

Non Linear Geometric Elastic
Analysis of Thin Walled Beam by the

Finite Strip Element Method

Master thesis

Faculté Polytechnique de Mons

Alejandro Lifante Mira

Coralie AVEZ

Supervised by :

Dr. Prof. IrSélimDatoussaïd, FacultéPolytechnique de Mons

August 2014

Faculté Polytechnique

1 | P a g e

Contents
1. Introduction... 3

1.1 Background.. 3

1.2. Objectives and scope ... 3

2. Previous theories ... 5

2.1. Theoretical background ... 5

2.2. Existing methods .. 5

2.2.1.Exact methods .. 5

2.2.2. Approximate methods .. 6

2.2.3. Finite element method .. 6

2.3. Comparative table between FSM and FEM .. 7

3. Finite Element Method (FEM) ... 8

3.1. History .. 8

3.1.2. Creation of the Method .. 8

3.1.3. Practical use of the method through the centuries .. 8

3.3. FEM example .. 9

3.3.1. Situation .. 9

3.3.2 Element solving .. 10

4. Finite Strip Method (FSM) ... 16

4.1. History .. 16

4.2. Explanation ... 16

4.3. The finite strip analysis ... 17

4.3.1. Degree of freedom and shape functions .. 17

4.3.2. Elastic stiffness matrix ... 21

4.3.3. Geometric stiffness matrix .. 28

4.3.4. Assembly of the elements ... 31

4.4. Buckling modes .. 33

4.4.1. Local buckling .. 33

4.4.2. Distortional buckling ... 34

4.4.3. Global buckling .. 34

4.4.4. Generalized Beam Theory ... 35

5. Matlab program .. 36

5.1. Main program ... 36

4.2. Sub-programs ... 39

2 | P a g e

4.2.1. Local elastic matrix sub-program .. 39

4.2.2. Local geometric matrix sub-program .. 40

4.2.3. Boundary conditions calculator .. 42

4.2.4. Element properties .. 43

4.2.5. Rotation ... 43

4.2.6. Assembly ... 44

5.3. Matlab function map .. 45

6. Comparison with other methods .. 46

6.1. Theoretical comparison .. 46

6.2. Finite Element Method Comparison .. 48

7. Conclusions.. 49

8. Further work .. 50

9. Bibliography .. 51

Special thanks .. 51

Annex .. 52

1. Matlab programs ... 52

1.1. FSMsolver ... 52

1.2. K_elastic_local .. 53

1.3. K_geometric_local .. 55

1.4. elemprop .. 56

1.5. BCparameters ... 57

1.6. rotatestrip .. 59

1.7. assemble_elements .. 60

2. Comparison exercises .. 64

2.1. Theoretical comparison exercise ... 64

2.2. Finite Element Method Comparison exercise .. 66

3 | P a g e

1. Introduction

1.1 Background

The application of numerical methods as a tool to solve and analyze structural problems is

widely used at the moment. Lately the Finite Element Method (FEM) has heavily dominated

this field; however, other methods such as the Finite Strip Method (FSM) still have their

application in some structural problems and have not been discarded in their areas.

A lot of structures maintain geometrical properties constant along an axis, for example plates

or bridges. This kind of structures has a transversal section that does not vary in the

longitudinal direction, and, if the material properties remain constant as well in the given

direction, the analysis can be simplified combining the Finite Element Method (FEM) with

developments of the Fourier series to model the behavior.

Even though the FEM is a very versatile tool, it requires discretization in every dimension of

the problem, and generally, this implies a lot of unknown variables. The computational

advance has given a solution to problems that before seemed untreatable because of their

complexity and dimension.

Although the problems have been finally solved with FEM, the cost of these solutions is still

computationally extremely high. Furthermore, the availability of computers capable of doing

this analysis is still limited to a few privileged people, and this is even more noticeable in

developing countries. In those countries, very often analysis have to be carried out in much

less powerful machines.

On the other hand, in structural problems with regular geometrical forms and boundary

conditions, a complex analysis with finite elements is unnecessary and extravagant. In this

situation, to reduce the computational cost and requirements, alternative methods have been

developed.

The Finite Strip Method (FSM) is one of the alternative methods. It consists in reducing the

problem to a bi-dimensional problem in which longitudinal and transversal directions are

separated. Trigonometrical differential functions are used in the longitudinal direction while

simple polynomial functions are used in the other directions.

1.2. Objectives and scope

Analysis of structures composed by thin plates such as beams used for prismatic structures,

some kinds of plates or even bridges can be done using FSM.

In all the mentioned structures mechanical and material properties are constant in both the

transversal and longitudinal direction, and so the problem can be simplified combining FEM

and Fourier series to model the transversal and longitudinal behavior.

4 | P a g e

The main objective of this project is to develop a program capable of using FSM to analyze

different kinds of structures. However, in order to create and use this software it is crucial to

have a complete understanding of both the structural problem and all the factors that affect

this analysis. Therefore, in the project there will also be developed the whole theory behind

the Finite Strip Method.

Main objectives

 Develop a program capable of analyzing beams using the Finite Strip Method.

 Create a guide and several examples to understand the functionality and how to use

the developed program

Secondary objectives

o Describe the Finite Element Method for straight thin plates.

o Compare the obtained results with the FSM to those that would be obtained with

FEM.

5 | P a g e

2. Previous theories

2.1. Theoretical background

The plate calculus has its origin in the works realized by Euler in the XIII century. It is from this

works that the plate theory has been developed [1]*. In order to understand the deformation

of plates, the main hypothesis classified plates in both thin and thick plates.

Thin plates accept the hypothesis of Kirchhoff that despises the deformation due to shear

strains. It is because of this that we can express the partial differential equations of equilibrium

in function of only the deformation. This means that the hypothesis establishes that points

that were initially in any normal line to the plain of the plate will remain in the same normal

line after the deformation. The next image illustrates this:

Figure 1: Kirchhoff deformation hypothesis image

2.2. Existing methods

2.2.1.Exact methods

Exact methods are only viable in a very limited quantity of cases; the solution of differential

equations in partial derivation is only exact when they generate ordinary differential

equations. This only happens with very specific geometries, such as circular thin plates with

axial symmetry.

*[1]: Reference to bibliography

6 | P a g e

2.2.2. Approximate methods

The approximate methods are characterized because they are fast and reliable, and although

they do not give an exact solution, they allow us to fins sufficiently approximate solutions for

the structural problems.

There are several approximate methods. In the case of rectangular plates with uniform loading

there is a method created by Grashof and improved by Marcus based in superficies of

influence obtained by analytical or experimental methods [1]*.

The solution by series developments has been another procedure heavily used in a lot of thin

plate exercises. Timoshenko analyses a great number of plates using this method.

2.2.3. Finite element method

This method is actually part of the approximate methods, but it is the most versatile tool when

solving plate exercises. The solving of these problems is based in the hypothesis in the turning

of the normal lines to the middle plain and two theories exist. The thin plate theory of

Kirchhoff establishes that the normal lines to middle plain stay orthogonal to the deformed

form of the middle plain, which allows us to despise the shear strain deformation. The

Reissner-Mindlin theory keeps the condition of the straight deformation of the normal line but

does not demand the ortogonality after the deformation [2]*.

The FEM requires discretization in every dimension of the exercise, and so requires many more

variables that other approximate methods. If the geometrical and mechanical properties are

constant in a direction, like in plates or prismatic structures, in which the transversal section

does not vary in the longitudinal direction, the analysis can be simplified. Combining the FEM

and Fourier series we can solve this kind of structures. This procedure is known as the Finite

Strip Method (FSM).

*[1]: Reference to bibliography

*[2]: Reference to bibliography

7 | P a g e

2.3. Comparative table between FSM and FEM

FEM FSM

Applicable to any type of geometry, boundary
conditions or material variation. Extremely
powerful and usable in nearly every case.

In static analysis it is used for structures with
two opposite simply supported ends.
In dynamic analysis it is used with all
boundary conditions and with discrete
supports.

Implies a great number of equations and
extremely big matrix. Can be very expensive
and even impossible to use sometimes
because of the demanding computing
facilities.

Usually has a much smaller quantity of
equations and matrix are also smaller.
This leads to a much shorter computing time
to find a solution with nearly the same
accuracy.

Large quantity of input data which can lead to
mistakes.

Very small amount of input data due to the
smaller number of meshing.

Large quantity of output. Normally
displacements of all the nodes are listed.

Easier to specify only those nodes which
displacements and stresses are required.

Difficult to program and a very big
computational requirement.

Due to the reduction in the number of
degrees of freedom, the computational
requirements are smaller.

Table 1: Comparison between the Finite Element Method and the Finite Strip Method

8 | P a g e

3. Finite Element Method (FEM)

As previously stated, finite element method is a part of the approximate methods, and it

remains the most versatile tool for solving plate exercises.

3.1. History

3.1.2. Creation of the Method

The Finite Element Method was firstly developed in 1943 by Richard Courant, who used the

Ritz method of numerical analysis and minimization of calculus variables to obtain

approximate solutions of a vibration system. A little bit later, in 1956, a document published by

several scientists established a more wide definition of numerical analysis [1]*.

Although there were different approaches depending on the pioneer who developed the

method, all finite element method developments shared one characteristic: mesh

discretization of bigger elements into a set of discrete subdomains, usually called elements.

After the definition of discretization, an equation system was created to apply the equilibrium

equations to every node of every element of the structure. The equations system can be

written in the next way:

𝑓 = 𝐾 · 𝑢

Were the unknowns are the displacement of the nodes (u) and they can be found with the

forces in the nodes (f) and the stiffness matrix (K).

3.1.3. Practical use of the method through the centuries

With the arrival of the first computers in the 1950s decade, the structures calculus was found

in a point where most of the techniques used consisted in iterative methods (like Cross and

Kani) which were realized manually and therefore resulted quite tedious. The calculus of a

building with several floors could take weeks, which in the end supposed a big cost of time.

The arrival of computers allowed for the resurgence of methods for displacement knows of

previous centuries (Navier, Lagrange, Cauchy) but were too difficult to apply given that the use

of them lead to the resolution of enormous equations systems very difficult to approach from

the manual point of view.

 Between 1960 and 1970 the application of finite elements kept growing, and the

requirements for calculus time and memory of the computers also grew. At this point the

creation of less demanding and more efficient algorithms became important. In order to solve

the equations systems the already know algorithms (Gauss, Cholesky, Crout, etc…) are

adapted. It is at this point that the matricial method starts to extend. The development of this

method becomes especially known in the structures where discretization into bars is extremely

easy [1]*.

*[1]: Reference to bibliography

9 | P a g e

However, even though the modeling using bars starts to get developed, there is a great

difficulty to solve continuous structures (surfaces and volumes) with complex geometries. It is

particularly in the aerospace camp where new FEM techniques are developed.

In the 1970 there is a great deal of development and the method starts to apply to other

problems such as the nonlinear. During this decade, FEM was limited to expensive computers

and therefore to rich industries such as defense, nuclear, automation or aeronautic.

It is after 1980 that the method finally reaches particulars computers, and the use of

commercial programs that use this method is extended.

Up until today, the FEM system has acquired a lot of importance due to the great increase in

computer capabilities and the reduced economic cost of these. Today, supercomputers are

capable of giving exact results for nearly all kind of parameters.

3.3. FEM example

The Finite Element Method (FEM) is a numerical technique used to find approximate solutions

to boundary value problems for partial differential equations. The method uses variational

methods to minimize an error function and create solutions. To understand the concept, the

idea is analogous to saying that many tiny lines can approximate a large circle, although we will

never get the exact circle. It is based on the discretization (division in smaller elements), which

uses many simple element equations over many small subdomains, named finite elements, to

approximate a solution over a very complex equation in a much larger domain.

3.3.1. Situation

There is no best way to explain a method than using an example. In the finite element method

we take a structure and divide it into smaller elements, using several nodes for it. In our

example a simple beam will be taken, with a force applied in the end.

Figure 2: Initial situation

10 | P a g e

Now, taking the figure into account, we must discretize in order to have the figure divided into

different elements. In this example I will discretize it to have two triangular elements.

Figure 3: Discretization

So we can see that the figure has been discretized into two elements and four nodes. From

now on we will work in the triangular element.

3.3.2 Element solving

3.3.2.1. Displacement functions

We have taken a simple triangular element. In this exercise, we will be working in two

dimensions, but the finite element method can be used in three dimensions all the same.

We have then displacements in both the “x” and “y” direction for every node, as displayed in

the next figure. We name “u” the displacement in the “x” direction and “v” the displacement

in the “y” direction.

Figure 4: Displacements for every node

These displacements can be written in vector forms as:

𝑢1
𝑣1
𝑢2

𝑣2
𝑢3
𝑣3

=

𝑎1

𝑎2

𝑎3

11 | P a g e

Where each “a” will correspond to the horizontal and vertical displacement of each node. It is

a two vector variable with “u” and “v” inside it.

To know the displacement in any point of the triangle, we create an interpolation function to

interpolate the results in each node in order to find the displacement in a given “x, y”

coordinate.

𝑢 𝑥, 𝑦 = 𝑁1 𝑥, 𝑦 · 𝑢1 + 𝑁2 𝑥, 𝑦 · 𝑢2 + 𝑁3 𝑥, 𝑦 · 𝑢3 = 𝑁𝑖 𝑥, 𝑦 · 𝑢𝑖

3

𝑖=0

𝑣 𝑥, 𝑦 = 𝑁1 𝑥, 𝑦 · 𝑣1 + 𝑁2 𝑥, 𝑦 · 𝑣2 + 𝑁3 𝑥, 𝑦 · 𝑣3 = 𝑁𝑖 𝑥, 𝑦 · 𝑣𝑖

3

𝑖=0

Given this equations, we now have to find the interpolation functions N. First we will write the

interpolation function as a function depending of both “x” and “y”:

𝑁1 𝑥, 𝑦 = 𝛼1 · 𝑥 + 𝛽1 · 𝑦 + 𝛾1

𝑁2 𝑥, 𝑦 = 𝛼2 · 𝑥 + 𝛽2 · 𝑦 + 𝛾2

𝑁3 𝑥, 𝑦 = 𝛼3 · 𝑥 + 𝛽3 · 𝑦 + 𝛾3

Once we have this functions, in order to find the coefficients 𝛼, 𝛽, 𝛾 we use the boundary

conditions. The next conditions have to be met:

𝑢 𝑥1 , 𝑦1 = 𝑢1 → 𝑁1 𝑥1 , 𝑦1 = 1 ; 𝑁2 𝑥1 , 𝑦1 = 0 ; 𝑁3 𝑥1 , 𝑦1 = 0

𝑢 𝑥2 , 𝑦2 = 𝑢2 → 𝑁1 𝑥2 , 𝑦2 = 0 ; 𝑁2 𝑥2 , 𝑦2 = 1 ; 𝑁3 𝑥2 , 𝑦2 = 0

𝑢 𝑥3 , 𝑦3 = 𝑢3 → 𝑁1 𝑥3 , 𝑦3 = 0 ; 𝑁2 𝑥3 , 𝑦3 = 0 ; 𝑁3 𝑥3 , 𝑦3 = 1

Note that the “x” and “y” are coordinates while “u” and “v” are displacements of those

coordinates. We then have 3 equations with 3 unknowns for every interpolation function N.

Solving this equations we find that:

𝑁1 𝑥, 𝑦 =
1

2 · ∆
· 𝑦2 − 𝑦3 · 𝑥 + 𝑥3 − 𝑥2 · 𝑦 + (𝑥2 · 𝑦3 − 𝑥3 · 𝑦2)

𝑁2 𝑥, 𝑦 =
1

2 · ∆
· 𝑦3 − 𝑦1 · 𝑥 + 𝑥1 − 𝑥3 · 𝑦 + (𝑥1 · 𝑦3 − 𝑥3 · 𝑦1)

𝑁3 𝑥, 𝑦 =
1

2 · ∆
· 𝑦2 − 𝑦1 · 𝑥 + 𝑥2 − 𝑥1 · 𝑦 + (𝑥1 · 𝑦2 − 𝑥2 · 𝑦1)

Where 2·Δ is two times the area of the triangle defined as:

12 | P a g e

2 · ∆= 𝑑𝑒𝑡

1 𝑥1 𝑦1

1 𝑥2 𝑦2

1 𝑥3 𝑦3

 = 2 · 𝐴𝑟𝑒𝑎 𝑜𝑓 𝑡𝑕𝑒 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒

Finally, having all these parameters, we can define our displacement vector as:

𝑢
𝑣
 = 𝑁 · 𝑎

Where “N” is our interpolation matrix and “a” the deformation of known nodes. Expanding this

last equation we would find:

𝑢
𝑣
 =

𝑁1 0 𝑁2 0 𝑁3 0

0 𝑁1 0 𝑁2 0 𝑁3
 ·

𝑢1

𝑣1
𝑢2
𝑣2

𝑢3

𝑣3

= 𝑁 · 𝑎

3.3.2.2. Deformation

The deformation within a point of our element is defined by the three components that

contribute to the internal work of the very element. We therefore have the next equations,

where only the linear terms are taken into account:

𝜀 𝑥 =
𝛿𝑢

𝛿𝑥
 ; 𝜀 𝑦 =

𝛿𝑣

𝛿𝑦
 ; 𝛾 𝑥𝑦 =

𝛿𝑢

𝛿𝑦
+
𝛿𝑣

𝛿𝑥

Therefore, in matricidal form, we can define the deformation as:

𝜀 𝑥
𝜀 𝑦
𝛾 𝑥𝑦

 =

𝛿

𝛿𝑥
0

0
𝛿

𝛿𝑦

𝛿

𝛿𝑦

𝛿

𝛿𝑥

·
𝑁1 0 𝑁2 0 𝑁3 0

0 𝑁1 0 𝑁2 0 𝑁3
 ·

𝑢1

𝑣1
𝑢2
𝑣2

𝑢3

𝑣3

It is often that matrix 𝐵 is also defined:

 𝐵 = 𝐿 · 𝑁

Once we have our matrix defined we must relate them to the force applied to the object. In

order to do that it is crucial that the equilibrium equations of static are understood correctly.

𝑳

𝑵
𝒂

13 | P a g e

3.3.2.3. Equilibrium

Supposing a simple solid we can find the force applied to it (b) and the tensions within the

solid (𝜎𝑥 , 𝜎𝑦 , 𝛾𝑥𝑦).

Figure 5: Solid in equilibrium

Seeing all the forces in our system applied, we can define the equilibrium equations as:

𝛿𝜎𝑥
𝛿𝑥

+
𝛿𝜏𝑥𝑦

𝛿𝑦
+ 𝑏𝑥 = 0

𝛿𝜎𝑦

𝛿𝑦
+
𝛿𝜏𝑦𝑥

𝛿𝑥
+ 𝑏𝑦 = 0

Having found the deformation in the previous step, the relation between tensions and

deformations for the linear elastic behavior can be written like:

𝜀𝑥 =
𝜎𝑥
𝐸
−
𝜎𝑦 · 𝜐

𝐸

𝜀𝑦 =
𝜎𝑦

𝐸
−
𝜎𝑥 · 𝜐

𝐸

𝛾𝑥𝑦 =
𝜏𝑥𝑦

𝐺

Where we can define 𝐺 =
2·(1+𝜐)

𝐸
. In order to solve our problem, we need to have the

expression 𝜎 = 𝐷 · 𝜀 . Using the last equations we find that:

14 | P a g e

𝜎 =

𝜎𝑥
𝜎𝑦

𝜏𝑥𝑦
 =

𝐸

1 − 𝜐2
·

1 𝜐 0
𝜐 1 0

0 0
1 − 𝜐

𝐸

 ·

𝜀 𝑥
𝜀 𝑦
𝛾 𝑥𝑦

Once we have this it is time to define a new concept, the “virtual work”. This concept refer to

the fact that for every force applied, the object gets an external force which is countered by an

internal force created by the deformations in the object.

We can define the external and the internal energy as:

𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 = 𝜎 𝑇

𝑉

· 𝜀 · 𝑑𝑉 = 𝜀 𝑇

𝑉

· 𝜎 · 𝑑𝑉

𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 = 𝑁 · 𝑎 𝑇

𝑉

· 𝑏 · 𝑑𝑉

Thanks to the theory of the virtual works we know that these energies have to counter

themselves, so:

 𝜀 𝑇

𝑉

· 𝜎 · 𝑑𝑉 − 𝑁 · 𝑎 𝑇

𝑉

· 𝑏 · 𝑑𝑉 = 0

We can now define the deformation and tension as:

𝜀 = 𝐵 · 𝑎

𝜎 = 𝐷 · 𝐵 · 𝑎

We then have:

 𝐵 𝑇 · 𝑎 𝑇

𝑉

· 𝐷 · 𝐵 · 𝑎 · 𝑑𝑉 − 𝑎 𝑇 · 𝑁 𝑇

𝑉

· 𝑏 · 𝑑𝑉 = 0

Given that the vector 𝑎 does not depend on the volume and that none of the variables above

depend on the thickness (they only depend on the area), we can write the past equation as:

 𝑡 𝐵 𝑇 ·
𝐴

 𝐷 · 𝐵 · 𝑑𝐴 · 𝑎 − 𝑡 𝑁 𝑇

𝐴

· 𝑏 · 𝑑𝐴 = 0

Stiffness matrix (K) Force vector (B)

15 | P a g e

Finally we usually write the past equation as:

𝐾 · 𝑎 − 𝐵 = 𝐾 · 𝑎 − 𝐵 = 0

This so-called “standard discrete system” is solved for the whole structure, taking into account

the boundary conditions.

16 | P a g e

4. Finite Strip Method (FSM)

4.1. History

The finite strip method was created for structural analysis in the late 1960s. It was applied to

several structures such as bridge, tall buildings, plates or shells. The displacements were

described by functions which are given as products of trigonometrical/hyperbolic series and

polynomials. This series should at first satisfy the boundary conditions at the end of the strips.

[4]*

Although the technique is much less powerful and versatile than the Finite Element Method, it

is true that it is much more efficient in computation terms in many situations. It is for this

reason that many times it is more appropriate to use this method.

4.2. Explanation

The finite element method requires a discretization in every dimension of the problem, and

therefore it requires many more unknowns than other methods. If the structures have

geometrical and mechanical properties constant in one of the directions and the transversal

section does not vary in the same direction, then the problem can be simplified. In structures

such as plates or prismatic structures which satisfy the previous statements, the finite element

method can be combined with Fourier series to model the transversal and longitudinal

behavior.

In the finite strip method, the Fourier series are used to express the behavior of the

longitudinal variables while the transversal direction is modeled with the finite element

method. This allows eliminating unknowns associated to the longitudinal direction and solving

the problem by solving the one-dimensional finite element method problem where only

unknowns associated to the transversal direction discretization intervene.

*[4]: Reference to bibliography

17 | P a g e

4.3. The finite strip analysis

4.3.1. Degree of freedom and shape functions

As previously stated, in the finite strip method, the structure is only discretized in the cross-

section. The other dimension is usually represented using a shape trigonometrical function. In

the next figure we can see the axis taken for the exercise. Local coordinates are named with

small letters (x-y-z) and will always be associated with the strip element.

Displacements are represented with the translation U-V-W and the rotation θ for global

displacements and u-v-w and ϕ for local displacements. The subscript p refers to the half-wave

number (number of longitudinal terms).

Figure 6: Strip situation

Figure 7: Strip degrees of freedom definition

18 | P a g e

Figure 8: Strip stress distribution

The shape functions for the transverse direction are assumed to be the same polynomial

function for every boundary condition. On the other hand, in the longitudinal direction,

trigonometrical functions are taken. These functions have to satisfy the pre-set boundary

conditions. The out of plane displacement will use a shape cubic polynomial function for all

boundary conditions. Therefore, the expressions for general displacements are as follows:

𝑢 = 1 −
𝑥

𝑏

𝑥

𝑏

𝑚

𝑝=1

·
𝑢1𝑝

𝑢2𝑝
 · 𝑌𝑝

𝑣 = 1 −
𝑥

𝑏

𝑥

𝑏

𝑚

𝑝=1

·
𝑣1𝑝

𝑣2𝑝
 · 𝑌𝑝

′ ·
𝑎

𝜇𝑝

𝑤 = 1 −
3𝑥2

𝑏2
+

2𝑥3

𝑏3
𝑥 · 1 −

2𝑥

𝑏
+
𝑥2

𝑏2
3𝑥2

𝑏2
−

2𝑥3

𝑏3
𝑥 ·

𝑥2

𝑏2
−
𝑥

𝑏
 ·

𝑤1𝑝

𝜃1𝑝

𝑤2𝑝

𝜃2𝑝

𝑚

𝑝=1

· 𝑌𝑝

Where 𝜇𝑝 = 𝑝 · 𝜋 and 𝑝 is the half-wave number. 𝑌𝑚 is the function for the longitudinal

direction, which varies depending on the boundary conditions.

Boundary condition Shape function

Simply-Simply 𝑌𝑝 = 𝑠𝑖𝑛
𝑝 · 𝜋 · 𝑦

𝑎

Clamped-Clamped 𝑌𝑝 = 𝑠𝑖𝑛
𝑝 · 𝜋 · 𝑦

𝑎
· 𝑠𝑖𝑛

𝜋 · 𝑦

𝑎

19 | P a g e

Simply-Clamped 𝑌𝑝 = 𝑠𝑖𝑛
(𝑝 + 1) · 𝜋 · 𝑦

𝑎
+

𝑝 + 1

𝑝
 𝑠𝑖𝑛

𝑝 · 𝜋 · 𝑦

𝑎

Clamped-Free

𝑌𝑝 = 1 − 𝑐𝑜𝑠
 𝑝 −

1

2
 · 𝜋 · 𝑦

𝑎

Clamped-Guided 𝑌𝑝 = 𝑠𝑖𝑛
 𝑝 −

1

2
 · 𝜋 · 𝑦

𝑎
· 𝑠𝑖𝑛

𝑝 · 𝜋 · 𝑦

2 · 𝑎

We can put the displacement equations in form of a general vector such that:

𝑢
𝑣
 = 𝑁𝑢𝑣 ·

𝑢1𝑝

𝑣1𝑝

𝑢2𝑝

𝑣2𝑝

𝑚

𝑝=1

= 𝑁𝑢𝑣 · 𝑑𝑢𝑣
𝑝

𝑚

𝑝=1

𝑤 = 𝑁𝑤 ·

𝑤1𝑝

𝜃1𝑝

𝑤2𝑝

𝜃2𝑝

𝑚

𝑝=1

= 𝑁𝑤 · 𝑑𝑤
𝑝

𝑚

𝑝=1

𝑚refers to the quantity of half-wave number employed in the analysis. It refers to the shape of

the sinus function we will see in the buckling shape after deformation.

For example, for m=1 and simply-simply boundary conditions in the loaded edges we will have

a full half-sinus in the buckling:

Figure 9: Cufsm4 program “C” section for simply-simply BC and m=1

We can see that the deformation in the 3D shape is a sinus form.

The deformation buckling form depends on the value of the m. We can see the first four “m”

to understand the idea in the next table:

20 | P a g e

“m” number Shape in the longitudinal direction

1

Figure 10:Simply-simply shape for m=1

2

Figure 11: Simply-simply shape for m=2

3

Figure 12: Simply-simply shape for m=3

4

Figure 13: Simply-simply shape for m=4

21 | P a g e

For m=1 we can see the next boundary conditions figures:

4.3.2. Elastic stiffness matrix

In the strip we can distinguish two portions, bending and membrane. Every strip behaves as

the superposition of two independent stresses, the membrane and the bending which is due

to the normal forces to the plane of the plate.

Figure 15: Shape for clamped-clamped boundary
conditions

Figure 14: Shape for simply-simply boundary
conditions

Figure 17: Shape for simply-clamped boundary
conditions

Figure 16: Shape for clamped-free boundary
conditions

Figure 18: Shape for clamped-guided boundary
conditions

22 | P a g e

The membrane strains are at the mid-line of the strip and will be governed by plane stress

assumptions. On the other hand, bending strains follows Kirchhoff thin plate theory. We can

define the deformation as the sum of both bending and membrane deformations.

𝜀 = 𝜀𝑀 + 𝜀𝐵

4.3.2.1. Membrane matrix

The membrane stress is defined as the component of normal stress that is uniformly

distributed and equal to the average value of the stress across the thickness of the section

under consideration.

In the membrane matrix the plates are submitted to normal and tangential forces in the plane

of the plate, for which we consider a uniform distribution due to the fact that the thickness of

the plate is considered very small compared to the dimensions of the plate. It is also

considered that there is a linear behavior load vs. displacement.

The general expression of the deformation with the linear terms due to membrane stress is:

 𝜀𝑀 =

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦

𝑀

=

𝜕𝑢

𝜕𝑥
𝜕𝑣

𝜕𝑦
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥

𝑀

= 𝑁𝑢𝑣
′ ·

𝑢1𝑝

𝑣1𝑝

𝑢2𝑝

𝑣2𝑝

𝑚

𝑝=1

= 𝐵𝑀
𝑝
 · 𝑑𝑢𝑣

𝑝

𝑚

𝑝=1

It is obvious that the displacement due to membrane stress will depend on u and v, which are

the displacements in the plane of the plate, where membrane stress occurs.

Given that the membrane behavior (𝑢, 𝑣) is uncoupled from the bending behavior (𝑤), we can

define the internal strain energy during buckling for membrane stress as:

𝑈𝑀 =
1

2
· 𝜀𝑀

𝑇 · 𝜎𝑀
𝑉

· 𝑑𝑉

For the finite strip method we use a constant thickness, which can therefore stay out of the

integration. Also, we can relate 𝜎 to 𝜀 using the 𝐷 matrix:

 𝜎𝑀 = 𝐷𝑀 · 𝜀𝑀

Where the 𝐷 matrix is:

 𝐷𝑀 =
1

1 − 𝜈𝑦𝑥 𝜈𝑥𝑦

𝐸𝑥 𝜈𝑥𝑦 · 𝐸𝑥 0

𝜈𝑦𝑥 · 𝐸1 𝐸𝑦 0

0 0 1 − 𝜈𝑥𝑦 𝜈𝑦𝑥 · 𝐺

23 | P a g e

Where, if we have an isotropic material:

 𝐷𝑀 =
1

1 − 𝜐2

1 𝜐 0
𝜐 1 0

0 0
(1 − 𝜐)

2

We can then write the expression for the strain energy as:

𝑈𝑀 =
1

2
· 𝑡 · 𝜀𝑀

𝑇 · 𝐷𝑀 · 𝜀𝑀 𝑑𝑥𝑑𝑦
𝑏

0

𝑎

0

The elastic stiffness matrix for membrane stress can be extracted from the statement for

internal energy such as:

𝑈𝑀 =
1

2
· 𝑑𝑢𝑣

𝑝

𝑇

· 𝑡 · 𝐵𝑀
𝑝 𝑇

· 𝐷𝑀 · 𝐵𝑀
𝑝

 𝑑𝑥𝑑𝑦
𝑏

0

𝑎

0

𝑚

𝑞=1

𝑚

𝑝=1

· 𝑑𝑢𝑣
𝑞

Where our stiffness matrix is:

𝑘𝑒𝑀
𝑝𝑞

= 𝑡 · 𝐵𝑀
𝑝 𝑇

· 𝐷𝑀 · 𝐵𝑀
𝑝

 𝑑𝑥𝑑𝑦
𝑏

0

𝑎

0

4.3.2.2. Bending matrix

The bending strains are defined as the variable stress across the thickness of the section under

consideration, after the subtraction of the membrane stress. As previously stated, unlike the

membrane stress, the bending strains follow the Kirchhoff plate theory.

Kirchhoff theory hypothesis

The hypothesis in which Kirchhoff’s theory is based for thin plates are the next 4:

o Points in the middle plain only move vertically (u=v=0).

o All the points contained in a normal to the middle plain have the same vertical

displacement.

o 𝜎𝑧 is not taken into account.

o Points on the normal lines to the plain stay in the same orthogonal lines to the middle

plain after the deformation.

24 | P a g e

Thanks to the previous hypothesis, we can write our displacements as:

𝑢 𝑥, 𝑦, 𝑧 = −𝑧 · 𝜃𝑥(𝑥, 𝑦)

𝑣 𝑥, 𝑦, 𝑧 = −𝑧 · 𝜃𝑦(𝑥, 𝑦)

𝑤 𝑥, 𝑦, 𝑧 = 𝑤(𝑥, 𝑦)

Where

o 𝜔is the vertical displacement.

o 𝜃𝑥 𝑎𝑛𝑑 𝜃𝑦are the angles that define the turn of the normal line to the middle plain.

Figure 19: Kirchhoff deformation hypothesis image

Taking this image into account we can see that:

In the xz plain: 𝜃𝑥 =
𝜕𝑤

𝜕𝑥

In the yz plain: 𝜃𝑦 =
𝜕𝑤

𝜕𝑦

Using these equations and the ones written before we can conclude that:

𝑢 𝑥, 𝑦, 𝑧 = −𝑧 ·
𝜕𝑤(𝑥, 𝑦)

𝜕𝑥

1st and 4th hypothesis

2nd hypothesis

25 | P a g e

𝑣 𝑥, 𝑦, 𝑧 = −𝑧 ·
𝜕𝑤(𝑥, 𝑦)

𝜕𝑦

𝑤 𝑥, 𝑦, 𝑧 = 𝑤(𝑥, 𝑦)

Taking the last expression, we can define the deformation as:

 𝜀𝐵 =

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦

 =

 −𝑧 ·

𝜕2𝑤

𝜕𝑥2

−𝑧 ·
𝜕2𝑤

𝜕𝑦2

2𝑧 ·
𝜕2𝑤

𝜕𝑥𝜕𝑦

= 𝑧 · 𝑁𝑤
′ ·

𝑤1𝑝

𝜃1𝑝

𝑤2𝑝

𝜃2𝑝

𝑚

𝑝=1

= 𝑧 · 𝐵𝐵
𝑝
 · 𝑑𝑤

𝑝

𝑚

𝑝=1

As in the case of the membrane stress, we can write the bending term of the internal strain

energy during buckling as:

𝑈𝐵 =
1

2
· 𝜀𝐵

𝑇 · 𝜎𝐵
𝑉

 𝑑𝑉

Where we can substitute:

 𝜎𝐵 = 𝐷𝐵 · 𝜀𝐵

 𝐷𝐵 =
𝑡3

12
·

1

1 − 𝜈𝑦𝑥 𝜈𝑥𝑦

𝐸𝑥 𝜈𝑥𝑦 · 𝐸𝑥 0

𝜈𝑦𝑥 · 𝐸1 𝐸𝑦 0

0 0 1 − 𝜈𝑥𝑦 𝜈𝑦𝑥 · 𝐺

In the case of an isotropic material:

 𝐷𝐵 =
𝑡3

12
·

1

1 − 𝜐2

1 𝜐 0
𝜐 1 0

0 0
(1 − 𝜐)

2

We can then write the expression for the strain energy as:

𝑈𝐵 =
1

2
· 𝜀𝐵

𝑇 · 𝐷𝐵 · 𝜀𝐵 𝑑𝑥𝑑𝑦
𝑏

0

𝑎

0

The elastic stiffness matrix for membrane stress can be extracted from the statement for

internal energy such as:

𝑈𝐵 =
1

2
· 𝑑𝑤

𝑝

𝑇

· 𝐵𝐵
𝑝𝑇

· 𝐷𝐵 · 𝐵𝐵
𝑝

 𝑑𝑥𝑑𝑦
𝑏

0

𝑎

0

𝑚

𝑞=1

𝑚

𝑝=1

· 𝑑𝑤
𝑞

26 | P a g e

Where our stiffness matrix is:

𝑘𝑒𝐵
𝑝𝑞

= 𝐵𝐵
𝑝𝑇

· 𝐷𝐵 · 𝐵𝐵
𝑝

 𝑑𝑥𝑑𝑦
𝑏

0

𝑎

0

4.3.2.3. Local stiffness matrix

The local stiffness matrix will be a combination of both the membrane and the bending strains.

We can define it as:

𝐾𝑒
𝑝𝑞

=
𝑘𝑒𝑀
𝑝𝑞

0

0 𝑘𝑒𝐵
𝑝𝑞

During the development of the global stiffness matrix the next general expressions for both

membrane and bending matrixes have been found. These expressions correspond to the value

after the integration:

𝑘𝑒𝑀
𝑝𝑞

= 𝑡 ·

𝐸1𝐼1
𝑏

+
𝐺𝑏𝐼5

3
 −

𝐸2𝜐𝑥𝐼2
2𝑐1

−
𝐺𝐼5
2𝑐1

 −
𝐸1𝐼1
𝑏

+
𝐺𝑏𝐼5

6
 −

𝐸2𝜐𝑥𝐼2
2𝑐1

+
𝐺𝐼5
2𝑐1

 −
𝐸2𝜐𝑥𝐼2

2𝑐1
−
𝐺𝐼5
2𝑐1

𝐸2𝑏𝐼4
3𝑐1𝑐2

+
𝐺𝐼5
𝑏𝑐1𝑐2

𝐸2𝜐𝑥𝐼2

2𝑐1
−
𝐺𝐼5
2𝑐1

𝐸2𝑏𝐼4
6𝑐1𝑐2

−
𝐺𝐼5
𝑏𝑐1𝑐2

 −
𝐸1𝐼1
𝑏

+
𝐺𝑏𝐼5

6

𝐸2𝜐𝑥𝐼2
2𝑐1

−
𝐺𝐼5
2𝑐1

𝐸1𝐼1
𝑏

+
𝐺𝑏𝐼5

3

𝐸2𝜐𝑥𝐼3
2𝑐1

+
𝐺𝐼5
2𝑐1

 −
𝐸2𝜐𝑥𝐼2

2𝑐1
+
𝐺𝐼5
2𝑐1

𝐸2𝑏𝐼4
6𝑐1𝑐2

−
𝐺𝐼5
𝑏𝑐1𝑐2

𝐸2𝜐𝑥𝐼3

2𝑐1
+
𝐺𝐼5
2𝑐1

𝐸2𝑏𝐼4
3𝑐1𝑐2

+
𝐺𝐼5
𝑏𝑐1𝑐2

𝑘𝑒𝐵
𝑝𝑞

=
1

420𝑏3

5040𝐷𝑥𝐼1 − 504𝑏2𝐷1𝐼2
−504𝑏2𝐷1𝐼3 + 156𝑏4𝐷𝑦𝐼4

+2016𝑏2𝐷𝑥𝑦 𝐼5

2520𝑏𝐷𝑥 𝐼1 − 462𝑏3𝐷1𝐼2
−42𝑏3𝐷1𝐼3 + 22𝑏5𝐷𝑦𝐼4

+168𝑏3𝐷𝑥𝑦 𝐼5

−5040𝐷𝑥𝐼1 + 504𝑏2𝐷1𝐼2
+504𝑏2𝐷1𝐼3 + 54𝑏4𝐷𝑦𝐼4

−2016𝑏2𝐷𝑥𝑦 𝐼5

2520𝑏𝐷𝑥𝐼1 − 42𝑏3𝐷1𝐼2
−42𝑏3𝐷1𝐼3 − 13𝑏5𝐷𝑦𝐼4

+168𝑏3𝐷𝑥𝑦 𝐼5

2520𝑏𝐷𝑥𝐼1 − 462𝑏3𝐷1𝐼2
−42𝑏3𝐷1𝐼3 + 22𝑏5𝐷𝑦𝐼4

+168𝑏3𝐷𝑥𝑦 𝐼5

1680𝑏2𝐷𝑥𝐼1 − 56𝑏4𝐷1𝐼2
−56𝑏4𝐷1𝐼3 + 4𝑏6𝐷𝑦𝐼4

+224𝑏4𝐷𝑥𝑦 𝐼5

−2520𝑏𝐷𝑥𝐼1 + 42𝑏3𝐷1𝐼2
+42𝑏3𝐷1𝐼3 + 13𝑏5𝐷𝑦𝐼4

−168𝑏3𝐷𝑥𝑦 𝐼5

840𝑏2𝐷𝑥𝐼1 + 14𝑏4𝐷1𝐼2
+14𝑏4𝐷1𝐼3 − 3𝑏6𝐷𝑦𝐼4

−56𝑏4𝐷𝑥𝑦 𝐼5

−5040𝐷𝑥𝐼1 + 504𝑏2𝐷1𝐼2
+504𝑏2𝐷1𝐼3 + 54𝑏4𝐷𝑦𝐼4

−2016𝑏2𝐷𝑥𝑦 𝐼5

−2520𝑏𝐷𝑥 𝐼1 + 42𝑏3𝐷1𝐼2
+42𝑏3𝐷1𝐼3 + 13𝑏5𝐷𝑦𝐼4

−168𝑏3𝐷𝑥𝑦 𝐼5

5040𝐷𝑥𝐼1 − 504𝑏2𝐷1𝐼2
−504𝑏2𝐷1𝐼3 + 156𝑏4𝐷𝑦𝐼4

+2016𝑏2𝐷𝑥𝑦 𝐼5

−2520𝑏𝐷𝑥𝐼1 + 462𝑏3𝐷1𝐼2
+42𝑏3𝐷1𝐼3 − 22𝑏5𝐷𝑦𝐼4

−168𝑏3𝐷𝑥𝑦 𝐼5

2520𝑏𝐷𝑥𝐼1 − 42𝑏3𝐷1𝐼2
−42𝑏3𝐷1𝐼3 − 13𝑏5𝐷𝑦𝐼4

+168𝑏3𝐷𝑥𝑦 𝐼5

−5040𝐷𝑥𝐼1 + 504𝑏2𝐷1𝐼2
+504𝑏2𝐷1𝐼3 + 54𝑏4𝐷𝑦𝐼4

−2016𝑏2𝐷𝑥𝑦 𝐼5

−5040𝐷𝑥𝐼1 + 504𝑏2𝐷1𝐼2
+504𝑏2𝐷1𝐼3 + 54𝑏4𝐷𝑦𝐼4

−2016𝑏2𝐷𝑥𝑦 𝐼5

1680𝑏2𝐷𝑥𝐼1 − 56𝑏4𝐷1𝐼2
−56𝑏4𝐷1𝐼3 + 4𝑏6𝐷𝑦𝐼4

+224𝑏4𝐷𝑥𝑦 𝐼5

Where

𝑐1 =
𝑝𝜋

𝑎

𝑐2 =
𝑞𝜋

𝑎

I depends on the boundary conditions and is:

𝐼1 = 𝑌𝑝 · 𝑌𝑞 · 𝑑𝑦
𝑎

0

27 | P a g e

𝐼2 = 𝑌𝑝
′′ · 𝑌𝑞 · 𝑑𝑦

𝑎

0

𝐼3 = 𝑌𝑝 · 𝑌𝑞
′′ · 𝑑𝑦

𝑎

0

𝐼4 = 𝑌𝑝
′′ · 𝑌𝑞

′′ · 𝑑𝑦
𝑎

0

𝐼5 = 𝑌𝑝
′ · 𝑌𝑞

′ · 𝑑𝑦
𝑎

0

And the coefficient E and D correspond to:

𝐸1 =
𝐸𝑥

1 − 𝑣𝑥𝑣𝑦

𝐸2 =
𝐸𝑦

1 − 𝑣𝑥𝑣𝑦

𝐷𝑥 =
𝐸𝑥𝑡

3

12(1 − 𝑣𝑥𝑣𝑦)

𝐷𝑦 =
𝐸𝑦𝑡

3

12(1 − 𝑣𝑥𝑣𝑦)

𝐷1 =
𝑣𝑥𝐸𝑦𝑡

3

12(1 − 𝑣𝑥𝑣𝑦)
=

𝑣𝑦𝐸𝑥𝑡
3

12(1 − 𝑣𝑥𝑣𝑦)

𝐷𝑥𝑦 =
𝐺𝑡3

12

Finally we can describe the full local matrix depending on the half-wave number as:

𝐾𝑒 =
𝑘𝑒𝑀
𝑝𝑞

·

· 𝑘𝑒𝐵
𝑝𝑞

𝑚𝑥𝑚

Where 𝑚 is the maximum half-wave number. For example for 𝑚 = 2 we will have a matrix:

𝐾𝑒 =
𝐾𝑒

11 𝐾𝑒
12

𝐾𝑒
21 𝐾𝑒

22

Therefore, the dimension of our matrix would be equal to:

𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 = 𝑚 · 𝑛𝑛𝑜𝑑𝑒𝑠 · 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑠

Where

𝑚 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑕𝑎𝑙𝑓𝑤𝑎𝑣𝑒 𝑛𝑢𝑚𝑏𝑒𝑟𝑠

𝑛𝑛𝑜𝑑𝑒𝑠 = 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠

𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑠 = 4 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑠 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑛𝑜𝑑𝑒

28 | P a g e

4.3.3. Geometric stiffness matrix

The geometric stiffness matrix is crucial in order to calculate the correct buckling critical loads.

It can be calculated either in terms of higher order strain or by the method of the potential

energy. The potential energy method is used here. We distinguish in each strip the stress in

both nodes, denominated 𝑇1and 𝑇2. You can express the potential due to this two stresses

during buckling as:

𝑉𝑝 =
1

2
 𝑇1 − 𝑇1 − 𝑇2

𝑥

𝑏
 ·

𝜕𝑢

𝜕𝑦

2

+
𝜕𝑣

𝜕𝑦

2

+
𝜕𝑤

𝜕𝑦

2

𝑏

0

𝑎

0

𝑑𝑥𝑑𝑦

Like in the case of the elastic stiffness matrix, we can distinguish the bending part (𝑤) and the

membrane part (𝑢and 𝑣). We can express the derivatives of displacements depending on the

shape functions, the nodal displacements and the half-wave number 𝑝.

In the case of the bending part we can define the derivative of 𝑤 as:

𝜕𝑤

𝜕𝑦

2

= 𝑁𝑤
′

𝑤1𝑝

𝜃1𝑝

𝑤2𝑝

𝜃2𝑝

𝑚

𝑝=1

 =

𝑤1𝑝

𝜃1𝑝

𝑤2𝑝

𝜃2𝑝

𝑇

 𝐺𝐵
𝑝

𝑇
 𝐺𝐵

𝑞

𝑤1𝑝

𝜃1𝑝

𝑤2𝑝

𝜃2𝑝

𝑚

𝑞=1

𝑚

𝑝=1

For the membrane, the derivative of 𝑢 and 𝑣 are:

𝜕𝑢

𝜕𝑦

2

𝜕𝑣

𝜕𝑦

2

= 𝑁𝑢𝑣
′

𝑚

𝑝=1

𝑢1𝑝

𝑣1𝑝

𝑢2𝑝

𝑣2𝑝

2

=

𝑢1𝑝

𝑣1𝑝

𝑢2𝑝

𝑣2𝑝

𝑇
𝑚

𝑞=1

𝑚

𝑝=1

 𝐺𝑀
𝑝

𝑇
 𝐺𝑀

𝑝

𝑢1𝑝

𝑣1𝑝

𝑢2𝑝

𝑣2𝑝

Finally we can write the potential energy 𝑉𝑝 as:

𝑉𝑝 =
1

2
 𝑇1 − 𝑇1 − 𝑇2

𝑥

𝑏
 𝑑𝑝

𝑇

𝑚

𝑞=1

𝑚

𝑝=1

 𝐺𝑝 𝑇 𝐺𝑞 𝑑𝑞
𝑏

0

𝑎

0

which can be rewritten as:

𝑉𝑝 = 𝑑𝑝
𝑇

𝑚

𝑞=1

𝑚

𝑝=1

𝑘𝑔
𝑝𝑞
𝑑𝑞

Where the matrix 𝑘𝑔
𝑝𝑞

 correspond to the half-wave numbers 𝑝 and 𝑞 can be divided into two

parts, the membrane and the bending, similar to the case of the elastic matrix:

𝑘𝑔
𝑝𝑞

=
𝑘𝑔𝑀
𝑝𝑞

·

· 𝑘𝑔𝐵
𝑝𝑞

Therefore, taking all the 𝑝 and𝑞 half-waves we can create the full geometric matrix which is:

𝑘𝑔 = 𝑘𝑔
𝑝𝑞

𝑚𝑥𝑚

29 | P a g e

Where 𝑚 is the maximum number of half-waves used in the analysis.

The values of the bending and membrane matrix after integration corresponding to the half-

waves 𝑝 and 𝑞 can be obtained through the substitution in the next matrices:

𝑘𝑔𝑀
𝑝𝑞

=

 3𝑇1 + 𝑇2 𝑏𝐼5

12
0

 𝑇1 + 𝑇2 𝑏𝐼5
12

0

0
 3𝑇1 + 𝑇2 𝑏𝑎

2𝐼4
12𝜇𝑝𝜇𝑞

0
 𝑇1 + 𝑇2 𝑏𝑎

2𝐼4
12𝜇𝑝𝜇𝑞

 𝑇1 + 𝑇2 𝑏𝐼5
12

0
 3𝑇1 + 𝑇2 𝑏𝐼5

12
0

0
 𝑇1 + 𝑇2 𝑏𝑎

2𝐼4
12𝜇𝑝𝜇𝑞

0
 3𝑇1 + 𝑇2 𝑏𝑎

2𝐼4
12𝜇𝑝𝜇𝑞

𝑘𝑔𝐵
𝑝𝑞

=

 10𝑇1 + 3𝑇2 𝑏𝐼5

35

 15𝑇1 + 7𝑇2 𝑏
2𝐼5

420

 𝑇1 + 𝑇2 𝑏𝐼5
140

−
 7𝑇1 + 6𝑇2 𝑏

2𝐼5
420

 15𝑇1 + 7𝑇2 𝑏
2𝐼5

420

 5𝑇1 + 3𝑇2 𝑏
3𝐼5

840

 6𝑇1 + 7𝑇2 𝑏
2𝐼5

420
−
 𝑇1 + 𝑇2 𝑏

3𝐼5
280

 𝑇1 + 𝑇2 𝑏𝐼5
140

 6𝑇1 + 7𝑇2 𝑏
2𝐼5

420

 3𝑇1 + 10𝑇2 𝑏𝐼5
35

−
 7𝑇1 + 15𝑇2 𝑏

2𝐼5
420

−
 7𝑇1 + 6𝑇2 𝑏

2𝐼5
420

−
 𝑇1 + 𝑇2 𝑏

3𝐼5
280

−
 7𝑇1 + 15𝑇2 𝑏

2𝐼5
420

 3𝑇1 + 5𝑇2 𝑏
3𝐼5

840

Where

𝜇𝑝 = 𝑝𝜋

𝜇𝑞 = 𝑞𝜋

I depends on the boundary conditions and is:

𝐼1 = 𝑌𝑝 · 𝑌𝑞 · 𝑑𝑦
𝑎

0

𝐼2 = 𝑌𝑝
′′ · 𝑌𝑞 · 𝑑𝑦

𝑎

0

𝐼3 = 𝑌𝑝 · 𝑌𝑞
′′ · 𝑑𝑦

𝑎

0

𝐼4 = 𝑌𝑝
′′ · 𝑌𝑞

′′ · 𝑑𝑦
𝑎

0

𝐼5 = 𝑌𝑝
′ · 𝑌𝑞

′ · 𝑑𝑦
𝑎

0

And 𝑇1and 𝑇2 are the stresses in the nodes of the element.

30 | P a g e

Finally we can describe the full local matrix depending on the half-wave number as:

𝐾𝑔 =
𝑘𝑔𝑀
𝑝𝑞

·

· 𝑘𝑔𝐵
𝑝𝑞

𝑚𝑥𝑚

Where 𝑚 is the maximum half-wave number. For example for 𝑚 = 2 we will have a matrix:

𝐾𝑔 =
𝐾𝑔

11 𝐾𝑔
12

𝐾𝑔
21 𝐾𝑔

22

31 | P a g e

4.3.4. Assembly of the elements

We have now found the local elastic stiffness matrix and the local geometric stiffness matrix.

In order to create the full global matrices we must first transform the local matrices to the

global coordinates and then assemble all the matrices together to find the full global matrices.

4.3.4.1. Rotation

In order to rotate the strip we have to create the matrix for rotation which relates movements

between local and global coordinates. In order to understand this matrix we can use the next

image:

Figure 20: Strip rotation guide image

𝑈1

𝑉1

𝑈2

𝑉2

𝑊1

𝜃1

𝑊2

𝜃2

=

cos⁡(𝛼) 0 0 0 −sin⁡(𝛼) 0 0 0

0 1 0 0 0 0 0 0
0 0 cos⁡(𝛼) 0 0 0 −sin⁡(𝛼) 0
0 0 0 1 0 0 0 0

sin⁡(𝛼) 0 0 0 cos⁡(𝛼) 0 0 0
0 0 0 0 0 1 0 0
0 0 sin⁡(𝛼) 0 0 0 cos⁡(𝛼) 0
0 0 0 0 0 0 0 1

·

𝑢1

𝑣1

𝑢2

𝑣2

𝑤1

𝜃1

𝑤2

𝜃2

This matrix relates the local coordinates to the global coordinates. This matrix has to be

extended to the 𝑚 number of halfwaves analyzed.

32 | P a g e

4.3.4.2. Assembly

After changing the local matrices to the global coordinates we must assemble them together

to create the full global matrix.

In order to join the matrices we must look at the nodes. In the next image we can see a plate

and we will create a matrix for this particular example:

Figure 21: Example image for assembly – This plate with 3 elements

Therefore the global matrix must contain all the local matrices together and position like in the

case of the finite element method. The K local matrix has 4 components, relating how every

node affects to each other:

𝐾𝑙𝑜𝑐𝑎𝑙 =
𝐾𝑖𝑖 𝐾𝑖𝑗
𝐾𝑗𝑖 𝐾𝑗𝑗

Where every 𝐾𝑖𝑖 is a 4x4 matrix with the 4 displacements.

With this matrix we can get the global matrix of our example:

𝐾𝑔𝑙𝑜𝑏𝑎𝑙 =

𝐾𝑖𝑖 𝐾𝑖𝑗 0 0

𝐾𝑗𝑖 𝐾𝑖𝑖 + 𝐾𝑗𝑗 𝐾𝑖𝑗 0

0 𝐾𝑗𝑖 𝐾𝑖𝑖 + 𝐾𝑗𝑗 𝐾𝑖𝑗
0 0 𝐾𝑗𝑖 𝐾𝑗𝑗

In a random section, this matrix will be extended to all the elements and nodes that exist in

our section.

33 | P a g e

4.4. Buckling modes

Thin-walled members, when subjected to a large compressive normal stress, usually fail by the

loss of stability, more than due to reaching the material limit parameters. Usually we can

distinguish three basic modes of buckling: local, distortional and global buckling. All three

modes eventually cause excessive deformation and lead to failure. [7]*

It is very important to understand the buckling modes and the critical stress associated to each

mode. Every mode has a different degree of post-buckling capacity, but they all lead to an

eventual collapse response. Therefore, we most calculate the critical stress to avoid the loss of

stability.

Even when the designs do require the calculation of buckling stresses, there are no clear

definitions for each of the modes and it is quite difficult to ultimately distinguish between

them correctly.

4.4.1. Local buckling

The local buckling of a section is normally defined as the mode which involves the deformation

of the thin plates composing the section, without translation of the intersection lines between

the same thin plates. Some examples of this mode are shown:

*[7]: Reference to bibliography

Figure 23: Local buckling for
a“I”section

Figure 22: Local buckling for a
“C” section

Figure 24: Local buckling for a “V” section

34 | P a g e

4.4.2. Distortional buckling

Distortional buckling is a mode defined as a cross-sectional distortion that involves the

translation of some of the fold lines (intersection lines between thin plates). It is a rare mode

of buckling, we can see a clear example of it in the C section:

Figure 25: Distortional buckling for a “C” section

4.4.3. Global buckling

Global buckling is a mode where the member deforms with no deformation in its section.

Figure 27: Global buckling for a “V” section

Figure 26: Global buckling for a “C”
section

35 | P a g e

4.4.4. Generalized Beam Theory

Thanks to the Generalized Beam Theory (GBT), the modes can be correctly described and with

some programs we can even isolate different buckling modes. In order to distinguish between

the buckling modes, the GBT establishes three criteria:

Criteria 1

o 𝛾𝑥𝑦 = 0, membrane (in-plane) shear strains are zero.

o 𝜀𝑥 = 0, membrane transverse strains are zero.

o 𝑣 = 𝑓(𝑥), longitudinal displacements are linear in x within an element.

Criteria 2

o 𝜀𝑦 ≠ 0, longitudinal strains/displacements are non-zero along the length.

Criteria 3

o 𝜅𝑦 = 0, no flexure in the transverse direction.

The buckling modes can then be described as:

 Global buckling: Global buckling modes are those that satisfy all the three criteria.

 Distortional buckling: Distortional buckling modes are those that satisfy criteria 1 and

2 but do not satisfy criteria 3.

 Local buckling: Local buckling modes satisfy criterion 1, but do not satisfy criterion 2.

Criterion 3 is irrelevant in this case.

In the next table we can see a resume of the classification of modes.

 Global modes Distortional modes Local modes

𝛾𝑥𝑦 = 0, 𝜀𝑥 = 0, 𝑣 = 𝑓(𝑥) YES YES YES

𝜀𝑦 ≠ 0 YES YES NO

𝜅𝑦 = 0 YES NO -

The program “CUFSM 4.05” has been used to obtain the images of the previous buckling

modes.

36 | P a g e

5. Matlab program

In order to solve structures using the finite strip method, in this project we have developed a

program that will solve any section structures utilizing the finite strip method.

We will explain both the functioning of the program as all the sub-programs that have been

implemented. We will then proceed to explain how to use the program and use a few

examples to understand the functioning.

5.1. Main program

The main programs that has been developed returns, for several strip lengths and any section,

the critical buckling value and the buckling mode.It also calculates the particular displacement

caused by the submitted stress.

Our main program is named “FSMsolver” and the function is:

[shape,curve,sigmacritical] =
FSMcrit(material_properties,nodes,elements,lengths,boundary_conditions,m_a)

INPUTS OUTPUTS

Material properties: [Ex Eyvxvy G]
Nodes [node_numberx_positionz_position
stress]
Elements [element_numbernodeinodej t]
Lengths
Boundary conditions
m_a

Shape
Curve
Critical buckling stress
Displacement

Inputs

o Material properties: One of the inputs that are demanded is the material properties.

o Ex = 𝐸𝑥 : Young modulus in the “x” direction.

o Ey= 𝐸𝑦 : Young modulus in the “y” direction.

o vx =𝜈𝑥 : Poisson’s ratio in the “x” direction.

o vy = 𝜈𝑦 : Poisson’s ratio in the “y” direction.

o Gxy = The shear modulus for the material. It can be calculated using the Young

modulus and the Poisson’s ratio:

𝐺𝑥𝑦 =
𝐸𝑥

2 · (1 + 𝜐𝑥𝑦)

o Nodes: The nodes of the section we want to analyze

o node_number = The node number that we will then we can then identify to

know the modal displacement in the “shape” output.

o x_position = The “x” coordinate for the node.

o z_position = The “z” coordinate for the node.

o stress = The normal stress we want the node to suffer.

37 | P a g e

o Elements: The elements connecting the nodes must also be defined

o element_number = The element number

o nodei and nodej = The two nodes the element is connecting

o t = The thickness of the element connecting both nodes

o Lengths: The length of the strips we are analyzing.

o Boundary conditions: The boundary conditions at the loaded edges.

o 'S-S': Simply-simply supported boundary condition at loaded edges.

o 'C-C': Clamped-clamped boundary condition at loaded edges.

o 'S-C': Simply-clamped boundary condition at loaded edges.

o 'C-F': Clamped-free supported boundary condition at loaded edges.

o 'C-G': Clamped-guided supported boundary condition at loaded edges.

o m_a: half-wave terms to be analyzed for the length.

Output

o Shape: A matrix containing the modal displacement for all nodes after the finite strip

analysis. The matrix will contain the next values.

· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·

Modal displacement

shape for m_a=1

Modal displacement

shape for m_a=2

Modal displacement

shape for m_a=n

Shape for the first

buckling mode

Shape for the “k”

buckling mode

38 | P a g e

Where we can distinguish:

o n = The number of half-waves that want to be analyzed, that can be described in the

variable m_a, where for example:

o m_a=[1 2 3 4 5] would analyze the first five half-waves, where “n” would be 5.

o k = Number of buckling modes that will be analyzed. The default value is 10, however

depending on the quantity of nodes and half-waves, more buckling modes may be

analyzed.

The modal displacement shape includes in the column the next movements:

𝑢1

𝑣1

·
𝑢𝑛
𝑣𝑛
𝜔1

𝜃1

·
𝜔𝑛
𝜃𝑛

Where “n” will be the number of nodes in the section that is analyzed.

o Curve: Includes the critical buckling stress for the “k” buckling modes that were found

in the “shape” output. The value we find in the curve will be
𝑃𝑐𝑟𝑖𝑡

𝑠𝑡𝑟𝑒𝑠𝑠 𝑖𝑛𝑝𝑢𝑡
, meaning we

have to multiply the value we find with the stress we input to find the critical buckling

stress.

o Critical buckling stress: The program will automatically output the critical value in the

“curve” output, which will be the first buckling mode we will have. Take into account

that the value the critical buckling stress output gives us is the value of the critical

stress divided between the input stress for the nodes.

o Displacement: The program will also return the displacement values for every node as

shown in the previous vector for the particular stress input.

Displacement for the

first node

39 | P a g e

5.2. Sub-programs

In order to utilize the previous program, several sub-programs are required. All these programs

have been developed utilizing the theory explained in the previous chapter.

5.2.1. Local elastic matrix sub-program

A program to find the local elastic matrix has been created. In this function we will create the

local geometric matrix defining it as:

𝐾𝑒 =
𝑘𝑒𝑀
𝑝𝑞

·

· 𝑘𝑒𝐵
𝑝𝑞

𝑚𝑥𝑚

Where

𝑘𝑒𝑀
𝑝𝑞

= 𝑡 ·

𝐸1𝐼1
𝑏

+
𝐺𝑏𝐼5

3
 −

𝐸2𝜐𝑥𝐼2
2𝑐1

−
𝐺𝐼5
2𝑐1

 −
𝐸1𝐼1
𝑏

+
𝐺𝑏𝐼5

6
 −

𝐸2𝜐𝑥𝐼2
2𝑐1

+
𝐺𝐼5
2𝑐1

 −
𝐸2𝜐𝑥𝐼2

2𝑐1
−
𝐺𝐼5
2𝑐1

𝐸2𝑏𝐼4
3𝑐1𝑐2

+
𝐺𝐼5
𝑏𝑐1𝑐2

𝐸2𝜐𝑥𝐼2

2𝑐1
−
𝐺𝐼5
2𝑐1

𝐸2𝑏𝐼4
6𝑐1𝑐2

−
𝐺𝐼5
𝑏𝑐1𝑐2

 −
𝐸1𝐼1
𝑏

+
𝐺𝑏𝐼5

6

𝐸2𝜐𝑥𝐼2
2𝑐1

−
𝐺𝐼5
2𝑐1

𝐸1𝐼1
𝑏

+
𝐺𝑏𝐼5

3

𝐸2𝜐𝑥𝐼3
2𝑐1

+
𝐺𝐼5
2𝑐1

 −
𝐸2𝜐𝑥𝐼2

2𝑐1
+
𝐺𝐼5
2𝑐1

𝐸2𝑏𝐼4
6𝑐1𝑐2

−
𝐺𝐼5
𝑏𝑐1𝑐2

𝐸2𝜐𝑥𝐼3

2𝑐1
+
𝐺𝐼5
2𝑐1

𝐸2𝑏𝐼4
3𝑐1𝑐2

+
𝐺𝐼5
𝑏𝑐1𝑐2

𝑘𝑒𝐵
𝑝𝑞

=
1

420𝑏3

5040𝐷𝑥𝐼1 − 504𝑏2𝐷1𝐼2
−504𝑏2𝐷1𝐼3 + 156𝑏4𝐷𝑦𝐼4

+2016𝑏2𝐷𝑥𝑦 𝐼5

2520𝑏𝐷𝑥 𝐼1 − 462𝑏3𝐷1𝐼2
−42𝑏3𝐷1𝐼3 + 22𝑏5𝐷𝑦𝐼4

+168𝑏3𝐷𝑥𝑦 𝐼5

−5040𝐷𝑥𝐼1 + 504𝑏2𝐷1𝐼2
+504𝑏2𝐷1𝐼3 + 54𝑏4𝐷𝑦𝐼4

−2016𝑏2𝐷𝑥𝑦 𝐼5

2520𝑏𝐷𝑥𝐼1 − 42𝑏3𝐷1𝐼2
−42𝑏3𝐷1𝐼3 − 13𝑏5𝐷𝑦𝐼4

+168𝑏3𝐷𝑥𝑦 𝐼5

2520𝑏𝐷𝑥𝐼1 − 462𝑏3𝐷1𝐼2
−42𝑏3𝐷1𝐼3 + 22𝑏5𝐷𝑦𝐼4

+168𝑏3𝐷𝑥𝑦 𝐼5

1680𝑏2𝐷𝑥𝐼1 − 56𝑏4𝐷1𝐼2
−56𝑏4𝐷1𝐼3 + 4𝑏6𝐷𝑦𝐼4

+224𝑏4𝐷𝑥𝑦 𝐼5

−2520𝑏𝐷𝑥𝐼1 + 42𝑏3𝐷1𝐼2
+42𝑏3𝐷1𝐼3 + 13𝑏5𝐷𝑦𝐼4

−168𝑏3𝐷𝑥𝑦 𝐼5

840𝑏2𝐷𝑥𝐼1 + 14𝑏4𝐷1𝐼2
+14𝑏4𝐷1𝐼3 − 3𝑏6𝐷𝑦𝐼4

−56𝑏4𝐷𝑥𝑦 𝐼5

−5040𝐷𝑥𝐼1 + 504𝑏2𝐷1𝐼2
+504𝑏2𝐷1𝐼3 + 54𝑏4𝐷𝑦𝐼4

−2016𝑏2𝐷𝑥𝑦 𝐼5

−2520𝑏𝐷𝑥 𝐼1 + 42𝑏3𝐷1𝐼2
+42𝑏3𝐷1𝐼3 + 13𝑏5𝐷𝑦𝐼4

−168𝑏3𝐷𝑥𝑦 𝐼5

5040𝐷𝑥𝐼1 − 504𝑏2𝐷1𝐼2
−504𝑏2𝐷1𝐼3 + 156𝑏4𝐷𝑦𝐼4

+2016𝑏2𝐷𝑥𝑦 𝐼5

−2520𝑏𝐷𝑥𝐼1 + 462𝑏3𝐷1𝐼2
+42𝑏3𝐷1𝐼3 − 22𝑏5𝐷𝑦𝐼4

−168𝑏3𝐷𝑥𝑦 𝐼5

2520𝑏𝐷𝑥𝐼1 − 42𝑏3𝐷1𝐼2
−42𝑏3𝐷1𝐼3 − 13𝑏5𝐷𝑦𝐼4

+168𝑏3𝐷𝑥𝑦 𝐼5

−5040𝐷𝑥𝐼1 + 504𝑏2𝐷1𝐼2
+504𝑏2𝐷1𝐼3 + 54𝑏4𝐷𝑦𝐼4

−2016𝑏2𝐷𝑥𝑦 𝐼5

−5040𝐷𝑥𝐼1 + 504𝑏2𝐷1𝐼2
+504𝑏2𝐷1𝐼3 + 54𝑏4𝐷𝑦𝐼4

−2016𝑏2𝐷𝑥𝑦 𝐼5

1680𝑏2𝐷𝑥𝐼1 − 56𝑏4𝐷1𝐼2
−56𝑏4𝐷1𝐼3 + 4𝑏6𝐷𝑦𝐼4

+224𝑏4𝐷𝑥𝑦 𝐼5

40 | P a g e

The program is named “k_elastic_local” and the function is:

function [k_elastic_local]=k_elastic_local(Ex,Ey,vx,vy,G,t,a,b,BC,m_a)

INPUTS OUTPUTS

Ex: Young modulus in the “x” direction.
Ey: Young modulus in the “y” direction.
vx: Poisson’s ratio in the “x” direction.
vy: Poisson’s ratio in the “y” direction.
G: Shear modulus for the material.
t: Thickness of the analyzed strip element.
a: Length of the strip element.
b: Width of the strip element.
BC: Boundary conditions of the loaded edges.
m_a: Analyzed half-waves for the strip
element.

k_elastic_local: The elastic stiffness matrix for
the defined strip element in local
coordinates.

5.2.2. Local geometric matrix sub-program

A program similar to the previous one has also been created to find the local geometric matrix.

In this function we will create the local geometric matrix defining it as:

𝐾𝑔 =
𝑘𝑔𝑀
𝑝𝑞

·

· 𝑘𝑔𝐵
𝑝𝑞

𝑚𝑥𝑚

Where:

𝑘𝑔𝑀
𝑝𝑞

=

 3𝑇1 + 𝑇2 𝑏𝐼5

12
0

 𝑇1 + 𝑇2 𝑏𝐼5
12

0

0
 3𝑇1 + 𝑇2 𝑏𝑎

2𝐼4
12𝜇𝑝𝜇𝑞

0
 𝑇1 + 𝑇2 𝑏𝑎

2𝐼4
12𝜇𝑝𝜇𝑞

 𝑇1 + 𝑇2 𝑏𝐼5
12

0
 3𝑇1 + 𝑇2 𝑏𝐼5

12
0

0
 𝑇1 + 𝑇2 𝑏𝑎

2𝐼4
12𝜇𝑝𝜇𝑞

0
 3𝑇1 + 𝑇2 𝑏𝑎

2𝐼4
12𝜇𝑝𝜇𝑞

𝑘𝑔𝐵
𝑝𝑞

=

 10𝑇1 + 3𝑇2 𝑏𝐼5

35

 15𝑇1 + 7𝑇2 𝑏
2𝐼5

420

 𝑇1 + 𝑇2 𝑏𝐼5
140

−
 7𝑇1 + 6𝑇2 𝑏

2𝐼5
420

 15𝑇1 + 7𝑇2 𝑏
2𝐼5

420

 5𝑇1 + 3𝑇2 𝑏
3𝐼5

840

 6𝑇1 + 7𝑇2 𝑏
2𝐼5

420
−
 𝑇1 + 𝑇2 𝑏

3𝐼5
280

 𝑇1 + 𝑇2 𝑏𝐼5
140

 6𝑇1 + 7𝑇2 𝑏
2𝐼5

420

 3𝑇1 + 10𝑇2 𝑏𝐼5
35

−
 7𝑇1 + 15𝑇2 𝑏

2𝐼5
420

−
 7𝑇1 + 6𝑇2 𝑏

2𝐼5
420

−
 𝑇1 + 𝑇2 𝑏

3𝐼5
280

−
 7𝑇1 + 15𝑇2 𝑏

2𝐼5
420

 3𝑇1 + 5𝑇2 𝑏
3𝐼5

840

41 | P a g e

The program is named “k_geometric_local” and the function is:

function [k_geometric_local]=k_geometric_local(a,b,Ty1,Ty2,BC,m_a)

INPUTS OUTPUTS

a: Length of the strip element.
b: Width of the strip element.
Ty1: Normal stress in the “i” node of the
element.
Ty2: Normal stress in the “j” node of the
element.
BC: Boundary conditions of the loaded edges.
m_a: Analyzed half-waves for the strip
element.

k_geometric_local: The geometric stiffness
matrix for the defined strip element in local
coordinates.

42 | P a g e

5.2.3. Boundary conditions calculator

A function to calculate the five undetermined parameters I1, I2, I3, I4 and I5 for the local

elastic and geometric stiffness matrix has been created. The parameters are defined as:

𝐼1 = 𝑌𝑝 · 𝑌𝑞 · 𝑑𝑦
𝑎

0

𝐼2 = 𝑌𝑝
′′ · 𝑌𝑞 · 𝑑𝑦

𝑎

0

𝐼3 = 𝑌𝑝 · 𝑌𝑞
′′ · 𝑑𝑦

𝑎

0

𝐼4 = 𝑌𝑝
′′ · 𝑌𝑞

′′ · 𝑑𝑦
𝑎

0

𝐼5 = 𝑌𝑝
′ · 𝑌𝑞

′ · 𝑑𝑦
𝑎

0

As we can see, the I values depend on the two half-waves we analyze “p” and “q”.

The program is called “BCparameters” and the function is:

function [I1,I2,I3,I4,I5] = BCparameters(BC,Nm,Np,a)

INPUTS OUTPUTS

BC: Boundary conditions as defined
previously:
 'S-S': Simply-simply supported

boundary condition at loaded edges.
 'C-C': Clamped-clamped boundary

condition at loaded edges.
 'S-C': Simply-clamped boundary

condition at loaded edges.
 'C-F': Clamped-free supported

boundary condition at loaded edges.
 'C-G': Clamped-guided supported

boundary condition at loaded edges.
Nm: Half-wave number “q”.
Np: Half-wave number “p”.
a: Length of the analyzed strip element.

I1, I2, I3, I4, I5: Undetermined parameters
utilized in the geometric and elastic local
stiffness matrices.
They depend on the half-waves number “p”
and “q” which appear in the matrices:

𝑘𝑒
𝑝𝑞

 and 𝑘𝑔
𝑝𝑞

43 | P a g e

5.2.4. Element properties

From the input elements we need to find a few parameters in order to use the other functions.

For this the “elemprop” function has been created and the function is:

function [elprop]=elemprop(node,elem,nnodes,nelems)

INPUTS OUTPUTS

node: The nodes as defined before:
[node_numberx_positionz_position stress]
elem: The elements as defined before:
[element_numbernodeinodej t]
nnodes and nelems: Number of nodes and
elements in our section.

elprop: A variable including
[element_numberwidth alpha]
Where the “width” will be used for the local
matrices and the “alpha” to change the local
coordinates to global coordinates.

5.2.5. Rotation

This program is used to transform the local coordinate matrices to global coordinates. It

utilizes a matrix to rotate the strip. The rotation depends on the angle “𝛼”.

Figure 28: Strip rotation guide image

The program is called “rotatestrip” and the function is:

[k_elastic_global,k_geometric_global]=rotatestrip(alpha,k_elastic,k_geometric,m_a)

INPUTS OUTPUTS

alpha: angle “𝛼” for the strip as defined in
the image.
k_elastic: elastic matrix in local coordinates.
k_geometric: geometric matrix in local
coordinates.
m_a: Analyzed half-waves for the strip
element.

k_elastic_global: elastic matrix in global
coordinates.
k_geometric_global: geometric matrix in
global coordinates.

44 | P a g e

5.2.6. Assembly

Another program has been used to join all the strips. Using the strips elastic and geometric

matrices in global coordinates, the function will join the particular strip to the full global

matrix. The program is called “assemble_elements” and the function is:

[K_elastic,K_geometric]=assemble_elements(K_elastic,K_geometric,k_elastic_local,k_geometri

c_local,nodei,nodej,nnodes,m_a)

INPUTS OUTPUTS

K_elastic: Full elastic matrix for the section.
K_geometric: Full geometric matrix for the
section.
k_elastic_global: Elastic matrix for the strip in
global coordinates.
k_geometric_global: Geometric matrix for the
strip in global coordinates.
nodei and nodej: Nodes of the element.
nnodes: Number of nodes in the section
m_a: Analyzed half-waves for the strip
element.

K_elastic: Full elastic matrix for the section
adding the elastic matrix of the strip element
defined by “k_elastic_global”.

K_geometric: Full geometric matrix for the
section adding the geometric matrix of the
strip element defined by
“k_geometric_global”.

45 | P a g e

5.3. Matlab function map

46 | P a g e

6. Comparison with other methods

In order to verify the usefulness of our program it is crucial that we compare the results we

obtain with other programs or theories that we know have the correct results. This way we can

compare both the error and the time difference with our program.

As previously stated, our method should be much quicker due to the fact that it has many less

freedom degrees than the Finite Element Method. However, we must verify that the error is

acceptable.

6.1. Theoretical comparison

Utilizing the classical formulas we can find the critical buckling load for simple compression. In

order to verify the level of error the program has, the theoretical values for the next

coefficient have been compared with those calculated theoretically in book [3]*. The calculus

have been done with a thin plate as the one in the next image.

Figure 29: Thin plate used for the calculus

𝜎𝑐𝑟𝑖𝑡 can be defined as:

𝜎𝑐𝑟𝑖𝑡 = 𝐾𝑐 · 𝐸 ·
𝑡2

𝑏2

*[3]: Reference to bibliography

47 | P a g e

Where:

o 𝐾𝑐 is a coefficient that depends on the boundary conditions and on the relation

between the length and width of the plate.

o 𝐸is the Young modulus.

o 𝑡is the thickness of the plate.

o 𝑏is the width of the plate.

o 𝑎is the length of the plate.

In order to find the values for K we must create a thin plate problem. In our case we will do it

with 10 nodes in the transversal direction. The complete exercise is added in the annexes. In

the next table we will see the results.

𝒂

𝒃

Boundary conditions

Simply-Simply Clamped-Clamped

Theoretical K FSM program K Difference Theoretical K FSM program K Difference

𝟎, 𝟓 3,5 3,518 0,5% 15,8 14,347 9,2%

𝟎, 𝟔 2,5 2,432 2,7% 10 9,949 0,5%

𝟎, 𝟕 1,8 1,778 1,2% 7,3 7,300 0%

𝟎, 𝟗 1,2 1,067 11,1% 4,5 4,405 2,1%

𝟏, 𝟎 0,9 0,861 4,3% 3,7 3,564 3,7%

𝟏, 𝟐 0,7 0,594 15,1% 2,5 2,469 1,2%

𝟏, 𝟒 0,5 0,434 13,2% 1,8 1,811 0,6%

𝟏, 𝟖 0,25 0,260 4% 1,15 1,090 5,2%

𝟐, 𝟎 0,2 0,209 4,5% 0,9 0,884 1,8%

𝟐, 𝟒 0,15 0,145 3,3% 0,6 0,613 2,2%

> 𝟑 0,1 0,092 8% 0,4 0,391 2,3%

We can see that the differences between both calculi are small enough. The differences

between the values come due to the different formulation between the semi-analytical

method and the FSM.

48 | P a g e

6.2. Finite Element Method Comparison

As previously stated, the Finite Element Method gives a more accurate result than the Finite

Strip Method, although it demands much more computer capacity and time.

In order to calibrate the accuracy of the FSM program the values obtained with FEM are

utilized and compared to calibrate the program. Values obtained from the article [6]* are

utilized in the following comparison.

The whole comparison exercise can be found in the annexes. Here we will only look at the

results.

Section 𝜎𝑐𝑟𝑖𝑡
Error a=100, b=110, h=170,

lip length=30
Finite strip method Finite element method

t=1 mm 37,99 37,74 0,66%

t=2 mm 151,85 150,52 0,88%

t=3 mm 341,29 337,07 1,24%

t=4 mm 605,86 595,36 1,73%

t=5 mm 944,85 922,69 2,35%

Degrees of freedom
17 nodes * 4 dof = 68
degrees of freedom

17 nodes in the section * 5
nodes in the longitudinal

direction * 4 dof = 340
degrees of freedom

We can see therefore that the error percentage is very small and acceptable.

The small error that we can find is due to the fact that the finite element method does

implement the shear strains into its calculus, while de finite strip method follows the Kirchhoff

theory, where the shear strains are not taken into account because they are extremely small.

*[6]: Reference to bibliography

49 | P a g e

7. Conclusions

The objective of this project was to develop a program capable of implementing the FSM

theory in order to solve structural problems. The new formulation of the FSM with the theories

of Kirchhoff and Reissner-Mindlin for the analysis of rectangular structures is implemented to

the program.

The results are well calibrated in comparison to those in the plate theory. Regarding FEM, the

solutions are comparatively quite correct, with a small difference in the buckling critical

coefficient of about 1%. This small error is due to the fact that FEM solutions include shear

strain effects while the FSM solution does not.

Therefore, we can extract some conclusions:

o The Finite Strip Method, although being a semi-analytical theory that utilizes

trigonometric Fourier series in the longitudinal direction and FEM in the transversal

direction, can be correctly utilized to solve a rectangular problem with various

sections.

o The dimension of the problem is greatly reduced with FSM. It is reduced to a system

with two middle nodes with four displacements each. Thanks to the Fourier series, we

can define the boundary conditions with trigonometric functions that satisfy them in

the loaded edges.

o The boundary conditions are extremely important to determine the stiffness matrices

in the FSM, given that changing them will cause some coefficients inside the matrix to

vary.

o The behavior of our program is acceptable in many cases and much quicker than the

FEM solution to the same problem. The requirements for the computer are greatly

decreased because the unknowns in the problem are much lesser than in the finite

element method.

50 | P a g e

8. Further work

Having finished the finite strip method, there are several new things that could be done in

order to continue with this investigation.

The program that has been developed only solves a single column. It would be interesting to

solve a whole frame utilizing the finite strip method in every column separately. However, in

order to do this, further investigation must be made in the unions between the bars. In the

next image we can see an illustration of what the next objective could be:

Figure 30: Frame

Although all the bars can correctly be analyzed by the Finite Strip Method when taking them

separately, it requires further analysis to know if it is possible to solve a complete frame

utilizing this method.

51 | P a g e

9. Bibliography

1. OÑATE, Eugenio: “Cálculo de Estructuras por el Método de los Elementos Finitos”,

2. JOVICEVIC, J and OÑATE, E: “Analisis of Beams and Shells Using a Rotation”

3. GÉMINARD, Lucien and GIET, Armand: “Stabilité des constructions”

4. Y. K. Cheung, L. G. Tham, “The Finite Strip Method”

5. LI, Z. and SCHAFER, B.W. (2010) “Buckling analysis of cold-formed steel members with

general boundary conditions using CUFSM: conventional and constrained finite strip

methods.” Proceedings of the 20th Int;l. Spec. Conf. on Cold-Formed Steel Structures,

St. Louis, MO. November, 2010.

6. BUI HUNG CUONG, “Analysestatique du comportement des structures a parois minces

par la method des elements finis et des bandesfinies de type plaque et

coquesurbaisseedeformables en cisaiilement”

7. TIMOSHENKO – GOUDIER, “Theory of Elasticity”

Special thanks

To Professor SélimDatoussaïd, for being so understanding with my initial little knowledge of

Finite Element Method and helping me a lot during the whole project.

To Professor Ben Schafer’s thin-walled structures research group, for creating the marvelous

program CUFSM 4.05, which has been extremely helpful, together with all the theory behind it,

with this project.

52 | P a g e

Annex

1. Matlab programs

1.1. FSMsolver

function [shape,curve,sigmacritical,kvalue] =

FSMsolver(material_properties,nodes,elements,lengths,boundary_conditio

ns,m_a)
% function to find the modal shape and the critical values for the

demanded length.
% It will also find the value of k for the calculus of the sigmacrit.
% INPUTS
% material_properties: [Ex Eyvxvy G] One material per row
% with all the properties mentiones.
% nodes: [node_numberx_positionz_position stress] number of nodes x 4.
% elements: [element_numbernodeinodej t] number of elements x 4.
% lengths=length to be analysed
% boundary_conditions
% m_a: half-waves to be analyzed
% m_a=[1 2 3 4 5] if we want to analyse the first 5 half-wave numbers.

BC=boundary_conditions;
a=lengths;
Np=length(m_a);
nnodes=length(nodes(:,1));
nelements=length(elements(:,1));

[elproperties]=elemprop(nodes,elements,nnodes,nelements);
%elproperties:[element width alfa]

% Defining of the global full matrices
K=zeros(4*nnodes*Np,4*nnodes*Np);
Kg=zeros(4*nnodes*Np,4*nnodes*Np);

fori=1:nelements
%Define the local stiffness and geometric matrixes
 t=elements(i,4);
 b=elproperties(i,2);
 Ex=material_properties(1);
Ey=material_properties(2);
vx=material_properties(3);
vy=material_properties(4);
 G=material_properties(5);
 [k_el]=k_elastic_local(Ex,Ey,vx,vy,G,t,a,b,BC,m_a);
 Ty1=nodes(elements(i,2),4)*t;
 Ty2=nodes(elements(i,3),4)*t;
 [k_gl]=k_geometric_local(a,b,Ty1,Ty2,BC,m_a);

%Transform matrixes to the global coordinates
alpha=elproperties(i,3);
 [k_eg,k_gg]=rotatestrip(alpha,k_el,k_gl,m_a);

%Add the element to the full matrix
nodei=elements(i,2);
nodej=elements(i,3);
 [K,Kg]=assemble_elements(K,Kg,k_eg,k_gg,nodei,nodej,nnodes,m_a);

53 | P a g e

end

R=eye(4*nnodes*Np);
Kff=R'*K*R;
Kffg=R'*Kg*R;

%function eig: returs [V,D] so K*V=D*Kg*V where D is a diagonal matrix

with
%the values of the critical buckling forces in the diagonal.
neigs=10;
options.disp=0;
options.issym=1;
N=max(min(2*neigs,length(Kff(1,:))),1);
[V,D]=eigs(full(Kffg\Kff),N,'SM',options);
curve=diag(D);
shape=V;

%The critical mode will be that one with the smallest critical value
sigmacritical=min(curve);
b=90;
kvalue=sigmacritical*b^2/(Ex*t^2);
end

1.2. K_elastic_local

function [k_elastic_local]=k_elastic_local(Ex,Ey,vx,vy,G,t,a,b,BC,m_a)
%
%Create the elastic stiffness matrix in global coordinates

% Inputs:
% Ex,Ey,vx,vy,G: material properties
% t: thickness of the element
% a: length of the strip (longitudinal)
% b: width of the strip (tranversal)
% BC: ['S-S'] a string specifying boundary conditions to be analyzed:
%'S-S' simply-simply supported boundary condition
%'C-C' clamped-clamped boundary condition
%'S-C' simply-clamped supported boundary condition
%'C-F' clamped-free supported boundary condition
%'C-G' clamped-guided supported boundary condition
% m_a: longitudinal terms (or half-wave numbers) for this length.
% m_a=[1 2 3 4 5] if we want to analyse the first 5 half-wave numbers.

% Output:
% k: local stiffness matrix, a totalm x totalm matrix of 8 by 8

submatrices.
% k=[kmp]totalm x totalm block matrix
% each kmp is the 8 x 8 submatrix in the DOF order [u1 v1 u2 v2 w1

theta1 w2 theta2]';

E1=Ex/(1-vx*vy);
E2=Ey/(1-vx*vy);
Dx=Ex*t^3/(12*(1-vx*vy));
Dy=Ey*t^3/(12*(1-vx*vy));
D1=vx*Ey*t^3/(12*(1-vx*vy));
Dxy=G*t^3/12;
%
totalm = length(m_a); %Total number of longitudinal terms m
%

54 | P a g e

k_elastic_local=sparse(zeros(8*totalm,8*totalm));
z0=zeros(4,4);
for m=1:1:totalm
for p=1:1:totalm
%
km_mp=zeros(4,4);
kf_mp=zeros(4,4);
um=m_a(m)*pi;
up=m_a(p)*pi;
 c1=um/a;
 c2=up/a;
%
 [I1,I2,I3,I4,I5] = BCparameters(BC,m_a(m),m_a(p),a);
%
%asemble the matrix of Km_mp (K membrane for m and p half-waves)
km_mp(1,1)=E1*I1/b+G*b*I5/3;
km_mp(1,2)=E2*vx*(-1/2/c2)*I3-G*I5/2/c2;
km_mp(1,3)=-E1*I1/b+G*b*I5/6;
km_mp(1,4)=E2*vx*(-1/2/c2)*I3+G*I5/2/c2;

km_mp(2,1)=E2*vx*(-1/2/c1)*I2-G*I5/2/c1;
km_mp(2,2)=E2*b*I4/3/c1/c2+G*I5/b/c1/c2;
km_mp(2,3)=E2*vx*(1/2/c1)*I2-G*I5/2/c1;
km_mp(2,4)=E2*b*I4/6/c1/c2-G*I5/b/c1/c2;

km_mp(3,1)=-E1*I1/b+G*b*I5/6;
km_mp(3,2)=E2*vx*(1/2/c2)*I3-G*I5/2/c2;
km_mp(3,3)=E1*I1/b+G*b*I5/3;
km_mp(3,4)=E2*vx*(1/2/c2)*I3+G*I5/2/c2;

km_mp(4,1)=E2*vx*(-1/2/c1)*I2+G*I5/2/c1;
km_mp(4,2)=E2*b*I4/6/c1/c2-G*I5/b/c1/c2;
km_mp(4,3)=E2*vx*(1/2/c1)*I2+G*I5/2/c1;
km_mp(4,4)=E2*b*I4/3/c1/c2+G*I5/b/c1/c2;
km_mp=km_mp*t;
%
%
%asemble the matrix of Kf_mp (K bending for m and p half-waves)
 kf_mp(1,1)=(5040*Dx*I1-504*b^2*D1*I2-

504*b^2*D1*I3+156*b^4*Dy*I4+2016*b^2*Dxy*I5)/420/b^3;
 kf_mp(1,2)=(2520*b*Dx*I1-462*b^3*D1*I2-

42*b^3*D1*I3+22*b^5*Dy*I4+168*b^3*Dxy*I5)/420/b^3;
 kf_mp(1,3)=(-

5040*Dx*I1+504*b^2*D1*I2+504*b^2*D1*I3+54*b^4*Dy*I4-

2016*b^2*Dxy*I5)/420/b^3;
 kf_mp(1,4)=(2520*b*Dx*I1-42*b^3*D1*I2-42*b^3*D1*I3-

13*b^5*Dy*I4+168*b^3*Dxy*I5)/420/b^3;

 kf_mp(2,1)=(2520*b*Dx*I1-462*b^3*D1*I3-

42*b^3*D1*I2+22*b^5*Dy*I4+168*b^3*Dxy*I5)/420/b^3;
 kf_mp(2,2)=(1680*b^2*Dx*I1-56*b^4*D1*I2-

56*b^4*D1*I3+4*b^6*Dy*I4+224*b^4*Dxy*I5)/420/b^3;
 kf_mp(2,3)=(-

2520*b*Dx*I1+42*b^3*D1*I2+42*b^3*D1*I3+13*b^5*Dy*I4-

168*b^3*Dxy*I5)/420/b^3;
 kf_mp(2,4)=(840*b^2*Dx*I1+14*b^4*D1*I2+14*b^4*D1*I3-

3*b^6*Dy*I4-56*b^4*Dxy*I5)/420/b^3;

kf_mp(3,1)=kf_mp(1,3);
kf_mp(3,2)=kf_mp(2,3);

55 | P a g e

 kf_mp(3,3)=(5040*Dx*I1-504*b^2*D1*I2-

504*b^2*D1*I3+156*b^4*Dy*I4+2016*b^2*Dxy*I5)/420/b^3;
 kf_mp(3,4)=(-2520*b*Dx*I1+462*b^3*D1*I2+42*b^3*D1*I3-

22*b^5*Dy*I4-168*b^3*Dxy*I5)/420/b^3;

kf_mp(4,1)=kf_mp(1,4);
kf_mp(4,2)=kf_mp(2,4);
 kf_mp(4,3)=(-2520*b*Dx*I1+462*b^3*D1*I3+42*b^3*D1*I2-

22*b^5*Dy*I4-168*b^3*Dxy*I5)/420/b^3;%not symmetric
 kf_mp(4,4)=(1680*b^2*Dx*I1-56*b^4*D1*I2-

56*b^4*D1*I3+4*b^6*Dy*I4+224*b^4*Dxy*I5)/420/b^3;

%assemble the membrane and bending stiffness matrices
kmp=[km_mp z0
z0 kf_mp];
%add it into local element stiffness matrix by corresponding to half-

wave m
k_elastic_local(8*(m-1)+1:8*m,8*(p-1)+1:8*p)=kmp;
end
end

1.3. K_geometric_local

function [k_geometric_local]=k_geometric_local(a,b,Ty1,Ty2,BC,m_a)
%
%Generate geometric stiffness matrix (kg) in local coordinates

% Inputs:
% a: length of the strip in longitudinal direction
% b: width of the strip in transverse direction
% Ty1, Ty2: node stresses
% BC: a string specifying boundary conditions to be analyzed:
%'S-S' simply-pimply supported boundary condition at loaded edges
%'C-C' clamped-clamped boundary condition at loaded edges
%'S-C' simply-clamped supported boundary condition at loaded edges
%'C-F' clamped-free supported boundary condition at loaded edges
%'C-G' clamped-guided supported boundary condition at loaded edges
% m_a: longitudinal terms (or half-wave numbers) for this length.
% m_a=[1 2 3 4 5] if we want to analyse the first 5 half-wave numbers.

% Output:
% kg: local geometric stiffness matrix, a totalm x totalm matrix of 8

by 8 submatrices.
% kg=[kgmp]totalm x totalm block matrix
% each kgmp is the 8 x 8 submatrix in the DOF order [u1 v1 u2 v2 w1

theta1
% w2 theta2]';

totalm = length(m_a); %Total number of longitudinal terms m
kg=sparse(zeros(8*totalm,8*totalm));
%
for m=1:1:totalm
for p=1:1:totalm
%
gm_mp=zeros(4,4);
z0=zeros(4,4);
gf_mp=zeros(4,4);
um=m_a(m)*pi;
up=m_a(p)*pi;

56 | P a g e

%
 [I1,I2,I3,I4,I5] = BCparameters(BC,m_a(m),m_a(p),a);
%
%Membrane geometrical matrix
gm_mp(1,1)=b*(3*Ty1+Ty2)*I5/12;
gm_mp(1,3)=b*(Ty1+Ty2)*I5/12;
gm_mp(3,1)=gm_mp(1,3);
gm_mp(2,2)=b*a^2*(3*Ty1+Ty2)*I4/12/um/up;
gm_mp(2,4)=b*a^2*(Ty1+Ty2)*I4/12/um/up;
gm_mp(4,2)=gm_mp(2,4);
gm_mp(3,3)=b*(Ty1+3*Ty2)*I5/12;
gm_mp(4,4)=b*a^2*(Ty1+3*Ty2)*I4/12/um/up;
%
%Bending geometrical matrix
gf_mp(1,1)=(10*Ty1+3*Ty2)*b*I5/35;
gf_mp(1,2)=(15*Ty1+7*Ty2)*b^2*I5/210/2;
gf_mp(2,1)=gf_mp(1,2);
gf_mp(1,3)=9*(Ty1+Ty2)*b*I5/140;
gf_mp(3,1)=gf_mp(1,3);
gf_mp(1,4)=-(7*Ty1+6*Ty2)*b^2*I5/420;
gf_mp(4,1)=gf_mp(1,4);
gf_mp(2,2)=(5*Ty1+3*Ty2)*b^3*I5/2/420;
gf_mp(2,3)=(6*Ty1+7*Ty2)*b^2*I5/420;
gf_mp(3,2)=gf_mp(2,3);
gf_mp(2,4)=-(Ty1+Ty2)*b^3*I5/140/2;
gf_mp(4,2)=gf_mp(2,4);
gf_mp(3,3)=(3*Ty1+10*Ty2)*b*I5/35;
gf_mp(3,4)=-(7*Ty1+15*Ty2)*b^2*I5/420;
gf_mp(4,3)=gf_mp(3,4);
gf_mp(4,4)=(3*Ty1+5*Ty2)*b^3*I5/420/2;
%assemble the membrane and bending stiffness matrices
kgmp=[gm_mp z0
z0 gf_mp];
%add it into local geometric stiffness matrix by corresponding to m
%half-wave
k_geometric_local(8*(m-1)+1:8*m,8*(p-1)+1:8*p)=kgmp;
end
end

1.4. elemprop

function [elprop]=elemprop(node,elem,nnodes,nelems)
% Function to obtain several properties of the element used in the

analysis
% INPUT
% node: [node# x_positionz_position stress] nnodes x 8;
% elem: [elem# nodeinodej t] nelems x 4;
% OUTPUT
% elprop: [elem# width alpha]
%
elprop=zeros(nelems,3);
%
fori=1:nelems
nodei = elem(i,2);
nodej = elem(i,3);
xi = node(nodei,2);
zi = node(nodei,3);
xj = node(nodej,2);
zj = node(nodej,3);
dx = xj - xi;

57 | P a g e

dz = zj - zi;
width = sqrt(dx^2 + dz^2);
alpha = atan2(dz,dx);
elprop(i,:)=[i width alpha];
end

1.5. BCparameters

function [I1,I2,I3,I4,I5] = BCparameters(BC,Nm,Np,a)
%
% Calculate the 5 undetermined parameters I1,I2,I3,I4,I5 for local

elastic
% and geometric stiffness matrices.
% BC: a string specifying boundary conditions to be analyzed:
%'S-S' simply-pimply supported boundary condition at loaded edges
%'C-C' clamped-clamped boundary condition at loaded edges
%'S-C' simply-clamped supported boundary condition at loaded edges
%'C-F' clamped-free supported boundary condition at loaded edges
%'C-G' clamped-guided supported boundary condition at loaded edges
%Outputs:
%I1,I2,I3,I4,I5
%calculation of I1 is the integration of Ym*Yn from 0 to a
%calculation of I2 is the integration of Ym''*Yn from 0 to a
%calculation of I3 is the integration of Ym*Yn'' from 0 to a
%calculation of I3 is the integration of Ym*Yn'' from 0 to a
%calculation of I4 is the integration of Ym''*Yn'' from 0 to a
%calculation of I5 is the integration of Ym'*Yn' from 0 to a

ifstrcmp(BC,'S-S')
%For simply-pimply supported boundary condition at loaded edges
if Nm==Np
 I1=a/2;
 I2=-Nm^2*pi^2/a/2;
 I3=-Np^2*pi^2/a/2;
 I4=pi^4*Nm^4/2/a^3;
I5=pi^2*Nm^2/2/a;
else
 I1=0;
 I2=0;
 I3=0;
 I4=0;
 I5=0;
end
elseifstrcmp(BC,'C-C')
%For Clamped-clamped boundary condition at loaded edges
if Nm==Np
if Nm==1
 I1=3*a/8;
else
 I1=a/4;
end
 I2=-(Nm^2+1)*pi^2/4/a;
 I3=-(Np^2+1)*pi^2/4/a;
 I4=pi^4*((Nm^2+1)^2+4*Nm^2)/4/a^3;
I5=(1+Nm^2)*pi^2/4/a;
else
if Nm-Np==2
 I1=-a/8;
 I2=(Nm^2+1)*pi^2/8/a-Nm*pi^2/4/a;
 I3=(Np^2+1)*pi^2/8/a+Np*pi^2/4/a;

58 | P a g e

I4=-(Nm-1)^2*(Np+1)^2*pi^4/8/a^3;
 I5=-(1+Nm*Np)*pi^2/8/a;
elseif Nm-Np==-2
I1=-a/8;
 I2=(Nm^2+1)*pi^2/8/a+Nm*pi^2/4/a;
 I3=(Np^2+1)*pi^2/8/a-Np*pi^2/4/a;
 I4=-(Nm+1)^2*(Np-1)^2*pi^4/8/a^3;
 I5=-(1+Nm*Np)*pi^2/8/a;
else
 I1=0;
 I2=0;
 I3=0;
 I4=0;
 I5=0;
end
end
elseifstrcmp(BC,'S-C')
%For simply-clamped supported boundary condition at loaded edges
if Nm==Np
 I1=(1+(Nm+1)^2/Nm^2)*a/2;
 I2=-(Nm+1)^2*pi^2/a;
 I3=-(Nm+1)^2*pi^2/a;
 I4=(Nm+1)^2*pi^4*((Nm+1)^2+Nm^2)/2/a^3;
 I5=(1+Nm)^2*pi^2/a;
else
if Nm-Np==1
 I1=(Nm+1)*a/2/Nm;
 I2=-(Nm+1)*Nm*pi^2/2/a;
 I3=-(Np+1)^2*pi^2*(Nm+1)/2/a/Nm;
 I4=(Nm+1)*Nm*(Np+1)^2*pi^4/2/a^3;
 I5=(1+Nm)*(1+Np)*pi^2/2/a;
elseif Nm-Np==-1
 I1=(Np+1)*a/2/Np;
 I2=-(Nm+1)^2*pi^2*(Np+1)/2/a/Np;
 I3=-(Np+1)*Np*pi^2/2/a;
 I4=(Nm+1)^2*Np*(Np+1)*pi^4/2/a^3;
 I5=(1+Nm)*(1+Np)*pi^2/2/a;
else
 I1=0;
 I2=0;
 I3=0;
 I4=0;
 I5=0;
end
end
%
elseifstrcmp(BC,'C-F')
%For clamped-free supported boundary condition at loaded edges
if Nm==Np
 I1=3*a/2-2*a*(-1)^(Nm-1)/(Nm-1/2)/pi;
 I2=(Nm-1/2)^2*pi^2*((-1)^(Nm-1)/(Nm-1/2)/pi-1/2)/a;
 I3=(Np-1/2)^2*pi^2*((-1)^(Np-1)/(Np-1/2)/pi-1/2)/a;
 I4=(Nm-1/2)^4*pi^4/2/a^3;
 I5=(Nm-1/2)^2*pi^2/2/a;
else
 I1=a-a*(-1)^(Nm-1)/(Nm-1/2)/pi-a*(-1)^(Np-1)/(Np-1/2)/pi;
 I2=(Nm-1/2)^2*pi^2*((-1)^(Nm-1)/(Nm-1/2)/pi)/a;
 I3=(Np-1/2)^2*pi^2*((-1)^(Np-1)/(Np-1/2)/pi)/a;
 I4=0;
 I5=0;
end

59 | P a g e

elseifstrcmp(BC,'C-G')
%For clamped-guided supported boundary condition at loaded edges
if Nm==Np
if Nm==1
 I1=3*a/8;
else
 I1=a/4;
end
 I2=-((Nm-1/2)^2+1/4)*pi^2/a/4;
 I3=-((Nm-1/2)^2+1/4)*pi^2/a/4;
 I4=((Nm-1/2)^2+1/4)^2*pi^4/4/a^3+(Nm-1/2)^2*pi^4/4/a^3;
 I5=(Nm-1/2)^2*pi^2/a/4+pi^2/16/a;
else
if Nm-Np==1
 I1=-a/8;
 I2=((Nm-1/2)^2+1/4)*pi^2/a/8-(Nm-1/2)*pi^2/a/8;
 I3=((Np-1/2)^2+1/4)*pi^2/a/8+(Np-1/2)*pi^2/a/8;
 I4=-Np^4*pi^4/8/a^3;
 I5=-Np^2*pi^2/8/a;
elseif Nm-Np==-1
 I1=-a/8;
 I2=((Nm-1/2)^2+1/4)*pi^2/a/8+(Nm-1/2)*pi^2/a/8;
 I3=((Np-1/2)^2+1/4)*pi^2/a/8-(Np-1/2)*pi^2/a/8;
 I4=-Nm^4*pi^4/8/a^3;
 I5=-Nm^2*pi^2/8/a;
else
 I1=0;
 I2=0;
 I3=0;
 I4=0;
 I5=0;
end
end
end

1.6. rotatestrip

function

[k_elastic_global,k_geometric_global]=rotatestrip(alpha,k_elastic,k_ge

ometric,m_a)

% Transfer the local stiffness matrix into the global coordinates
% OUTPUT
% k_elastic_global: k_elastic input in global coordinates (rotating

input angle alpha)
% k_geometric_global: k_geometric input in global coordinates

(rotating input angle alpha)
% INPUT
% k_elastic and k_geometric: local matrices that must be changed to

global coordinates
% alpha: angle for turning matrices to the global coordinates
% m_a: half-wave numbers to be analysed
% m_a=[1 2 3 4 5] if we want to analyse the first 5 half-wave numbers.

totalm = length(m_a); %Total number of longitudinal terms m
a=alpha;
%
z0=0;
gam=[cos(a) z0 z0z0 -sin(a) z0 z0z0
 z0 1 z0 z0z0z0z0z0

60 | P a g e

 z0 z0cos(a) z0 z0z0 -sin(a) z0
 z0 z0z0 1 z0 z0z0z0
sin(a) z0 z0z0cos(a) z0 z0z0
 z0 z0z0z0z0 1 z0 z0
 z0 z0 sin(a) z0 z0z0cos(a) z0
z0 z0z0z0z0z0z01];
%extend to multi-m
fori=1:totalm
gamma(8*(i-1)+1:8*i,8*(i-1)+1:8*i)=gam;
end
%
k_elastic_global=gamma*k_elastic*gamma';
k_geometric_global=gamma*k_geometric*gamma';
end

1.7. assemble_elements

function

[K_elastic,K_geometric]=assemble_elements(K_elastic,K_geometric,k_elas

tic_global,k_geometric_global,nodei,nodej,nnodes,m_a)
%
% This function adds the local matrices to the global matrices.
% INPUT
% K_elastic: full elastic stiffness matrix without the local input
% K_geometric: full geometric stiffness matrix without the local input
% k_elastic_global: global coordinates elastic stiffness matrix to be

added
% k_geometric_global: global coordinates geometric stiffness matrix to

be added
% nodei: one of the nodes of the analysed strip element
% nodej: the other node of the analysed strip element
% nnodes: number of total node in out section
% m_a: half-waves analysed. m_a=[1 2 3 4 5] if we want to analyse the

first 5 half-waves

% OUTPUTS
% K_elastic: full elastic stiffness matrix with the added input

elastic matrix
% K_geometric: full geometric stiffness matrix with the added input

geometric matrix

totalm = length(m_a); %Total number of half-wave terms m
K2=sparse(zeros(4*nnodes*totalm,4*nnodes*totalm));
K3=sparse(zeros(4*nnodes*totalm,4*nnodes*totalm));
skip=2*nnodes;
fori=1:1:totalm
for j=1:1:totalm
%Submatrices for the initial elastic stiffness
 k11=k_elastic_global(8*(i-1)+1:8*(i-1)+2,8*(j-1)+1:8*(j-1)+2);
 k12=k_elastic_global(8*(i-1)+1:8*(i-1)+2,8*(j-1)+3:8*(j-1)+4);
 k13=k_elastic_global(8*(i-1)+1:8*(i-1)+2,8*(j-1)+5:8*(j-1)+6);
 k14=k_elastic_global(8*(i-1)+1:8*(i-1)+2,8*(j-1)+7:8*(j-1)+8);
 k21=k_elastic_global(8*(i-1)+3:8*(i-1)+4,8*(j-1)+1:8*(j-1)+2);
 k22=k_elastic_global(8*(i-1)+3:8*(i-1)+4,8*(j-1)+3:8*(j-1)+4);
 k23=k_elastic_global(8*(i-1)+3:8*(i-1)+4,8*(j-1)+5:8*(j-1)+6);
 k24=k_elastic_global(8*(i-1)+3:8*(i-1)+4,8*(j-1)+7:8*(j-1)+8);
 k31=k_elastic_global(8*(i-1)+5:8*(i-1)+6,8*(j-1)+1:8*(j-1)+2);
 k32=k_elastic_global(8*(i-1)+5:8*(i-1)+6,8*(j-1)+3:8*(j-1)+4);
 k33=k_elastic_global(8*(i-1)+5:8*(i-1)+6,8*(j-1)+5:8*(j-1)+6);
 k34=k_elastic_global(8*(i-1)+5:8*(i-1)+6,8*(j-1)+7:8*(j-1)+8);

61 | P a g e

 k41=k_elastic_global(8*(i-1)+7:8*(i-1)+8,8*(j-1)+1:8*(j-1)+2);
 k42=k_elastic_global(8*(i-1)+7:8*(i-1)+8,8*(j-1)+3:8*(j-1)+4);
 k43=k_elastic_global(8*(i-1)+7:8*(i-1)+8,8*(j-1)+5:8*(j-1)+6);
 k44=k_elastic_global(8*(i-1)+7:8*(i-1)+8,8*(j-1)+7:8*(j-1)+8);
%
K2(4*nnodes*(i-1)+nodei*2-1:4*nnodes*(i-1)+nodei*2,4*nnodes*(j-

1)+nodei*2-1:4*nnodes*(j-1)+nodei*2)=k11;
K2(4*nnodes*(i-1)+nodei*2-1:4*nnodes*(i-1)+nodei*2,4*nnodes*(j-

1)+nodej*2-1:4*nnodes*(j-1)+nodej*2)=k12;
K2(4*nnodes*(i-1)+nodej*2-1:4*nnodes*(i-1)+nodej*2,4*nnodes*(j-

1)+nodei*2-1:4*nnodes*(j-1)+nodei*2)=k21;
K2(4*nnodes*(i-1)+nodej*2-1:4*nnodes*(i-1)+nodej*2,4*nnodes*(j-

1)+nodej*2-1:4*nnodes*(j-1)+nodej*2)=k22;
%
K2(4*nnodes*(i-1)+skip+nodei*2-1:4*nnodes*(i-

1)+skip+nodei*2,4*nnodes*(j-1)+skip+nodei*2-1:4*nnodes*(j-

1)+skip+nodei*2)=k33;
K2(4*nnodes*(i-1)+skip+nodei*2-1:4*nnodes*(i-

1)+skip+nodei*2,4*nnodes*(j-1)+skip+nodej*2-1:4*nnodes*(j-

1)+skip+nodej*2)=k34;
K2(4*nnodes*(i-1)+skip+nodej*2-1:4*nnodes*(i-

1)+skip+nodej*2,4*nnodes*(j-1)+skip+nodei*2-1:4*nnodes*(j-

1)+skip+nodei*2)=k43;
K2(4*nnodes*(i-1)+skip+nodej*2-1:4*nnodes*(i-

1)+skip+nodej*2,4*nnodes*(j-1)+skip+nodej*2-1:4*nnodes*(j-

1)+skip+nodej*2)=k44;
%
K2(4*nnodes*(i-1)+nodei*2-1:4*nnodes*(i-1)+nodei*2,4*nnodes*(j-

1)+skip+nodei*2-1:4*nnodes*(j-1)+skip+nodei*2)=k13;
K2(4*nnodes*(i-1)+nodei*2-1:4*nnodes*(i-1)+nodei*2,4*nnodes*(j-

1)+skip+nodej*2-1:4*nnodes*(j-1)+skip+nodej*2)=k14;
K2(4*nnodes*(i-1)+nodej*2-1:4*nnodes*(i-1)+nodej*2,4*nnodes*(j-

1)+skip+nodei*2-1:4*nnodes*(j-1)+skip+nodei*2)=k23;
K2(4*nnodes*(i-1)+nodej*2-1:4*nnodes*(i-1)+nodej*2,4*nnodes*(j-

1)+skip+nodej*2-1:4*nnodes*(j-1)+skip+nodej*2)=k24;
%
K2(4*nnodes*(i-1)+skip+nodei*2-1:4*nnodes*(i-

1)+skip+nodei*2,4*nnodes*(j-1)+nodei*2-1:4*nnodes*(j-1)+nodei*2)=k31;
K2(4*nnodes*(i-1)+skip+nodei*2-1:4*nnodes*(i-

1)+skip+nodei*2,4*nnodes*(j-1)+nodej*2-1:4*nnodes*(j-1)+nodej*2)=k32;
K2(4*nnodes*(i-1)+skip+nodej*2-1:4*nnodes*(i-

1)+skip+nodej*2,4*nnodes*(j-1)+nodei*2-1:4*nnodes*(j-1)+nodei*2)=k41;
K2(4*nnodes*(i-1)+skip+nodej*2-1:4*nnodes*(i-

1)+skip+nodej*2,4*nnodes*(j-1)+nodej*2-1:4*nnodes*(j-1)+nodej*2)=k42;
%
%Submatrices for the initial geometric stiffness
 kg11=k_geometric_global(8*(i-1)+1:8*(i-1)+2,8*(j-1)+1:8*(j-

1)+2);
 kg12=k_geometric_global(8*(i-1)+1:8*(i-1)+2,8*(j-1)+3:8*(j-

1)+4);
 kg13=k_geometric_global(8*(i-1)+1:8*(i-1)+2,8*(j-1)+5:8*(j-

1)+6);
 kg14=k_geometric_global(8*(i-1)+1:8*(i-1)+2,8*(j-1)+7:8*(j-

1)+8);
 kg21=k_geometric_global(8*(i-1)+3:8*(i-1)+4,8*(j-1)+1:8*(j-

1)+2);
 kg22=k_geometric_global(8*(i-1)+3:8*(i-1)+4,8*(j-1)+3:8*(j-

1)+4);
 kg23=k_geometric_global(8*(i-1)+3:8*(i-1)+4,8*(j-1)+5:8*(j-

1)+6);

62 | P a g e

 kg24=k_geometric_global(8*(i-1)+3:8*(i-1)+4,8*(j-1)+7:8*(j-

1)+8);
 kg31=k_geometric_global(8*(i-1)+5:8*(i-1)+6,8*(j-1)+1:8*(j-

1)+2);
 kg32=k_geometric_global(8*(i-1)+5:8*(i-1)+6,8*(j-1)+3:8*(j-

1)+4);
 kg33=k_geometric_global(8*(i-1)+5:8*(i-1)+6,8*(j-1)+5:8*(j-

1)+6);
 kg34=k_geometric_global(8*(i-1)+5:8*(i-1)+6,8*(j-1)+7:8*(j-

1)+8);
 kg41=k_geometric_global(8*(i-1)+7:8*(i-1)+8,8*(j-1)+1:8*(j-

1)+2);
 kg42=k_geometric_global(8*(i-1)+7:8*(i-1)+8,8*(j-1)+3:8*(j-

1)+4);
 kg43=k_geometric_global(8*(i-1)+7:8*(i-1)+8,8*(j-1)+5:8*(j-

1)+6);
 kg44=k_geometric_global(8*(i-1)+7:8*(i-1)+8,8*(j-1)+7:8*(j-

1)+8);
%
K3(4*nnodes*(i-1)+nodei*2-1:4*nnodes*(i-1)+nodei*2,4*nnodes*(j-

1)+nodei*2-1:4*nnodes*(j-1)+nodei*2)=kg11;
K3(4*nnodes*(i-1)+nodei*2-1:4*nnodes*(i-1)+nodei*2,4*nnodes*(j-

1)+nodej*2-1:4*nnodes*(j-1)+nodej*2)=kg12;
K3(4*nnodes*(i-1)+nodej*2-1:4*nnodes*(i-1)+nodej*2,4*nnodes*(j-

1)+nodei*2-1:4*nnodes*(j-1)+nodei*2)=kg21;
K3(4*nnodes*(i-1)+nodej*2-1:4*nnodes*(i-1)+nodej*2,4*nnodes*(j-

1)+nodej*2-1:4*nnodes*(j-1)+nodej*2)=kg22;
%
K3(4*nnodes*(i-1)+skip+nodei*2-1:4*nnodes*(i-

1)+skip+nodei*2,4*nnodes*(j-1)+skip+nodei*2-1:4*nnodes*(j-

1)+skip+nodei*2)=kg33;
K3(4*nnodes*(i-1)+skip+nodei*2-1:4*nnodes*(i-

1)+skip+nodei*2,4*nnodes*(j-1)+skip+nodej*2-1:4*nnodes*(j-

1)+skip+nodej*2)=kg34;
K3(4*nnodes*(i-1)+skip+nodej*2-1:4*nnodes*(i-

1)+skip+nodej*2,4*nnodes*(j-1)+skip+nodei*2-1:4*nnodes*(j-

1)+skip+nodei*2)=kg43;
K3(4*nnodes*(i-1)+skip+nodej*2-1:4*nnodes*(i-

1)+skip+nodej*2,4*nnodes*(j-1)+skip+nodej*2-1:4*nnodes*(j-

1)+skip+nodej*2)=kg44;
%
K3(4*nnodes*(i-1)+nodei*2-1:4*nnodes*(i-1)+nodei*2,4*nnodes*(j-

1)+skip+nodei*2-1:4*nnodes*(j-1)+skip+nodei*2)=kg13;
K3(4*nnodes*(i-1)+nodei*2-1:4*nnodes*(i-1)+nodei*2,4*nnodes*(j-

1)+skip+nodej*2-1:4*nnodes*(j-1)+skip+nodej*2)=kg14;
K3(4*nnodes*(i-1)+nodej*2-1:4*nnodes*(i-1)+nodej*2,4*nnodes*(j-

1)+skip+nodei*2-1:4*nnodes*(j-1)+skip+nodei*2)=kg23;
K3(4*nnodes*(i-1)+nodej*2-1:4*nnodes*(i-1)+nodej*2,4*nnodes*(j-

1)+skip+nodej*2-1:4*nnodes*(j-1)+skip+nodej*2)=kg24;
%
K3(4*nnodes*(i-1)+skip+nodei*2-1:4*nnodes*(i-

1)+skip+nodei*2,4*nnodes*(j-1)+nodei*2-1:4*nnodes*(j-1)+nodei*2)=kg31;
K3(4*nnodes*(i-1)+skip+nodei*2-1:4*nnodes*(i-

1)+skip+nodei*2,4*nnodes*(j-1)+nodej*2-1:4*nnodes*(j-1)+nodej*2)=kg32;
K3(4*nnodes*(i-1)+skip+nodej*2-1:4*nnodes*(i-

1)+skip+nodej*2,4*nnodes*(j-1)+nodei*2-1:4*nnodes*(j-1)+nodei*2)=kg41;
K3(4*nnodes*(i-1)+skip+nodej*2-1:4*nnodes*(i-

1)+skip+nodej*2,4*nnodes*(j-1)+nodej*2-1:4*nnodes*(j-1)+nodej*2)=kg42;
end
end
K_elastic=K_elastic+K2;

63 | P a g e

K_geometric=K_geometric+K3;

64 | P a g e

2. Comparison exercises

2.1. Theoretical comparison exercise

In order to do the following exercise we must describe the thin plate we will be using. We can

now see the image of the thin plate and the input for the FSM matlab program.

Figure 31:Theoretical comparison thin plate

The input for the matlab FSM program in this case will be:

Thin plate

Ex=2.05e5; %Given that we will be working in “N” and “mm” the value of our Young

modulus is 205000 N/mm2

Ey=2.05e5;
vx=0.3;
vy=0.3;
G=Ex/(2*(1+vx));

t=1;
m_a=[1]; %We will only analyze the first halfwave buckling modes.

nodes=[1 0 0 1; 2 10 0 1; 3 20 0 1; 4 30 0 1; 5 40 0 1; 6 50 0 1; 7 60 0 1; 8 70 0 1; 9 80 0
1; 10 90 0 1] %[node_numberx_positionz_position stress]. In this case we put a normal
compression of 1N to obtain directly the critical buckling load in the analysis.

elements=[1 1 2 t;2 2 3 t;3 3 4 t;4 4 5 t;5 5 6 t;6 6 7 t;7 7 8 t;8 8 9 t;9 9 10 t]

65 | P a g e

boundary_conditions=variable;%our boundary conditions will be 'S-S' or 'C-C'
depending on what K we want to calculate.

material_properties=[Ex Eyvxvy G];

lengths=variable;%The length of the strip is “a” and the relation of a/b is what we will
keep changing to calculate our values for “K”.

66 | P a g e

2.2. Finite Element Method Comparison exercise

The following C section will be analyzed

Figure 32: Analyzed figure in the comparison

The section is discretized in the next way.

Therefore, we have 17 nodes and 16 elements in the cross

section. In the case of the finite element method, 5 more

nodes have been created in the longitudinal direction.

The freedom degrees for both methods have also been

calculated, for they are proportional to the computer power

required to solve the equations. The increase of the unknowns

increase the time the computer needs to solve the structure.

With the figure described, it can now be introduced to the

program in order to make the comparison.

 Figure 33: Discretization of the
section

67 | P a g e

Finite Strip Method program:

Ex=2.05e5;

Ey=2.05e5;

vx=0.3;

vy=0.3;

G=Ex/(2*(1+vx));

t=5;%The value of “t” must be changed in order to get the

whole table of the report.

m_a=[1 2 3 4 5];

nodes=[1 110 30 1;2 110 15 1;3 110 0 1;4 82.5 0 1;5 55 0

1;6 27.5 0 1;7 0 0 1;8 0 42.5 1;9 0 85 1;10 0 127.5 1;11 0

170 1;12 27.5 170 1;13 55 170 1;14 82.5 170 1;15 110 170

1;16 110 155 1;17 110 140 1];

elements=[1 1 2 t;2 2 3 t;3 3 4 t;4 4 5 t;5 5 6 t;6 6 7 t;7

7 8 t;8 8 9 t;9 9 10 t;10 10 11 t;11 11 12 t;12 12 13 t;13

13 14 t;14 14 15 t;15 15 16 t;16 16 17 t];

boundary_conditions='S-S';

material_properties=[Ex Eyvxvy G];

lengths=100;

