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1. Introduction 
 

1.1 Background 
 

The application of numerical methods as a tool to solve and analyze structural problems is 

widely used at the moment. Lately the Finite Element Method (FEM) has heavily dominated 

this field; however, other methods such as the Finite Strip Method (FSM) still have their 

application in some structural problems and have not been discarded in their areas. 

 

A lot of structures maintain geometrical properties constant along an axis, for example plates 

or bridges. This kind of structures has a transversal section that does not vary in the 

longitudinal direction, and, if the material properties remain constant as well in the given 

direction, the analysis can be simplified combining the Finite Element Method (FEM) with 

developments of the Fourier series to model the behavior. 

 

Even though the FEM is a very versatile tool, it requires discretization in every dimension of 

the problem, and generally, this implies a lot of unknown variables. The computational 

advance has given a solution to problems that before seemed untreatable because of their 

complexity and dimension.  

 

Although the problems have been finally solved with FEM, the cost of these solutions is still 

computationally extremely high. Furthermore, the availability of computers capable of doing 

this analysis is still limited to a few privileged people, and this is even more noticeable in 

developing countries. In those countries, very often analysis have to be carried out in much 

less powerful machines. 

 

On the other hand, in structural problems with regular geometrical forms and boundary 

conditions, a complex analysis with finite elements is unnecessary and extravagant. In this 

situation, to reduce the computational cost and requirements, alternative methods have been 

developed. 

 

The Finite Strip Method (FSM) is one of the alternative methods. It consists in reducing the 

problem to a bi-dimensional problem in which longitudinal and transversal directions are 

separated. Trigonometrical differential functions are used in the longitudinal direction while 

simple polynomial functions are used in the other directions. 

 

1.2. Objectives and scope 
 

Analysis of structures composed by thin plates such as beams used for prismatic structures, 

some kinds of plates or even bridges can be done using FSM. 

 

In all the mentioned structures mechanical and material properties are constant in both the 

transversal and longitudinal direction, and so the problem can be simplified combining FEM 

and Fourier series to model the transversal and longitudinal behavior. 
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The main objective of this project is to develop a program capable of using FSM to analyze 

different kinds of structures. However, in order to create and use this software it is crucial to 

have a complete understanding of both the structural problem and all the factors that affect 

this analysis. Therefore, in the project there will also be developed the whole theory behind 

the Finite Strip Method. 

 

Main objectives 

 Develop a program capable of analyzing beams using the Finite Strip Method. 

 Create a guide and several examples to understand the functionality and how to use 

the developed program 

 

Secondary objectives 

o Describe the Finite Element Method for straight thin plates. 

o Compare the obtained results with the FSM to those that would be obtained with 

FEM. 
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2. Previous theories 
 

2.1. Theoretical background 
 

The plate calculus has its origin in the works realized by Euler in the XIII century. It is from this 

works that the plate theory has been developed [1]*. In order to understand the deformation 

of plates, the main hypothesis classified plates in both thin and thick plates.  

 

Thin plates accept the hypothesis of Kirchhoff that despises the deformation due to shear 

strains. It is because of this that we can express the partial differential equations of equilibrium 

in function of only the deformation. This means that the hypothesis establishes that points 

that were initially in any normal line to the plain of the plate will remain in the same normal 

line after the deformation. The next image illustrates this: 

 

 
Figure 1: Kirchhoff deformation hypothesis image 

2.2. Existing methods 
 

2.2.1.Exact methods 

 

Exact methods are only viable in a very limited quantity of cases; the solution of differential 

equations in partial derivation is only exact when they generate ordinary differential 

equations. This only happens with very specific geometries, such as circular thin plates with 

axial symmetry. 

 

*[1]: Reference to bibliography 
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2.2.2. Approximate methods 

 

The approximate methods are characterized because they are fast and reliable, and although 

they do not give an exact solution, they allow us to fins sufficiently approximate solutions for 

the structural problems. 

 

There are several approximate methods. In the case of rectangular plates with uniform loading 

there is a method created by Grashof and improved by Marcus based in superficies of 

influence obtained by analytical or experimental methods [1]*. 

 

The solution by series developments has been another procedure heavily used in a lot of thin 

plate exercises. Timoshenko  analyses a great number of plates using this method. 

 

2.2.3. Finite element method 

 

This method is actually part of the approximate methods, but it is the most versatile tool when 

solving plate exercises.  The solving of these problems is based in the hypothesis in the turning 

of the normal lines to the middle plain and two theories exist. The thin plate theory of 

Kirchhoff establishes that the normal lines to middle plain stay orthogonal to the deformed 

form of the middle plain, which allows us to despise the shear strain deformation. The 

Reissner-Mindlin theory keeps the condition of the straight deformation of the normal line but 

does not demand the ortogonality after the deformation [2]*. 

 

The FEM requires discretization in every dimension of the exercise, and so requires many more 

variables that other approximate methods. If the geometrical and mechanical properties are 

constant in a direction, like in plates or prismatic structures, in which the transversal section 

does not vary in the longitudinal direction, the analysis can be simplified. Combining the FEM 

and Fourier series we can solve this kind of structures. This procedure is known as the Finite 

Strip Method (FSM). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*[1]: Reference to bibliography 

*[2]: Reference to bibliography 
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2.3. Comparative table between FSM and FEM 
 

FEM FSM 

Applicable to any type of geometry, boundary 
conditions or material variation. Extremely 
powerful and usable in nearly every case. 

In static analysis it is used for structures with 
two opposite simply supported ends. 
In dynamic analysis it is used with all 
boundary conditions and with discrete 
supports. 

Implies a great number of equations and 
extremely big matrix. Can be very expensive 
and even impossible to use sometimes 
because of the demanding computing 
facilities. 

Usually has a much smaller quantity of 
equations and matrix are also smaller. 
This leads to a much shorter computing time 
to find a solution with nearly the same 
accuracy. 

Large quantity of input data which can lead to 
mistakes. 

Very small amount of input data due to the 
smaller number of meshing. 

Large quantity of output. Normally 
displacements of all the nodes are listed. 

Easier to specify only those nodes which 
displacements and stresses are required. 

Difficult to program and a very big 
computational requirement. 

Due to the reduction in the number of 
degrees of freedom, the computational 
requirements are smaller. 

Table 1: Comparison between the Finite Element Method and the Finite Strip Method 
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3. Finite Element Method (FEM) 
 

As previously stated, finite element method is a part of the approximate methods, and it 

remains the most versatile tool for solving plate exercises. 

 

3.1. History 
 

3.1.2. Creation of the Method 

 

The Finite Element Method was firstly developed in 1943 by Richard Courant, who used the 

Ritz method of numerical analysis and minimization of calculus variables to obtain 

approximate solutions of a vibration system. A little bit later, in 1956, a document published by 

several scientists established a more wide definition of numerical analysis [1]*.  

 

Although there were different approaches depending on the pioneer who developed the 

method, all finite element method developments shared one characteristic: mesh 

discretization of bigger elements into a set of discrete subdomains, usually called elements. 

After the definition of discretization, an equation system was created to apply the equilibrium 

equations to every node of every element of the structure. The equations system can be 

written in the next way: 

 

𝑓 = 𝐾 · 𝑢 

 

Were the unknowns are the displacement of the nodes (u) and they can be found with the 

forces in the nodes (f) and the stiffness matrix (K).  

3.1.3. Practical use of the method through the centuries 

 

With the arrival of the first computers in the 1950s decade, the structures calculus was found 

in a point where most of the techniques used consisted in iterative methods (like Cross and 

Kani) which were realized manually and therefore resulted quite tedious. The calculus of a 

building with several floors could take weeks, which in the end supposed a big cost of time. 

The arrival of computers allowed for the resurgence of methods for displacement knows of 

previous centuries (Navier, Lagrange, Cauchy) but were too difficult to apply given that the use 

of them lead to the resolution of enormous equations systems very difficult to approach from 

the manual point of view. 

 

 Between 1960 and 1970 the application of finite elements kept growing, and the 

requirements for calculus time and memory of the computers also grew. At this point the 

creation of less demanding and more efficient algorithms became important. In order to solve 

the equations systems the already know algorithms (Gauss, Cholesky, Crout, etc…) are 

adapted. It is at this point that the matricial method starts to extend. The development of this 

method becomes especially known in the structures where discretization into bars is extremely 

easy [1]*. 

*[1]: Reference to bibliography 
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However, even though the modeling using bars starts to get developed, there is a great 

difficulty to solve continuous structures (surfaces and volumes) with complex geometries. It is 

particularly in the aerospace camp where new FEM techniques are developed.  

 

In the 1970 there is a great deal of development and the method starts to apply to other 

problems such as the nonlinear. During this decade, FEM was limited to expensive computers 

and therefore to rich industries such as defense, nuclear, automation or aeronautic.  

It is after 1980 that the method finally reaches particulars computers, and the use of 

commercial programs that use this method is extended. 

 

Up until today, the FEM system has acquired a lot of importance due to the great increase in 

computer capabilities and the reduced economic cost of these. Today, supercomputers are 

capable of giving exact results for nearly all kind of parameters. 

 

3.3. FEM example 
 

The Finite Element Method (FEM) is a numerical technique used to find approximate solutions 

to boundary value problems for partial differential equations. The method uses variational 

methods to minimize an error function and create solutions. To understand the concept, the 

idea is analogous to saying that many tiny lines can approximate a large circle, although we will 

never get the exact circle. It is based on the discretization (division in smaller elements), which 

uses many simple element equations over many small subdomains, named finite elements, to 

approximate a solution over a very complex equation in a much larger domain. 

3.3.1. Situation 

 

There is no best way to explain a method than using an example. In the finite element method 

we take a structure and divide it into smaller elements, using several nodes for it. In our 

example a simple beam will be taken, with a force applied in the end. 

 

 
Figure 2: Initial situation 
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Now, taking the figure into account, we must discretize in order to have the figure divided into 

different elements. In this example I will discretize it to have two triangular elements. 

 

 
Figure 3: Discretization 

So we can see that the figure has been discretized into two elements and four nodes. From 

now on we will work in the triangular element. 

3.3.2 Element solving 

3.3.2.1. Displacement functions 

 

We have taken a simple triangular element. In this exercise, we will be working in two 

dimensions, but the finite element method can be used in three dimensions all the same.  

We have then displacements in both the “x” and “y” direction for every node, as displayed in 

the next figure. We name “u” the displacement in the “x” direction and “v” the displacement 

in the “y” direction. 

 
Figure 4: Displacements for every node 

 

These displacements can be written in vector forms as: 

 

 
 
 

 
 
𝑢1
𝑣1
𝑢2

𝑣2
𝑢3
𝑣3 
 
 

 
 

=  

𝑎1

𝑎2

𝑎3
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Where each “a” will correspond to the horizontal and vertical displacement of each node. It is 

a two vector variable with “u” and “v” inside it. 

 

To know the displacement in any point of the triangle, we create an interpolation function to 

interpolate the results in each node in order to find the displacement in a given “x, y” 

coordinate. 

 

𝑢  𝑥, 𝑦 = 𝑁1 𝑥, 𝑦 · 𝑢1 + 𝑁2 𝑥, 𝑦 · 𝑢2 + 𝑁3 𝑥, 𝑦 · 𝑢3 =  𝑁𝑖 𝑥, 𝑦 · 𝑢𝑖

3

𝑖=0

 

𝑣  𝑥, 𝑦 = 𝑁1 𝑥, 𝑦 · 𝑣1 + 𝑁2 𝑥, 𝑦 · 𝑣2 + 𝑁3 𝑥, 𝑦 · 𝑣3 =  𝑁𝑖 𝑥, 𝑦 · 𝑣𝑖

3

𝑖=0

 

 

Given this equations, we now have to find the interpolation functions N. First we will write the 

interpolation function as a function depending of both “x” and “y”: 

 

𝑁1 𝑥, 𝑦 = 𝛼1 · 𝑥 + 𝛽1 · 𝑦 + 𝛾1 

𝑁2 𝑥, 𝑦 = 𝛼2 · 𝑥 + 𝛽2 · 𝑦 + 𝛾2 

𝑁3 𝑥, 𝑦 = 𝛼3 · 𝑥 + 𝛽3 · 𝑦 + 𝛾3 

Once we have this functions, in order to find the coefficients 𝛼, 𝛽, 𝛾 we use the boundary 

conditions. The next conditions have to be met: 

 

𝑢  𝑥1 , 𝑦1 = 𝑢1 → 𝑁1 𝑥1 , 𝑦1 = 1 ;  𝑁2 𝑥1 , 𝑦1 = 0 ;  𝑁3 𝑥1 , 𝑦1 = 0 

 

𝑢  𝑥2 , 𝑦2 = 𝑢2 → 𝑁1 𝑥2 , 𝑦2 = 0 ; 𝑁2 𝑥2 , 𝑦2 = 1 ; 𝑁3 𝑥2 , 𝑦2 = 0 

 

𝑢  𝑥3 , 𝑦3 = 𝑢3 → 𝑁1 𝑥3 , 𝑦3 = 0 ; 𝑁2 𝑥3 , 𝑦3 = 0 ; 𝑁3 𝑥3 , 𝑦3 = 1 

 

Note that the “x” and “y” are coordinates while “u” and “v” are displacements of those 

coordinates. We then have 3 equations with 3 unknowns for every interpolation function N. 

Solving this equations we find that: 

 

𝑁1 𝑥, 𝑦 =
1

2 · ∆
·   𝑦2 − 𝑦3 · 𝑥 +  𝑥3 − 𝑥2 · 𝑦 + (𝑥2 · 𝑦3 − 𝑥3 · 𝑦2)  

 

𝑁2 𝑥, 𝑦 =
1

2 · ∆
·   𝑦3 − 𝑦1 · 𝑥 +  𝑥1 − 𝑥3 · 𝑦 + (𝑥1 · 𝑦3 − 𝑥3 · 𝑦1)  

 

𝑁3 𝑥, 𝑦 =
1

2 · ∆
·   𝑦2 − 𝑦1 · 𝑥 +  𝑥2 − 𝑥1 · 𝑦 + (𝑥1 · 𝑦2 − 𝑥2 · 𝑦1)  

 

Where 2·Δ is two times the area of the triangle defined as: 
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2 · ∆= 𝑑𝑒𝑡  

1 𝑥1 𝑦1

1 𝑥2 𝑦2

1 𝑥3 𝑦3

 = 2 · 𝐴𝑟𝑒𝑎 𝑜𝑓 𝑡𝑕𝑒 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒 

 

Finally, having all these parameters, we can define our displacement vector as: 

 

 
𝑢 
𝑣 
 =  𝑁 ·  𝑎  

 

Where “N” is our interpolation matrix and “a” the deformation of known nodes. Expanding this 

last equation we would find: 

 

 
𝑢 
𝑣 
 =  

𝑁1 0 𝑁2 0 𝑁3 0

0 𝑁1 0 𝑁2 0 𝑁3
 ·

 
 
 

 
 
𝑢1

𝑣1
𝑢2
𝑣2

𝑢3

𝑣3 
 
 

 
 

=  𝑁 ·  𝑎  

3.3.2.2. Deformation 

 

The deformation within a point of our element is defined by the three components that 

contribute to the internal work of the very element. We therefore have the next equations, 

where only the linear terms are taken into account: 

𝜀 𝑥 =
𝛿𝑢 

𝛿𝑥
 ;  𝜀 𝑦 =

𝛿𝑣 

𝛿𝑦
 ;  𝛾 𝑥𝑦 =

𝛿𝑢 

𝛿𝑦
+
𝛿𝑣 

𝛿𝑥
 

Therefore, in matricidal form, we can define the deformation as: 

 

 

𝜀 𝑥
𝜀 𝑦
𝛾 𝑥𝑦

 =

 
 
 
 
 
𝛿

𝛿𝑥
0

0
𝛿

𝛿𝑦

𝛿

𝛿𝑦

𝛿

𝛿𝑥  
 
 
 
 

·  
𝑁1 0 𝑁2 0 𝑁3 0

0 𝑁1 0 𝑁2 0 𝑁3
 ·

 
 
 

 
 
𝑢1

𝑣1
𝑢2
𝑣2

𝑢3

𝑣3 
 
 

 
 

 

 

 

 

It is often that matrix 𝐵 is also defined: 

 

 𝐵 =  𝐿 ·  𝑁  

 

Once we have our matrix defined we must relate them to the force applied to the object. In 

order to do that it is crucial that the equilibrium equations of static are understood correctly. 

𝑳 

𝑵 
𝒂 
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3.3.2.3. Equilibrium  

 

Supposing a simple solid we can find the force applied to it (b) and the tensions within the 

solid (𝜎𝑥 , 𝜎𝑦 , 𝛾𝑥𝑦 ). 

 
Figure 5: Solid in equilibrium 

Seeing all the forces in our system applied, we can define the equilibrium equations as: 

 

𝛿𝜎𝑥
𝛿𝑥

+
𝛿𝜏𝑥𝑦

𝛿𝑦
+ 𝑏𝑥 = 0 

𝛿𝜎𝑦

𝛿𝑦
+
𝛿𝜏𝑦𝑥

𝛿𝑥
+ 𝑏𝑦 = 0 

 

Having found the deformation in the previous step, the relation between tensions and 

deformations for the linear elastic behavior can be written like:  

𝜀𝑥 =
𝜎𝑥
𝐸
−
𝜎𝑦 · 𝜐

𝐸
 

𝜀𝑦 =
𝜎𝑦

𝐸
−
𝜎𝑥 · 𝜐

𝐸
 

𝛾𝑥𝑦 =
𝜏𝑥𝑦

𝐺
 

Where we can define 𝐺 =
2·(1+𝜐)

𝐸
. In order to solve our problem, we need to have the 

expression 𝜎 = 𝐷 · 𝜀 . Using the last equations we find that: 
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𝜎 =  

𝜎𝑥 
𝜎𝑦 

𝜏𝑥𝑦 
 =

𝐸

1 − 𝜐2
·  

1 𝜐 0
𝜐 1 0

0 0
1 − 𝜐

𝐸

 ·  

𝜀 𝑥
𝜀 𝑦
𝛾 𝑥𝑦

  

 

 

Once we have this it is time to define a new concept, the “virtual work”. This concept refer to 

the fact that for every force applied, the object gets an external force which is countered by an 

internal force created by the deformations in the object. 

 

We can define the external and the internal energy as: 

 

𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 =   𝜎 𝑇

𝑉

·  𝜀 · 𝑑𝑉 =   𝜀 𝑇

𝑉

·  𝜎 · 𝑑𝑉 

 

𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 =   𝑁 · 𝑎 𝑇

𝑉

·  𝑏 · 𝑑𝑉 

 

Thanks to the theory of the virtual works we know that these energies have to counter 

themselves, so: 

 

  𝜀 𝑇

𝑉

·  𝜎 · 𝑑𝑉 −   𝑁 · 𝑎 𝑇

𝑉

·  𝑏 · 𝑑𝑉 = 0 

 

We can now define the deformation and tension as: 

 

𝜀 = 𝐵 · 𝑎 

 

𝜎 = 𝐷 · 𝐵 · 𝑎 

 

We then have: 

 

  𝐵 𝑇 ·  𝑎 𝑇

𝑉

·  𝐷 ·  𝐵 ·  𝑎 · 𝑑𝑉 −   𝑎 𝑇 ·  𝑁 𝑇

𝑉

·  𝑏 · 𝑑𝑉 = 0 

 

Given that the vector  𝑎  does not depend on the volume and that none of the variables above 

depend on the thickness (they only depend on the area), we can write the past equation as: 

 

 𝑡   𝐵 𝑇 ·
𝐴

 𝐷 ·  𝐵 · 𝑑𝐴 ·  𝑎 −  𝑡   𝑁 𝑇

𝐴

·  𝑏 · 𝑑𝐴 = 0 

 

 

 

 

 

Stiffness matrix (K) Force vector (B) 
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Finally we usually write the past equation as: 

 

𝐾 · 𝑎 − 𝐵 =  𝐾 ·  𝑎 −  𝐵 = 0 

 

This so-called “standard discrete system” is solved for the whole structure, taking into account 

the boundary conditions. 
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4. Finite Strip Method (FSM) 
 

4.1. History 
 

The finite strip method was created for structural analysis in the late 1960s. It was applied to 

several structures such as bridge, tall buildings, plates or shells. The displacements were 

described by functions which are given as products of trigonometrical/hyperbolic series and 

polynomials. This series should at first satisfy the boundary conditions at the end of the strips. 

[4]* 

 

Although the technique is much less powerful and versatile than the Finite Element Method, it 

is true that it is much more efficient in computation terms in many situations. It is for this 

reason that many times it is more appropriate to use this method. 

 

4.2. Explanation 
 

The finite element method requires a discretization in every dimension of the problem, and 

therefore it requires many more unknowns than other methods. If the structures have 

geometrical and mechanical properties constant in one of the directions and the transversal 

section does not vary in the same direction, then the problem can be simplified. In structures 

such as plates or prismatic structures which satisfy the previous statements, the finite element 

method can be combined with Fourier series to model the transversal and longitudinal 

behavior. 

 

In the finite strip method, the Fourier series are used to express the behavior of the 

longitudinal variables while the transversal direction is modeled with the finite element 

method. This allows eliminating unknowns associated to the longitudinal direction and solving 

the problem by solving the one-dimensional finite element method problem where only 

unknowns associated to the transversal direction discretization intervene.  

 

 

 

 

 

 

 

 

 

*[4]: Reference to bibliography  
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4.3. The finite strip analysis 
 

4.3.1. Degree of freedom and shape functions 

 

As previously stated, in the finite strip method, the structure is only discretized in the cross-

section. The other dimension is usually represented using a shape trigonometrical function. In 

the next figure we can see the axis taken for the exercise. Local coordinates are named with 

small letters (x-y-z) and will always be associated with the strip element.  

 

Displacements are represented with the translation U-V-W and the rotation θ for global 

displacements and u-v-w and ϕ for local displacements. The subscript p refers to the half-wave 

number (number of longitudinal terms). 

 
Figure 6: Strip situation 

 
Figure 7: Strip degrees of freedom definition 
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Figure 8: Strip stress distribution 

The shape functions for the transverse direction are assumed to be the same polynomial 

function for every boundary condition. On the other hand, in the longitudinal direction,   

trigonometrical functions are taken. These functions have to satisfy the pre-set boundary 

conditions. The out of plane displacement will use a shape cubic polynomial function for all 

boundary conditions. Therefore, the expressions for general displacements are as follows: 

 

𝑢 =    1 −
𝑥

𝑏
 

𝑥

𝑏
 

𝑚

𝑝=1

·  
𝑢1𝑝

𝑢2𝑝
 · 𝑌𝑝  

 

𝑣 =    1 −
𝑥

𝑏
 

𝑥

𝑏
 

𝑚

𝑝=1

·  
𝑣1𝑝

𝑣2𝑝
 · 𝑌𝑝

′ ·
𝑎

𝜇𝑝
 

 

𝑤 =   1 −
3𝑥2

𝑏2
+

2𝑥3

𝑏3
𝑥 ·  1 −

2𝑥

𝑏
+
𝑥2

𝑏2 
3𝑥2

𝑏2
−

2𝑥3

𝑏3
𝑥 ·  

𝑥2

𝑏2
−
𝑥

𝑏
  ·  

𝑤1𝑝

𝜃1𝑝

𝑤2𝑝

𝜃2𝑝

 

𝑚

𝑝=1

· 𝑌𝑝  

 

 

Where 𝜇𝑝 = 𝑝 · 𝜋 and 𝑝 is the half-wave number. 𝑌𝑚 is the function for the longitudinal 

direction, which varies depending on the boundary conditions. 

 

Boundary condition Shape function 

Simply-Simply 𝑌𝑝 = 𝑠𝑖𝑛
𝑝 · 𝜋 · 𝑦

𝑎
 

Clamped-Clamped 𝑌𝑝 = 𝑠𝑖𝑛
𝑝 · 𝜋 · 𝑦

𝑎
· 𝑠𝑖𝑛

𝜋 · 𝑦

𝑎
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Simply-Clamped 𝑌𝑝 = 𝑠𝑖𝑛
(𝑝 + 1) · 𝜋 · 𝑦

𝑎
+  

𝑝 + 1

𝑝
 𝑠𝑖𝑛

𝑝 · 𝜋 · 𝑦

𝑎
 

Clamped-Free 

 

𝑌𝑝 = 1 − 𝑐𝑜𝑠
 𝑝 −

1

2
 · 𝜋 · 𝑦

𝑎
 

Clamped-Guided 𝑌𝑝 = 𝑠𝑖𝑛
 𝑝 −

1

2
 · 𝜋 · 𝑦

𝑎
· 𝑠𝑖𝑛

𝑝 · 𝜋 · 𝑦

2 · 𝑎
 

 

We can put the displacement equations in form of a general vector such that: 

 

 
𝑢
𝑣
 =   𝑁𝑢𝑣  ·  

𝑢1𝑝

𝑣1𝑝

𝑢2𝑝

𝑣2𝑝

 

𝑚

𝑝=1

=   𝑁𝑢𝑣  · 𝑑𝑢𝑣
𝑝

𝑚

𝑝=1

 

 

𝑤 =   𝑁𝑤  ·  

𝑤1𝑝

𝜃1𝑝

𝑤2𝑝

𝜃2𝑝

 

𝑚

𝑝=1

=   𝑁𝑤  · 𝑑𝑤
𝑝

𝑚

𝑝=1

 

 

𝑚refers to the quantity of half-wave number employed in the analysis. It refers to the shape of 

the sinus function we will see in the buckling shape after deformation. 

 

For example, for m=1  and simply-simply boundary conditions in the loaded edges we will have 

a full half-sinus  in the buckling: 

 

 
Figure 9: Cufsm4 program “C” section for simply-simply BC and m=1 

We can see that the deformation in the 3D shape is a sinus form. 

The deformation buckling form depends on the value of the m. We can see the first four “m” 

to understand the idea in the next table: 
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“m” number Shape in the longitudinal direction 

1 

 
Figure 10:Simply-simply shape for m=1 

2 

 
Figure 11: Simply-simply shape for m=2 

3 

 
Figure 12: Simply-simply shape for m=3 

4 

 
Figure 13: Simply-simply shape for m=4 
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For m=1 we can see the next boundary conditions figures: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3.2. Elastic stiffness matrix 

 

In the strip we can distinguish two portions, bending and membrane. Every strip behaves as 

the superposition of two independent stresses, the membrane and the bending which is due 

to the normal forces to the plane of the plate.  

 

Figure 15: Shape for clamped-clamped boundary 
conditions 

Figure 14: Shape for simply-simply boundary 
conditions 

Figure 17: Shape for simply-clamped boundary 
conditions 

Figure 16: Shape for clamped-free boundary 
conditions 

Figure 18: Shape for clamped-guided boundary 
conditions 
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The membrane strains are at the mid-line of the strip and will be governed by plane stress 

assumptions. On the other hand, bending strains follows Kirchhoff thin plate theory. We can 

define the deformation as the sum of both bending and membrane deformations. 

 

𝜀 = 𝜀𝑀 + 𝜀𝐵 

 

4.3.2.1. Membrane matrix 

 

The membrane stress is defined as the component of normal stress that is uniformly 

distributed and equal to the average value of the stress across the thickness of the section 

under consideration.  

 

In the membrane matrix the plates are submitted to normal and tangential forces in the plane 

of the plate, for which we consider a uniform distribution due to the fact that the thickness of 

the plate is considered very small compared to the dimensions of the plate. It is also 

considered that there is a linear behavior load vs. displacement. 

 

The general expression of the deformation with the linear terms due to membrane stress is: 

 

 𝜀𝑀 =  

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦

 

𝑀

=

 
  
 

  
 

𝜕𝑢

𝜕𝑥
𝜕𝑣

𝜕𝑦
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥 
  
 

  
 

𝑀

=   𝑁𝑢𝑣
′  ·  

𝑢1𝑝

𝑣1𝑝

𝑢2𝑝

𝑣2𝑝

 

𝑚

𝑝=1

=   𝐵𝑀
𝑝
 · 𝑑𝑢𝑣

𝑝

𝑚

𝑝=1

 

 

It is obvious that the displacement due to membrane stress will depend on u and v, which are 

the displacements in the plane of the plate, where membrane stress occurs. 

 

Given that the membrane behavior (𝑢, 𝑣) is uncoupled from the bending behavior (𝑤), we can 

define the internal strain energy during buckling for membrane stress as: 

 

𝑈𝑀 =
1

2
·   𝜀𝑀 

𝑇 ·  𝜎𝑀 
𝑉

· 𝑑𝑉 

 

For the finite strip method we use a constant thickness, which can therefore stay out of the 

integration. Also, we can relate 𝜎 to 𝜀 using the 𝐷 matrix: 

 

 𝜎𝑀 =  𝐷𝑀 ·  𝜀𝑀  

 

Where the 𝐷 matrix is: 

 

 𝐷𝑀 =
1

1 − 𝜈𝑦𝑥 𝜈𝑥𝑦
 

𝐸𝑥 𝜈𝑥𝑦 · 𝐸𝑥 0

𝜈𝑦𝑥 · 𝐸1 𝐸𝑦 0

0 0  1 − 𝜈𝑥𝑦 𝜈𝑦𝑥  · 𝐺
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Where, if we have an isotropic material: 

 

 𝐷𝑀 =
1

1 − 𝜐2  

1 𝜐 0
𝜐 1 0

0 0
(1 − 𝜐)

2

  

We can then write the expression for the strain energy as: 

 

𝑈𝑀 =
1

2
· 𝑡 ·    𝜀𝑀 

𝑇 ·  𝐷𝑀 ·  𝜀𝑀  𝑑𝑥𝑑𝑦
𝑏

0

𝑎

0

 

 

The elastic stiffness matrix for membrane stress can be extracted from the statement for 

internal energy such as: 

 

𝑈𝑀 =   
1

2
·  𝑑𝑢𝑣

𝑝
 
𝑇

·  𝑡 ·   𝐵𝑀
𝑝 𝑇

·  𝐷𝑀 · 𝐵𝑀
𝑝

 𝑑𝑥𝑑𝑦
𝑏

0

𝑎

0

 

𝑚

𝑞=1

𝑚

𝑝=1

· 𝑑𝑢𝑣
𝑞

 

 

Where our stiffness matrix is: 

 

𝑘𝑒𝑀
𝑝𝑞

= 𝑡 ·   𝐵𝑀
𝑝 𝑇

·  𝐷𝑀 · 𝐵𝑀
𝑝

 𝑑𝑥𝑑𝑦
𝑏

0

𝑎

0

 

 

4.3.2.2. Bending matrix 

 

The bending strains are defined as the variable stress across the thickness of the section under 

consideration, after the subtraction of the membrane stress. As previously stated, unlike the 

membrane stress, the bending strains follow the Kirchhoff plate theory. 

 

Kirchhoff theory hypothesis 

 

The hypothesis in which Kirchhoff’s theory is based for thin plates are the next 4: 

 

o Points in the middle plain only move vertically (u=v=0). 

o All the points contained in a normal to the middle plain have the same vertical 

displacement. 

o 𝜎𝑧 is not taken into account. 

o  Points on the normal lines to the plain stay in the same orthogonal lines to the middle 

plain after the deformation. 

 

 

 

 

 

 



24 | P a g e  
 

Thanks to the previous hypothesis, we can write our displacements as: 

 

𝑢 𝑥, 𝑦, 𝑧 = −𝑧 · 𝜃𝑥(𝑥, 𝑦) 

𝑣 𝑥, 𝑦, 𝑧 = −𝑧 · 𝜃𝑦(𝑥, 𝑦) 

𝑤 𝑥, 𝑦, 𝑧 = 𝑤(𝑥, 𝑦) 

 

 

Where  

 

o 𝜔is the vertical displacement. 

o 𝜃𝑥  𝑎𝑛𝑑 𝜃𝑦are the angles that define the turn of the normal line to the middle plain. 

 

 
Figure 19: Kirchhoff deformation hypothesis image 

 

Taking this image into account we can see that: 

 

In the xz plain: 𝜃𝑥 =
𝜕𝑤

𝜕𝑥
 

 

In the yz plain: 𝜃𝑦 =
𝜕𝑤

𝜕𝑦
 

 

Using these equations and the ones written before we can conclude that: 

 

𝑢 𝑥, 𝑦, 𝑧 = −𝑧 ·
𝜕𝑤(𝑥, 𝑦)

𝜕𝑥
 

 

1st and 4th hypothesis 

2nd hypothesis 
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𝑣 𝑥, 𝑦, 𝑧 = −𝑧 ·
𝜕𝑤(𝑥, 𝑦)

𝜕𝑦
 

 

𝑤 𝑥, 𝑦, 𝑧 = 𝑤(𝑥, 𝑦) 

 

Taking the last expression, we can define the deformation as: 

 

 𝜀𝐵 =  

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦

 =

 
  
 

  
 −𝑧 ·

𝜕2𝑤

𝜕𝑥2

−𝑧 ·
𝜕2𝑤

𝜕𝑦2

2𝑧 ·
𝜕2𝑤

𝜕𝑥𝜕𝑦 
  
 

  
 

=  𝑧 ·  𝑁𝑤
′  ·  

𝑤1𝑝

𝜃1𝑝

𝑤2𝑝

𝜃2𝑝

 

𝑚

𝑝=1

=  𝑧 ·  𝐵𝐵
𝑝
 · 𝑑𝑤

𝑝

𝑚

𝑝=1

 

 

As in the case of the membrane stress, we can write the bending term of the internal strain 

energy during buckling as: 

 

𝑈𝐵 =
1

2
·   𝜀𝐵 

𝑇 ·  𝜎𝐵 
𝑉

 𝑑𝑉 

 

Where we can substitute: 

 

 𝜎𝐵 =  𝐷𝐵 ·  𝜀𝐵  

 𝐷𝐵 =
𝑡3

12
·

1

1 − 𝜈𝑦𝑥 𝜈𝑥𝑦
 

𝐸𝑥 𝜈𝑥𝑦 · 𝐸𝑥 0

𝜈𝑦𝑥 · 𝐸1 𝐸𝑦 0

0 0  1 − 𝜈𝑥𝑦 𝜈𝑦𝑥  · 𝐺

  

 

In the case of an isotropic material: 

 

 𝐷𝐵 =
𝑡3

12
·

1

1 − 𝜐2  

1 𝜐 0
𝜐 1 0

0 0
(1 − 𝜐)

2

  

 

We can then write the expression for the strain energy as: 

 

𝑈𝐵 =
1

2
·    𝜀𝐵 

𝑇 ·  𝐷𝐵 ·  𝜀𝐵  𝑑𝑥𝑑𝑦
𝑏

0

𝑎

0

 

 

The elastic stiffness matrix for membrane stress can be extracted from the statement for 

internal energy such as: 

 

𝑈𝐵 =   
1

2
·  𝑑𝑤

𝑝
 
𝑇

·    𝐵𝐵
𝑝𝑇

·  𝐷𝐵 · 𝐵𝐵
𝑝

 𝑑𝑥𝑑𝑦
𝑏

0

𝑎

0

 

𝑚

𝑞=1

𝑚

𝑝=1

· 𝑑𝑤
𝑞
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Where our stiffness matrix is: 

 

𝑘𝑒𝐵
𝑝𝑞

=   𝐵𝐵
𝑝𝑇

·  𝐷𝐵 · 𝐵𝐵
𝑝

 𝑑𝑥𝑑𝑦
𝑏

0

𝑎

0

 

 

4.3.2.3. Local stiffness matrix 

 

The local stiffness matrix will be a combination of both the membrane and the bending strains. 

We can define it as: 

 

𝐾𝑒
𝑝𝑞

=  
𝑘𝑒𝑀
𝑝𝑞

0

0 𝑘𝑒𝐵
𝑝𝑞   

 

During the development of the global stiffness matrix the next general expressions for both 

membrane and bending matrixes have been found. These expressions correspond to the value 

after the integration: 

 

𝑘𝑒𝑀
𝑝𝑞

= 𝑡 ·

 
 
 
 
 
 
 
 
  

𝐸1𝐼1
𝑏

+
𝐺𝑏𝐼5

3
  −

𝐸2𝜐𝑥𝐼2
2𝑐1

−
𝐺𝐼5
2𝑐1

  −
𝐸1𝐼1
𝑏

+
𝐺𝑏𝐼5

6
  −

𝐸2𝜐𝑥𝐼2
2𝑐1

+
𝐺𝐼5
2𝑐1

 

 −
𝐸2𝜐𝑥𝐼2

2𝑐1
−
𝐺𝐼5
2𝑐1

  
𝐸2𝑏𝐼4
3𝑐1𝑐2

+
𝐺𝐼5
𝑏𝑐1𝑐2

  
𝐸2𝜐𝑥𝐼2

2𝑐1
−
𝐺𝐼5
2𝑐1

  
𝐸2𝑏𝐼4
6𝑐1𝑐2

−
𝐺𝐼5
𝑏𝑐1𝑐2

 

 −
𝐸1𝐼1
𝑏

+
𝐺𝑏𝐼5

6
  

𝐸2𝜐𝑥𝐼2
2𝑐1

−
𝐺𝐼5
2𝑐1

  
𝐸1𝐼1
𝑏

+
𝐺𝑏𝐼5

3
  

𝐸2𝜐𝑥𝐼3
2𝑐1

+
𝐺𝐼5
2𝑐1

 

 −
𝐸2𝜐𝑥𝐼2

2𝑐1
+
𝐺𝐼5
2𝑐1

  
𝐸2𝑏𝐼4
6𝑐1𝑐2

−
𝐺𝐼5
𝑏𝑐1𝑐2

  
𝐸2𝜐𝑥𝐼3

2𝑐1
+
𝐺𝐼5
2𝑐1

  
𝐸2𝑏𝐼4
3𝑐1𝑐2

+
𝐺𝐼5
𝑏𝑐1𝑐2

 
 
 
 
 
 
 
 
 
 

 

 

 

𝑘𝑒𝐵
𝑝𝑞

=
1

420𝑏3

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5040𝐷𝑥𝐼1 − 504𝑏2𝐷1𝐼2
−504𝑏2𝐷1𝐼3 + 156𝑏4𝐷𝑦𝐼4

+2016𝑏2𝐷𝑥𝑦 𝐼5

  

2520𝑏𝐷𝑥 𝐼1 − 462𝑏3𝐷1𝐼2
−42𝑏3𝐷1𝐼3 + 22𝑏5𝐷𝑦𝐼4

+168𝑏3𝐷𝑥𝑦 𝐼5

  

−5040𝐷𝑥𝐼1 + 504𝑏2𝐷1𝐼2
+504𝑏2𝐷1𝐼3 + 54𝑏4𝐷𝑦𝐼4

−2016𝑏2𝐷𝑥𝑦 𝐼5

  

2520𝑏𝐷𝑥𝐼1 − 42𝑏3𝐷1𝐼2
−42𝑏3𝐷1𝐼3 − 13𝑏5𝐷𝑦𝐼4

+168𝑏3𝐷𝑥𝑦 𝐼5

 

 

2520𝑏𝐷𝑥𝐼1 − 462𝑏3𝐷1𝐼2
−42𝑏3𝐷1𝐼3 + 22𝑏5𝐷𝑦𝐼4

+168𝑏3𝐷𝑥𝑦 𝐼5

  

1680𝑏2𝐷𝑥𝐼1 − 56𝑏4𝐷1𝐼2
−56𝑏4𝐷1𝐼3 + 4𝑏6𝐷𝑦𝐼4

+224𝑏4𝐷𝑥𝑦 𝐼5

  

−2520𝑏𝐷𝑥𝐼1 + 42𝑏3𝐷1𝐼2
+42𝑏3𝐷1𝐼3 + 13𝑏5𝐷𝑦𝐼4

−168𝑏3𝐷𝑥𝑦 𝐼5

  

840𝑏2𝐷𝑥𝐼1 + 14𝑏4𝐷1𝐼2
+14𝑏4𝐷1𝐼3 − 3𝑏6𝐷𝑦𝐼4

−56𝑏4𝐷𝑥𝑦 𝐼5

 

 

−5040𝐷𝑥𝐼1 + 504𝑏2𝐷1𝐼2
+504𝑏2𝐷1𝐼3 + 54𝑏4𝐷𝑦𝐼4

−2016𝑏2𝐷𝑥𝑦 𝐼5

  

−2520𝑏𝐷𝑥 𝐼1 + 42𝑏3𝐷1𝐼2
+42𝑏3𝐷1𝐼3 + 13𝑏5𝐷𝑦𝐼4

−168𝑏3𝐷𝑥𝑦 𝐼5

  

5040𝐷𝑥𝐼1 − 504𝑏2𝐷1𝐼2
−504𝑏2𝐷1𝐼3 + 156𝑏4𝐷𝑦𝐼4

+2016𝑏2𝐷𝑥𝑦 𝐼5

  

−2520𝑏𝐷𝑥𝐼1 + 462𝑏3𝐷1𝐼2
+42𝑏3𝐷1𝐼3 − 22𝑏5𝐷𝑦𝐼4

−168𝑏3𝐷𝑥𝑦 𝐼5

 

 

2520𝑏𝐷𝑥𝐼1 − 42𝑏3𝐷1𝐼2
−42𝑏3𝐷1𝐼3 − 13𝑏5𝐷𝑦𝐼4

+168𝑏3𝐷𝑥𝑦 𝐼5

  

−5040𝐷𝑥𝐼1 + 504𝑏2𝐷1𝐼2
+504𝑏2𝐷1𝐼3 + 54𝑏4𝐷𝑦𝐼4

−2016𝑏2𝐷𝑥𝑦 𝐼5

  

−5040𝐷𝑥𝐼1 + 504𝑏2𝐷1𝐼2
+504𝑏2𝐷1𝐼3 + 54𝑏4𝐷𝑦𝐼4

−2016𝑏2𝐷𝑥𝑦 𝐼5

  

1680𝑏2𝐷𝑥𝐼1 − 56𝑏4𝐷1𝐼2
−56𝑏4𝐷1𝐼3 + 4𝑏6𝐷𝑦𝐼4

+224𝑏4𝐷𝑥𝑦 𝐼5

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Where  

 

𝑐1 =
𝑝𝜋

𝑎
 

𝑐2 =
𝑞𝜋

𝑎
 

 

I depends on the boundary conditions and is: 

𝐼1 =  𝑌𝑝 · 𝑌𝑞 · 𝑑𝑦
𝑎

0
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𝐼2 =  𝑌𝑝
′′ · 𝑌𝑞 · 𝑑𝑦

𝑎

0

 

𝐼3 =  𝑌𝑝 · 𝑌𝑞
′′ · 𝑑𝑦

𝑎

0

 

𝐼4 =  𝑌𝑝
′′ · 𝑌𝑞

′′ · 𝑑𝑦
𝑎

0

 

𝐼5 =  𝑌𝑝
′ · 𝑌𝑞

′ · 𝑑𝑦
𝑎

0

 

 

And the coefficient E and D correspond to: 

 

𝐸1 =
𝐸𝑥

1 − 𝑣𝑥𝑣𝑦
 

𝐸2 =
𝐸𝑦

1 − 𝑣𝑥𝑣𝑦
 

𝐷𝑥 =
𝐸𝑥𝑡

3

12(1 − 𝑣𝑥𝑣𝑦)
 

𝐷𝑦 =
𝐸𝑦𝑡

3

12(1 − 𝑣𝑥𝑣𝑦)
 

𝐷1 =
𝑣𝑥𝐸𝑦𝑡

3

12(1 − 𝑣𝑥𝑣𝑦)
=

𝑣𝑦𝐸𝑥𝑡
3

12(1 − 𝑣𝑥𝑣𝑦)
 

𝐷𝑥𝑦 =
𝐺𝑡3

12
 

 

 

Finally we can describe the full local matrix depending on the half-wave number as: 

 

𝐾𝑒 =  
𝑘𝑒𝑀
𝑝𝑞

·

· 𝑘𝑒𝐵
𝑝𝑞  

𝑚𝑥𝑚

 

 

Where 𝑚 is the maximum half-wave number. For example for 𝑚 = 2 we will have a matrix: 

 

𝐾𝑒 =  
𝐾𝑒

11 𝐾𝑒
12

𝐾𝑒
21 𝐾𝑒

22  

 

Therefore, the dimension of our matrix would be equal to: 

 

𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 = 𝑚 · 𝑛𝑛𝑜𝑑𝑒𝑠 · 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑠 

 

Where 

𝑚 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑕𝑎𝑙𝑓𝑤𝑎𝑣𝑒 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 

𝑛𝑛𝑜𝑑𝑒𝑠 = 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 

𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑠 = 4 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑠 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑛𝑜𝑑𝑒 
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4.3.3. Geometric stiffness matrix 

 

The geometric stiffness matrix is crucial in order to calculate the correct buckling critical loads. 

It can be calculated either in terms of higher order strain or by the method of the potential 

energy. The potential energy method is used here. We distinguish in each strip the stress in 

both nodes, denominated 𝑇1and 𝑇2. You can express the potential due to this two stresses 

during buckling as: 

𝑉𝑝 =
1

2
   𝑇1 −  𝑇1 − 𝑇2 

𝑥

𝑏
 ·   

𝜕𝑢

𝜕𝑦
 

2

+  
𝜕𝑣

𝜕𝑦
 

2

+  
𝜕𝑤

𝜕𝑦
 

2

 
𝑏

0

𝑎

0

𝑑𝑥𝑑𝑦 

Like in the case of the elastic stiffness matrix, we can distinguish the bending part (𝑤) and the 

membrane part (𝑢and 𝑣). We can express the derivatives of displacements depending on the 

shape functions, the nodal displacements and the half-wave number 𝑝. 

In the case of the bending part we can define the derivative of 𝑤 as: 

 
𝜕𝑤

𝜕𝑦
 

2

=    𝑁𝑤
′   

𝑤1𝑝

𝜃1𝑝

𝑤2𝑝

𝜃2𝑝

 

𝑚

𝑝=1

 =    

𝑤1𝑝

𝜃1𝑝

𝑤2𝑝

𝜃2𝑝

 

𝑇

 𝐺𝐵
𝑝
 
𝑇
 𝐺𝐵

𝑞
  

𝑤1𝑝

𝜃1𝑝

𝑤2𝑝

𝜃2𝑝

 

𝑚

𝑞=1

𝑚

𝑝=1

 

For the membrane, the derivative of 𝑢 and 𝑣 are: 

 
 
 

 
  
𝜕𝑢

𝜕𝑦
 

2

 
𝜕𝑣

𝜕𝑦
 

2

 
 
 

 
 

=    𝑁𝑢𝑣
′  

𝑚

𝑝=1

 

𝑢1𝑝

𝑣1𝑝

𝑢2𝑝

𝑣2𝑝

  

2

=    

𝑢1𝑝

𝑣1𝑝

𝑢2𝑝

𝑣2𝑝

 

𝑇
𝑚

𝑞=1

𝑚

𝑝=1

 𝐺𝑀
𝑝
 
𝑇
 𝐺𝑀

𝑝
  

𝑢1𝑝

𝑣1𝑝

𝑢2𝑝

𝑣2𝑝

  

Finally we can write the potential energy 𝑉𝑝  as: 

𝑉𝑝 =
1

2
   𝑇1 −  𝑇1 − 𝑇2 

𝑥

𝑏
    𝑑𝑝

𝑇

𝑚

𝑞=1

𝑚

𝑝=1

 𝐺𝑝 𝑇 𝐺𝑞 𝑑𝑞 
𝑏

0

𝑎

0

 

which can be rewritten as: 

𝑉𝑝 =   𝑑𝑝
𝑇

𝑚

𝑞=1

𝑚

𝑝=1

𝑘𝑔
𝑝𝑞
𝑑𝑞  

Where the matrix 𝑘𝑔
𝑝𝑞

 correspond to the half-wave numbers 𝑝 and 𝑞 can be divided into two 

parts, the membrane and the bending, similar to the case of the elastic matrix: 

𝑘𝑔
𝑝𝑞

=  
𝑘𝑔𝑀
𝑝𝑞

·

· 𝑘𝑔𝐵
𝑝𝑞   

Therefore, taking all the 𝑝 and𝑞 half-waves we can create the full geometric matrix which is: 

𝑘𝑔 =  𝑘𝑔
𝑝𝑞
 
𝑚𝑥𝑚
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Where 𝑚 is the maximum number of half-waves used in the analysis. 

The values of the bending and membrane matrix after integration corresponding to the half-

waves 𝑝 and 𝑞 can be obtained through the substitution in the next matrices: 

𝑘𝑔𝑀
𝑝𝑞

=

 
 
 
 
 
 
 
 
 
 3𝑇1 + 𝑇2 𝑏𝐼5

12
0

 𝑇1 + 𝑇2 𝑏𝐼5
12

0

0
 3𝑇1 + 𝑇2 𝑏𝑎

2𝐼4
12𝜇𝑝𝜇𝑞

0
 𝑇1 + 𝑇2 𝑏𝑎

2𝐼4
12𝜇𝑝𝜇𝑞

 𝑇1 + 𝑇2 𝑏𝐼5
12

0
 3𝑇1 + 𝑇2 𝑏𝐼5

12
0

0
 𝑇1 + 𝑇2 𝑏𝑎

2𝐼4
12𝜇𝑝𝜇𝑞

0
 3𝑇1 + 𝑇2 𝑏𝑎

2𝐼4
12𝜇𝑝𝜇𝑞  

 
 
 
 
 
 
 
 

 

𝑘𝑔𝐵
𝑝𝑞

=

 
 
 
 
 
 
 
 
 
 10𝑇1 + 3𝑇2 𝑏𝐼5

35

 15𝑇1 + 7𝑇2 𝑏
2𝐼5

420

 𝑇1 + 𝑇2 𝑏𝐼5
140

−
 7𝑇1 + 6𝑇2 𝑏

2𝐼5
420

 15𝑇1 + 7𝑇2 𝑏
2𝐼5

420

 5𝑇1 + 3𝑇2 𝑏
3𝐼5

840

 6𝑇1 + 7𝑇2 𝑏
2𝐼5

420
−
 𝑇1 + 𝑇2 𝑏

3𝐼5
280

 𝑇1 + 𝑇2 𝑏𝐼5
140

 6𝑇1 + 7𝑇2 𝑏
2𝐼5

420

 3𝑇1 + 10𝑇2 𝑏𝐼5
35

−
 7𝑇1 + 15𝑇2 𝑏

2𝐼5
420

−
 7𝑇1 + 6𝑇2 𝑏

2𝐼5
420

−
 𝑇1 + 𝑇2 𝑏

3𝐼5
280

−
 7𝑇1 + 15𝑇2 𝑏

2𝐼5
420

 3𝑇1 + 5𝑇2 𝑏
3𝐼5

840  
 
 
 
 
 
 
 
 

 

Where  

𝜇𝑝 = 𝑝𝜋 

𝜇𝑞 = 𝑞𝜋 

I depends on the boundary conditions and is: 

𝐼1 =  𝑌𝑝 · 𝑌𝑞 · 𝑑𝑦
𝑎

0

 

𝐼2 =  𝑌𝑝
′′ · 𝑌𝑞 · 𝑑𝑦

𝑎

0

 

𝐼3 =  𝑌𝑝 · 𝑌𝑞
′′ · 𝑑𝑦

𝑎

0

 

𝐼4 =  𝑌𝑝
′′ · 𝑌𝑞

′′ · 𝑑𝑦
𝑎

0

 

𝐼5 =  𝑌𝑝
′ · 𝑌𝑞

′ · 𝑑𝑦
𝑎

0

 

 

And 𝑇1and 𝑇2 are the stresses in the nodes of the element. 
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Finally we can describe the full local matrix depending on the half-wave number as: 

 

𝐾𝑔 =  
𝑘𝑔𝑀
𝑝𝑞

·

· 𝑘𝑔𝐵
𝑝𝑞  

𝑚𝑥𝑚

 

 

Where 𝑚 is the maximum half-wave number. For example for 𝑚 = 2 we will have a matrix: 

 

𝐾𝑔 =  
𝐾𝑔

11 𝐾𝑔
12

𝐾𝑔
21 𝐾𝑔

22  
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4.3.4. Assembly of the elements 

 

We have now found the local elastic stiffness matrix and the local geometric stiffness matrix. 

In order to create the full global matrices we must first transform the local matrices to the 

global coordinates and then assemble all the matrices together to find the full global matrices. 

 

4.3.4.1. Rotation 

 

In order to rotate the strip we have to create the matrix for rotation which relates movements 

between local and global coordinates. In order to understand this matrix we can use the next 

image: 

 

 
Figure 20: Strip rotation guide image 

 

 
 
 
 

 
 
 
𝑈1

𝑉1

𝑈2

𝑉2

𝑊1

𝜃1

𝑊2

𝜃2  
 
 
 

 
 
 

=

 
 
 
 
 
 
 
 
cos⁡(𝛼) 0 0 0 −sin⁡(𝛼) 0 0 0

0 1 0 0 0 0 0 0
0 0 cos⁡(𝛼) 0 0 0 −sin⁡(𝛼) 0
0 0 0 1 0 0 0 0

sin⁡(𝛼) 0 0 0 cos⁡(𝛼) 0 0 0
0 0 0 0 0 1 0 0
0 0 sin⁡(𝛼) 0 0 0 cos⁡(𝛼) 0
0 0 0 0 0 0 0 1 

 
 
 
 
 
 
 

·

 
 
 
 

 
 
 
𝑢1

𝑣1

𝑢2

𝑣2

𝑤1

𝜃1

𝑤2

𝜃2 
 
 
 

 
 
 

 

 

This matrix relates the local coordinates to the global coordinates. This matrix has to be 

extended to the 𝑚 number of halfwaves analyzed.  
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4.3.4.2. Assembly 

 

After changing the local matrices to the global coordinates we must assemble them together 

to create the full global matrix. 

 

In order to join the matrices we must look at the nodes. In the next image we can see a plate 

and we will create a matrix for this particular example: 

 

 
Figure 21: Example image for assembly – This plate with 3 elements 

 

Therefore the global matrix must contain all the local matrices together and position like in the 

case of the finite element method. The K local matrix has 4 components, relating how every 

node affects to each other: 

 

𝐾𝑙𝑜𝑐𝑎𝑙 =  
𝐾𝑖𝑖 𝐾𝑖𝑗
𝐾𝑗𝑖 𝐾𝑗𝑗

  

 

Where every 𝐾𝑖𝑖  is a 4x4 matrix with the 4 displacements. 

 

With this matrix we can get the global matrix of our example: 

 

𝐾𝑔𝑙𝑜𝑏𝑎𝑙 =

 
 
 
 
 
𝐾𝑖𝑖 𝐾𝑖𝑗 0 0

𝐾𝑗𝑖 𝐾𝑖𝑖 + 𝐾𝑗𝑗 𝐾𝑖𝑗 0

0 𝐾𝑗𝑖 𝐾𝑖𝑖 + 𝐾𝑗𝑗 𝐾𝑖𝑗
0 0 𝐾𝑗𝑖 𝐾𝑗𝑗  

 
 
 
 

 

 

In a random section, this matrix will be extended to all the elements and nodes that exist in 

our section. 
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4.4. Buckling modes 
 

Thin-walled members, when subjected to a large compressive normal stress, usually fail by the 

loss of stability, more than due to reaching the material limit parameters. Usually we can 

distinguish three basic modes of buckling: local, distortional and global buckling. All three 

modes eventually cause excessive deformation and lead to failure. [7]* 

 

It is very important to understand the buckling modes and the critical stress associated to each 

mode. Every mode has a different degree of post-buckling capacity, but they all lead to an 

eventual collapse response. Therefore, we most calculate the critical stress to avoid the loss of 

stability. 

 

Even when the designs do require the calculation of buckling stresses, there are no clear 

definitions for each of the modes and it is quite difficult to ultimately distinguish between 

them correctly.  

 

4.4.1. Local buckling 

 

The local buckling of a section is normally defined as the mode which involves the deformation 

of the thin plates composing the section, without translation of the intersection lines between 

the same thin plates. Some examples of this mode are shown: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*[7]: Reference to bibliography 

Figure 23: Local buckling for 
a“I”section 

Figure 22: Local buckling for a 
“C” section 

Figure 24: Local buckling for a “V” section 
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4.4.2. Distortional buckling 

 

Distortional buckling is a mode defined as a cross-sectional distortion that involves the 

translation of some of the fold lines (intersection lines between thin plates). It is a rare mode 

of buckling, we can see a clear example of it in the C section: 

 

 
Figure 25: Distortional buckling for a “C” section 

 

4.4.3. Global buckling 

 

Global buckling is a mode where the member deforms with no deformation in its section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27: Global buckling for a “V” section 

Figure 26: Global buckling for a “C” 
section 
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4.4.4. Generalized Beam Theory 

 

Thanks to the Generalized Beam Theory (GBT), the modes can be correctly described and with 

some programs we can even isolate different buckling modes. In order to distinguish between 

the buckling modes, the GBT establishes three criteria: 

 

Criteria 1 

o 𝛾𝑥𝑦 = 0, membrane (in-plane) shear strains are zero. 

o 𝜀𝑥 = 0, membrane transverse strains are zero. 

o 𝑣 = 𝑓(𝑥), longitudinal displacements are linear in x within an element. 

 

Criteria 2 

o 𝜀𝑦 ≠ 0, longitudinal strains/displacements are non-zero along the length. 

 

Criteria 3 

o 𝜅𝑦 = 0, no flexure in the transverse direction. 

 

The buckling modes can then be described as: 

 Global buckling: Global buckling modes are those that satisfy all the three criteria. 

 Distortional buckling: Distortional buckling modes are those that satisfy criteria 1 and 

2 but do not satisfy criteria 3. 

 Local buckling: Local buckling modes satisfy criterion 1, but do not satisfy criterion 2. 

Criterion 3 is irrelevant in this case. 

 

In the next table we can see a resume of the classification of modes. 

 

 Global modes Distortional modes Local modes 

𝛾𝑥𝑦 = 0, 𝜀𝑥 = 0, 𝑣 = 𝑓(𝑥) YES YES YES 

𝜀𝑦 ≠ 0 YES YES NO 

𝜅𝑦 = 0 YES NO - 

 

The program “CUFSM 4.05” has been used to obtain the images of the previous buckling 

modes.  
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5. Matlab program 
 

In order to solve structures using the finite strip method, in this project we have developed a 

program that will solve any section structures utilizing the finite strip method. 

We will explain both the functioning of the program as all the sub-programs that have been 

implemented. We will then proceed to explain how to use the program and use a few 

examples to understand the functioning. 

 

5.1. Main program 

 
The main programs that has been developed returns, for several strip lengths and any section, 

the critical buckling value and the buckling mode.It also calculates the particular displacement 

caused by the submitted stress. 

 

Our main program is named “FSMsolver” and the function is: 

[shape,curve,sigmacritical] = 
FSMcrit(material_properties,nodes,elements,lengths,boundary_conditions,m_a) 

 

INPUTS OUTPUTS 

Material properties: [Ex Eyvxvy G] 
Nodes [node_numberx_positionz_position 
stress]  
Elements [element_numbernodeinodej t] 
Lengths 
Boundary conditions 
m_a 

Shape 
Curve 
Critical buckling stress 
Displacement 

 

Inputs 

o Material properties: One of the inputs that are demanded is the material properties. 

o Ex = 𝐸𝑥 : Young modulus in the “x” direction. 

o Ey= 𝐸𝑦 : Young modulus in the “y” direction. 

o vx =𝜈𝑥 : Poisson’s ratio in the “x” direction. 

o vy = 𝜈𝑦 : Poisson’s ratio in the “y” direction. 

o Gxy = The shear modulus for the material. It can be calculated using the Young 

modulus and the Poisson’s ratio: 

𝐺𝑥𝑦 =
𝐸𝑥

2 · (1 + 𝜐𝑥𝑦 )
 

 

o Nodes: The nodes of the section we want to analyze 

o node_number = The node number that we will then we can then identify to 

know the modal displacement in the “shape” output. 

o x_position = The “x” coordinate for the node. 

o z_position = The “z” coordinate for the node. 

o stress = The normal stress we want the node to suffer. 
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o Elements: The elements connecting the nodes must also be defined 

o element_number = The element number 

o nodei and nodej = The two nodes the element is connecting 

o t = The thickness of the element connecting both nodes 

 

o Lengths: The length of the strips we are analyzing. 

 

o Boundary conditions: The boundary conditions at the loaded edges. 

 

o 'S-S':  Simply-simply supported boundary condition at loaded edges. 

o 'C-C': Clamped-clamped boundary condition at loaded edges. 

o 'S-C': Simply-clamped boundary condition at loaded edges. 

o 'C-F': Clamped-free supported boundary condition at loaded edges. 

o 'C-G': Clamped-guided supported boundary condition at loaded edges. 

 

o m_a: half-wave terms to be analyzed for the length. 

 

Output 

o Shape: A matrix containing the modal displacement for all nodes after the finite strip 

analysis. The matrix will contain the next values. 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·
· · · · · · 

 
 
 
 
 
 
 
 
 

 

 

 

Modal displacement 

shape for m_a=1 

Modal displacement 

shape for m_a=2 

Modal displacement 

shape for m_a=n 

Shape for the first 

buckling mode 

Shape for the “k” 

buckling mode 
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Where we can distinguish: 

o n = The number of half-waves that want to be analyzed, that can be described in the 

variable m_a, where for example: 

o m_a=[1 2 3 4 5] would analyze the first five half-waves, where “n” would be 5. 

o k = Number of buckling modes that will be analyzed. The default value is 10, however 

depending on the quantity of nodes and half-waves, more buckling modes may be 

analyzed. 

 

The modal displacement shape includes in the column the next movements: 

 
 
 
 
 
 
 
 
 
 
𝑢1

𝑣1

·
𝑢𝑛
𝑣𝑛
𝜔1

𝜃1

·
𝜔𝑛
𝜃𝑛  
 
 
 
 
 
 
 
 
 

 

 

Where “n” will be the number of nodes in the section that is analyzed. 

 

o Curve: Includes the critical buckling stress for the “k” buckling modes that were found 

in the “shape” output. The value we find in the curve will be 
𝑃𝑐𝑟𝑖𝑡

𝑠𝑡𝑟𝑒𝑠𝑠  𝑖𝑛𝑝𝑢𝑡
, meaning we 

have to multiply the value we find with the stress we input to find the critical buckling 

stress. 

 

o Critical buckling stress: The program will automatically output the critical value in the 

“curve” output, which will be the first buckling mode we will have. Take into account 

that the value the critical buckling stress output gives us is the value of the critical 

stress divided between the input stress for the nodes. 

 

o Displacement: The program will also return the displacement values for every node as 

shown in the previous vector for the particular stress input. 

 

  

Displacement for the 

first node 
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5.2. Sub-programs 
 

In order to utilize the previous program, several sub-programs are required. All these programs 

have been developed utilizing the theory explained in the previous chapter. 

 

5.2.1. Local elastic matrix sub-program 

 

A program to find the local elastic matrix has been created. In this function we will create the 

local geometric matrix defining it as: 

 

 

𝐾𝑒 =  
𝑘𝑒𝑀
𝑝𝑞

·

· 𝑘𝑒𝐵
𝑝𝑞  

𝑚𝑥𝑚

 

 

Where 

 

𝑘𝑒𝑀
𝑝𝑞

= 𝑡 ·

 
 
 
 
 
 
 
 
  

𝐸1𝐼1
𝑏

+
𝐺𝑏𝐼5

3
  −

𝐸2𝜐𝑥𝐼2
2𝑐1

−
𝐺𝐼5
2𝑐1

  −
𝐸1𝐼1
𝑏

+
𝐺𝑏𝐼5

6
  −

𝐸2𝜐𝑥𝐼2
2𝑐1

+
𝐺𝐼5
2𝑐1

 

 −
𝐸2𝜐𝑥𝐼2

2𝑐1
−
𝐺𝐼5
2𝑐1

  
𝐸2𝑏𝐼4
3𝑐1𝑐2

+
𝐺𝐼5
𝑏𝑐1𝑐2

  
𝐸2𝜐𝑥𝐼2

2𝑐1
−
𝐺𝐼5
2𝑐1

  
𝐸2𝑏𝐼4
6𝑐1𝑐2

−
𝐺𝐼5
𝑏𝑐1𝑐2

 

 −
𝐸1𝐼1
𝑏

+
𝐺𝑏𝐼5

6
  

𝐸2𝜐𝑥𝐼2
2𝑐1

−
𝐺𝐼5
2𝑐1

  
𝐸1𝐼1
𝑏

+
𝐺𝑏𝐼5

3
  

𝐸2𝜐𝑥𝐼3
2𝑐1

+
𝐺𝐼5
2𝑐1

 

 −
𝐸2𝜐𝑥𝐼2

2𝑐1
+
𝐺𝐼5
2𝑐1

  
𝐸2𝑏𝐼4
6𝑐1𝑐2

−
𝐺𝐼5
𝑏𝑐1𝑐2

  
𝐸2𝜐𝑥𝐼3

2𝑐1
+
𝐺𝐼5
2𝑐1

  
𝐸2𝑏𝐼4
3𝑐1𝑐2

+
𝐺𝐼5
𝑏𝑐1𝑐2

 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

𝑘𝑒𝐵
𝑝𝑞

=
1

420𝑏3

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5040𝐷𝑥𝐼1 − 504𝑏2𝐷1𝐼2
−504𝑏2𝐷1𝐼3 + 156𝑏4𝐷𝑦𝐼4

+2016𝑏2𝐷𝑥𝑦 𝐼5

  

2520𝑏𝐷𝑥 𝐼1 − 462𝑏3𝐷1𝐼2
−42𝑏3𝐷1𝐼3 + 22𝑏5𝐷𝑦𝐼4

+168𝑏3𝐷𝑥𝑦 𝐼5

  

−5040𝐷𝑥𝐼1 + 504𝑏2𝐷1𝐼2
+504𝑏2𝐷1𝐼3 + 54𝑏4𝐷𝑦𝐼4

−2016𝑏2𝐷𝑥𝑦 𝐼5

  

2520𝑏𝐷𝑥𝐼1 − 42𝑏3𝐷1𝐼2
−42𝑏3𝐷1𝐼3 − 13𝑏5𝐷𝑦𝐼4

+168𝑏3𝐷𝑥𝑦 𝐼5

 

 

2520𝑏𝐷𝑥𝐼1 − 462𝑏3𝐷1𝐼2
−42𝑏3𝐷1𝐼3 + 22𝑏5𝐷𝑦𝐼4

+168𝑏3𝐷𝑥𝑦 𝐼5

  

1680𝑏2𝐷𝑥𝐼1 − 56𝑏4𝐷1𝐼2
−56𝑏4𝐷1𝐼3 + 4𝑏6𝐷𝑦𝐼4

+224𝑏4𝐷𝑥𝑦 𝐼5

  

−2520𝑏𝐷𝑥𝐼1 + 42𝑏3𝐷1𝐼2
+42𝑏3𝐷1𝐼3 + 13𝑏5𝐷𝑦𝐼4

−168𝑏3𝐷𝑥𝑦 𝐼5

  

840𝑏2𝐷𝑥𝐼1 + 14𝑏4𝐷1𝐼2
+14𝑏4𝐷1𝐼3 − 3𝑏6𝐷𝑦𝐼4

−56𝑏4𝐷𝑥𝑦 𝐼5

 

 

−5040𝐷𝑥𝐼1 + 504𝑏2𝐷1𝐼2
+504𝑏2𝐷1𝐼3 + 54𝑏4𝐷𝑦𝐼4

−2016𝑏2𝐷𝑥𝑦 𝐼5

  

−2520𝑏𝐷𝑥 𝐼1 + 42𝑏3𝐷1𝐼2
+42𝑏3𝐷1𝐼3 + 13𝑏5𝐷𝑦𝐼4

−168𝑏3𝐷𝑥𝑦 𝐼5

  

5040𝐷𝑥𝐼1 − 504𝑏2𝐷1𝐼2
−504𝑏2𝐷1𝐼3 + 156𝑏4𝐷𝑦𝐼4

+2016𝑏2𝐷𝑥𝑦 𝐼5

  

−2520𝑏𝐷𝑥𝐼1 + 462𝑏3𝐷1𝐼2
+42𝑏3𝐷1𝐼3 − 22𝑏5𝐷𝑦𝐼4

−168𝑏3𝐷𝑥𝑦 𝐼5

 

 

2520𝑏𝐷𝑥𝐼1 − 42𝑏3𝐷1𝐼2
−42𝑏3𝐷1𝐼3 − 13𝑏5𝐷𝑦𝐼4

+168𝑏3𝐷𝑥𝑦 𝐼5

  

−5040𝐷𝑥𝐼1 + 504𝑏2𝐷1𝐼2
+504𝑏2𝐷1𝐼3 + 54𝑏4𝐷𝑦𝐼4

−2016𝑏2𝐷𝑥𝑦 𝐼5

  

−5040𝐷𝑥𝐼1 + 504𝑏2𝐷1𝐼2
+504𝑏2𝐷1𝐼3 + 54𝑏4𝐷𝑦𝐼4

−2016𝑏2𝐷𝑥𝑦 𝐼5

  

1680𝑏2𝐷𝑥𝐼1 − 56𝑏4𝐷1𝐼2
−56𝑏4𝐷1𝐼3 + 4𝑏6𝐷𝑦𝐼4

+224𝑏4𝐷𝑥𝑦 𝐼5
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The program is named “k_elastic_local” and the function is: 

 

function [k_elastic_local]=k_elastic_local(Ex,Ey,vx,vy,G,t,a,b,BC,m_a) 

 

INPUTS OUTPUTS 

Ex: Young modulus in the “x” direction. 
Ey: Young modulus in the “y” direction. 
vx: Poisson’s ratio in the “x” direction. 
vy: Poisson’s ratio in the “y” direction. 
G: Shear modulus for the material. 
t: Thickness of the analyzed strip element. 
a: Length of the strip element. 
b: Width of the strip element. 
BC: Boundary conditions of the loaded edges. 
m_a: Analyzed half-waves for the strip 
element. 

k_elastic_local: The elastic stiffness matrix for 
the defined strip element in local 
coordinates. 

 

5.2.2. Local geometric matrix sub-program  

 

A program similar to the previous one has also been created to find the local geometric matrix. 

In this function we will create the local geometric matrix defining it as: 

 

𝐾𝑔 =  
𝑘𝑔𝑀
𝑝𝑞

·

· 𝑘𝑔𝐵
𝑝𝑞  

𝑚𝑥𝑚

 

 

Where: 

 

𝑘𝑔𝑀
𝑝𝑞

=

 
 
 
 
 
 
 
 
 
 3𝑇1 + 𝑇2 𝑏𝐼5

12
0

 𝑇1 + 𝑇2 𝑏𝐼5
12

0

0
 3𝑇1 + 𝑇2 𝑏𝑎

2𝐼4
12𝜇𝑝𝜇𝑞

0
 𝑇1 + 𝑇2 𝑏𝑎

2𝐼4
12𝜇𝑝𝜇𝑞

 𝑇1 + 𝑇2 𝑏𝐼5
12

0
 3𝑇1 + 𝑇2 𝑏𝐼5

12
0

0
 𝑇1 + 𝑇2 𝑏𝑎

2𝐼4
12𝜇𝑝𝜇𝑞

0
 3𝑇1 + 𝑇2 𝑏𝑎

2𝐼4
12𝜇𝑝𝜇𝑞  

 
 
 
 
 
 
 
 

 

 

 

 

𝑘𝑔𝐵
𝑝𝑞

=

 
 
 
 
 
 
 
 
 
 10𝑇1 + 3𝑇2 𝑏𝐼5

35

 15𝑇1 + 7𝑇2 𝑏
2𝐼5

420

 𝑇1 + 𝑇2 𝑏𝐼5
140

−
 7𝑇1 + 6𝑇2 𝑏

2𝐼5
420

 15𝑇1 + 7𝑇2 𝑏
2𝐼5

420

 5𝑇1 + 3𝑇2 𝑏
3𝐼5

840

 6𝑇1 + 7𝑇2 𝑏
2𝐼5

420
−
 𝑇1 + 𝑇2 𝑏

3𝐼5
280

 𝑇1 + 𝑇2 𝑏𝐼5
140

 6𝑇1 + 7𝑇2 𝑏
2𝐼5

420

 3𝑇1 + 10𝑇2 𝑏𝐼5
35

−
 7𝑇1 + 15𝑇2 𝑏

2𝐼5
420

−
 7𝑇1 + 6𝑇2 𝑏

2𝐼5
420

−
 𝑇1 + 𝑇2 𝑏

3𝐼5
280

−
 7𝑇1 + 15𝑇2 𝑏

2𝐼5
420

 3𝑇1 + 5𝑇2 𝑏
3𝐼5

840  
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The program is named “k_geometric_local” and the function is: 

 

function [k_geometric_local]=k_geometric_local(a,b,Ty1,Ty2,BC,m_a) 

 

INPUTS OUTPUTS 

a: Length of the strip element. 
b: Width of the strip element. 
Ty1: Normal stress in the “i” node of the 
element. 
Ty2: Normal stress in the “j” node of the 
element. 
BC: Boundary conditions of the loaded edges. 
m_a: Analyzed half-waves for the strip 
element. 

k_geometric_local: The geometric stiffness 
matrix for the defined strip element in local 
coordinates. 
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5.2.3. Boundary conditions calculator 

 

A function to calculate the five undetermined parameters I1, I2, I3, I4 and I5 for the local 

elastic and geometric stiffness matrix has been created. The parameters are defined as: 

 

𝐼1 =  𝑌𝑝 · 𝑌𝑞 · 𝑑𝑦
𝑎

0

 

𝐼2 =  𝑌𝑝
′′ · 𝑌𝑞 · 𝑑𝑦

𝑎

0

 

𝐼3 =  𝑌𝑝 · 𝑌𝑞
′′ · 𝑑𝑦

𝑎

0

 

𝐼4 =  𝑌𝑝
′′ · 𝑌𝑞

′′ · 𝑑𝑦
𝑎

0

 

𝐼5 =  𝑌𝑝
′ · 𝑌𝑞

′ · 𝑑𝑦
𝑎

0

 

 

As we can see, the I values depend on the two half-waves we analyze “p” and “q”. 

The program is called “BCparameters” and the function is: 

function [I1,I2,I3,I4,I5] = BCparameters(BC,Nm,Np,a) 

 

INPUTS OUTPUTS 

BC: Boundary conditions as defined 
previously: 
 'S-S':  Simply-simply supported 

boundary condition at loaded edges. 
 'C-C': Clamped-clamped boundary 

condition at loaded edges. 
 'S-C': Simply-clamped boundary 

condition at loaded edges. 
 'C-F': Clamped-free supported 

boundary condition at loaded edges. 
 'C-G': Clamped-guided supported 

boundary condition at loaded edges. 
Nm: Half-wave number “q”. 
Np: Half-wave number “p”. 
a: Length of the analyzed strip element. 

I1, I2, I3, I4, I5: Undetermined parameters 
utilized in the geometric and elastic local 
stiffness matrices.  
They depend on the half-waves number “p” 
and “q” which appear in the matrices: 
 

𝑘𝑒
𝑝𝑞

 and 𝑘𝑔
𝑝𝑞

 

 

 

 

 

 

 

 

 

 

 

 



43 | P a g e  
 

5.2.4. Element properties 

 

From the input elements we need to find a few parameters in order to use the other functions. 

For this the “elemprop” function has been created and the function is: 

function [elprop]=elemprop(node,elem,nnodes,nelems) 

 

INPUTS OUTPUTS 

node: The nodes as defined before: 
[node_numberx_positionz_position stress] 
elem: The elements as defined before: 
[element_numbernodeinodej t] 
nnodes and nelems: Number of nodes and 
elements in our section. 

elprop: A variable including 
[element_numberwidth alpha] 
Where the “width” will be used for the local 
matrices and the “alpha” to change the local 
coordinates to global coordinates. 
 

 

5.2.5. Rotation 

 

This program is used to transform the local coordinate matrices to global coordinates. It 

utilizes a matrix to rotate the strip. The rotation depends on the angle “𝛼”. 

 
Figure 28: Strip rotation guide image 

The program is called “rotatestrip” and the function is: 

[k_elastic_global,k_geometric_global]=rotatestrip(alpha,k_elastic,k_geometric,m_a) 

 

INPUTS OUTPUTS 

alpha: angle “𝛼” for the strip as defined in 
the image. 
k_elastic: elastic matrix in local coordinates. 
k_geometric: geometric matrix in local 
coordinates. 
m_a: Analyzed half-waves for the strip 
element. 

k_elastic_global: elastic matrix in global 
coordinates. 
k_geometric_global: geometric matrix in 
global coordinates. 
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5.2.6. Assembly 

 

Another program has been used to join all the strips. Using the strips elastic and geometric 

matrices in global coordinates, the function will join the particular strip to the full global 

matrix. The program is called “assemble_elements” and the function is: 

[K_elastic,K_geometric]=assemble_elements(K_elastic,K_geometric,k_elastic_local,k_geometri

c_local,nodei,nodej,nnodes,m_a) 

 

INPUTS OUTPUTS 

K_elastic: Full elastic matrix for the section. 
K_geometric: Full geometric matrix for the 
section. 
k_elastic_global: Elastic matrix for the strip in 
global coordinates. 
k_geometric_global: Geometric matrix for the 
strip in global coordinates. 
nodei and nodej: Nodes of the element. 
nnodes: Number of nodes in the section 
m_a: Analyzed half-waves for the strip 
element. 

K_elastic: Full elastic matrix for the section 
adding the elastic matrix of the strip element 
defined by “k_elastic_global”. 
 
K_geometric: Full geometric matrix for the 
section adding the geometric matrix of the 
strip element defined by 
“k_geometric_global”. 
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5.3. Matlab function map 
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6. Comparison with other methods 
 

In order to verify the usefulness of our program it is crucial that we compare the results we 

obtain with other programs or theories that we know have the correct results. This way we can 

compare both the error and the time difference with our program. 

 

As previously stated, our method should be much quicker due to the fact that it has many less 

freedom degrees than the Finite Element Method. However, we must verify that the error is 

acceptable. 

 

6.1. Theoretical comparison 
 

Utilizing the classical formulas we can find the critical buckling load for simple compression. In 

order to verify the level of error the program has, the theoretical values for the next 

coefficient have been compared with those calculated theoretically in book [3]*. The calculus 

have been done with a thin plate as the one in the next image. 

 

Figure 29: Thin plate used for the calculus 

 

𝜎𝑐𝑟𝑖𝑡 can be defined as: 

𝜎𝑐𝑟𝑖𝑡 = 𝐾𝑐 · 𝐸 ·
𝑡2

𝑏2
 

 

*[3]: Reference to bibliography 
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Where: 

o 𝐾𝑐 is a coefficient that depends on the boundary conditions and on the relation 

between the length and width of the plate. 

o 𝐸is the Young modulus. 

o 𝑡is the thickness of the plate. 

o 𝑏is the width of the plate. 

o 𝑎is the length of the plate. 

In order to find the values for K we must create a thin plate problem. In our case we will do it 

with 10 nodes in the transversal direction. The complete exercise is added in the annexes. In 

the next table we will see the results. 

 

𝒂

𝒃
 

Boundary conditions 

Simply-Simply Clamped-Clamped 

Theoretical K FSM program K Difference Theoretical K FSM program K Difference 

𝟎, 𝟓 3,5 3,518 0,5% 15,8 14,347 9,2% 

𝟎, 𝟔 2,5 2,432 2,7% 10 9,949 0,5% 

𝟎, 𝟕 1,8 1,778 1,2% 7,3 7,300 0% 

𝟎, 𝟗 1,2 1,067 11,1% 4,5 4,405 2,1% 

𝟏, 𝟎 0,9 0,861 4,3% 3,7 3,564 3,7% 

𝟏, 𝟐 0,7 0,594 15,1% 2,5 2,469 1,2% 

𝟏, 𝟒 0,5 0,434 13,2% 1,8 1,811 0,6% 

𝟏, 𝟖 0,25 0,260 4% 1,15 1,090 5,2% 

𝟐, 𝟎 0,2 0,209 4,5% 0,9 0,884 1,8% 

𝟐, 𝟒 0,15 0,145 3,3% 0,6 0,613 2,2% 

> 𝟑 0,1 0,092 8% 0,4 0,391 2,3% 

 

We can see that the differences between both calculi are small enough. The differences 

between the values come due to the different formulation between the semi-analytical 

method and the FSM. 
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6.2. Finite Element Method Comparison 
 

As previously stated, the Finite Element Method gives a more accurate result than the Finite 

Strip Method, although it demands much more computer capacity and time. 

In order to calibrate the accuracy of the FSM program the values obtained with FEM are 

utilized and compared to calibrate the program. Values obtained from the article [6]* are 

utilized in the following comparison. 

The whole comparison exercise can be found in the annexes. Here we will only look at the 

results. 

Section 𝜎𝑐𝑟𝑖𝑡  
Error a=100, b=110, h=170, 

lip length=30 
Finite strip method Finite element method 

t=1 mm 37,99 37,74 0,66% 

t=2 mm 151,85 150,52 0,88% 

t=3 mm 341,29 337,07 1,24% 

t=4 mm 605,86 595,36 1,73% 

t=5 mm 944,85 922,69 2,35% 

Degrees of freedom 
17 nodes * 4 dof = 68 
degrees  of freedom 

17 nodes in the section * 5 
nodes in the longitudinal 

direction * 4 dof = 340 
degrees of freedom 

 

 

We can see therefore that the error percentage is very small and acceptable. 

The small error that we can find is due to the fact that the finite element method does 

implement the shear strains into its calculus, while de finite strip method follows the Kirchhoff 

theory, where the shear strains are not taken into account because they are extremely small. 

 

 

 

 

 

 

 

 

 

*[6]: Reference to bibliography  
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7. Conclusions 
 

The objective of this project was to develop a program capable of implementing the FSM 

theory in order to solve structural problems. The new formulation of the FSM with the theories 

of Kirchhoff and Reissner-Mindlin for the analysis of rectangular structures is implemented to 

the program.   

The results are well calibrated in comparison to those in the plate theory. Regarding FEM, the 

solutions are comparatively quite correct, with a small difference in the buckling critical 

coefficient of about 1%. This small error is due to the fact that FEM solutions include shear 

strain effects while the FSM solution does not.  

Therefore, we can extract some conclusions: 

o The Finite Strip Method, although being a semi-analytical theory that utilizes 

trigonometric Fourier series in the longitudinal direction and FEM in the transversal 

direction, can be correctly utilized to solve a rectangular problem with various 

sections. 

 

o The dimension of the problem is greatly reduced with FSM. It is reduced to a system 

with two middle nodes with four displacements each. Thanks to the Fourier series, we 

can define the boundary conditions with trigonometric functions that satisfy them in 

the loaded edges. 

 

o The boundary conditions are extremely important to determine the stiffness matrices 

in the FSM, given that changing them will cause some coefficients inside the matrix to 

vary. 

 

o The behavior of our program is acceptable in many cases and much quicker than the 

FEM solution to the same problem. The requirements for the computer are greatly 

decreased because the unknowns in the problem are much lesser than in the finite 

element method. 

  



50 | P a g e  
 

8. Further work 
 

Having finished the finite strip method, there are several new things that could be done in 

order to continue with this investigation. 

 

The program that has been developed only solves a single column. It would be interesting to 

solve a whole frame utilizing the finite strip method in every column separately. However, in 

order to do this, further investigation must be made in the unions between the bars. In the 

next image we can see an illustration of what the next objective could be: 

 

Figure 30: Frame 

Although all the bars can correctly be analyzed by the Finite Strip Method when taking them 

separately, it requires further analysis to know if it is possible to solve a complete frame 

utilizing this method. 
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Annex 
 

1. Matlab programs 
 

1.1. FSMsolver 

 
function [shape,curve,sigmacritical,kvalue] = 

FSMsolver(material_properties,nodes,elements,lengths,boundary_conditio

ns,m_a) 
% function to find the modal shape and the critical values for the 

demanded length. 
% It will also find the value of k for the calculus of the sigmacrit. 
% INPUTS 
% material_properties: [Ex Eyvxvy G] One material per row 
% with all the properties mentiones. 
% nodes: [node_numberx_positionz_position stress] number of nodes x 4. 
% elements: [element_numbernodeinodej t] number of elements x 4. 
% lengths=length to be analysed 
% boundary_conditions 
% m_a: half-waves to be analyzed  
% m_a=[1 2 3 4 5] if we want to analyse the first 5 half-wave numbers. 

 
BC=boundary_conditions; 
a=lengths; 
Np=length(m_a); 
nnodes=length(nodes(:,1)); 
nelements=length(elements(:,1)); 

 
[elproperties]=elemprop(nodes,elements,nnodes,nelements); 
%elproperties:[element width alfa] 

 
% Defining of the global full matrices 
K=zeros(4*nnodes*Np,4*nnodes*Np); 
Kg=zeros(4*nnodes*Np,4*nnodes*Np); 

 
fori=1:nelements 
%Define the local stiffness and geometric matrixes 
    t=elements(i,4); 
    b=elproperties(i,2); 
    Ex=material_properties(1); 
Ey=material_properties(2); 
vx=material_properties(3); 
vy=material_properties(4); 
    G=material_properties(5); 
    [k_el]=k_elastic_local(Ex,Ey,vx,vy,G,t,a,b,BC,m_a); 
    Ty1=nodes(elements(i,2),4)*t; 
    Ty2=nodes(elements(i,3),4)*t; 
    [k_gl]=k_geometric_local(a,b,Ty1,Ty2,BC,m_a); 

 
%Transform matrixes to the global coordinates 
alpha=elproperties(i,3); 
    [k_eg,k_gg]=rotatestrip(alpha,k_el,k_gl,m_a); 

 
%Add the element to the full matrix 
nodei=elements(i,2); 
nodej=elements(i,3); 
    [K,Kg]=assemble_elements(K,Kg,k_eg,k_gg,nodei,nodej,nnodes,m_a); 
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end 

 
R=eye(4*nnodes*Np); 
Kff=R'*K*R; 
Kffg=R'*Kg*R; 

 
%function eig: returs [V,D] so K*V=D*Kg*V where D is a diagonal matrix 

with 
%the values of the critical buckling forces in the diagonal. 
neigs=10; 
options.disp=0; 
options.issym=1; 
N=max(min(2*neigs,length(Kff(1,:))),1); 
[V,D]=eigs(full(Kffg\Kff),N,'SM',options); 
curve=diag(D); 
shape=V; 

 
%The critical mode will be that one with the smallest critical value 
sigmacritical=min(curve); 
b=90; 
kvalue=sigmacritical*b^2/(Ex*t^2); 
end 

 

1.2. K_elastic_local 

 
function [k_elastic_local]=k_elastic_local(Ex,Ey,vx,vy,G,t,a,b,BC,m_a) 
% 
%Create the elastic stiffness matrix in global coordinates 

 
% Inputs: 
% Ex,Ey,vx,vy,G: material properties 
% t: thickness of the element 
% a: length of the strip (longitudinal) 
% b: width of the strip (tranversal) 
% BC: ['S-S'] a string specifying boundary conditions to be analyzed: 
%'S-S' simply-simply supported boundary condition  
%'C-C' clamped-clamped boundary condition  
%'S-C' simply-clamped supported boundary condition  
%'C-F' clamped-free supported boundary condition  
%'C-G' clamped-guided supported boundary condition  
% m_a: longitudinal terms (or half-wave numbers) for this length.  
% m_a=[1 2 3 4 5] if we want to analyse the first 5 half-wave numbers. 

 
% Output: 
% k: local stiffness matrix, a totalm x totalm matrix of 8 by 8 

submatrices. 
% k=[kmp]totalm x totalm block matrix 
% each kmp is the 8 x 8 submatrix in the DOF order [u1 v1 u2 v2 w1 

theta1 w2 theta2]'; 

 
E1=Ex/(1-vx*vy); 
E2=Ey/(1-vx*vy); 
Dx=Ex*t^3/(12*(1-vx*vy)); 
Dy=Ey*t^3/(12*(1-vx*vy)); 
D1=vx*Ey*t^3/(12*(1-vx*vy)); 
Dxy=G*t^3/12; 
% 
totalm = length(m_a); %Total number of longitudinal terms m 
% 
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k_elastic_local=sparse(zeros(8*totalm,8*totalm)); 
z0=zeros(4,4); 
for m=1:1:totalm 
for p=1:1:totalm 
% 
km_mp=zeros(4,4); 
kf_mp=zeros(4,4); 
um=m_a(m)*pi; 
up=m_a(p)*pi; 
        c1=um/a; 
        c2=up/a; 
% 
        [I1,I2,I3,I4,I5] = BCparameters(BC,m_a(m),m_a(p),a); 
% 
%asemble the matrix of Km_mp (K membrane for m and p half-waves) 
km_mp(1,1)=E1*I1/b+G*b*I5/3; 
km_mp(1,2)=E2*vx*(-1/2/c2)*I3-G*I5/2/c2; 
km_mp(1,3)=-E1*I1/b+G*b*I5/6; 
km_mp(1,4)=E2*vx*(-1/2/c2)*I3+G*I5/2/c2; 

 
km_mp(2,1)=E2*vx*(-1/2/c1)*I2-G*I5/2/c1; 
km_mp(2,2)=E2*b*I4/3/c1/c2+G*I5/b/c1/c2; 
km_mp(2,3)=E2*vx*(1/2/c1)*I2-G*I5/2/c1; 
km_mp(2,4)=E2*b*I4/6/c1/c2-G*I5/b/c1/c2; 

 
km_mp(3,1)=-E1*I1/b+G*b*I5/6; 
km_mp(3,2)=E2*vx*(1/2/c2)*I3-G*I5/2/c2; 
km_mp(3,3)=E1*I1/b+G*b*I5/3; 
km_mp(3,4)=E2*vx*(1/2/c2)*I3+G*I5/2/c2; 

 
km_mp(4,1)=E2*vx*(-1/2/c1)*I2+G*I5/2/c1; 
km_mp(4,2)=E2*b*I4/6/c1/c2-G*I5/b/c1/c2; 
km_mp(4,3)=E2*vx*(1/2/c1)*I2+G*I5/2/c1; 
km_mp(4,4)=E2*b*I4/3/c1/c2+G*I5/b/c1/c2;              
km_mp=km_mp*t; 
% 
% 
%asemble the matrix of Kf_mp (K bending for m and p half-waves) 
        kf_mp(1,1)=(5040*Dx*I1-504*b^2*D1*I2-

504*b^2*D1*I3+156*b^4*Dy*I4+2016*b^2*Dxy*I5)/420/b^3; 
        kf_mp(1,2)=(2520*b*Dx*I1-462*b^3*D1*I2-

42*b^3*D1*I3+22*b^5*Dy*I4+168*b^3*Dxy*I5)/420/b^3; 
        kf_mp(1,3)=(-

5040*Dx*I1+504*b^2*D1*I2+504*b^2*D1*I3+54*b^4*Dy*I4-

2016*b^2*Dxy*I5)/420/b^3; 
        kf_mp(1,4)=(2520*b*Dx*I1-42*b^3*D1*I2-42*b^3*D1*I3-

13*b^5*Dy*I4+168*b^3*Dxy*I5)/420/b^3; 

 
        kf_mp(2,1)=(2520*b*Dx*I1-462*b^3*D1*I3-

42*b^3*D1*I2+22*b^5*Dy*I4+168*b^3*Dxy*I5)/420/b^3; 
        kf_mp(2,2)=(1680*b^2*Dx*I1-56*b^4*D1*I2-

56*b^4*D1*I3+4*b^6*Dy*I4+224*b^4*Dxy*I5)/420/b^3; 
        kf_mp(2,3)=(-

2520*b*Dx*I1+42*b^3*D1*I2+42*b^3*D1*I3+13*b^5*Dy*I4-

168*b^3*Dxy*I5)/420/b^3; 
        kf_mp(2,4)=(840*b^2*Dx*I1+14*b^4*D1*I2+14*b^4*D1*I3-

3*b^6*Dy*I4-56*b^4*Dxy*I5)/420/b^3; 

 
kf_mp(3,1)=kf_mp(1,3); 
kf_mp(3,2)=kf_mp(2,3); 



55 | P a g e  
 

        kf_mp(3,3)=(5040*Dx*I1-504*b^2*D1*I2-

504*b^2*D1*I3+156*b^4*Dy*I4+2016*b^2*Dxy*I5)/420/b^3; 
        kf_mp(3,4)=(-2520*b*Dx*I1+462*b^3*D1*I2+42*b^3*D1*I3-

22*b^5*Dy*I4-168*b^3*Dxy*I5)/420/b^3; 

 
kf_mp(4,1)=kf_mp(1,4); 
kf_mp(4,2)=kf_mp(2,4); 
        kf_mp(4,3)=(-2520*b*Dx*I1+462*b^3*D1*I3+42*b^3*D1*I2-

22*b^5*Dy*I4-168*b^3*Dxy*I5)/420/b^3;%not symmetric 
        kf_mp(4,4)=(1680*b^2*Dx*I1-56*b^4*D1*I2-

56*b^4*D1*I3+4*b^6*Dy*I4+224*b^4*Dxy*I5)/420/b^3; 

 
%assemble the membrane and bending stiffness matrices       
kmp=[km_mp  z0 
z0  kf_mp]; 
%add it into local element stiffness matrix by corresponding to half-

wave m 
k_elastic_local(8*(m-1)+1:8*m,8*(p-1)+1:8*p)=kmp; 
end 
end 

 

1.3. K_geometric_local 

 
function [k_geometric_local]=k_geometric_local(a,b,Ty1,Ty2,BC,m_a) 
% 
%Generate geometric stiffness matrix (kg) in local coordinates 

 
% Inputs: 
% a: length of the strip in longitudinal direction 
% b: width of the strip in transverse direction 
% Ty1, Ty2: node stresses 
% BC: a string specifying boundary conditions to be analyzed: 
%'S-S' simply-pimply supported boundary condition at loaded edges 
%'C-C' clamped-clamped boundary condition at loaded edges 
%'S-C' simply-clamped supported boundary condition at loaded edges 
%'C-F' clamped-free supported boundary condition at loaded edges 
%'C-G' clamped-guided supported boundary condition at loaded edges 
% m_a: longitudinal terms (or half-wave numbers) for this length.  
% m_a=[1 2 3 4 5] if we want to analyse the first 5 half-wave numbers. 

 
% Output: 
% kg: local geometric stiffness matrix, a totalm x totalm matrix of 8 

by 8 submatrices. 
% kg=[kgmp]totalm x totalm block matrix 
% each kgmp is the 8 x 8 submatrix in the DOF order [u1 v1 u2 v2 w1 

theta1 
% w2 theta2]'; 

 
totalm = length(m_a); %Total number of longitudinal terms m 
kg=sparse(zeros(8*totalm,8*totalm)); 
% 
for m=1:1:totalm 
for p=1:1:totalm 
% 
gm_mp=zeros(4,4); 
z0=zeros(4,4); 
gf_mp=zeros(4,4); 
um=m_a(m)*pi; 
up=m_a(p)*pi; 
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% 
        [I1,I2,I3,I4,I5] = BCparameters(BC,m_a(m),m_a(p),a); 
% 
%Membrane geometrical matrix 
gm_mp(1,1)=b*(3*Ty1+Ty2)*I5/12; 
gm_mp(1,3)=b*(Ty1+Ty2)*I5/12; 
gm_mp(3,1)=gm_mp(1,3); 
gm_mp(2,2)=b*a^2*(3*Ty1+Ty2)*I4/12/um/up; 
gm_mp(2,4)=b*a^2*(Ty1+Ty2)*I4/12/um/up; 
gm_mp(4,2)=gm_mp(2,4); 
gm_mp(3,3)=b*(Ty1+3*Ty2)*I5/12; 
gm_mp(4,4)=b*a^2*(Ty1+3*Ty2)*I4/12/um/up; 
% 
%Bending geometrical matrix 
gf_mp(1,1)=(10*Ty1+3*Ty2)*b*I5/35; 
gf_mp(1,2)=(15*Ty1+7*Ty2)*b^2*I5/210/2; 
gf_mp(2,1)=gf_mp(1,2); 
gf_mp(1,3)=9*(Ty1+Ty2)*b*I5/140; 
gf_mp(3,1)=gf_mp(1,3); 
gf_mp(1,4)=-(7*Ty1+6*Ty2)*b^2*I5/420; 
gf_mp(4,1)=gf_mp(1,4); 
gf_mp(2,2)=(5*Ty1+3*Ty2)*b^3*I5/2/420; 
gf_mp(2,3)=(6*Ty1+7*Ty2)*b^2*I5/420; 
gf_mp(3,2)=gf_mp(2,3); 
gf_mp(2,4)=-(Ty1+Ty2)*b^3*I5/140/2; 
gf_mp(4,2)=gf_mp(2,4); 
gf_mp(3,3)=(3*Ty1+10*Ty2)*b*I5/35; 
gf_mp(3,4)=-(7*Ty1+15*Ty2)*b^2*I5/420; 
gf_mp(4,3)=gf_mp(3,4); 
gf_mp(4,4)=(3*Ty1+5*Ty2)*b^3*I5/420/2; 
%assemble the membrane and bending stiffness matrices 
kgmp=[gm_mp  z0 
z0  gf_mp]; 
%add it into local geometric stiffness matrix by corresponding to m 
%half-wave 
k_geometric_local(8*(m-1)+1:8*m,8*(p-1)+1:8*p)=kgmp;            
end 
end 

 

1.4. elemprop 

 
function [elprop]=elemprop(node,elem,nnodes,nelems) 
% Function to obtain several properties of the element used in the 

analysis 
% INPUT 
% node: [node# x_positionz_position stress] nnodes x 8; 
% elem: [elem# nodeinodej t] nelems x 4; 
% OUTPUT 
% elprop: [elem# width alpha] 
% 
elprop=zeros(nelems,3); 
% 
fori=1:nelems 
nodei = elem(i,2); 
nodej = elem(i,3); 
xi = node(nodei,2); 
zi = node(nodei,3); 
xj = node(nodej,2); 
zj = node(nodej,3); 
dx = xj - xi; 



57 | P a g e  
 

dz = zj - zi; 
width = sqrt(dx^2 + dz^2); 
alpha = atan2(dz,dx); 
elprop(i,:)=[i width alpha]; 
end 

 

1.5. BCparameters 

 
function [I1,I2,I3,I4,I5] = BCparameters(BC,Nm,Np,a) 
% 
% Calculate the 5 undetermined parameters I1,I2,I3,I4,I5 for local 

elastic 
% and geometric stiffness matrices. 
% BC: a string specifying boundary conditions to be analyzed: 
%'S-S' simply-pimply supported boundary condition at loaded edges 
%'C-C' clamped-clamped boundary condition at loaded edges 
%'S-C' simply-clamped supported boundary condition at loaded edges 
%'C-F' clamped-free supported boundary condition at loaded edges 
%'C-G' clamped-guided supported boundary condition at loaded edges 
%Outputs: 
%I1,I2,I3,I4,I5 
%calculation of I1 is the integration of Ym*Yn from 0 to a 
%calculation of I2 is the integration of Ym''*Yn from 0 to a 
%calculation of I3 is the integration of Ym*Yn'' from 0 to a 
%calculation of I3 is the integration of Ym*Yn'' from 0 to a 
%calculation of I4 is the integration of Ym''*Yn'' from 0 to a 
%calculation of I5 is the integration of Ym'*Yn' from 0 to a 

 
ifstrcmp(BC,'S-S') 
%For simply-pimply supported boundary condition at loaded edges 
if Nm==Np 
        I1=a/2; 
        I2=-Nm^2*pi^2/a/2; 
        I3=-Np^2*pi^2/a/2; 
        I4=pi^4*Nm^4/2/a^3; 
I5=pi^2*Nm^2/2/a; 
else 
        I1=0; 
        I2=0; 
        I3=0; 
        I4=0; 
        I5=0; 
end 
elseifstrcmp(BC,'C-C') 
%For Clamped-clamped boundary condition at loaded edges 
if Nm==Np 
if Nm==1 
            I1=3*a/8; 
else 
            I1=a/4; 
end 
        I2=-(Nm^2+1)*pi^2/4/a; 
        I3=-(Np^2+1)*pi^2/4/a; 
        I4=pi^4*((Nm^2+1)^2+4*Nm^2)/4/a^3; 
I5=(1+Nm^2)*pi^2/4/a; 
else 
if Nm-Np==2 
            I1=-a/8; 
            I2=(Nm^2+1)*pi^2/8/a-Nm*pi^2/4/a; 
            I3=(Np^2+1)*pi^2/8/a+Np*pi^2/4/a; 
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I4=-(Nm-1)^2*(Np+1)^2*pi^4/8/a^3; 
            I5=-(1+Nm*Np)*pi^2/8/a; 
elseif Nm-Np==-2 
I1=-a/8; 
            I2=(Nm^2+1)*pi^2/8/a+Nm*pi^2/4/a; 
            I3=(Np^2+1)*pi^2/8/a-Np*pi^2/4/a; 
            I4=-(Nm+1)^2*(Np-1)^2*pi^4/8/a^3; 
            I5=-(1+Nm*Np)*pi^2/8/a; 
else 
            I1=0; 
            I2=0; 
            I3=0; 
            I4=0; 
            I5=0; 
end 
end 
elseifstrcmp(BC,'S-C') 
%For simply-clamped supported boundary condition at loaded edges 
if Nm==Np 
        I1=(1+(Nm+1)^2/Nm^2)*a/2; 
        I2=-(Nm+1)^2*pi^2/a; 
        I3=-(Nm+1)^2*pi^2/a; 
        I4=(Nm+1)^2*pi^4*((Nm+1)^2+Nm^2)/2/a^3; 
        I5=(1+Nm)^2*pi^2/a; 
else 
if Nm-Np==1 
            I1=(Nm+1)*a/2/Nm; 
            I2=-(Nm+1)*Nm*pi^2/2/a; 
            I3=-(Np+1)^2*pi^2*(Nm+1)/2/a/Nm; 
            I4=(Nm+1)*Nm*(Np+1)^2*pi^4/2/a^3; 
            I5=(1+Nm)*(1+Np)*pi^2/2/a; 
elseif Nm-Np==-1 
            I1=(Np+1)*a/2/Np; 
            I2=-(Nm+1)^2*pi^2*(Np+1)/2/a/Np; 
            I3=-(Np+1)*Np*pi^2/2/a; 
            I4=(Nm+1)^2*Np*(Np+1)*pi^4/2/a^3; 
            I5=(1+Nm)*(1+Np)*pi^2/2/a; 
else 
            I1=0; 
            I2=0; 
            I3=0; 
            I4=0; 
            I5=0; 
end 
end 
% 
elseifstrcmp(BC,'C-F') 
%For clamped-free supported boundary condition at loaded edges 
if Nm==Np 
        I1=3*a/2-2*a*(-1)^(Nm-1)/(Nm-1/2)/pi; 
        I2=(Nm-1/2)^2*pi^2*((-1)^(Nm-1)/(Nm-1/2)/pi-1/2)/a; 
        I3=(Np-1/2)^2*pi^2*((-1)^(Np-1)/(Np-1/2)/pi-1/2)/a; 
        I4=(Nm-1/2)^4*pi^4/2/a^3; 
        I5=(Nm-1/2)^2*pi^2/2/a; 
else 
        I1=a-a*(-1)^(Nm-1)/(Nm-1/2)/pi-a*(-1)^(Np-1)/(Np-1/2)/pi; 
        I2=(Nm-1/2)^2*pi^2*((-1)^(Nm-1)/(Nm-1/2)/pi)/a; 
        I3=(Np-1/2)^2*pi^2*((-1)^(Np-1)/(Np-1/2)/pi)/a; 
        I4=0; 
        I5=0; 
end 
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elseifstrcmp(BC,'C-G') 
%For clamped-guided supported boundary condition at loaded edges 
if Nm==Np 
if Nm==1 
            I1=3*a/8; 
else 
            I1=a/4; 
end 
        I2=-((Nm-1/2)^2+1/4)*pi^2/a/4; 
        I3=-((Nm-1/2)^2+1/4)*pi^2/a/4; 
        I4=((Nm-1/2)^2+1/4)^2*pi^4/4/a^3+(Nm-1/2)^2*pi^4/4/a^3; 
        I5=(Nm-1/2)^2*pi^2/a/4+pi^2/16/a; 
else 
if Nm-Np==1 
            I1=-a/8; 
            I2=((Nm-1/2)^2+1/4)*pi^2/a/8-(Nm-1/2)*pi^2/a/8; 
            I3=((Np-1/2)^2+1/4)*pi^2/a/8+(Np-1/2)*pi^2/a/8; 
            I4=-Np^4*pi^4/8/a^3; 
            I5=-Np^2*pi^2/8/a; 
elseif Nm-Np==-1 
            I1=-a/8; 
            I2=((Nm-1/2)^2+1/4)*pi^2/a/8+(Nm-1/2)*pi^2/a/8; 
            I3=((Np-1/2)^2+1/4)*pi^2/a/8-(Np-1/2)*pi^2/a/8; 
            I4=-Nm^4*pi^4/8/a^3; 
            I5=-Nm^2*pi^2/8/a; 
else 
            I1=0; 
            I2=0; 
            I3=0; 
            I4=0; 
            I5=0; 
end 
end 
end 

 

1.6. rotatestrip 

 
function 

[k_elastic_global,k_geometric_global]=rotatestrip(alpha,k_elastic,k_ge

ometric,m_a) 

 
% Transfer the local stiffness matrix into the global coordinates 
% OUTPUT 
% k_elastic_global: k_elastic input in global coordinates (rotating 

input angle alpha) 
% k_geometric_global: k_geometric input in global coordinates 

(rotating input angle alpha) 
% INPUT 
% k_elastic and k_geometric: local matrices that must be changed to 

global coordinates 
% alpha: angle for turning matrices to the global coordinates 
% m_a: half-wave numbers to be analysed 
% m_a=[1 2 3 4 5] if we want to analyse the first 5 half-wave numbers. 

 
totalm = length(m_a); %Total number of longitudinal terms m 
a=alpha; 
% 
z0=0; 
gam=[cos(a)   z0    z0z0    -sin(a) z0   z0z0 
        z0    1     z0    z0z0z0z0z0 
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        z0    z0cos(a)  z0      z0z0 -sin(a) z0 
        z0    z0z0     1      z0    z0z0z0 
sin(a) z0    z0z0cos(a)  z0   z0z0 
        z0    z0z0z0z0    1    z0    z0 
        z0    z0  sin(a)  z0      z0z0cos(a) z0 
z0    z0z0z0z0z0z01 ]; 
%extend to multi-m 
fori=1:totalm 
gamma(8*(i-1)+1:8*i,8*(i-1)+1:8*i)=gam; 
end 
% 
k_elastic_global=gamma*k_elastic*gamma'; 
k_geometric_global=gamma*k_geometric*gamma'; 
end 

 

1.7. assemble_elements 

 
function 

[K_elastic,K_geometric]=assemble_elements(K_elastic,K_geometric,k_elas

tic_global,k_geometric_global,nodei,nodej,nnodes,m_a) 
% 
% This function adds the local matrices to the global matrices. 
% INPUT 
% K_elastic: full elastic stiffness matrix without the local input 
% K_geometric: full geometric stiffness matrix without the local input 
% k_elastic_global: global coordinates elastic stiffness matrix to be 

added 
% k_geometric_global: global coordinates geometric stiffness matrix to 

be added 
% nodei: one of the nodes of the analysed strip element 
% nodej: the other node of the analysed strip element 
% nnodes: number of total node in out section 
% m_a: half-waves analysed. m_a=[1 2 3 4 5] if we want to analyse the 

first 5 half-waves 

 
% OUTPUTS 
% K_elastic: full elastic stiffness matrix with the added input 

elastic matrix 
% K_geometric: full geometric stiffness matrix with the added input 

geometric matrix 

 
totalm = length(m_a); %Total number of half-wave terms m 
K2=sparse(zeros(4*nnodes*totalm,4*nnodes*totalm)); 
K3=sparse(zeros(4*nnodes*totalm,4*nnodes*totalm)); 
skip=2*nnodes; 
fori=1:1:totalm 
for j=1:1:totalm 
%Submatrices for the initial elastic stiffness 
        k11=k_elastic_global(8*(i-1)+1:8*(i-1)+2,8*(j-1)+1:8*(j-1)+2); 
        k12=k_elastic_global(8*(i-1)+1:8*(i-1)+2,8*(j-1)+3:8*(j-1)+4); 
        k13=k_elastic_global(8*(i-1)+1:8*(i-1)+2,8*(j-1)+5:8*(j-1)+6); 
        k14=k_elastic_global(8*(i-1)+1:8*(i-1)+2,8*(j-1)+7:8*(j-1)+8); 
        k21=k_elastic_global(8*(i-1)+3:8*(i-1)+4,8*(j-1)+1:8*(j-1)+2); 
        k22=k_elastic_global(8*(i-1)+3:8*(i-1)+4,8*(j-1)+3:8*(j-1)+4); 
        k23=k_elastic_global(8*(i-1)+3:8*(i-1)+4,8*(j-1)+5:8*(j-1)+6); 
        k24=k_elastic_global(8*(i-1)+3:8*(i-1)+4,8*(j-1)+7:8*(j-1)+8); 
        k31=k_elastic_global(8*(i-1)+5:8*(i-1)+6,8*(j-1)+1:8*(j-1)+2); 
        k32=k_elastic_global(8*(i-1)+5:8*(i-1)+6,8*(j-1)+3:8*(j-1)+4); 
        k33=k_elastic_global(8*(i-1)+5:8*(i-1)+6,8*(j-1)+5:8*(j-1)+6); 
        k34=k_elastic_global(8*(i-1)+5:8*(i-1)+6,8*(j-1)+7:8*(j-1)+8); 
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        k41=k_elastic_global(8*(i-1)+7:8*(i-1)+8,8*(j-1)+1:8*(j-1)+2); 
        k42=k_elastic_global(8*(i-1)+7:8*(i-1)+8,8*(j-1)+3:8*(j-1)+4); 
        k43=k_elastic_global(8*(i-1)+7:8*(i-1)+8,8*(j-1)+5:8*(j-1)+6); 
        k44=k_elastic_global(8*(i-1)+7:8*(i-1)+8,8*(j-1)+7:8*(j-1)+8); 
% 
K2(4*nnodes*(i-1)+nodei*2-1:4*nnodes*(i-1)+nodei*2,4*nnodes*(j-

1)+nodei*2-1:4*nnodes*(j-1)+nodei*2)=k11; 
K2(4*nnodes*(i-1)+nodei*2-1:4*nnodes*(i-1)+nodei*2,4*nnodes*(j-

1)+nodej*2-1:4*nnodes*(j-1)+nodej*2)=k12; 
K2(4*nnodes*(i-1)+nodej*2-1:4*nnodes*(i-1)+nodej*2,4*nnodes*(j-

1)+nodei*2-1:4*nnodes*(j-1)+nodei*2)=k21; 
K2(4*nnodes*(i-1)+nodej*2-1:4*nnodes*(i-1)+nodej*2,4*nnodes*(j-

1)+nodej*2-1:4*nnodes*(j-1)+nodej*2)=k22; 
% 
K2(4*nnodes*(i-1)+skip+nodei*2-1:4*nnodes*(i-

1)+skip+nodei*2,4*nnodes*(j-1)+skip+nodei*2-1:4*nnodes*(j-

1)+skip+nodei*2)=k33; 
K2(4*nnodes*(i-1)+skip+nodei*2-1:4*nnodes*(i-

1)+skip+nodei*2,4*nnodes*(j-1)+skip+nodej*2-1:4*nnodes*(j-

1)+skip+nodej*2)=k34; 
K2(4*nnodes*(i-1)+skip+nodej*2-1:4*nnodes*(i-

1)+skip+nodej*2,4*nnodes*(j-1)+skip+nodei*2-1:4*nnodes*(j-

1)+skip+nodei*2)=k43; 
K2(4*nnodes*(i-1)+skip+nodej*2-1:4*nnodes*(i-

1)+skip+nodej*2,4*nnodes*(j-1)+skip+nodej*2-1:4*nnodes*(j-

1)+skip+nodej*2)=k44; 
% 
K2(4*nnodes*(i-1)+nodei*2-1:4*nnodes*(i-1)+nodei*2,4*nnodes*(j-

1)+skip+nodei*2-1:4*nnodes*(j-1)+skip+nodei*2)=k13; 
K2(4*nnodes*(i-1)+nodei*2-1:4*nnodes*(i-1)+nodei*2,4*nnodes*(j-

1)+skip+nodej*2-1:4*nnodes*(j-1)+skip+nodej*2)=k14; 
K2(4*nnodes*(i-1)+nodej*2-1:4*nnodes*(i-1)+nodej*2,4*nnodes*(j-

1)+skip+nodei*2-1:4*nnodes*(j-1)+skip+nodei*2)=k23; 
K2(4*nnodes*(i-1)+nodej*2-1:4*nnodes*(i-1)+nodej*2,4*nnodes*(j-

1)+skip+nodej*2-1:4*nnodes*(j-1)+skip+nodej*2)=k24; 
% 
K2(4*nnodes*(i-1)+skip+nodei*2-1:4*nnodes*(i-

1)+skip+nodei*2,4*nnodes*(j-1)+nodei*2-1:4*nnodes*(j-1)+nodei*2)=k31; 
K2(4*nnodes*(i-1)+skip+nodei*2-1:4*nnodes*(i-

1)+skip+nodei*2,4*nnodes*(j-1)+nodej*2-1:4*nnodes*(j-1)+nodej*2)=k32; 
K2(4*nnodes*(i-1)+skip+nodej*2-1:4*nnodes*(i-

1)+skip+nodej*2,4*nnodes*(j-1)+nodei*2-1:4*nnodes*(j-1)+nodei*2)=k41; 
K2(4*nnodes*(i-1)+skip+nodej*2-1:4*nnodes*(i-

1)+skip+nodej*2,4*nnodes*(j-1)+nodej*2-1:4*nnodes*(j-1)+nodej*2)=k42; 
% 
%Submatrices for the initial geometric stiffness 
        kg11=k_geometric_global(8*(i-1)+1:8*(i-1)+2,8*(j-1)+1:8*(j-

1)+2); 
        kg12=k_geometric_global(8*(i-1)+1:8*(i-1)+2,8*(j-1)+3:8*(j-

1)+4); 
        kg13=k_geometric_global(8*(i-1)+1:8*(i-1)+2,8*(j-1)+5:8*(j-

1)+6); 
        kg14=k_geometric_global(8*(i-1)+1:8*(i-1)+2,8*(j-1)+7:8*(j-

1)+8); 
        kg21=k_geometric_global(8*(i-1)+3:8*(i-1)+4,8*(j-1)+1:8*(j-

1)+2); 
        kg22=k_geometric_global(8*(i-1)+3:8*(i-1)+4,8*(j-1)+3:8*(j-

1)+4); 
        kg23=k_geometric_global(8*(i-1)+3:8*(i-1)+4,8*(j-1)+5:8*(j-

1)+6); 
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        kg24=k_geometric_global(8*(i-1)+3:8*(i-1)+4,8*(j-1)+7:8*(j-

1)+8); 
        kg31=k_geometric_global(8*(i-1)+5:8*(i-1)+6,8*(j-1)+1:8*(j-

1)+2); 
        kg32=k_geometric_global(8*(i-1)+5:8*(i-1)+6,8*(j-1)+3:8*(j-

1)+4); 
        kg33=k_geometric_global(8*(i-1)+5:8*(i-1)+6,8*(j-1)+5:8*(j-

1)+6); 
        kg34=k_geometric_global(8*(i-1)+5:8*(i-1)+6,8*(j-1)+7:8*(j-

1)+8); 
        kg41=k_geometric_global(8*(i-1)+7:8*(i-1)+8,8*(j-1)+1:8*(j-

1)+2); 
        kg42=k_geometric_global(8*(i-1)+7:8*(i-1)+8,8*(j-1)+3:8*(j-

1)+4); 
        kg43=k_geometric_global(8*(i-1)+7:8*(i-1)+8,8*(j-1)+5:8*(j-

1)+6); 
        kg44=k_geometric_global(8*(i-1)+7:8*(i-1)+8,8*(j-1)+7:8*(j-

1)+8); 
% 
K3(4*nnodes*(i-1)+nodei*2-1:4*nnodes*(i-1)+nodei*2,4*nnodes*(j-

1)+nodei*2-1:4*nnodes*(j-1)+nodei*2)=kg11; 
K3(4*nnodes*(i-1)+nodei*2-1:4*nnodes*(i-1)+nodei*2,4*nnodes*(j-

1)+nodej*2-1:4*nnodes*(j-1)+nodej*2)=kg12; 
K3(4*nnodes*(i-1)+nodej*2-1:4*nnodes*(i-1)+nodej*2,4*nnodes*(j-

1)+nodei*2-1:4*nnodes*(j-1)+nodei*2)=kg21; 
K3(4*nnodes*(i-1)+nodej*2-1:4*nnodes*(i-1)+nodej*2,4*nnodes*(j-

1)+nodej*2-1:4*nnodes*(j-1)+nodej*2)=kg22; 
% 
K3(4*nnodes*(i-1)+skip+nodei*2-1:4*nnodes*(i-

1)+skip+nodei*2,4*nnodes*(j-1)+skip+nodei*2-1:4*nnodes*(j-

1)+skip+nodei*2)=kg33; 
K3(4*nnodes*(i-1)+skip+nodei*2-1:4*nnodes*(i-

1)+skip+nodei*2,4*nnodes*(j-1)+skip+nodej*2-1:4*nnodes*(j-

1)+skip+nodej*2)=kg34; 
K3(4*nnodes*(i-1)+skip+nodej*2-1:4*nnodes*(i-

1)+skip+nodej*2,4*nnodes*(j-1)+skip+nodei*2-1:4*nnodes*(j-

1)+skip+nodei*2)=kg43; 
K3(4*nnodes*(i-1)+skip+nodej*2-1:4*nnodes*(i-

1)+skip+nodej*2,4*nnodes*(j-1)+skip+nodej*2-1:4*nnodes*(j-

1)+skip+nodej*2)=kg44; 
% 
K3(4*nnodes*(i-1)+nodei*2-1:4*nnodes*(i-1)+nodei*2,4*nnodes*(j-

1)+skip+nodei*2-1:4*nnodes*(j-1)+skip+nodei*2)=kg13; 
K3(4*nnodes*(i-1)+nodei*2-1:4*nnodes*(i-1)+nodei*2,4*nnodes*(j-

1)+skip+nodej*2-1:4*nnodes*(j-1)+skip+nodej*2)=kg14; 
K3(4*nnodes*(i-1)+nodej*2-1:4*nnodes*(i-1)+nodej*2,4*nnodes*(j-

1)+skip+nodei*2-1:4*nnodes*(j-1)+skip+nodei*2)=kg23; 
K3(4*nnodes*(i-1)+nodej*2-1:4*nnodes*(i-1)+nodej*2,4*nnodes*(j-

1)+skip+nodej*2-1:4*nnodes*(j-1)+skip+nodej*2)=kg24; 
% 
K3(4*nnodes*(i-1)+skip+nodei*2-1:4*nnodes*(i-

1)+skip+nodei*2,4*nnodes*(j-1)+nodei*2-1:4*nnodes*(j-1)+nodei*2)=kg31; 
K3(4*nnodes*(i-1)+skip+nodei*2-1:4*nnodes*(i-

1)+skip+nodei*2,4*nnodes*(j-1)+nodej*2-1:4*nnodes*(j-1)+nodej*2)=kg32; 
K3(4*nnodes*(i-1)+skip+nodej*2-1:4*nnodes*(i-

1)+skip+nodej*2,4*nnodes*(j-1)+nodei*2-1:4*nnodes*(j-1)+nodei*2)=kg41; 
K3(4*nnodes*(i-1)+skip+nodej*2-1:4*nnodes*(i-

1)+skip+nodej*2,4*nnodes*(j-1)+nodej*2-1:4*nnodes*(j-1)+nodej*2)=kg42; 
end 
end 
K_elastic=K_elastic+K2; 
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K_geometric=K_geometric+K3; 
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2. Comparison exercises 

2.1. Theoretical comparison exercise 

 

In order to do the following exercise we must describe the thin plate we will be using. We can 

now see the image of the thin plate and the input for the FSM matlab program. 

 

 

Figure 31:Theoretical comparison thin plate 

The input for the matlab FSM program in this case will be: 

Thin plate 

 

Ex=2.05e5; %Given that we will be working in “N” and “mm” the value of our Young 

modulus is 205000 N/mm2 

Ey=2.05e5; 
vx=0.3; 
vy=0.3; 
G=Ex/(2*(1+vx)); 
 
t=1;  
m_a=[1]; %We will only analyze the first halfwave buckling modes. 
 
nodes=[1 0 0 1; 2 10 0 1; 3 20 0 1; 4 30 0 1; 5 40 0 1; 6 50 0 1; 7 60 0 1; 8 70 0 1; 9 80 0 
1; 10 90 0 1] %[node_numberx_positionz_position stress]. In this case we put a normal 
compression of 1N to obtain directly the critical buckling load in the analysis.  
 
elements=[1 1 2 t;2 2 3 t;3 3 4 t;4 4 5 t;5 5 6 t;6 6 7 t;7 7 8 t;8 8 9 t;9 9 10 t] 
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boundary_conditions=variable;%our boundary conditions will be 'S-S' or 'C-C' 
depending on what K we want to calculate. 
 
material_properties=[Ex Eyvxvy G]; 
 
lengths=variable;%The length of the strip is “a” and the relation of a/b is what we will 
keep changing to calculate our values for “K”. 
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2.2. Finite Element Method Comparison exercise 

 

The following C section will be analyzed 

 

 

Figure 32: Analyzed figure in the comparison 

 

The section is discretized in the next way. 

 

Therefore, we have 17 nodes and 16 elements in the cross 

section. In the case of the finite element method, 5 more 

nodes have been created in the longitudinal direction. 

The freedom degrees for both methods have also been 

calculated, for they are proportional to the computer power 

required to solve the equations. The increase of the unknowns 

increase the time the computer needs to solve the structure. 

With the figure described, it can now be introduced to the 

program in order to make the comparison. 

 Figure 33: Discretization of the 
section 
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Finite Strip Method program: 

Ex=2.05e5; 

Ey=2.05e5; 

vx=0.3; 

vy=0.3; 

G=Ex/(2*(1+vx)); 

t=5;%The value of “t” must be changed in order to get the 

whole table of the report.  

m_a=[1 2 3 4 5]; 

nodes=[1 110 30 1;2 110 15 1;3 110 0 1;4 82.5 0 1;5 55 0 

1;6 27.5 0 1;7 0 0 1;8 0 42.5 1;9 0 85 1;10 0 127.5 1;11 0 

170 1;12 27.5 170 1;13 55 170 1;14 82.5 170 1;15 110 170 

1;16 110 155 1;17 110 140 1]; 

elements=[1 1 2 t;2 2 3 t;3 3 4 t;4 4 5 t;5 5 6 t;6 6 7 t;7 

7 8 t;8 8 9 t;9 9 10 t;10 10 11 t;11 11 12 t;12 12 13 t;13 

13 14 t;14 14 15 t;15 15 16 t;16 16 17 t]; 

boundary_conditions='S-S'; 

material_properties=[Ex Eyvxvy G]; 

lengths=100; 

 

 

 


