
IxSketch: A Design Tool for Sketching
Interactive Prototypes

Bachelor Thesis

Josep López
<josel@student.ethz.ch>

Prof. Dr. Moira C. Norrie
Dr. Michael Nebeling

Christoph Zimmerli

Global Information Systems Group
Institute of Information Systems

Department of Computer Science
ETH Zurich

13th February 2015

Copyright © 2015 Global Information Systems Group.

Abstract

Currently, there are many ways of designing and developing a user interface prototype. We
can take a conventional approach, using physical tools such as pencil and paper, or di-
gital tools that allow us to create and use prototypes that almost resemble real applications.
Whichever we choose, there is a wide range of options available for users to prototype their
interfaces.

Both approaches, however, come with advantages and disadvantages. In this bachelor thesis,
we will explore ways in which the entire creation process of interactive prototypes can be
supported going beyond what is currently possible with tools available. We will experiment
with different approaches to interaction with the prototype as well as tools to empower several
aspects missing on the current tools.

As part of this thesis, IxSketch will be developed, a proof of concept tool for prototyping
interfaces that aims to bring the strengths of paper prototyping into the digital realm. We aim
to do so by providing ways of sketching interactions as well as the traditional interface layout
and components. Under the umbrella of our global key concept: ’Everything is contained
in the sketch’ several key features appear. Different modes of interaction like annotations,
visually linking interfaces, the possibility of visualizing and interacting with our prototype
in different definition levels, as well as customizing the interfaces to get closer to the final
application we are trying to develop, all of these contribute to that goal.

iii

iv

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Contribution . 2
1.3 Thesis overview . 3

2 Background 5
2.1 Scientific literature . 5

2.1.1 Draco . 6
2.1.2 Kitty . 8
2.1.3 i2ME . 10

2.2 Reviewed applications . 11
2.2.1 Pop . 12
2.2.2 Balsamiq . 14
2.2.3 Axure . 16

3 Approach 19
3.1 Design Process . 19

3.1.1 Previous literature . 19
3.1.2 Initial sketches . 21
3.1.3 Final sketches . 23
3.1.4 Alternative features/layouts . 26

3.2 Key Concepts . 29
3.2.1 Widget sketch-like palette easily draggable and adjustable 29
3.2.2 Layers for versioning of interfaces 30
3.2.3 Different fidelity modes for agnostic, sketch-like styling but also

specific High Fidelity version . 31
3.2.4 Play mode to enable real interaction 31
3.2.5 Annotation mode empowering revisions and comments 32

v

vi CONTENTS

3.2.6 Linking Screens mode: Visually connecting interfaces 32

4 Implementation 35
4.1 Architecture . 35

4.1.1 General overview . 36
4.1.2 Standard mode . 38
4.1.3 Presentation mode . 41
4.1.4 Annotation mode . 42
4.1.5 Screen linking mode . 44

5 Conclusion 47
5.1 Discussion . 47
5.2 Future Work . 48

1
Introduction

1.1 Motivation

IxSketch is a proof of concept prototype born to provide an answer for three main issues
regarding the current sketching interactivity tools available:

1. Even though there is a wide variety of tools for sketching graphical user interfaces at
different levels of fidelity, there is relatively little support for sketching interactivity in these
tools.

2. There is not a relevant support for the transition from lower fidelity to higher fidelity in the
form of static mockups to interactive prototypes.

3. The interaction, in the form of communication and revisioning, between roles involved
in the development of a graphical user interface is not empowered nor eased by the current
existing tools.

Paper prototyping [8] is a very useful and powerful tool to prototype applications. It is widely
used mainly due to the ease of the process, and the speed with which a user can develop a
prototype using this technique.

To illustrate these topics, if we choose paper prototyping, we have a really fast solution to
have a prototype with certain amount of detail. We can even have explanation of interactions,
either described as text or in the form of connections between interfaces with the use of visual
elements like arrows, so it definitely appears like a good solution for prototyping.

But when the time to get feedback from the users come, the lack of interactivity support
leaves us without the ability to detect user experience issues before developing the actual
application. A change later on takes much more effort than rather early to be fixed.

On the other hand, if we take the example of digital prototyping with an application, we
have other interesting advantages, like the possibility of seeing our prototype react to our

1

2 1.2. CONTRIBUTION

interactions.

But digital prototyping has other drawbacks as well. We might lose the closeness with the
prototype for instance, as the creation or manipulation of the same may not be that immediate
and direct as it would be with paper prototyping in which we directly sketch everything
manually.

Think also of the scenario where you have several people discussing about an interface de-
veloped in a prototyping application. The UX expert might want to point to the designer the
need for some components to be positioned, and the designer has another layout in mind, and
even the programmer has something to say about the feasibility of that solution.

They have to send mails back and forth with revisions of the prototype, along with explana-
tions of why they were doing it in that manner. There is no fast way of creating alternative
versions and exploring the combination of them or just visually pointing some issues on the
same prototype for other colleagues to review it.

As we can see, both options possess their strengths and weaknesses. IxSketch is created with
the aim of merging the strengths of both fields, to offer all of the potential these options have,
without having to suffer from the limitations that they carry with them as well.

1.2 Contribution

We had three goals to achieve with this thesis which were:

1. Support for sketching interactivity

2. Support for the transition from lower fidelity to higher fidelity in the form of static mockups
to interactive prototypes.

3. Easing the interaction, in the form of communication and revisioning, between roles in-
volved in the development of a graphical user interface.

The first goal, the support for sketching interactivity, was supplied by the key concept of
our application: everything is contained in the sketch. We explored ways of creating and
interacting with interfaces as we will see in detail in the Approach section. We wanted to
narrow the gap between the user and the prototype, to make the experience of creating the
interfaces more direct, more natural. That was the moment when this global key concept was
born, in order to bring this closeness to the user.

With this in mind, the user was able to see everything with a glance of the sketch of his
application. He could understand the several interfaces of the application he was developing
as well as the connections between them. This was possible because the interactions were
also part of the sketch allowing the user to have an understanding of the whole application by
just looking at its sketch as it would happen in a paper prototyping scenario.

With regard to our second goal, the support for the transition from lower fidelity to higher
fidelity, we have supplied a mechanism to offer the user with a simple way to toggle the
definition of the interface that is being edited. That allows a device-agnostic layout designing.
In addition, we offer a high fidelity version of the same palette of widgets which enables the
user to visualize how his interface would look in a real environment or device.

CHAPTER 1. INTRODUCTION 3

This goal would be empowered with the usage of a server-side backend that would allow the
creation of custom theming, allowing thus the styling of the device of choice and also, the
potential visualization of an interface in several devices.

On behalf of the last goal, easing the interaction in the form of communication and revisioning
between roles involved in the development, our prototype offers the possibility of different
roles co-creating the final interface through the use of two of its features: the layer concept
and the annotation mode.

On the one hand, with the use of the layers, we allow the users to have several versions of
the interface, the visibility of which can be easily toggled to display combinations or focus in
one revision of the same.

On the other hand, through the use of the annotation mode, we let different users collaborate
live and discuss about the particularities of the interfaces, or share comments or opinions
between different users later on.

1.3 Thesis overview

In the remaining document, we will explain the following topics of this thesis:

In chapter 2, we review some of the current existing tools at several levels; sketching, inter-
activity, etc. We analyze them and conclude by extracting the features desired for our proof
of concept prototype.

In chapter 3, we explain the development and refinement of the sketch versions of the applic-
ation, how the features and interface evolved towards the final version, and some decisions
taken in the process regarding usefulness and feasibility of features, and also distribution of
elements on the prototype interface.

In chapter 4, the actual implementation of the prototype and architecture of the same will be
explained in detail. We will explain how the connection between interfaces work behind the
scenes, how we achieved several features that we had in mind because of our research and
exploration with the sketches, and also the technologies we used to develop them and the
reason why we chose them on the first place.

Finally, we conclude this thesis in chapter 5 with a discussion, where we recapitulate the goals
and assess how we achieved them. We also take a look at possible future work to extend or
make use of our proof of concept prototype.

4 1.3. THESIS OVERVIEW

2
Background

There are already a lot of prototyping tools in the market, some of them remarkably good
and accepted by most of the people in the field. There are also groups of researchers who are
doing really interesting explorations of ways to empower sketching interactivity in tools they
are developing. In this chapter we will have a look at several related scientific literature and
a set of currently existing tools in order to see the approaches that have been taken on both
sides, and try to extract what we need for our proof of concept prototype.

2.1 Scientific literature

There is previous research on the field of interface prototyping which has investigated tools
that, as well as allowing to build relatively simple interactive mockups, support collaborative
sketching, like GAMBIT [7]. In addition, some other tools have started exploring interface
metaphors and gestures specifically for mobile user interface design [5].

Some of the tools we will describe in the following subsections are focused in exploring ways
of transforming the drawing input the user gives them to generate motion and different kinds
of animations which is very interesting regarding the goal of this thesis, even if they belong
to another paradigm of applications, that do not fit in our prototyping tools field.

Others try to focus in a very specific field, prototypes focused in mobile interactions, targeting
the very specific needs and lacks of the current existing applications in that field and supplying
a very effective solution that addresses them, using clever approaches that gives them all the
flexibility they needed and that we will take with us in the development of our proof of
concept prototype as they also serve to supply some of our key concepts.

5

6 2.1. SCIENTIFIC LITERATURE

2.1.1 Draco

Figure 2.1: Draco motion path example creating fluxes of objects

Draco [3] is a sketch-based interface that permits users to add a rich set of animation effects to
their drawings, seemingly bringing illustrations to life. While it does not fit into the category
of prototyping tools, Draco contains in its core amazing interaction mechanisms, which were
interesting to explore in order to come up with ideas for interacting with our proof of concept
prototype that are really far away from the ones that current tools nowadays use.

The contribution of this application is a unified framework of motion controls that allows
users to add motions to object collections. The user can define objects by selecting them in
the sketch and then apply animations and effects through the use of kinetic textures.

The framework is mainly built around these kinetic textures, which provide continuous an-
imation effects for the objects enabling many dynamic effects difficult or not possible with
previous sketch-based tools.

They also pursue to create a tool that is intuitive to use thus removing the gap between the
technology and the direct manipulation that would be natural for the user in a paper-like
environment.

In particular, the definition of motion paths, or the use of tracing to define properties of
animations, could be adopted in our proof of concept to define properties of transitions for
example. As it will be discussed in the next chapter, this idea was embraced in an alternative
version of the sketches, which allowed the definition of the transition by tracing a curve on a
tactile area of our interface.

CHAPTER 2. BACKGROUND 7

Figure 2.2: Draco motion profile example determining properties of animations

8 2.1. SCIENTIFIC LITERATURE

2.1.2 Kitty

Kitty [2] is another tool developed by the authors of Draco. As with the previous tool, we can
sketch our drawings, with a basic set of sketching tools to later add powerful effects through
the use of its interaction mechanisms.

Figure 2.3: Kitty example of associating elements to create objects

However, the difference with Draco relies on the fact that you can create many kinds of inter-
actions between objects. Objects can be defined by associations between strokes previously
defined on the sketch.

When the interaction mode is enabled now, we can interact with the objects for which we
have defined translation paths or other kinds of motions and move them around the sketch by
dragging them manually on the same interface.

Later, when we have this animations properly set, we can finally activate the graph mode
where we can create certain triggers that activate some behaviour between objects. We will
do this by graphically drawing a path between the objects. Then, contextual menus appear
on both objects, to allow us to change all of the animation properties and the interactions that
will trigger these changes in the current properties of the animation for both objects.

CHAPTER 2. BACKGROUND 9

Figure 2.4: Kitty example of interaction between objects

For instance, we can set that the rotation of the first object will fasten the animation speed
on the second object, that is connected to this, and so on. The vast variety of animations
and properties of an object that can be customized allows the user to create really complex
interactive scenes, but really easy to manipulate for a non-technical user as well, making it
perfect for every user, from kids, to designers.

It is interesting to note the way in which they manage the display of properties and options
when the graph mode is enabled. This would be a good approach for our proof of concept
prototype’s Linking Screens mode as we could efficiently display all of the possible cus-
tomizable options of the transitions, gesture recognition, speed of the animation, and so on,
without having to use traditional menus.

In addition, this would help us to achieve the goal of easing the use of our application, and
keeping everything inside the context of the sketch.

10 2.1. SCIENTIFIC LITERATURE

2.1.3 i2ME

i2ME [4] is a framework for building interactive mockups with concrete mobile interaction
elements. It allows to add a layer of interactivity to currently existing prototypes in the form
of gesture recognition, and also the creation of new digital prototypes with the help of the
first tool that it provides for that matter, the iMocBuilder.

iMocBuilder is a tool that allows the users to create interactive mockups easily. It uses images
as input to create a HTML5 + JavaScript digital prototype that is uploaded on creation to the
main server. Later, this prototype can be accessed either from the mobile device’s browser or
with the second tool of the framework, the mobile app called iMocTester.

The ways in which we can generate these inputs for the mockup builder are two: the user
can upload his own paper mockups and transform them with the tool into a digital prototype
ready for the app, or he can generate the mockup himself with the mockup builder, using a
series of templates.

When the inputs are already inserted, we can select areas in the mockup interface, much like
we will see in the next section when talking about Pop (2.2.1), and then assign gestures to it.
This gesture will trigger the transition, which type can also be selected in this process, to the
desired destination interface.

Once all of the interactions have been assigned and the interactive mockup is done, with the
help of the iMocTester the user is able to interact with his interactive mockup in his own
device, getting rid of the browser toolbars that usually are hard to hide.

The generated mockup makes use of a special library built on top of hammer.js1 to enable
the recognition of a variety of gestures, and runs in every device due to being written in
JavaScript.

We borrowed this concept of the generation of a HTML5 + JavaScript playable prototype, as it
is a way of allowing our proof of concept prototype to run in as many devices as there are able
to run a modern browser with HTML5 capabilities. Luckily, most of the mobile browsers,
due to its young age, implement all of the necessary features of the last specification, fact that
would make our prototype suitable for many different devices.

1http://hammerjs.github.io/

http://hammerjs.github.io/

CHAPTER 2. BACKGROUND 11

2.2 Reviewed applications

In order to have a better understanding of how different interaction approaches can be used
when it comes to creating interfaces in a prototyping application, we had a look at several
tools that are currently available.

Those tools vary in their goals and nature, some being restricted by the devices they can be
used in.

For instance, the case of a mobile app which is limited by the screen size of the device we are
using, thus having to deal with a simple and well-thought interface due to the lack of space
for the user to interact with it.

Finally, we have reviewed relevant applications in our area of research as well, which are
used by many teams and possess the well-structured interfaces that allow a lot of possibilities
to create a rich interaction experience. But they do it while keeping it relatively simple for a
non technical user to be able to develop and iterate over a digital prototype without having to
worry a lot about how it works behind the scenes.

With these various approaches we aim to achieve a better understanding at what has been
done and also what is trying to be achieved, giving us an overview of how things have been
done, but also evaluate whether they work appropriately or not.

12 2.2. REVIEWED APPLICATIONS

2.2.1 Pop

PopApp2 is a mobile application available for Android, iOS and Windows Phone. It has
several pricing plans but all of the features are available also in the free plan with the exception
that you cannot share your prototype because there is only one user allowed in this one.

The main point to remark about this app is the lack of difficulty when it comes to translating a
paper prototype into a digital one. The main feature of this app is that it lets you take pictures
at wireframes or storyboards and use them as interfaces of your digital prototype.

If you already have a storyboard of the application you wish to develop, you can obtain a
digital version of the same in no time, and in really easy steps. This makes it perfect for
designers who might not have the knowledge required to re-develop a digital version of their
prototype nor have the time to invest (usually they will have a small amount) to learn how to
develop a digital one.

Figure 2.5: Pop App editing interface

On behalf of the interactivity level of support that this application provides, they focused their
2https://popapp.in/

https://popapp.in/

CHAPTER 2. BACKGROUND 13

application in the already mentioned behaviour. You scan your wireframe and obtain a series
of screens that serve the purpose of being the interfaces of your digital prototype.

The interesting thing is that once you have this digital version, you can connect the screens
between them also in a really fast manner just by selecting regions of the snapshots and
assigning them a gesture and transition mode to lead to the selected destination screen and
that ends the process. In these two steps you obtain a functional digital prototype that you
can play and interact with.

One interesting thing extracted from the analysis of this application, is that everything can be
a connection to another interface, something that is more restricted in other prototyping tools.
We took this into the development of our own, by allowing every element in our interface to
be a connection to some other interface, much like the freedom you would have in a paper
scenario.

This, combined with the possibility of extending the widget palette, would give more flexib-
ility to our tool, making every kind of interface possible by creating the appropriate custom
elements.

However, as this ease of use may be the strength of the application, it is also its main weakness
due to the fact that you cannot do much further than sharing this prototype with other users
in your group in case you chose the pricing plan to enable these capabilities.

14 2.2. REVIEWED APPLICATIONS

2.2.2 Balsamiq

Balsamic Mockups3 is a trialware application available for Windows, Linux and Mac OS.
There is also a web-version of the application which provides the same features and allows
you to share your prototypes with other users as well.

As a wireframing tool, Balsamiq is one of the top tools in the field, widely used among de-
signers. Its sketchy appearance removes the pressure of designing something that looks well
aesthetically, and instead, lets the designer concentrate in the layout, how to make important
elements stand out, etc.

Figure 2.6: Balsamiq main interface example

It has a wide range of web-based interface components or widgets to use as well and, within
little time, one can see this tool really serves it purpose of allowing you to achieve visible
results fast and without much complication. The usage of the widgets is in the form of a
widget library or palette from which you can drag and drop, and later resize and reposition
the widgets in the interface.

This is one of the main features that we would adopt in our prototype as well. We did so
because it enables a truly quick creation and edition of the interfaces as well as being quite
intuitive. Any person, as potential user of our tool, that has used a computer, has had to drag
and drop some file or resized a window in his desktop at some point. This knowledge relieves
them from the task of learning how to manipulate the interfaces in our application, which at
the same time, closes the gap between the prototype and the user creating it.

Other useful controls of this application that should be mentioned are that it possesses the
3http://balsamiq.com/products/mockups/

http://balsamiq.com/products/mockups/

CHAPTER 2. BACKGROUND 15

concept of grouping elements together built in. That makes readjusting parts of interfaces
fairly effortless by just selecting the elements you want to stick together and then just dragging
the block to the desired position.

On the other hand if what we want is to lock the position of a widget of group of elements,
we also have the possibility of making them stay in the current position with a property of the
mentioned group. These two options make refinement an easier and less manual labour.

There are also other libraries of widgets apart from the web styled ones, created by users of
this application that are available to use for free in the same product’s website, thus expanding
the range of devices you can use this application to develop for.

Regarding its interactivity support, we could say it is actually quite limited, only allowing the
linking of mockups via web links, or other so labeled ’control objects’. If you still want to
get out of this scope you can do it using several workarounds.

Once you have the interfaces of your prototype properly connected, you can use the present-
ation mode to interact with the mockups in full screen mode. There, you will see those
same interfaces except for the connected widgets over which appears a colored box to high-
light them. When you click on them the application will navigate to the selected destination
screen. However, there is no support for other gestures or transition types beyond this option.

16 2.2. REVIEWED APPLICATIONS

2.2.3 Axure

Axure RP4 is a very powerful enterprise application to do wireframing and create digital
prototypes that has a lot of features apart from the typical toolset that we would find in a tool
like Balsamiq, such as documenting, better interface editing options, more choices when it
comes to events that can trigger actions in the prototype, conditional programming of events,
variables, and much more.

It has several pricing plans according to some feature availabilities, especially involving the
sharing options that are available in the professional version which is addressed at teams,
while the standard one is intended to be used only for the development of the prototype itself
by a single user.

Figure 2.7: Axure RP main interface example

The usage of the widgets in this application is also in the form of a widget library or palette
from which you can drag and drop, and later resize and reposition the widgets. However,
this application also possesses shapes, and other objects that you can use apart from the web-
styled typical elements to expand the variety of interfaces you can develop with it.

Additionally, this tool allows the user to update the widgets’ instances with background im-
ages, colour fills, gradients, placeholders, shapes, and more in order to provide theming cap-
abilities. With this, the prototype can also exist in a High Fidelity environment, making it
useful to review how the design-less version would work in a real environment and also al-
lowing the user to create personal styling for prototypes. This way, they extend the use to as
many devices as one can design.

4http://www.axure.com/features

http://www.axure.com/features

CHAPTER 2. BACKGROUND 17

By default, the application has a lot of elements, web-styled, but there is also the possibility of
downloading more widget libraries from some linked sites in the product site, thus allowing
the user to generate wireframes with previously build packages of styles, relieving the user
from having to create customized styles for the prototype himself.

As the previously referenced Balsamic, Axure RP incorporates the concept of grouping ele-
ments and locking them in a fixed position as well. In addition to these features, it has others
also in the realm of widget editing like aligning elements between themselves in a Photoshop-
like way, and the one that might be more useful: templating.

Axure RP provides this in the form of ’masters’ which are templates for any kind of widget
or complete interface allowing the reusing of components, and speeding the development of
interfaces up, by removing the time of creating applications once the user has a good list of
templates which he has created and reuses most of the time.

On behalf of the interactivity level supported by this application, it allows to create transitions
or links between pages by selecting the widgets you want to act like triggers and later select-
ing the kind of behaviour you want them to react to (e.g.: events like hover, onMouseOut,
onClick, etc).

But not only that, it provides ways of linking events to other kind of actions such as toggling
the visibility of widgets, enabling/disabling them, setting images, updating texts, selecting
options, setting variables, and so on. That brings a huge flexibility when it comes to pro-
gramming more complex behaviours and interactions with our prototype but it also makes
the use of it less accessible and rough for unexperienced users or simply users that might not
be used to programming when creating a prototype for their application, such as designers.

It is also important to note that this application not only lets you interact with the prototype
you have created with it, but it lets you export the prototype to html format as well, since it is
the same format it uses when you use the presentation mode to interact with the same making
it easy to share and interact with the prototypes in different computers also due to the fact that
web pages can be displayed in almost every device.

It is arguably the most complete tool available, and also the more flexible, due to all of
the possibilities that it offers, from several ways of deeply customizing the aesthetics of the
interfaces, to complex logic behind the actions that the user can trigger in the presentation
environment. Some of the capabilities that it possesses would be desirable in a potential
evolution of our proof of concept prototype into a final product.

However, we have not considered them necessary as they overcomplicate the process of cre-
ation and manipulation of the interfaces and also because they do not go further into en-
abling more natural ways of interacting with the application itself, rather than taking a very
programatic-like approach to the development of the application prototype.

18 2.2. REVIEWED APPLICATIONS

3
Approach

3.1 Design Process

Having the issues explained in the Motivation section(1.1) in mind and also all of the inform-
ation about how tools we had analyzed solved those explained in the previous section, as well
as their strengths and weaknesses, we began the second stage of this thesis, the sketching.

With that latter analysis we also strengthened our ideas about what concepts we needed in our
proof of concept prototype, but also discovered interesting features that would be considered
as future extensions of the tool we were about to design.

In this following phase, we sketched several interfaces of how our prototype should look,
trying to find the way to accommodate all of the features we considered necessary while not
overloading the main interface. As we will see at latter stages of the process we had interfaces
with lots of elements that made difficult the understanding of how the tool behaved and tried
to simplify to the maximum the controls in order to make the barrier less high for the users.

3.1.1 Previous literature

Before starting sketching interfaces, we needed to get a deeper knowledge of how sketching
and storyboards work in real life. That would give us a better understanding of ways of
solving certain situations, such as representing connections between parts of the application,
and it would give us ideas that we could translate into features or characteristics of our future
proof of concept prototype as well.

In order to do this, we took a look at several paper prototypes, and also literature about how
to create them, such as Sketching User Experiences: The Workbook [1], to get a better grasp
at the concepts beneath this topic.

19

20 3.1. DESIGN PROCESS

Figure 3.1: Rough sketch of user interface flow on a mobile app. Image by Fernando Guillen2

We focused on the idea of the storyboard itself, and the way it transmits both the content and
the intent of the actions a user can do with only looking at the sketches of the interfaces and
the links between them. That idea would be refined into the key global concept that is the
umbrella of our proof of concept prototype: Everything is contained in the sketch.

From this research, we extracted the main ideas that would be part of our next sketches on
how to represent interactions, and would be later incorporated into the future proof of concept
prototype such as the general view of the application when we activate the Linking Screens
mode.

That would help us see the whole application at once and understand the relationship between
the elements or screens of the same through the usage of arrow elements to connect the
different parts of the application in a visual way like we would have in a paper environment.

At the same time, we would provide another set of features, feeding from the knowledge of
digital prototyping applications to finally offer a tool that had the ease of paper prototyping
combined with the powerful features of digital tools.

In the next subsections, we will see different sketches of our proof of concept prototype. We
will explain how they evolved in time, and the decisions behind that. The aim of this phase
was to explore new ways of creating and manipulating interfaces rather than obtaining a fully
detailed paper prototype to later translate into our digital prototype.

For this reason, we will also see some alternative ways of interacting with our application that
could be interesting for future extensions or deeper exploration on the field.

2http://www.flickr.com/photos/d2clon/4402993445/

http://www.flickr.com/photos/d2clon/4402993445/

CHAPTER 3. APPROACH 21

3.1.2 Initial sketches

Figure 3.2: First ’complete’ sketch

On this sketch, we had all of the features we had in mind at first, except for the collaboration
that would come in the form of another editing mode later on. We can see the main interface
which contains several areas, and at first we see the screen which is currently being edited,
the palette is to its right, containing several widgets that can be dragged to the screen editing
area to compose the interface. Below the palette we find the mode selector panel, with a slider
to select between the modes that were available at that point: Sketch mode, High Definition
mode, and Play mode.

In the lower part of the interface, we find two areas more, the recent screens panel and the
screen options panel. In the recent screens panel, you could have an overview of the last
screens you had edited in order to have a quick access to interfaces you had recently worked
in, assuming that those would be the ones you wanted to access with a higher probability.
Later in the refinement of the prototype we would find that feature to be less useful in com-
parison with the layer concept that will be later introduced, and would be removed from the
prototype in favor of letting space for the layer panel to be big enough to be useful.

At its right we had the screen options panel, which contained 4 buttons.

The first one was the ’add screen’ button which triggered a new pane appearing on top of the
right side of the main interface, covering the widget palette, that allowed us to customize the
screen we were creating in that moment. It contained several options, such as name, theming,

22 3.1. DESIGN PROCESS

a background image, that would not be part of the final prototype due to the lack of a backend
to support the mentioned features.

The second one, the one to its right, was the ’screen list’ button which replaced the formerly
mentioned right area with a list of screen selectors in order to change the screen that was
currently being edited. It also contained a little preview of the screen that would be dropped
from the prototype later on due to the lack of space for the preview to be useful. The interface
was already quite loaded with elements to interact with, so we did not want to add more
complexity for the user to do the simple tasks.

Figure 3.3: Selecting a screen from the list

The third button, was the ’screen settings’ button which triggered the already mentioned
screen settings pane on the right area, with the exception that the panel that appeared also
contained an extra button in order to duplicate the current screen to a new one. That was
meant to ease the revision of interfaces process, something that later on would be provided
by the layer concept.

CHAPTER 3. APPROACH 23

Figure 3.4: Changing the screen’s settings

Finally, we found the ’delete screen’ button that deleted the current screen being edited.

It can also be seen in the annotations, that a quick screen generation was considered, in
the form of a dialog style window that would let us create an interface with pre-determined
parameters in a fast way.

3.1.3 Final sketches

Figure 3.5: Final sketch version of the main interface

24 3.1. DESIGN PROCESS

On this sketch, we can see several variations the main interface has undergone. It would not
be the final interface the prototype would have, as there are other aspects of the interaction
with the application we discovered while developing the prototype itself, but it resembles
it the most. Below the screen editing area we see the formerly mentioned replacement of
the recent screens panel by a first version of the layer concept, that did not include yet the
previews of the layers in it.

This first approach already gave us though, the possibility of different revisions of interfaces,
and also took into account the visibility toggling with the use of a little round selector within
the button itself. The button, on the other hand, would be used to select the layer.

Below the widget palette, where we could find the mode selector before, now lies a widget
colour selector which would aid in creating different versions of the interface. That concept
was later transformed in an specific colour per layer on the final prototype to simplify the
separation of revisions or roles. Under this selector we could find the colour selector for the
annotation mode that was appearing here for the first time. This selector would be finally
displayed only if the annotation mode was selected, making the interface more clear and
simple to use for the user in the real prototype.

On the lower part of the right area of the interface we find the previous mode selector, but
with slight changes. We realized that, conceptually, the previous organizing of mode selectors
did not make sense with the new mode added, so it was reorganized into different modes of
edition, and a new selector was added to chose the current level of definition of the interface
displayed which contained the two previously mentioned modes: Sketch and High Fidelity.

Finally, on the bottom of the right area we found the add screen button, and a tab selector
which changed the tool displayed on the widget palette area between the palette, the screen
list view, and the settings view. This tab selector was moved on top of the area to which it
changed the contents later on, to make it more understandable for the user.

On the sketch next to the one described above, we can see an example of the interface of
the prototype when the annotation mode was activated, replacing the palette of widgets with
some tools to annotate the sketch which where the pencil and the text box. This tools would
be later replaced by a stroke thickness selector and the colour selector that we could also see
in the regular main interface, as the text area was considered not valuable for this prototype.

CHAPTER 3. APPROACH 25

Figure 3.6: Ways to link screens

On this sketch we can see a possible process of linking screens. Everything begins by right-
clicking a widget while editing an interface, which would trigger a menu on the right pane
asking us to select some properties: the destination screen, the kind of animation, and the
speed in the version that is on the right of the image.

Below, we find a 2-step version of the same which asks us to select a screen from the recent
used ones, and also allows us to select another one if needed from a complete list of the
screens.

Once selected, it would show us a tactile area expecting us to draw a curve or function which
would determine the kind of animation the transition would have, and also the speed of the
same.

However, the latter option was dismissed due to the technical difficulty of properly recog-
nizing different functions added to the lack of connection between a drawn shape and the
animation it would trigger making the whole process not very intuitive in the end.

The option implemented in the prototype quite resembles the first one, only with the change
that it is executed in a special mode, the screens mode, that allows us to have an overview of
the whole list of screens and connect them visually rather than in a select menu.

That added to the fact that when a connection is done, we obtain a visual connection between
the widget and the destination screen in the form of an arrow, contributes to the goal of con-
taining everything in a sketch-like medium, and lets us understand the relationships between

26 3.1. DESIGN PROCESS

interfaces in a fast glance at the overview of screens.

3.1.4 Alternative features/layouts

Figure 3.7: Potential mobile (small display) layout

CHAPTER 3. APPROACH 27

On this sketch there is an alternative layout for mobile devices with reduced screen resolution,
in which we can see how several features could be displayed so that we do not lose the ability
to still be able to create interfaces in those devices. In this very simple exam we can see
how the right area panels are replaced by little tabs that can be shown by clicking on them,
displaying then the known panels such as the widget panel, and the screen list.

However, later on the support for this kind of resolutions was dropped, mainly due to two
reasons. First, it was not a goal of our prototype to be able to develop interfaces in this kind
of scenario, which also presents severe restrictions when it comes to usability and layout
spacing.

Secondly, we decided to drop it in favor of focusing in other core features that were more
essential to the thesis, and thus there was not a thorough redesign of the interface and all of
the options to adapt it to this reduced environment.

Figure 3.8: Alternative way of introducing widgets

On the last sketch we can see two alternative ways of introducing widgets that were conceived
in an attempt to seek different ways of interacting with the prototype, closer to a full sketching
interactivity experience. The first one, shows us a tactile area, where we could draw a shape,
namely the shape of the widget we desire to use, and the system would recognize it and
dispose it in the container below it for us to use it.

In the second version, instead of drawing the shape of the widget, we chose to draw the name
of the widget, or possibly a shorter alias, and by doing that we would obtain the same result
as in the previous version, our desired widget would appear in the container under the tactile

28 3.1. DESIGN PROCESS

area, and then we would drag it to the screen.

Even though this solution can seem to be really good at first, it results in a slower creation of
the interface itself, by having to repeat this gestures in order to obtain a single widget every
time, also it can not be that obvious how to draw quickly a shape for a menu widget, not to
say to recognize it by the prototype. The same would happen in the scenario where we chose
to implement the second alternative where we write the name of the widget we want to use.

CHAPTER 3. APPROACH 29

3.2 Key Concepts

As formerly mentioned, this proof of concept relies under one global key concept: Everything
is contained in the sketch.

This articulated the research that we did as well as the features we would chose to implement.
From being able to grasp all the aspects of the whole application in a single view, to being
able to create and manipulate every particularity of our application with a visual approach,
everything fell back to this big principle in the end.

This in turn, would be in favor of our goal of empowering sketching interactivity, the first of
the targets we had in mind at first.

Once we finished our refinement of the sketches, we had a small set of sub-key concepts that
would be the pillars that would sustain the global one on our proof of concept prototype:

3.2.1 Widget sketch-like palette easily draggable and adjustable

Figure 3.9: Closer look at the widgets palette

A palette of widgets like the one we have seen provides us with an easy way of creating
interfaces, just by dragging the elements that we want to use to the screen area, and then it
also lets us to reposition them at ease by redrawing them to where they have to be as well as
resizing them like we would resize a window in a computer. Editing is easy as it is to remove

30 3.2. KEY CONCEPTS

them, which only consists, again, in dragging them to the trash bin contained in the widget
palette area, which will remove the widget as well as the connection that it could have to other
screens in the form of transitions.

This approach makes the creation and refining of the layout of an interface really easy and
fast for the user, letting him create an interface in a few minutes as no further parameters are
required in order to obtain a complete interface.

3.2.2 Layers for versioning of interfaces

Figure 3.10: Early version of the layer concept

This eases the creation of alternative versions of interfaces, as well as the fast visualization
and combination of different layouts of components. It also allows the collaboration of dif-
ferent roles by separating their changes, revisions or annotations in different layers provided
with different colours, to quickly distinguish between them.

This way, we can just clone a layer with a certain layout structure, manipulate it, combine
it with other layers, and explore possible different interface compositions without having to
worry about storing them in complex ways in order to have them physically and visually
separated.

CHAPTER 3. APPROACH 31

3.2.3 Different fidelity modes for agnostic, sketch-like styling but also specific
High Fidelity version

Providing a switch that changes the level of fidelity of the components of the interface, en-
ables the prototype to be a tool for general purpose prototyping, without being too specific of
a device or environment.

This in turn allows the user to focus on the layout of the widgets and forget about concrete
theming issues. In addition, it provides a way of checking how the application would look
in a real scenario, with the use of High Fidelity widgets, that belong to a particular device,
framework, or operating system.

This, combined with the possibility of creating custom themes, allows the user to be able to
represent any kind of device and interface by just using his own custom widgets, which are
represented by images, so that the user only has to create a set of images that resemble the
target he wants to emulate.

3.2.4 Play mode to enable real interaction

A most necessary mode within the proof of concept prototype to permit the user the real
interaction with his prototype, allowing as well a detection of usability issues when actually
using it like a real user before going into the development stage. We avoid in this way major
changes later on that would be much more expensive to address.

We can use our prototype either in the sketch-like fidelity level to focus on the distribution
of the elements for example, and later in the High Fidelity level, getting us closer of the final
application we would like to develop next. In any case, we can trigger a transition from any
element on our interface which will bring us to the destination screen using the transition
properties selected when connecting them.

32 3.2. KEY CONCEPTS

3.2.5 Annotation mode empowering revisions and comments

Figure 3.11: Closer look at the annotation mode

A mode that makes it possible for different users, or the same one who is currently using the
application, to annotate comments and details about the interface, on the same interface that
he is editing, empowering collaboration in real time between different users, or easing the
collaboration in conjunction with the layer concept.

This allows the users to share their opinions and revisions of the interfaces they have reviewed
in a fast manner, instead of having to send notes and comments back and forth on other
channels of communication like e-mail.

This concept, as well as the layer concept, could be vastly empowered with the addition
of a backend component. With it, a remote collaboration live session could be estab-
lished, enabling the simultaneous interaction of several users, and bringing the real-time
co-development of interfaces to a fairly interesting possibility.

3.2.6 Linking Screens mode: Visually connecting interfaces

A mode that allows us to connect interfaces by establishing linkings between source elements
and target screens. This is done by visually tracing a path between those two elements, a trace
that also expresses the intent of the connection.

CHAPTER 3. APPROACH 33

This path becomes an arrow on completion of the trace, showing the direction of the con-
nection. In addition, for instance, depending on the kind of gesture that would be used to
recognize that interaction, the resulting visual arrow would have different properties, like
colour, tip shape, etc.

With this approach we achieve a really visual and intuitive way of connecting the interfaces of
our prototype, as well as allowing the user to have a complete understanding of the prototype
and its behaviour by just looking at the overall sketch, and its internal relationships.

In turn, this could be combined with an already mentioned, tracing shape recognition, in order
to specify properties of the transition between the two interfaces, from the same manual input
from the user.

34 3.2. KEY CONCEPTS

4
Implementation

In this section, we will give a little explanation about the technologies involved in the de-
velopment of this proof of concept prototype, as well as the reasons why they were chosen
in relation to the needs we had and the features wanted to build that we distilled from the
previous analysis of the current existing tools.

We will also discuss the architecture of the application. We will take a look at what services
are involved, what is their purpose, and how they interact in order to provide the features we
needed.

Finally, we will see how some of the features were actually implemented, taking advantage
of these technologies.

4.1 Architecture

IxSketch is developed using the latest web-technologies in order to be able to bring interesting
interacting features to life. It is written in JavaScript with the help of jQuery, and uses HTML5
and CSS3’s recent specifications to achieve this purpose as well at the interface level.

35

36 4.1. ARCHITECTURE

4.1.1 General overview

Figure 4.1: Architecture diagram

As we can see in the diagram, the application uses a series of services, controllers and classes
that will be explained in the following section. Note that the parts with dashed lines belong to
the backend part of this prototype. This part is not implemented, even though it is referenced
several times in this thesis, as it is considered to be one of the potential paths for the future
works.

The main controller’s task is to initialize all of these services and then start the application
itself. Beyond that, the rest of the logic of this application relies on the several services that
compose it.

To abstract the main application from all of the configurations the libraries we use need to
be provided with, we have encapsulated those in a Configuration service, which exports the
constants and configuration declarations, for the rest of the application, to keep everything
clean and organized.

The main orchestrator would be the View Service who is in charge of manipulating the inter-
face, and also saving the state of the same. When a mode change is triggered, it is the View
Service that updates the application’s interface for the same. To abstract the View Service of
directly manipulating the DOM, and thus being coupled to the specific ’implementation’ or
structure of it, we work with a DOM Helper that mainly deals with the creation of raw DOM
elements, abstracting other components of knowing how to build the elements of the interface
themselves.

In order for the interface to receive the inputs of the user, there is a Binding Service which
encapsulates and initializes the bindings of the UI controls of the application to the behavior
they have to execute. And every time some action happens, it is likely we have to save the
new state to the appropriate screen. This will be the task of the Screen Service, which has

CHAPTER 4. IMPLEMENTATION 37

the set of available screens in its properties as well as it exposes useful Screen management
operations to the rest of services.

If we happen to be using the Annotation Mode, we will be interacting mostly with the Canvas
Service, which encapsulates all of the behaviour regarding the this mode. It manages the cre-
ation, erasing, copying, and other operations that affect the canvas elements in the application
due to their special behaviour.

Finally, if we activate the Linking Screens mode, the Link Service will manage the arrow
connections as it will be explained in the next subsection.

Apart from the services, we also find these classes that represent the main concepts of the
application:

- Screen class, which encapsulates all of the data related to a screen, such as, layers, connec-
tions, canvases, etc.

- Connection class, which owns all of the information related to a connection, such as, source
and destination elements, and properties of the connection like the gesture to trigger it or the
speed of the transition between screens.

- Arrow Manager class, which encapsulates the logic regarding the linking screens feature of
the application, that we will see in further detail in the next section.

With this general view of the architecture of the application, we will now explain some of the
inner workings involved in the features we had to develop.

38 4.1. ARCHITECTURE

4.1.2 Standard mode

Figure 4.2: Screenshot of the Standard editing mode

The first mode that we will see of this prototype is the Standard mode. This mode is the
default mode active when the application starts and uses three main areas. In the first one on
the left, we see the interface we are currently developing. At the right, we have the palette of
widgets that we are going to use in order to build our screen.

We also possess other controls like the screen selector, to change the screen that is currently
being edited and the fidelity toggler, to change the level of fidelity of the widgets. As the last
area, we find the layer previews below these two areas on top with their display and clearing
controls.

To implement these last preview controls we considered interesting to take advantage of two
features of the broader set of features from CSS3 [11]: the scaling transformations and the
flexbox layout model [6].

The first one would allow us to be able to replicate our screens or interfaces all over our
application without having to take all of the size calculations into account, enabling an easy
management of the screen concept which is actually composed by several layers with different
behaviours.

The flexbox layout model was useful in many ways. It allows us to develop our prototype
faster and in a less static manner, as flexbox makes the distribution of space between elements
easy and number-free, meaning that we don’t assign explicit values to the sizes of the element.
Instead, we let the flexbox grid distribute them intelligently according to the desired properties
we use.

CHAPTER 4. IMPLEMENTATION 39

It helped in the elasticness of our design as well, letting it grow accordingly to the size of the
display in use. It is used all over the interface of our proof of concept prototype, as well as in
particular, in the layer previews.

Figure 4.3: Screenshot of the High Fidelity toggling

The way to build an interface is straight. We just drag the elements of the palette that we want
on our interface area on the left, adjust their position or size if needed, and we already have
an interface ready to be connected.

We also have other possibilities that facilitate the editing of this interface as it is not obvious
at first how they should be built. In order to ease this process, we provide the concept of
layers.

Layers can be rapidly distinguish as the widgets contained in them will get a characteristic
colour depending in the layer they are in. These colors can be either used to distinguish
between different revisions of the interface, or to be used by different roles collaborating in
the development of the interface. In addition, layers can be easily copied from one to another
with the layer menu on top.

This allows us to create variations of a particular interface without having to modify the
original, or re-create it in another layer manually.

Layers can also be hidden to allow the user to compare specific iterations of the interface in
particular. The contents of the hidden layer are still displayed in the preview area, making it
possible to quickly toggle them.

40 4.1. ARCHITECTURE

Figure 4.4: Example of toggling layers visibility

All of this behaviour relies in a set of layer elements stacked on top of each other as it will be
explained in further detail in the Annotation Mode section. Every time we drag an element
from the palette to the editing area, it will be dropped in the most upper layer.

This layer will be conveniently positioned through the use of the z-index positioning, and
then the widget will be cloned into that layer with all of the resizing capabilities and the
appropriate layer colour.

If we do not want to use it anymore, we just need to drag it to the trash bin area in the palette,
and it will be removed from the layer as well as the connections there could be starting from
that element.

In order to achieve the preview concept in the lower part, we made use of the CSS3 Scaling
transformations previously mentioned. We cloned the separate layers that are stacked in the
editing area into the preview boxes and then applied an appropriate ratio of scaling calculated
dynamically with the help of these new properties.

The result is a segmented view of the whole interface in little previews that can be helpful
when it comes to combining interfaces parts, separating revisions, etc. These previews are
refreshed every time there is a drop event in the top area, or a new trace is added to the canvas
layers in the Annotation Mode that will later be explained.

This keeps them consistent at all times with the contents that are appearing on the main editing
area.

CHAPTER 4. IMPLEMENTATION 41

4.1.3 Presentation mode

The Presentation mode, identified with the play button on the top menu, enables our prototype
to be interactive, by adding all of the connections we have defined in the Linking screens
mode into the actual interface.

With this we can explore the prototype in use, detecting usability issues, or other problems
that can be seen by other persons involved in the process of the development.

Figure 4.5: Screenshot of the Presentation mode

To enable this feature, on runtime, when this mode is activated, we copy the contents of the
current screen being edited to the Presentation Mode area, and then iterate through all of the
connections that screen possesses.

On each connection, we obtain all of the information regarding the kind of link we are dealing
with, the gesture involved to trigger it, the speed of the animation, the destination, and we
dynamically use those values to generate the linking in the screen.

Even though the architecture is using the jQuery library to recognize gestures, we could easily
introduce a wrapper in the middle of the process that not only took the gesture, but that could
also determine which library it needs in order to recognize or bind the event given a certain
gesture.

This would extend the possibility of using several tools to broaden the range of gestures the
application could recognize.

42 4.1. ARCHITECTURE

4.1.4 Annotation mode

The Annotation Mode, as previously stated, brings us the possibility of sketching on top of
our interface, revisioning interfaces, collaborating, etc.

In order to implement this feature, we have taken advantage of the HTML5’s Canvas element
which provides us with an area in which we can trace lines easily by using the HTML5 Canvas
manipulation API [9], that is crucial in the development of the this mode.

The Annotation Mode basically relies on several layers of canvas elements coexisting in the
frame of the interface area.

In contrast with the rest of the markup that a particular screen contains, these elements have
to be persisted in another way, but thanks to this JavaScript Canvas manipulation API the
process is fairly simple.

Figure 4.6: Example of Annotation mode

When using this feature in the editor, we find ourselves handling several properties of the
elements that compose the screen editing interface.

First, we have the several layers that contain the different versions of the interface, and also
in its other mode, the canvas associated with those, that allow tracing in each of them. They
are all stacked on top of each other, and reordered when the layer is selected through the use
of dynamic z-index positioning.

That manages the layer concept ordering, but when we are in the standard edition mode we
still have a canvas element on top of the layer that prevents us from dragging elements to it,
or manipulating the ones that are already in it.

We could use again the z-index property in order to solve that, but instead we used another
tool to make it less demanding for the browser and clearer in use.

We disable the pointer-events property of the element. This allows the events that would be

CHAPTER 4. IMPLEMENTATION 43

detected on this element to go through the canvas layer to the objects layer, thus only having
to toggle this setting every time we change from Standard Mode to Annotation Mode, and
not recalculating z-index’s and re-positioning elements for this feature as well.

Another particularity of the canvas element that we already mentioned when talking about
JavaScript and the Canvas API, is that in order to save its contents, it does not suffice with
storing the html contents of the same.

Instead, we have to export an image of the canvas itself, that will be stored on the Screen
class, and then re-paint it when we reattach the screen and its contents to the main interface
of the application.

44 4.1. ARCHITECTURE

4.1.5 Screen linking mode

In order to be able to link our screens, we dispose them in a grid of N rows and 2 columns. As
we are using SVG graphics for the arrows, and they need special position as HTML elements
in order to exactly match the center of the widget that acts as a ’source’ and the center of the
destination screen of the transition, we find ourselves a situation regarding the calculation of
the positioning.

Figure 4.7: Example of screen linking

We already have a grid of screens that possess relative positioning. All of the elements in-
side the grid are appropriately tagged using HTML5’s Data Attributes [10] containing its
number of element inside the grid (data-screennumber) and the row which they belong to
(data-rownumber). These values are embedded in the html elements that contain the screens
generated at runtime when the Screen Linking Mode is activated.

We are also using the CSS absolute positioning for the SVG arrow elements inside them to
be able to place them exactly in place but due to the nature of this positioning, we have to
position the box containing the arrow element by providing a top and left offset in reference
to the parent container.

However, first we need to know the distance between the two points we want to connect in

CHAPTER 4. IMPLEMENTATION 45

order to define the vector that will serve as a line for the arrow, to later be able to calculate
the full size of the container that will host it.

To do this, we establish the absolute value of the difference in rows of the elements that are
connected, and we add one in order to obtain the full height of the container. The width of
the same will be twice the screen width so that we will always work with a two screens width
container with variable height. We will always place this SVG container on the first element
of the appropriate row.

This will be determined by which element, source or target, is above the other one, fact that
will determine the row in which we will position this container due to the fact that the arrow
element cannot overflow its SVG container on the top part, or it will not be displayed.

Figure 4.8: Linking example with the SVG final size

Once we have decided which one is above, we apply the appropriate top offset to the destin-
ation element, adding the row difference formerly mentioned multiplied by the screen height
and also taking into account the offsets for centering the tip of the arrow in the center of the
destination screen.

In the case of the source element, the procedure is the same, and instead of adding the offset
of screens we have to take into account the original widget’s offset as well as the offset to

46 4.1. ARCHITECTURE

center the source of the arrow element in its center.

Figure 4.9: Linking example with the calculated offsets for the arrow element

On behalf of the horizontal positioning, it is a really simple matter of checking whether the
element, source or target, is in the right or left position in our grid. Only in the case of being
in the right column, we would add one screen’s width offset to position the tip or source of the
arrow in the appropriate column, and then refine the positioning with the element’s current
offset if it is the case of the source widget or half a screen’s width in the case of being the
destination screen.

5
Conclusion

5.1 Discussion

In this thesis, we have explored several possibilities of ways of interacting with a prototyping
tool. We have taken a look at what is already possible, and what could be improved. We
also presented IxSketch, a proof of concept prototype tool that facilitates the development of
application prototypes that feeds from this exploration and analysis.

The application attempts to be a bridge between the paper prototyping and the digital proto-
typing, taking the best of both scenarios.

We have brought sketching interactivity through the global key concept of ’Everything being
contained in the sketch’ as well as the sub-concepts that support it. Future improvements in
the linking of the interfaces, and also new ways of creating and manipulating the interfaces
that have been described in previous sections, would allow this proof of concept tool to grow
into an interesting and functional tool.

In addition, we have provided a way for users to select between a sketch-like definition, and
a high fidelity version of their interface components, allowing the transition from those two
stages in a really simple way. In a potential future work, this mode could be extended by
the use of a backend part. That would enable us to create custom themes for our widgets, or
expanding the palette of widgets available to build an interface. This in turn, would expand
the variety of devices and environments that could be represented.

Finally, we have also explored the possibilities of collaboration between users implicated in
the development of a prototype through our layer system, and the annotation mode. This per-
mits users to have a way of discussing about decisions taken on the same prototype, sharing
their opinions with other teammates or experimenting with different layouts, and elements in
an easy way. Again, this goal would be really empowered by the use of a backend compon-
ent, which would allow the remote collaboration, turning this feature into a strong plus for

47

48 5.2. FUTURE WORK

our tool.

5.2 Future Work

A user study would be the first step that should be taken in order to extend this proof of
concept tool that has been developed along with the thesis. It would bring important and
necessary feedback for this tool to grow into a functional product that could solve the issues
that common users of this kind of applications encounter on a daily basis.

A potential user study could evaluate the ease of use of the prototype, proposing our users
to build a simple prototype in a short span of time, forcing them to face all aspects of the
application without previous knowledge of how to use it, testing this way the ease of use, as
well as the intuitiveness of the same.

After that, we would ask them to grade the level of difficulty as well as the degree of com-
fortability they felt when using the tools the application provides. In addition, there would
be open text areas for them to explain how they would have expected the tool to behave,
or react to certain kinds of interaction. Also, they could suggest ways in which we could
approach certain situations, like for instance, connecting two screens together. With these
two aspects covered, we would be able to improve significantly the way we approach the
interaction between the user and the prototype.

Another part of the user study that would certainly help this tool to become a final product,
would be one that looked deeper into collaboration. We could propose our users to cooperate
in pairs to develop this same prototype they did in the first part. We would ask them later, how
they would rate their collaborating experience in terms of usefulness and if they considered
that they detected more or less issues while working together rather than in the previous case
when constructing the prototype alone. Finally, we would ask them again for suggestions to
refine and empower this collaboration mode.

Another clear way in which this proof of concept would grow in terms of providing more
tools and flexibility would be by adding a server side component. A backend could enable
a lot of interesting features, such as the already discussed possibility of custom theming of
our prototypes, in order to extend the number of devices a prototype can cover, but also,
allowing the user to add his own widgets, thus expanding the kind of experiences a prototype
can recreate.

This backend could also provide a remote live session concept, in which our users could
interact remotely with the same prototype, removing the limitation of having to be in the
same physical space, which could turn out to be a great feature for discussing and revising
prototypes while being in a videoconference for example, if we place ourselves in a job-like
environment.

On behalf of the research and exploration future work, there are several paths that can be
followed. On the one hand, further exploration could be done when it comes to interaction
techniques, broadening the knowledge about how to improve the approach we have taken
towards how the user can use our prototype. This in turn would make it more usable, while
bringing new ways of allowing the user to express through our application. New ways of
directly sketching the layout of the application, which would be recognized and converted

CHAPTER 5. CONCLUSION 49

into a digital functioning prototype would also expand the possibilities of interfaces that could
be represented as well as giving the user a more direct way of creating a prototype.

On the other hand, and also with the sketching interactivity in mind, we could explore ways of
translating sketching inputs, such as the ones discussed in the design process, or just simple
traces, into more elaborate properties of interfaces, like animation types, transition easing,
and so on. That would allow the user to fully develop a prototype solely relying in his manual
input, removing completely the technological barrier, and also making the development quick
and easy for any kind of user.

In summary, IxSketch is a proof of concept that opens a variety of possibilities to explore
regarding sketching interactivity, as well as providing a toolset to develop a digital prototype.
Further investigation would help it become a more solid tool, and would bring an interesting
knowledge for others to build on top as well opening the possibility of achieving a fully
functional tool that would help research in terms of interactivity and collaboration as well.

50 5.2. FUTURE WORK

List of Figures

2.1 Draco motion path example creating fluxes of objects 6

2.2 Draco motion profile example determining properties of animations . . . 7

2.3 Kitty example of associating elements to create objects 8

2.4 Kitty example of interaction between objects 9

2.5 Pop App editing interface . 12

2.6 Balsamiq main interface example . 14

2.7 Axure RP main interface example . 16

3.1 Rough sketch of user interface flow on a mobile app 20

3.2 First ’complete’ sketch . 21

3.3 Selecting a screen from the list . 22

3.4 Changing the screen’s settings . 23

3.5 Final sketch version of the main interface 23

3.6 Ways to link screens . 25

3.7 Potential mobile (small display) layout . 26

3.8 Alternative way of introducing widgets . 27

3.9 Closer look at the widgets palette . 29

3.10 Early version of the layer concept . 30

3.11 Closer look at the annotation mode . 32

4.1 Architecture diagram . 36

4.2 Screenshot of the Standard editing mode 38

4.3 Screenshot of the High Fidelity toggling . 39

4.4 Example of toggling layers visibility . 40

4.5 Screenshot of the Presentation mode . 41

4.6 Example of Annotation mode . 42

4.7 Example of screen linking . 44

51

52 LIST OF FIGURES

4.8 Linking example with the SVG final size . 45

4.9 Linking example with the calculated offsets for the arrow element 46

Acknowledgements

I would like to thank:

Prof. Dr. Moira Norrie, head of the GlobIS research group, for allowing me to write this
thesis.

Dr. Michael Nebeling for his support, his ideas and his reviews.

Christoph Zimmerli, for his assistance.

53

Bibliography

[1] Saul Greenberg, Sheelagh Carbondale, Nicolai Marquardt, and Bill Buxton. Sketching
User Experiences: The Workbook. Morgan Kaufmann, 2012.

[2] Rubaiat Habib, Fanny Chevalier, Tovi Grossman, and George Fitzmaurice. Kitty:
Sketching dynamic and interactive illustrations. 2014.

[3] Rubaiat Habib, Fanny Chevalier, Tovi Grossman, Shengdong Zhao, and George
Fitzmaurice. Draco: Bringing life to illustrations with kinetic textures. 2014.

[4] Shah Rukh Humayoun, Steffen Hess, Felix Kiefer, and Achim Ebert. i2me: A frame-
work for building interactive mockups. 2013.

[5] Dietrich Kammer, Deborah Schmidt, Mandy Keck, and Rainer Groh. Developing mo-
bile interface metaphors and gestures. 2013.

[6] Mozilla Developer Network. Using css flexible boxes — mdn.

[7] Ugo Braga Sangiorgi. Electronic sketching on a multi-platform context: A pilot study
with developers. 2014.

[8] Carolyn Snyder. Paper Prototyping: The Fast and Easy Way to Design and Refine User
Interfaces (Interactive Technologies). Morgan Kaufmann, 2003.

[9] W3C. Html canvas 2d context, 2014.

[10] W3C. A vocabulary and associated apis for html and xhtml, 2014.

[11] Wikipedia. Cascading style sheets — wikipedia, the free encyclopedia.

55

	Title
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Contribution
	1.3 Thesis overview

	2 Background
	2.1 Scientific literature
	2.1.1 Draco
	2.1.2 Kitty
	2.1.3 i2ME

	2.2 Reviewed applications
	2.2.1 Pop
	2.2.2 Balsamiq
	2.2.3 Axure

	3 Approach
	3.1 Design Process
	3.1.1 Previous literature
	3.1.2 Initial sketches
	3.1.3 Final sketches
	3.1.4 Alternative features/layouts

	3.2 Key Concepts
	3.2.1 Widget sketch-like palette easily draggable and adjustable
	3.2.2 Layers for versioning of interfaces
	3.2.3 Different fidelity modes for agnostic, sketch-like styling but also specific High Fidelity version
	3.2.4 Play mode to enable real interaction
	3.2.5 Annotation mode empowering revisions and comments
	3.2.6 Linking Screens mode: Visually connecting interfaces

	4 Implementation
	4.1 Architecture
	4.1.1 General overview
	4.1.2 Standard mode
	4.1.3 Presentation mode
	4.1.4 Annotation mode
	4.1.5 Screen linking mode

	5 Conclusion
	5.1 Discussion
	5.2 Future Work

