
 

 

 

 

~ 112 ~ 

Parallel programming issues and what the compiler can do to help 
Sara Royuela*, Xavier Martorell† 

Barcelona Supercomputing Center*†, Universitat Politècnica de Catalunya† 
{sara.royuela, xavier.martorell}@bsc.es 

 
 

Abstract- Twenty-first century parallel programming models are 
becoming real complex due to the diversity of architectures they need 
to target (Multi- and Many-cores, GPUs, FPGAs, etc.). What if we 
could use one programming model to rule them all, one programming 
model to find them, one programming model to bring them all and in 
the darkness bind them, in the land of MareNostrum where the 
Applications lie. OmpSs programming model is an attempt to do so, 
by means of compiler directives.  
 
Compilers are essential tools to exploit applications and the 
architectures the run on. In this sense, compiler analysis and 
optimization techniques have been widely studied, in order to 
produce better performing and less consuming codes. 
 
In this paper we present two uses of several analyses we have 
implemented in the Mercurium[3] source-to-source compiler: a) the 
first use is to help users with correctness hints regarding the usage of 
the OpenMP and OmpSs tasks; b) the second use is to be able to 
execute OpenMP in embedded systems, with very little memory, 
thanks to calculating the Task Dependency Graph of the application 
at compile time. We also present the next steps of our work: a) 
extending range analysis for analyzing OpenMP and OmpSs 
recursive applications, and b) modeling applications using OmpSs 
and future OpenMP4.1 tasks priorities feature. 

 

Keywords- Compiler, Static Analysis, Task Dependency Graph, 
OpenMP, OmpSs, Embedded System 
 

I. INTRODUCTION 

Static and dynamic analysis and optimization techniques are 
widely used in order to enhance performance and power 
consumption. Dynamic techniques benefit from a non-
restricted knowledge of the application (addresses and values 
of all variables are known), but they require the execution of 
the program along with the instrumentation library. This 
means adding overhead, as well as having results tied to a 
specific execution. Other data-sets or architectures may 
change the results of the analysis. On the contrary, static 
techniques have limited information (values of the variables 
and pointer aliasing situations), but have the benefit of being 
effortless from the point of view of the programmer, as well as 
being valid for any input data. Neither of the options is perfect 
nor valid for everything, and they can indeed be combined for 
better results. 

II.  CORRECTNESS 

   Although programming models such as OpenMP and 
OmpSs are tantalizing due to its simplicity and scalability, 
they also bring forth difficulties when it comes to fully exploit 
their capabilities. The compiler can be crucial to anticipate 
bugs that may be very hard to find at runtime. We focus on the 
OpenMP and OmpSs tasking models to define a set of 
situations that may cause: a) a runtime failure, b) a loss of 
performance, or c) a non-deterministic result. We present 
different cases the compiler is able to detect and the hints it 

provides to the programmer. To understand these cases some 
background in the memory model of OpenMP [1] is needed. 

A. Automatic storage variables as shared. Automatic 
storage variables are allocated and deallocated automatically 
when the program flow enters and leaves the enclosing code 
block. When the compiler detects that such a variable may be 
accessed after its scope has been exited, it proposes the 
following solutions: a) changing the data-sharing attribute 
from shared  to private , for basic data types; b) adding a 
taskwait , for arrays and structures. 

B. Data-race situations. Data-races occur when two or 
more threads access shared data and at least one of the 
accesses is a write. When the compiler detects such a situation, 
it proposes the following solutions: a) protecting the accesses 
with a critical or an atomic  construct, b) adding a 
taskwait  between the uses. 

C. Incoherent data-sharing. The data-sharing attribute of 
a variable must be coherent with its usage. We check three 
situations, in the following order: a) variables defined within a 
task and never used in that task, but used after the 
synchronization of the task, should be shared ; b) private  
variables in a task should be defined before being read, 
otherwise they must be firstprivate ; c) firstprivate  
variables in a task should not be defined before being read, 
otherwise they must be private . 

D. Incoherent dependencies. Task dependencies are used 
to impose an order in the execution of the tasks. Dependable 
objects must be coherent with the usage of those objects in the 
task. We check three situations: a) objects accessed via pointer 
should specify the dependency in the accessed storage, instead 
of the pointer; b) input  dependences should be read and 
never written within the task; c) output  dependences should 
be written within the task, and should not be read before being 
written.  

We have tested this work with over 70 students and 5 
benchmarks on different courses, and the results are shown in 
Figure 1. Most errors captured by the compiler are related with 
the default data-sharing attributes because users forget to 
explicitly change them. The less common errors are those 
caused by users explicitly defining incorrect data-sharing 
attributes. Dependences errors are not common because only 
one of the five benchmarks includes task dependences. 

 
FIGURE 1 

Occurrences of each Correctness Mistake 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons

https://core.ac.uk/display/301203749?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 

 

 

~ 113 ~ 

We also have compared our results with those of the Oracle 
Solaris Studio 12.3 (OCS12.3) compiler for the three first 
cases, because it does not implement support for task 
dependences. Since OCS12.3 does not provide hints about 
performance, Mercurium suggests more accurate solutions in 
case A. OCS12.3 may report wrong messages for case B, 
which can be solved by enclosing the analyzed task in a 
parallel construct. Finally, OCS12.3 does not consider 
declaring a variable as private when its initial value is not 
read, so it may result in a loss of performance in case C. 

 

V. STATIC TASK DEPENDENCY GRAPH 

Tasks dependencies impose an order in the execution of the 
tasks. OpenMP and OmpSs runtimes build a Task Dependency 
Graph (TDG) ensuring that order. Building the graph at 
runtime is feasible for HPC systems, where large amounts of 
memory with a reasonable performance penalty are available. 
Nonetheless, it may be impossible for embedded systems, 
where memory can be very limited. The Programming Models 
and the Real Time teams at BSC have united their forces to 
build a tool-chain able to derive a TDG statically. The tool-
chain is shown in Figure 2. 

 
FIGURE 2 

Offline Tool-chain for an Static TDG Creation 

 

Generating the TDG statically requires a series of steps. 
First of all, the Mercurium compiler generates a Parallel 
Control Flow Graph [4] (PCFG) that extends the common 
CFG with parallelism information. Then induction variables 
analysis is executed to discover the evolution of each loop. 
Finally, range analysis [5] extended with support for 
parallelism is used to calculate the value of the variables at 
each point of the program. All this information is used to 
generate an augmented static TDG (asTDG) containing: a) one 
node per each task/taskwait/barrier construct, b) all possible 
synchronization edges among these nodes, along with 
predicates defining the conditions for the edges to exist, and c) 
information about all control flow statements (conditionals 
and loops) involved in the execution of the previously 
mentioned constructs. 

After that, the Boxer Instantiator expands the asTDG 
obtaining the complete TDG that will be executed at runtime. 
This is performed in two steps: 1) expansion of the control 
flow structures (i.e. decide the number of iterations of each 
loop statement, and the branches taken in each conditional 
statement); 2) check of the dependency predicates to decide 
the task instances that have actual dependences. This process 
results in an expanded static TDG (esTDG). 

Finally, the code generated by Mercurium is passed through 
the GCC back-end compiler to generate the binary that will 
run in our lightweight libgomp. The tests of our tool-chain are 

shown in Figure 3. The memory consumption of the runtime 
using our statically computed TDG scales (in terms of 
memory consumption) much better than the plain libgomp 
supporting tasks dependencies, while increasing the number of 
tasks. 

FIGURE 3 
MEMORY USAGE (IN KB) OF DIFFERENT RTLS 

 

VI.  MODELING TASK PRIORITIES 

OpenMP4.1 and OmpSs include support for defining tasks 
priorities, thus promoting some tasks over others when all of 
them are ready to be executed. By using our static tool-chain 
to compute the TDG, we intend to model the applications, and 
extract patterns in which the priorities of the tasks can be 
decided at compile time. This is part of our ongoing work and 
we are looking for applications to exploit this functionality. 

 

ACKNOWLEDGMENT 

We acknowledge the Mercurium group, always helping and 
giving priceless opinions and contributions to this work. We 
also thank the Real Time group which brought up fresh ideas 
and push forward this collaboration. 

 

LIST OF PUBLICATIONS 

1. (appeared) R. Ferrer, S. Royuela, D. Caballero, A. Duran, X. Martorell, E. 
Ayguadé. “Mercurium: Design Decisions for a S2S Compiler”. Cetus Users 
and Compiler Infrastructure Workshop, PACT, 2011. 

2. (appeared) S. Royuela, A. Duran, C. Liao, D.J. Quinlan. “Auto-scoping for 
OpenMP tasks”. IWOMP, 2012. 

3. (appeared) S Royuela, A Duran, X Martorell. “Compiler automatic 
discovery of ompss task dependencies”. LCPC, 2013. 

4. (accepted) D. Caballero, S. Royuela, R. Ferrer, A. Duran, X. Martorell.  
Optimizing Overlapped Memory Accesses in User-directed Vectorization. 
ICS, 2015. 

5. (accepted) S. Royuela, R. Ferrer, D. Caballero, X. Martorell. “Compiler 
Analysis for OpenMP Tasks Correctness”.  CF, 2015. 

6. (submitted) R. Vargas, S. Royuela, MA Serrano, E. Quiñones. “A 
Lightweight OpenMP Run-time for Embedded Systems”. ICCAD, 2015. 

REFERENCES 

[1]    OpenMP ARB. “OpenMP API, v.4.0”, July 2013, 
         http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf. 
[2] S. Royuela, R. Ferrer, D. Caballero, X. Martorell, “Compiler Analysis 

for OpenMP Tasks Correctness”, CF15. 
[3]    BSC. “The Mercurium compiler”, http://pm.bsc.es/mcxx. 
[4]   S. Royuela, A. Duran, and X. Martorell, “Compiler Analysis and its 

application to OmpSs”, Master’s Thesis at UPC, 2012. 
[5]    R. Ernani, V. H. Sperle, F. M. Quintão, “A fast and low-overhead 

technique to secure programs against integer overflows”, CGO13.   


