

~ 138 ~

Scaling Irregular Array-type Reductions in OmpSs

Jan Ciesko1, Sergi Mateo1, Xavier Teruel1,2, Vicenç Beltran1,
Xavier Martorell1,2, Rosa M. Badia1,2 and Jesús Labarta1,2

1Barcelona Supercomputing Center
2Universitat Politècnica de Catalunya

{jan.ciesko, sergi.mateo, xavier.teruel, vicenc.beltran,
xavier.martorell, rosa.m.badia, jesus.labarta}@bsc.es

Abstract – Array-type reductions represent a frequently occurring
algorithmic pattern in many scientific applications. A special case
occurs if array elements are accessed in a non-linear, often random
manner, which makes their concurrent and scalable execution
difficult. In this work we present a new approach that consists of
language- and runtime support to facilitate programming and
delivers high scalability on modern shared-memory systems for such
irregular array-type reductions. A reference implementation in
OmpSs, a task-parallel programming model, shows promising results
with speed-ups up to 15x on the Intel Xeon processor.

I. INTRODUCTION

Irregular array-type reductions, also referred to as scatter-
update, represent memory updates over an array type. The
non-atomic operation as well their dynamic memory access
pattern make their concurrent execution non-trivial and require
careful handling to achieve scalability and correctness. Fig. 1
shows a scalar, regular and irregular array type reduction over
target where in case of an irregular array-type reduction, the
update positions depend on indexes generated by a function f.
It becomes obvious that algorithms containing an irregular

array-type reduction are cache inefficient due to distant
memory accesses and consequently execution performance is
bound to the speed of the memory subsystem. Further in order

to avoid a race condition where multiple threads perform an
update of a single memory location at the same time, accesses
either need to be synchronized (via thread synchronization or
memory barriers such as atomics), ordered [1] or redirected
[2].
Access redirection to a thread-private copy of the reduction
target is a common approach that eliminates the need for
access synchronization. While this works well for scalar types,
it becomes expensive for arrays and even useless for large data
sets.
Figure 2 shows the performance impact of atomics and array
privatization in the RandomAccess [3] kernel benchmark over
serial execution running with 16 threads and different problem

sizes. Its source code is shown in Figure 3. Consequently a
new approach is needed that improves cache efficiency,
reduces lock contention, eliminates memory barriers and is
applicable on large input data sets at the same time. It turns
out that by redirecting accesses to an array of thread-local
linear buffers to temporarily store memory updates of a certain
memory region of the reduction array and to flush the buffers
when they are full is a simple yet efficient technique to meet
the above requirement. We present this approach in more
detail in the next chapter.

II. RUNTIME SUPPORT

To support irregular array-type reductions in OmpSs, we
developed a new approach called Privatization with In-lined
Block-ordered Reductions - PIBOR. In this approach all
memory accesses to the original reduction array are redirected
to a thread-private buffer. While this is comparable to regular
privatization, the buffer is filled linearly, is limited to a pre-set
size and additionally stores the memory address along the data
of each access. Once the buffer is filled up, the owning thread
reduces the buffer to global memory.

Figure 7: Different types of reductions require different parallelization
techniques

Figure 8: Application scalability of different approaches compared to a
plain implementation with data races showing achievable performance on

a single MareNostrum node

Figure 9: RandomAccess implemented with atomics, showing the compiler
generated instruction that triggers a memory barrier

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons

https://core.ac.uk/display/301204087?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

~ 139 ~

Typically writing out data to global memory requires to
perform a global lock over the entire data structure which
serializes execution. We prevent this by assigning buffers to
discrete memory regions of the reduction array. In this case
accesses to the original reduction array in a certain region are
stored in the correspond buffer. In case the buffer runs full, the
owning thread tries to acquire a lock that protects only the
particular memory region of the global array. Buffers
corresponding to different regions can now be reduced in
parallel and by increasing the number of regions, the effect of
lock contention over a single region can be efficiently
mitigated. A schematic overview of an application that runs N
tasks on N threads and performs a reduction over an array
divided into M locations is shown in Figure 4.

Since buffers correspond to different regions, each memory
access needs to be inspected in order to determine its correct
buffer. We do so by applying a hash function on the address of
the accessed element. The entire process is shown in Figure 5.

Figure 5: Execution diagram showing the process of privatization
and reduction to global data

III. LANGUAGE SUPPORT

High programmability while maintaining execution
transparency is a key requirement for modern programming
models. Since PIBOR is conceptually related to privatization,
an approach often found in declarative programming models
such as OpenMP [4], its introduction puts minimal effort on
front-end compilers, current specifications and user
understanding. The following shows language support for
array reductions in OmpSs and its compiler generated code.

IV.CASE STUDIES

We evaluate the presented approach using RandomAccess
on a single MareNostrum 16-way SMP node. RandomAccess
is a kernel benchmark that allows to simulate different access
patterns. In particular we looked at three representative
scenarios: uniform random distribution, block random
distribution and single block random distribution where all
accesses are restricted to a single memory region. Performance

results are shown in Figure 6 and 7.

V. CONCLUSION AND FUTURE WORK

The presented approach scales by redirecting previously
random memory accesses of a region into a linear buffer.
Since each buffer corresponds to a memory region of the
reduction array, buffers can be flushed in parallel. Further
work is directed towards automated tuning of location
granularity and buffer sizes and experiments on different
processors including Xeon Phi and Power8.

ACKNOWLEDGMENT

I would like to thank all my coauthors for their invaluable
insights and their patience when exposed to my ideas during
countless meetings.

REFERENCES

[1] H. Yu and L. Rauchwerger, Adaptive Reduction
Parallelization, 14th ACM Intl. Conf. on Supercomputing,
2000.

Figure 10: A schematic view of PIBOR showing thread-local buffers and
their corresponding array regions

Figure 6: PIBOR requiring only 31 MB to achieve speed-ups of up to 15x
on a SMP node. Block random distribution favors atomic updates for small
(cacheable) problem sizes due to reduced impact of memory barrier and no

cache-line invalidations

Figure 7: Performance scalability of PIBOR compared to atomics

~ 140 ~

[2] H. Han and C.-W.Tseng, A Comparison of
Parallelization Techniques for Irregular Reductions, 15th
IEEE Int’l. Parallel and Distributed Processing Symp.
(IPDPS’2001)

[3] RandomAccess, HPC Challenge,
http://icl.cs.utk.edu/projectsfiles/

hpcc/RandomAccess, 2015
[4] OpenMP, Application Programming Interface,

www.openmp.org, 2015

