Hybrid P2 and Hybrid PS. 

 The engine: Stoich_DI_Turbo, Lean_DI_Turbo, EGR_Diesel, 2020_Diesel… 

 The transmission: 6AT_2010, 8AT_2020, 8Dry_DCT… 
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The potential packages are however just a few because many of the combinations of these 

technologies are not valid (at least for the version used, which probably includes a reduced 

amount of input data). 

 

Output variables selection: The user has to simply select which outputs are desirable for his 

analysis, as can be seen in the Figure 1-3 many performance metrics can be calculated as well as 

CO2 calculations for several test cycle. Unfortunately in this version only CO2 emissions 

according to EPA regulations can be calculated. 

 

Reference Car tuning: The selected vehicle and technologies may be tuned by varying the 

displacement, driveline efficiency, aerodynamic resistance and so on, as shown. 

 

At this point, if compute button is set, the software will show the output variables selected for the 

reference car just created. If the user wants to see the effect of different vehicle parameters on 

CO2 and FC as the variation of displacement and so on, he/she needs to follow the next step “set 

up”. 

 

Set up 

The user may define a variable and its minimum and maximum limits. The DVT will calculate 

the selected outputs for “any” value of the variable.  
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Figure 1-4 DVT Interface. Analysis setup window. 

 

The figure 1-4 shows how the user has chosen the rolling resistance to range from 0,0079 to 

0,0113. Thus, a shift from 100% to 70% of rolling resistance with reference to the base car. The 

base car, as shown in the white window, is a Chrysler 300, conventional SS, and Stoichiometric 

Direct Injection Turbo with a 8 gears Automatic Transmission. 

 

Plot results 

The user may choose to plot many different outputs in several windows in the screen by selecting 

the number of rows and columns.  The user can freely choose the axis of each plot and can, if 

previously selected in the set up phase, show the effects of several variables on the same plot. In 

the example the only variable is the rolling resistance and just one plot is shown in the figure 1-5.  
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Figure 1-5 DVT Interface. Plot window. 

 

As an example, a reduction of 20g/mi is achieved when reducing 30% rolling resistance in the 

combined cycle.  Such percentage of rolling resistance is out of the possibilities nowadays and in 

a near future but, as said in the technologies definitions in the third chapter, agencies believe that 

a 20% reduction in rolling resistance could be achieved from 2017. Supposing that the assessed 

vehicle doesn’t use low rolling resistance technology, a 20% of rolling resistance reduction 

would improve in some 13g/mi the combined cycle test. 

 

Conclusions 

Although the showed example is quite simple, the potential of this tool is huge. The tool may be 

used to asses: Specific vehicle design on terms of emissions, FE and performance and to explore  

the effect of vehicle design parameters and technologies in different vehicle architectures and 

baselines on terms of emissions, FE and performance.  
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Therefore it helps the user to find the best trade off among the different performance metrics, test 

cycle emissions and FE for a given vehicle architecture. First by making possible to build 

comparative plots (superposing or overlapping) the results of different analysis in the same plot 

which may include different vehicle architectures and baselines, secondly by making possible  to 

choose many different axis (any of the 22 output variables and 11 vehicle parameters) to see the 

most relevant vehicle characteristics and third and last, by making possible to show many plots at 

the same time in different windows to compare in a global way one study or different studies. 

 

As an example of what just said the Figure 1-6 has been created: 

 

 
Figure 1-6 Plot results of a comparison of two different powertrains in a Chrysler 300 with weight and engine 

displacement ranging. 

 

The Figure 1-6 shows a comparison among a MY 2020 Diesel engine with 8 gears automatic 

transmission MY2020 (pink spots) and a gasoline stoichiometric DI turbocharged engine with 8 
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gears gearbox DCT dry clutch (blue spots). The selected car is a Chrysler 300.  The weight and 

the displacement of the engine range among 60-120% and 50-125% respectively. 
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2. Worldwide CO2 emissions regulations  

2.1 Introduction 

Transport is, along with electricity production and industrial processes sector, one of the sectors 

with highest GHG emissions and, without any significant policy changes, is forecast to remain so 

for the next decades.  

 

 

 

 

 

 

 

 

 

 

Figure 2-1 Annual GHG emissions by sector, as estimated in (9) 

 

This figure shows the relative fraction of man-made greenhouse gases coming from each of eight 

categories of sources, depending on the sources it may vary but as can be seen in the Figure 2-1, 

72% of the total GHG comes from CO2 emission, which is a product of the combustion of fuels. 

Therefore it can drop only if combustion of fossil fuels lowers: by improving energy conversion 

efficiency, by using cleaner fuels or by lowering the energy demand. The other two main 

greenhouse gases are methane and nitrous oxide with about a 18% and 9% of the total GHG, 

http://en.wikipedia.org/wiki/Greenhouse_gas
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respectively. Because carbon dioxide emissions account for nearly 95 percent of total GHG 

emissions that result from fuel combustion during vehicle use, agencies focus mainly in changes 

in emissions of CO2 (10). 

 

Recommendations and regulations are already in place or are incoming focus on road transport 

and including policies on improving energy efficiency, fuel economy standards for both light-

duty vehicles (LDVs) and heavy-duty vehicles (HDVs). 

 

Government entities worldwide are asking for a huge effort to reduce the vehicle fuel economy to 

promote the achievement of lower level of emissions and reduce the dependency from fossil fuels 

(de-carbonization of road transport). 

 

A number of different test procedures, formulas and approaches to regulating fuel economy and 

GHG emissions have evolved over the last several decades.  The policy objectives of these 

regulations vary depending on the priorities of the regulating body, but most standards are 

applied to new vehicles in order to reduce either fuel consumption or GHG  emissions (i.e. CO2, 

CH4, N2O, H2O, SF6, CFC…).  

 

There are important differences between these two approaches: 

Fuel economy (FE) standards seek to reduce the amount of fuel used by the vehicle per distance 

driven. Methods to do so may include more efficient engine and transmission technologies, 

improved aerodynamics, hybridization, or improved tires.  

GHG emission standards target either CO2 or the whole suite of GHG emissions from the vehicle, 

such as refrigerants from the air conditioning system or nitrous oxide (NOx) from the catalytic 

converter. GHG emissions standards may even extend beyond the vehicle to encompass the GHG 

emissions generated from the production of fuels. 

Moreover, both types of standards may be less stringent to specific vehicles/fuels or technologies 

in order to promote its use for interests that go beyond the GHG emissions i.e. political/economic 

reasons.   
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Mainly FE standards will be dealt in this work.  

The largest automobile markets (North America, European Union, China, Japan and Brazil) 

approach these new vehicle standards quite differently.  

 

The most relevant regulations, will be described without entering in unnecessary details and 

focusing if possible only on the MY 2018+ (period of major concern in this work). Once they are 

described, a rough comparison between the main procedures is done. 

 

2.2 Fuel Consumption (FC), Fuel Economy (FE) and tailpipe CO2 Emissions 

 

First to enter in detail about the regulations, it is useful to notice de difference between the terms 

that are being used along the document and that may cause some confusion. 

 

The three terms are equivalent. Thus, simple unit conversions differentiate them, in principle.   

While FE and FC are the inverse (ratio between the distance travelled/fuel consumed and ratio 

between fuel consumed/distance travelled, respectively), the CO2 emissions (measured in grams 

per unit of distance) depend upon the type of fuel burned and so an additional conversion unit is 

needed. This is because same volume of fuel may have different carbon content and so different 

CO2 emissions as a product of the combustion. 

 

Note that GHG final indicator is concerned to CO2 emissions rather than FC or FE . However, FC 

and FE is commonly used at consumer level because it is more convenient for cost calculations. 

Furthermore FE is used for CAFE regulations and CO2 emissions for EPA GHG and EU 

regulations. Whereas some regulations use FC as indicator. 

 

FC is commonly used in Europe and It is expressed as [l/100km] while FE is more common in 

America and is normally expressed in [mpg] ([mi/gal]). Whereas the conversion between [km] 

and [mi] is straightforward (1 mi = 1.609344 km), in the conversion among [l] and [gal] it should 
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be specified whether imperial gallons or US gallons are used.  Thus, 1l = 0.264US gallons and 1l 

= 0.219 Imperial gallons.  

 

For what concerns CO2 emissions, they are expressed in [gCO2/km] or [gCO2/mi] depending on 

the region.  After performing some chemical relationships for the combustion process (6) (11) 

(12). the agencies have stablished a common values of the grams of CO2 emitted when 1l or 1kg 

(case of  CNG) is burned: 

 

Table 2-1 Tailpipe emissions of carbon dioxide per unit of volume or mass (in the case on CNG) (6) (11) (12) 

Region Fuel type [gCO2/l]  ([gCO2/kg] for CNG) 

EU 

Gasoline 2330 

Diesel 2640 

LPG 1528 

CNG 2669 

USA 

Gasoline 2400,8 

Diesel 2667,6 

LPG 1528 

CNG 2669 

 

 

Which vary upon the region because fuel properties depend on the source and on the calculation 

hypothesis.  

 

The second paragraph of this explanation has shown some uncertainty when suggesting that FC, 

FE and CO2 tailpipe emissions are equivalent. On the precedent paragraphs, the physical meaning 

of such variables has been explained and their equivalent demonstrated. However, any of these 

variables (FC, FE…) can be measured in several ways according to the different procedures 

existing worldwide (NEDC, EPA GHG, EPA Labelling, CAFE and so on). All of them may 

show unlike values of such variables. As an example, EPA Labelling and CAFE are measured in 

FE (MPG) but they result in different values (about 20-25% difference (13)). Therefore it has to 

be specified under which circumstances they have been calculated. 



 
 

  Page 31 
 

  

 

However, many times it is not specified in the literature and specially in non-official sources as 

newspapers or magazines and therefore the reader needs to make assumptions. Of course, 

knowing the regulations will help the reader.  

 

2.3 United States 

 

In USA, EPA regulates Label and GHG standards while NHTSA and DOT regulates CAFE 

standards. The Label, GHG and CAFE standards are related to each other, but are separate 

programs. Compliance is evaluated for each program separately i.e. for GHG and CAFE. GHG 

legislation is more severe in terms of CO2 targets; Manufacturers must comply with the GHG 

standards while they can pay fines if not compliant with CAFE standards. 

 

The United States has regulated fuel economy in cars the longest with the Corporate Average 

Fuel Economy (CAFE) standard, which was introduced in 1975. The CAFE system was updated, 

or “reformed”, and enhanced in 2009 so that it became a function of vehicle size or “footprint” 

from 2011. On the other hand GHG emissions standards were first enacted on 2012.  

 

In addition there is also in place the fuel economy label to enhance the customer sensitivity on 

Fuel Economy and promote the diffusion of more efficient light duty vehicles. The Labelling of 

vehicle fuel economy and associated costs has also been a requirement in the United States for 

more than 30 years. Canada has recently switched from a voluntary to mandatory fuel economy 

system and these standards are aligned with the United States’ revised CAFE standards.  

 

The U.S. federal government has relied on CAFE (Corporate Average Fuel Economy) standards 

requiring each manufacturer to meet specified fleet average fuel economy levels for cars and light 

trucks. The standards are based on vehicle footprint and separate car and light-truck standards 

have been formulated. The scenarios represent 3 to 6 percent annual decrease in GHG levels from 

the MY2016 fleet-average.  
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Following the direction set by President Obama on May 21, 2010, NHTSA and EPA have issued 

joint Final Rules for Corporate Average Fuel Economy and Greenhouse Gas emissions 

regulations for model years 2017 and beyond. Which have been used as input data for this Thesis. 

 

 

 

 

Figure 2-2 Logotypes of the National Highway Traffic Safety Administration (NHTSA) and Environmental 

Protection Agency (EPA) 

2.3.1 Corporate Average Fuel Economy (CAFE) 

 

The Corporate Average Fuel Economy (CAFE) intended to improve the average fuel economy of 

cars and light trucks (trucks, vans and sport utility vehicles) so CAFE has separate standards for 

"passenger cars" and "light trucks", despite the majority of "light trucks" actually being used as 

passenger cars.  Historically, it is the sales-weighted harmonic mean fuel economy, expressed in 

miles per U.S. gallon (mpg), manufactured for sale in the United States.  

 

The CAFE standards are expressed as mathematical functions depending on vehicle "footprint" 

that is determined by multiplying the vehicle’s wheelbase by its average track width while a  

simple formula with cut-off values is adopted to determine the threshold to be achieved. CAFE 

footprint requirements are set up such that a vehicle with a larger footprint has a lower fuel 

economy requirement than a vehicle with a smaller footprint.  

 

For example, passenger car with a footprint of 42,3sf will have an associated FE MPG  target of 

some 44mpg on 2018 and 57mpg on 2024. The Figure 2-3 shows the MPG limits for CAFE 

regulations. 
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Figure 2-3US passenger car CAFE limit (left) and US light trucks CAFE  limit (right) depending on MY 

 

The Figure 2-3 has been created from the equations and coefficients given by EPA (10).  

 

While the limit curve in EU is a simple linear equation, the CAFE regulation stablishes a quite 

complex curve.  

 

2.3.2 Labelling 

 

The Fuel Economy and Environment Labels provides the public with information on vehicles’ 

fuel economy, energy use, fuel costs, and environmental  impacts so to enable an easy and fair 

comparison among different type of vehicles including advanced technology vehicles such as 

hybrid and electric cars. 

The labels are required to be placed in all new passenger cars and trucks both conventional 

gasoline or other fuels powered and “next generation” cars, such as plug-in hybrids and electric 

vehicles. 
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The Label reports: 

Fuel Economy: Miles per gallon (MPG) estimates. The combined City/Highway estimate is the 

most prominent to allow quick and easy comparison to other vehicles. However, such values are 

adjusted in order to better reflex the real FE.  

Fuel Economy and Greenhouse Gas emissions: one-to-ten rating comparing the vehicle’s fuel 

economy and tailpipe carbon dioxide emissions to those of all other new vehicles, where a rating 

of 10 is best on CO2 emissions. 

Smog rating: A one-to-ten rating based on exhaust emissions that contribute to air pollution. 

Fuel Costs: an estimate of how much more (or less) the vehicle will cost to fuel over five years 

relative to the average new vehicle, as well as its estimated annual fuel cost. (10) 

 

2.3.3 Test Driving Cycles 

 

The procedure adopted in US to assess the vehicle label fuel economy and CO2 is based on 5 

cycles to be performed on a chassis dynamometer while the two test procedure is used for CAFE 

purposes.  

EPA Federal Test Procedure (FTP-75): the "city" driving simulates an urban route of 12.07 km 

(7.5 mi) with frequent stops. It has of two phases: "cold start" phase of 505 s over a projected 

distance of 5.78 km at 41.2 km/h average speed, and "transient phase" of 864 s. A "hot start" 

cycle which repeats the "cold start" cycle is then performed after 10 minutes pause at the end of 

"transient" phase. 

 

 

     
  

Figure 2-4 US Fuel Economy Labels (At left: ICEV, at right: EV) 



 
 

  Page 35 
 

  

 

Highway Fuel Economy Driving Schedule (HWFET) represents highway driving conditions 

under 60 mph. 

US06 is a high acceleration aggressive driving schedule that is often identified as the 

"Supplemental FTP" driving schedule. 

SC03 Supplemental Federal Test Procedure (SFTP) represents the engine load and emissions 

associated with the use of air conditioning units in vehicles certified over the FTP-75 test cycle. 

FTP-20: the FTP cycle is performed at 20 °F (-6.7 °C) with the heating and de-icing system 

activated. 

The difference among the two-cycle procedure and the five-cycle procedure is around 20-25% 

(14) due to the use of two adjusting factors (1,1 and 1,22 (13)) and the differences coming from 

the unlike driving cycles. The FTP-75 and HWFET cycles also called combined cycle or two-

cycle procedure is used to assess the vehicle fuel economy CAFE and therefore, the ones that 

apply for the purpose of this work. Fuel economy is calculated as follows: 

 

Highwaycity

CAFE

FEFE

yFuelEconom
45.055.0

1


        Equation 2-1 

 

Where highwaycityFE , are calculated from the concentrations of CO2 and other pollutants found using 

the bags procedures, depending on the fuel used.  For further information about the other cycles 

see the annexes. 
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Figure 2-5 At left complete FTP 75 Driving Cycle. At right, UDDS driving cycle and “505” driving cycle. After the 

Hot start phase there is still for HEV another phase which is not illustrated above. 

 

Figure 2-6 At left, complete HWFET Driving Cycle, at right only the part that is repeated. 

 

Four bags are collected and used to estimate emissions and FE for regulation purposes. Such 

procedures and estimations may vary depending on the type of vehicle.  

2.3.4 Flexibilities 

 

EPA’s final program includes provisions that offer compliance flexibility to auto manufacturers. 

Together these flexibilities are expected to provide sufficient lead time for manufacturers to make 

necessary technological improvements and to reduce the overall cost of the program, without 

compromising overall environmental objectives. The flexibilities also provide incentives to 

facilitate market penetration of the most advanced vehicle technologies. Furthermore, even if no 

incentives were given to advanced vehicle technologies (as use of cleaner fuels…), a specific 

505 cycle 
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procedure to calculate their FE and CO2 emissions is needed. As an example, how FE (MPG) in 

CNG vehicles is approached? It is clear that gallon of gasoline and a “gallon” of CNG are totally 

unlike and incomparable. Such provisions are explained bellow .Flexibilities may be GHG 

regulations applicable or CAFE applicable (or both). Flexibilities can be a source of loopholes or 

opportunities from where manufacturers may take advantage of. Therefore, Automobile 

manufacturer’s strategies are quite legated to such provisions. 

 

 

Credit banking and trading   

These provisions help manufacturers in planning and implementing the phase-in of GHG and 

CAFE-reducing technology in their production, consistent with typical redesign schedules. 

Credits may be carried forward, or banked, for five years, or carried back three years to cover a 

deficit in a previous year. A manufacturer may transfer credits across all vehicles it produces, 

both cars and light trucks. Trading of credits between companies is also permitted. To facilitate 

the transition to the increasingly more stringent MYs 2017-2025 standards, EPA is finalizing 

under its Clean Air Act authority a one-time CO2 credit carry-forward provision beyond 5 years, 

allowing credits generated from MYs 2010 through 2016 to be used through MY 2021.  

 

However, such provision is not used for the calculations of this Thesis. 

 

Treatment of Compressed Natural Gas (CNG), Plug-in Hybrid Electric Vehicles (PHEVs), 

and Flexible Fuel Vehicles (FFVs)  

EPA is finalizing a methodology for determining CO2 levels for plug-in hybrid electric vehicles 

(PHEVs) and dual fuel compressed natural gas (CNG) vehicles. This methodology assumes how 

much of the time these vehicles will operate using the alternative fuel, and how much on 

gasoline. This methodology (called a “utility factor”) assumes that owners of these vehicles will 

use the cheaper non-gasoline fuel most of the time, since that was a main reason for purchasing 

the vehicle. 
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Figure 2-7 CAFE FE regulations. Utility factor for CNG vehicles (10) 

 

From 2019 the utility factor for CNG vehicles will be taken from the Figure 2-7. Most of the cars 

have a CNG tank able to provide range of about 220mi which correspond to a utility factor of 

0,962. So the final MPG is quite well approximated the combined fuel economy for operation on 

natural gas (in mpg gasoline equivalent) divided by 0,15. There is still no utility factor data for 

PHEV and others FFV.  

 

For liquid alternative fuels, this methodology generally counts 15 percent of the volume of fuel 

used in determining the mpg-equivalent fuel economy. For gaseous alternative fuels (such as 

natural gas), the methodology generally determines a gasoline equivalent mpg based on the 

energy content of the gaseous fuel consumed, and then adjusts the fuel consumption by 

effectively only counting 15 percent of the actual energy consumed. 

 

So for CNG and LPG cars, CAFE MPG is 6,7 times higher than a conventional gasoline vehicle 

if the MPGe are the same, which is not the case. MPG for LPG engines and MPGe for CNG 

engines are usually lower than MPG of conventional gasoline for two reasons: First, for LPG 

(that is comparable as it is liquid fuel as well), the energetic density is lower and so more gallons 

are used to run the same range even if the fuel efficiency is the same. Second, in order to obtain 
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maximum efficiency in both operating modes (gasoline/diesel and LPG or CNG) the engine has a 

much higher cost due to technologic complexity so most of times no one of the operating modes 

is 100% optimized but rather a trade-off among cost, FC and performance. Even though, this 

MPG multiplier (6,7) is a great advantage for alternative fuel vehicles CAFE compliance 

calculation.  Note that LPG and CNG engines show some 10% and 20% of tailpipe CO2 

reduction respectively, which is much lower than the 6,7 multiplier when comparing MPG to 

CO2 emissions.  Even taking into account the lower energy content of LPG, the final MPG is 

much higher than the real. Thus, values of 200-300MPG (for compliance calculation) for those 

types of cars are common. 

 

In the case of FFVs fuelled with E85 and gasoline (customer’s choice), the resultant MPG is 

divided by 1,39(because of the lower energetic content) and by 0,15. This gives a total multiplier 

of 4,8 if considering a fuel efficiency equal to a conventional gasoline engine. Besides, the 

incremental cost of these cars is about 100$. These conditions give rise to a perfect “loophole” to 

which Automobile manufacturers can take profit to accumulate credits for CAFE compliance. 

 

EVs 

In the CAFE program, for EVs, the methodology generally determines a gasoline equivalent 

MPG by measuring the electrical energy consumed, and then uses a petroleum equivalency factor 

to convert to a mpg equivalent value. The petroleum equivalency factor for electricity includes an 

adjustment that effectively only counts 15 percent of the actual energy consumed. Counting 15 

percent of the fuel volume or energy provides an incentive for alternative fuels in the CAFE 

program.  

 

In the GHG regulation for EVs, PHEVs and FCVs, EPA is setting 0 g/mi as the tailpipe 

compliance value for EVs, PHEVs (electricity usage) and FCVs for MYs 2017-2021, with no 

limit on the quantity of vehicles eligible for 0 g/mi tailpipe emissions accounting. For MYs 2022-

2025, 0 g/mi will only be allowed up to a per-company cumulative sales cap. For sales above 

these thresholds, manufacturers will be required to account for the net upstream GHG upstream 

(fuel production and distribution) emissions for the electric portion of operation, using 

accounting methodologies set out in the rule.  
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Off-cycle credits 

For MY 2017+ EPA proposed and is finalizing provisions allowing manufacturers to continue to 

generate and use off-cycle credits to demonstrate compliance with the GHG standards. These 

credits are for measureable GHG emissions and fuel economy improvements attributable to use 

of technologies whose benefits are not measured by the two-cycle test. The sum of these values 

for all technologies would be the amount of CO2 credit generated by that vehicle, up to a 

maximum of 5.0 g/mi for car. These technologies and their features are clearly depicted in the 

Figure 3-18 and the chapter 3.5.8.  

 

EPA and NHTSA are finalizing a proposal for stablishing fuel economy off-cycle credits for the 

CAFE regulation compliance from the MY 2017+. The actual value of on the FE improvement of 

each technology will not be a simple conversion from g/mi to MPG but the general procedures 

will be the same as used in  MY’s 2014-2016. It is still not known what technologies will 

generate off-cycle credits for CAFE compliance. 

 

Penalties 

If the average fuel economy of a manufacturer's annual fleet of vehicle production falls below the 

defined standard, the manufacturer must pay a penalty, currently $5.50 USD per 0.1 MPG under 

the CAFE standard, multiplied by the manufacturer's total production for the U.S. domestic 

market. In the case of GHG regulations no flexibility is allowed. 

 

Incentive multiplier 

In order to provide temporary regulatory incentives to promote the penetration of certain ‘‘game 

changing’’ advanced vehicle technologies into the light duty vehicle fleet, EPA is finalizing, as 

proposed, an incentive multiplier for CO2 emissions compliance purposes for all electric vehicles 

(EVs), plug-in hybrid electric vehicles (PHEVs), and fuel cell vehicles (FCVs) sold in MYs 2017 

through 2021. This will lower the manufacturers average emissions, making it easier to meet the 

target. 
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Figure 2-8 US GHG standard incentive multiplier for EVs, FCVs and PHEVs  (10) 

 

NHTSA did not propose and is not including incentive multipliers comparable to the EPA 

incentive for CAFE compliance. Instead, CAFE uses the 0,15 divisor for MPG calculation in 

EVs, LPG vehicles and CNG vehicles from the gasoline equivalent MPG.   

 

 

 

 

2.3.5 Other North American and US State specific Regulations 

 

In California, as directed by the statute, the California Air resources Board (CARB) issued a 

regulation in 2004 to establish year-by-year GHG emissions targets for two vehicle class 

categories separately from MY 2009 to 2016, giving automakers a 5-year lead time.  

In late 2009, EPA granted a waiver to California to implement its GHG standard for model year 

2009-2011 vehicles. California subsequently revised its program to allow manufacturers to show 

compliance with California’s standards by complying with the federal standards.  

 

In addition the State of California adopted a ZEV (Zero Emission Vehicle) program as part of the 

regulations, and originally included standards and requirements which specify ZEV percentages 

of 1998 and subsequent model passenger cars and light-duty trucks with a loaded vehicle weight 

of 0-3750 lbs.  

 

Beginning in 2018, through 2025, large-volume manufacturers (LVMs) must produce an amount 

at least equal to the "minimum ZEV floor" percentage requirement and may fulfil the remaining 

ZEV requirement with credits from PHEV (i.e.  Transitional Zero-Emission Vehicles or TZEV) 
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In Canada, in October 2010, the Government finalized the regulation to limit GHG emissions 

from passenger cars and light trucks from model year 2011 to 2016.  The standards will adopt the 

footprint based structure proposed in the US latest rule making.   
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2.4 The European Union 

 

In 2009, the European Parliament and the Council adopted a Regulation (EC) No 443/2009 

setting CO2 emission performance standards for new passenger cars. The EU Regulation is the 

first main measure of the EU Strategy to reduce CO2 emissions from light-duty vehicles (cars and 

vans) and is directly applicable in the Member States not requiring any national law through 

national legal instruments to be transposed into.  

 

 

Figure 2-9 European Commission logotype 

 

The standard is based on vehicle mass and means that the passenger car fleet on average will emit 

130 g CO2/km by 2015 (compared with 161 g CO2/km in 2005) and 95 g CO2/km by 2021 

measured over the New European Driving Cycle (NEDC). In a way that 95% of the cars MY 

2020 has to account for the calculation in the year 2020 and the whole fleet accounts from 2021 

onwards. The regulation is applicable to passenger cars, vehicle category M1. The specific 

emissions target for each manufacturer in a calendar year is based on the vehicle mass. It is 

calculated as the average of the Specific Emissions of CO2 (g/km) of each new passenger car 

registered in that calendar year, where: To comply with the regulation, a manufacturer will have 

to ensure that the overall sales-weighted average of all its new cars does not exceed the limit 

value curve. Otherwise and if the manufacturer doesn’t take any action as for example pooling, it 

will be fined. 

 

Specific Limit Emissions will be calculated as: 

 

 [� ] = + ∙ −       Equation 2-2 
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 [� ] = + ∙ −       Equation 2-3 

 

Where: 

: is the curb mass of the car 

: “By 31 October 2014, and every three years thereafter, measures shall be adopted to adjust 

the figure , referred to therein, to the average mass of new passenger cars in the previous three 

calendar years.” From January 2016,  = 9  (15) � : 0,0457 � : 0,0333 

 
Figure 2-10 The EU Regulation on CO2 emissions indicating the limit curve and a possible CO2 reduction path per 

segment (16) 

 

Car manufacturers have to ensure that the average of their new sales meets these levels. 

Individual car types can thus be above or below the limit, if car manufacturers exceed these limits 

they have to pay fines, as is explained in more detail in the next paragraphs. 

 

The curve is also set in such a way that emissions from heavier cars will have to be reduced more 

than emissions from lighter cars, as can be seen by the shift in slope from 0,0457 to 0,3333. This 
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result in an average CO2 emissions reduction of 42,5gCO2/km for PC with curb mas of 2000kg 

and 30,1gCO2/km for PC with curb mass of 1000kg from MY2015 to MY2020.  

 

It is 'desirable' indications of how the regulations are going to be provided for the period beyond 

2020 in order to enable the automotive industry to carry out long-term investments and 

innovation. Special concerns arise from the fact that WLTC cycle may start to be applied and 

therefore Automobile manufacturers will have to make an additional effort to forecast which low 

FC technologies will be the most convenient for that type of cycle. 

 

The current scenario foreseen under proposal a further reduction of the limit from 95 g/km to 75 

g/km to promote a real technology change and asking for a deep review of the role of 

conventional powertrain. 

 

2.4.1 Test Cycles 

 

Light vehicles are subjected to a transient cycle named New European Driving Cycle  NEDC. 

The NEDC is supposed to represent the typical usage of a car in Europe. It consists of four 

repeated ECE-15 urban driving cycles (UDC) and one Extra-Urban driving cycle (EUDC).  

It is expected that, in the framework of the CO2 Regulation, the NEDC test cycle will be replaced 

by the so called Worldwide harmonized Light vehicles Test Cycle (WLTC) that is considered 

more representative of the real world mission as has been demonstrated that NEDC not 

representative of the real world. Up to 38% difference among NEDC and real world has been 

detected while 25% for the CAFE combined cycle (17).   
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Figure 2-11 New European Driving Cycle NEDC 

 

As well as the speed vs time, there is a gear shit even schedule vs time not represented in the 

Figure 2-11. 

 

 
Figure 2-12 Worldwide Harmonized Light Vehicles cycle 

 

The WLTC driving cycle will affect CO2 emissions in many ways as many parameters of the 

procedure are redesigned to better adjust to real driving conditions and give less test procedure 

flexibilities. Thus, not only the driving cycle is more demanding but all the parameters as road 

load determination (tyre conditions, wheel alignment…), test temperatures, vehicle masses and 

others (17).   
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2.4.2 Flexibilities 

 

As in US regulations, some flexibilities are available for manufacturers.  

 

Super-credits 

This legislation aims at encouraging the development of very low-CO2 technologies, despite the 

high costs involved, by giving 'super credits' for cars that (tank-to-wheel) emit less than 

50gCO2/km. This will lower the manufacturers’ average emissions as calculated by the 

Commission, making it easier to meet the target. For the 130 g CO2/km the scheme spires in 

2016, however from 2020 95 g CO2/km target: 

 

In calculating the average specific emissions of CO2, each new passenger car with specific 

emissions of CO2 of less than 50 g CO2/km shall be counted as: 2 passenger cars in 2020;  1,67 

passenger cars in 2021; 1,33 passenger cars in 2022; 1 passenger car from 2023. 

 

Differently from CAFE regulations, in which a kind of well-to-wheel gasoline equivalent 

calculation is performed for EV (see chapter 2.3.4), EVs are currently counted as zero-emission 

vehicles in EU as they do not have tailpipe emissions.  

 

Currently in practice super credits almost entirely relate to electric cars.  Differently from what 

stablished in CAFE regulations (in which incentives are automatically applied for AFV), 

alternative fuel vehicles(EV, HEV, FFV, CNG, LPG, methanol compatible…) do not have 

incentives for compliance calculations as long as they have CO2 emissions above 50g/km in the 

NEDC regulations. 

 

Eco-innovations 

Manufacturers may apply for credits for innovative CO2 reducing technologies which are not 

accounted for in the current test cycle (Eco-innovations). Current examples of such eco-

innovations are: solar roofs that provide power for auxiliary electrical systems; efficient lighting 

(e.g. LEDs); exhaust heat recovery (18).  
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Incentives can be granted to technologies whose CO2 saving is not already covered by the CO2 

type approval test procedure. If the CO2 reducing effect of an eco-innovation is only partially 

covered by the type approval procedure, the granted CO2 saving is the difference between the 

CO2 saving at modified testing modalities and CO2 saving under type approval conditions   i.e. 

any savings that can be demonstrated using the normal type. 

 

Where basic technical features are not activated permanently during vehicle’s operation, average 

usage factors should be derived from strong statistical data. Normally, such statistical surveys 

cannot be performed for new technologies before their market introduction. 

In general, only technologies whose CO2 saving effect is not under the influence of the driver’s 

choice or behaviour would normally qualify. Some examples of potentially qualifying 

technologies are: Engine heat storage, LED lighting, battery charging solar roof. Other examples 

of potentially and non-potentially qualifying technologies are showed in the annexes. 

 

The total contribution of eco-innovation credits is limited to 7 gCO2/km in each manufacturers 

average specific target. Note that the recently published proposal on the 2020 targets for new 

passenger cars states that: "Eco-innovations are retained when a revised test procedure is 

implemented". 

 

Differently form EPA GHG provisions on off-cycle credits, eco-innovations are not pre-approved 

and so the procedure for qualifying is quite more complex, leading Manufacturers to doubt about 

the worthiness of such provisions. 

 

Joint pools 

Manufacturers can group together to form a pool which can act jointly in meeting the specific 

emissions targets.  

 

Low volume manufacturers 

Manufacturers with fewer than 10000 new cars registered per year may apply to the European 

Commission for derogation from the specific emission targets. Several conditions apply. 
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Penalties  

From 2012 to 2018, the penalties are €5 per vehicle for the first g/km of CO2; €15 for the second 

gram; €25 for the third gram; €95 from the fourth gram onwards. From 2019, manufacturers will 

pay €95 for each g/km exceeding the target. 

 

2.4.3 Test procedure flexibilities  

 

Until now, flexibilities have referred to regulation parameters that have been created on purpose 

to ease regulation stringency under some conditions in order to make a more efficient, neutral and 

better approached emissions regulations.  There is, however, a second approach of flexibilities 

(test procedure flexibilities) very different from the first one. Test procedure flexibilities have not 

been created on purpose from the regulations but rather, they are regulations loopholes from 

where manufacturers may take profit. 

 

In other words and highlighting the implications of this fact: procedures contain flexibilities that 

could be exploited to achieve lower CO2 emission values on the Type Approval test without 

applying technical improvements to the tested vehicle. Achieved by carefully selecting vehicle 

test conditions within, or possibly even outside, allowable bandwidths, manufacturers might be 

able to achieve reduced CO2 emission levels on a given vehicle at homologation that do not 

correspond to an equivalent reduction in emissions for a given driving pattern on the road. 

Therefore, reductions in type approval CO2 emissions obtained in such a way not only affect the 

net impact of the regulation in a detrimental way but also the costs of meeting the targets. So, 

final real life fleet emissions are higher than expected and cost of cars are reduced, which 

absolutely benefice profits of manufacturers by worsen air quality.   

 

Some of the flexibilities are Automobile manufacturer’s choice while others are not really 

modifiable since they depend upon the facilities used to carry the tests.  

 

The TA process differs between the US and Europe. Utilisation of test procedure flexibilities 

appears to be more wide-spread in the EU than elsewhere. However, the new WLTC will remove 
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some of the available flexibilities. Such flexibilities (that will be explained below in detail) can 

basically be applied to European regulations and not to USA regulations and therefore, it can be 

stated that USA regulations are better realised, without such loopholes. The reasons of such 

differences among regulations are the certificate of conformity tests (also called Conformity Of 

Production test COP) performed to the vehicles coming from the production line after Type 

Approval test have been successfully surpassed. These second tests are performed in order to 

check that prototypes tested on the TA test are actually representative to that vehicles coming 

from the production line and sold. In EU, such COP test can be performed with the same 

conditions than TA test so “loopholes” can still be exploited. However, USA regulations do not 

perform the “COP” test with same conditions which make manufacturers to not dare/risk to use 

flexibilities. Furthermore, customer can ask EPA to audit Automobile manufacturers if Label 

MPG is not coherent to real MPG. As an example Ford C-max was revised and it was found that 

Coast down coefficients were not representative and therefore EPA punished Ford. 

 

A preliminary evaluation suggested that some 9 - 10% of the reductions observed in assessed 

vehicle models between 2002 and 2009 could not be attributed to additional technologies applied 

to the assessed vehicle models between 2002 and 2009.This sensitivity analysis indicated that a 

reduction in type approval emissions of 9- 10% due to increased utilisation of flexibilities would 

lead to around € 600 lower costs per vehicle for meeting the passenger car target of 95 g/km in 

2020, which is about one third of the costs estimated with cost curves based on application of 

headline technologies only (8). 

 

Key flexibilities fall into two categories, firstly those that affect the coast down measurement test, 

secondly those that affect the type approval or NEDC test: 

 

 For the road load determination test (coast down measurement) the main identified issues 

are: 

Wheel alignment, adjustment of brakes, transmission and driveline preparation 

Ambient conditions : temperature, pressure, wind, humidity 

Tyres: type, pressure, and wear 

Test track: surface type and slope 
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Vehicle weight as tested 

Vehicle body type 

 

 For the NEDC type approval test the main issues found are: 

Inertia class 

Factors affecting driving resistance on the dynamometer 

Influence of the driver: using the tolerances in the driving cycle 

Preparation of the test vehicle 

Optimised measurement 

Variation in gear shifting 

Battery state of charge 

Laboratory soak temperature 

 

Also it is worth to mention that a portion of the theoretically available flexibilities may not be 

practical to implement in every vehicle and whilst some flexibilities reduce CO2 they can have an 

adverse effect on other emissions (such as increasing NOx). Furthermore it should be clear that 

most of times the maximum level of CO2 emissions reductions cannot be achieved for each item 

and that some items effects cannot be summed up.  

 

A more detailed explanation of any flexibility has been summarized from (8) and is given in the 

following points, with some references to the regulations which can be found in (19). 

 

2.4.3.1 Coast down method flexibilities 

 

Let’s explain more in detail the flexibilities in the coast down method which may sum-up up to 

4,5% CO2 reduction, in the best case: 

 

Wheel and tyre specification 
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Manufacturers often have a range of wheel and tyre size options available within a family of 

vehicles. The legislation includes some flexibility in the choice of wheel and tyre used in both the 

coast down measurement test, and the NEDC test. 

 

Regarding the tyre choice for coast down measurement, UNECE R83 – Annex 4a, Appendix 7, 

4.1.2 states: “The widest tyre shall be chosen. If there are more than three tyre sizes, the widest 

minus one shall be chosen.” 

 

Tyre specification has a significant effect on rolling resistance, and tyre width has an effect on 

aerodynamic drag. The flexibility in tyre choice may be used to optimize rolling resistance and 

drag for the coast down test, when in reality incentives could be used or be present to sell the 

majority of vehicles with different wheels and tyres. For example, it could be possible to specify 

very extreme tyres as the “widest minus one” in the range, therefore gaining significant benefit 

on the coast down test. However this may not be viable in practice, as the manufacturer would 

have to ensure no customers purchase vehicles with such extreme tyres due to the reduced grip. A 

more viable approach might be to specify reasonably low rolling resistance tyres as standard, and 

make other tyres available as an option for more performance oriented customers. 

 

Tyre pressure 

Tyre pressure is also a significant factor in rolling resistance, therefore coast down performance. 

For the coast down test, UNECE R83 – Annex 4a, Appendix 7, 4.3 specifies that “The following 

checks shall be made in accordance with the manufacturer's specifications for the use considered: 

Wheels, wheel trims, tyres (make, type, pressure), front axle geometry, brake adjustment 

(elimination of parasitic drag), lubrication of front and rear axles, adjustment of the suspension 

and vehicle level, etc.” 

 

Tyre pressures are set when the tyres are ‘cold’, however the exact temperature is not specified. 

Therefore there is some flexibility in the change of pressure during the course of the coast down 

procedure. If the ambient temperature is low when pressures are set, any increase in ambient 

temperature during the day will be of benefit as increased tyre pressures will result. 
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In addition to the effect of ambient temperature, the vehicle operating temperature will also have 

an effect on tyre pressure. It is advantageous to get the tyres to the highest temperature possible 

during the preconditioning phase of the test, in order to further increase tyre pressure. This 

benefit is offset somewhat as the tyres become softer with increased surface temperature, 

increasing rolling resistance. 

 

Brakes 

Also mentioned in UNECE R83 – Annex 4a, Appendix 7, 4.3 on “brake adjustment (elimination 

of parasitic drag),” are adjustments that may be made to certain components. The adjustment of 

brakes to remove parasitic drag in particular is likely to improve coast down performance relative 

to a vehicle in service. 

 

Preconditioning 

Another flexibility in the legislation is the preconditioning of the vehicle prior to coast down 

testing. This is referred to in UN/ECE R83 – Annex 4a, Appendix 7, 4.4.4 “Immediately prior to 

the test, the vehicle shall be brought to normal running temperature in an appropriate manner.” 

The temperature of vehicle components affects rolling resistance, therefore maximising the 

vehicle temperature at the start of the coast down test can further improve the coast down curve. 

 

Running-in period 

The legislation states the following regarding the condition of the vehicle used for the coast down 

test (UNECE R83 – Annex 4a, Appendix 7, 4.2): “The vehicle shall be in normal running order 

and adjustment after having been run-in for at least 3,000 km. The tyres shall be run-in at the 

same time as the vehicle or have a tread depth within 90 and 50 per cent of the initial tread 

depth.”  

 

This includes some flexibility in the running-in distance, and the tread depth on the tyres. It is 

advantageous to use tyres with minimum tread depth to reduce rolling resistance. It is also 

advantageous to cover enough distance to minimise friction losses throughout the vehicle. 

 

 



  
Page 54 

 

  

Ambient conditions 

This includes the influence on aerodynamic drag of ambient temperature and air pressure, wind 

direction and speed, and humidity. UNECE R83 – Annex 4a, Appendix 7, 3.1 states: “Testing 

shall be limited to wind speeds averaging less than 3 m/s with peak speeds of less than 5 m/s. In 

addition, the vector component of the wind speed across the test road shall be less than 2 m/s.” 

Also, UNECE R83 – Annex 4a, Appendix 7, 3.2 states that “Humidity: The road shall be dry.”, 

while in UNECE R83 – Annex 4a, Appendix 7, 3.3 the following is prescribed: “Pressure and 

Temperature: Air density at the time of the test shall not deviate by more than ±7.5 per cent from 

the reference conditions, P = 100 kPa and T = 293.2 K.” 

 

In general a low ambient pressure and a high ambient temperature with low humidity are 

considered to be optimal for best coast down performance within the ranges specified above. 

However, the power determined from the coast down test is corrected by a formula given in 

UNECE R83 – Annex 4a, Appendix 7, 5.1.1.2.8, “The power (P) determined on the track shall be 

corrected to the reference ambient conditions (20 °C and 100 kPa).” Consequently the effect of 

altitude of a test track is assumed to be negligible. For humidity no correction is made. In reality, 

humidity does influence the density and viscosity of air, and in general may deserve 

consideration.  

 

Test track design 

Regarding the test track used for coast down testing, the following statement includes a tolerance 

for the slope of the track: UNECE R83 – Annex 4a, Appendix 7, 2 “Definition of the road: The 

road shall be level and sufficiently long to enable the measurements specified in this appendix to 

be made. The slope shall be constant to within ±0.1 per cent and shall not exceed 1.5 per cent.”  

 

It may be possible to use this tolerance to gain advantage. It may also be possible to optimise 

track surface to minimise its contribution to the overall rolling resistance of the vehicle. For 

example, a smooth surface is expected to generate less resistance than a rough surface. Currently 

characteristics of the road surface are not specified in the test procedure.  
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The regulations require the coast down test to be repeated in opposite directions in order to 

account for the wind direction on the day of testing. This provision counteracts the effect of a 

slope  and wind in the test track to a large extent but not entirely since it is not specified that the 

second test should be performed exactly in the same piece of track and the wind may change 

direction between the two runs. 

 

In practice, most of the test coasts down procedures are performed in Idiada track in Spain, which 

is optimal. 

 

2.4.3.2 NEDC test Flexibilities  

 

Here some explanation is given to flexibilities concerning the TA test. 

 

Reference mass 

The reference mass is significant to cycle CO2 as it determines the chassis dynamometer inertia 

setting used for the test. It is a benefit to use any flexibility in the legislation to claim a lower 

inertia class for achieving reduced CO2 emissions. It also has a great effect of reducing road load 

in tests where cookbook loads are used because these loads are related to the reference mass. 

UNECE R83 – Annex 1, 2.6, specifies the reference mass to be used as: “Mass of the vehicle 

with bodywork and, in the case of a towing vehicle of category other than M1, with coupling 

device, if fitted by the manufacturer, in running order, or mass of the chassis or chassis with cab, 

without bodywork and/or coupling device if the manufacturer does not fit the bodywork and/or 

coupling device” This statement allows to specify certain items as dealer fitted optional extras, 

therefore not fitted by the manufacturer, which may result in a reduced inertia class if the vehicle 

is close to the lower end of the class boundary. 

 

Wheel and tyre specification 

For the NEDC test, standard wheels, tyres, and tyre pressures are used, as specified by the 

manufacturer. However, there is some flexibility in the sense that low CO2 wheels and tyres 

could be specified by the manufacturer as standard, but not used in practice due to strong 
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incentives for customers to choose alternative options with higher performances and much lower 

prices but less fuel efficient. 

 

The combination of wheel and tyre specification affects gearing, due to the effective rolling 

radius. Thus, the flexibility in wheel/tyre choice could potentially be used to optimise gear ratios 

for the NEDC test, if alternative wheels/tyres are offered as a dealer fitted option.  

 

In general, it is anticipated that higher gear ratios are beneficial for CO2 reduction due to the 

improvement in brake specific fuel consumption occurring at lower engine speeds. There is also a 

secondary effect of reduced drivetrain power losses.  

 

Tyre specification can also be used to improve rolling resistance on the NEDC test, by specifying 

low rolling resistance tyres, and high tyre pressures, for the tyres that will be used. 

 

When a twin roller chassis dynamometer is used, the tyre pressures are allowed to be higher: 

UNECE R83 –Annex 4a, 6.2.3 states that: “The tyre pressure may be increased by up to 50 per 

cent from the manufacturer's recommended setting in the case of a two-roller dynamometer.”  

However, twin rollers may increase rolling resistance due to the increased tyre deformation 

experienced, so it is not clear if this is a CO2 benefit overall. 

 

Other factors also affect rolling resistance on the chassis dynamometer, including: tension of 

tiedown straps holding the vehicle to the floor, weight and weight distribution of vehicle and 

occupants. The optimal arrangement is one which minimises weight acting on the driven wheels, 

but keeps the drive shafts alignment as straight as possible. 

 

The result of increased gear ratios is lower engine speed, higher engine load. This generally 

reduces CO2 but increases NOx in both diesel and gasoline engines.  It could be argued that any 

increase in NOx emissions may require the engine calibration to be modified to compensate. 

These modifications may then increase CO2 again. However, the overall effect is anticipated to 

be a reduction in CO2. 
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Running-in period  

Regulation UNECE R83 – Annex 4a, 3.2.1 specifies a minimum distance is to be recorded before 

the NEDC test: “The vehicle shall be presented in good mechanical condition. It shall have been 

run-in and driven at least 3,000 km before the test.” However, there are potential flexibilities in 

this running-in period in order to achieve the minimum possible friction losses in the engine and 

vehicle. 

 

For a vehicle that has been run-in over a distance of 15,000km compared to a vehicle run-in over 

3,000km the CO2 benefit can be significant. The actual benefit may vary depending on factors 

including the design of affected components such as bearings, and the speed/load profile of the 

running-in cycle.  

 

Laboratory instrumentation 

The legislation covers measurement accuracy and tolerances for a range of instrumentation 

equipment. If the true accuracy of instrumentation lies well within the allowable tolerance band, 

then it may be possible to deliberately utilise some of that tolerance band to reduce the measured 

CO2 result. 

 

Fuel specifications 

Fuel consumption and emission tests for type approval purposes are carried out with European 

reference fuels. This fuel has a very tight specification and a very narrow band of tolerance but 

they can still use a cleaner fuel which leads to some improvement on CO2 emissions. 

 

Laboratory altitude (air density) 

The density of the intake air used during the NEDC test is largely dependent on laboratory 

altitude. This varies between facilities and may have some impact on CO2 directly or indirectly.  
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Diesel engines in particular can be sensitive to altitude regarding the way they control NOx 

emissions, and depending on the control strategy used these may have a knock-on effect on CO2 

emissions as a result. Depending on engine hardware, it may not be possible to compensate for 

reductions in ambient air density through boost control (especially at the low load levels typical 

of the NEDC), which may result in reduced combustion efficiency and thus increased CO2 

emissions. In general, diesel NOx emission limits are perceived to be more challenging at higher 

altitudes, therefore it is likely to be preferred to choose a test facility located at sea level. For 

gasoline engines the lower air density at high altitude will tend to increase engine efficiency 

slightly due to wider throttle openings. 

 

Temperature effects 

Regulations governing the Type 1 (NEDC) test procedure state the following: 

UNECE R83 – Annex 4a, 3.1.1 “During the test, the test cell temperature shall be between 293K 

and 303K (20°C and 30 C).”  

UNECE R83 – Annex 4a, 6.3.1 “After this preconditioning, and before testing, vehicles shall be 

kept in a room in which the temperature remains relatively constant between 293 and 303K 

(20°C and 30°C).  

 

This clearly shows flexibility in temperature within the specified range. There is a CO2 benefit 

from higher vehicle soak temperature due to the reduced friction in the engine and vehicle 

components. Furthermore warm-up period is reduced thus reducing FC and CO2 emissions. 

However, at the same time, it may be possible to improve combustion efficiency by setting the air 

temperature to the minimum (20 C). In general the best option would be to perform the test at 

30°C. Starting the test at a higher temperature is likely to reduce aftertreatment warm-up times, 

which may give a benefit in other emissions.  

 

Coast down curve or cookbook load terms 

The NEDC test can be performed with chassis dynamometer load controlled in one of two ways: 

Road load simulation matched to a coast down curve based on real test data or load governed by 

‘cookbook’ load factors or ‘table values’ according to the reference mass of the vehicle. 
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This flexibility in the legislation may be used for CO2 benefit as the two methods will not result 

in identical load during the NEDC test. The method that produces the lowest CO2 result depends 

on several factors which are not going to be discussed. Normally, Coast down method is the one 

chosen for PC. 

Battery state-of-charge 

The state-of-charge of the battery at the start of the NEDC test has a significant effect due to the 

additional electrical load placed on the alternator as it charges the battery during the test. If the 

battery is fully charged prior to the test the load will be reduced compared to a test starting with a 

battery in a low state-of-charge requiring more alternator charging during the NEDC. However, 

vehicles with intelligent alternators may not notice the difference since battery is charged when 

braking. 

 

State of charge also affects the ‘stop/start’ strategy employed on some vehicles, for example, the 

engine control system may disable the stop/start strategy if the battery is not sufficiently charged 

at the start of the test, leading to increased CO2.  

 

Gear change schedule  

Gear number and change points are pre-defined in the NEDC cycle. However, some flexibility 

exist: UNECE R83 – Annex 4a, 6.1.3.1 “If the maximum speed which can be attained in first 

gear is below 15 km/h, the second, third and fourth gears shall be used for the urban cycle (Part 

One) and the second, third, fourth and fifth gears for the extra-urban cycle (Part Two).  The 

second, third and fourth gears may also be used for the urban cycle (Part One) and the second, 

third, fourth and fifth gears for the extra-urban cycle (Part Two) when the manufacturer's 

instructions recommend starting in second gear on level ground, or when first gear is therein 

defined as a gear reserved for cross-country driving, crawling or towing.” 

 

If higher gear ratios are used, cycle CO2 is reduced by two mechanisms. Firstly, the engine 

operates in a more efficient region of the BSFC map, due to the lower engine speeds associated 

with higher gearing. Secondly, the power losses in the drivetrain reduce as the overall ratio 

approaches 1:1.  
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Driving technique 

Speed/time tolerance bands apply to the NEDC target cycle. UNECE R83 – Annex 4a, 6.1.3.4, 

“A tolerance of ±2 km/h shall be allowed between the indicated speed and the theoretical speed 

during acceleration, during steady speed, and during deceleration when the vehicle's brakes are 

used.” UNECE R83 – Annex 4a, 6.1.3.5, “The time tolerances shall be ±1.0 s. The above 

tolerances shall apply equally at the beginning and at the end of each gear-changing period for 

the urban cycle (Part One) and for the operations Nos. 3, 5 and 7 of the extra-urban cycle (Part 

Two). It should be noted that the time of two seconds allowed includes the time for changing gear 

and, if necessary, a certain amount of latitude to catch up with the cycle.” 

 

It may be possible to use these tolerance bands to achieve a lower CO2 result. This may be 

achieved by reducing the rate of acceleration as much as possible, making smooth transitions 

between start and end of each acceleration phase, and minimising the time taken to change gear.  

 

DPF related Ki factor (distance between DPF regenerations) for calculating total cycle CO2 

For vehicles fitted with a diesel particulate filter (DPF), the total CO2 result includes an 

additional factor to take into account emissions whilst regenerating the DPF. The weighting 

factor applied to the regeneration test relative to the standard test (known as the Ki factor) is 

dependent on the expected interval between DPF regenerations. It is likely that the CO2 will be 

higher during the regeneration test; therefore, a shorter interval between regenerations will 

increase total CO2. The flexibility in the legislation relates to the definition of this interval. It is 

advantageous to choose the method giving the longest interval between regenerations.  

 

Declared CO2 value 

Once the CO2 test result is known, the manufacturer can decide what value to declare, taking into 

account the margin required to pass conformity of production checks, and in service testing. The 

declared value can be up to 4% lower than the actual measured result: 

UNECE Regulation No. 101, 5.5.1 “The CO2 value or the value of electric energy consumption 

adopted as the type approval value shall be the value declared by the manufacturer if the value 

measured by the technical service does not exceed the declared value by more than 4 per cent.” 
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2.5 China regulations 

 

Although China is the biggest vehicle manufacturer of the world, China's first-ever fuel 

consumption standards for passenger vehicles were adopted in 2004 (National Standard GB 

19578-2004). The standard established “Phase I” and “Phase II” fuel consumption standards, 

which were phased-in3 from 2005-2006 and 2008-2009, respectively. The China Automotive 

Technology and Research Center (CATARC), a semi-governmental organization, drafted the 

regulations during a two-year process involving multiple agencies of the Chinese government. 

China uses the NEDC  test procedure. 

 

The Phase I and II standards required that each individual vehicle model comply with fuel 

consumption regulations prior to entering the market. This contrasts with policies in the US, the 

EU, and Canada, which permit auto manufacturers to meet targets by averaging emissions over 

their entire fleet of models. 

 

In August 2009, China announced the development of Phase III of its fuel consumption 

regulation program, to be phased-in from 2012 to 2015. The Phase III program has some 

important differences to Phase I and Phase II. Most importantly, in addition to specific fuel 

consumption limits by weight class, the Phase III standards establish a corporate-average fuel 

consumption (CAFC) target which manufacturers are required to comply with.  

 

In 2012, China's State Council released the Energy-Saving and New Energy Vehicle 

Industrialization Plan, which states an expected fleet average target of 6.9L/100km by 2015 

5.0L/100km by 2020 under Phase 4 standards, which start to be phased in on 2016 and from 2020 

100% cars have to be assessed.  In March 2013, five government departments issued the 

Corporate Average Fuel Efficiency Accounting Method for Passenger Cars, which confirm the 

expected fleet fuel consumption targets.  

                                                 
3 Phase-in refers to the process of smooth introduction of new limits. In china regulations when a new limit is set, the 
percentage of cars which have to be considered for the  CAFC calculations raises from the starting year to the last 
year in which the whole fleet have to be considered. This way, only the most efficient cars may be accounted during 
the first years. This is an actual flexibility, as credit banking and trading which is also used in US CAFE and GHG 
regulations. 
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The Phase 4 CAFC proposal is based on the same 16 vehicle curb weight classes defined in the 

Phase 3 standard. The numerical target for each bin is lowered between 25% and 37% from Phase 

3, with greater reductions for the heavier weight bins. The CAFC standard also sets separate 

targets for regular vehicles and two types of special-feature vehicles, which in this case are 

defined as: vehicles of curb mass less than or equal to 1,090 kilograms with three or more rows 

of seats; all other vehicles with three or more rows of seats. The first specialty car type mainly 

refers to a type of mini-sized cargo van unique to China that is usually built on a mini-car 

platform. The market for these vehicles is mainly lower-income individual consumers or small-

business owners in suburban or rural areas. The second refers to small vans, large SUVs and 

multi-purpose cross-style vehicles generally. Fuel consumption targets for each curb mass bin for 

the two special-feature vehicle types are 5% and 3% higher, respectively, than those for regular 

cars. Fuel consumption in l/100 km is calculated from the emissions of HC, CO and CO2 

measured over the combined European Drive cycle (NEDC), as in Europe (20).  

 

 
Figure 2-13 Chinese regulations phase 4 FC limits for individual cars (left) and fleet average (right) according to 

weight bin. (20) 
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The proposed Phase 4 standard provides three types of credits: for new-energy vehicles battery-

electric, fuel cell and plug-in hybrids); for other ultra-low fuel consumption vehicles, i.e., those 

with fuel consumption less than or equal to 2.8L/100km on the combined urban and extra-urban 

cycle; and for vehicles equipped with innovative technologies leading to real-world fuel saving 

(so-called off-cycle technology credits).  

 

New energy vehicles are counted as multiple vehicles towards manufacturers’ CAFC calculation 

for compliance. The multiplier is set at 5 in 2016–2017, falling to 3 in 2018–2019, and then to 2 

in 2020. For the CAFC calculation, the energy consumption of battery-electric vehicles, the 

electric-drive part of plug-in hybrid vehicles and fuel cell vehicles are counted as zero.  Other 

ultra-low fuel consumption vehicles with combined fuel consumption no more than 2.8L/100km 

will be counted as 3 vehicles in 2016–2017, 2.5 in 2018–2019, and 1.5 in 2020.  

 

The proposed Phase 4 standard offers compliance credits to manufacturers that install innovative 

technologies with justifiable real-world fuel saving on their vehicles. Currently the regulatory 

agency is considering four types of technologies eligible for the credits: tire pressure monitoring 

system; high-efficiency air-conditioning system; start-stop system; and transmission gear shift 

reminder. Manufacturers that install one or more of these technologies with demonstrated fuel-

saving are eligible for up to 0.5 L/100km credit towards their CAFC standard compliance.  

 

The Phase 4 standard proposal did not specify whether a manufacturer can bank compliance 

credits and carry over the credits to future years. However, the Passenger Car Corporate-

Average Fuel Consumption Accounting Method released in March 2013 (to guide the Phase 3 

standard CAFC implementation) allows manufacturers to over-comply and carry forward the 

credits for future compliance for up to three years. It is possible that this rule also applies to the 

Phase 4 standard implementation (20). 
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2.6 Brazil regulations 

 

In October/2012, the Brazilian government approved by decree a new program to encourage 

vehicle technology innovation called Inovar-Auto. Inovar-Auto fosters industry competitiveness 

and provides incentives like this: It first increases a tax on industrialized products (IPI) by 30% 

for all light-duty vehicles (LDVs) and light commercial vehicles and it imposes a series of 

requirements for automakers to qualify for up to 30% discount in the IPI. In other words, IPI 

taxes will remain unchanged for those manufacturers that meet the requirements. The 

requirements include automakers to produce more efficient, safer, and technology-advanced 

vehicles while investing in the national automotive industry thus incentivizing investments in 

vehicle efficiency,  national production, R&D, and automotive technology.  

The program is limited to vehicles  manufactured between 2013 and 2017, after which IPI rates 

return to pre-2013 levels  unless modifications to the decree are made.  Because automakers must 

meet a minimum corporate average vehicle efficiency target to qualify for the 30% discount on 

IPI taxes, Inovar-Auto will likely result in efficiency improvements of new LDVs of at least 12% 

between 2012 and 2017, assuming that the program is well implemented, enforcement and 

compliance is effective (i.e., penalties for non-compliance are high enough to encourage 

automakers to meet efficiency targets), and there are no loopholes. Automakers can also qualify 

for an additional 2% discount on IPI taxes by meeting more aggressive efficiency targets (up to 

19% improvement over 2012 levels).    

 

This target was based on Europe’s 2015 target  for new LDVs of 130 gCO2/km, and adapted to 

Brazil based on differences in driving  cycle, vehicle, fuel, and road specifications. Average 

vehicle efficiency, in megajoules/kilometers (MJ/km) and measured on the combined 

(urban/highway) CAFE cycle, needs to be calculated by Equation 2-4. To qualify for an 

additional IPI reduction of 1% and 2%, automakers need to meet average vehicle efficiency 

calculated by Equations 2-5 and 2-6 by October/2016, which would result in average 

improvements in new vehicle efficiency of about 16% and 19%, respectively. (21) 

 = , + . ∙         Equation 2-4 = , + . ∙        Equation 2-5 
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= , + . ∙        Equation 2-6 

 � : Corporate average vehicle efficiency (MJ/km).   

: Average mass in kilograms (curb weight) for all vehicles commercialized in Brazil, and 

weighted by vehicle sales in the 12 months preceding the calculation. 

 

Notice that in Brazil the limits are provided by the vehicle general efficiency in terms of energy 

per unit of distance travelled and not to actual emissions or FE. Therefore, it is clear that high 

efficiency engines is the target while at the same time Brazilian market asks for engines 

compatible with many types of fuels and blends. FFVs in Brazil accounted for 87% of the sales 

and E22 and Diesel for the remaining 13% on equal parts in 2013 approx. No pure gasoline cars 

are commercialized in Brazil. Efficient FFVs are a challenge since maximum efficiency in all 

conditions is costly to achieve (22) (23).  

 

Automakers must comply with Brazil’s Vehicle Labeling Scheme (PBEV – Programa  Brasileiro 

de Etiquetagem Veicular). 
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2.7 World regulations comparison  

 

It has been showed that there are many regulations around the world. Fuel consumption, fuel 

economy and carbon dioxide (CO2) emission standard are implemented worldwide and they are 

quite differently approached. The stringencies of the different regional standards and values 

measured under different boundary conditions are not directly comparable. While the unit 

conversion is clearly defined and straightforward (e.g., from miles per gallon to gCO2 per km), 

the different testing conditions, flexibilities and limits raise high uncertainties within the 

conversion process between different standards.  

 

This issue has consequences of major concern for the automobile manufacturers due to the fact 

that low FC technologies may involve different reductions in terms of CO2 emissions depending 

on the test procedure applied and the entire regulation. Thus, it generates confusion within 

manufacturers about how to approach the best trade-off to meet all the regulations with the most 

reduced cost and still offer good value to the customer.  

 

The ICCT (24) have generated conversion factors package-based to face this issue. In the Table 

2-2, many descriptive parameters of the main cycles are given including start conditions, 

durations, distances, mean velocities and accelerations. Nevertheless, differences on other 

regulation procedures and flexibilities are not given here. 

 



 
 

  Page 67 
 

  

Table 2-2 Descriptive parameters of the driving cycles City, Highway, combined, NEDC, JC8 and WLTC (24)

 

 

There are significant differences among the relevant cycles regarding the resulting vehicle and 

engine loads. However it is quite difficult to get conclusions by comparing these values. Probably 

a cycle with higher accelerations will involve higher sensitivity to mass reduction technologies 

and a cycle with longer share of stop periods of time will be promoted by S&S technology, in 

addition, a vehicle with warm up technologies or a leaner engine cold starting will give higher 

improvements for cold start cycles than for hot or cold/hot weighted start cycles.   
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Adding that many other parameters as inertia class, climatic conditions, fuels used in the tests, 

reference mass… differ among regulations it definitely is a big challenge. The differences may 

even be greater when talking about hybrid vehicles, flex fuel vehicles and so on because 

regulations define specific procedures to perform tests that are absolutely different. However they 

all are performed with the aim of trying to forecast real world emissions.    

 

Table 2-3 Reference mass definitions for US, Japan, EU, India and China (24) 

 

 

The Table 2-3 shows how reference mass may change depending on the region and so emissions 

would shift even if the test driving cycle was the same. As seen, the reference mass is not exactly 

the curb weight but rather curb weight plus driver weight. However, by mistake sometimes it is 

called as curb/kerb/unladed weight. Furthermore, the Figure 2-14 shows the diverse weight 

inertia class depending on the reference mass. 
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Figure 2-14 Weight class for US, JP and EU regulations. Green line is the proposal for the new WLTP procedure 

(25). 

 

The Figure 2-15 shows the main weight-based regulations limits. All of them converted to 

gasoline equivalent. 

 
Figure 2-15 Vehicle weight-based equivalent FC limit for specific years and fleet-average vehicle curb mass across 

regions (24) 

 

Note how manufacturers have to make efforts to maintain its vehicles in the step weight bin for 

Japan and China regulations, similarly to what happens regarding the inertia weight classes. It 

shows as well the average curb weight of the regional fleets on 2011 or 2012. Note how generally 

speaking EU limits are more stringent especially for higher curb weights. In Brazil most of the 
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cars are FFV, which make them in general less efficient and therefore, even though the limit 

seems to be far less stringent than European one, it is not that much. However, the higher FC 

limits more than outweighs the smaller efficiency. In the case of CAFE regulations, the 

comparison is not as simple since limits are footprint based.  

 

 

The ICCT have developed test cycle conversion factors among worldwide light-duty vehicle CO2 

emission standards. By using Data Visualization Tool from Ricardo (see chapter 1.4) they have 

compared the dynamics of the most important driving cycles and their impacts on fuel 

consumption and CO2 emissions to produce an updated set of conversion factors for translating 

distance-based CO2 emissions among the different driving cycles. The result is a number of 

equations package-based (used to create the model of this Thesis, see chapter 3.7.4.3) from which 

by assuming many hypothesis they have created the figure:  

 

 
Figure 2-16 Time evolution of the most important CO2 emissions/FC limits normalized to NEDC (24) 

 

If someone assumes that if a car/fleet meets EU target it will automatically meet the rest of the 

limits he/she is wrong because the plot shows an average value and does not take into account 
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mass and footprint based limits besides of many other hypotheses which do not take into account 

flexibilities and other items. Some of them are commented as follows. Notice as well that only 

the big dots indicate real limits where the lines that link them are just guideline values. So for 

example the limits for EU on MY in between 2015 and 2020 are not indicated. 

 

In US, the average mass of the vehicle fleet was 1821kg in 2013 while 1400kg (23% less)  in EU 

the year 2012 (26) (25). It is quite obvious then that the normalized target should be quite higher 

in US. By using the Equation 2-2 and Equation 2-3. The limit in EU if the average mass of the 

cars were the same than in US, will be: For the MY 2019, 149.6g/km and for the MY 2021, 

109,3g/km. Far from the 130g/km and 95g/km.  

 

Therefore, we can conclude that generally speaking, for the MY 2019 US regulations are more 

stringent than UE (a difference of about 15g/km). However, for the MY 2021 in which EU 

regulation makes a big step, US regulation becomes some 10g/km less stringent than EU. 

Particularly as a real example, a given car “model x” 4 that did comply with EU regulations was 

on risk of not being compliant with USA ones (16).  

 

As a conclusion, case per case study has to be done since every type of car/fuel is assessed in 

unlike way and of course CAFE MPG-Footprint limits and NEDC CO2-weight limits are not at 

all comparable.  

 

Before, the regression equations developed by ICCT have been introduced. Furthermore, in the 

chapter 3.7.4.3 a detailed explanation of them and how to use them is given. The chapter 2.7.1 

has been created with the purpose of comparing real CO2 emissions in US and European 

regulations and verify the utility of the conversion regression equations. 

 

 

 

                                                 
4 Confidential information 
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2.7.1 Real case study – verify conversion equations  

 

It may be interesting to compare real CO2 measured over CAFE program and over the NEDC 

program. Of course, by comparing vehicles that has been marketed with the same characteristics 

i.e. same engine, in order to make an apples to apples comparison. This exercise has as a main 

purpose to validate the utility of the regressions equations used on the model of this Thesis to 

calculate CAFE FE from NEDC emissions and vice versa. Furthermore, the data on CAFE MPG 

and NEDC CO2 will be plotted and compared. 

 

 

To this purpose, CO2 data of representative vehicles has been gathered. Unfortunately, to gather 

such data is not a straight process, nor the results will be accurate: First, most of the marketed 

vehicles with same body in US and EU, feature diverse engines, i.e. usually more powerful and 

less turbocharged engines are marketed in US, consistent with US customer preferences. 

Secondly, no data on CAFE FE or CO2 emissions has been found because only data according to 

EPA Label FE regulations is available on public sources. Furthermore, not a negligible share of 

the vehicles marketed are FFVs which are addressed quite differently and that cannot be easily 

assessed only with the data found in public sources. Finally, even NEDC emissions found on 

public domain may be different from the actual CO2 emissions since flexibilities allow 

homologate cars with a shift of up to 4% gap to the real emissions measured in the TA test (see 

chapter 2.4.3) plus other flexibilities and loopholes. However, some models have been compared 

and the regression equations have been used in order to check their utility unfortunately only in a 

rough way due to the just mentioned issues.   

 

Thus, EPA Label FE data has been converted to CAFE FE in an approximatively way (14) and 

then converted to CO2 emissions. According to EPA, Label MPG values are, in average about 20-

25% lower than CAFE MPG values. Therefore and adjustment factor of 22,5% will be taken as a 

conversion.  

 

The Figure 2-17 shows emissions of some car models that have been sold with same engines in 

Europe and US during the year 2014.  
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Figure 2-17  CAFE CO2 emissions estimated from Label FE and NEDC homologated CO2 emissions. Difference 

between them. (27) (28). 

The difference calculated in the Figure 2-17 seems to not follow a clear pattern since sometimes 

CAFE emissions are greater than NEDC and vice versa. 

 

The Figure 2-18 shows the estimated CAFE emissions calculated from the NEDC emissions and 

compare it to the “real” CAFE CO2 emissions shown in the Figure 2-16. The same procedure in 

the other way around is done and results are showed as well.  The error is plotted. 
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Figure 2-18 CAFE emissions estimated from NEDC and vice versa, by using the regression equations (24). Different 

regressions equations according to the type of vehicle have been used. (27) (28) 

 

Note how the error in absolute terms is quite high. On average 7-8% of error, which is far from 

the estimates of ICCT (24). See how error peaks for small cars as Mitsubishi mirage and Smart. 

 

The target emissions and target MPG are plotted in the Figure 2-19 and the Figure 2-20 along 

with the data relating to each car. Again, CAFE MPG has been calculated from Label FE while 

NEDC CO2 is the homologated one.  
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Figure 2-19 CAFE targets for MY 2014-2024 and FE examples of passenger cars. (27) (28) and Automobile 

manufacturer’s website. Only limits every two years are plotted.  

Notice that for very small cars, the limit curve becomes flat and so more relaxed in some way. 

Thus, Automobile manufacturers can produce smaller and lighter cars without having to improve 

MPG and therefore, with the possibility of removing some other less cost effective low FC 

technologies. 
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Figure 2-20 EU targets from MY 2016 to MY 2024 and emissions examples of passenger cars. (27) (28) and 

Automobile manufacturer’s website. 

The lines in the Figure 2-20 may change slightly every three years since  is readjusted. For 

MY 2015 the limit is as well the brown line with  of the previous three years. 

 

2.7.1.1 Conclusions 

 

The fact that data on CAFE CO2 emissions could not be used and the “declared CO2” flexibility 

along with other flexibilities, leads to a results of quite a high error. Giving an error of 7-8% on 

average for the estimation of CAFE CO2 from NEDC and vice versa.  

 

There are basically two sources of error in the estimation of CAFE CO2 from Label FE. On one 

hand, as already pointed out, the fact that Label FE is about 20-25% lower than CAFE FE but the 

exact value is unknown. On the other hand, Label FE is given without decimals, either city FE, 

highway FE or the combined FE. Therefore, as an example a two different cars with 28MPG of 

city FE and 32MPG and 34 MPG of highway FE will have both a combined fuel efficiency of  
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30MPG while if decimals were considered it would be 30,4MPG and 29,6MPG of combined FE. 

In this case, the error introduced is around 3%.  

 

Consequently no clear conclusion on the usability of the regression equations has been found. 

Nevertheless, the high error values for low emissions cars (Smart and Mitsubishi mirage) 

relatively to other models arise great suspicious on the validity of such regression equations when 

talking about very small cars as Segment A. Fortunately, the reference car is not a Segment A 

vehicle. 

 

Even though, the regression equations made by ICCT (24) using simulation methods will be used 

on this work, as a gesture of trust in such an important agency. 

 

Concerning the Figure 2-19 and the Figure 2-20, we can see how in general EU regulations are 

more stringent than CAFE regulations. However only Toyota Prius (2014) is compliant for MY 

2020 with both regulations. See how in EU, limits are defined every five years while in US every 

year the limit is raised. Notice that  the shape of the curve limits is so that mass reduction 

technologies and vehicle dimensions reduction is not an actual way to encourage compliance in 

general unless in the case of very small cars, where the CAFE curve becomes flat and so easier to 

meet.  Note how the models Smart, Mirage and BMW 535d are the only ones who meet EU 

regulations from 2016 to 2019. Nevertheless it should be bear in mind that both regulations asses 

compliance as a fleet average and that the cars showed are MY2014 while enacted limits showed 

up to MY2024 limit. Therefore, it is clear that automobile manufacturer’s will have to make a 

huge effort on FE policies to lower the average emissions.   
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3. Model calculation for the reference cars – Package model 

3.1 Introduction 

 

Only about 14%–30% of the energy from the fuel put in a conventional vehicle is used to move it 

down the road, depending on the drive cycle. The rest of the energy is lost to engine and driveline 

inefficiencies or used to power accessories. Therefore, the potential to improve fuel efficiency 

with advanced technologies is enormous. The Figure 4-1 shows how the energy content of a fuel 

is wasted along the vehicle systems in the US combined cycle. 

 

 

 
Figure 3-1 Energy requirements for Combined city/highway driving cycle (29) 

 

Automobile manufacturers have to work hard to reduce such sources of losses in order to be 

compliant with regulations and still give value to the customer with the final aim of gain the 

maximum profit/revenue. The “package model” introduced in the section 3.2 will approach such 

challenge.  
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3.2 Algorithm fundamentals 

 

It is known that many technologies can be applied to a given car in order to meet the CO2 targets. 

Each one of these technologies has an incremental cost and a potential CO2 reduction, which may 

change depending on other technologies already applied to the car, the type of car, and the year at 

which it is build.  

 

The main target of this calculation is to find the best package of low CO2 technologies that a 

given car needs in order to be compliant with its target CO2 emissions for the MY 2018-2024. In 

detail, it is to find the best package of technologies according to three different criteria:  

 Cheapest compliant package  

 Most cost effective compliant package and lastly  

 Most profitable compliant package in EU, USA or both regions at the same time (same 

car) 

 

From the beginning it was clear that data about low fuel consumption technologies would be one 

of the most relevant pillars of this work. Therefore one of the main tasks has been to gather 

reliable data which could be useful to develop the model. The major amount of data, its 

definitions and its hypothesis have been taken from papers belonging to NHTSA (10) (30) (31). 

The way in which the problem is solved is strictly related to the characteristics of the data used 

and particularly to the hypothesis on which data values are based.   

 

At a first glance, it may seem that the data found are just low CO2 emissions technologies and its 

main characteristics: Cost of technology; CO2 emissions reduction linked to the technology. 

However it is not only these two concepts which are well illustrated in Figure 3-6 to Figure 3-16. 

It has to be added the concepts of technology applicability and the synergies, which are quite 

complex. They are explained in detail in the chapters 3.2.1 to 3.2.3.  
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3.2.1 Applicability of a technology 

 

The applicability of a technology means that a given technology may be conditioned by several 

factors such as: 

 Other technologies: Thus, a specific technology may not be applicable to a given package 

if other technology (or group of technologies) does not belong to that package. For 

example:  Start & Stop S&S cannot be applied if there is no Electric Power Steering EPS 

because when the engine turs off, the steering system would not work properly. 

 The architecture of the car: Thus a given technology or a group of technologies may not 

be applicable if the architecture of the vehicle does not allow to. For example, Cylinder 

deactivation may only be applicable when the number of cylinders is higher than 4. 

Another quite simple but clear example may be that a MT car cannot be equipped with a 

shift optimizer.  

Besides, it may be possible that the reference car at which technologies are being applied 

in the model run, is already equipped by some low CO2 emissions technologies (which 

cannot be applied twice, of course). 

Furthermore, there are different data values of a particular technology depending on the 

architecture of the reference car and engine. Small cars, midsize cars…small engines, 

midsize engines… All of them have different values for a given technology. Concerning 

this last point, only midsize cars data and small engines data has been used. Such choice 

is coherent with the reference body with four cylinders engine. 

 Applicability worthiness: It means that according to the hypothesis of EPA, there is a 

sorting in the applicability of technologies. In the sense that first, the most cost effective 

technologies should be applied and later, the following ones that are less cost effective. 

The data is based on this idea and if not followed, the results worsen. For example, it is 

not worth to apply a second level of aerodynamic improvements if the first level is not 

applied. So first,  AI Level1 is applied and secondly, AI Level2 and CO2 reduction and 

costs are added.  
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The costs and the CO2 reductions are well approximated if these rules are followed. Otherwise 

the accuracy worsens. 

 

The Figure 4-2 shows in a comprehensive (but not exhaustive way) the applicability path (or 

sequence) for every car system. In order to see better how this system works, in the spreadsheets 

in the annexes, the row “incremental to” explain which is the precedent technology that must be 

in the package to be able to apply a given technology. To make it clear with an example: The fact 

that Low Friction Lubricants (LUB1) is in the beginning of the engine path does not mean that 

any other technology cannot be included in the package if LUB1 is not included.  It simply means 

that LUB1 is the most cost effective and therefore the one that give the best ratio cost/FC 

reduction on this path. Furthermore LUB1 may be applied or not in whatever package because its 

applicability doesn’t depend on other technologies. However it doesn’t mind that the resultant 

cheapest compliant package will include the most cost effective technologies (as LUB1) because 

the model run will stop adding technologies when the compliance limit is surpassed. 
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Figure 3-2 Engine technologies applicability path (30) 

 

As depicted in the Figure 3-2, the paths splits in several branches depending on the engine 

architecture which have led to different technologies applicable to the two reference engines 

studied in this Thesis. Furthermore, bear in mind that the reference engines already use some of 

the technologies in the tree which means that they cannot be accounted. So they are skipped (just 

partially) because they may introduce synergies with new technologies.  
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Figure 3-3 Light and strong electrification applicability paths and transmission applicability path (30) 

 

In the Figure 3-3 many paths are showed, note that transmission paths split in two types of 

transmission MT or AT. Note how Strong Hybrid packages are only possible if other 

technologies belonging to other paths are already considered in the package.  
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Figure 3-4 Rolling resistance, driveline resistance and aerodynamic resistance applicability paths (30) 

 

Many weeks were necessary to understand all this issues and be ready to apply them to the model 

in this Thesis. As me, some other companies showed concerns about how to understand the data 

and how to use it for engineering purposes. Besides, many companies complained about some 

optimistic values of FC reduction and cost of the technologies (10). This is because this data was 

used by NHTSA and EPA to set up the future values of CO2 and FE limits. Therefore optimistic 

values would forecast better technologies cost efficiency than actual which is detrimental for 

companies since the target would worsen.   

 

3.2.2 The technology synergies  

 

The synergies are an adjustment to better approach the results. It is based on adjustments for the 

cost of the technology and the CO2 reduction of the technology. 

 

The fact is that cost and the CO2 emissions reductions of a technology may differ from the 

reference value depending on circumstances. Therefore, saying that the cost or the CO2 reduction 

of a technology is always the same would be a quite rough approximation. To this, NHTSA have 

included in their models the synergies. And it has been applied as well in this work. 

The synergy, as can be imagine thanks to its name, is an adjustment value that takes place when 

pairs of technologies occurring in a package are susceptible to an adjustment on its cost or CO2 

reduction. i.e.: 
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Adjustment needs to be applied when two different technologies are based in the same CO2 

reduction principle or when a technology shifts the engine working point and therefore it 

increases or reduces the CO2 reduction achieved by others technologies. For example, Cylinder 

deactivation and higher number of gears are two technologies that work partially on the same 

principle, i.e. make the engine work in a higher efficiency point in the BSFC engine map. 

Therefore, the total CO2 reduction is not the sum of the partial reductions.  The Table 3-1 shows a 

numeric example and the error introduced by not accounting the synergy on the example: 

 

Table 3-1 Error by not considering FC reduction synergy. Example DEACO vs 8SPD 

Percentage of FC reduction  

Cylinder 

deactivatio

n on OHV 

DEACO 

8-Speed 

Trans (Auto 

or DCT) 

8SPD 

Addition 

DEACO+8SPD 
Synergy 

Adjusted 

addition 

DEACO+8SPD

-Synergy 

Error if no 

adjustment 

5,86% 4,57% 10,43% -0,70% 9,73% 7,1% 

 

 

Cost synergy is an adjustment to be applied when two different technologies costs differ from the 

reference one (i.e. just adding both costs). An example may be two different technologies that 

share some vehicle parts. The cost of these parts should not be counted twice and so an 

adjustment has to be done. 

 

Synergies are particularly common when technologies belong to different paths because 

otherwise, since most of the times there is an applicability sequence, the synergy is automatically 

accounted.   

 

All the data is in the annexes. A detailed explanation of particular values of the synergies cannot 

be given in this work as there is no more information about that in the public sources. If the 

reader does not agree with some of the numbers, remember that it has to be understood as a 

whole and there is no sense in trying to understand a specific value without making an extensive 
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analysis. Most probably, only the persons who created the data could understand properly some 

of the values. 

 

3.2.3 Other hypotheses and assumptions 

 

The cost of the technologies is independent from the volume of production. It is assumed that the 

production is large enough to be well approached with the values of cost given by NHTSA (32) 

(10). However, NHTSA does not explicitly tell the actual supposed volumes. Therefore as a 

consequence, the model assumes that every studied year (2018, 2020, 2022 and 2024), a new 

calculation is done without any relation to what the previous results are. This means that every 

year is assessed separately from any other year. Thus, the model may consider that the year 2020, 

mass reduction of 20% should be applied while on the year 2022, only 10% mass reduction 

should be applied to the reference model. Since the car cannot be redesigned every two years but 

rather every 5 years, the results have to be gathered and a trade-off have to be found according to 

the company policies.   Nevertheless, it doesn’t mean that results are wrong because they can be 

extrapolated for other cars of the fleet and anyway it is useful to see how compliant technology 

packages vary along the years depending on the regulations stringency, the reference car and the 

criteria used. 

 

Cost is always assessed as direct cost plus indirect cost. Learning is considered along the years 

and is one of the reasons why costs lower as time passes. The cost is always measured in 2010 

US dollars coherent with the data gathered. 
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3.3 What’s the CO2 emissions target of the model? 

 

The target in this calculation is to achieve at least a neutral car in the fleet CO2 emissions (EU) 

and CAFE (US) average value, which would make the Automobile manufacturer to comply with 

a value at least equal to the limit value of the regulation more stringent i.e. as if the vehicle was 

the only Automobile manufacturer’s sold model. However, on the second study case (“fleet 

model”), a “real” fleet CO2 calculation is done. 

 

In order to clarify what just explained the following example is given: 

 

Table 3-2 Accepted or rejected package decision example 

Technology 

package (i) 

NEDC 

limit 

[g/km] 

CAFE 

limit  

[mpg] 

Vehicle’s 

NEDC CO2 

value [g/km] 

Vehicle’s CAFE 

CO2 value [mpg] 

Accepted/rejected 

package 

1 90 40 92 43 
Rejected. Non-

compliant in EU. 

2 90 42 89 45 
Accepted. Always 

compliant 

3 90 44 100 45 
Rejected. Never 

compliant. 

 

 

Only when a package is compliant according to both regulations is evaluated as possible best 

package.  The CAFE limit and the NEDC limit are calculated according to the lookup tables year-

footprint (CAFE) and year-mass (NEDC).  
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3.4 Reference model. Which car and engines have been studied? 

 

The reference model is the car (body and engine) that has been selected to make the analysis. 

Therefore, is the car at which applicable packages are assessed in order to find the best packages 

according to the several criteria. The body considered is a Midsize5 car that is marketed in both 

US and EU. 

 

For reasons of simplicity, not the whole grid of engines has been considered in the calculations, 

but only two gasoline engines. The 1.4 NA MT and a 1.3T AT. However, for reasons of 

confidentiality neither the characteristics of the body nor the characteristics of the engines are 

exactly the actual ones. 

 

3.5 Technologies description and in-path packages overview  

 

In this chapter a description including some details regarding the model technologies’ working 

principle, pros and cons, important values, synergies with other technologies is given and a 

general overview of their potential CO2 reduction and its costs will be showed in a graphical and 

intuitive way. 

 

All the technologies are showed below but some of them may be applicable to a given reference 

vehicle or not according to what said in the chapter 3.2.1. Technologies are gathered according to 

the engine system to which they belong (also called path): Engine, transmission, electrification, 

mass reduction, aerodynamic improvements, rolling resistance improvements, driveline 

improvements and other Off-cycle improvements. 

 

 

 

                                                 
5 Called like this for confidentially reasons 
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3.5.1 Engine path 

3.5.1.1 Low-friction lubricants (LUB1)  

 

Low viscosity and advanced low friction lubricants oils are nowadays available with improved 

performance and better lubrication. Low friction lubricants are basic method of reducing fuel 

consumption in engines. Advanced multi-viscosity engine oils are available today which yield 

improved performance in a wider temperature band and with better lubricating properties.  

 

These advances are accomplished by changes to the oil base and through changes to lubricant 

additive packages (e.g., friction modifiers and viscosity improvers). The use of 5W-30 motor oil 

is now widespread and auto manufacturers are introducing the use of lower viscosity oils, such 

as 5W-20 and 0W-20, to improve cold flow properties and reduce cold start friction (33). 

However, in some cases, changes to the crankshaft, connecting rod and main crankshaft bearing 

designs and/or materials along with the mechanical tolerances of engine components may be 

required. In all cases, durability testing would be required to ensure that durability is not 

compromised.  

 

Shifting to lower viscosity and lower friction lubricants can also improve the management of 

valve train technologies such as cylinder deactivation or variable valve timing (34).    

 

3.5.1.2 Reduction of engine friction losses (EFR1)  

 

In addition to low friction lubricants, manufacturers can also reduce friction and improve fuel 

consumption by improving the design of engine components and subsystems. It can be achieved 

through low-tension piston rings, roller cam followers, improved material coatings, more 

optimal thermal management, piston surface treatments, and other improvements in the design 

of engine components and subsystems that improve engine operation.  Approximately 10 

percent of the energy consumed by a vehicle is lost to friction, and just over half is due to 

frictional losses within the engine. Additionally, as computer-aided modelling software 

continues to improve, more opportunities for evolutionary friction reductions may become 
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available. All reciprocating and rotating components in the engine are potential candidates for 

friction reduction (30).  

 

It is forecast that additional to the improvements already explained a second level of 

improvement will be available from MY 2017: EFR2 

 

3.5.1.3 Second level of low-friction lubricants and engine friction reduction (LUB2_EFR2)  

 

As technologies advance between now and 2017-2025, developments are expected enabling 

lower viscosity and lower friction lubricants and more engine friction reduction technologies to 

be available (30).  

 

3.5.1.4 Cylinder deactivation (DEACS, DEACD and DEACO)  

 

Deactivates the intake and exhaust valves and prevents fuel injection of some cylinders during 

light-load operation. The engine runs temporarily as if it were a smaller engine, which 

substantially reduces pumping losses because throttle is more opened.  Cylinder deactivation 

(DEAC) can improve engine efficiency by disabling or deactivating (usually) half of the 

cylinders when the load is less than half of the engine’s total torque capability.  

 

Cylinder deactivation is achieved by keeping specific cylinder valves closed and stopping fuel 

flow to the specified cylinder. As a result, the trapped air within the deactivated cylinders is 

simply compressed and expanded as an air spring, with reduced friction and heat losses.  

This technology is never applied in this study since it requires a higher number of cylinders than 

four, which is the number of cylinders of the reference cars in study. In some years technology 

advances may lead companies to apply this technology even for a reduced number of cylinders 

but it is still not really known.  
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Noise and vibration issues reduce the operating range where cylinder deactivation is allowed, 

however manufacturers continue exploring vehicle changes that enable increasing the amount of 

time that cylinder deactivation might be suitable.   

Cylinder deactivation has seen a recent resurgence thanks to better valvetrain designs and engine 

controls.  Effectiveness improvements scale roughly with engine displacement-to-vehicle weight 

ratio: the higher displacement-to-weight vehicles, operating at lower relative loads for normal 

driving, have the potential to operate in part-cylinder mode more frequently.  

 

The FC improvement depends upon the engine valvetrain configuration. For example, DOHC 

engines already equipped with DCP and DVVLD achieve little benefit, 0.5 percent for DEACD, 

from adding cylinder deactivation since the pumping work has already been minimized and 

internal  Exhaust Gas Recirculation (EGR) rates are maximized. However, SOHC engines, which 

have CCP and DVVLS applied, achieve effectiveness ranging from 2.5 to 3 percent for DEACS. 

And finally, OHV engines, without VVT or VVL technologies, achieved effectiveness for 

DEACO ranging from 3.9 to 5.5 percent (30).   

 

3.5.1.5 Variable valve timing (Coupled Cam Phasing on SOHC CCPS, Inlet Cam Phasing 

ICP and Dual Cam Phasing DCP)  

 

Alters the timing or phase of the intake valve, exhaust valve, or both, primarily to reduce 

pumping losses, increase specific power, and control residual gases. Variable valve timing (VVT) 

encompasses a family of valve-train designs CCPS, ICP, DCP…which lead to different features, 

performances and costs. Some valve train architectures allow a limited number of possibilities as 

SOHC which only allows CCPS.  

 

VVT reduces pumping losses when the engine is lightly loaded by controlling valve timing closer 

to an optimum needed to sustain horsepower and torque. VVT can also improve volumetric 

efficiency at higher engine speeds and loads. Additionally, VVT can be used to alter (and 

optimize) the effective compression ratio where it is advantageous for certain engine operating 

modes (e.g., in the Atkinson Cycle).  
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VVT has now become a widely adopted technology. Manufacturers are currently using many 

different types of variable valve timing, which have a variety of different names and methods 

which are based on a cam phaser to adjust the camshaft angular position relative to the crankshaft 

position, referred to as “camshaft phasing”.  The majority of current cam phaser applications use 

hydraulically-actuated units, powered by engine oil pressure and managed by a solenoid that 

controls the oil pressure supplied to the phaser.    

The three major types of VVT are, as already pointed out:  

 Intake Cam Phasing (ICP): Is the simplest of the cam phasing technologies, can modify 

the timing of the inlet valves by phasing the intake camshaft while the exhaust valve 

timing remains fixed.  

 Coupled Cam Phasing (CCP): Valvetrains with coupled (or coordinated) cam phasing can 

modify the timing of both the inlet valves and the exhaust valves an equal amount by 

phasing the camshaft of a single overhead cam (SOHC) engine or an overhead valve 

(OHV) engine. For SOHC engines, this requires the addition of a cam phaser on each 

bank of the engine. For OHV engines, which have only one camshaft to actuate both inlet 

and exhaust valves, CCP is the only VVT implementation option available and requires 

only one cam phaser.  

 Dual Cam Phasing (DCP): The most flexible VVT design is dual (independent) cam 

phasing (DCP), where the intake and exhaust valve opening and closing events are 

controlled independently. This allows the option of controlling valve overlap, which can 

be used as an internal EGR strategy. At low engine loads, DCP creates a reduction in 

pumping losses, resulting in improved fuel consumption/reduced CO2 emissions. 

Increased internal EGR also results in lower engine-out NOX emissions. Fuel 

consumption and CO2 emissions improvements enabled by DCP are dependent on the 

residual tolerance of the combustion system. Additional improvements are observed at 

idle, where low valve overlap could result in improved combustion stability, potentially 

reducing idle fuel consumption. DCP is only applicable to dual overhead cam (DOHC) 

engines. (30) 
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3.5.1.6 Variable valve lift (VVL) 

 

Varying and controlling the amount of cylinder valve lift across and engine operating range 

provides a potential for further efficiency improvements. By optimizing the valve-lift profile for 

specific engine operating regions, the pumping losses can be reduced by reducing the amount of 

throttling required to produce the desired engine power output. By moving the throttling losses 

further downstream of the throttle valve, the heat transfer losses that occur from the throttling 

process are directed into the fresh charge-air mixture just prior to compression, delaying the onset 

of knock-limited combustion processes.  In addition, variable valve lift control can also be used 

to induce in-cylinder mixture motion, which improves fuel-air mixing and can result in improved 

thermodynamic efficiency.  Furthermore, it can also potentially reduce overall valve train 

friction. At the same time, such systems may also incur increased parasitic losses associated with 

their actuation mechanisms.  

 

A number of manufacturers have already implemented VVL into their fleets. There are two major 

classifications of variable valve lift, described in the following sections:    

 

3.5.1.7 Discrete variable valve lift (Discrete Variable Valve Lift for SOHC DVVLS 

Discrete Variable Valve Lift for DOHC DVVLD and Variable Valve Actuation 

VVA) 

 

Discrete variable valve lift (DVVL) systems allow the selection between two or three discrete 

cam profiles by means of a hydraulically-actuated mechanical system. These cam profiles 

consist of a low and a high-lift lobe, and may include an inert or blank lobe to incorporate 

cylinder deactivation (in the case of a 3-step DVVL system). DVVL is normally applied 

together with VVT control.  

 

DVVL is also known as Cam Profile Switching (CPS). EPA have revised the effectiveness 

range of DVVL systems to 2.8 to 3.9 percent above that realized by VVT systems.  

 

VVA is considered as the combination of CCP and DVVL only for OHV. 
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3.5.1.8 Continuous variable valve lift (CVVL)  

 

Is an electromechanically controlled system in which cam period and phasing is changed as lift 

height is controlled. This yields a wide range of performance optimization and volumetric 

efficiency, including enabling the engine to be valve throttled.  

BMW has considerable production experience with CVVL systems and has sold port-injected 

“Valvetronic” engines since 2001.  

Variable valve lift gives a further reduction in pumping losses compared to that which can be 

obtained with cam phase control only, with CVVL providing greater effectiveness than DVVL, 

since it can be fully optimized for all engine speeds and loads, and is not limited to a two or 

three step compromise.  

 

There may also be a small reduction in valvetrain friction when operating at low valve lift, 

resulting in improved low load fuel consumption for cam phase control with variable valve lift 

as compared to cam phase control only. Most of the fuel economy effectiveness is achieved with 

variable valve lift on the intake valves only. CVVL is only applicable to double overhead cam 

(DOHC) engines. (30) 

 

3.5.1.9 Stoichiometric gasoline direct-injection technology (SGDI and SGDIO)  

 

Injects fuel at high pressure directly into the combustion chamber to improve cooling of the 

air/fuel charge within the cylinder, which allows for higher compression ratios and increased 

thermodynamic efficiency.  

Stoichiometric Gasoline Direct Injection (SGDI), or Spark Ignition Direct Injection (SIDI), 

requires changes to the injector design, an additional high pressure fuel pump, new fuel rails to 

handle the higher fuel pressures and changes to the cylinder head and piston crown design.  

Direct injection of the fuel into the cylinder improves cooling of the air/fuel charge within the 

cylinder, which allows for higher compression ratios and increased thermodynamic efficiency 

without the onset of combustion knock.  
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Recent injector design advances, improved electronic engine management systems and the 

introduction of multiple injection events per cylinder firing cycle promote better mixing of the air 

and fuel, enhance combustion rates, increase residual exhaust gas tolerance and improve cold 

start emissions.  

SGDI engines achieve higher power density and match well with other technologies, such as 

boosting and variable valvetrain designs. Several manufacturers are manufacturing vehicles with 

SGDI engines and many of them have announced plans to significantly increase the number of 

SGDI engines in their portfolios. NHTSA and EPA reviewed estimates from the Alliance of 

Automobile Manufactures, which projects 3 percent gains in fuel efficiency and a 7 percent 

improvement in torque.  

The torque increase provides the opportunity to downsize the engine allowing an increase in 

efficiency of up to a 5.8 percent. Combined with other technologies (i.e., boosting, downsizing, 

and in some cases, cooled EGR), SGDI can achieve greater reductions in fuel consumption and 

CO2 emissions compared to engines of similar power output.  

The NHTSA and EPA cost estimates for SGDI take into account the changes required to the 

engine hardware, engine electronic controls, ancillary and Noise Vibration and Harshness (NVH) 

mitigation systems. (30) 

 

3.5.1.10 Turbocharging and downsizing (TRBDS1 and TRBDS2)  

 

The specific power of a naturally aspirated engine is primarily limited by the rate at which the 

engine is able to draw air into the combustion chambers. Boosting increases the available airflow 

and specific power level, allowing a reduced engine size (and so weight) while maintaining 

performance. This reduces pumping losses at lighter loads in comparison to a larger engine.  

 

Three levels of boosting are considered (18 bar brake mean effective pressure (BMEP), 24 bar 

BMEP and 27 bar BMEP) along with three levels of downsizing. 18 bar BMEP is applied with 33 

percent downsizing, 24 bar BMEP is applied with 50 percent downsizing, and 27 bar BMEP is 

applied with 56 percent downsizing and EGR because it is considered that with such pressures, 

the temperature is so high that there is a need to use EGR to avoid excessive NOx emissions.  
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To achieve the same level of torque when downsizing the displacement of an engine by 50 

percent, approximately double the manifold absolute pressure (2 bar) is required. Accordingly, 

with 56 percent downsizing, the manifold absolute pressure range increases up to 2.3 bar. Ricardo 

states in their 2011 vehicle simulation project report that advanced engines in the 2020–2025 

timeframe can be expected to have advanced boosting systems that increase the pressure of the 

intake charge up to 3 bar. 

 

GDI is a key enabler for modern, highly downsized turbocharged engines, this difference will be 

overshadowed by the higher effectiveness for turbocharging and downsizing when they are 

combined into packages.  

Specific power levels for a boosted engine often exceed 100 hp/L, compared to average naturally 

aspirated engine power densities of roughly 70 hp/L. As a result, engines can be downsized 

roughly 30 percent or higher while maintaining similar peak output levels.  

In the last decade, improvements to turbocharger turbine and compressor design have improved 

their reliability and performance across the entire engine operating range. New variable geometry 

turbines and ball-bearing center cartridges allow faster turbocharger spool-up (virtually 

eliminating the once-common “turbo lag”) while maintaining high flow rates for increased boost 

at high engine speeds. Low speed torque output has been dramatically improved for modern 

turbocharged engines.  

However, due to reduced torque values at low engine speed conditions the potential to downsize 

engines may be less on vehicles with low displacement to vehicle mass ratios in order to provide 

adequate acceleration from standstill, particularly up grades or at high altitudes.  

Use of GDI systems with turbocharged engines also reduces the fuel octane requirements for 

knock limited combustion and allows the use of higher compression ratios, because of better 

charge cooling. Recently published data with advanced spray-guided injection systems and more 

aggressive engine downsizing targeted towards reduced fuel consumption and CO2 emissions 

reductions indicate that the potential for reducing CO2 emissions for turbocharged, downsized 

GDI engines may be as much as 15 to 30 percent relative to port-fuel-injected engines. These 

reported fuel economy benefits show a wide range depending on the SGDI technology employed. 

(30) 
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3.5.1.11 Exhaust-gas recirculation boost (CEGR1 and CEGR2)  

 

Increases the exhaust-gas recirculation used in the combustion process to increase thermal 

efficiency and reduce pumping losses. This technology is only applied to 24 bar and 27 bar 

BMEP  turbocharged engines with GDI in this analysis. 

Vehicle simulation modelling of technology packages using the more highly boosted and 

downsized cooled EGR engines (up to 27-bar BMEP, and utilizing EGR rates of 20-25%) with 

dual-stage turbocharging has been completed as part of EPA’s contract with Ricardo 

Engineering. 

Cooled exhaust gas recirculation or boosted EGR is a combustion concept that involves utilizing 

EGR as a charge diluent for controlling combustion temperatures and cooling the EGR prior to 

its introduction to the combustion system.  

Higher exhaust gas residual levels at part load conditions reduce pumping losses for increased 

fuel economy. The additional charge dilution enabled by cooled EGR reduces the incidence of 

knocking combustion and obviates the need for fuel enrichment at high engine power. This 

allows for higher boost pressure and/or compression ratio and further reduction in engine 

displacement and both pumping and friction losses while maintaining performance.  

The EGR systems considered use a dual-loop system with both high and low pressure EGR loops 

and dual EGR coolers. The engines would also use single-stage, variable geometry turbocharging 

with higher intake boost pressure available across a broader range of engine operation than 

conventional turbocharged SI engines.  

Such a system is estimated to be capable of an additional 3 to 5 percent effectiveness relative to a 

turbocharged, downsized GDI engine without cooled-EGR.  

Further, the agencies believe that 24 bar BMEP engines are capable of maintaining NOx control 

without cooled EGR, so it can be choose 24 bar BMEP engines with and/or without cooled EGR. 

However, 27 bar BMEP engines are considered to require cooled EGR to maintain NOx emission 

control.  

3.5.1.12 Diesel engines (ADSL)  

 

They have several characteristics that give superior fuel efficiency, including reduced 

pumping losses due to lack of (or greatly reduced) throttling, and a combustion cycle that 
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operates at a higher compression ratio, with a very lean air/fuel mixture, than an equivalent-

performance gasoline engine. As a result, turbocharged light-duty diesels typically achieve 

much higher torque levels at lower engine speeds than equivalent-displacement naturally-

aspirated gasoline engines and greater fuel efficiency.  

However diesel fuel also contains higher carbon content which leads to a more CO2 emissions 

if the FC is equal than a gasoline car. Anyway, the higher efficiency of these engines more 

than outwheight the Carbon offset. This is usually called the diesel’s “carbon penalty”. So a 

manufacturer that invests in diesel technology to meet CAFE standards may have more trouble 

meeting the GHG standards. Remember that CAFE standard refer to FE and GHG refer to 

CO2 emissions. 

Diesel engines also have emissions characteristics that present challenges to meeting federal 

Tier 2 NOx emissions standards (USA) U.S. Tier 2 emissions fleet average requirement of bin 

5 require roughly 45 to 65 percent more NOx reduction compared to the Euro VI standards. 

The fact is that Euro VI define different emissions limit for gasoline and diesel while Tier2 

does not give such flexibilities even though the nature of the two combustions is different 

given rise to diverse emissions.  

Despite considerable advances by manufacturers in developing Tier 2-compliant diesel 

engines, it remains somewhat of a systems-engineering challenge to maintain the full fuel 

consumption advantage of the diesel engine while meeting Tier 2 emissions regulations 

because some of the emissions reduction strategies can increase fuel consumption. A 

combination of combustion improvements (that reduce NOX emissions leaving the engine) 

and after treatment (capturing and reducing NOX emissions via a NOx adsorption catalyst, or 

via selective catalytic reduction (SCR) using a reductant such as urea) that have left the engine 

before they leave the vehicle tailpipe) are being introduced on Tier 2 compliant light duty 

diesel vehicles today.  

With respect to combustion improvements, several key advances in diesel engine combustion 

technology have made it possible to reduce emissions coming from the engine prior to 

aftertreatment, which reduces the need for aftertreatment. These technologies include improved 

fuel systems (higher injection pressure and multiple-injection capability), advanced controls and 
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sensors to optimize combustion and emissions performance, higher EGR levels and EGR cooling 

to reduce NOx, and advanced turbocharging systems.  

These systems are available today and they do not adversely impact fuel efficiency. However, 

additional improvements in these technologies will be needed to reduce engine emissions further, 

should future emissions standards become more stringent. Further development may also be 

needed to reduce the fuel efficiency penalty associated with EGR.  

With respect to catalytic exhaust emission control systems, typical 3-way exhaust catalysts 

without NOx storage capability are not able to reduce NOx emissions from engines operated lean 

of stoichiometry (diesel or lean-burn gasoline). To reduce NOx, hydrocarbons, and particulate 

emissions, all diesels will require a catalyzed diesel particulate filter (CDPF) and sometimes a 

separate diesel oxidation catalyst (DOC), and either a lean NOx trap (LNT) or the use of a 

selective catalytic reduction system, typically base-metal zeolite urea-SCR.  

The increased cost of diesel emissions control technologies relative to powertrains with 

stoichiometric gasoline engines that are approaching comparable efficiency may also make 

diesels less attractive to manufacturers as a technology solution for more stringent CAFE and 

GHG standards. These higher costs result from more costly components, more complex systems 

for emissions control, and other factors. The vehicle systems that are impacted include:  

Fuel systems (higher pressures and more responsive injectors) 

Controls and sensors to optimize combustion and emissions performance  

Engine design (higher cylinder pressures require a more robust engine, but higher torque output 

means diesel engines can have reduced displacement)  

Turbocharger(s) 

Aftertreatment systems, which tend to be more costly for diesels 

 

In conclusion, the model will place as low cost effective the diesel technology (high cost 

relatively to their FC savings) basically because US regulations are highly stringent (more 

than European) and therefore high electrification on gasoline engines will be chosen first to 

Diesel engines.  

 

This technology considers that the engine is replaced, of course by a Diesel engine with 

equivalent performance. (30) 
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3.5.1.13 CNG and LPG engines 

 

They are bi-fuel cars, which may work both with petrol and gas although they show a lower 

performance when working with CNG/LPG. They both are cleaner fuels that reduce CO2 

emissions specially CNG which seems to have the greater potential use in the future (especially 

in some countries).  Fuel prices use to be also cheaper (for same energy content) but their cost is 

higher than a conventional petrol car and they weight more and have less space for luggage. 

Furthermore they offer the inconvenient that not always a fuel station with CNG/LPG filler can 

be found; especially in some countries where because of that the market of these vehicles is very 

low.  

 

Since no reliable data on this issue has been found, rough values of cost and CO2 reduction have 

been given by my tutor.  

 

The calculation of the MPG value for CNG and LPG and the CO2 reduction for CAFE and 

NEDC purposes respectively is explained in detail in the chapter 3.7.4.  

 

LPG CO2 emissions reduction value should have synergies when applied along with DI engines 

because: Regarding to CO2 reduction, when talking about DI engines, some gasoline has to be 

injected along with LPG in some working conditions to not damage the injectors. However, 

manifold injection engines do not have this condition which increases their CO2 reduction 

potential compared to that on DI engines. On the other hand, for what concern cost, it may differ 

among DI and manifold injection since different technologic approaches should be taken. 

However, since no reliable data on this issue was found, no synergies are considered.  

Due to the fact that CNG has high knock resistance and low energy content, CNG-compatible 

engines achieve especially high CO2 reduction when applied in high compression ratio engines 

with GDI. When using common port injection, the performance of the car is highly reduced but 

the cost is as well cheaper. Although these differences, which lead to rise on synergies, it has not 

be considered synergies for the same reason as the LPG technology (35) (36).  
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3.5.2 Transmission path 

3.5.2.1 Manual 6-speed transmission (6MAN)  

 

Manual transmissions are the most efficient transfer of energy of all transmission layouts, 

because it has the lowest internal gear losses, with a minimal hydraulic system, and the driver 

provides the energy to actuate the clutch. From a systems viewpoint, however, vehicles with 

manual transmissions have the drawback that the driver may not always select the optimum 

gear ratio for fuel economy. Nor the driving cycle gear shift time schedule is optimum for 

FE. 

 

Nonetheless, increasing the number of available ratios in a manual transmission can improve 

fuel economy by allowing the driver to select a ratio that optimizes engine operation more 

often. Such improve is also feasible on the driving cycles with shift schedule. Typically, this 

is achieved through adding overdrive ratios to reduce engine speed at cruising velocities 

(which saves fuel through reduced engine pumping losses) and pushing the torque required of 

the engine towards the optimum level.  

 

However, if the gear ratio steps are not properly designed, this may require the driver to 

change gears more often in city driving, resulting in customer dissatisfaction.  

 

Additionally, if gear ratios are selected to achieve improved launch performance instead of to  

improve fuel economy, then no fuel saving effectiveness is realized.  

6MAN technology offers an additional gear ratio, from five gears to six. 

 

3.5.2.2 Improved automatic transmission controls (IATC)  

 

Optimizes shift schedule to maximize fuel efficiency under wide ranging conditions, and 

minimizes losses associated with torque converter slip through lock-up or modulation. 
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Particularly Aggressive Shift Logic ASL an Early Torque Converter Lockup ETCL are the two 

technologies making up IATC. 

 

Aggressive Shift Logic is an improved transmission’s controller that manages the operation of 

the transmission by scheduling the upshift or downshift, and, in automatic transmissions, locking 

or allowing the torque converter to slip based on a preprogrammed shift schedule. The shift 

schedule contains a number of lookup table functions, which define the shift points and torque 

converter lockup based on vehicle speed and throttle position, and other parameters such as 

temperature.  Aggressive shift logic (ASL) can be employed in such a way as to maximize fuel 

efficiency by modifying the shift schedule to upshift earlier and inhibit downshifts under some 

conditions, which reduces engine pumping losses and engine friction.  

 

A first level of ASL is linked to IATC while a second level of ASL is considered to be the “Shift 

Optimization” in the chapter 3.5.2.7. The first level of ASL is an early upshift strategy whereby 

the transmission shifts to the next higher gear “earlier” (or at lower RPM during a gradual 

acceleration) than would occur in a traditional automatic transmission. This early upshift reduces 

fuel consumption by allowing the engine to operate at a lower RPM and higher load, which 

typically moves the engine into a more efficient operating region.  

 

Early Torque Converter Lockup is an improved torque converter. The torque converter is a fluid 

coupling located between the engine and transmission in vehicles with automatic transmissions 

and continuously-variable transmissions (CVT). This fluid coupling allows for slip so the engine 

can run while the vehicle is idling in gear (as at a stop light), provides for smoothness of the 

powertrain, and also provides for torque multiplication during acceleration, and especially 

launch. During light acceleration and cruising, the inherent slip in a torque converter causes 

increased fuel consumption, so modern automatic transmissions utilize a clutch in the torque 

converter to lock it and prevent this slippage. Fuel consumption can be further reduced by 

locking up the torque converter at lower vehicle speeds, provided there is sufficient power to 

propel the vehicle, and noise and vibration are not excessive. If the torque converter cannot be 

fully locked up for maximum efficiency, a partial lockup strategy can be employed to reduce 

slippage. Early torque converter lockup is applicable to all vehicle types with automatic 
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transmissions. Some torque converters will require upgraded clutch materials to withstand 

additional loading and the slipping conditions during partial lock-up. 

 

However, as with aggressive shift logic, this operation can result in a perceptible degradation in 

noise, vibration, and harshness (NVH). The degree to which NVH can be degraded before it 

becomes noticeable to the driver is strongly influenced by characteristics of the vehicle, and 

although it is somewhat subjective, it always places a limit on how much fuel consumption can 

be improved by transmission control changes, especially for higher segments (30).  

 

3.5.2.3 Six- and seven-speed automatic transmissions (NAUTO)  

 

The gear ratio spacing and transmission ratio are optimized to enable the engine to operate in a 

more efficient operating range over a broader range of vehicle operating conditions.  

Additional ratios allow for further optimization of engine operation over a wider range of 

conditions, but this is subject to diminishing returns as the number of speeds increases. As 

additional planetary gear sets are added (which may be necessary in some cases to achieve the 

higher number of ratios), additional weight and friction are introduced.  

 

Furthermore the additional shifting of such a transmission can be perceived as bothersome to 

some consumers, so manufacturers need to develop strategies for smooth shifts. 

However a FC reduction has been stablished for this package, which considers the technological 

shift from 4-5 speeds automatic gearbox to 6-7 speeds automatic gearbox (30). 

 

3.5.2.4 Dual clutch transmission (DCT)  

 

They are similar to a manual transmission, but the vehicle controls shifting and launch functions. 

A dual-clutch automated shift manual transmission uses separate clutches for even-numbered and 

odd-numbered gears, so the next expected gear is pre-selected, which allows for faster, smoother 

shifting. When a shift is required, the controller disengages the oddgear clutch while 

simultaneously engaging the even-gear clutch, thus making a smooth shift. If, on the other hand, 

the driver slows down instead of continuing to accelerate, the transmission will have to change to 
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second gear on the idling shaft to anticipate a downshift. This shift can be made quickly on the 

idling shaft since there is no torque being transferred on it.  

 

Wet clutch AMTs offer a higher torque capacity that comes from the use of a hydraulic system 

that cools the clutches. Wet clutch systems are less efficient than the dry clutch systems due to 

the losses associated with hydraulic pumping. Additionally, wet AMTs have a higher cost due to 

the additional hydraulic hardware required.  

 

Overall, DCTs likely offer the greatest potential for effectiveness improvements among the 

various transmission options presented in this report because they offer the inherently lower 

losses of a manual transmission with the efficiency and shift quality advantages of electronic 

controls.  

 

The lower losses stem from the elimination of the conventional lock-up torque converter, and a 

greatly reduced need for high pressure hydraulic circuits to hold clutches or bands to maintain 

gear ratios (in automatic transmissions) or hold pulleys in position to maintain gear ratio (in 

Continuously Variable Transmissions).  

 

However, the lack of a torque converter will affect how the vehicle launches from rest, so a DCT 

will most likely be paired with an engine that offers sufficient torque at low engine speeds to 

allow for adequate launch performance or provide lower launch gears to approximate the torque 

multiplication of the torque converter to provide equivalent performance (30). 

3.5.2.5 Eight-speed automatic transmissions (8SPD) 

 

The transmission gear ratios are optimized including more gears to enable the engine to operate 

in a more efficient operating range over a broader range of vehicle operating conditions.  
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3.5.2.6 High Efficiency Gearbox (automatic, DCT or manual) (HETRANS and 

HETRANSM)  

 

Continuous improvement in seals, bearings and clutches, super finishing
 
of gearbox parts, and 

development in the area of transmission lubrication, all aimed at reducing frictional and other 

parasitic load in the system for an automatic, DCT or manual type transmission 

Note that the high efficiency gearbox technology is applicable to any type of transmission. (30) 

 

3.5.2.7 Shift Optimization (SHFTOPT)  

 

Tries to keep the engine operating near its most efficient point for a given power demand. The 

shift controller attempts to emulate a traditional continuously-variable transmission (CVT) by 

selecting the best gear ratio for fuel economy at a given required vehicle power level to take full 

advantage of high BMEP engines.  

 

ASL-level 2 is a shift optimization strategy whereby the engine and/or transmission controller(s) 

continuously evaluate all possible gear options that would provide the necessary tractive power 

(while limiting the adverse effects on driveline NVH) and select the gear that lets the engine run 

in the most efficient operating zone. Ricardo acknowledged in its report that the ASL-level 2 

(“shift optimization”) strategy currently causes significant implications for drivability and hence 

affects consumer acceptability. However, it is thought that such technology will be commonly 

used on the 2020-2025 timeframe with the assumption that manufacturers will develop a means 

of yielding the fuel economy benefit without adversely affecting driver acceptability. The 

agencies believe these drivability challenges could include shift busyness i.e. a high level of 

shifting compared to current vehicles as perceived by the customers. However the shifting time 

will be less and less long due to technological improvements which will result in a smother 

torque transitions and so overcoming such busyness. Thus improving customer 

perception/satisfaction. Nevertheless, the challenge becomes greater due to the introduction of 

gearbox with high number of gears (8SPD) which incur in a higher number of shifting events.  At 

the same time, the associated closer gear spacing will generally result in smaller engine speed 
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changes during shifting that may be less noticeable to the driver so it is in some amount 

improved. (30) 

 

3.5.3 Rolling resistance path. Low-rolling-resistance tires (ROLL1 and ROLL2) 

 

Low rolling resistance technologies have characteristics that reduce frictional losses associated 

with the energy dissipated in the deformation of the tires under load, thereby reducing the energy 

needed to move the vehicle. There are two levels of rolling resistance reduction considered in this 

analysis, ROLL1 and ROLL2, which assume 10 percent and 20 percent rolling resistance 

reduction, respectively. Other tire design characteristics (e.g., materials, construction, and tread 

design) influence durability, traction (both wet and dry grip), vehicle handling, and ride comfort 

in addition to rolling resistance. A typical low rolling resistance tire’s attributes could include: 

increased specified tire inflation pressure, material changes, and tire construction with less 

hysteresis, geometry changes (e.g., reduced aspect ratios), and reduction in sidewall and tread 

deflection. These changes would generally be accompanied with additional changes to vehicle 

suspension tuning and/or suspension design. The agencies expect that tire manufacturers will be 

able to achieve widespread, production application of the 20 percent rolling resistance reduction 

level in time for MY 2017 and later. Since ROLL2 technology does not yet exist in the 

marketplace today, the agencies relied on ROLL1 history, costs, market implementation, and 

information provided by the 2010 NAS report (30).  

3.5.4 Driveline improvements path 

3.5.4.1 Low-drag brakes (LDB)  

 

Reduce the sliding friction of disc brake pads on rotors when the brakes are not engaged because 

the brake pads are pulled away from the rotors either by mechanical or electric methods.  

 

3.5.4.2 Front or secondary axle disconnect for four-wheel drive systems (SAX)  
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Provides a torque distribution disconnect between front and rear axles when torque is not 

required for the non-driving axle, which reduces associated parasitic energy losses. At the 

moment it seems that there is any manufacturer offering this technology. However, it is possible 

this technology could be introduced. 

 

3.5.5 Aerodynamic improvements path. Aerodynamic drag reduction (AERO1 and 

AERO2) 

 

Is achieved by changing vehicle shape or reducing frontal area, including skirts, air dams, 

underbody covers, and more aerodynamic side view mirrors.  

The first level AERO1 includes such body features as air dams, tire spats, and perhaps one 

underbody panel. The second level AERO2 includes such body features as active grille shutters, 

rear visors, larger under body panels or low-profile roof racks. 

These two levels of aerodynamic drag reduction considered in this analysis assume 10 percent 

and 20 percent drag reduction, respectively. (30) 

 

Furthermore, active aerodynamics may introduce off-cycle credits for GHG compliance 

purposes. 

 

3.5.6 Mass reduction path. MR1-5%, MR2-10%, MR3-15%, MR4-20%,  MR1 CNG 
LPG-10%, MR1 CNG LPG-15% MR1 CNG LPG-20%, MR1E-10%, MR2E-15%, 
MRE3-20% 

 

Mass reduction encompasses a variety of techniques to make vehicles lighter, ranging from 

improved design and better component integration to application of lighter and higher-strength 

materials. A lighter has lower FC and , all else equal, mass reduction can also lead to collateral 

fuel economy benefits due to downsized engines and/or ancillary systems (transmission, 

steering, brakes, suspension, etc.).  

Automobile manufacturers can consider modular systems design, secondary mass effects, multi-

material concepts, and new manufacturing processes to help optimize the design. There are 

several studies in the public domain that illustrate the potential for these approaches to achieve 
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significant amounts of mass reduction although it is important to also recognize that the studies 

use some assumptions that do not account for some of the considerations that are important to 

manufacturers. One example is the need to share some components across platforms to manage 

cost and part complexity for assembly and service, which limits the ability to optimize the 

amount of mass reduction on every vehicle component. Care must also be taken in any study to 

assure that vehicle functionality and performance, such as stiffness, NVH, safety and vehicle 

dynamics, continue to meet manufacturer objectives and consumer demands. (37) 

 

Note as well that manufacturers are not willing to reduce roominess (vehicle size) to reduce fuel 

consumption. First because this is a customer choice and so it will depend on the market. Second 

because vehicle size and emissions limits are paired in US standards and so no advantage can be 

found here general speaking.  Furthermore, for some reasons most of the people in US think that 

big cars are safer than small cars, which is actually only true in few cases. On the other hand, 

emission limits and weight are paired in other regulations such as European so Manufacturers 

may not have incentive to reduce weight.  

 

The term “glider” refers to a complete vehicle minus the powertrain. The non-powertrain systems 

normally account for 75 percent of vehicle weight.  

 

For the model analysis only 10% and 20% mass reduction has been taken into account and they 

offer different cost and FC reduction for conventional cars, HEVs and FFVs. (38) 

 

3.5.7 Electrification path 

 

Hybrid Electric Vehicles HEVs are part of a continuum of vehicles using systems with differing 

levels of electric drive and electric energy storage. This range of vehicles includes relatively basic 

system without electric energy storage such as engine start/stop systems; HEV systems with 

varying degrees of electric storage and electric drive system capability including mild-hybrid 

electric vehicles (MHEV) with limited capability but lower cost; strong hybrid electric vehicles 

(SHEV) with full hybridization capability such as the P2 hybrid technology which the agencies 
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evaluate as a compliance option; plug-in hybrid electric vehicles (PHEV) with differing degrees 

of all electric range and battery electric vehicles (EV) that rely entirely on electric drive and 

battery electric energy storage. Different HEV, PHEV and EV concepts utilize these mechanisms 

differently, so they are treated separately for the purposes of this analysis. 

In many applications, particularly with PHEV and EV, the battery represents the most costly and 

system-limiting sub-component of the hybrid system. Currently, there are many battery 

chemistries being developed and refined for hybrid applications that are expected to enhance the 

performance and reduce the cost of future hybrid vehicles. 

 

3.5.7.1 Electric power steering (EPS) and electro-hydraulic power steering (EHPS)  

 

Is an electrically-assisted steering system that has advantages over traditional hydraulic power 

steering because it replaces a continuously operated hydraulic pump and only operates when 

needed, thereby reducing parasitic losses from the accessory drive.  

EPS is an enabler for all vehicle hybridization technologies since it provides power steering when 

the engine is off.  

 

3.5.7.2 Improved accessories (IACC1 and IACC2)  

 

There are two levels of IACC applied in this analysis. The first level of IACC includes an electric 

water pump and cooling fans and a high efficiency alternator (70% efficiency); the second level 

of IACC includes some mild alternator regenerative braking as well as intelligent cooling in 

addition to what is included in the first level of IACC. This excludes other electrical accessories 

such as electric oil pumps and electrically driven air conditioner compressors.  

 

The accessories on an engine, including the alternator, coolant and oil pumps are traditionally 

mechanically-driven. A reduction in CO2 emissions and fuel consumption can be realized by 

driving them electrically, and only when needed.  

Electric water pumps and electric fans can provide better control of engine cooling. For example, 

coolant flow from an electric water pump can be reduced and the radiator fan can be shut off 
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during engine warm-up or cold ambient temperature conditions which will reduce warm-up time, 

reduce warm-up fuel enrichment (and so FC), and reduce parasitic losses.  

Further benefit may be obtained when electrification is combined with an improved, higher 

efficiency engine alternator.  

 

3.5.7.3 12-volt Stop-Start (MHEV)  

 

Also known as idle-stop or 12V micro hybrid and commonly implemented as a 12-volt belt-

driven integrated starter-generator, this is the most basic hybrid system that facilitates idle-stop 

capability. Along with other enablers (EPS, IACC), this system replaces a common alternator 

with an enhanced power starter-alternator, both belt driven, and a revised accessory drive system.  

When vehicle comes to a stop, the system will automatically shut down the internal combustion 

engine and restarts the engine when vehicle starts to move again. This is especially beneficial to 

reduce emission and fuel consumption when vehicle spends significant amount of time stopping 

in inner city driving or a traffic jam. 

These systems typically incorporate an improved battery to prevent voltage-droop on restart.    

 

3.5.7.4 Mild Hybrid/Integrated Starter Generator (ISG)  

 

ISG provides idle-stop capability and launch assistance (which is not possible on micro hybrids) 

and uses a high voltage battery with increased energy capacity over typical automotive batteries.  

Mild hybrid systems, also called Higher Voltage Stop-Start and Belt Mounted Integrated Starter 

Generator (BISG) systems are similar to a micro-hybrid system, offering idle-stop functionality, 

except that they utilize larger electric machine and a higher capacity battery, typically 42 volts or 

above, thus enabling a limited level of regenerative braking which is even smaller for a MHEV 

(Micro Hybrids). 

 

However, because of the limited torque capacity of the belt-driven design, these systems have a 

smaller electric machine, and thus less capability than crank-integrated or stronger hybrid 

systems 



  
Page 112 

 

  

 

The limited electrical requirements of these systems allow the use of lead-acid batteries or 

supercapacitors for energy storage, or the use of a small lithium-ion battery pack. 

 

The FC reduction values and cost estimation results show that the mild hybrid system could be a 

cost effective technology. For the ISG technology it is considered a system using a 15 kW 

starter/generator and 0.25 kWh Li-ion battery pack, which is similar to General Motors’ eAssist 

BISG, which is available in MY 2012 Buick LaCrosse, Buick Regal, and Chevrolet Malibu 

vehicles. The values of cost and FC reductions for small/midsize cars (as the reference car) 

assumes engine downsizing to maintain approximately equivalent performance.  

 

3.5.7.5 Strong Hybrid (SHEV1-power split or 2 mode and SHEV2-p2 parallel or 2 mode)  

 

A hybrid vehicle is a vehicle that combines two or more sources of propulsion energy, where one 

uses a consumable fuel (like gasoline), and one is rechargeable (during operation, or by another 

energy source). Hybrids in general and especially strong hybrids reduce fuel consumption 

through four major mechanisms:  

 The internal combustion engine can be optimized (through downsizing, modifying the 

operating cycle, or other control techniques) to operate near its most efficient point most 

of the time. At the same time, power loss from engine downsizing can be mitigated by 

employing power assist from the secondary power source. 

 Some of the energy normally lost as heat while braking can be captured and stored in the 

energy storage system for later use. In a greater amount than MHEV explained before.  

 The engine is turned off when it is not needed, such as when the vehicle is coasting or 

when stopped. Hybrid vehicles utilize some combination of the three above mechanisms 

to reduce fuel consumption and CO2 emissions.  

 A fourth mechanism to reduce petroleum fuel consumption, available only to plug-in 

hybrids, is by substituting the petroleum fuel energy with energy from another source, 

such as the electric grid.  
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The effectiveness of fuel consumption and CO2 reduction depends on the utilization of the above 

mechanisms and how aggressively they are pursued. One area where this variation is particularly 

prevalent is in the choice of engine size and its effect on balancing fuel economy and 

performance. Some manufacturers choose not to downsize the engine when applying hybrid 

technologies. In these cases, performance is vastly improved, while fuel efficiency improves 

significantly less than if the engine was downsized to maintain the same performance as the 

conventional version.  If the engine is downsized, the battery can be quickly drained during a 

long hill climb with a heavy load, leaving only a downsized engine to carry the entire load. This 

is a negative point for engine downsizing in strong hybrids. 

 

Although hybrid vehicles using other energy storage concepts (flywheel, hydraulic) have been 

developed, the automotive systems in production for passenger cars and light trucks are all hybrid 

electric vehicles (HEV) that use battery storage and electric drive systems. This appears likely to 

be the case for the foreseeable future.  

 

The Figure 3-5 is showed in order to explain the concepts of intelligent hybrid concepts. 

 
Figure 3-5 2007 Camry hybrid motor-inverter efficiency map (39) 
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Similarly to the BSFC map showed in the Figure 1-1 electric motor/generators also have their 

own efficiency map. The most efficient control techniques for HV are based in an optimum 

combination of the two power sources to work in the most efficient point of the efficiency maps. 

Either when delivering power or recovering power (in the case of the electric motor).  

 

SHEV1 and SHEV2 are not fully described as it is not easy to forecast what will prevail in such a 

complex technology path, however NHTSA has given values on cost and FC assuming that 

SHEV1 corresponds to power split or 2 mode hybrids and SHEV2 corresponds to p2 parallel or 2 

mode hybrid. 

 

P2 hybrid 

A P2 hybrid is hybrid technology that uses a transmission-integrated electric motor placed 

between the engine and a gearbox or CVT and coupled to the engine crankshaft via a clutch. The 

engine and the drive motor are mechanically independent of each other, allowing the engine or 

motor to power the vehicle separately or combined. Disengaging the engine clutch allows all-

electric operation and more efficient brake-energy recovery. The P2 HEV system is similar to the 

Honda IMA HEV architecture with the exception of the added clutch, and larger batteries and 

motors. Examples of this include the Hyundai Sonata HEV and Infiniti M35h. The agencies 

believe that the P2 is an example of a “strong” hybrid technology that is typical of what will be 

prevalent in the timeframe of this analysis, replacing costlier power-split or 2-mode architectures 

while providing substantially similar efficiency improvement. At the present time, P2 hybrids are 

relatively new to the market and the agencies have not attempted to quantify any measurable 

performance differential between these technologies.  

 

The agencies are aware of some articles in trade journals, newspapers and other reviews that 

some first generation P2 hybrid vehicles with automatic transmissions have trade-offs in NVH 

and drivability – though these reviews do not cover all of the P2 systems available today, and a 

number of reviews are very positive with respect to NVH and drivability.  
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Power-split Hybrid (PSHEV)  

Is a hybrid electric drive system that replaces the traditional transmission with a single planetary 

gearset and two motor/generators. The smaller motor/generator uses the engine to either charge 

the battery or supply additional power to the drive motor. The second, more powerful 

motor/generator is permanently connected to the vehicle’s final drive and always turns with the 

wheels. The planetary gear splits engine power between the first motor/generator and the drive 

motor to either charge the battery or supply power to the wheels.  

 

2-Mode Hybrid (2MHEV)  

Is a hybrid electric drive system that uses an adaptation of a conventional stepped-ratio automatic 

transmission by replacing some of the transmission clutches with two electric motors that control 

the ratio of engine speed to vehicle speed, while clutches allow the motors to be bypassed. This 

improves both the transmission torque capacity for heavy-duty applications and reduces fuel 

consumption at highway speeds relative to other types of hybrid electric drive systems. It is 

believed that industry is expected to trend toward more cost effective hybrid configurations. 

 

3.5.7.6 Plug-in hybrid electric vehicle (PHEV2)  

 

Are hybrid electric vehicles with the means to charge their battery packs from an outside source 

of electricity (such as the electric grid), as well as a gasoline engine. These vehicles have larger 

battery packs than non-plug-in hybrid electric vehicles with more energy storage and a greater 

capability to be discharged. They also use a control system that allows the battery pack to be 

substantially depleted under electric-only or blended mechanical/electric operation, allowing for 

reduced fuel use during “charge depleting” operation. Only PHEV2 has been applied in this 

study. It corresponds to a 30mi range. 

 

3.5.7.7 Electric vehicle (EV1)  

 

Are vehicles with all-electric drive and with vehicle systems powered by energy-optimized 

batteries charged from grid electricity and regenerative breaking. EV1 range is 75 mile.  
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3.5.8 Other Off-cycle/Eco-innovative technologies 

 

As already explained in the chapters 2.3.4.4 and 2.4.2.2, there are some technologies that do 

contribute to a CO2 reduction in real world but do not account (in part or as a whole) during 

neither NEDC procedure nor the two cycle test procedure for GHG and CAFE.  Instead, they can 

account for a given number of g/mi or g/km as Off-cycle credits if the so called reduction is 

demonstrated.  In the case of GHG regulations there is a pre-approved list, which is shown 

below. This leads to an easier and less costly earning of credits because no very complicated test 

procedures are needed to demonstrate such reductions. However, there is no pre-approved list in 

NEDC regulations which may make manufacturers to refuse to use eco-innovations for the high 

cost of the demonstrating procedures.  The list of available Off-cycle and eco-innovative 

technologies is different for GHG and NEDC regulations. While still not set up for CAFE 

regulations. 

 

Table 3-3 Off-cycle credits for US GHG program (10) 

Name 
Simplified 

name 

Applicable 

according 

to NEDC 

Applicable 

according to US 

GHG 

Maximum 

potential credits 

according to US 

GHG [g/mi] 

A/C High efficiency 

– Level 1 
AC1 No Yes 1 

A/C Very high 

efficiency – Level 2 
AC2 No Yes 1,5 

Glass or Glazing G No Yes 2,9 

Passive Cabin 

Ventilation 
PCV No Yes 1,7 

Active Transmission 

Warm-Up 
ATW-EU Yes Yes 1,5 

Active Engine AEW-EU Yes Yes 1,5 
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Warm-up 

Active Seat 

Ventilation 
ASV No Yes 1 

Solar Reflective 

Paint 
SRP No Yes 0,4 

Active Cabin 

Ventilation 
ACV No Yes 2,1 

High Efficiency 

Exterior Lights* (at 

100 watt savings) 

HEEL-EU Yes Yes 1 

Solar Panels SP-EU Yes Yes 3,3 

Waste Heat 

Recovery (at 100W) 
WHR-EU Yes Yes 0,7 

Aero Drag 

Reduction, Level 2 
AERO2 No Yes 0,6 

12V Micro-Hybrid 

(Stop-Start) 
MHEV No Yes 2,5 

 

Note that AERO2 and MHEV account for extra reduction because they are as well On-cycle 

technologies. Note as well the lack of data referring to NEDC off-cycle credits usually called as 

Eco-innovations.   

 

The cost effectiveness of these technologies is quite bad compared to the previous On-Cycle 

technologies but the most cost effective will be widely applied in some fleets. This is the case of 

High efficiency AC and 12V Micro hybrids. Since much of the technologies only account in the 

case of GHG regulations, it seems that only in America it will have an important impact. 

The credits given in the last column are maximum values in general. In some cases they can be 

increased proportionally to their actual level of savings. As in the case of solar panels, which is 

scalable. In any case, manufacturers that want to acquire a higher value of off-cycle credits have 

to make specific conformity procedures and no pre-approved values are available. 
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For two main reasons off-cycle technologies are not taken into account in the model of this 

Thesis but instead just explained in a qualitative way: 

 The conversion equations made by regressions used to convert emissions from CAFE 

procedures to NEDC procedures cannot be applicable to GHG values with a good level of 

approximation since regressions are made without Off-cycle techs. See chapter 3.7.4. 

 Lack of reliable data: Neither FE reduction is defined according to NHTSA nor costs. The 

data relating the cost of these off-cycle technologies was not taken from official sources 

but they are rough values given by my tutor. 

 

However, it is interesting to mention how off-cycles technologies help to reduce GHG emissions.  

 

A/C system 

There are two mechanisms by which A/C systems contribute to the emissions of greenhouse 

gases: 

The first is through direct leakage of the refrigerant into the air. The hydrofluorocarbon (HFC) 

refrigerant compound currently used in all recent model year vehicles is R-134a (also known as 

1,1,1,2-Tetrafluoroethane, or HFC-134a). Based on the higher global warming potential of HFCs, 

a small leakage of the refrigerant has a greater global warming impact than a similar amount of 

emissions of some other mobile source GHGs. R-134a has a global warming potential (GWP) of 

1,43. This means that 1 gram of R-134a has the equivalent global warming potential of 1,43 

grams of CO2 (which has a GWP of 1).  

 

In order for the A/C system to take advantage of the refrigerant’s thermodynamic properties and 

to exchange heat properly, the system must be kept at high pressures even when not in operation. 

Typical static pressures can range from 50-80 psi depending on the temperature, and during 

operation, these pressures can get to several hundred psi. At these pressures leakage can occur 

through a variety of mechanisms. The refrigerant can leak slowly through seals, gaskets, and even 

small failures in the containment of the refrigerant. Through normal use, the rate of leakage may 

also increase due to wear on the system components. Leakage may also increase more quickly 

through rapid component deterioration such as during vehicle accidents, maintenance or end-of-
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life vehicle scrappage (especially when refrigerant capture and recycling programs are less 

efficient). Small amounts of leakage can also occur continuously even in extremely “leak-tight” 

systems by permeating through hose membranes and seals. This last mechanism is not dissimilar 

to fuel permeation through porous fuel lines (and seals).  

 

Manufacturers may be able to reduce these leakage emissions through the implementation of 

technologies/designs such as leak-tight, non-porous, durable components. The global warming 

impact of leakage emissions also can be addressed by using alternative refrigerants, such as HFO-

1234yf, R-744 (CO2), HFC-152a (R-152a), or other refrigerants under development with lower 

global warming potentials than R -134a.  

 

Refrigerant emissions can also occur during maintenance and at the end of the vehicle’s life (as 

well as emissions during the initial charging of the system with refrigerant), and these emissions 

are already addressed by the CAA Title VI stratospheric ozone program. 

The second mechanism by which vehicle A/C systems contribute to GHG emissions is through 

the consumption of additional fuel required to provide power to the A/C system and from 

carrying around the weight of the A/C system hardware year-round. These indirect emissions 

result from the additional fuel which is required to provide power to the A/C system (and the 

additional fuel is converted into CO2 by the engine during combustion). These increased 

emissions due to A/C operation can be reduced by increasing the overall efficiency of the 

vehicle’s A/C system. (31) (40) 

 

Waste Heat Recovery  

Combustion engines expel a great amount of head through the exhaust pipe and the cooling 

system. This system gathers part of the “lost” energy to normally, recharge the batteries. This 

effect is not well captured in the 2-cycle test procedure, it is underestimated. For this reason, an 

off-cycle credit is added to the GHG calculation. This is the difference between 5-cycle 

procedure and 2-cycle procedure results. Note that CAFE regulations use only the 2-cycle 

procedure. Adding, only in the case of not well represented technologies, the difference among 5-

cycle and 2-cycle test.  
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WHR technologies are usually based in a Rankine Cycle. A typical Rankine Cycle is a 

thermodynamic cycle that uses a fluid and works thanks to four reversible processes. In 

transportation, Rankine cycle systems vaporize a pressurized fluid, thanks to a steam generator 

located in the exhaust pipe. As a result of the heating by exhaust gases, the fluid is turned into 

steam/vapor. The pressure will then drive the expander of the Rankine engine, which could be a 

turbine as well as a volumetric expander. This expander can be either directly tied to the 

crankshaft of the thermal engine or linked to an alternator to generate electricity that will 

recharge the battery (most commonly option) (31).  

 

High Efficiency Exterior Lights  

The current EPA test procedures are performed with vehicle lights (notably, headlights including 

daytime running lamps (DRLs)) turned off. Because of this, improvement to the efficiency of a 

vehicle’s headlights is not captured in the existing test procedures and is appropriately addressed 

through the off-cycle crediting scheme. Similarly to the WHR, the number of credits is equivalent 

to the CO2 reduction obtained in the 5-cycle test procedure (31).   

 

Solar Panels 

How it helps to reduce CO2 emission is quite obvious. Solar panels can recharge batteries but 

they are not actuation neither during the 2-cycle nor 5-cycle test procedures.  Only HEVs, PHEVs 

and EVs are eligible for this credit (31).  

 

Aero Drag Reduction, Level 2 

The aerodynamic efficiency of a vehicle is usually captured in a coast down test that is used to 

determine the dynamometer parameters used during both the two-cycle and five-cycle tests. 

Some active aerodynamic technologies are activated only at certain speeds to improve 

aerodynamic efficiency while preserving other vehicle attributes or functions. The coast down 

method may be at a speed or conditions in which such element is not activated and so coast down 

coefficients and two and five cycles test procedures results remain the same as if such technology 

wasn’t in use. 

Two examples of active aerodynamic technologies are active grill shutters and active 

ride height control (31).  

http://en.wikipedia.org/wiki/Rankine_Cycle
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12V Micro-Hybrid (Stop-Start) 

Engine idle start-stop technologies enable a vehicle to turn off the engine when the vehicle comes 

to a rest, and then quickly restart the engine when the driver applies pressure to the accelerator 

pedal. The benefit of this system is that it largely eliminates fuel consumption at idle. The EPA 

FTP (city) test does contain short periods of idle, but not as much idle as is often encountered in 

real world driving. Therefore, some off-cycle credits are added. 

MOVES estimate that 13.5% of all driving (in terms of vehicle hours operating) nationwide is at 

idle, and compared to a 9% idle rate for the combined (two-cycle) test, idle-off could 

theoretically approach an extra 50% of the existing benefit seen on the FTP/HWFE test (31).  

 

Active Transmission Warm-Up 

Active Transmission warm-up uses waste heat from a vehicle’s exhaust system to warm the 

transmission oil to operating temperature quickly using a heat exchanger in the exhaust system. 

This heat exchanger loop must have a means of being selectable, so that the transmission fluid is 

not overheated under hot operating conditions. In cold temperatures, the exhaust heat warms the 

transmission fluid much more quickly than if the vehicle relies on passive heating alone. Other 

methods of heating the fluid can be implemented using electric heat for example, but these are 

not included in this analysis because of the additional energy consumption that would likely 

eliminate most of the benefit. This technology could also be used for other driveline fluids such 

as axle and differential lubricant on rear-wheel-drive vehicles or even engine oil, but only 

transmission fluid warming is considered here.  

 

Since 2-cycle test are made at “high” temperature, the potential GHG reduction accounted in the 

procedure is very low, However EPA assumes 2,5% GHG reduction at -7 degrees Celsius of 

ambient temperature while only 1% at 10 degrees Celsius (31).  

 

Active Engine Warm-up 

Similar to active transmission warm-up, active engine warm-up uses waste heat from a vehicle’s 

exhaust system to warm targeted parts of the engine, reducing friction and cold start enrichment 
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requirements, and thereby increasing fuel economy. EPA assumed that similar to active 

transmission warm-up, a similar magnitude benefit would also be applicable for active engine 

warm-up. As a result, credit values for active engine warm-up are identical to those for active 

transmission warm-up, and are additive if a manufacturer can demonstrate the presence of both 

technologies (independent to one another, i.e., separate heating pathways) on a similar vehicle 

(31).  

 

Passive  and active Cabin Ventilation 

Given that today’s vehicles are fairly well sealed (from an air leakage standpoint), the 

solar energy that enters the cabin area through conductive and convective heat transfer is 

effectively trapped within the cabin. During soak periods, this heat gain builds, increasing the 

temperature of the cabin air as well as that of all components inside the cabin (i.e. the thermal 

mass). By venting this heated cabin air to the outside of the vehicle and allowing fresh air to 

enter, the heat gain inside the vehicle during soak periods can be reduced. 

The NREL study demonstrated that active cabin ventilation technology, where electric fans are 

used to pull heated air from the cabin, a temperature reduction of 6.9 °C can be realized. For 

passive ventilation technologies, such as opening of windows and/or sunroofs are and use of floor 

vents to supply fresh air to the cabin (which enhances convective airflow), a cabin air 

temperature reduction of 5.7 °C can be realized. This way, reducing the use of A/C when the 

driver enters into the car (31). 

 

Active Seat Ventilation 

The NREL study investigated the effect that ventilating the seating surface has on the cooling 

demand for a vehicle. By utilizing a fan to actively remove heated, humid air that is typically 

trapped between the passenger and the seating surface, passenger comfort can be 

improved, and NREL’s Thermal Comfort Model predicted that A/C system cooling load 

could be reduced, and a 7.5% reduction in A/C-related emissions can be realized. While 

seat ventilation technology does not lower the cabin air temperature, it indirectly affects the 

load placed on the A/C system through the occupants selecting a reduced cooling demand due to 

their perception of improved comfort (31). 
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Solar Reflective Paint 

As the vehicle’s body surface is heated by solar energy when parked, heat is 

transferred to the cabin through conduction and convection. Paint or coatings which increase 

the amount of infrared solar energy that is reflected from the vehicle surface can reduce cabin 

temperature during these solar soak periods. This way, reducing the use of A/C when the driver 

enters into the car.  

While the amount of heat entering the cabin through the body surface is less than that which 

enters through the glazing, its effect on cabin air heat gain is measureable (31).  

 

Glass or Glazing 

When a vehicle is parked in the sun, more than half of the thermal energy that enters the 

passenger compartment is solar energy transmitted through, and absorbed by, the vehicle’s 

glazing (or glass). The solar energy is both transmitted through the glazing and directly absorbed 

by interior components, which are then heated, and absorbed by the glazing, which then heats the 

air in the passenger compartment through convection and interior components through re-

radiation.  

By reducing the amount of solar energy that is transmitted through the glazing, interior cabin 

temperatures can be reduced, which results in a reduction in the amount of energy needed to cool 

the cabin and maintain passenger comfort. Glazing technologies exist today which can reduce the 

amount of solar heat gain in cabin by reflecting or absorbing some of the infrared solar energy. 

This way, reducing the use of A/C when the driver enters into the car (31). 

 

3.5.9 On-path packages 

 

The spreadsheets in the annexes give a rather vague idea of the technologies that can be part of a 

package and its features in terms of cost and CO2 reduction. For this reason several plots have 

been created to illustrate the possible combinations of technologies in a given path in a much 

more intuitive way. 

 



  
Page 124 

 

  

Although synergies do exist, the plots do not show possible synergies among technologies neither 

in the same path nor between different paths (different plots), obviously. This is evaluated in an 

exhaustive way in the model. Even though since the values of the synergies are relatively low, the 

reader can consider the plots as quite accurate and thus can make fast calculations of supposed 

multiple-path packages (whole vehicle package of technologies). Note that the cost effectiveness 

which is the ratio between cost and CO2 reduction is plotted. All the costs are expressed in 2010 

dollars and the costs shown are expected for the MY 2018.  

 

By supposing a reference car with no low CO2 technologies applied, all the possible packages in 

each path have been evaluated.  Note that the architecture of this reference car has not been 

defined in this chapter and so a great number of possibilities will be showed since architectures as 

SOHC, SOHC, MT, AT and so on is considered. 

 

3.5.9.1 Engine path 

 

This is the biggest path, with a huge number of possible packages of technologies. Only those 

correspondents to SOHC and DOHC with Small Displacement SD engines will be showed. They 

include the possibility to replace the engine for an Advanced Diesel Small Displacement ADSL 

or converting it to a GPL or even CNG engine. 
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Figure 3-6 Engine technologies packages for SOHC SD and MY 2018. 2010 Dollars. 
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Figure 3-7 Engine technologies packages for DOHC SD and MY 2018. 2010 Dollars. 
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Figure 3-8 Engine technologies packages for SOHC SD LPG and MY 2018. 2010 Dollars. 
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Figure 3-9 Engine technologies packages for SOHC SD CNG and MY 2018. 2010 Dollars.   
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Figure 3-10 Engine technologies packages for DOHC SD LPG and MY 2018. 2010 Dollars. 
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Figure 3-11 Engine technologies packages for DOHC SD CNG and MY 2018. 2010 Dollars.  
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3.5.9.2 Mass reduction path 

 

The mass reduction technologies are actually differentiated by three engine architectures. Thus 

unlike levels of CO2 reduction and costs are achieved for an equal value of mass reduction: 

The acronyms MR1-5%…MR4_20% are used   for conventional cars and they correspond to a 5 

to 20% Mass reduction. 

The acronyms MR1CNG LPG-10%…MR3_CNG LPG20% are used   for CNG/LPG cars which 

because of their additional mass with relation to the reference vehicle, they have an additional 

cost (as the HEV) for a given percentage of mass reduction.  A value of 5% of additional mass 

has been considered for this kind of cars. 

The acronyms MR1E-10%…MR3E_20% are used   for HEV which have not only a 

differentiated cost but a different value of CO2 reduction for an equal level of mass reduction.  

 

The Figure 3-12 shows the data relating to mass reduction technologies. 

 
Figure 3-12 Mass reduction path. The data was taken from (30) (38). MY 2018. 2010 Dollars. 

 

Note that the cost rises in a nonlinear way with the percentage of mass reduction. It is actually 

exponential which peaks for higher mass reduction levels. 
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Thus, in terms of FC reduction, conventional engines and engines converted to CNG or LPG 

behave the same for a given mass reduction (remember that the mass reduction is calculated from 

the reference vehicle which is a conventional car) for this reason, as the weight of a converted-to-

CNG/LPG car is greater than a conventional vehicle, the cost of a given percentage of mass 

reduction is lower for a conventional car. 

The same explanation is done for HEV in terms of cost: The cost of the mass reduction 

technologies in HEV is bigger than a conventional due to the fact that an HEV has usually a 

higher mass than a conventional car and so, for a given percentage of mass reduction from the 

reference car, the cost is higher. Actually, it has been considered that HEV, CNG and LPG cars 

have a 5% higher mass than a conventional car and so, a 10% weight reduction from the 

reference car is like a 15%, which is more costly. 

 

The differences between CO2 emissions reduction in HEV with respect to the rest of the vehicles 

are due to the fact that the drive train behaves completely different way. The use of electric 

motors and the regenerative braking make up these differences. It has been calculated that when 

powertrain is not resized (case of this Thesis), the FC reduction is greater than in a conventional 

car. On the other hand, if the Powetrain is resized, the FC reduction is a bit lower in HEV than 

others. Note that in HEV lower mass implies lower potential of regenerative braking due to lower 

kinetic energy. This is one of the reasons why, in some cases,   HEV mass reduction technologies 

are not so widely applied.  

 

3.5.9.3 Electrification path 

 

Prior to comment the concepts of the plot, the meaning of the horizontal axis (correspondent to 

technology package) should be explained here because especially in the Figure 3-13  some 

confusion may arise. As explained in the chapter 3.2 the model adds technologies in an 

incremental way, although not obvious, the best way to make the assessment. This means that for 

example IACC2 cannot be included if IACC1 and EPS is not included and so on, as shown in the 

Figure 3-13. The last name is the one that actually prevails so the horizontal axis could be 

understood as: EV1 or as EPS, IACC1, IACC2, MHEV, ISG, SHEV1, SHEV2, PHEV2 and EV1 
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prevailing the last name.  Some costs are divided in two components NB and B, coherent with the 

cost of the technology without batteries and the cost of the batteries, because batteries represent a 

huge cost. However, here the two costs (NB and B) are added.  

 

 
Figure 3-13 Electrification/hybridization path. MY 2018. 2010 Dollars. 

 

In the electrification path the greatest values of CO2 reduction are reached as well as the most 

costly technologies. The strong electrification packages (SHEV, PHEV and EV) get the highest 

values of cost effectiveness but since there are no other technologies capable of reaching such 

high CO2 reductions, they will become more and more present in modern cars as the only way to 

meet the regulations although its high cost, as seen in the outputs of the model. 

 

Note that there is an inflection point between Micro-Mild hybrids (Represented by IACC2, 

MHEV, ISG) and the Strong hybrids (represented by SHEV, PHEV and EV) which is caused by 

the high cost of the powerful batteries that these vehicles need in order to feed their motors. 

Therefore Micro and Mild hybrids which use re-sized Pb batteries or small Li-ion batteries will 

be a common choice among manufacturers. This statement is, however, highly dependent on the 
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new achievements in terms of battery technologies in which many battery manufacturers are 

focused on and Automobile manufacturer’s are aware of. 

It is useful to notice the lower cost and cost effectiveness of the EV with regard to PHEV thanks 

to the savings for not including a thermal engine. The draw-back is of course the range, in this 

case of 75 mi.  

 

3.5.9.4 Low rolling resistance path 

 

The first level of rolling resistance reduction (ROLL1) is widely applied for its low cost and cost 

effectiveness. ROLL2 is still under development but the cost and CO2 reduction have been 

approximated by the agencies and seems to be potentially applicable for its great CO2 reduction 

and its costs relating other technologies with similar values of CO2 reduction. They are showed in 

the Figure 4-13. 

 

 

 
Figure 3-14 Low rolling resistance path. MY 2018. 2010 Dollars. 

3.5.9.5 Low driveline drag path 

 

They are quite costly technologies and do not introduce high values of CO2 reduction which 

makes them not very attractive for any automobile manufacturers. 
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Figure 3-15 Low driveline drag path MY 2018. 2010 Dollars. 

 

3.5.9.6 Aerodynamic improvements path 

 

The first level of aerodynamic improvements (AERO1) is already used widely in the market 

because of its cost effectiveness and great CO2 reduction potential, as shown in the Figure 3-16. 

It can be achieved with quite a simple shape shift and the addition of some covers and deflectors. 

AERO2  is quite expensive because it includes full undercover and active grille shutters  but 

since it has great CO2 reduction it seems that  it will become a common choice in the future, 

especially in US where Off-cycle credits may be gained.  

 

 
Figure 3-16 Aerodynamic improvements path. MY 2018. 2010 Dollars. 
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3.5.9.7 Transmission technologies path 

 

This path, along with engine and electrification paths have the major rule for CO2 reduction since 

it can achieve up to 19% CO2 reduction. Differentiation between MT and AT has to be done 

because of two reasons. First, they are two differentiated architectures and so there is no 

assessment of the cost to pass from one to another but rather, the cost of maintaining the 

architecture and add technological improvements. Secondly, the commercialization of MT or AT 

vehicles is unfortunately, the market’s choice (the customer’s choice).  The last statement makes 

automobile manufacturers to have limited potential CO2 reduction strategies on this AT path.    

 

The reference car is a 4/5 gears MT or AT to which the plotted technologies in the Figure 4-16  

can be added. No comparison between MT technologies and AT technologies can be made 

because they are relative to their own reference car. To be able to compare between them, costs 

of the reference technologies should be taken into account. 
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Figure 3-17 Transmission technologies path. MY 2018. 2010 Dollars. 

 

Note that agencies forecast that MT technologies cost effectiveness improves quite a lot by 

adding HETRANSM to a six gears MT.    

 

For what concerns AT: by looking the cost effectiveness in the Figure 3-17, there are two 

packages that seem to be good choices.  

IATC, NAUTO, DCT  has the minimum incremental cost (actually it is negative) which means 

that this will be the base package that AT engines will use for its low cost and high CO2 

reduction.  

For further reduction the addition of more gears 8SPD is a very competitive choice. 
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3.5.9.8 Other off-cycle technologies 

 

In this case no combinations of the technologies are depicted in the Figure 3-18  because they can 

be combined in whatever way. All of them may be used as off-cycle credits according to EPA 

GHG regulations but only the acronyms followed by “–EU” are technologies susceptible to eco-

innovative credits according to NEDC regulations. As said before in the chapter 3.5.8, they have 

been taken out of the model analysis.  

 

 
Figure 3-18 Off-cycle technologies for EPA GHG calculation. 

 

Data relating the costs of these technologies have been taken from non-official sources so non 

committed conclusions can be made from this.  Nevertheless It can be said that AC1 (high 

efficiency AC system) is been more and more common because of its ratio between cost and CO2 

reduction. It corresponds to 1g/mi reduction (if formal justification is valid) which is in rough 

numbers about 0,5% CO2 reduction and a cost of about 20$.   
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3.6 Model inputs 

 

As will be showed, there are not many inputs because the major amount of model parameters are 

intrinsic in the algorithm and therefore, it automatically adapts to the reference model studied. In 

other words, only the data that has to be introduced by the user is given here. However the user 

can change all the parameters in the model but the more susceptible-to-change ones are the 

following ones.  

 

As two engines have been studied, there are two differentiated model inputs data. However, some 

of the values remain the same as the reference body is the same. Most of the input data is not the 

actual data since no “confidential” information should be published.  

 

3.6.1 Vehicle reference mass 

 

It is used to find the CO2 target according to NEDC regulations. It is the curb weight. The 

Reference mass may vary among the different motorizations but in this case it has been assumed 

that: � [ ] = 9  

 

3.6.2 Vehicle footprint 

 

It defines the CAFE MPG target through the created lookup table. It is defined as the average 

track width TW times the wheelbase WB. 

 [ ] =  ∙ = , + , ∙ , ∙ . ⁄ = ,     Equation 3-1 

 

3.6.3 Already applied technologies 
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This is a list of technologies that are considered as already applied to the reference models and 

therefore considered as not applicable (but belonging) to the package. Expressed as � ℎ . 

 

Table 3-4 Low FC technologies already applied to the reference car. . 

Midsize car 1.4NA MT Engine (DOHV) Midsize car 1.3T AT Engine (SOHV) 

ICP (engine) EFR1 (engine) 

DCP (engine) CCPS (engine) 

CVVL (engine) DVVLS(engine) 

 SGDI (engine) 

 Turbo 24BMEP & Down + EGS (engine) 

 IACT (transmission) 

 NAUTO (transmission) 

 DCT  (transmission) 

 AERO1 (aerodynamic) 

 

 

3.6.4 Technology applicability matrix 

 

This input is highly related to the previous one because it has to be created upon the already 

applied technologies and the vehicle’s architecture.  It is a matrix filled with 1 and 0 

corresponding to the variable �   which is a Boolean that takes value of 1 when technology �Nz  

is applyaple in the package i  of the reference car k and 0 otherwise. To see how should be 

implemented, see the example in the Table 4-5.  
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Table 3-5. Example of technology applicability matrix. 

Model 

technology name 
SN1 SN2 SN3 SN4 

Packages 

Simplified name 

of technology 
TechA TechB TechC TechD 

Incremental to 
Reference 

car 
TechA 

Reference 

car 

TechA 

& Tech 

C 

Package 1 (i=1) 1    TechA 

Package 2 (i=2) 1 1   TechA+TechB 

Package 3 (i=3)   1  TechC 

Package 4 (i=4) 1  1  TechA+TechC 

Package 5 (i=5) 1 1 1  TechA+TechB+TechC 

Package 6 (i=6) 1  1 1 TechA+TechC+TechD 

Package 7 (i=7) 1 1 1 1 
TechA+TechB 

+TechC+TechD 

 

 

In the example, there are four technologies and 7 possible packages. Not 24=16 as if any 

conditions were given.  The row “incremental to” refers to the conditions for the applicability of a 

technology. So for example, TechB cannot be applied if TechA is not in the package. 

 

If the reference car does already apply some of the technologies or its architecture does not allow 

the application of some technologies then the matrix shifts. Let’s imagine that TechC cannot be 

applied for some of the previous reasons. Then the matrix become as shown in the Table 3-6: 
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Table 3-6 Example of technology applicability matrix when technologies are already applied in the reference car. 

Model technology 

name 
SN1 SN2 SN3 SN4 

Packages 
Simplified name of 

technology 
TechA TechB TechC TechD 

Incremental to 
Reference 

car 
TechA 

Reference 

car 

TechA & Tech 

C 

Package 1 (i=1) 1    TechA 

Package 2 (i=2) 1 1   TechA+TechB 

 

 

Yes, this is a quite common exercise that can be solved with some mathematical tools as 

Matlab® in a more or less complex way. Unfortunately only Microsoft Excel ® licenses were 

available and so a manual process was used. However, although it may seem a slow and tiring 

process, it is not because most of the times just copy-paste and addition of columns of ones is 

needed to complete the matrix.  In some 10 minutes can be solved. Besides, it allows the user to 

create whatever combination of technologies easily and see automatically the results. 

   

3.6.5 Vehicle reference cost 

 

This is used in the calculation of the highest profits package in the sections 3.7.19 and 3.7.18. A 

value of 15000$ has been used as a reference for the reference model with a 1.3T AT engine and 

14000$ for the reference model with 1.4 NA MT engine.  [$] = $  [$] = $  

 

3.6.6 Type of drive train 

 

Used in order to choose among one of the two lookup tables (passenger cars or light duty trucks) 

for the CAFE MPG target.  
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RWD and FWD use passenger cars table while AWD uses light duty trucks table. Only the name 

has to be introduced into the appropriate cell. Furthermore, when car architecture is AWD, low 

FC emissions technology SAX (Secondary Axle disconnection) can be used. 

 

3.6.7 Reference CO2 emissions, FE or FC 

 

They the reference value related to the reference vehicle model to which the percentage of FC 

reduction due to technologies is applied. It is worth to give some explanation of this issue to not 

create confusion to the reader. However, further information and calculations are shown in the 

chapter 3.7.4. 

 

In this study case there are four possible ways to express the reference CO2 emissions, FC or FE. 

It is depicted in the Figure 3-19: 

 
Figure 3-19 Four main ways of measuring CO2 emissions/FC/FE 

 

Bear in mind that the relation among NEDC-based and CAFE-based units is not a simple unit 

conversion because the test procedures are different, as has been discussed along the work.  

 

CAFE-based [g/mi] CO2 emiss. 

CAFE-based MPG FE NEDC-based  [l/100km] FC 

NEDC-based [g/km] CO2 emiss. 
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It makes a lot of sense to assume that the reference value will be given in NEDC-based due to the 

fact that “brand6” models are basically marketed (and so homologated) in Europe. Therefore the 

CAFE-based value is not known in principle. 

 

The reference CO2 emissions values are 125g/km (NEDC-based) for 1.3T model and 150g/km 

(NEDC-based) for the 1.4NA model. 

 _ � � = /  _ � � = /  

 

However, because the percentages of FC reduction are given as CAFE-based the model has to: 

Convert reference from NEDC-based to CAFE-based, then calculate the new CAFE-based MPG 

after technologies are applied (this is the actual value that will be compared to the CAFE target) 

and finally calculate from the new CAFE-based MPG, the new NEDC-based (This is the actual 

value that will be compared to the NEDC target). 

This process is depicted in the Figure 3-20 and is explained in detail in the chapter 3.7.4. 

 

3.6.8 Market sales coefficients 

 

The user can play with the percentage of sales in a specific country over the total sales of a 

particular model. The package which offers the best global margin may switch depending on this. 

The current value for the two reference models assessed is the same and it is: 20% of the total 

sales are in USA and the remainder 80% in Europe. 

 

 

 

 

 

                                                 
6 It is assumed that most of the product portfolio is basically commercialized in Europe 
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3.6.9 Other parameters 

 

Of course the user may be interested in playing with other model parameters. Probably the most 

interesting ones are: Cost of the technologies, FC reduction of the technologies, price of the fuels, 

price vs performance, car price vs FC and the extra costs of exporting to USA. 

 

 

3.7 Created mathematical model 

 

 In this chapter, a detailed description of how the outputs have been obtained will be given. To 

understand the following equations it is important to remind that the index i defines the package, 

the index j defines the year, the index z defines the technology and the index k the reference car. 

 

 

3.7.1  Technology package G_PACKik: 

 

Given a reference car with a reference engine, a vector with i different packages may be 

calculated.  _ � �  gives a vector in which any cell i shows a different  technology package.   

 _ = & … &         Equation 3-2 

 

Where: 

& symbolizes the union of strings in one word/cell. �  is the simplified name of the technology z.  �  is a Boolean that takes value of 1 when technology �Nz  is applicable in the package i and 

reference model k. This variable will be used from now in other formulas. 
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3.7.2 CAFE FC reduction without synergies C_FCRik 

 

Gives the percentages of FC reduction according to CAFE regulations of a technology package i 

without taking into account synergies between technologies in the package. For any of the 

reference car models k. 

 _ = − ∏ ∙ −       Equation 3-3 

 

Where: � Is the CO2 reduction due to the application of a single technology z without taking into 

account synergies among different technologies in the package i.  

 

 

3.7.3 CAFE FC reduction variation due to synergies C_FCSik: 

 

Since its calculation includes functions it can be expressed in terms of functions for a better 

comprehension. 

 _ = _ , , �     Equation 3-4 

 
Where: �  is a table with pairs of technologies and its FC reduction variation with reference to the _ . See the spreadsheets in the annexes. �  is a function which returns the total CO2 emissions variation due to synergies between 

technologies in the package _ � �  for any package  i and reference car model k. � ℎ  is a cell which contains all the technologies already applied to the reference car (see 

Table 3-4) that may be sensible to synergies with technologies in the package i. In this way, the _ � �  vector is complemented by � ℎ  so that all synergies can be assessed, even 

those technologies that are out of the packages because they are already applied to the reference 

car. For example, Discrete Variable Valve Lift DVVL has been considered as already applied in 
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the reference car and so it does not appear in _ � �  vector but it does appear in � ℎ so the synergies with other applicable technologies are assessed. 

 

3.7.4 CAFE MPG resultant  C_MPGik and NEDC resultant CO2 emissions  N_CO2ik 

 

This is the most critical point of the model, where the final values of FE and CO2 emissions will 

be calculated in order to assess CAFE and NEDC compliance. It is not an obvious calculation 

because many factors are in play here. As an example, MPG for CAFE calculation is quite 

differently calculated depending on the kind of fuel. Another example is EV which account as 

well-to-wheel in CAFE regulations and tank-to-wheel in NEDC regulations and therefore as 

>0g/mi on the first case and 0g/km on the second case. Furthermore, since all data on FC 

reduction is CAFE-based, special conversion coefficients have to be used to find NEDC-based 

CO2 emissions values. In order to understand how this problem has been faced, the Figure 3-20 is 

showed and some explanation is given. Furthermore, in the following chapters it is studied 

deeply.  
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Figure 3-20 CAFE-NEDC: FC, FE and CO2 emissions conversion process 
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From the starting point, the reference vehicles CO2 emissions according to NEDC procedure is 

known as already explained in detail in the chapter 3.6.7. From this point, an explanation step to 

step is done: 

 First and second step: Since the model FC reduction values are CAFE-based and the 

reference emissions known are NEDC-based, a conversion from _ � �  

to _  is needed. To this concern the regressions equations are used (1st step) 

and a simple units conversion from g/mi to mpg (2nd step) is performed. 

 Third step: Both CAFE-based MPG _   and CO2 emissions   of the reference car 

when packages of technologies are applied are calculated. No simple unit conversion is 

between these two terms because AFV as LPG and CNG MPG are calculated in a special 

way. � �  is a coefficient that deals with it. At this point the resultant MPG 

can be compared to the target/limit MPG according to CAFE regulations. 

 Forth step: From the CAFE-based CO2 emissions _  the NEDC-based CO2 

emissions _ are calculated. This is by using the regression equations and a 

correction coefficient for EV. Which gives 0g/km emissions for NEDC regulations (tank-

to-wheel) and >0g/mi (and therefore not infinite MPG) for CAFE regulations (well-to 

wheel).  The regression equations are supposed to give a mid-degree of approximation for 

any other conventional and hybrid car. 

 

3.7.4.1 CAFE MPG resultant C_MPGik 

 

So, if the reference CO2 emission is given according to NEDC regulations, it has to be transferred 

to CAFE with the following equation: 

   _  =   _ − ∙      Equation 3-5 

 

Where: _ � � :Is the NEDC reference CO2 emissions [g/km] _ � �   :Is the  CAFE reference CO2 emissions [g/mi] 

:Is the conversion factor from [g/mi] to [g/km] which is 0,62137 
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And the regression parameters of  and �  can be found on the Table 3-7 particularly: 

“Gasoline all data” regression  parameters are chosen for the 1.4 NA Engine reference car model 

and “Gasoline AT6 PRE BASELINE” regression parameters are chosen for the GSET4 engine 

reference car model. A detailed explanation of this choice can be found in the section 3.7.4.3. 

 

From the Equation 3-5, the FE achieved by any of the technology packages applicable to a given 

reference car is assessed with Equation 3-6: 

 _ = _− _ − _ ∙      Equation 3-6 

 

Where _  has to be calculated from _ � �  as a conversion and since both 

reference cars are fueled with gasoline the conversion is: 

 _ , =  . ∗ ,_ ,         Equation 3-7 

 

And the conversion factor can be found in the chapter 2.2. � �  is the correction coefficient for AFV such as LPG and CNG. Therefore when 

the package includes these conversions, a correction for MPG calculation has to be done 

according to CAFE regulations. Particularly reminding what explained in the chapter 2.3.4.2 (i.e. 

supposing UF=1…): 

For LPG packages Equation 3-8 prevails 

 =  ,, ∙ , = ,       Equation 3-8 

 

Where 1,35 stands for the increased FC due to LPG’s lower energetic content relating to gasoline. 

So it is converted to GGE (Gasoline Gallon Equivalent), following the regulations. 
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The 0,15 divisor is basically an incentive multiplier which increases the final MPG.The 0,95 

multiplier is coherent with a 5% reduction in fuel efficiency due to not optimal operation in LPG 

and Gasoline mode. 

 

For CNG packages Equation 3-9 prevails: 

 =  ,, = ,        Equation 3-9 

 

CNG regulation says that the methodology determines a gasoline equivalent MPG based on the 

energy content of the gaseous fuel consumed. So the 0,95 multiplier takes into account it by 

supposing that the actual efficiency will be 5% lower. 

The 0,15 divisor is basically an incentive multiplier which increases the final MPG. 

 

3.7.4.2 CAFE resultant CO2 emissions C_CO2ik 

 

Which is the actual value of the CO2 emissions for the given vehicle and package. 

 _ = − _ − _ − _ _  ∙ ∙  Equation 3-10 

 

Where: � �  has been calculated in the Equation 3-5. � �  is the coefficient which allows to estimate the CO2 emissions increase due to use of 

a fuel with higher carbon content which worsens the CO2 emissions. This is, Diesel engines have 

greater emissions than gasoline engines if the FC or FE is the same. So, if the package i is diesel 

then: 

 = ..          Equation 3-11 

 

Otherwise its value is 1. 
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It is reminded that the sense of this is because the model works with FC reduction percentages so 

fuel considerations are important when passing to CO2 emissions. 

 

For LPG and CNG engines, a correction has to be done since  _ , _  do not 

introduce CO2 emissions reduction due to the use of cleaner fuels. Therefore, when conversion to 

CNG engine is considered:  

 _ _  = %        Equation 3-12 

 

When conversion to LPG engine is considered:  

 _ _  = %        Equation 3-13 

 

3.7.4.3 NEDC Resultant CO2 emissions N_CO2i 

 

CAFE procedures and NEDC procedures are different and so, they give different values of CO2 

emissions. Since the data gathered to build the model refers only to CAFE regulations, the CO2 

emissions according to NEDC procedures are, in principle, unknown. 

 

Some studies have been performed along the past years in order find a relation between both 

procedures which is useful to forecast the results of NEDC knowing CAFE and vice versa. This 

kind of study is particularly useful to forecast whether a fleet of vehicles only sold in EU (or 

USA) will meet the regulations in USA (or EU) or not without the need of performing both test 

procedures, which is expensive. Of course this is just some useful information for a study case, in 

which the cost of an extra test cycle may be avoided. However these relations will never be 

applicable as a conformity procedure.  

An agency called International Council of Clean Transportation ICCT has been working for 

many years on this issue and it has developed some approaches to this concern (24). They have 

developed two studies in the years 2007 and 2014 in which CO2 results were simulated over the 

test cycles for a variety of vehicle and technology packages using a sophisticated vehicle 
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emission model developed by Ricardo Engineering, the DVT, which has been introduced in the 

chapter 1.4.2. Current vehicle architectures and advanced innovative technologies focusing on the 

2020/2025 horizon were covered and so, the results are supposed to fit in this Thesis. Different 

types of regression analyses were applied in the 2014 study to the modelled CO2 emission data in 

order to reduce the error of the regression. The idea is that a regression is done for some likely-to-

occur packet of technologies. In such a way, regressions with lower Standard Error (StdErr) were 

found by ICCT (24). The likely-to-occur packages were: Gasoline – pre-baseline; Gasoline – 

baseline; Gasoline – advanced ICE; Gasoline – hybrid; Gasoline -  advanced ICE and hybrid; 

Diesel – pre-baseline; Diesel – baseline and advanced ICE; Gasoline all-data; Diesel all-data. 

 

Gasoline all-data and diesel all-data have been used when the reference car does not correspond 

to neither of the likely-to-occur packets. For example, in the case of the MT the vehicle, it has 

been considered better to use all data regressions for gasoline since there are no packets including 

MT. The same for the LPG and CNG packages in the MT reference car, where just “gasoline all-

data” has been used. 

Regression type: 

 _  =   ∙  _ ∙  +        Equation 3-14 

 

Where: _  :Is the NEDC CO2 emissions [g/km] _  :Is the  CAFE CO2 emissions [g/mi] 

: Is the conversion factor from [g/mi] to [g/km] which is 0,62137 

 

Diverse vehicle architecture/packages will acquire different regression coefficients. The Table 

4-7 describes it. 
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 Table 3-7 Regression type used depending on vehicle architecture (24) 

Regression type  
 

[gCO2/km] 
StErr[gCO2/km] Vehicle architecture 

Gasoline Advanced ICE 

& DCT 
1,0033 -1,476 1,16 

EGR and DCT, 

IACC1 

Gasoline AT6 Pre-

baseline 
1,1722 -8,003 4,75 

AT, Lack of Start-

stop, no energy 

recovery, low 

efficiency alternator 

Gasoline all data 1,1325 -13,739 4,47 Any 

Diesel baseline & 

advanced ICE 
1,0094 0,785 1,49 

AT, Advanced diesel, 

IACC1 

Advanced ICE & Hybrid 0,9834 1,162 1,64 Strong hybrid 

Diesel all data 1,2209 -21,218 7,02 Any 

 

 

As can be seen, different standard error is given for each type of regression. The most accurate 

regressions are those in which packages have been considered. For example, in the case of 

Gasoline Advanced ICE & DCT, it can be stated that with 95% of certainty the value of _  

is the actual value ± , /  which is a variation of around 1,5%. 

 

The algorithm automatically uses the coefficients that best fit the packages.  

When analysing the 1.3T  AT engine with strong electrification, the coefficients in the regression 

type “Advanced ICE and Hybrid” are used.  However, if there is no strong electrification in the 

package but there is DCT and a first level of electrification, the regression type “Gasoline 

Advanced ICE & DCT” is used. Finally, in any other case the regression type “Gasoline AT6 

Pre-baseline” is used unless conversion to diesel is done. In this last case “Diesel baseline & 

advanced ICE” regression type is used when electrification level 1 is applied and “diesel all data” 

is used in any other case. When considering conversion to CNG or LPG, they are simply 

considered as gasoline engines and the  “gasoline all data” regression is used.  
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When analysing the 1.4NA MT engine, only “gasoline all data” type regression has been 

considered unless conversion to diesel is considered, in which “diesel all data” type regression 

has been used. This is because of the lack of regression packages with MT. As can be seen, in 

this case there is a much higher standard error in the calculation of _ .   

 

3.7.5 CAFE CO2 emissions reduction C_CO2Rik 

 

From the reference CO2 emissions and the CO2 emission of specific applied packages, the 

specific CO2 reduction according to CAFE can be calculated as:  

 _ = _ − __        Equation 3-15 

 

3.7.6 CAFE MPG target C_MPGTj 

 

According to CAFE regulations, the FE limit depends on the vehicle class, the year and the 

footprint of the vehicle; the last one remains the same as the reference car body size does not 

change.  

The vehicle class may change from passenger car to light truck when a vehicle meets definition 

in the Collection Code of Federal Regulations (annual edition)  49 CFR 523.2 – Definitions see 

annexes.  To this it is important to highlight that an AWD vehicle may be considered a light truck 

if compliant with few more specifications. That’s why it has been considered of interest to add in 

the model the possibility to evaluate a light truck. In USA many people owns pick-ups, off-road 

vehicles and minivans which are considered as light trucks (although used for passenger 

transport) and so, with less stringent regulation limits concerning FE than a PC.  

When the input AWD is written in the given model input cell, the MPG limit changes and 

becomes softer, easier to meet.  Again, it depends on the footprint and the MY considered. 

The algorithm simply looks for the MPG limit correspondent to the closest footprint which is 

equal or smaller than the reference one. This is done for each of the years in study. 

This is modelled using the functions if(), Index() and compare() combined: 
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Compare(): Finds the position of the footprint in the table. 

Index(): Gives the value of the CO2 limit on the position given by the former function. 

If(): Used to look at the passenger car table or light truck table. 

 

3.7.7 CAFE Difference to target C_DIFij 

 

This is the difference between the target MPG and the vehicle FE according to CAFE procedures 

when the several technology packages are applied. As already said the target is the limit 

according to CAFE.  

Calculated as: 

 _ = _ − _        Equation 3-16 

 

3.7.8 Actual vehicle mass AMik  

 

One of the low FC technologies that may be applied is the mass reduction which directly affects 

the CO2 limits according to NEDC Procedures.  As already said in the chapter 3.5.6, mass 

reduction is the only technology that affects the performance of the car by changing the mass of 

the car while maintaining the characteristics of the engine. Therefore, the actual mass of the car 

has been used either for: Calculation of the actual NEDC CO2 emissions limit or calculation of 

the “most profitable package” due to the fact that the price of the car rises when performance is 

higher. 

 

For simplicity reasons only 0%, 10% and 20% of mass reduction has been considered. The cost 

and the CO2 emissions reduction varies depending on the vehicle architecture of the package 

analysed.  

 

3.7.9 NEDC CO2 emissions limit N_CO2Tijk 
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According to NEDC regulations, the CO2 target/limit depends on the vehicle class, the year and 

the reference weight of the vehicle which of course varies when applying weight reduction 

technologies.   

An urban vehicle, differently from CAFE regulations, can only be a passenger car and so only 

one lockup table is used in this case. 

The algorithm simply looks for the CO2 limit correspondent to the closest which is equal or 

smaller than the reference one. This is done for any of the years in study. 

This is modeled using the functions  Index() and compare() combined: 

Compare(): Finds the position of the weight in the table. 

Index(): Gives the value of the CO2 limit on the position given by the former function. 

 

3.7.10 NEDC Difference to target N_DIFijk 

 

This is the difference between the vehicle CO2 emissions according to NEDC procedures when 

the several technology packages are applied and the target CO2 emissions. As already said the 

target is the limit according to NEDC. Calculated as: 

 _ = _ − _       Equation 3-17 

 

 

 

3.7.11 Globally-Compliant packages GC_PACKijk 

 

Globally compliant packages are those packages that make the vehicle to be compliant with both 

legislations and therefore, the ones that meet both inequalities: 

 _ ≤           Equation 3-18 _ ≤           Equation 3-19 
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The model writes the matrix with the packages using the following simple logic: 

If the package i meets both requirements the cell i of the matrix GC_PACKijk  takes the value of 

the cell i from the vector already explained G_PACKik.  Otherwise the cell remains as void. This 

is done for any of the years j 2018 to 2024 and the two reference cars. 

From this point, all packages considered in the following steps of the analysis are those that are 

complaints with both regulations. 

 

3.7.12 Globally compliant incremental cost of technology package without considering 

synergies GC_ICWOSijk  

 

It is the cost of the packages without taking into account the synergies that may vary the cost of a 

given technology when applied at the same time with a complementary technology. The model 

writes a matrix with the total incremental cost using the functions sumif and if and the following 

logic: If the package i is compliant, the cell takes the value of the sum of costs in the package i. 

Otherwise, the cell takes a value extremely high. The function that sums the costs of the 

technologies that are applied in a given package is sumif which of course, just adds the cost of the 

technology z when these have been included in the package i. 

It can be expressed like this: 

for j=2018 to 2024   

for i=1 to imax 

If ( _ � ≤  and _ � ≤  ) 
 GC_ICWOSijk = SumIF(xizk>0,Costz) 

Else if GC_ICWOSijk  = 99999999 

end for  

end for 

 

3.7.13 Globally compliant incremental cost of technology package due to synergies 

GC_ICSik 
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The same concept explained in the chapter 3.7.3 but this time it refers to cost synergies. The 

calculation includes functions therefore it can be expressed in terms of functions for a better 

comprehension. 

 _ = _ , , �     Equation 3-20 

 

Where: �  is a table with pairs of technologies and its cost variation with reference to the _� . See the spreadsheets in the annexes. 

 

3.7.14 Globally compliant incremental cost of technology package GC_ICijk 

 

It is the total incremental cost of any possible compliant package i, taking into account the 

synergies among technologies. Calculated as: 

 _ = _ + _       Equation 3-21 

 

3.7.15 Globally compliant cost effectiveness (CAFE Based) GC_CEijk  

 

It is defined as the ratio between the cost and the CO2 reduction of a given package i in a year j. It 

is an interesting coefficient because when minimized, it tells us which package reaches the best 

values of cost and CO2 reduction.  

In order to calculate the cost effectiveness, CAFE- based CO2 reduction values has been used and 

not FC reduction values. This is basically because FC reduction values are far to be obvious and 

similar to those of NEDC regulations (remember, the 0,15 divisor for FE calculations in CAFE 

regulations. See chapter 2.3.4).  

 

Besides, although CAFE regulations limit FC, it has to be mind that the best indicator of GHG is 

CO2 and so, European regulations and EPA GHG regulations are based on that.  
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 _ = __          Equation 3-22 

 

3.7.16 Most cost effective globally compliant package and its characteristics 
 

Minimum cost effectiveness GC_MCEjk  

It is the value of the most cost effective globally compliant package for any of the years j in 

study.  

 _ = �  _ =  _      Equation 3-23 

 

Most cost effective package GC_MCE_Pjk 

It is the list of technologies of the most cost effective compliant package. Calculated using the 

functions index() and compare() where the former function gives the list of technologies 

corresponding to the index found by the function compare()which finds the index of the package 

corresponding to the minimum cost effectiveness _ . 

 _ _ = _        Equation 3-24 

 
Most cost effective compliant package incremental cost of technology package 

GC_MCE_ICjk 

It is the cost of the most cost effective compliant package cost. Found using the same functions as 

the previous calculation. 

 _ _ = _        Equation 3-25 

 

Most cost effective compliant package CO2 emissions reduction (CAFE Based) 

GC_MCE_CO2Rjk 
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It is the CO2emissions reduction of the most cost effective compliant package only according to 

CAFE regulations. Found using the same functions as the previous calculation. 

 _ _ = _       Equation 3-26 

 

3.7.17 Minimum incremental cost of globally compliant technology package  

 
Cheapest globally compliant package cost GC_Cjk  

It is the cost of the cheapest package that is globally compliant. Calculated as: 

 _ = �  _ = _       Equation 3-27 

 

Cheapest globally compliant Package GC_C_Pjk 

It is the list of technologies of the cheapest compliant package. Calculated using the functions 

index() and compare() where the former function gives the list of technologies corresponding to 

the index found by the function compare()which finds the index of the package corresponding to 

the minimum cost _  

 _ _ = _        Equation 3-28 

 

Cheapest globally compliant package cost effectiveness GC_CCEjk 

It is the cost effectiveness of cheapest compliant package. Found using the same functions as the 

previous calculation. 

 _ = _         Equation 3-29 

 

Cheapest globally compliant package CO2 emissions Reduction (CAFE Based) 

GC_CCO2Rjk 
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It is the CO2 emissions reduction of the cheapest compliant package only according to CAFE 

regulations. Found using the same functions as the previous calculation. 

 _ = _        Equation 3-30 

 

3.7.18 EU Market Most profitable package 

 
Most profitable package is a concept that has been “created” in this Thesis to assess which 

package gives the most profitablefor the automobile manufacturer in terms of the gap between 

price and cost. 

   =    −    ∝   Equation 3-31 

 

In order to link the properties of the different packages to the price and the cost, three coefficients 

have been created and a combination of these is the final coefficient (Compounded Margin 

Coefficient CMC). The so called CMC is the final indicator of the margin linked to a package. 

The bigger is the coefficient, the higher is the margin for the company.  

 

In order to be closer to the real world, two CMC coefficients have been created for the two main 

markets considered in this work, Europe and USA. This stands for the fact that those markets are 

completely different. One of the main differences is the low price of fuel in USA which makes 

buyers to not be willing to pay as much as Europeans for a lowest fuel consumption car.  

Of course this is just a rough calculation. The real margin is highly susceptible to the 

characteristics of the market in each country/region/state and even the automobile manufacturers 

do not really know what are the packages to achieve the best margin and its link to the price of 

the car. In other words, many Thesis could be done trying to find a solution to this problem. In 

the frame of this work, it has been considered that only the following three coefficients have to 

do with the margin and a detailed explanation of them is showed as follows: 

 Margin performance Coefficient: It is based on the fact that buyers are willing to pay 

more for cars with greater performance.  
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 Margin FC coefficient: It is based on the fact that buyers are willing to pay more for either 

cars with lower FC or cars which fuel is cheaper relatively to other fuels, like GPL 

compared to gasoline.  

 Margin Cost coefficient: It assesses the fact that the cost of the car increases more or less 

depending on the package applied and if it has to be exported or not. Affecting in this 

way, the margin. 

 

Margin performance Coefficient EU_MPCijk 

To this concern the performance of the car and its relation with the price of the car has to be 

defined. A definition of performance widely used is the ratio between power and mass of the car. 

As already said, the performance of the car is maintained the same when applying all 

technologies but the mass reduction technology, which by changing the mass and maintaining the 

engine size varies the performance. From this assumption, it can be stated the following: 

 = ∝ −        Equation 3-32 

 

In this way, easily it can be said that if vehicle mass is maintained the same, � =
 because it is the same as the reference car, if vehicle mass is reduced by 20% then 

the � = ,   and finally, if  vehicle mass is reduced by 10% then  � = , . 

 

Note that the Performance not only depends on the applied package i but also in the year j. This is 

because when packages are not compliant for a given year, the cells take the value of -99999. In 

this way, not globally compliant packages are kept out of the analysis. 

 

Finally, from the info given by my tutor about the relation between price and performance “ �  � ���   � ”, the performance margin coefficient can be calculated. 

    = $, /      Equation 3-33 
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And taking the reference price of 18000$ for both reference cars, the performance margin 

coefficient is: 

 

If = ,    _ = + , ∙ ,⁄ = ,   Equation 3-34 

 

If = ,  _ = + , ∙ ,⁄ = ,   Equation 3-35 

 

Margin FC coefficient EU_MFCCik 

As already said there are basically two reasons why potential customers may pay more to 

purchase a car. Cars with lower FC or Cars which fuel is cheaper relatively to other fuels, like 

GPL compared to gasoline are susceptible to a higher price (as well as higher cost of course, 

which has already been calculated on _� ). To deal with this, it has been considered very 

important to divide the market at least in two regions: Europe and USA. Obviously a detailed 

study of this issue would require a study for each of the countries/states or even smaller zones but 

it is out of the scope of this Thesis.  

 

The coefficient is directly a number that multiplied by the reference car price, gives the 

approximated price of the car with the specific package. It has been defined as: 

 _ = + _ ∙ _ ∙ _ + _    Equation 3-36 

 

Where:  _  is the Price Sensitivity to FC reduction coefficient in Europe.  _  is the Fuel Price Coefficient in Europe. _ + _  Has been defined before as the FC reduction of the package i (CAFE based) 
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It has been found a forecast which estimates the rise in the price of both gasoline and Diesel 

vehicles due to the FC reduction in the 2015 to 2020 period. It says that _  equals to 0,35 

in both types of cars while no specific data was found for HEV, LPG and CNG cars and so 0,35 

is used as well for these cars. Probably it is still a good estimation. Therefore it has been 

supposed that _  times the FC reduction is the car price increase. 

 

Although the data found do not cover exactly the time period in study (2018 to 2024), It will be 

used as an estimation.  

 

The _  is a bit tricky concept that has been considered interesting to introduce. It has 

been thought that the _  coefficient may be susceptible to variations due to differences in 

the price of the fuels. For example, the price of a gasoline package that shows the same FC 

reduction than a GPL package should be lower because GPL fuel price is lower than Petrol. 

Therefore, the horizontal axis of the plot is considered as equivalent to a reduction in the price of 

filling the tank. To face this issue, _  has been created. And the following table shows 

how. 

 

 

Table 3-8 _   assessment 

  Conversion factors   

 

 

Emissions 

[gCO2/km] 

[gCO2/l] 

or 

[gCO2/kg] 

(for CNG) 

Average 

Price in EU 

[€/l]  or 

[€/kg] (for 

CNG) 

Cost of 

100km 

run 

[€/100km] 

Fuel Price 

Coefficient 

Adjusted 

Fuel Price 

Coefficient 

in 

Europe _  

Gasoline 100 2330,0 1,16 4,98 1,00 1,00 

Diesel 100 2640,0 1,10 4,17 0,84 0,84 

LPG 100 1528,0 0,62 4,06 0,82 0,86 

CNG 100 2669,0 1,04 3,90 0,78 0,82 
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The table above shows different fuels and its prices when CO2 emissions are the same for all of 

them. Notice the variations in the cost of running 100km.  

The Fuel Price Coefficient column shows the relative price of the fuel relative to the price of the 

gasoline. The final value, which is given in the last column, is the former adjusted. The 

adjustment is based on the fact that it has been considered appropriate to multiply by 1,05 the 

Fuel Price Coefficient of those fuels that cannot be found in all the fuel stations and so they are 

less convenient. Of course they are CNG and LPG. Finally, the model automatically uses the 

coefficient that corresponds to the fuel of the package i. 

 

Note how in Europe, in average, any other fuel different from gasoline, shows price advantages at 

same level of CO2 emissions. The cheapest one is CNG followed by Diesel and finally LPG. 

 

Margin Cost coeff. EU_MCCijk 

It assesses the fact that the cost of the car increases more or less depending on the package 

applied and if it has to be exported or not. The _ �  which takes into account the 

expenses due to exportation procedures (shipping, documentation…) has been considered 0 in 

Europe and in the case USA its value is 400$. 

 _ = _ + + _
      Equation 3-37 

 

Compounded margin coeff. EU_CMCijk 

As already said this is the final margin coefficient for Europe  

 _ = _ + _ − _     Equation 3-38 

 

MAX Margin EU_MCMCjk  

It is the maximum value of the _  for any of the years.  

 _ = _ =  _     Equation 3-39 
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Package EU_MCM_Pjk 

It is the list of technologies of the  compliant package of maximum margin in Europe. Calculated 

using the functions index() and compare() where the former function gives the list of 

technologies corresponding to the index found by the function compare() which finds the index 

of the package corresponding to the maximum margin _  

 _ _ = _         Equation 3-40 

 

CO2 emissions Reduction (CAFE Based) EU_MCM_CO2Rjk 

It is the CO2emissions reduction of the best EU margin package only according to CAFE 

regulations.  Found using the same functions as the previous calculation. 

 _ _ = _ + _      Equation 3-41 

 

Incremental cost of technology package EU_MCMC_ICjk  

It is the cost of the technology package with highest EU margin. Found using the same functions 

as the previous calculation. 

 _ _ = _         Equation 3-42 

 

Cost effectiveness EU_MCMC_CEjk  

It is the ratio between cost and CO2 emissions reduction of most profitable compliant package. 

Found using the same functions as the previous calculation. 

 _ _ = _         Equation 3-43 
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3.7.19 USA Market most profitable package 

 
The introduction of this concept and the entire explanation has been shown in the chapter 3.7.18. 

Consequently, only the differences will be exposed here.   

 

Margin performance Coefficient USA_MPCijk 

The coefficient“ �  � ���   � ” has been considered the same in EU and US 

therefore rely on chapter 3.7.18 for further information. 

 

Margin FC coefficient USA_MFCCik _ = + _ ∙ _ ∙ _ + _   Equation 3-44 

Where:  �_  is the Price Sensitivity to FC coefficient in USA �_  is the Fuel Price Coefficient in USA _ + _  Has been defined before as the CO2 emissions reduction of the package i 

(CAFE based) 

 

From, the Annual Energy Outlook  (41),  it has been found a forecast that states that in US 

gasoline cars, from MY2010 to MY2025 will experience a improvement in FC of around 51% 

and an increase in price of a 10% while diesel cars will improve its FC in around 22% and the 

price will maintain roughly the same. Thanks to this data, �_  has been made as an 

estimation of the price increase related due FC improvements. Therefore It has been supposed 

that �_  times the FC reduction is the car price increase. In USA, differently from what 

happens in Europe, the price sensitivity to FC coefficient ( �_ ) for Diesel cars and petrol 

cars has a totally different value.  While for Diesel vehicles �_  is 0 which means that 

potential customers won’t pay more for a lower FC car, for petrol cars the slope is 0,19.  

Although the value of �_  for Diesel cars in USA (cero) may seem strange, it can be 

justified by the fact that Diesel market in USA is a niche market which behaves totally different 

than petrol market. For CNG and LPG vehicles the same value as for gasoline engines has been 

supposed.  
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Remember that the value of  _  is 0,35. The smaller value of the petrol coefficient in 

USA compared to EU stands most probably because of the much lower price of the petrol in 

USA which is around 3 times cheaper. 

For what concerns �_ , the Table 3-9 has been made to be able to compare fuel pricing in 

USA and Europe. The prices were taken from (42) as an average price in US in 2014.Other data 

from (6). 

Table 3-9 Fuel price conversion form US units to European units (42) (6). 

 
From $/gall and $/GGE to €/l and €/kg    

 
$/gall $/GGE $/kg €/l €/kg    

Gasoline 3,51 
  

0,75 
 

 1 USA gallon to l 3,7854 

Diesel 3,89 
  

0,83 
 

 1 $ to € 0,8079 

LPG 3,15 
  

0,67 
 

 1 GGE to kg of CNG 2,56 

CNG 
 

2,14 0,84 
 

0,68    

 

Furthermore, the �_  is given in the last column of the Table 3-9. 

 

Table 3-10 _  assessment 

  Conversion factors   

 

 

Emissions 

[gCO2/km] 

[gCO2/l] 

or 

[gCO2/kg] 

(for CNG) 

Average 

Price in EU 

[€/l]  or 

[€/kg] (for 

CNG) 

Cost of 

100km 

run 

[€/100km] 

Fuel Price 

Coefficien

t 

Adjusted 

Fuel Price 

Coefficient 

in 

USA _  

Gasoli

ne 
100 2400,8 0,75 3,12 1,00 1,00 

Diesel 100 2667,6 0,83 3,11 1,00 1,00 

LPG 100 1528,0 0,67 4,39 1,41 1,48 

CNG 100 2669,0 0,68 2,53 0,77 0,81 
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Note how at same level of CO2 emissions, gasoline and diesel are the same price and LPG is 

quite expensive while CNG is cheaper, in average.  

 

Margin Cost coefficient USA_MCCi _ = _ + + _
     Equation 3-45 

Notice that �_ �  is 400$ due to expenses for procedures as shipping and 

documentation for importing vehicles in USA. 

 

The outputs mentioned bellow show the same definition the EU case explained in the chapter 

3.7.18. 

Compounded margin coefficient USA_CMCijk  

MAX Margin USA_MCMCjk 

Package USA_MCM_Pjk 

CO2 emissions Reduction (CAFE Based) USA_MCM_CO2Rjk 

Incremental cost of technology package USA_MCMC_ICjk  

Cost effectiveness USA_MCMC_CEjk 

 

3.7.20 Best global margin package 

 

On the previous chapters the packages which offer bests margins for EU and USA have been 

calculated. Therefore, two different solutions can be found for each year. However, one of the 

targets of this Thesis was to find a global solution instead of regional solutions. The following 

coefficient faces this issue.  

 

Global Margin coefficient GM_GMCij 

Calculated as: _ = _ ∙ _ _ + _ ∙ _ _   Equation 3-46 

Where: 
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_ _ ℎ�   is the fraction of vehicles that are supposed to be sold in Europe over the total 

sold vehicles. It has been supposed a value of 80%. �_ _ ℎ�   is the fraction of vehicles that are supposed to be sold in USA over the total 

sold vehicles. 

 

Furthermore, The outputs mentioned bellow show the same definition the EU case explained in 

the chapter 3.10. 

Compounded margin coefficient USA_CMCijk  

MAX Global Margin GM_MGMik 

Package GM_MGM_Pjk   

CO2 emissions Reduction (CAFE Based) GM_MGM_CO2Rjk 

Incremental cost of technology package  GM_MGM_ICjk    

Cost effectiveness GM_MGM_CEjk   
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3.8 Model outputs and results 

3.8.1 Model outputs 

 

The model outputs  explained in detail in the chapters 3.7 are summarized in the following table 

and afterwards, the results are given.  

 

Table 3-11 Outputs summary 

M
odel technology N

am
e 

O
utput referring to 

Name 

units (If case).        [-] w
hen 

dim
ensionless 

Indexing Comments and definitions 

G
_P

A
C

K
ik 

G
lobal 

Technology 

package  

i=[1…Num_of_packages] 

k=[1…Num_of_RefMod] 

Every cell contains a list of the names of the 

technologies for the corresponding package and 

reference car model. 

C
_F

C
R

ik 

C
A

F
E

 

FC Reduction - 
i=[1…Num_of_packages] 

k=[1…Num_of_RefMod] 

Every cell contains the value of the percentage of FC 

reduction for the corresponding package and 

reference car model without taking into account 

synergies 

C
_F

C
S

ik 

FC variation 

due to synergies 
- 

i=[1…Num_of_packages] 

k=[1…Num_of_RefMod] 

Every cell contains the value of the percentage of FC 

variation due to synergies for the corresponding  

package and reference car model 

C
_M

P
G

ik 

Resultant MPG mpg 
i=[1…Num_of_packages] 

k=[1…Num_of_RefMod] 

Every cell contains the value of the FE  for the 

corresponding car reference model and package 

C
_C

O
2ik 

Resultant  CO2 

emissions 
g/mi 

i=[1…Num_of_packages] 

k=[1…Num_of_RefMod] 

Every cell contains the value of the CO2 emissions  

for the corresponding car reference model and 

package 



  
Page 174 

 

  

C
_C

O
2 R

ik 

CAFE CO2 

Reduction 
- 

i=[1…Num_of_packages] 

k=[1…Num_of_RefMod] 

Every cell contains the CO2 reduction according to 

CAFE regulations. Calculated from the 

C_RefEmissionsk defined in the inputs chapter and 

the C_CO2ik 

C
_M

P
G

T
jk  

FE target(limit) 

 

mpg 

 

j=[1…Num_of_Years] 

k=[1…Num_of_RefMod] 

Contains the FE limit according to CAFE 

regulations, the car footprint and the type of car (PC 

or Light duty truck) for the year 2018 to 2024 

C
_D

IF
ijk 

Difference to 

target 
g/mi 

i=[1…Num_of_packages] 

j=[1…Num_of_Years] 

k=[1…Num_of_RefMod] 

Every cell contains the value of the difference 

between the target FE and the real package FE for 

any package , reference model and year 2018 to 2024 

N
_C

O
2ik  

N
E

D
C

 

Resultant  CO2 

emissions 
g/km 

i=[1…Num_of_packages] 

k=[1…Num_of_RefMod] 

Every cell contains the value of the CO2 emissions  

for the corresponding reference car model and 

package 

A
M

ik 

Actual vehicle 

mass 
kg 

i=[1…Num_of_packages] 

k=[1…Num_of_RefMod] 

Every cell contains the actual reference mass of the 

car because mass reduction technologies may be 

applied in a given package of a given reference 

model. 

N
_C

O
2 L

ijk 

CO2 emissions 

limit 

 

g/km 

 

i=[1…Num_of_packages] 

j=[1…Num_of_Years] 

k=[1…Num_of_RefMod] 

Contains the CO2 emission limit according to NEDC 

regulations. Thus, according to the car actual 

reference mass for the years 2018 to 2024 and 

reference car model. 

N
_D

IF
ijk 

Difference to 

target 
g/km 

i=[1…Num_of_packages] 

j=[1…Num_of_Years] 

k=[1…Num_of_RefMod] 

Every cell contains the value of the difference 

between NCO2i and NCO2Lij For any of the 

considered years 2018 to 2024 and reference car 

models. 

G
C

_P
A

C
K

ijk 

G
lobal-C

om
pliant packages 

Packages 
 

i=[1…Num_of_packages] 

j=[1…Num_of_Years] 

k=[1…Num_of_RefMod] 

Every cell contains a list of the names of the 

technologies for the corresponding package. For any 

of the considered years 2018 to 2024 and reference 

car models. 

G
C

_IC
W

O
S

ijk 

Incremental 

cost of 

technology 

package wo 

synergyes 

$ 

i=[1…Num_of_packages] 

j=[1…Num_of_Years] 

k=[1…Num_of_RefMod] 

Every cell contains the incremental cost of the 

corresponding package without taking into account 

the synergies between them. This is done for every 

considered year 2018 to 2024 and reference car 

models. 
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G
C

_IC
S

ik 

Incremental 

cost of 

technology 

package due to 

synergies 

$ 
i=[1…Num_of_packages] 

k=[1…Num_of_RefMod] 

Every cell contains the variation of the cost  of the 

corresponding package due to the synergies between 

its technologies for any reference car model. 

G
C

_IC
ijk 

Incremental 

cost of 

technology 

package 

$ 

i=[1…Num_of_packages] 

j=[1…Num_of_Years] 

k=[1…Num_of_RefMod] 

Every cell contains the total incremental cost of the 

corresponding package. This is done for every 

considered year 2018 to 2024 and reference car 

models. 

G
C

_C
E

ijk 

Cost 

efectivenes 

(CAFE Based) 

$ 

i=[1…Num_of_packages] 

j=[1…Num_of_Years] 

k=[1…Num_of_RefMod] 

Every cell contains the value of the cost 

effectiveness of the corresponding package. This is 

done for every considered year 2018 to 2024 and 

reference car models. 

G
C

_M
C

E
jk 

M
ost cost effective package 

Minimum 

cost 

effectivenes 

$ 
j=[1…Num_of_Years] 

k=[1…Num_of_RefMod] 

Every cell contains the minimum value of the cost 

effectiveness and so, optimum of the cost 

effectiveness for any of the considered years and 

reference car models. 

G
C

_M
C

E
_P

jk 

Package 
 

j=[1…Num_of_Years] 

k=[1…Num_of_RefMod] 

Every cell contains a list of the names of the 

technologies that the most cost effective package has 

depending on the year 2018 to 2024 and reference 

car models. 

G
C

_M
C

E
_IC

j

k  

Incremental 

cost of 

technology 

package 

$ 
j=[1…Num_of_Years] 

k=[1…Num_of_RefMod] 

Every cell contains the incremental cost that the most 

cost effective package has depending on the year 

2018 to 2024 and reference car models. 

G
C

_M
C

E
_C

O
2 R

jk  

CO2 

Reduction 

(CAFE 

Based) 

- 
j=[1…Num_of_Years] 

k=[1…Num_of_RefMod] 

Every cell contains the value of the CO2 emissions 

reduction that the most cost effective package has 

depending on the year 2018 to 2024 and reference 

car models. 

G
C

_C
jk 

C
heapest package 

Minimum 

incremental 

cost of 

technology 

package 

$ 
j=[1…Num_of_Years] 

k=[1…Num_of_RefMod] 

Every cell contains the minimum value of the cost 

and so, the incremental cost of the cheapest package 

for any of the considered years 2018 to 2024 and 

reference car models. 
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G
C

_C
_P

jk 

Package 
 

j=[1…Num_of_Years] 

k=[1…Num_of_RefMod] 

Every cell contains a list of the names of the 

technologies that the cheapest package has 

depending on the year 2018 to 2024 and reference 

car models. 

G
C

_C
C

E
jk 

Cost 

effectivenes

s 

$ 
j=[1…Num_of_Years] 

k=[1…Num_of_RefMod] 

Every cell contains the cost effectiveness that the 

cheapest package has depending on the year 2018 to 

2024 and reference car models. 

G
C

_C
C

O
2 R

jk 

CO2 emi. 

Reduction 

(CAFE 

Based) 

- 
j=[1…Num_of_Years] 

k=[1…Num_of_RefMod] 

Every cell contains the value of the CO2 emissions 

reduction that the cheapest package has depending 

on the year 2018 to 2024 and reference car models. 

E
U

_M
P

C
ijk 

E
U

 M
arket 

M
ost profitable package 

Margin 

perf. Coef. 
- 

i=[1…Num_of_packages] 

j=[1…Num_of_Years] 

k=[1…Num_of_RefMod] 

This coefficient is proportional to the performance 

related to every package. For any of the considered 

years 2018 to 2024 and reference car models. 

E
U

_M
F

C
C

ik 

Margin FC 

coef. 
- 

i=[1…Num_of_packages] 

k=[1…Num_of_RefMod] 

This coefficient is proportional to the fuel economy 

and depends upon the fuel used. Calculated for every 

package and reference car models. 

E
U

_M
C

C
ikk 

Margin 

Cost coef. 
- 

i=[1…Num_of_packages] 

k=[1…Num_of_RefMod] 

This coefficient is proportional to the cost increment 

of the packages and has  a cost markup for cars 

exported to USA and reference car models. 

E
U

_C
M

C
ijk 

Compounde

d margin 

coef. 

- 

i=[1…Num_of_packages] 

j=[1…Num_of_Years] 

k=[1…Num_of_RefMod] 

This is the compounded coeficient which gives the 

idea of the monetary margin that the Automobile 

manufacturer may achieve depending on the chosen 

package. For any of the considered years 2018 to 

2024 and reference car models. 

E
U

_M
C

M
C

jk 

MAX 

Margin 
- 

j=[1…Num_of_Years] 

k=[1…Num_of_RefMod] 

Every cell contains the maximum value of the 

compounded margin coef. For any of the considered 

years 2018 to 2024 and reference car models. 
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E
U

_M
C

M
_P

jk 

Package 
 

j=[1…Num_of_Years] 

k=[1…Num_of_RefMod] 

Every cell contains a list of the names of the package 

which gives the maximum value of the compounded 

margin coef.  For any of the considered years 2018 

to 2024 and reference car models. 

E
U

_M
C

M
_C

O
2 R

jk 

CO2 emi. 

Reduction 

(CAFE 

Based) 

- 
j=[1…Num_of_Years] 

k=[1…Num_of_RefMod] 

Every cell contains a list of the value of the CO2 

emissions reduction of the package which gives the 

maximum value of the compounded margin coef.  

For any of the considered years 2018 to 2024 and 

reference car models. 

E
U

_M
C

M
C

_IC
jk  

Incremental 

cost of 

technology 

package 

$ 
j=[1…Num_of_Years] 

k=[1…Num_of_RefMod] 

Every cell contains a list of the incremental cost of 

the package which gives the maximum value of the 

compounded margin coef.  For any of the considered 

years 2018 to 2024 and reference car models. 

E
U

_M
C

M
C

_C
E

jk  

Cost 

effectivenes

s 

$ 
j=[1…Num_of_Years] 

k=[1…Num_of_RefMod] 

Every cell contains a list of the cost effectiveness of 

the package which gives the maximum value of the 

compounded margin coef.  For any of the considered 

years 2018 to 2024 and reference car models. 

U
S

A
_M

P
C

ijk 

U
S

A
 M

arket 

Margin 

perf. Coef. 
- 

i=[1…Num_of_packages] 

j=[1…Num_of_Years] 

k=[1…Num_of_RefMod] 

This coefficient is proportional to the performance 

related to every package.For any of the considered 

years 2018 to 2024 and reference car models. 

U
S

A
_M

F
C

C
ik 

Margin FC 

coef. 
- 

i=[1…Num_of_packages] 

k=[1…Num_of_RefMod] 

This coefficient is proportional to the fuel economy 

and depens upon the fuel used. Calculated for every 

package and reference car models. 
U

S
A

_M
C

C
ik 

Margin 

Cost coef. 
- 

i=[1…Num_of_packages] 

k=[1…Num_of_RefMod] 

This coefficient is proportional to the cost increment 

of the packages and has  a cost markup for cars 

exported to USA and reference car models. 

U
S

A
_C

M
C

ijk 

Compounde

d margin 

coef 

- 

i=[1…Num_of_packages] 

j=[1…Num_of_Years] 

k=[1…Num_of_RefMod] 

This is the compounded coefficient which gives the 

idea of the  monetary margin that the Automobile 

manufacturer may achieve depending on the 

package. For any of the considered years 2018 to 

2024 and reference car models. 
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U
S

A
_M

C
M

C
jk 

MAX 

Margin 
- 

j=[1…Num_of_Years] 

k=[1…Num_of_RefMod] 

Every cell contains the maximum value of the 

compounded margin coef. For any of the considered 

years 2018 to 2024 and reference car models. 

U
S

A
_M

C
M

_P
jk 

Package 
 

j=[1…Num_of_Years] 

k=[1…Num_of_RefMod] 

Every cell contains a list of the names of the package 

which gives the maximum value of the compounded 

margin coef.  For any of the considered years 2018 

to 2024 and reference car models. 

U
S

A
_M

C
M

_C
O

2 R
jk 

CO2 emi. 

Reduction 

(CAFE 

Based) 

- 
j=[1…Num_of_Years] 

k=[1…Num_of_RefMod] 

Every cell contains a list of the value of the CO2 

emissions reduction of the package which gives the 

maximum value of the compounded margin coef.  

For any of the considered years 2018 to 2024 and 

reference car models. 

U
S

A
_M

C
M

C
_IC

jk  

Incremental 

cost of 

technology 

package 

$ 
j=[1…Num_of_Years] 

k=[1…Num_of_RefMod] 

Every cell contains a list of the incremental cost of 

the package which gives the maximum value of the 

compounded margin coef.  For any of the considered 

years 2018 to 2024 and reference car models. 

U
S

A
_M

C
M

C
_C

E
jk  

Cost 

effectivenes

s 

$ 
j=[1…Num_of_Years] 

k=[1…Num_of_RefMod] 

Every cell contains a list of the cost effectiveness of 

the package which gives the maximum value of the 

compounded margin coef.  For any of the considered 

years 2018 to 2024 and reference car models. 

G
M

_M
G

C
ijk 

G
lobal M

arket 

B
est global m

argin package 

Margin 

Global coef. 
- 

i=[1…Num_of_packages] 

j=[1…Num_of_Years] 

k=[1…Num_of_RefMod] 

This is the compounded coefficient which gives the 

idea of the monetary margin that the Automobile 

manufacturer may achieve depending on the package 

given a % of sells in USA and EU. For any of the 

considered years 2018 to 2024 and reference car 

models. 

G
M

_M
G

M
ik 

MAX 

Global 

Margin 

- 
j=[1…Num_of_Years] 

k=[1…Num_of_RefMod] 

Every cell contains the maximum value of the 

compounded global margin coef. For any of the 

considered years 2018 to 2024 and reference car 

models. 
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G
M

_M
G

M
_P

jk 

Package 
 

j=[1…Num_of_Years] 

k=[1…Num_of_RefMod] 

Every cell contains a list of the names of the package 

which gives the maximum value of the compounded 

global margin coef.  For any of the considered years 

2018 to 2024 and reference car models. 

G
M

_M
G

M
_C

O
2 R

jk 

CO2 emi. 

Reduction 

(CAFE 

Based) 

- 
j=[1…Num_of_Years] 

k=[1…Num_of_RefMod] 

Every cell contains a list of the value of the CO2 

emissions reduction of the package which gives the 

maximum value of the compounded global margin 

coeff.  For any of the considered years 2018 to 2024 

and reference car models. 

G
M

_M
G

M
_IC

jk 

Incremental 

cost of 

technology 

package 

$ 
j=[1…Num_of_Years] 

k=[1…Num_of_RefMod] 

Every cell contains a list of the incremental cost of 

the package which gives the maximum value of the 

compounded global margin coef.  For any of the 

considered years 2018 to 2024 and reference car 

models. 

G
M

_M
G

M
_C

E
jk 

Cost 

effectivenes

s 

$ 
j=[1…Num_of_Years] 

k=[1…Num_of_RefMod] 

Every cell contains a list of the cost effectiveness of 

the package which gives the maximum value of the 

compounded global margin coef.  For any of the 

considered years 2018 to 2024 and reference car 

models. 

 

 

It is useful to note that there are two differentiated output data, signalized by the white and grey 

background colours in the table.  Grey colour gives the final results:  

 Globally compliant packages and its features 

 Most cost effective compliant package and its features 

 Cheapest compliant package and its features 

 Most profitable package for EU 

 Most profitable package for USA 

 Best  global margin package  

While the part of the table with white background is internal base calculations which data is used 

to find the results in grey background colour. 
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3.8.2 Results – Reference car Midsize 1.4 NA MT 

Table 3-12 Most cost effective compliant packages for Midsize 1.4 NA MT 

Most cost effective package - Midsize 1.4 N.A Manual trans. 

Y
ear 

Special conversions 

considered 

C
ost effectivenes 

[$/%
C

O
2 R

ed.C
A

F
E

] 

Package technologies 

Increm
ental cost [$] 

F
C

 R
ed. C

A
F

E
 bas. 

[%
] 

2018 

To CNG and 

LPG Vehicle 

with mild 

electrification 

41 LUB1,EFR1,LUB2_EFR2,LPG ENGINE,ROLL1,ROLL2 707 17,4% 

To diesel and 

MHEV ISG 
35 LUB1,EFR1,LUB2_EFR2,EPS,IACC1,IACC2,ROLL1,MR2-10% 502 14,5% 

2020 

To CNG and 

LPG Vehicle 

with mild 

electrification 

64 

LUB1,EFR1,LUB2_EFR2,SGDI,TRBDS1_SD_TB,TRBDS2_SD

_TB,LPG 

ENGINE,HETRANSM,EPS,IACC1,IACC2,MHEV,ROLL1,ROL

L2,AERO2,MR1CNG LPG-10% 

2498 39,3% 

To diesel and 

MHEV ISG 
77 

LUB1,EFR1,LUB2_EFR2,SGDI,TRBDS1_SD_TB,TRBDS2_SD

_TB,HETRANSM,EPS,IACC1,IACC2,MHEV,ISG_B,ISG_NB,R

OLL1,ROLL2,MR2-10% 

2714 35,1% 

2022 

To CNG and 

LPG Vehicle 

with mild 

electrification 

61 

LUB1,EFR1,LUB2_EFR2,SGDI,TRBDS1_SD_TB,TRBDS2_SD

_TB,LPG 

ENGINE,HETRANSM,EPS,IACC1,IACC2,MHEV,ROLL1,ROL

L2,AERO2 

2252 36,7% 

To diesel and 

MHEV ISG 
75 

LUB1,EFR1,LUB2_EFR2,SGDI,TRBDS1_SD_TB,TRBDS2_SD

_TB,HETRANSM,EPS,IACC1,IACC2,MHEV,ISG_B,ISG_NB,R

OLL1,ROLL2,MR2-10% 

2623 35,1% 
2024 

To CNG and 

LPG Vehicle 

with mild 

electrification 

61 

LUB1,EFR1,LUB2_EFR2,SGDI,TRBDS1_SD_TB,TRBDS2_SD

_TB,LPG 

ENGINE,HETRANSM,EPS,IACC1,IACC2,MHEV,ROLL1,ROL

L2,AERO2 

2252 36,7% 

To diesel and 

MHEV ISG 
73 

LUB1,EFR1,LUB2_EFR2,SGDI,TRBDS1_SD_TB,TRBDS2_SD

_TB,HETRANSM,EPS,IACC1,IACC2,MHEV,ISG_B,ISG_NB,R

OLL1,ROLL2,MR2-10% 

2548 35,1% 
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Table 3-13Cheapest compliant packages for Midsize 1.4 NA MT 

Cheapest package - Midsize 1.4 N.A Manual trans. 

Y
ear 

Special conversions 

considered 

Increm
ental cost [$] 

Package technologies 
C

O
2  R

ed. C
A

F
E

 bas. 

[%
] 

C
ost effectivenes 

[$/%
C

O
2 R

ed.C
A

F
E

] 

2018 

To CNG and LPG 

Vehicle with mild 

electrification 

703 
,EFR1,LUB2_EFR2,LPG 

ENGINE,ROLL1,ROLL2 
16,8% 42 

To diesel and MHEV 

ISG 
383 

LUB1,EFR1,LUB2_EFR2,EPS,IACC1,IACC2,RO

LL1 
10,8% 35 

2020 

To CNG and LPG 

Vehicle with mild 

electrification 

2315 

,EFR1,LUB2_EFR2,SGDI,TRBDS1_SD_TB,TRB

DS2_SD_TB,LPG 

ENGINE,HETRANSM,EPS,IACC1,IACC2,MHE

V,ROLL1,ROLL2,AERO2 

36,3% 64 

To diesel and MHEV 

ISG 
2595 

LUB1,EFR1,LUB2_EFR2,SGDI,TRBDS1_SD_T

B,TRBDS2_SD_TB,HETRANSM,EPS,IACC1,IA

CC2,MHEV,ISG_B,ISG_NB,ROLL1,ROLL2 

32,4% 80 

2022 

To CNG and LPG 

Vehicle with mild 

electrification 

2248 

,EFR1,LUB2_EFR2,SGDI,TRBDS1_SD_TB,TRB

DS2_SD_TB,LPG 

ENGINE,HETRANSM,EPS,IACC1,IACC2,MHE

V,ROLL1,ROLL2,AERO2 

36,3% 62 

To diesel and MHEV 

ISG 
2503 

LUB1,EFR1,LUB2_EFR2,SGDI,TRBDS1_SD_T

B,TRBDS2_SD_TB,HETRANSM,EPS,IACC1,IA

CC2,MHEV,ISG_B,ISG_NB,ROLL1,ROLL2 

32,4% 77 
2024 

To CNG and LPG 

Vehicle with mild 

electrification 

2197 

,EFR1,LUB2_EFR2,SGDI,TRBDS1_SD_TB,TRB

DS2_SD_TB,LPG 

ENGINE,HETRANSM,EPS,IACC1,IACC2,MHE

V,ROLL1,ROLL2,AERO2 

36,3% 61 

To diesel and MHEV 

ISG 
2428 

LUB1,EFR1,LUB2_EFR2,SGDI,TRBDS1_SD_T

B,TRBDS2_SD_TB,HETRANSM,EPS,IACC1,IA

CC2,MHEV,ISG_B,ISG_NB,ROLL1,ROLL2 

32,4% 75 
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Table 3-14 Best profit margin package  EU for Midsize 1.4 NA MT  

Most profitable package UE - 500L 1.4 N.A Manual trans 

Y
ear 

Special conversions 

considered 

M
A

X
 M

argin E
U

 

Best EU margin package  

C
O

2 R
ed. C

A
F

E
 bas. [%

] 

C
ost of technology 

package [$] 

C
ost effectivenes 

[$/%
C

O
2R

ed.C
A

F
E

] 

2018 

To CNG and 

LPG Vehicle 

with mild 

electrification 

104,1% 
LUB1,EFR1,LUB2_EFR2,LPG 

ENGINE,ROLL1,ROLL2,MR3CNG LPG-20% 
24,2% 1306 54 

To diesel and 

MHEV ISG 
107,7% 

LUB1,EFR1,LUB2_EFR2,EPS,IACC1,IACC2,ROLL1

,ROLL2,MR4-20% 
19,8% 934 47 

2020 

To CNG and 

LPG Vehicle 

with mild 

electrification 

100,6% 

LUB1,EFR1,LUB2_EFR2,SGDI,TRBDS1_SD_TB,TR

BDS2_SD_TB,LPG 

ENGINE,HETRANSM,EPS,IACC1,IACC2,MHEV,R

OLL1,ROLL2,AERO2,MR3CNG LPG-20% 

41,9% 2917 70 

To diesel and 

MHEV ISG 
99,8% 

LUB1,EFR1,LUB2_EFR2,SGDI,TRBDS1_SD_TB,TR

BDS2_SD_TB,HETRANSM,EPS,IACC1,IACC2,MH

EV,ISG_B,ISG_NB,ROLL1,ROLL2,MR4-20% 

37,8% 3073 81 

2022 

To CNG and 

LPG Vehicle 

with mild 

electrification 

101,0% 

LUB1,EFR1,LUB2_EFR2,SGDI,TRBDS1_SD_TB,TR

BDS2_SD_TB,LPG 

ENGINE,HETRANSM,EPS,IACC1,IACC2,MHEV,R

OLL1,ROLL2,AERO2,MR3CNG LPG-20% 

41,9% 2917 70 

To diesel and 

MHEV ISG 
100,4% 

LUB1,EFR1,LUB2_EFR2,SGDI,TRBDS1_SD_TB,TR

BDS2_SD_TB,HETRANSM,EPS,IACC1,IACC2,MH

EV,ISG_B,ISG_NB,ROLL1,ROLL2,MR4-20% 

37,8% 3073 81 
2024 

To CNG and 

LPG Vehicle 

with mild 

electrification 

101,3% 

LUB1,EFR1,LUB2_EFR2,SGDI,TRBDS1_SD_TB,TR

BDS2_SD_TB,LPG 

ENGINE,HETRANSM,EPS,IACC1,IACC2,MHEV,R

OLL1,ROLL2,AERO2,MR3CNG LPG-20% 

41,9% 2917 70 

To diesel and 

MHEV ISG 
100,9% 

LUB1,EFR1,LUB2_EFR2,SGDI,TRBDS1_SD_TB,TR

BDS2_SD_TB,HETRANSM,EPS,IACC1,IACC2,MH

EV,ISG_B,ISG_NB,ROLL1,ROLL2,MR4-20% 

37,8% 3073 81 
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Table 3-15 Best profit margin packages USA for Midsize 1.4 NA MT  

Most profitable package USA - Midsize 1.4 N.A Manual trans 

Y
ear 

Special conversions 

considered 

M
A

X
  M

argin U
SA

 

Best USA margin package 

C
O

2  R
ed. C

A
F

E
 bas. [%

] 

C
ost of technology 

package [$] 

C
ost effectivenes 

[$/%
C

O
2 R

ed.C
A

F
E

] 

2018 

To CNG and 

LPG Vehicle 

with mild 

electrification 

97,4% 
LUB1,EFR1,LUB2_EFR2,LPG 

ENGINE,ROLL1,ROLL2,MR3CNG LPG-20% 
24,2% 1306 54 

To diesel and 

MHEV ISG 
96,8% LUB1,EFR1,LUB2_EFR2,EPS,IACC1,IACC2,ROLL1 10,8% 383 35 

2020 

To CNG and 

LPG Vehicle 

with mild 

electrification 

89,0% 
,EFR1,SGDI,TRBDS1_SD_TB,TRBDS2_SD_TB,CNG 

ENGINE,ROLL1,ROLL2,AERO2,MR3CNG LPG-20% 
41,6% 3052 73 

To diesel and 

MHEV ISG 
87,3% 

LUB1,EFR1,LUB2_EFR2,SGDI,TRBDS1_SD_TB,TRBDS2_S

D_TB,HETRANSM,EPS,IACC1,IACC2,MHEV,ISG_B,ISG_N

B,ROLL1,ROLL2 

32,4% 2595 80 

2022 

To CNG and 

LPG Vehicle 

with mild 

electrification 

89,4% 

LUB1,EFR1,LUB2_EFR2,SGDI,TRBDS1_SD_TB,TRBDS2_S

D_TB,LPG 

ENGINE,HETRANSM,EPS,IACC1,IACC2,MHEV,ROLL1,RO

LL2,AERO2,MR3CNG LPG-20% 

41,9% 2917 70 

To diesel and 

MHEV ISG 
87,3% 

LUB1,EFR1,LUB2_EFR2,SGDI,TRBDS1_SD_TB,TRBDS2_S

D_TB,HETRANSM,EPS,IACC1,IACC2,MHEV,ISG_B,ISG_N

B,ROLL1,ROLL2 

32,4% 2595 80 
2024 

To CNG and 

LPG Vehicle 

with mild 

electrification 

91,8% 

LUB1,EFR1,LUB2_EFR2,SGDI,TRBDS1_SD_TB,TRBDS2_S

D_TB,LPG 

ENGINE,HETRANSM,EPS,IACC1,IACC2,MHEV,ROLL1,RO

LL2,AERO2,MR3CNG LPG-20% 

41,9% 2917 70 

To diesel and 

MHEV ISG 
87,3% 

LUB1,EFR1,LUB2_EFR2,SGDI,TRBDS1_SD_TB,TRBDS2_S

D_TB,HETRANSM,EPS,IACC1,IACC2,MHEV,ISG_B,ISG_N

B,ROLL1,ROLL2 

32,4% 2595 80 
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Table 3-16 Best global margin packages for Midsize 1.4 NA MT  

Best global margin - 500L 1.4 N.A Manual trans 

Y
ear 

Special conversions 

considered 

M
A

X
 G

lobal 

M
argin  

Best global margin package  

C
O

2 R
ed. C

A
F

E
 

bas. [%
] 

C
ost of technology 

package [$] 

C
ost effectivenes 

[$/%
F

C
R

ed.C
A

F
E

] 

2018 

To CNG and 

LPG Vehicle 

with mild 

electrification 

102,8% 
LUB1,EFR1,LUB2_EFR2,LPG 

ENGINE,ROLL1,ROLL2,MR3CNG LPG-20% 
24,2% 1306 54 

To diesel and 

MHEV ISG 
105,1% 

LUB1,EFR1,LUB2_EFR2,EPS,IACC1,IACC2,ROLL1

,ROLL2,MR4-20% 
19,8% 934 47 

2020 

To CNG and 

LPG Vehicle 

with mild 

electrification 

98,2% 

LUB1,EFR1,LUB2_EFR2,SGDI,TRBDS1_SD_TB,TR

BDS2_SD_TB,LPG 

ENGINE,HETRANSM,EPS,IACC1,IACC2,MHEV,R

OLL1,ROLL2,AERO2,MR3CNG LPG-20% 

41,9% 2917 70 

To diesel and 

MHEV ISG 
96,6% 

LUB1,EFR1,LUB2_EFR2,SGDI,TRBDS1_SD_TB,TR

BDS2_SD_TB,HETRANSM,EPS,IACC1,IACC2,MH

EV,ISG_B,ISG_NB,ROLL1,ROLL2,MR4-20% 

37,8% 3073 81 

2022 

To CNG and 

LPG Vehicle 

with mild 

electrification 

98,7% 

LUB1,EFR1,LUB2_EFR2,SGDI,TRBDS1_SD_TB,TR

BDS2_SD_TB,LPG 

ENGINE,HETRANSM,EPS,IACC1,IACC2,MHEV,R

OLL1,ROLL2,AERO2,MR3CNG LPG-20% 

41,9% 2917 70 

To diesel and 

MHEV ISG 
104,2% 

LUB1,EFR1,LUB2_EFR2,SGDI,TRBDS1_SD_TB,TR

BDS2_SD_TB,HETRANSM,EPS,IACC1,IACC2,MH

EV,ISG_B,ISG_NB,ROLL1,ROLL2,MR4-20% 

37,8% 3073 81 
2024 

To CNG and 

LPG Vehicle 

with mild 

electrification 

99,4% 

LUB1,EFR1,LUB2_EFR2,SGDI,TRBDS1_SD_TB,TR

BDS2_SD_TB,LPG 

ENGINE,HETRANSM,EPS,IACC1,IACC2,MHEV,R

OLL1,ROLL2,AERO2,MR3CNG LPG-20% 

41,9% 2917 70 

To diesel and 

MHEV ISG 
97,7% 

LUB1,EFR1,LUB2_EFR2,SGDI,TRBDS1_SD_TB,TR

BDS2_SD_TB,HETRANSM,EPS,IACC1,IACC2,MH

EV,ISG_B,ISG_NB,ROLL1,ROLL2,MR4-20% 

37,8% 3073 81 
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3.8.3 Results – Reference car Midsize 1.3T AT 

Table 3-17 Most cost effective compliant packages for Midsize 1.3T AT 

Most cost effective package - Midsize 1.3T  Automatic Transmission 

Y
ear 

Special conversions 

considered 

C
ost effectivenes 

[$/%
C

O
2 R

ed.C
A

F
E

] 

Package technologies 

Increm
ental cost [$] 

C
O

2  R
ed. C

A
F

E
 bas. [%

] 

2018 

To CNG and 

LPG Vehicle 

with mild 

electrification 

43 LUB1,LPG ENGINE,ROLL1,ROLL2 574 13,4% 

To diesel and 

HEV 
4 ,ROLL1 7 1,9% 

2020 

To CNG and 

LPG Vehicle 

with mild 

electrification 

48 
LUB1,LPG 

ENGINE,8SPD,HETRANS,SHFTOPT,ROLL1,ROLL2 
1022 21,3% 

To diesel and 

HEV 
59 

LUB1,CEGR2_SD_TB,8SPD,HETRANS,SHFTOPT,EPS,IAC

C1,IACC2,ROLL1,ROLL2,MR2-10% 
1387 23,4% 

2022 

To CNG and 

LPG Vehicle 

with mild 

electrification 

47 
LUB1,LPG 

ENGINE,8SPD,HETRANS,SHFTOPT,ROLL1,ROLL2 
992 21,3% 

To diesel and 

HEV 
57 

LUB1,CEGR2_SD_TB,8SPD,HETRANS,SHFTOPT,EPS,IAC

C1,IACC2,ROLL1,ROLL2,MR2-10% 
1335 23,4% 

2024 

To CNG and 

LPG Vehicle 

with mild 

electrification 

46 
LUB1,LPG 

ENGINE,8SPD,HETRANS,SHFTOPT,ROLL1,ROLL2 
976 21,3% 

To diesel and 

HEV 
55 

LUB1,CEGR2_SD_TB,8SPD,HETRANS,SHFTOPT,EPS,IAC

C1,IACC2,ROLL1,ROLL2,MR2-10% 
1299 23,4% 
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Table 3-18 Cheapest compliant packages for Midsize 1.3T AT 

Cheapest package - Midsize 1.3T  Automatic Transmission 

Y
ear 

Special conversions considered 

Increm
ental cost [$] 

Package technologies 

C
O

2  R
ed. C

A
F

E
 bas. [%

] 

C
ost effectivenes [$/%

C
O

2 R
ed.C

A
F

E
] 

2018 

To CNG and LPG 

Vehicle with mild 

electrification 

490 ,LPG ENGINE 10,0% 49 

To diesel and 

HEV 
7 ,ROLL1 1,9% 4 

2020 

To CNG and LPG 

Vehicle with mild 

electrification 

944 LUB1,LPG ENGINE,8SPD,ROLL1,ROLL2,AERO2 18,8% 50 

To diesel and 

HEV 
1267 

LUB1,CEGR2_SD_TB,8SPD,HETRANS,SHFTOPT,EPS,IACC

1,IACC2,ROLL1,ROLL2 
20,2% 63 

2022 

To CNG and LPG 

Vehicle with mild 

electrification 

922 LUB1,LPG ENGINE,8SPD,ROLL1,ROLL2,AERO2 18,8% 49 

To diesel and 

HEV 
1216 

LUB1,CEGR2_SD_TB,8SPD,HETRANS,SHFTOPT,EPS,IACC

1,IACC2,ROLL1,ROLL2 
20,2% 60 

2024 

To CNG and LPG 

Vehicle with mild 

electrification 

908 LUB1,LPG ENGINE,8SPD,ROLL1,ROLL2,AERO2 18,8% 48 

To diesel and 

HEV 
1179 

LUB1,CEGR2_SD_TB,8SPD,HETRANS,SHFTOPT,EPS,IACC

1,IACC2,ROLL1,ROLL2 
20,2% 58 
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Table 3-19 Best profit margin package  EU for Midsize 1.3T AT 

Most profitable package UE - Midsize 1.3T  Automatic Transmission 

Y
ear 

Special conversions 

considered 

M
A

X
 M

argin E
U

 

Best EU margin package 

C
O

2  R
ed. C

A
F

E
 bas. 

[%
] 

C
ost of technology 

package [$] 

C
ost effectivenes 

[$/%
C

O
2 R

ed.C
A

F
E

] 

2018 

To CNG and 

LPG Vehicle 

with mild 

electrification 

116,45% 
LUB1,LPG ENGINE,ROLL1,ROLL2,MR3CNG 

LPG-20% 
20,5% 1172 57 

To diesel and 

HEV 
107,60% 

LUB1,8SPD,HETRANS,SHFTOPT,ROLL1,ROLL

2,MR4-20% 
22,0% 1063 48 

2020 

To CNG and 

LPG Vehicle 

with mild 

electrification 

103,37% 

LUB1,LPG 

ENGINE,8SPD,HETRANS,SHFTOPT,ROLL1,RO

LL2,MR3CNG LPG-20% 

27,6% 1672 61 

To diesel and 

HEV 
104,71% 

LUB1,CEGR2_SD_TB,8SPD,HETRANS,SHFTOP

T,EPS,IACC1,IACC2,ROLL1,ROLL2,MR4-20% 
26,7% 1746 65 

2022 

To CNG and 

LPG Vehicle 

with mild 

electrification 

103,56% 

LUB1,LPG 

ENGINE,8SPD,HETRANS,SHFTOPT,ROLL1,RO

LL2,MR3CNG LPG-20% 

27,6% 1672 61 

To diesel and 

HEV 
105,06% 

LUB1,CEGR2_SD_TB,8SPD,HETRANS,SHFTOP

T,EPS,IACC1,IACC2,ROLL1,ROLL2,MR4-20% 
26,7% 1746 65 

2024 
To CNG and 

LPG Vehicle 

with mild 

electrification 

103,67% 

LUB1,LPG 

ENGINE,8SPD,HETRANS,SHFTOPT,ROLL1,RO

LL2,MR3CNG LPG-20% 

27,6% 1672 61 

To diesel and 

HEV 
105,30% 

LUB1,CEGR2_SD_TB,8SPD,HETRANS,SHFTOP

T,EPS,IACC1,IACC2,ROLL1,ROLL2,MR4-20% 
26,7% 1746 65 
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Table 3-20 Best profit margin packages USA for Midsize 1.3T AT 

Most profitable package USA - Midsize 1.3T  Automatic Transmission 

Y
ear 

Special conversions 

considered 

M
A

X
 U

SA
 M

argin 

Best USA margin package 

C
O

2  R
ed. C

A
F

E
 bas. 

[%
] 

C
ost of technology 

package [$] 

C
ost effectivenes 

[$/%
C

O
2 R

ed.C
A

F
E

] 

2018 

To CNG and LPG 

Vehicle with mild 

electrification 

98,1% LUB1,LPG ENGINE,ROLL1,MR3CNG LPG-20% 
18,82

% 
1099 58 

To diesel and 

HEV 
97,8% LUB1,ROLL1 

2,59

% 
11 4 

2020 

To CNG and LPG 

Vehicle with mild 

electrification 

96,0% 

LUB1,LPG 

ENGINE,8SPD,ROLL1,ROLL2,AERO2,MR3CNG 

LPG-20% 

25,31

% 
1588 63 

To diesel and 

HEV 
97,8% 

LUB1,CEGR2_SD_TB,8SPD,HETRANS,SHFTOPT,

EPS,IACC1,IACC2,ROLL1,ROLL2,MR4-20% 

26,72

% 
1746 65 

2022 

To CNG and LPG 

Vehicle with mild 

electrification 

96,2% 

LUB1,LPG 

ENGINE,8SPD,ROLL1,ROLL2,AERO2,MR3CNG 

LPG-20% 

25,31

% 
1588 63 

To diesel and 

HEV 
93,1% 

LUB1,CEGR2_SD_TB,8SPD,HETRANS,SHFTOPT,

EPS,IACC1,IACC2,ROLL1,ROLL2 

20,17

% 
1267 63 

2024 

To CNG and LPG 

Vehicle with mild 

electrification 

96,3% 

LUB1,LPG 

ENGINE,8SPD,ROLL1,ROLL2,AERO2,MR3CNG 

LPG-20% 

25,31

% 
1588 63 

To diesel and 

HEV 
93,3% 

LUB1,CEGR2_SD_TB,8SPD,HETRANS,SHFTOPT,

EPS,IACC1,IACC2,ROLL1,ROLL2 

20,17

% 
1267 63 
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Table 3-21 Best global margin packages for Midsize 1.3T AT 

Best global margin - Midsize 1.3T  Automatic Transmission 

Y
ear 

Special conversions 

considered 

M
A

X
 G

lobal M
argin

 

Best global margin package 

C
O

2  R
ed. C

A
F

E
 bas. [%

] 

C
ost of technology package 

[$] 

C
ost effectivenes 

[$/%
F

C
R

ed.C
A

F
E

] 

2018 

To CNG and LPG 

Vehicle with mild 

electrification 

112,7% 

LUB1,LPG 

ENGINE,ROLL1,ROLL2,MR3CNG LPG-

20% 

20,46% 1172 57 

To diesel and HEV 105,3% LUB1,ROLL1,ROLL2,MR4-20% 12,40% 563 45 

2020 

To CNG and LPG 

Vehicle with mild 

electrification 

101,8% 

LUB1,LPG 

ENGINE,8SPD,HETRANS,SHFTOPT,ROLL

1,ROLL2,MR3CNG LPG-20% 

27,56% 1672 61 

To diesel and HEV 103,3% 

LUB1,CEGR2_SD_TB,8SPD,HETRANS,SH

FTOPT,EPS,IACC1,IACC2,ROLL1,ROLL2,

MR4-20% 

26,72% 1746 65 

2022 

To CNG and LPG 

Vehicle with mild 

electrification 

102,0% 

LUB1,LPG 

ENGINE,8SPD,HETRANS,SHFTOPT,ROLL

1,ROLL2,MR3CNG LPG-20% 

27,56% 1672 61 

To diesel and HEV 102,3% 

LUB1,CEGR2_SD_TB,8SPD,HETRANS,SH

FTOPT,EPS,IACC1,IACC2,ROLL1,ROLL2,

MR4-20% 

26,72% 1746 65 

2024 

To CNG and LPG 

Vehicle with mild 

electrification 

102,2% 

LUB1,LPG 

ENGINE,8SPD,HETRANS,SHFTOPT,ROLL

1,ROLL2,MR3CNG LPG-20% 

27,56% 1672 61 

To diesel and HEV 102,5% 

LUB1,CEGR2_SD_TB,8SPD,HETRANS,SH

FTOPT,EPS,IACC1,IACC2,ROLL1,ROLL2,

MR4-20% 

26,72% 1746 65 
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4. Model calculation for a fleet of vehicles 

4.1 Introduction 

This model is complementary to the first model (chapter 3). While the first model was focused on 

finding the bests packages of low FC technologies according to several criteria, the second model 

gives as an outcome how  should be implemented an automobile manufacturer fleet to get the 

higher margin in a particular year (2020). This is, by choosing the technology packages that best 

fits the final company target: highest total profit margin. 

 

Since for the purpose of this work (academic and public purpose) it is useless to consider the 

whole real fleet, it will be considered that the “whole fleet” is just four models and the input data 

will be taken from the outputs of the previous model.  

 

The previous model has generated thousands of technology packages and has defined package’s 

features, such as difference CO2 emissions to the limit or the profit margin coefficient.  The idea 

is to pick up some of the most convenient packages (compliant or non-compliant packages) and 

suppose a number of sales of each model. Convenient packages are those which feature high cost 

effectiveness and high profit margin coefficients. 

 

The CAFE and NEDC regulations apply for the whole fleet and therefore the packages can be 

compliant or not with any of the two regulations NEDC and CAFE. Depending on the fleet 

average MPG or CO2 emissions value, automobile manufacturer may be fined by any of the 

governments, which may be as well an option if the value of the fine is low enough compared to 

the increase in cost to comply with the stringent regulations. 

 

Once more, the main purpose of this model is to figure out which is the best choice of the 20 

possible packages in order to commercialize just 4 packages and obtain the highest margin. 

Therefore, 625 possible combinations are assessed. In order to face this problem, basically a four 

loop algorithm has been built in Visual Basic.  
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4.2 Hypothesis 

 

The first algorithm “the package model” has given outputs regarding only to the reference model 

but in this chapter the algorithm works on the whole fleet.  

However, some of the data from the first algorithm has been gathered to use as input for the 

second algorithm. To this concern, it is useful to point out the following concept regarding the 

cost variation of the technologies due to production volume variation: The cost of technologies 

has been considered constant no matter what is the production volume. That is why the same car 

body (the reference “midsize” model) may use different mass reduction levels or different 

aerodynamic improvements to each of the four models instead of sharing a maximum number of 

components.  

 

To the concern of this calculation, the four models are representing a whole fleet and therefore, 

even though they are apparently the same body, they should be treated as different bodies 

assembled in different production lines.  A direct consequence of this as just said is that the four 

car models may have distinctive mass reduction levels or aerodynamic improvements, which 

makes no sense in the same car model/body because it would increase the costs too much.   

Nevertheless, thanks to that, the outputs from the first mathematical model can be collected for 

use in the second algorithm.  
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4.3 Model inputs 

 

Considered as model input data and parameters susceptible to change (the user may be interesting in playing with them). The main inputs 

are the sales of the model in US and EU; the reference profit margin of the model and the features of the considered packages coming 

from the outputs of the first mathematic model (i.e. profit margin coefficient, MPG gap to the limit and CO2 emissions gap to the limit) 

  

The tables below summarizes what just defined and gives more detail about the four models that have to be commercialized in the year 

2020.  

Table 4-1 Fleet definition MY2020 

Name Body 
Reference 

Engine 
Hybrid 

Energy 

source 

# possible 

packages 

Reference 

power 

Sales 

EU 

Sales 

USA 

Reference 

profit 

margin 

[$] 

Diesel 
Midsi

ze 
G 1.4NA NO Diesel 5 95 50000 5000 3000 

Petrol1 
Midsi

ze 
G 1.4NA NO Petrol 5 95 50000 30000 2000 

Petrol2 
Midsi

ze 
1.3T  AT NO Petrol 5 120 50000 30000 2500 

PHEV 
Midsi

ze 
1.3T  AT 

YES Plug-

in 

Petrol + 

Electricity 
5 120 2000 1000 3000 
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Table 4-2 Diesel considered packages and their features 

Car 

Reff. 

Model 

Package features for j=2 (2020) Package # 

Name Model name 1 2 3 4 5 

Diesel 

k=1 

Margin 

Coefficient USA [-

] 

�_  0,81 0,81 0,70 0,76 0,74 

Margin 

Coefficient EU [-] 
_  0,95 0,95 0,89 0,89 0,93 

FE gap to the limit 

CAFE [mpg] 
_ �  -11,79 -13,11 -24,04 -27,35 -33,41 

CO2 emissions gap 

to the limit NEDC 

[gCO2/km] 

_ �  20,99 18,20 -1,02 -5,73 -9,03 

Package 

technologies 
_ � �  

LUB1,SGDI,TRBD

S1_SD_TB,CEGR2

_SD_TB,ADSL_S

D,EPS,IACC1,LDB

,MR2-10% 

,EFR1,SGDI

,TRBDS1_S

D_TB,CEG

R2_SD_TB,

ADSL_SD,E

PS,IACC1,L

DB,MR2-

10% 

LUB1,SGDI,TRB

DS1_SD_TB,CE

GR2_SD_TB,AD

SL_SD,HETRAN

SM,EPS,IACC1,I

ACC2,MHEV,IS

G_B,ISG_NB,AE

RO2,MR2-10% 

LUB1,EFR1,LUB2_

EFR2,SGDI,TRBDS

1_SD_TB,CEGR2_S

D_TB,ADSL_SD,HE

TRANSM,EPS,IACC

1,IACC2,MHEV,ISG

_B,ISG_NB,AERO2,

MR2-10% 

LUB1,EFR1,LUB2_EFR2,

SGDI,TRBDS1_SD_TB,C

EGR2_SD_TB,ADSL_SD,

HETRANSM,EPS,IACC1,

IACC2,MHEV,ISG_B,IS

G_NB,ROLL1,ROLL2,LD

B,MR4-20% 
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Table 4-3 Petrol1 (95hp) considered packages and their features 

Car 

Reff. 

Model 

Package features for j=2 (2020) Package # 

Name Model name 1 2 3 4 5 

Petrol 

1 k=2 

Margin Coefficient 

USA [-] 
�_  0,98 0,98 0,97 0,94 0,84 

Margin Coefficient 

EU [-] 
_  1,01 1,05 1,05 1,04 0,99 

FE gap to the limit 

CAFE [mpg] 
_ �  -1,70 -3,81 -5,26 -13,46 -26,74 

CO2 emissions gap 

to the limit NEDC 

[gCO2/km] 

_ �  39,56 37,65 33,88 15,88 -0,54 

Package 

technologies 
_ � �  ,EFR1,ROLL1,ROLL2 

,EFR1,ROL

L1,ROLL2,

MR2-10% 

LUB1,EFR1,L

UB2_EFR2,R

OLL1,ROLL2

,LDB,MR2-

10% 

LUB1,EFR1,LUB2

_EFR2,SGDI,TRB

DS1_SD_TB,TRB

DS2_SD_TB,HET

RANSM,ROLL1,M

R2-10% 

,EFR1,LUB2_EFR2,SG

DI,TRBDS1_SD_TB,TR

BDS2_SD_TB,HETRA

NSM,EPS,IACC1,IACC

2,MHEV,ISG_B,ISG_N

B,ROLL1,ROLL2,LDB,

MR4-20% 
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Table 4-4 Petrol2 (120hp) considered packages and their features 

Car 

Reff. 

Model 

Package features for j=2 (2020) Package # 

Name Model name 1 2 3 4 5 

Petrol 

2 k=3 

Margin Coefficient 

USA [-] 
�_  0,99 0,98 0,95 0,95 0,92 

Margin Coefficient 

EU [-] 
_  1,05 1,05 1,01 1,01 0,98 

FE gap to the limit 

CAFE [mpg] 
_ �  -12,86 -15,09 -11,89 -15,78 -14,96 

CO2 emissions gap 

to the limit NEDC 

[gCO2/km] 

_ �  11,06 7,31 8,79 -1,80 -4,67 

Package 

technologies 
_ � �  

LUB1,LUB2_EFR2,8SPD,

HETRANS,SHFTOPT,EP

S,ROLL1,ROLL2,MR2-

10% 

LUB1,LUB2_EFR2

,8SPD,HETRANS,

SHFTOPT,EPS,IA

CC1,IACC2,ROLL

1,ROLL2,MR2-

10% 

LUB1,8SPD,HE

TRANS,SHFTO

PT,EPS,IACC1,

ROLL1,ROLL2

,AERO2 

,LUB2_EFR2,

CEGR2_SD_

TB,8SPD,HE

TRANS,SHFT

OPT,EPS,IAC

C1,IACC2,RO

LL1,AERO2,

MR2-10% 

LUB1,LUB2_E

FR2,CEGR2_S

D_TB,8SPD,HE

TRANS,SHFTO

PT,EPS,IACC1,

IACC2,ROLL1,

ROLL2,AERO2 
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Table 4-5 PHEV considered packages and their features 

Car Reff. 

Model 

Package features for j=2 (2020) Package # 

Name Model name 1 2 3 4 5 

PHEV 

k=4 

 

Margin Coefficient 

USA [-] 
�_  0,354215243 0,359038939 0,361463436 0,344957836 0,373478035 

Margin Coefficient EU 

[-] 
_  0,354215243 0,359038939 0,361463436 0,344957836 0,373478035 

FE gap to the limit 

CAFE [mpg] 
_ �  -65,62013189 -69,77253294 -75,30755578 -82,65004295 -94,68189081 

CO2 emissions gap to 

the limit NEDC 

[gCO2/km] 

_ �  -43,7552914 -45,46385165 -47,56191208 -50,07008565 -49,62476517 

Package technologies _ � �  

LUB1,LUB2_EFR

2,CEGR2_SD_TB,

8SPD,HETRANS,

SHFTOPT,EPS,IA

CC1,IACC2,MHE

V,ISG_B,ISG_NB,

SHEV1_B,SHEV1

_NB,SHEV2_B,SH

EV2_NB,PHEV2_

B,PHEV2_NB 

LUB1,LUB2_EFR2,CE

GR2_SD_TB,8SPD,HE

TRANS,SHFTOPT,EPS

,IACC1,IACC2,MHEV,

ISG_B,ISG_NB,SHEV

1_B,SHEV1_NB,SHEV

2_B,SHEV2_NB,PHEV

2_B,PHEV2_NB,ROLL

1 

LUB1,LUB2_EFR

2,CEGR2_SD_TB,

8SPD,HETRANS,

SHFTOPT,EPS,IA

CC1,IACC2,MHE

V,ISG_B,ISG_NB

,SHEV1_B,SHEV

1_NB,SHEV2_B,S

HEV2_NB,PHEV

2_B,PHEV2_NB,

ROLL1,ROLL2 

LUB1,LUB2_EFR2,C

EGR2_SD_TB,8SPD,

HETRANS,SHFTOP

T,EPS,IACC1,IACC2,

MHEV,ISG_B,ISG_N

B,SHEV1_B,SHEV1_

NB,SHEV1_2,SHEV2

_B,SHEV2_NB,PHE

V2_B,PHEV2_NB,L

DB 

LUB1,LUB2_EFR2,

CEGR2_SD_TB,8SP

D,HETRANS,SHFT

OPT,EPS,IACC1,IA

CC2,MHEV,ISG_B,I

SG_NB,SHEV1_B,S

HEV1_NB,SHEV1_2

,SHEV2_B,SHEV2_

NB,PHEV2_B,PHEV

2_NB,ROLL1,LDB,

MR1E-10% 
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4.4 Model algorithm 

 

Here a detailed explanation of the created code and its parameters is given. The whole Visual Basic  

code can be found in the annexes. 

For the resolution of this problem, there are two basic calculations. The fleet CO2 emissions gap to the 

limit and the total profit margin.  

 

4.4.1 Fleet CO2 emissions gap to the limit 

 

According to CAFE and NEDC regulations, the fulfilment of the legislations depends upon the 

harmonic average MPG/CO2 of the fleet. Thus, the fleet gap to the limit can be calculated as: 

 _ _ _ [ ] = _ − _ =∑ _ ∙ _= ∑ _=         Equation 4-1 

 _ _ _ [ ] = _ − _ =∑ _ ∙ ∙ _= ∑ _=         Equation 4-2 

 

Where: � � � is the incentive multiplier according to NEDC regulations created in order to incentive 

companies to increase the production of clean vehicles. In calculating the average specific emissions of 

CO2 , each new passenger car with specific emissions of CO2 of less than 50 g CO2 /km shall be 

counted as  � � � =2  for passenger cars in 2020. 
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4.4.2 The total profit margin 

 

The profit margin depends upon the input data showed in the chapter 6.4.1 and some other parameters 

as the fines that governments may impose to the Automobile manufacturers if they are not compliant 

with the CO2 average corporate limit. 

According to the chapter 3, fines are stablished in MY 2020 as: 

EU: 95€ for each gCO2/km multiplied by the total volume of the cars produced on the year. This is 

118,14$ for each gCO2/km (1$=0,804€). 
 _ [ $ ] = ,          Equation 4-3 

USA: $5,5 for each tenth of a mpg that a manufacturer’s average fuel economy falls short of the 

standard for a given model year multiplied by the total volume of vehicles.  

 _ [ $, ] = ,          Equation 4-4 

 

So the Profit margin is defined as: 

 �  � � = � �  � + � �  = ∑ _ ∙ _ ∙ _= + _ ∙∑ _= + ∑ _ ∙ _ ∙ _ + _ ∙=_            

            Equation 4-5 

 

Note that �  index indicates that only the volume of vehicles over the CO2 emissions limit are 

considered. 

 

Two criteria have been used to maximize the function above: 

First, as if the automobile manufacturer is not willing to pay any fine. This may not be the best choice 

in terms of profits as defined above but anyway some companies may be interested in this option. It is 
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true that in terms of marketing (Company image) It may be better to avoid being fined than the 

increment in margin. 

Second, as if the automobile manufacturer pay fines. The company may be willing to pay fines if this is 

the way to obtain the maximum profit.  

 

And therefore the targets are: ���  � � , =  ��  ,   Equation 4-6 
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4.5 Model outputs and results 

 

The table which gives the best package number/# (see Table 4-2, Table 4-3 ,Table 4-4 and Table 4-5) 

for any of the k reference car models that belong to the fleet according to the two defined criteria.   

 

Table 4-6 Fleet model resultant packages.  

 
Automobile manufacturer pay fines 

Automobile manufacturer is 

not willing to pay fines 

Car 

Model 
# Package technologies # Package technologies 

Diesel 5 

LUB1,EFR1,LUB2_EFR2,SGDI,TRB

DS1_SD_TB,CEGR2_SD_TB,ADSL

_SD,HETRANSM,EPS,IACC1,IACC

2,MHEV,ISG_B,ISG_NB,ROLL1,RO

LL2,LDB,MR4-20% 

5 “” 

Petrol 1 5 

,EFR1,LUB2_EFR2,SGDI,TRBDS1_

SD_TB,TRBDS2_SD_TB,HETRANS

M,EPS,IACC1,IACC2,MHEV,ISG_B,

ISG_NB,ROLL1,ROLL2,LDB,MR4-

20% 

5 “” 

Petrol 2 1 

LUB1,LUB2_EFR2,8SPD,HETRANS

,SHFTOPT,EPS,ROLL1,ROLL2,MR2

-10% 

2 

LUB1,LUB2_EFR2,8SPD,HE

TRANS,SHFTOPT,EPS,IACC

1,IACC2,ROLL1,ROLL2,MR

2-10% 

PHEV 5 

LUB1,LUB2_EFR2,CEGR2_SD_TB,

8SPD,HETRANS,SHFTOPT,EPS,IA

CC1,IACC2,MHEV,ISG_B,ISG_NB,

SHEV1_B,SHEV1_NB,SHEV1_2,SH

EV2_B,SHEV2_NB,PHEV2_B,PHE

V2_NB,ROLL1,LDB,MR1E-10% 

5 “” 
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The  Table 4-7 gives the profit margin in dollars for the two different criteria. It is showed how the 

profit margin is higher if the company avoids paying fines for non-compliance, even if the cost of the 

technologies is higher.  

 

 Table 4-7 Profit margin for the selected fleets according to the two criteria 

 

 

 

 

 

 

The Table 4-8 shows the CO2 emissions and MPG difference to the limit according to the two 

regulations and the two criteria. 

Table 4-8 Fleet gap to the limit according to the two criteria 

Automobile manufacturer pay fines 
Automobile manufacturer is not willing to pay 

fines 

USA gap to the limit 

[mpg] 

EU gap to the limit 

[g/km] 

USA gap to the limit 

[mpg] 

EU gap to the limit 

[g/km] 

-21,97 0,50 -22,98 -0,75 

 

Notice that the compliant fleet overcomes by 23MPG the CAFE regulation and by 0,75g/km EU 

regulation. Therefore credit banking can be used as a strategy to comply with more stringent future 

CAFÉ limits. Equally, pooling may be used on EU regulation and Automobile manufacturer can get an 

important income from this.  

 

Automobile 

manufacturer pay 

fines 

Automobile manufacturer is 

not willing to pay fines 

Profit margin [$] 472.324.827,5 480.974.124,3 



  
Page 204 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

  Page 205 
 

  

5. Conclusions 
 
Greenhouse gases emissions regulations are established worldwide and are set quite differently in the 

most relevant regions i.e. North America, Europe, China, India, Brazil… and it is expected to remain 

this way. Every regulation evolves and many parameters and procedures as driving cycles, measuring 

methods and compliance flexibilities are adjusted or completely shifted. This regulation framework is 

a threat but at the same time an opportunity that can be exploited being able to meet the target in a 

sustainable way, i.e. finding the best trade of between fuel economy, cost and customer value. 

 

To answer this challenge the Thesis aimed to combine the technical information with the economic 

issues to support the identification of the most profitable product configuration to deal with the 

European and North American regulation on CO2 emission and fuel economy. These two Regions have 

been selected due to their relevance for the automotive market and because the technical challenge that 

they imply. 

 

A test case on two reference midsize cars sold both in Europe and in US has been fully developed 

both at version level, i.e. single powertrain and at model level, i.e. all powertrains (gasoline, diesel, 

CNG, automatic transmission, manual transmission…) and related take rates have been considered. 

To achieve this objective a tool has been developed and it uses as an input: 

 The reference vehicle characteristics and viable technologies  

 The cost and fuel consumption reduction related to each technology or technology package 

 The differential price based on the willingness to pay considering the benefit in terms of 

cost of ownership (lower fuel consumption) and of the performance. The differences 

between European and North American market have been also included. 

 

Furthermore, among the important parameters of the model there are: the conversion equations and 

correction terms which are fundamental to develop the model. Such parameters deal with the 

differences among the regulations such as the unlike driving cycles and flexibilities. Furthermore, US 

and EU fuel economy and emissions limits have been introduced even considering the possibility 

that the vehicle is a light duty truck thus easing the target. Moreover specific modelling issues as 

the synergies which account for shifts on reference cost and FC reduction estimations has been faced 

and solved. 
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The approach developed within the Thesis deals with US CAFE and EU regulations during the period 

years 2018 to 2024 and it integrates engineering issues with a business perspective. The approach is 

split in two parts called “package model” and “fleet model” which give differentiated outputs: 

 The “package model” is focused on the reference models and gives as an output the best 

package of technologies according to several criteria which include: Cheapest compliant 

package; most cost effective compliant package; most profitable profit compliant package for 

EU market; most profitable profit compliant package for US market and the most profitable 

profit compliant package for a global market. 

While the cheapest and most cost effective packages do not depend on customer value, most 

profitable packages do take into account customer value. 

 The “fleet model” has as a target to deal with the entire fleet. The EU and US regulations 

establish actual limits on the entire automobile manufacturer’s fleet so this is the final 

indicator of manufacturer’s compliance. The output is an optimized fleet in terms of revenue 

taking into account customer value and regulations flexibilities. The input data is the output 

results from the first model.  

 

The model runs have been made and the results have appeared to be logic and correct. Nevertheless, 

because of being a quite general approach, the calculations have some assumptions and therefore it is 

difficult to fully rely on the outputs without giving further explanation about the whole issue. For this 

reason, information and discussions have been given on the entire argument. Most of this 

information is in the first two chapters of the Thesis and it includes: definitions and comparison on 

worldwide regulations; a hint to vehicle dynamics and GHG simulation software; a real case study 

comparison among vehicle models marketed in EU and US.  

 

Concerning the results of the “package model”, it is difficult to go deeper and try to generalise because 

the outputs depend in a lot of parameters however, we can notice some patterns: 

 Mass reduction technologies become a good option mainly when customer value is 

assessed because although mass reduction technologies lower the CO2 limit on EU regulations, 

such technologies not only lessen the FC but also improve the performance and so, the price. 

 There is indeed a difference among most cost effective compliant packages and the 

cheapest compliant packages coherent with its definition. Furthermore automobile 
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manufacturers have to worry more about achieving highly cost effective packages than cheapest 

packages because what is important is to achieve the best CO2 results by paying the less and use 

the remaining credits to counteract other vehicle’s emissions by averaging the whole fleet. 

 Usually, the packages who best fit the global margin taking into account both US and EU 

markets are the same as the ones which achieve the highest profits in EU. This is coherent with 

the fact that sales volume in EU is much bigger than sales volume in US.  

 It can be noticed a high step on the applied technologies from MY2018 to MY2020, consistent 

with the huge CO2 limit shift from 130g/km to 95g/km in European regulations. 

 Low friction lubricants and rolling resistance reduction seem to be technologies that have to 

be applied almost systematically to whatever vehicle, since they appear in almost every 

scenario.  

 Since the cost of the technologies vary along the years, the cost of the packages shift and it may 

even happen that  the composition of the best-packages differs because some technologies have 

become more cost effective, but this cannot be said at first glance, as the variation of the 

emissions limits also plays a role.  

 Diesel and CNG engine technologies do not seem to be a good choice in any case which is 

coherent with its high cost estimates. Instead, LPG engines or gasoline with high hybridization 

seem better choices. Anyway such result is not obvious since apparently CNG fuel is much 

cheaper than LPG in America, which should result in greater customer value. The low value of 

the “price sensitivity to fuel consumption �_ ” has much probably something to do 

with this.  

 

On the “fleet model”, the greater conclusion has been that it is worthless to choose the way of non-

compliance because fines are too high and counteract the effect of less costly non-compliant fleet.   

 

The use of the conversion regression equations from ICCT has been essential. Thanks to the conversion 

equations, it has been possible to evaluate the effect of the different cycles and the effects of specific 

technologies whose effects may change depending on the test driving cycle. This means that, although 

the data on fuel consumption reduction was US CAFE driving cycles based, it has been possible 

to assess compliance in the NEDC using best fit equations depending on the technologies belonging 

to each package. The utility of the conversion regression equations have been verified assessing real 

cases. It is here where the difficulty to perform benchmarking due to the use of flexibilities and the 
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shortage of data on public sources has been understood. Furthermore, concerns about the usability of 

such conversion equations for assessment on small vehicles have arisen. 

 

The technologies’ fuel consumption reduction and cost estimates published by NHTSA and used 

in this Thesis seem to be very accurate since they give specific values based on vehicle architectures 

(midsize, compact, large…), engine size (Small, medium and large displacement) and number of 

cylinders. Either way, some doubts about the accuracy of the data gathered from NHTSA arise 

when trying to extrapolate the values of cost an fuel consumption from US to EU regulations. As 

an example, Diesel engines are probably more expensive and less efficient in US, where the regulations 

concerning hazardous gases (Tier 2…) are more severe for Diesel engines than European ones (Euro 

5…). Furthermore, the fact that NHTSA do not specify the volumes of production on which their cost 

estimates are based raises some concerns.  Moreover, sometimes it is not completely clear which are 

the technological features making up the technologies, especially for very new and complex 

developments as Strong Hybrids. 

 

 

Although the data on FC reduction has been gathered from NHTSA, simulations have been 

performed using the free version of Data Visualization Tool DVT and the huge potential of this 

tool has been assessed: it is useful to assess performance metrics, test cycle emissions and FE for a 

given vehicle architecture in which many vehicle parameters can be modified and ranged. However no 

data on Cost is given and so its utility is very limited in this paper. 

 

The fact that US CAFE estimates well-to-wheel emissions and NEDC assesses tank-to-wheel emissions 

has also brought some complications because electric cars are considered as 0g/km on European 

regulations while not on US CAFE.  

 

The limit curve, its shape and the attribute on which they are based (Curb mass/footprint) is very 

differently approached among the regulations. Some regulations measure FE/FC, as china or US 

CAFE which may benefit the use of dirtier fuels (as diesel) as long as FC is lower. Other regulations 

measure CO2 emissions as US GHG or EU and finally there is Brazil, where cleaner fuels are widely 

used and the limit is based on energy consumption meaning that Brazil standards care about the 

efficiency of the combustion rather than emissions. On the other hand, differently from the rest of the 



 
 

  Page 209 
 

  

regulations, US uses footprint as attribute based limit which make a challenge the comparison 

among regulations since footprint/weight ratio is something specific of a vehicle, and not easily 

generalizable. Consequently, cars with low footprint/weight ratio (SUVs, off-road…) are prone to 

be limited by US regulations rather than EU regulations. Moreover, mass reduction technologies 

are more convenient in US, than in other markets where a reduction on mass involve more stringent 

limits due to curb mass based limits. 

 

Furthermore, the shapes of the limit curves are not always linear. US regulations stablish a S shape 

curve which is detrimental for very large cars but favors very small vehicles, similarly to EU new 

limit slope which favors brands who produce smaller, lighter cars. Equally, China limits are based 

on bins classes, favoring or being detrimental to cars that are at the limit of the step among consecutive 

bin classes, similarly to what happens for the inertia class in the bench dynamometer during type 

approval TA driving cycles. Then, automobile manufacturers can target cars with a curb weight in the 

bin’s limit. 

 

Furthermore, some regulations as China phase-in the limits and allow credit banking or carrying 

forward. On the other hand, European regulations do not allow such provisions but pools are 

accepted and therefore automobile manufacturers may decide to share a fleet and buy or sell 

compliance credits.  Some regulations implement new limits once every few years without phasing in, 

making huge steps (as Brazil or European regulations), while in US new limits are specified for every 

year but other kind of flexibilities are available. For this reason, even if in general CAFE regulation is 

more relaxed than EU regulation, notice that the year before the new limit take effect (i.e. 2019,2024), 

CAFE is quite probably more stringent. When comparing US and EU regulations stringencies, it should 

be bear in mind the effects of loopholes from where manufacturers take profit, especially in Europe. 

The large use of test procedure flexibilities or loopholes has contributed to and eases on reach 

emissions targets. However, the new WLTC will remove some of the flexibilities and will involve a 

shift on FC strategies because of its new nature and it will become a challenge for manufacturers. 

 

Emissions policies are way beyond to be a simple limit in emissions and regional 

economic/political decisions play an important role, giving rise to even a more complex and 

heterogeneous standards aimed to fit the region’s conditions and interests. In parallel, automobile 

manufacturers have to choose the best strategies in the path of regulation’s compliance and most 
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important: maximum business revenue. A clear example of government economy polices related to 

regulations is Brazil, where the regulation clearly defines reduction on taxes for those 

manufacturers investing in the national automotive industry while producing more efficient 

vehicles. Consequently, Automobile manufacturers may choose to create facilities in Brazil because of 

GHG Brazil regulations.  

 

Incentives and eases to support specific type of technologies as HEVs, FFVs are implemented in some 

regulations as CAFE or China, for specific periods, while less extended in other regulations as EU. 

Therefore, automobile manufacturers can decide to earn a lot of compliance credits in these 

periods where incentives are given and use them afterwards, when regulations become more 

stringent, to avoid the use of costly technologies.  

 

Eco-innovations and off-cycle credits is becoming a common way to earn credits for compliance, 

however regulations do not share the same potentially qualifying technologies, which may make 

automobile manufacturers to not consider them as a good option. Moreover they may not be cost 

effective, especially in EU. Besides the regulations stablish limits on the number of credits that can be 

gained. 

 

Emissions limits are set for singular cars, for a whole fleet or both as in China regulations. Such 

provision is a problem for automobile manufacturers who aim to sell some low fuel economy vehicles 

as cars with high power or big displacement engines. Nevertheless, any other regulations do average 

emissions making possible to counteract the sales of low fuel economy FE vehicles.  

 

Automobile manufacturers have to face secondary effects of the low GHG emissions technologies, 

as for example the increase on NHV coming from early torque converter lockup, cylinder 

deactivation or highly turbocharged engines. Equally, some issues on drivability and comfort may 

come from an increment on shifting evens (shift busyness) especially for MT or the lack of torque 

during launch in highly downsized engines.  Similarly, DCT systems, which apparently show very 

good results on FC reduction, seem to not be indicated in highly downsized engines, for reduced 

launch performance due to the lack of conventional torque converter. Furthermore, some technologies 

may have some counter-productive effects as high compression ratios, turbocharged engines or lean 

operation, which produce more pollutants. In order to counteract this, expensive control techniques 
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have to be used. As technologies improve and these issues are solved, further reductions on emissions 

will be achieved. 
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Annexes    

Fleet model code 
Sub COMBINAR() 

Cells(3, 18).ClearContents 

Cells(3, 19).ClearContents 

Cells(3, 20).ClearContents 

Cells(3, 21).ClearContents 

Cells(3, 22).ClearContents 

Cells(6, 18).ClearContents 

Cells(6, 19).ClearContents 

Cells(6, 20).ClearContents 

Cells(6, 21).ClearContents 

Cells(6, 22).ClearContents 

Cells(9, 18).ClearContents 

Cells(9, 19).ClearContents 

Cells(9, 20).ClearContents 

Cells(9, 21).ClearContents 

FIN_B = Range("B1", Range("B" & Rows.Count).End(xlUp)).Rows.Count 

FIN_F = Range("F1", Range("F" & Rows.Count).End(xlUp)).Rows.Count 

FIN_J = Range("J1", Range("J" & Rows.Count).End(xlUp)).Rows.Count 

FIN_N = Range("N1", Range("N" & Rows.Count).End(xlUp)).Rows.Count 

 

VolumeDiesel_USA = Cells(3, 24) 

VolumePetrol1_USA = Cells(3, 25) 

VolumePetrol2_USA = Cells(3, 26) 

VolumePHEV_USA = Cells(3, 27) 

TotalVol_USA = VolumeDiesel_USA + VolumePetrol1_USA + VolumePetrol2_USA + VolumePHEV_USA 

VolumeDiesel_EU = Cells(3, 28) 

VolumePetrol1_EU = Cells(3, 29) 

VolumePetrol2_EU = Cells(3, 30) 

VolumePHEV_EU = Cells(6, 31) 

TotalVol_EU = VolumeDiesel_EU + VolumePetrol1_EU + VolumePetrol2_EU + VolumePHEV_EU 

PHEVMultiplier_USA = Cells(3, 32) 

Minus50gMultiplier_EU = Cells(3, 32) 

FineUSA = Cells(3, 35) 

FineEU = Cells(3, 36) / Cells(3, 37) 

Volume_diesel_fined_EU = 0 

Volume_Petrol1_fined_EU = 0 

Volume_Petrol2_fined_EU = 0 

Volume_PHEV_fined_EU = 0 

Volume_fined_EU = 0 

 

 

Margin_to_actual_margin_Diesel = Cells(4, 24) 

Margin_to_actual_margin_Petrol1 = Cells(4, 25) 

Margin_to_actual_margin_Petrol2 = Cells(4, 26) 
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Margin_to_actual_margin_PHEV = Cells(4, 27) 

 

 

MarginMax = 0 

MarginMax2 = 0 

 

For X = 3 To FIN_B 

   For Y = 3 To FIN_F 

    For Z = 3 To FIN_J 

     For K = 3 To FIN_N 

     

        Average_fleet_minus_target_fleet_co2_USA = (VolumeDiesel_USA * Cells(X, 4) + VolumePetrol1_USA * Cells(Y, 8) + VolumePetrol2_USA * 

Cells(Z, 12) + VolumePHEV_USA * PHEVMultiplier_USA * Cells(K, 16)) / TotalVol_USA 

        Average_fleet_minus_target_fleet_co2_EU = (VolumeDiesel_EU * Cells(X, 5) + VolumePetrol1_EU * Cells(Y, 9) + VolumePetrol2_EU * Cells(Z, 

13) + VolumePHEV_EU * Cells(K, 17)) * Minus50gMultiplier_EU / TotalVol_EU 

        Margin_USA = VolumeDiesel_USA * Cells(X, 2) * Margin_to_actual_margin_Diesel + VolumePetrol1_USA * Cells(Y, 6) * 

Margin_to_actual_margin_Petrol1 + VolumePetrol2_USA * Cells(Z, 10) * Margin_to_actual_margin_Petrol2 + VolumePHEV_USA * Cells(K, 14) * 

Margin_to_actual_margin_PHEV 

        Margin_EU = VolumeDiesel_EU * Cells(X, 3) * Margin_to_actual_margin_Diesel + VolumePetrol1_EU * Cells(Y, 7) * 

Margin_to_actual_margin_Petrol1 + VolumePetrol2_EU * Cells(Z, 11) * Margin_to_actual_margin_Petrol2 + VolumePHEV_EU * Cells(K, 15) * 

Margin_to_actual_margin_PHEV 

        If (Average_fleet_minus_target_fleet_co2_USA < 0 And Average_fleet_minus_target_fleet_co2_EU < 0) Then 

            If MarginMax < Margin_USA + Margin_EU Then 

            MarginMax = Margin_USA + Margin_EU 

            Cells(3, 18) = MarginMax 

            Cells(3, 19) = X - 2 

            Cells(3, 20) = Y - 2 

            Cells(3, 21) = Z - 2 

            Cells(3, 22) = K - 2 

            Cells(9, 20) = Average_fleet_minus_target_fleet_co2_USA 

            Cells(9, 21) = Average_fleet_minus_target_fleet_co2_EU 

            End If 

             

        Else 

            If Cells(X, 5) > 0 Then 

            Volume_diesel_fined_EU = VolumeDiesel_EU 

            End If 

            If Cells(X, 9) > 0 Then 

            Volume_Petrol1_fined_EU = VolumePetrol1_EU 

            End If 

            If Cells(X, 13) > 0 Then 

            Volume_Petrol2_fined_EU = VolumePetrol2_EU 

            End If 

            If Cells(X, 17) > 0 Then 

            Volume_PHEV_fined_EU = VolumePHEV_EU 

            End If 

            Volume_fined_EU = Volume_diesel_fined_EU + Volume_Petrol1_fined_EU + Volume_Petrol2_fined_EU + Volume_PHEV_fined_EU 
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            If MarginMax2 < -Average_fleet_minus_target_fleet_co2_USA * FineUSA * TotalVol_USA - Average_fleet_minus_target_fleet_co2_EU * 

FineEU * Volume_fined_EU + Margin_USA + Margin_EU Then 

            MarginMax2 = -Average_fleet_minus_target_fleet_co2_USA * FineUSA * TotalVol_USA - Average_fleet_minus_target_fleet_co2_EU * FineEU 

* Volume_fined_EU + Margin_USA + Margin_EU 

            Cells(6, 18) = MarginMax2 

            Cells(6, 19) = X - 2 

            Cells(6, 20) = Y - 2 

            Cells(6, 21) = Z - 2 

            Cells(6, 22) = K - 2 

            Cells(9, 18) = Average_fleet_minus_target_fleet_co2_USA 

            Cells(9, 19) = Average_fleet_minus_target_fleet_co2_EU 

            End If 

             

         

        End If 

         

         

         

      Next K 

    Next Z 

   Next Y 

Next X 

End Sub 

Eco-innovations  
European regulations as US regulations do offer the possibility to earn off-cycle credits for ease 

compliance. European potentially and non-potentially qualifying eco-innovations examples are given 

bellow: 

Potentially qualifying Technologies: 

 

Potentially non qualifying technologies: 
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US06 Test cycle 
The full test consists of preconditioning the engine to a hot stabilized condition and an engine idle 

period of 1 to 2 minutes, after which the vehicle is accelerated into the US06 cycle. 

 

 

SC03 Test cycle 
The test procedure is designed to determine gaseous exhaust emissions from light-duty vehicles and 

light-duty trucks with the air conditioner operating while during an urban trip at ambient conditions of 

95 ºF (35 ºC), 100 grains of water/pound of dry air (40 % R.H.), and a solar heat load intensity of 850 

W/m2.  
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The full test consists of vehicle preconditioning, an engine key-off 10 minute soak, an engine start, and 

operation over the SC03 cycle.  

The radiant energy or solar heat load for this test is defined by the EPA based upon the global reference 

spectral irradiance standard, global AM 1.5. For this procedure, the radiant energy must be uniform 

within +/-15% over a 0.5 meter grid averaged at the centerline of the vehicle and at the base of the 

windshield and rear window. 

 

 

Spreadsheets 
 

Technology A Technology B FC Synergy Technology A Technology B Cost synergy [$] 

DEACD CVVL -0,40% DEACD CVVL -27,9 

TRBDS1_SD CVVL -0,72% TRBDS1_SD DVVLD -10,4 

TRBDS1_MD CVVL -0,21% TRBDS1_MD DVVLD -137,5 

TRBDS1_LD CVVL -0,21% TRBDS1_LD DVVLD -151,1 

TRBDS1_SD VVA 4,79% TRBDS1_SD CVVL -10,4 

DCP SHFTOPT -0,60% TRBDS1_MD CVVL -137,5 

DCP IACC1 -0,20% TRBDS1_LD CVVL -151,1 

DCP IACC2 -0,40% TRBDS1_SD VVA -420,1 

CCPS SHFTOPT -0,60% TRBDS1_MD VVA 562,8 

CCPS IACC1 -0,20% TRBDS1_LD VVA 524,0 

CCPS IACC2 -0,40% SHEV1 TRBDS1_SD -420,1 

DVVLS IATC -0,40% SHEV1 TRBDS1_MD 29,3 

DVVLS MHEV -0,50% SHEV1 TRBDS1_LD -523,5 

DVVLS IACC2 -0,80% SHEV1 MHEV -325,4 

DVVLS 8SPD -0,70% SHEV2 TRBDS1_SD -420,1 

DVVLD IATC -0,40% SHEV2 TRBDS1_MD 29,3 

DVVLD MHEV -0,50% SHEV2 TRBDS1_LD -523,5 

DVVLD IACC2 -0,80% SHEV2 MHEV -325,4 
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DVVLD 8SPD -0,70% SHEV1_2 TRBDS2_SD -19,9 

CVVL IATC -0,40% SHEV1_2 TRBDS2_MD -247,6 

CVVL MHEV -0,50% SHEV1_2 TRBDS2_LD -417,4 

CVVL IACC2 -0,80% SHEV1_2 CEGR1_SD -285,2 

CVVL 8SPD -0,70% SHEV1_2 CEGR1_MD -285,2 

DEACD IATC -0,40% SHEV1_2 CEGR1_LD -285,2 

DEACO MHEV -0,50% SHEV1_2 CEGR2_SD -495,2 

DEACO IACC2 -0,80% SHEV1_2 CEGR2_MD -495,2 

DEACO 8SPD -0,70% SHEV1_2 CEGR2_LD 296,7 

VVA IATC -0,40% SHEV2 TRBDS2_SD -19,9 

VVA SHFTOPT -0,60% SHEV2 TRBDS2_MD -247,6 

VVA IACC1 -0,20% SHEV2 TRBDS2_LD -417,4 

VVA IACC2 -0,40% SHEV2 CEGR1_SD -285,2 

TRBDS1_SD IATC -0,50% SHEV2 CEGR1_MD -285,2 

TRBDS1_MD IATC -0,50% SHEV2 CEGR1_LD -285,2 

TRBDS1_LD IATC -0,50% SHEV2 CEGR2_SD -495,2 

TRBDS1_SD SHFTOPT -0,20% SHEV2 CEGR2_MD -495,2 

TRBDS1_MD SHFTOPT -0,20% SHEV2 CEGR2_LD 296,7 

TRBDS1_LD SHFTOPT -0,20%    

TRBDS2_SD NAUTO -0,50%    

TRBDS2_MD NAUTO -0,50%    

TRBDS2_LD NAUTO -0,50%    

TRBDS2_SD EPS -0,20%    

TRBDS2_MD EPS -0,20%    

TRBDS2_LD EPS -0,20%    

TRBDS2_SD IACC2 -0,10%    

TRBDS2_MD IACC2 -0,10%    

TRBDS2_LD IACC2 -0,10%    

CEGR1_SD IACC2 -0,20%    

CEGR1_MD IACC2 -0,20%    

CEGR1_LD IACC2 -0,20%    

CEGR2_SD NAUTO -0,60%    

CEGR2_MD NAUTO -0,60%    

CEGR2_LD NAUTO -0,60%    

DCT MHEV -0,30%    

SHFTOPT MHEV -0,30%    

ROLL1 AERO1 0,20%    

ROLL2 AERO2 0,10%    

MR4 AERO2 0,40%    

ADSL_SD IATC 1,00%    

ADSL_MD IATC 1,00%    

ADSL_LD IATC 1,00%    

NAUTO SAX -0,40%    

SHEV1 AERO2 1,00%    

SHEV1 ROLL1 0,70%    

SHEV1_2 AERO2 0,20%    



 
 

  Page 223 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SHEV1_2 ROLL2 0,30%    

SHEV2 AERO2 1,20%    

SHEV2 ROLL2 1,00%    

SHEV2 MR2 -0,40%    

SHEV2 MR3 -0,20%    

SHEV2 MR4 -0,30%    

PHEV1 AERO2 0,10%    

PHEV1 ROLL2 0,40%    

IATC CCPS -1,40%    

IATC ICP -1,40%    

IATC DEACO -1,40%    

8SPD CCPS -1,90%    

8SPD ICP -1,90%    

8SPD DEACO -1,90%    

HETRANS CCPS 0,50%    

HETRANS ICP 0,50%    

HETRANS DEACO 0,50%    

IATC TRBDS1_SD 1,40%    

IATC TRBDS1_MD 1,40%    

IATC TRBDS1_LD 1,40%    

8SPD TRBDS1_SD 1,90%    

8SPD TRBDS1_MD 1,90%    

8SPD TRBDS1_LD 1,90%    

HETRANS TRBDS1_SD -0,50%    

HETRANS TRBDS1_MD -0,50%    

HETRANS TRBDS1_LD -0,50%    
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Technology type 
(Path) 

Engine 

Technology 

Low 
Friction 

Lubricants 
- Level 1 

Engine 
Friction 

Reduction 
- Level 1- 
for 4 cyl 

Low Friction 
Lubricants 
and Engine 

Friction 
Reduction - 
Level 2- for 

4 cyl 

Variable 
Valve 

Timing 
(VVT) - 
Coupled 

Cam 
Phasing 

(CCP) on 
SOHC 

Discrete 
Variable 

Valve 
Lift 

(DVVL) 
on 

SOHC - 
for 4 cyl 

Cylinder 
Deactivation 

on SOHC 

Variable 
Valve 

Timing 
(VVT) - 
Intake 
Cam 

Phasing 
(ICP) 

Variable 
Valve 

Timing 
(VVT) - 

Dual Cam 
Phasing 
(DCP) 

Discrete 
Variable 

Valve 
Lift 

(DVVL) 
on 

DOHC-
for 4 cyl 

Continuously 
Variable 

Valve Lift 
(CVVL) - 
per 4 cyl 

Cylinder 
Deactivation 

on DOHC 

Stoichiometric 
Gasoline Direct 

Injection (GDI) - 
for 4 cyl 

Technology Abbr. LUB1 EFR1 LUB2_EFR2 CCPS DVVLS DEACS ICP DCP DVVLD CVVL DEACD SGDI 

Incremental to 
base 

engine 
base 

engine 
EFR1 

base 
engine 

CCPS DVVLS 
base 

engine 
ICP DCP DCP 

DVVLD or 
CVVL 

base engine 

Source 
2012-

2016 FR 
2012-2016 

FR 
2017+ 
NPRM 

2012-
2016 FR 

2012-
2016 
FR 

2012-2016 
FR 

2012-
2016 FR 

2012-2016 
FR 

2012-
2016 FR 

2012-2016 
FR 

2012-2016 
FR 

FEV 

FC Reduction 
Incremental [%] 

0,70% 2,60% 1,26% 5,03% 3,64% 0,69% 2,62% 2,47% 3,64% 4,63% 0,69% 1,50% 

Technology 
cost 

incremental 
[$] or [$]/lb. 

for mass 
red. 

2018 4,02 60,50 62,84 45,59 160,65 32,00 45,59 43,60 160,65 258,62 32,00 264,56 
2020 3,86 58,09 62,84 42,25 144,21 28,61 42,25 39,14 144,21 232,15 28,61 236,56 
2022 3,86 58,09 62,84 40,86 139,75 27,75 40,86 37,93 139,75 224,97 27,75 229,40 

2024 3,86 58,09 62,84 39,53 135,47 26,92 39,53 36,77 135,47 218,08 26,92 222,52 
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Technology type 
(Path) 

Engine 

Technology 
Cylinder 

Deactivation 
on OHV 

Variable 
Valve 

Actuation - 
CCP and 
DVVL on 

OHV 

Turbocharging and 
Downsizing - Level 
1 (18 bar BMEP) - 

Small 
Displacement 

Turbocharging 
and Downsizing - 
Level 2 (24 bar 
BMEP) - Small 
Displacement 

Cooled Exhaust 
Gas 

Recirculation 
(EGR) - Level 1 
(24 bar BMEP) 

- Small 
Displacement  - 

Turbo 

Cooled Exhaust 
Gas 

Recirculation 
(EGR) - Level 2 
(27 bar BMEP) - 

Small 
Displacement - 

Turbo 

Advanced 
Diesel - Small 
Displacement 

Advanced Diesel 
- Medium 

Displacement 

CNG 
Engine - 
Level 1 

LPG 

Technology Abbr. DEACO VVA TRBDS1_SD_TB TRBDS2_SD_TB CEGR1_SD_TB CEGR2_SD_TB ADSL_SD ADSL_MD 
CNG 

ENGINE 
LPG 

ENGINE 

Incremental to base engine DEACO SGDI (SOHC Path) TRBDS1_SD TRBDS1_SD TRBDS1_SD CEGR2_SD CEGR2_MD 
Base 

engine 
Base 

engine 

Source 
2012-2016 

FR 
2012-2016 

FR 
FEV FEV FEV FEV EPA EPA Tutor Tutor 

FC Reduction 
Incremental [%] 

5,86% 3,45% 8,29% 3,54% 3,54% 1,36% 2,75% 2,75% 20,00% 10,00% 

Technology 
cost 

incremental 
[$] or [$]/lb. 

for mass 
red. 

2018 204,67 51,16 487,26 27,16 297,79 517,13 869,94 839,75 1500,00 500,00 
2020 183,72 45,92 425,91 18,85 289,28 502,36 928,84 942,49 1500,00 500,00 
2022 178,04 44,50 414,33 20,95 281,11 488,16 893,59 913,51 1500,00 500,00 

2024 172,58 43,14 403,20 22,97 273,26 474,53 859,74 885,69 1500,00 500,00 
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Technology type (Path) Transmission 

Technology 

6-Speed 

Manual/Improved 

Internals 

High Efficiency 

Gearbox (Manual) 

Improved Auto. Trans. 

Controls/Externals 

6-Speed Trans 

with Improved 

Internals (Auto) 

6-speed 

DCT 

8-Speed Trans 

(Auto or DCT) 

High Efficiency 

Gearbox w/ dry sump 

(Auto or DCT) 

Shift 

Optimizer 

Technology Abbr. 6MAN HETRANSM IATC NAUTO DCT 8SPD HETRANS SHFTOPT 

Incremental to base manual trans 6MAN base auto trans IATC NAUTO NAUTO or DCT 8SPD HETRANS 

Source 2012-2016 FR 2012-2016 FR 2012-2016 FR FEV FEV FEV EPA EPA 

FC Reduction 

Incremental [%] 
2,39% 4,08% 3,00% 2,04% 4,06% 4,57% 2,68% 4,08% 

Technology cost 

incremental[$] 

2018 274,69 244,74 61,24 -37,99 -71,97 253,63 244,74 1,63 

2020 254,53 233,02 56,75 -38,93 -81,61 226,79 233,02 1,55 

2022 246,19 222,00 54,89 -36,92 -76,81 219,92 222,00 1,48 

2024 238,17 215,05 53,10 -35,00 -72,19 213,32 215,05 1,43 
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Technology type (Path) Electric 

Technology 
Electric Power 

Steering 

Improved 
Accessories - 

Level 1 

Improved 
Accessories - 

Level 2 
12V Micro-Hybrid (Stop-Start) 

Integrated 
Starter 

Generator - 
Battery 

Integrated 
Starter 

Generator - 
Non-Battery 

Strong Hybrid 
(Powersplit or 2-Mode) 

- Level 1 - Battery 

Strong Hybrid 
(Powersplit or 2-Mode) - 

Level 1 - Non-Battery 

Technology Abbr. EPS IACC1 IACC2 MHEV ISG_B ISG_NB SHEV1_B SHEV1_NB 

Incremental to base vehicle EPS IACC1 IACC2 MHEV MHEV TRBDS1, 8SPD, ISG TRBDS1, 8SPD, ISG 

Source 2012-2016 FR 2012-2016 FR EPA 2012-2016 FR 2017 + FR 2017 + FR 2017+ NPRM 2017+ NPRM 

FC Reduction 
Incremental [%] 

1,30% 1,22% 2,36% 2,10% 6,50% 
 

5,30% 

CO2 Credits Reduction 
Incremental[g/mi]    

2,5 
    

Technology 
cost 

incremental [$] 
or [$]/lb. for 

mass red. 

2018 107,65 87,55 53,30 376,82 230,20 757,91 396,76 1904,85 

2020 99,75 81,13 51,60 333,02 255,93 677,71 380,95 1514,72 

2022 96,48 78,47 49,97 317,68 246,74 657,18 366,07 1471,98 

2024 93,34 75,91 48,41 303,25 238,25 637,47 352,08 1430,93 
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Technology type (Path) Electric 

Technology 
Conversion from 

SHEV1 to 
SHEV2 

Strong Hybrid (P2 Parallel or 
2-Mode) - Level 2 - Battery 

Strong Hybrid (P2 Parallel or 
2-Mode) - Level 2 - Non-

Battery 

Plug-in Hybrid - 
30 mi range - 

Battery 

Plug-in Hybrid - 
30 mi range - 
Non-Battery 

Electric Vehicle 
(Early Adopter) - 
75 mile range - 

Battery 

Electric Vehicle 
(Early Adopter) - 75 

mile range - Non-
Battery 

Technology Abbr. SHEV1_2 SHEV2_B SHEV2_NB PHEV2_B PHEV2_NB EV1_B EV1_NB 

Incremental to SHEV1 CEGR2, SHFTOPT, ISG CEGR2, SHFTOPT, ISG SHEV2_B SHEV2_NB PHEV2 PHEV2 

Source 2017+ NPRM 2017+ NPRM 2017+ NPRM 2017+ NPRM 2017+ NPRM 2017+ NPRM 2017+ NPRM 

FC Reduction 
Incremental [%] 

12,46% 0,11% 40,65% 68,54% 

CO2 Credits Reduction 
Incremental[g/mi]        

Technology cost 
incremental [$] 

or [$]/lb. for mass 
red. 

2018 1204,58 396,76 1904,85 7760,56 2601,20 5742,36 -3061,38 

2020 1159,51 380,95 1514,72 6536,68 2141,75 4930,80 -2209,61 

2022 1126,52 366,07 1471,98 6583,64 2079,94 4930,80 -2157,93 

2024 1098,49 352,08 1430,93 6627,82 2020,58 4930,80 -2084,08 
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Technology type (Path) Rolling Resistance Tires Driveline resistance Aerodynamic improvement 

Technology 

Low Rolling 

Resistance 

Tires - Level 1 

Low Rolling 

Resistance 

Tires - Level 2 

Low Drag 

Brakes 

Secondary Axle 

Disconnect 

Aero Drag 

Reduction, 

Level 1 

Aero Drag 

Reduction, 

Level 2 

Technology Abbr. ROLL1 ROLL2 LDB SAX AERO1 AERO2 

Incremental to base tire ROLL1 base vehicle LDB base vehicle AERO1 

Source 2012-2016 FR 2017+ NPRM 2012-2016 FR 2012-2016 FR 2012-2016 FR 2010 TAR 

FC Reduction 

Incremental [%] 
1,90% 2,04% 0,80% 1,40% 2,30% 2,46% 

CO2 Credits Reduction 

Incremental[g/mi]      
0,6 

Technology cost 

incremental 

[$/lb] 

2018 6,71 73,16 73,77 96,09 48,13 162,00 

2020 6,44 60,39 70,84 89,04 44,60 157,25 

2022 6,44 48,95 70,84 86,12 43,13 152,70 

2024 6,44 46,60 70,84 83,32 41,73 148,32 
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Technology type 

(Path) 
Other off-cycle credits/ECO Innovations. In orange EU. All the other applicable for USA. 

Technology 

A/C 

Efficiency 

credits - 

Level 1 

A/C 

Efficiency 

credits - 

Level 2 

Glass or 

Glazing 

(UP TO 

2,9) 

Passive 

Cabin 

Ventilation 

Active 

Transmission 

Warm-Up 

Active 

Engine 

Warm-up 

Active Seat 

Ventilation 

Solar 

Reflective 

Paint 

Active 

Cabin 

Ventilation 

High 

Efficiency 

Exterior 

Lights* (at 

100 watt 

savings) 

Solar 

Panels 

(based on a 

75 watt 

solar panel) 

Waste Heat 

Recovery 

(at 100W) 

Technology Abbr. AC1 AC2 G PCV ATW-EU AEW-EU ASV SRP ACV HEEL-EU SP-EU WHR-EU 

Incremental to 
base 

vehicle 

base 

vehicle 
base vehicle base vehicle base vehicle base vehicle base vehicle base vehicle base vehicle base vehicle base vehicle base vehicle 

Source Tutor 

FC Credits 

Reduction 

Incremental[g/mi] 

1 1,5 2 1,7 1,5 1,5 1 0,4 2,1 1 3,3 0,7 

Technology 

cost 

incremental[$] 
 

20,00 35,00 100,00 100,00 100,00 100,00 100,00 50,00 300,00 200,00 1500,00 350,00 
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Technology type 

(Path) 
Mass reduction 

Technology 

Mass 

Reduction 

- Level 1 

- 5% 

Mass 

Reduction 

- Level 2 

- 10% 

Mass 

Reduction - 

Level 3 - 

15% 

Mass 

Reduction - 

Level 4 - 

20% 

Mass Reduction - 

Level 1 - CNG  LPG 

- 10% 

Mass Reduction - 

Level 2 - CNG LPG 

- 15% 

Mass Reduction - 

Level 3 - CNG LPG 

- 20% 

Mass 

Reduction - 

Level 1 - 

HEV  - 10% 

Mass 

Reduction - 

Level 2 - 

HEV  - 15% 

Mass 

Reduction - 

Level 3 - 

HEV - 20% 

Technology Abbr. MR1-5% 
MR2-

10% 
MR3-15% MR4-20% MR1CNG LPG-10% MR2CNG LPG-15% MR3CNG LPG-20% MR1E-10% MR2E-15% MR3E-20% 

Incremental to 
base 

vehicle 

base 

vehicle 
base vehicle base vehicle CNG LPG vehicle CNG LPG vehicle CNG LPG vehicle HEV vehicle HEV vehicle HEV vehicle 

Source mass vs fc:S. Pagerit, P. Sharer, A. Rousseau paper - Mass vs cost:  NHTSA 

FC Reduction 

Incremental [%] 
2,05% 4,10% 6,15% 8,20% 4,10% 6,15% 8,20% 4,80% 7,20% 9,60% 

Technology 

cost 

incremental[$] 

2018 0,22 0,44 0,65 0,87 0,65 0,87 1,09 0,65 0,87 1,09 

2020 0,22 0,44 0,65 0,87 0,65 0,87 1,09 0,65 0,87 1,09 

2022 0,22 0,44 0,65 0,87 0,65 0,87 1,09 0,65 0,87 1,09 

2024 0,22 0,44 0,65 0,87 0,65 0,87 1,09 0,65 0,87 1,09 
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Light duty truck LDT definition 

Any motor vehicle rated at 8,500 pounds GVWR or less which has a vehicle curb weight of 6,000 

pounds or less and which has a basic vehicle frontal area of 45 square feet or less, which is: 

1. Designed primarily for purposes of transportation of property or is a derivation of such a 

vehicle, or  

2. Designed primarily for transportation of persons and has a capacity of more than 12 persons, or  

3. Available with special features enabling off-street or off-highway operation and use (40 CFR 

86.1803-01).  

CAFE Target curve PC 
 

 

 
Footprint 

[sqft] 
MY 2018 MY 2020 MY 2022 MY 2024 

35 45,21 48,74 53,21 58,32 

36 45,21 48,74 53,21 58,32 

37 45,21 48,74 53,21 58,32 

38 45,21 48,74 53,21 58,32 

39 45,21 48,74 53,21 58,32 

40 45,21 48,74 53,21 58,32 

41 45,20 48,74 53,21 58,32 

42 44,21 47,67 52,11 57,04 

43 43,27 46,65 50,99 55,81 

44 42,36 45,67 49,91 54,63 

45 41,49 44,73 48,88 53,50 

46 40,65 43,83 47,89 52,42 

47 39,85 42,96 46,94 51,37 

48 39,08 42,13 46,03 50,37 

49 38,34 41,33 45,15 49,41 

50 37,62 40,55 44,30 48,48 
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51 36,93 39,81 43,49 47,59 

52 36,27 39,10 42,70 46,73 

53 35,63 38,40 41,95 45,90 

54 35,01 37,74 41,22 45,10 

55 34,41 37,09 40,51 44,33 

56 33,84 36,47 39,83 43,58 

57 33,84 36,47 39,79 43,58 

58 33,84 36,47 39,79 43,58 

59 33,84 36,47 39,79 43,58 

60 33,84 36,47 39,79 43,58 

61 33,84 36,47 39,79 43,58 

62 33,84 36,47 39,79 43,58 

63 33,84 36,47 39,79 43,58 

64 33,84 36,47 39,79 43,58 

65 33,84 36,47 39,79 43,58 

 

CAFE Target curve LDT 

 

Footprint 

[sqft] 

 MY 

2018 

MY 

2020 

MY 

2022 

MY 

2024 

44 35,25 36,89 41,30 45,34 

45 34,59 36,20 40,53 44,49 

46 33,96 35,54 39,78 43,67 

47 33,36 34,90 39,07 42,88 

48 32,77 34,29 38,38 42,12 

49 32,20 33,69 37,71 41,39 

50 31,66 33,12 37,07 40,68 

51 31,13 32,56 36,44 39,99 

52 30,62 32,03 35,84 39,33 
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53 30,13 31,51 35,26 38,69 

54 29,65 31,01 34,70 38,07 

55 29,18 30,52 34,15 37,47 

56 28,73 30,05 33,62 36,89 

57 28,30 29,59 33,11 36,32 

58 27,88 29,15 32,61 35,78 

59 27,47 28,72 32,13 35,24 

60 27,07 28,30 31,66 34,73 

61 26,73 27,90 31,20 34,23 

62 26,41 27,50 30,76 33,74 

63 26,09 27,12 30,33 33,27 

64 25,79 26,75 29,91 32,81 

65 25,49 26,38 29,51 32,36 

66 25,20 26,03 29,11 31,93 

67 25,20 25,69 28,73 31,50 

68 25,20 25,35 28,35 31,09 

69 25,20 25,25 27,99 30,69 

 


	Table of abbreviations and Symbols
	List of figures
	List of tables
	Introduction
	1. Hint to FC/CO2 related to vehicles - review of longitudinal vehicle dynamics and FC/CO2 simulations
	1.1 Longitudinal dynamics
	1.2 Analysing the inefficiencies
	1.2.1 A more efficient generation of the power needed to move the car
	1.2.2 A more efficient generation of the power needed to drive its auxiliary loads
	1.2.3 Lower the energy needed to move the car. Introduction to Coast down coefficients.
	1.2.4 Other particular CO2 reduction sources
	1.2.4.1 Brake regenerating
	1.2.4.2 Start and Stop Technology
	1.2.4.3 Special technologies
	1.2.4.4 Tailpipe CO2 emissions reduction due to use of cleaner fuel


	1.3 CO2 Emissions variation due to driving conditions and test cycle conditions
	1.4 Hint to low FC reduction technologies simulation software – Ricardo Data Visualization Tool DVT
	1.4.1 FC and CO2 emissions simulation procedures
	1.4.2 Ricardo Data Visualization Tool DVT


	2. Worldwide CO2 emissions regulations
	2.1 Introduction
	2.2 Fuel Consumption (FC), Fuel Economy (FE) and tailpipe CO2 Emissions
	2.3 United States
	2.3.1 Corporate Average Fuel Economy (CAFE)
	2.3.2 Labelling
	2.3.3 Test Driving Cycles
	2.3.4 Flexibilities
	2.3.5 Other North American and US State specific Regulations

	2.4 The European Union
	2.4.1 Test Cycles
	2.4.2 Flexibilities
	2.4.3 Test procedure flexibilities
	2.4.3.1 Coast down method flexibilities
	2.4.3.2 NEDC test Flexibilities


	2.5 China regulations
	2.6 Brazil regulations
	2.7 World regulations comparison
	2.7.1 Real case study – verify conversion equations
	2.7.1.1 Conclusions



	3. Model calculation for the reference cars – Package model
	3.1 Introduction
	3.2 Algorithm fundamentals
	3.2.1 Applicability of a technology
	3.2.2 The technology synergies
	3.2.3 Other hypotheses and assumptions

	3.3 What’s the CO2 emissions target of the model?
	3.4 Reference model. Which car and engines have been studied?
	3.5 Technologies description and in-path packages overview
	3.5.1 Engine path
	3.5.1.1 Low-friction lubricants (LUB1)
	3.5.1.2 Reduction of engine friction losses (EFR1)
	3.5.1.3 Second level of low-friction lubricants and engine friction reduction (LUB2_EFR2)
	3.5.1.4 Cylinder deactivation (DEACS, DEACD and DEACO)
	3.5.1.5 Variable valve timing (Coupled Cam Phasing on SOHC CCPS, Inlet Cam Phasing ICP and Dual Cam Phasing DCP)
	3.5.1.6 Variable valve lift (VVL)
	3.5.1.7 Discrete variable valve lift (Discrete Variable Valve Lift for SOHC DVVLS Discrete Variable Valve Lift for DOHC DVVLD and Variable Valve Actuation VVA)
	3.5.1.8 Continuous variable valve lift (CVVL)
	3.5.1.9 Stoichiometric gasoline direct-injection technology (SGDI and SGDIO)
	3.5.1.10 Turbocharging and downsizing (TRBDS1 and TRBDS2)
	3.5.1.11 Exhaust-gas recirculation boost (CEGR1 and CEGR2)
	3.5.1.12 Diesel engines (ADSL)
	3.5.1.13 CNG and LPG engines

	3.5.2 Transmission path
	3.5.2.1 Manual 6-speed transmission (6MAN)
	3.5.2.2 Improved automatic transmission controls (IATC)
	3.5.2.3 Six- and seven-speed automatic transmissions (NAUTO)
	3.5.2.4 Dual clutch transmission (DCT)
	3.5.2.5 Eight-speed automatic transmissions (8SPD)
	3.5.2.6 High Efficiency Gearbox (automatic, DCT or manual) (HETRANS and HETRANSM)
	3.5.2.7 Shift Optimization (SHFTOPT)

	3.5.3 Rolling resistance path. Low-rolling-resistance tires (ROLL1 and ROLL2)
	3.5.4 Driveline improvements path
	3.5.4.1 Low-drag brakes (LDB)
	3.5.4.2 Front or secondary axle disconnect for four-wheel drive systems (SAX)

	3.5.5 Aerodynamic improvements path. Aerodynamic drag reduction (AERO1 and AERO2)
	3.5.6 Mass reduction path. MR1-5%, MR2-10%, MR3-15%, MR4-20%,  MR1 CNG LPG-10%, MR1 CNG LPG-15% MR1 CNG LPG-20%, MR1E-10%, MR2E-15%, MRE3-20%
	3.5.7 Electrification path
	3.5.7.1 Electric power steering (EPS) and electro-hydraulic power steering (EHPS)
	3.5.7.2 Improved accessories (IACC1 and IACC2)
	3.5.7.3 12-volt Stop-Start (MHEV)
	3.5.7.4 Mild Hybrid/Integrated Starter Generator (ISG)
	3.5.7.5 Strong Hybrid (SHEV1-power split or 2 mode and SHEV2-p2 parallel or 2 mode)
	3.5.7.6 Plug-in hybrid electric vehicle (PHEV2)
	3.5.7.7 Electric vehicle (EV1)

	3.5.8 Other Off-cycle/Eco-innovative technologies
	3.5.9 On-path packages
	3.5.9.1 Engine path
	3.5.9.2 Mass reduction path
	3.5.9.3 Electrification path
	3.5.9.4 Low rolling resistance path
	3.5.9.5 Low driveline drag path
	3.5.9.6 Aerodynamic improvements path
	3.5.9.7 Transmission technologies path
	3.5.9.8 Other off-cycle technologies


	3.6 Model inputs
	3.6.1 Vehicle reference mass
	3.6.2 Vehicle footprint
	3.6.3 Already applied technologies
	3.6.4 Technology applicability matrix
	3.6.5 Vehicle reference cost
	3.6.6 Type of drive train
	3.6.7 Reference CO2 emissions, FE or FC
	3.6.8 Market sales coefficients
	3.6.9 Other parameters

	3.7 Created mathematical model
	3.7.1  Technology package G_PACKik:
	3.7.2 CAFE FC reduction without synergies C_FCRik
	3.7.3 CAFE FC reduction variation due to synergies C_FCSik:
	3.7.4 CAFE MPG resultant  C_MPGik and NEDC resultant CO2 emissions  N_CO2ik
	3.7.4.1 CAFE MPG resultant C_MPGik
	3.7.4.2 CAFE resultant CO2 emissions C_CO2ik
	3.7.4.3 NEDC Resultant CO2 emissions N_CO2i

	3.7.5 CAFE CO2 emissions reduction C_CO2Rik
	3.7.6 CAFE MPG target C_MPGTj
	3.7.7 CAFE Difference to target C_DIFij
	3.7.8 Actual vehicle mass AMik
	3.7.9 NEDC CO2 emissions limit N_CO2Tijk
	3.7.10 NEDC Difference to target N_DIFijk
	3.7.11 Globally-Compliant packages GC_PACKijk
	3.7.12 Globally compliant incremental cost of technology package without considering synergies GC_ICWOSijk
	3.7.13 Globally compliant incremental cost of technology package due to synergies GC_ICSik
	3.7.14 Globally compliant incremental cost of technology package GC_ICijk
	3.7.15 Globally compliant cost effectiveness (CAFE Based) GC_CEijk
	3.7.16 Most cost effective globally compliant package and its characteristics
	3.7.17 Minimum incremental cost of globally compliant technology package
	3.7.18 EU Market Most profitable package
	3.7.19 USA Market most profitable package
	3.7.20 Best global margin package

	3.8 Model outputs and results
	3.8.1 Model outputs
	3.8.2 Results – Reference car Midsize 1.4 NA MT
	3.8.3 Results – Reference car Midsize 1.3T AT


	4. Model calculation for a fleet of vehicles
	4.1 Introduction
	4.2 Hypothesis
	4.3 Model inputs
	4.4 Model algorithm
	4.4.1 Fleet CO2 emissions gap to the limit
	4.4.2 The total profit margin

	4.5 Model outputs and results

	5. Conclusions
	Bibliography
	Annexes
	Fleet model code
	Eco-innovations
	US06 Test cycle
	SC03 Test cycle
	Spreadsheets
	Light duty truck LDT definition
	CAFE Target curve PC
	CAFE Target curve LDT


