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Abstract —Array-type reductions represent a frequently ocmgr
algorithmic pattern in many scientific application& special case
occurs if array elements are accessed in a noralineften random
manner, which makes their concurrent and scalablecetxon
difficult. In this work we present a new approach tkansists of
language- and runtime support to facilitate programg and
delivers high scalability on modern shared-memastems for such
irregular array-type reductions. A reference impkmation in
OmpSs, a task-parallel programming model, shows [@iomresults
with speed-ups up to 15x on the Intel Xeon processor

|. INTRODUCTION

Irregular array-type reductions, also referred to saatter-
update, represent memory updates over an array fipe
non-atomic operation as well their dynamic memocgeas
pattern make their concurrent execution non-trisiad require
careful handling to achieve scalability and comess. Fig. 1
shows a scalar, regular and irregular array typeiagon over
target where in case of an irregular array-type reductibme,
update positions depend on indexes generated Umycédnf.

It becomes obvious that algorithms containing aegular
locp construct over i loop construct over i

{ {

target = op(target, RHS);

} }

target[i] = op(target[i], RHS);

loop construct over i
{
o= f(i)
target[j] = opl(target[]j], RHS);
]
Figure 7: Different types of reductions requiréfeiient parallelization
techniques

array-type reduction are cache inefficient due ftetatht
memory accesses and consequently execution perfoema
bound to the speed of the memory subsystem. Furtteder
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Figure 8: Application scalability of different appaches compared to a
plain implementation with data races showing acai#e performance on
a single MareNostrum node
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to avoid a race condition where multiple threaddqoen an
update of a single memory location at the same, taneesses
either need to be synchronized (via thread synéhation or
memory barriers such as atomics), ordered [1] direeted
[2].

Access redirection to a thread-private copy of thduction
target is a common approach that eliminates thel rfee
access synchronization. While this works well foalar types,
it becomes expensive for arrays and even uselesarfe data
sets.

Figure 2 shows the performance impact of atomiak amay
privatization in theRandomAccesg] kernel benchmark over
serial execution running with 16 threads and d#fifiérmproblem

for(j = 0; j < num_tasks; j++) {
INT TYPE seed = ran(]j];
#pragma omp task concurrent (Table[O;N])
1
for( INT_TYPE i = 0; 1 < N_block; ++i ) {
seed = LCG_MUL64 * seed + LCG_ADDE4;
INT_TYPE pos = seed >> (bitSize - logTableSize);
#pragma omp atomic
Table[pos] “= seed;
11}
#pragma omp taskwait

__sync_xor_and_fetch 8(&Tablefpos], _ seed); ]

Figure @ RandomAccess implemented with atomics, showagampiler
generated instruction that triggers a memory barrie

sizes. Its source code is shown in Figure 3. Curesatly a
new approach is needed that improves cache effigien
reduces lock contention, eliminates memory barremd is
applicable on large input data sets at the same. titrturns
out that by redirecting accesses to an array cdatintocal
linear buffers to temporarily store memory updatka certain
memory region of the reduction array and to flusé buffers
when they are full is a simple yet efficient tedue to meet
the above requirement. We present this approacimane
detail in the next chapter.

Il. RUNTIME SUPPORT

To support irregular array-type reductions in Omp%e
developed a new approach called Privatization witlined
Block-ordered Reductions PIBOR In this approach all
memory accesses to the original reduction arrayeigected
to a thread-private buffer. While this is compaeatd regular
privatization, the buffer is filled linearly, isnfiited to a pre-set
size and additionally stores the memory addressyaioe data
of each access. Once thaffer is filled up, the owning thread
reduces the buffer to global memory.
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Typically writing out data to global memory requirgo
perform a global lock over the entire data struetwhich
serializes execution. We prevent this by assigfunffers to
discrete memory regions of the reduction arraythis case
accesses to the original reduction array in a itertgion are
stored in the correspond buffer. In case the butfes full, the
owning thread tries to acquire a lock that protemtyy the
particular memory region of the global array. Busfe
corresponding to different regions can now be redumn
parallel and by increasing the number of regiohs,gffect of
lock contention over a single region can be effitie
mitigated. A schematic overview of an applicatibattrunsN

tasks onN threads and performs a reduction over an amayatterns

divided intoM locations is shown in Figure 4.
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Figure 10: A schematic view of PIBOR showing thriaml buffers and
their corresponding array regions

Since buffers correspond to different regions, easmory
access needs to be inspected in order to deteiitsimerrect
buffer. We do so by applying a hash function onétidress of
the accessed element. The entire process is stokigure 5.
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Figure 5: Execution diagram showing the processriMgpization
and reduction to global data

I1l. LANGUAGE SUPPORT

High programmability while maintaining execution

transparency is a key requirement for modern progring
models. Since PIBOR is conceptually related togirbation,
an approach often found in declarative programnmmaglels
such asOpenMP[4], its introduction puts minimal effort on
front-end compilers, current specifications
understanding. The following shows language support
array reductions in OmpSs and its compiler gendratele.

#pragma omp task reduction (array[0;N])

{ -
array[pos,] "= RHS; T *  tmp;

RT.request( & array(pos,],

* tmp = RHS;

array[pos,] “= RHS; —, __tmp)

IV.CASE STUDIES
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We evaluate the presented approach using Randorsg\cce
on a single MareNostrum 16-way SMP node. Randomgsce
is a kernel benchmark that allows to simulate déffit access
In particular we looked at three repriediae
scenarios: uniform random distribution, block ramdo
distribution and single block random distributiorheve all
accesses are restricted to a single memory reBenmormance

RandomAccess
Single block random with hand-optimized paramters
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results are shown in Figure 6 and 7.
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Figure 6: PIBOR requiring only 31 MB to achieve sgaips of up to 15x
on a SMP node. Block random distribution favorswtoupdates for sme
(cacheable) problem sizes due to reduced impacteshory barrier and n

cache-line invalidations

Application scalability
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Figure 7: Performance scalability of PIBOR compateditomics

V. CONCLUSION AND FUTURE WORK

The presented approach scales by redirecting prsiyio
random memory accesses of a region into a linedfierbu
Since each buffer corresponds to a memory regiorthef
reduction array, buffers can be flushed in parallairther
work is directed towards automated tuning of lomati
granularity and buffer sizes and experiments orfexift
processors includingeon PhiandPower8
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