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ABSTRACT 

Steam boilers represent the main equipment in the power plant. Some boiler trips may 

lead to an entire shutdown of the plant, which is economically burdensome. An early 

detection and diagnosis of the boiler trips is crucial to maintain normal and safe 

operational conditions of the plant. Numbers of methodologies have been proposed in 

the literature for fault diagnosis of power plants. However, rapid deployment of these 

methodologies is difficult to be achieved due to certain inherent limitations such as 

system inability to learn or a dynamically improve the system performance and the 

brittleness of the system beyond its domain of expertise. As a potential solution to 

these problems, two artificial intelligent monitoring systems specialized in boiler trips 

have been proposed and coded within the MA TLAB environment in the present work. 

The training and validation of the two systems have been performed using real 

operational data which was captured from the plant integrated acquisition system of 

JANAMANJUNG coal-fired power plant. An integrated plant data preparation 

framework for seven boiler trips with related operational variables, has been proposed 

for the training and validation of the proposed artificial intelligent systems. The feed­

forward neural network methodology has been adopted as a major computational 

intelligent tool in both systems. The root mean square error has been widely used as a 

performance indicator of the proposed systems. The first intelligent monitoring 

system represents the use of the pure artificial neural network system for boiler trip 

detection. The final architecture for this system has been explored after investigation 

of various main neural network topology combinations which include one and two 

hidden layers, one to ten neurons for each hidden layer, three types of activation 

function, and four types of multidimensional minimization training algorithms. It has 

been found that there was no general neural network topology combination that can 

be applied for all boiler trips. All seven boiler trips under consideration had been 

detected by the proposed systems before or at the same time as the plant control 
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system. The second intelligent monitoring system represents mergmg of genetic 

algorithms and artificial neural networks as a hybrid intelligent system. For this 

hybrid intelligent system, the selection of appropriate variables from hundreds of 

boiler operation variables with optimal neural network topology combinations to 

monitor boiler trips was a major concern. The encoding and optimization process 

using genetic algorithms has been applied successfully. A slightly lower root mean 

square error was observed in the second system which reveals that the hybrid 

intelligent system performed better than the pure neural network system. Also, the 

optimal selection of the most influencing variables was performed successfully by the 

hybrid intelligent system. The proposed artificial intelligent systems could be adopted 

on-line as a reliable controller of the thermal power plant boiler. 

Vlll 



ABSTRAK 

Dandang stim merupakan peralatan utama di dalam loji kuasa. Sesetengah gangguan 

dandang akan menyebabkan keseluruhan loji tidak berfungsi di mana mempengaruhi 

pengurusan penjuna. Pengenalpastian dan pengesanan awal gangguan dandang adalah 

sangat penting untuk mengekalkan keadaan yang nonnal dan juga keadaan yang 

selamat semasi operasi penjana. Beberapa metodologi telah dicadangkan di dalam 

tesis ini untuk pengesanan di loji kuasa. Walaubagaimanapun, pembahagian yang 

cepat adalah sukar untuk dicapai disebabkan oleh sesetengah unsur yang terhad 

seperti ketidakupayaan sistem untuk dipelajari ataupun membaikinya dengan dinamik, 

sistem pelaksanaan dan kerapuhan di dalam sistem tersebut disebalik kepakaran. 

Sebagai jalan penyelesaian yang berpontensi bagi masalah ini, dua sistem 

mengawalan iaitu "artificial intelligent monitoring system" dikhususkan di dalam 

ganguan dandang telah dibangunkan dengan bantuan kod MATLAB. Latihan dan 

pengesahan dua sistem ini dilaksanakan dengan menggunakan data sebenar dari 

sistem kontrol di loji tenaga. Pengumpulan data loji bagi persediaan rangka kerja 

untuk tujuh ganguan dandang dengan fungsi berubah yang berhubung telah 

dicadangkan untuk analisis data untuk intelligent monitoring sistem. Metodologi NN 

telah diadaptasikan sebagai peralatan pengiraan majoriti di dalam kedua-dua sistem 

ini. Formula matematik "root mean square error" telah digunakan secara meluas 

sebagai intelligent monitoring sistem indicator. intelligent monitoring sistem yang 

pertama diwakili dengan penggunaan sistem rangkaian saraf sebagai "pure artificial 

neural sytem" untuk pengesanan ganguan dandang. Seni bina untuk sistem ini telah 

diterokai selepas penyelidikan berbagai-bagai gabungan saraf sebagai topologi yang 

utama dimana termasuk satu dan dua lapisan yang terselindung, satu sehingga sepuluh 

neuron untuk setiap lapisan yang tersembunyi, tiga jenis pula untuk fungsi 

pengaktifan dan terdapat empat jenis untuk pelbagai dimensi meminimumkan 

algoritma. Tiada gabungan saraf sebagai topologi umum yang dapat diaplikasikan 

untuk kesemua gangguan dandang. 
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Dapat dipertimbangkan tujuh gangguan dandang telah dikesan melalui IMSs sebelum 

atau pada masa yang sama dengan sistem kontrol di loji. intelligent monitoring sistem 

yang kedua diwakili oleh algoritma genetic dan rangkaian saraf sebagai sistem hybrid 

kepakaran "hybrid intelligent system". Untuk sistem ini pemilihan anu yang tepat 

daripada seratus operasi dandang dengan optimum gabungan saraf sebagai topologi 

untuk mengawal gangguan dandang amat dititikberatka11. Proses mengekod dan 

optimize dengan menggunakan algoritma genetic telah diaplikasikan dengan jayanya. 

Di dalam sistem intelligent monitoring sistem yang kedua root mean square error 

sedikit rendah telah diperhatikan di mana menunjukkan sistem hybrid intelligent 

melakukan dengan lebih baik daripada pure intelligent monitoring sistem. Selain 

daripada itu, pemilihan yng optimum dari anu-anu yang dipengaruhi dilakukan 

dengan jayanya oleh sistem hybrid intelligent. Pembangunan sistem artificial 

intelligent sepatutnya diaplikasikan sebagai pengawalan kuasa terma di loji dandang. 
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CHAPTER I 

INTRODUCTION 

1.1 Overview of Fault Detection System 

The terms fault, failure and malfunctions have many connotations in the literature as 

well as in general daily life usage. The words fault and malfunction can be defined as 

a departing from the normal operation range of observed operational variable or the 

measured parameter associated with process equipment [I]. These terms are used to 

show the interchangeability for the cause sequence of the abnormal signs in the plant 

data which is detected by sensors and actuators. Figure ( 1.1) shows the method of 

prescribing the range of acceptable performance which has a direct bearing on the 

definition of a fault. 

Acceptable Performance Range 

} Faulty 

} Acceptable 
Performance 

• • • • • • • • • • • • 

} Faulty 

Time 

Figure 1.1 Method of prescribing the range of acceptable performance [2] 



" ... Clearly, the prescription of the boundaries to delineate a fault is a subjective 

task, and even after the boundaries are established, the cla11sification of faulty versus 

non faulty is by no means clear-cut if the stochastic aspects of classification are taken 

into account ... " [2]. 

Malfunction of plant equipment and instrumentation increase the operating costs 

of any plant. Even more serious are the consequences of a gross accident which lead 

to unit shutdown because of faulty design or faulty operation. 

Considerable attention should be devoted to any system of fault detection that 

permits the use of less expensive equipment, increases the unit availability, and/or 

reduce maintenance costs. Therefore, the fault detection system of the process 

equipment is of definite economic significance in both the design and operation of the 

plant. 

The main objectives of early fault detection in a plant are: to prevent the sudden 

failure of equipment (trip), to capture higher grade fault information, to improve the 

plan of the plant maintenance, and to achieve a highly automated plant. In many 

cases, failures of instruments and key auxiliary equipment can be prevented if early 

signs of an impending unit trip are recognized. Howewr, computation becomes 

meaningless if an instrument incurs a fault which is allowed to go on undetected for a 

long period of time and that situation can easily lead to a plant shutdown [3]. 

Sudden failure (trip) detection should initiate action to improve instrumentation 

and instrument maintenance as well as organize the plant control system so that they 

can make use of substitute measurements in the event of a partial failure being 

detected [4]. An on-line intelligent plant monitoring system is considered equivalent 

to providing a redundant control system without incurring ar.y further costs. 

1.2 Intelligent Monitoring Systems in Power Plant 

Two issues should be taken into account in the design of intelligent monitoring 

systems (IMSs ). The first is, the rapid response of the IMS when a fault occurs and 

the second is the system sensitivity to noise which consequently generates too many 
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alarms. The trade-off between these two issues is best investigated in the context of a 

specific plant in which the cost issue of the various trade-offs could be estimated. 

Another trade-off involves the IMS complexity, in the other words, its expense 

relative to its performance. 

The complexity vice versa performance trade off is vitally important in the design 

of IMS. It goes without mention that the first step in setting up an IMS is to get to 

know the process of the plant. All kinds of special indicators that influence the IMS 

design such as the layout and environment of the process are associated with a 

specific process [5]. 

The establishment of subsystem boundaries is more useful for the IMS. The term 

subsystem refers to the smallest part of the process for which malfunction is to be 

diagnosed. The designer should examine the hardware which is required for IMS and 

perform some modification on the process design to include the IMS capability to 

detect the faults, compensating for them by control algorithms, introducing short-term 

storage, activating a backup tool, rerouting flows, and so on [ 6]. Figure ( 1.2) 

illustrates the outlines of an intelligent monitoring system in a power plant [2]. 

Presently, power plant operations and its advanced machines becomes very 

complex and are based on an automatic monitoring system for tolerable operation. 

These features lead to a high cost of downtime. For the purpose of achieving and 

monitoring dynamic system reliability and assure satisfactory operation, there's a 

highly increased demand for a power plant to continue a tolerable operation before 

failures. 
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Figure 1.2 Fault detection system for automatic diagnosis [2] 

1.3 Artificial Intelligent Systems in Power Plants 

The adoption of advanced technologies has increased the complexity of power plants 

operations and led to a transition from supervision by plant operator expert to 

supervision by artificial intelligent systems (AISs). AISs have been proposed to such 

a degree that they can lead to an intelligent system (AI) which has self-examination 

capability. The most important aspect in these AISs is the quality of plant information 

provided by the sensors, as well as, the quality of important plant process decisions to 

be passed to actuators [7]. 

AISs have been defined as the simulating human intelligence on a machine, which 

makes the intelligent machine able to identify and use the right piece of knowledge at 

a given short frame of time to solve a problem [8]. The most commonly used 

4 



computational tools of AISs in research fields are Artificial Neural Networks (ANNs), 

fuzzy logic, expert systems and Genetic Algorithms (GAs). In this work, two 

computational tools were used for the development of intelligent monitoring systems, 

which are namely ANNs and GAs. The motivations for studying and understanding 

these systems are inspired by the studies in the neuro-science and mechanics of 

natural selection and natural genetics in many different fields. 

1.3.1 Artificial Neural Network 

Classification of isolated plant information derived from specific sensors or actuators 

could be achieved by ANNs methodology. ANNs topologies are based on our present 

full understanding of the biological nervous system. An accurate design for ANNs 

topologies to solve real problems may also change the way of our thinking about real 

problems and can lead to new understanding and algorithmic strategy improvements 

[9]. ANNs are essentially inter-connected groups of artificial neurodes or artificial 

neurons that use computational models for information processing which are non­

algorithmic, non-digital and intensely parallel. The artificial neurons are connected by 

a large number of weight connections and noticed by a form of layers arrangement. 

The activation function and learning rate of neurons determine the adaptive 

coefficients way of adjusting in order to match the neural network with the actual 

dynamic system [10]. 

As shown in Figure (1.3), ANNs can be categorized into two learning groups; the 

first group is recognized by their learning algorithms which comprise of two forms: a 

supervised learning Neural Network (NN) form and an unsupervised learning NN. 

The second group is recognized by their recall structures which comprise of two 

forms: a feed-forward neural network recall form and a feed-back neural network 

recall form [II]. 

5 



Learning Methods of ANN 
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I 
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I 
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Figure 1.3 Typical ANN learning methods for basic learning strategies [ 11] 

ANNs have many exceptional characteristics such as the capability to process 

noisy, sparse and incomplete data, the ability to operate the NN properly due to their 

high fault tolerance even with few damaged neurons or weighted links in the network, 

and its response ability in real time due to their inherent parallelism. ANNs have 

gained very remarkable applications with their characteristics in pattern recognition, 

image processing, speech recognition and adaptive control [11]. 

1.3.2 Genetic Algorithms 

The basic fundamentals of GAs were found by John Holland [12] in 1975. GAs are 

search algorithms based on the evolutionary optimization mechanics of natural 

selection and natural genetics. The GAs breeding procedure has three major 

operations, namely, reproduction, crossover and mutation, which forn1 the main body 

of the GAs. GAs have the ability of a very simple coding representation (bit string) to 

encode complicated architecture and the power capability of simple transformation to 

improve such architecture. Theoretically and empirically, th~ GA has been proven to 

supply the complex search scope with a robust search. The basic differences between 

the GA and the most common used optimization methods, such as a calculus-based 

search method and a hill climbing method is outlined by [ 13]. 

The GA codes the set of parameters, not the paramekrs themselves. The GA 

searchs from a population of points, not a single point. The GA uses the information 
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of function objective, not derivatives or other auxiliary knowledge; and uses the 

probabilistic transition rules, not deterministic rules. These differences contribute to 

the robustness of a GA and result in pros over other more commonly adopted 

techniques. 

GAs have been established as a valid heuristic approach for solving real problems 

which require more effective and efficient search. Nowadays, it has become a more 

widespread application in business, scientific and engineering studies. 

1.4 Research Problem Statement 

Steam boilers are very important equipment in the power plant. Some boiler trips may 

lead to an entire shutdown of the plant, which causes a high cost of downtime. An 

early detection and diagnosis of the boiler trips is crucial to maintain normal and safe 

operational conditions [14-16]. Numbers of artificial methodologies have been 

proposed in the literature for fault detection of power plants. However, rapid 

deployment of these methodologies was difficult to be achieved due to certain 

inherent limitations such as system inability to learn or dynamically improve the 

system performance and the brittleness of the system beyond its domain of expertise 

[17-19]. As a potential solution to these problems, two IMSs specialize in boiler trips 

have been proposed with the help of MA TLAB codes in the present work. 

1.5 Motivations 

A few questions need to be addressed as research motivations: 

1. Are IMSs capable of detecting and isolating, in real time, trips of a thermal 

plant boiler? 

n. What is the degree of success of the IMSs in achieving this task? 

111. Can an IMS typical to a !henna! power plant (TPP) boiler be handled using a 

pure IMS and/or a hybrid IMS? 
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IV. Can the pure system handle the boiler trip detection or would support by 

another AIS technique enhance its capability? 

These questions were answered by the analysis of the results of this work. 

In the present work, since it has been not been recorded in the literature, the pure 

ANN and the ANN supported with GA have been proposec. to perform the boiler trip 

detection. They both performed successfully. The selection of input data to the IMS is 

commonly based on the plant experience, as noticed from the literature. To support 

the ANN, the capabilities of the GA in the present work were investigated as a 

replacement for plant experience. One more issue on the selection of the best NN 

topology combination is usually achieved by a trial and error approach of an ANN. 

The hybrid of the GA with an ANN was found to be a powerful tool in selecting the 

optimum combination of ANN topologies for the recent application of boiler trip 

detection. 

1.6 Research Objectives 

The following could be addressed as objectives of this work: 

1. To develop an IMS for boiler trip detection by the adoption of a pure artificial 

neural network system. 

n. To develop a hybrid IMS specialize in boiler trips by the adoption both genetic 

algorithms and artificial neural networks to form a hybrid intelligent system. 

111. To establish an integrated data preparation framework for specified boiler 

trips. 

IV. To perform the training and validation of the proposed IMSs usmg real 

operational data captured from the plant control system of an MNJ coal-fired 

power plant. 
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1. 7 Thesis Organization 

The introductory remarks of the fault detection, artificial intelligent systems, and 

intelligent monitoring systems in power plants are given in chapter (I). The problem 

statement, research objectives, motivations of developing plant IMSs are also 

highlighted. 

Chapter (2) presents a literature review, which provides a background of artificial 

development of fault detection systems, the fault detection and diagnosis using NN 

systems, and the hybrid intelligent monitoring systems. A justification for choosing 

the ANN methodology for trip detection is presented. Following this, related issues in 

the application of hybrid intelligent systems based on evolutionary optimization 

techniques of genetic algorithms are summarized. 

The theory of the two proposed IMSs and feed forward ANN methodology is 

presented in chapter (3). The first intelligent monitoring system (IMS-I) represented 

the use of pure ANN for boiler trip detection. The second intelligent monitoring 

system (IMS-II) presented the use of GA and ANN as a hybrid intelligent system. 

The main focus of chapter (4) is on the plant data acquisition and preparation 

adopted in the construction of the IMSs, which consists of two major parts. The first 

part describes the data source which is the selected thermal power plant, and focus on 

a boiler with its common trips. The second part presents the transformation of raw 

data to data that is useful for intelligent monitoring system training and validation. 

The development of the IMS-I is presented in chapter (5). The investigation of 

various main NN topology combinations and the IMS-I capabilities to detect all seven 

boiler trips is discussed. Moreover, the development of the IMS-II to select 

appropriate boiler operation variables with optimal NN topology combinations to 

monitor boiler trips, and the application of encoding and optimization process using 

genetic algorithms are presented in this chapter. 

Chapter (6) summarizes the training and validation results obtained from 

proposed IMSs. Conclusions are presented on the strengths and weaknesses of the two 

IMSs. An overview of the NN topology combinations and optimal boiler operation 
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variables selection is provided. Actions to be taken by the plant specialist with 

correspondence to each trip are listed. 

Chapter (7) concludes and discusses the contributions and critiques of the work. 

Detailed conclusions of the IMS-I and the IMS-II are presented. The chapter is ended 

by the suggesting for future works in this field and suggestions for the plant operators. 
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CHAPTER2 

SURVEY OF PAST WORKS ON INTELLIGENT FAULT DIAGNOSIS 

2.1 Introduction 

The core purpose of this chapter is to provide an overview of literature and reasoning 

employed in the development of an IMS as a guide for the most appropriate 

methodology for steam boiler trip monitoring so as to enhance the thermal power 

plant operational workability and reliability. Advanced technologies have usually 

been used at the design stage of power plants along with traditional computer 

programs. Furthermore, such technologies have come into play for monitoring of the 

operational variables in the power plant operations. It has also got benefits of avoiding 

plant outages. It is important for the trend of critical features to confirm the safe and 

dependable operations of the thermal power plants. There are already many such 

features that are monitored in the power plant and includes those elements from 

simple sensor/actuator features to more a complicated status to other plant elements. 

For real time fault detection and diagnosis, prediction and decision making, 

introduction of different advanced technologies is recently gaining attention as it 

brings significant operational improvements of the power plant. So as to promote the 

thermal power plant operational workability and reliability, the most relevant 

techniques of AI branch of computational science have been adopted with new 

strategies in place. 



2.2 Fault Detection and Diagnosis 

Fault detection and diagnosis (FDD) evidently are activittes of pattern recognition. 

Sensors and actuators that carry no readily distinguishable message can possibly be 

transformed via pattern recognition into information usable for decision-making that 

accounts for factors of safety, energy conservation, and efficiency during operation 

[2]. 

Fault diagnosis is an essential task with immense significance and has been 

conducted in different perspectives. Factors that reduce process performance can be 

diagnosed by three mechanisms [2]: 

1. Alarm (the binary decision either that something has gone wrong or that 

everything is satisfactory). 

11. Isolation (determination of the source of the faulty performance). 

111. Estimation (determination of the extent of the fault). 

Certain controlled variables have specifications that have to be fulfilled with 

regard to the needs of the operator who supervises the performance of the equipment 

against time. The process is said to be operating normally if the factors under 

consideration are at or around the desired set values. A fault happens when one or 

more of the states suffer from deterioration of states and subsequent temporary or 

permanent physical changes such as scaling, tube plugging, sensor and actuators 

deterioration, leaks, etc. 

As an extension of the deterioration process above, failure may happen and it is 

complete performance decadence. A fault may not only lead to poor economy but also 

result in horrible outcomes where by people get injured or equipment is damaged. 
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2.3 Techniques of Fault Detection and Diagnosis 

Fault detection and diagnosis has become a very essential feature in a number of 

processes. Most complex systems comprise many interdependent working segments 

and their normal operation relies on early detection and diagnosis of any faults or 

failure. 

Normal operation of a process is achieved if a process operates with its controlled 

variables changing in the acceptable range of the desired values. By definition, a fault 

is an unacceptable deviation in one of the system variables or parameters that might 

hamper normal operation. Early detection of a fault in a process is greatly required 

and therefore this is considered as a target [20]. 

There are many techniques used in fault detection and diagnosis. Some of the 

techniques are relatively well-known, while others are more speculative. Broadly, the 

techniques of fault detection and diagnosis can be classified into two general 

categories: namely, the estimation technique, and the pattern recognition technique [2, 

7]. Figure (2.1) displays the relationship between several fault detection methods and 

these two techniques. 

2.3.1 Estimation Technique 

The estimation technique has as usual the existence of a mathematical model that 

describes the process satisfactorily. In practice, a mathematical model cannot 

accurately represent complex processes, hence fault detection can be quite difficult 

because some errors in the model may be interpreted as a fault, or some faults may be 

undetected when they occur. In this regard, the model should not be too complicated 

as it makes the model far too tedious and time-consuming [21]. 
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Figure 2.1 Classifications of methods for fault detection and diagnosis [2) 
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Estimation techniques are generally classified into two categories according to 

what is to be estimated: 

2.3.1.1 State Variable Estimation 

In complex systems, there are probably some non-measurable state variables. These 

state variables are estimated using a dynamic process model, which is linearized about 

an operating point. Later, the residuals are generated and some statistical methods 

have been employed in order to achieve the fault detection. Two points are really 

important here, the presence of a relatively accurate understanding of the parameters 

of the liniearized model and the operation of the process near the point of the 

linearization of the model. 

2.3.1.2 Process Parameters Estimation 

In a number of dynamical systems there is a complex relationship between the process 

model parameters and the physical process coefficients. Faults mostly influence the 

physical coefficients and the consequence can also be felt in the process parameters. If 

the above functionality is unique and well understood, we can compute the shift of 

some physical process parameters that cannot be directly measured by using the 

estimated process model parameters. Unfortunately, the above mentioned unique 

relationship is rarely adequately understood. 

2.3.2 Pattern Recognition Techniques 

A mathematical model of the process is not required in applying pattern recognition 

techniques for fault detection and diagnosis. The operation of the process and the 

categorization is dictated by measured data. So, pattern recognition is the process of 

assigning a category to a pattern according to some features in the pattern. There are 

two techniques of pattern recognition: 
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2.3.2.1 Template Matching 

Template matching is similar to the procedure involved in the human mind to 

recognize several patterns. When a pattern recognition puzzle is given to a human 

being, he/she unknowingly compares the pattern with other similar works of his/her 

knowledge. In other words, the human's pattern recognition is the result of experience 

or learning. So, template matching is a comparison of a sample with a stored set of 

prototypes. 

2.3.2.2 Feature Extraction and Classification 

This second technique of pattern recognition can be divided into three stages: 

measurement, feature extraction and classification. First, the appropriate data are 

measured from the measurement space, which is in vector form. Then, in the 

extraction stage, selected features of the measurements are separated and combined to 

forn1 a new vector called the feature space. Lastly, several decision making rules are 

applied to the feature space vector so that this vector is categorized into one or more 

classes. In fault detection and diagnosis, these classes are normal operation classes 

and are comprised of several types of faults. Pattern recog11ition mainly concentrates 

on the stage of the classification of features. The mai11 problem though is the 

extraction of the features. It is quite difficult to know which features are essential and 

which are irrelevant. If a good selection of features is undertaken, then simple 

decision rules are able to perform the classification in stage three. On the other hand, 

if the feature extraction is not so efficient then the decision rules have to be quite 

complex. 

2.4 Brief Comparison between Estimation and Pattern Recognition 

Techniques 

The major drawback of the estimation techniques for fault detection and diagnosis is 

the sensitivity to a modeling error. The mathematical model of the process must 

involve every situation under consideration and should enable one to describe any 

changes in the operation point. If the model fails to describe the variations in the 
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process to a satisfactory degree, the whole diagnostic system fails. On the other hand, 

pattern recognition techniques do not need an analytical model of the process. They 

get all the information from some representative training data of the process, so they 

are sensitive to the quality of that training data [7]. 

When the analytical model of the process gets very complex as in the case of 

nonlinear models, the estimation technique becomes very computationally 

demanding. Pattern recognition techniques are less computationally demanding, 

depending on the data and actual problem, hence they are preferable for a nonlinear 

process. 

Another disadvantage of estimation techniques is that they are not flexible. If one 

equation is changed in a diagnostic system, many changes have to be made. On the 

other hand, pattern recognition techniques are more flexible, because a change in the 

system can be taken into consideration with just some changes in the training data. 

2.5 Intelligent Systems as Candidates for Cognition in Thermal Power Plant 

Monitoring 

Intelligent system 1s a broad term which encompasses a variety of computing 

techniques that have emerged from researches into AI. Symbolic and numerical 

approaches and their hybrids make parts of the AI system. The very purpose of AI is 

to construct a machine that mimics or exceeds human mental capabilities including 

reasoning, understanding, recognition, creation and emotion. Nevertheless, intelligent 

systems have not managed to reach to a level of an artificial human brain. However, 

they are playing a crucial role in terms of enabling one to tackle a range of problems 

that were considered to be very difficult earlier by eliminating the tediousness of 

operations through proper monitoring and decision making [22]. 
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The techniques in AI, which can be candidates for accomplishing the task of 

TPPB trips detection, are evaluated in the following sections: 

2.5.1 Knowledge Based Systems 

A Knowledge Based System (KBS) is a symbolic representation of a system where 

domain knowledge is markedly separated from the software controlling the 

application of that knowledge. In a KBS, there are normally two modules; the 

knowledge base and the inference engine. For many applications, components of real­

time data acquisition should be included. The knowledge base is represented in words 

and symbols that are joined to form a logical ground which may comprise rules, facts 

and casual relations. 

The explicit detachment of knowledge from control facilitates the addition of new 

knowledge to the system during the development of the program or during its later 

use. Another essential aspect of a KBS is its capability to generate an explanation for 

its conclusions and reasonings. With a KBS it is possible to give a description of how 

a result comes out and why a specific way of reasoning is followed which, in tum, is 

very important for understanding human user's. 

There are a variety of knowledge based systems which can be used for the 

purposes of fault diagnosis, prediction and support to d<:cision making in thermal 

power plants. There are as listed below [23] : 

2.5.1.1 Rule Based Systems 

A Rule Based (RB) system is a knowledge based system where a set or sets of rules 

are used to represent the knowledge base. The simplest kind of rule is a production 

rule, which appears as in the form shown below: 

IF <Condition> THEN <Conclusion> 

The inference engine in RB systems involves a strategy so as to decide which 

rules to apply and when to apply them. An RB system i; the most traditional and 
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initial application of a KBS which resembles natural language that 1s easy to 

understand. 

However, the amount of knowledge that can be presented in rules alone for a 

fairly complex device is limited. There are four major deficiencies of a purely rule 

based diagnostic system as illustrated here: 

1. The relationships between individual operations in many real applications are 

not as sharp as rules. Therefore, to draw direct conclusions by production rules 

is very likely to produce misleading results. 

11. To build a complete rule set that is economically affordable and technically 

achievable is a huge task. It may probably be possible to overcome this 

obstacle by deliberately enforcing the fault in a component and observe the 

outcomes. But this is still economically unviable. 

iii. A large number of rules are required to verify the sensor data for consistency 

before diagnosing a failure. 

1v. Obsolescence is the other challenge of building a complete rule set. 

In order to alleviate the shortcomings of RB systems other diagnostic techniques 

of KESs have been proposed [24]. The complete structure of a rule-based expert 

system is shown in Figure (2.2). 
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RB Expert System 

Figure 2.2 Complete structure of a rule-based expert system [25] 

2.5.1.2 Model-Based Systems 

Physical principles are applied to generate a symptom cause pair that must be 

considered in the diagnosis. This is a foundation of all MB (Model-Based) systems. 

The common representation in a model based system is object oriented. The device is 

made up of components where the function of each individual component is identified 

within a class definition and the structure of the device is defined by the connection 

between the instances of components that build the device. Ultimately, the device 

would be in one of the several possible operational states. Important advantages of 

MB systems include: 

1. The model is less cumbersome to manipulate or to use than a rule base. 

11. The model does not require sensor verification as the sensor is handled the 

same way as other components and a faulty sensor can be detected as with 

other faults. 
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iii. The separation of the function structure and state may help a diagnostic system 

to go beyond its area of expertise and provide a reason for a problem. 

IV. The model can be used to simulate a physical system in order to monitor or 

verity a hypothesis. 

Nevertheless, model based systems suffer from the disadvantage of not being able 

to model complex physical systems [24]. 

2.5.1.3 Semantic Networks 

A Semantic Network (SN) [26], is a labeled directed graph in which individual nodes 

represent concepts, objects, properties and relationships. An SN is intuitive and easy 

to comprehend. This allows it to represent relationships between concepts and 

taxonomic knowledge and solve classification problems in which reasoning is based 

on taxonomies. 

2. 5.1.4 Fuzzy Sets and Fuzzy Logic Systems 

The possibility theory or Fuzzy Logic (FL ), builds upon the theory of fuzzy sets 

where uncertainties due to vagueness in language are handled. Fuzzy sets are means 

of smoothing out the boundaries of the observations that contain some vague language 

[27]. 

2.5.1.5 Bayesian Networks 

Bayesian Networks (BN) compnse directed acyclic graphs and the condition 

probability tables. They involve rigorous probability terms to handle uncertainties in 

the graphs in BN systems which are proposed from variable nodes and represent the 

causality between the variables [28]. 
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2.5.1.6 Decision Trees and Influence Diagrams 

Decision trees have graphical representation of event variables and decision variables. 

The quantitative aspect of the decision tree is composed of probabilities and utilities. 

Every event has a probability fitted to itself and each decision variable has a utility 

attached to it. The order of decisions and the set of observations between the decisions 

are the two most important factors involved in decision scenarios which are 

represented in a BN [28]. 

2.5.2 Soft Computing Methods 

The numerical technique in Computational Intelligence Systems (CISs) is different 

from symbolic techniques involved in knowledge based sy>tems. The CIS knowledge 

is not explicitly stated as in the case of a KBS but, it is represented by numbers that 

are adjustable according to the improvement in the accuracy of the system. These 

techniques are broadly classified as soft computing methods [28]. 

A CIS includes neural networks, genetic algorithm:; and other optimization 

techniques. Fuzzy logic and bayesian systems used for accommodating uncertainties 

can comply with CIS categories. Where as GAs and other related optimization 

techniques are not in conformity with the purpose of fault diagnosis and prediction in 

the complex operational domains. ANNs techniques are used for classification, non­

linear estimation, etc. Consequently, these two intelligent systems are used in 

sequence to model and optimize the thermal power plant considered in this research. 

2.5.2.1 Neural Networks 

ANNs are a body of techniques used for numerical learning. They are composed of 

many non-linear computational elements which make the network's nodes or neurons 

linked by weighted interconnections. Each node in ANN may have several inputs with 

specific weighting. The node does a simple computation on its input values to 

generate a single numerical output. The output from a node can either form an input to 

either nodes or contribute to the whole output of the network. ANNs can be applied 
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for classification and non-linear estimation of a fault diagnosis and prediction 

systems in a thermal power plant [29] . 

The application of intelligent system technology for diagnosis is a function of 

several factors . First, diagnostic systems must utilize plant quantitative data. Second, 

it may be impossible to anticipate or predict every possible cause of malfunction as 

the field of search is not entirely known. Third, the end users are plant operators 

instead of managers. Fourth, the advice drawn from such systems is expected to be 

non trivial and dependable [25]. 

Intelligent systems for plant status monitoring are anticipatory synthesis of signal 

validation, diagnostics and alarm filtering techniques. In brief the aim of these 

systems is to provide the operator with an assessment of the status of the plant as a 

whole with strong supporting justifications for conclusions made [29, 30]. Figure 

(2.3) shows the power plant control system interface. 

Figure 2.3 Power plant control system interface1 

2.6 Application of Neural Network System for Fault Detection and Diagnosis 

This subsection summarizes the studies dealing with artificial intelligent systems 

particularly a neural network technique in power plants. 

1 From the operation and maintenance instruction manual for the MNJTPP 
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Kim et a/. [31] demonstrated the feasibility of a multi layer NN model coupled 

with a stacked generalization technique to the early recognition of San Onofre nuclear 

station operational transients. They used the data of ten scenarios obtained from the 

plant training simulator and investigated the ability of the NN to provide a measure of 

the diagnosis confidence level. The proposed model responds very rapidly to the 

variation of the plant conditions. They have concluded that the NN adviser model 

required further development and working on an integrat,!d ANN advisor which is 

capable of classifYing more transients and providing a prediction of error in these 

results. Furthermore, it needs to be faster and requires a rel.iable diagnostic system to 

enhance the safety of the nuclear power plant. 

Gugiielmi et a/. [32] have adopted a multilayer feed forward and Radial Basis 

Function Neural Network (RBFNN) tool to solve real sy:;tem diagnostic problems. 

The ANN testing process has been applied to four heaters of a feed water high­

pressure line of a 320 MW power plant. A different ANN classifier has been 

employed to solve the power plant fault detection and diagnosis as a one pattern­

recognition problem. NN classifier data have been captured via the simulation of a 

complex nonlinear model (71 state variables and 29 sensor variables). However, 

various types of real system faults have been assumed for different important 

operating conditions. They have validated the model with respect to the real plant 

performances. From neural classifier results, it is obvious that such a diagnostic 

system has the ability to decide correctly in terms of generalization capabilities even 

under different plant conditions. They have commented that further work is required 

for a detailed analysis of noise effects on the performances of the fault diagnostic 

system, the possibility of on-line real process parameters training and the consequent 

adaptability of the method. Also, they recommended more investigation of 

unsupervised learning algorithms and rule-base NN methodologies integration. 

Simani and Fantuzzi [33] designed a two-stage fault detection and diagnostic 

system for input-output industrial gas turbine process sensors. In the first stage, fault 

detection is performed by residuals generated from a bank of kalman filters, while, in 

the second stage, fault diagnosis is achieved by experimenting with supervised NN 

pattern recognition techniques (multilayer perceptron networks and RBF). Their 

simulation results showed the reliability of a multilayer perceptron network to classifY 
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training patterns with satisfactory performance. On the other hand, the RBFNN 

training process experienced severe limits with noisy data. 

Babar and Kushwaha [34] proposed operator support system software based on 

the ANN as a means to identify the undesired plant condition (initiating event). Event 

identification was carried out by a resilient back-propagation NN training algorithm 

for different combination of neurons and number of hidden layers. Simulated data was 

obtained from eight initiating events for the atomic plant considered in the study. The 

implementation of such an expert system was reasonably good. The system helped to 

minimize the operator error and assisted operators in minimizing the occurrence of 

abnormal situations during reactor operations. They concluded that the development 

of the tool reliability can be further improved by directly utilizing the real plant data, 

in the sense that the diagnostic system will perform better if the real data is provided. 

Bae et al. [35] designed a fault diagnostic system using an NN based on the 

pattern of principle variables which could represent the type and severity of failures. 

Two-steps NN for FDD were constructed; the first step was to classify the fault type 

and the second was to detect the fault severity. The results deteriorated; therefore, it 

was necessary to adopt other supplementary techniques in order to increase the NN 

model accuracy. 

Romeo and Gareta [36] designed a set of NN monitoring methodologies to 

analyze the influence of fouling and stagging for a biomass boiler. The NN models 

can predict a set of operational parameters and the fouling state of the boiler. As a 

result, diagnostic model outputs were validated with real and traditional equation­

based monitoring data. They have concluded that the ANN is a stronger tool for 

monitoring than equation-based monitoring. However, few ANN sets such as a 

fouling prediction set, boiler behavior evolution set and fuzzy logic rules based on the 

real data set are needed. The results from these ANN sets with knowledge could 

optimize boiler cleaning cycles and fouling evolution. In addition, NN proposed sets 

can serve as the ground work for the future development and validation of (NN + 

Fuzzy Logic) software to minimize the effect of fouling in biomass boilers. 
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Due to the complexity in analytical modeling and its long computation time, 

Rusinowski and Stanek [37] have presented an NN estimation model for a steam 

boiler. The proposed estimation NN model has the capability of mapping the 

influence of flue gas losses and energy losses due to unburned combustibles on the 

main operational parameters of the boiler with a short computation time and a high 

accuracy of calculations. It has been proven that the model was a suitable tool to the 

influence of the operational parameters upon the energy lo>ses and energy efficiency 

of the boiler. The model results have confirmed that the air excess ratio and flue gas 

temperature exert a dominant influence upon the flue gas losses as a result, as a future 

extension to the work, the proposed estimation NN model would be applied in the 

control system of a power unit for the optimization of the boiler operation parameters. 

De eta/. [38] proposed two NN sub-modules for real time monitoring of the plant 

for the biomass and coal-fired plants. On-line plant data was used to train a feed­

forward back-propagation NN model. The first sub-module was designed to predict 

the boiler exhaust and emission characteristics, and the second sub-module was 

designed to estimate the power output. While it was desired to observe the effects of 

the parameters of Heat Recovery System Generator HRSG, district heat and input 

parameters of the boiler such as fuel and air flow rates and air temperature on the 

power output, these parameters were included as input parameters for this ANN sub­

model. With good accuracy and a quickly online monitoring system aided by two 

ANN prediction sub-modules of the power output, the ass·~ssment of degradation of 

the plant performance could be implemented. It was obvious that retraining of the 

ANN modules were required for any changes occurring in the system. 

Mo et al. [39] proposed a two level classifier architecture with a dynamic NN for 

detection of transients; classification and prediction in nuclear power plants (NPP). 

Transient type, severity and location were individually obtained by assigning that 

model for different purposes. Large amounts of simulated transients have been used 

as inputs for model training and testing; the dynamic NN model results were 

compared with widely used general purpose NNs. Transient types have been 

recognized quickly only in several seconds after transient bt:gan not after. Low bias is 

comparatively recognized between the results and qualitative predication. From the 

comparison, the model performance was better in the system sets. 
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Zhang eta!. [ 40] proposed a combination of integrated NN for fault diagnosis in a 

steam turbine generator. They have suggested the combination of an NN method to 

reduce the amount of information needed to train an ANN system to diagnosis 

different types of faults. Instead, a combination of many sub-NNs could reduce the 

training effort and be able to diagnosis different types of faults. 

Santosh et a!. [ 41] proposed a symptom based diagnostic system based on an 

ANN for the identification of reactor process accident scenarios in 220 MW power 

plants. Several large break loss of coolant accident scenarios have been considered 

and analyzed. Time dependent simulated transient data have been generated using 

specialized codes. The NN diagnostic results have been incorporated in a symptom 

based diagnostic system software for operator assistance. 

Fast eta!. [42] have constructed an ANN model with multi-layer which has been 

trained using commercial software NeuroSolution. Back-propagation was the basis to 

train and supervise the ANN. They have used real plant data for the training of the 

ANN to predict the performance of the gas turbine. The main aim of a unified ANN 

was to identify anti-icing or normal mode of operation with input local ambient 

conditions (temperature, pressure, and relative humidity) and then to predict the 

different operating and performance parameters of the gas turbine. They found that 

using an initial NN to decide the switching on or off of the anti-icing system and 

providing information to a second ANN about the mode of operation, the prediction 

accuracy was increased considerably. 

Fast and Palme [43] have applied an ANN system for condition monitoring and 

diagnosis of a Combined Heat and Power plant (CHP) in Sweden. The system 

consisted of ANN models which represented each component in the plant. They are 

connected to a graphical user interface and were integrated on the power generation 

information manger (control system) in the computer system of the plant. They have 

trained the ANN Models using a back-propagation algorithm. They concluded that the 

established ANN models are plant specific but the method is general and it is 

applicable to other power plants. 
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Smrekar eta/. [44) proposed two artificial neural network models using real plant 

data to predict fresh steam properties and to examine the feasibility of ANN modeling 

for coal-based power or combined heat and power (CHP) plants. Real data were 

selected from a brown coal-fired boiler of a Slovenian power plant and used to train 

the model using NeuroSolution commercial software. Initial NN input parameters 

selection was made on the basis of expert knowledge and previous experience. On the 

other hand, the final NN input parameters set were optimized with a compromise 

between a smaller number of parameters and a higher level of accuracy through 

sensitivity analysis. The first proposed model included mass flow rate of coal, while 

the second one included belt conveyor speed as one of the NN input parameters. They 

concluded that both of the NN models may be used, either for on-line or off-line 

applications as well as ANN models which can take into account everything known 

and unknown for some processes for which it's difficult to develop a physical model. 

2.7 A Hybrid Intelligent System Strategy for the Thermal Power Plant 

It is evident that no single technique can solve the variety of complex tasks in the 

thermal power plant domain. Thus, this work takes appropriate AI techniques as 

complementary tools that can be integrated into a hybrid system for boiler trips 

detection of the thermal power plant. In this respect, hybrid systems have the purpose 

of dealing with multifaceted systems, enhancing the capabilities of individual 

techniques or setting the parameters of a constituent technique. 

Hence, practical intelligent systems in thermal power plant operations should be 

designed in a way that they comprise several modules where each one uses the most 

appropriate tool for its specific task. These modules will then interact with each other 

both at the design and at the operational stage to handle different tasks and ameliorate 

the capabilities of each other and that of the overall system. 

2.7.1 Application of Hybrid Intelligent Systems 

Selection of the proper input variables of an NN from thousands of process variables 

for a nuclear power plant control room is crucially important and is a very challenging 
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task to successes m. Guo and Uhrig [ 45] investigated a special fault diagnostic 

method based on a genetic algorithm search to guide the search for an optimal 

combination of neural network inputs to achieve the criteria of fewer inputs, faster 

training and a more accurate recall. Simulation data obtained from a nuclear power 

plant was used to reveal the potential applications of ANN s and GAs in nuclear power 

plants. They showed that the GA could be adopted to search for optimal NN input 

variables to achieve higher performance in different diagnostic tasks. The main 

disadvantage of using evolutionary optimization based on a GA to select NN inputs 

was cost in the sense of computer processing time as each individual string in a 

population represents a selection of NN inputs that needs to be checked and tested 

through a training process and error recall. To overcome this drawback, training 

process time for each test should be reduced in order to speed up the search process 

by using different NN structures and learning algorithms. Therefore, the training 

process and error recall are only required for newly created off springs which are only 

a portion of the whole generation. Hybrid fault diagnosis NN-GA can be used in cases 

where the influential parameters need to be distinguished from other parameters but 

no prior knowledge is available to guide the selection. 

Hines et al. [ 46] have reported a hybrid approach for detecting and isolating faults 

m nuclear power plant interfacing systems. They have combined two tools: 

observation based residual generation and NN pattern matching to produce a hybrid 

diagnostic system. The NN training was conducted using boiling water reactor 

simulation (BWR) data. The simulation was carried out by simulink. Back­

propagation with momentum and adaptive learning rate, Moller's Scaled Conjugate 

Gradient method and Levenberg-Marquardt training algorithms were implemented in 

a MATLAB NN toolbox and compared to determine the most efficient method. They 

have selected Levenberg-Marquardt for NN training. Besides that they have 

demonstrated that the hybrid method has significant advantages over the conventional 

NN diagnostic methods. 

Kim and Bartlett [ 4 7] performed a new error estimation scheme associated with a 

nuclear power plant diagnostic neural network advisor. The proposed error estimation 

technique has been addressed to provide bounds on the output obtained from the 

neural network fault diagnostic advisor in order to obtain more accurate reliable 
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information with considerably reduced computational requirements. Data from 

twenty-five distinct simulated transients were obtained from the Duane Arnold 

Energy Center (DAEC) nuclear power plant for (33) transient scenarios ranging from 

a main stream line break to anticipated transient without scram (ATWS) conditions. 

The new method called Error Estimation by Series Association (EESA) used 

simulated data were only from DAEC to solve the complexity and difficulty of 

previous error estimation procedures and validate the advisor's diagnostic output. 

Several aggregation methods were recommended for different modelling 

approaches as useful methods in model design for the complicated plants with 

immeasurable or hard measurable variables. Mincho B. et a/. [48] proposed a new 

aggregation combinational approach based on the First Principles, fuzzy logic, ANN 

concepts and statistical models to design adequate models for a steam boiler mill-fan 

with large uncertainties. The proposed hybrid system was capable of successfully 

identifying a highly non-linear pulverising system and improving the current 

estimation of plant behavior. 

To present the various applications of artificial neural networks in energy 

problems, Kalogirou [49] applied ANN models with multiple hidden layer 

architecture in the field of solar energy; for modeling and designing of a solar steam 

generating plant, the estimation of a parabolic-trough collector intercept factor, local 

concentration ratio and for the modeling and performance prediction of solar water­

heating systems. He has demonstrated that a past history data, data of the real system 

performance and a suitable selection of NN models are required for all ANN models 

which result in acceptable error limits. 

Volponi et a/. [50] carried out a favorable companson m terms of accuracy 

between two publicized diagnostic tools for single gas turbine fault isolation 

symptoms. The first diagnostic technique was a nonlinear-supervised back­

propagation neural network which was trained by offline obtained data based on 

known relationships between the input-output. On the other hand, the training process 

for underlying faults using that tool with real data could be considered as drawbacks 

as precise disposition of the fault may or may not be known, as a result, they have 

decided that the NN should be re-trained. The second diagnostic tool used by them 
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was a hybrid NN utilizing the kalman filter approach. Based on the obtained results, 

the back-propagation NN, the hybrid NN, and the kalman filter method are highly 

accurate single gas turbine fault symptoms. They have recommended the kalman filter 

approach for better accuracy. 

The fault confirmation process without expert knowledge can be prevented by 

illusive and real-time series signals for complex and high reliable nuclear power 

plants. Yangping eta/. [51] proposed a hybrid fault diagnostic method to solve this 

problem by combining GAs and classical probability with an expert knowledge base. 

The hybrid model performed on the 950 MW full size simulators at the Beijing NPP 

simulation training center. The proposed hybrid model showed that this method has 

comparative adaptability to diagnose signals and faults changed in time, imperfect 

expert knowledge, illusive real-time series signals and other phenomena. On the other 

hand, they have mentioned, more work is needed to get effective fitness function. 

During normal plant operation or emergency situations for complex system 

operation, plant operators and system managers have difficulty analyzing the great 

quantity of data captured to formalize correct and timely decisions. Yildiz et.al [52] 

introduces a hybrid intelligent system as a solution to solve nuclear power plant 

operation complexity which combines an Expert System (ES) module and the ANN 

module incorporated into the proposed complete system. The proposed hybrid system 

holds the desired properties of each individual technique. The ES module has been 

completed and validated on the bearing system of horizontal charging pumps in 

nuclear power plants; however, the artificial neural network module is in the 

development stage. As a future development of this research work, more efforts 

should be employed and greater focus should be drawn on completing the design of 

the NN module, integrating all the elements in the hybrid structure and validating the 

complete system. 

Classification of accidents into groups of initiating events and identification of 

major severe accident scenarios after the initiating events is very difficult for nuclear 

power plants. Na et.al [53] applied two prediction systems: the Probabilistic Neural 

Network (PNN) system and hybrid Fuzzy Neural Network (FNN) system. The PNN 

system has been designed to classify the initiating events under severe accident 

31 



conditions by usmg one minute interval integrated values of 13 measured plant 

parameters. Moreover, the hybrid fuzzy neural network sy:;tem has been designed to 

identify the important timings representing major severe accident scenarios by using 

the (two-three) minutes integrated values of three or four measured plant parameters 

after a reactor scram. Both estimation systems were trained by using the simulation 

data using specialized codes. It was shown that the PNN system could accurately 

classify a lot of the initiating events into five kinds of categorized events. In addition, 

the proposed hybrid fuzzy neural network could accurately estimate important timings 

which represent major severe accident scenarios. 

Because of the good potential of ANNs and Fuzzy ARTMAP (FAM) for fault 

detection and diagnosis in complex processes, Tan and Lim [54] examined the 

applicability of pruned and ordinary F AM neural networks to fault diagnosis and 

condition monitoring problems of heat transfer and tube blockage of the circulating 

water system. The proposed hybrid model for two study cases has been adopted to 

investigate the effectiveness ofF AM in fault detection and diagnosis, and to extract a 

set of domain rules from the trained FAM network. Fror.1 the perspective of fault 

detection and diagnosis, both the pruned and ordinary F AM neural networks achieved 

very high performances with the accuracy rates of around 90% in both case studies. 

From the perspective of rule extraction, the rules reveal a high degree of accuracy, in 

which they could be used as a set of fault-diagnostic references. They recommended 

that further work should be focused on aspects of real implementation, accurate 

evaluation and validation of FAM as an intelligent fault diagnosis and condition 

monitoring tool in the real life power generation plant. 

Mark and Benedek [55] presented a novel hybrid feed-forward neural network 

with global normalization methodology to classify the unlabeled transients correctly. 

Back-propagation training algorithms with a probabilistic method were adopted to 

identify the misleading recognition of unlabeled malfunctions. Many other types of 

networks and codes were successfully applied using simulated data to identify labeled 

and unlabeled malfunctions of the Hungarian Paks nuclear power plant. Several issues 

were important for proper analysis of the processes such as the drift of electronic 

elements of a simulator, the digitization of simulated actual plant signals and the 

accumulating error during numerical integration. The global normalization yields less 
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resolution and it's not sensitive to the presence of drift signals (effects) and the local 

normalization should be avoided at any cost to eliminate potentially harmful effects 

from drifts. Recognition was good only for a few transients using time-series data and 

Fast Fourier Transform (FFT) series among all plant transients. They have 

recommended that instead of training one network with 20 outputs, twenty different 

nets with one output could be trained. 

In order to overcome the problem of the trial-and-error approach to network 

design and parameterization, Ferentinos [56] proposed, designed and parameterized 

an evolutionary approach to an automated two-feed forward neural network based on 

genetic algorithms of a real world biological engineering field. The two proposed 

systems are a fault detection NN model and a fault prediction NN model. An indirect 

representation of the genetic algorithm was used as an encoding means for training 

parameters and NN topologies such as: back-propagation multidimensional 

minimization training algorithms, number of neurons for each hidden layer and type 

of activation function. Both one-hidden-layer and two-hidden-layer network 

structures were investigated by the GA. The statistical comparison results demonstrate 

that the proposed models based on the GA system should be preferred over the most 

common used trial-and-error approach. It was clear that the proposed GA model is not 

fully automated and several GA parameters have to be tuned such as: probabilities of 

crossover and mutation, and population size. As a result, the influence of the GA 

model parameters variation is not as significant to the final performance of the system 

as that of the parameters ofNN topologies design and training. 

In order to overcome the back-propagation problems such as slow rate of 

convergence and falling easily into local minimum, Tian et a!. [57] implemented a 

hybrid neural genetic algorithms model for steam turbine-generators fault diagnosis. 

The hybrid diagnostic model shows that the algorithm converges quickly and 

diagnoses faults efficiently. Theoretical analysis and an emulational experiment 

pointed out that the hybrid diagnostic model is an excellent approach. It can optimize 

not only the value of the NN weight, but also the architecture of the NN. 

There was a strong need to develop an automatic fault detection and diagnostic 

system to avoid a possible nuclear power plant disaster which could be caused by an 
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inaccurate fault diagnosis by the plant operator. A hybrid fault diagnostic system was 

introduced by Cheng et. al [58] for the condensation and feed water system of a 

nuclear power plant. The hybrid genetic-radial basis function neural network model 

makes the neural network smaller in size and higher in generalization ability which 

led to the improvement in the accuracy and speed of the diagnostic process for non­

typical systems. 

To improve on the operation of the steam boiler, Rusinowski and Stanek [59] 

proposed a hybrid model for a steam boiler associated with the application of both 

analytical modelling and an artificial intelligence system. The proposed hybrid model 

for a steam boiler has been implemented for multi variant simulative calculations of 

the influence of the steam boiler operating parameters on the energy losses from the 

steam boiler and its energy efficiency. The proposed hybrid model for a steam boiler 

consisted of two parts; the first part is the analytical model part which includes the 

balance equations. The second part is based on empirical models which are carried out 

by means of an ANN and regression modelling to express the dependence of the flue 

gas temperature and the mass fraction of the unbumt combustibles in solid 

combustion products on the steam boiler operating parameters. Based on the results of 

the hybrid model, they have concluded that the decrease in feed water temperature 

leads to an increase in energy efficiency. The energy efficiency of the steam boiler for 

the proposed hybrid model can be applied in the operating control system. 

An ANN design with lesser human dependence and a more powerful and 

sophisticated prediction and optimization is an extremely important task. Ahmed et al. 

[60] proposed a hybrid artificial neural network and genetic algorithm model for the 

determination of optimal operational parameter settings for three different cases: gas 

turbine, drilling process and debutanizer based on the proposed approach. Different 

ANN predication procedures have been presented to solve the time-consuming 

problem of the learning process, enhance the generalizing ability, achieve a robust and 

accurate model, and reduce the computational complexity. The preliminary hybrid 

model results have indicated that the proposed hybrid model can optimize operational 

parameters precisely and quickly; subsequently, a satisfactory performance can be 

achieved. As a future work for this research, they recommended that a GA should be 

applied to find other optimal ANN designing parameters. 
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2.8 Summary 

Deep functional observation into the afore discussed published works enables the one 

to conclude that many researchers used a one-hidden layer (I HL) ANN structure for 

fault detection and diagnosis. Furthermore, intelligent system training was based 

mostly on simulation data, except in the cases of a few researchers, where real data 

had been used, and few works focused on the neural network inputs parameterization 

depending on plant operator experience. On the other hand, no general hybrid 

intelligent system (NN-GA) framework was reported before for the thermal power 

plant steam boiler diagnosis for trip detection. Moreover, no standard real data 

preparation scheme for IMSs so far has been suggested and no attention has been 

given for NN topologies to IMSs. 

On account of the above observations, this particular research is aimed at 

preparing of a real plant data framework with a related operational variables training 

and validation of the proposed Intelligent Monitoring System's (IMSs), representing 

pure ANNs (IMS-1). Later, it employs hybrid GAs and ANNs (IMS-II). Various main 

NN topology combinations were investigated to explore the final IMS structure. 
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CHAPTER3 

THEORY OF INTELLIGENT SYSTEMS 

3.1 Introduction 

The problem statement and the main objectives are discussed in chapter one. The 

related literature in the field of fault detection and diagnostic systems for power plants 

are reviewed in chapter two. Some further artificial computational tools adopted in 

this work are discussed in this chapter. 

The following represents the computational tools used m designing and 

implementing the steam boiler trip monitoring systems: 

3.2 Artificial Neural Networks (ANNs) 

The ANN is a system loosely modeled and based on the human brain. This field is 

known by many names, such as connectionism, parallel distributed processing, neuro­

computing, natural intelligent system, machine learning algorithms and artificial 

neural networks. The aim is to simulate the system within specialized sophisticated 

hardware. The multiple layers of simple processing elements are called neurons and 

connected to certain neighbors with a variety of coefficients of connectivity that 

represent the strength of these connections. Learning is accomplished by adjusting 

these coefficients to result in appropriate results from the overall network [ 61]. 

Figure (3.1) is a typical neural network; the circular nodes represent neurons in 

three layers: input layer, hidden layer and output layer. The directed graph mentioned 

shows the connections from layer to layer or connection weight [62]. 



Inputs 
Nodes 

Typical Neural Network 

Figure 3.1lnput layer of the typical neural network [62] 

A human brain contains over one hundred billion computing elements called 

neurons. The neurons communicate throughout the body by ways of nerve fibers that 

makes perhaps one hundred trillion connections called synapses. The neuron system 

contains two classes of cells; nerve cells and glial cells, the nerve cell is a special 

biological cell that processes information and the nerve cells are the building -blocks 

of the brain [62]. 

There are many types of neurons in the nervous system but they all share the 

following: the biological neurons are built up of three parts: the cell body, dendrites 

and axon [63] as shown in Figure (3.2): cell body, dendrites and finally the axon. 

\1'r'CI n 
st'eath 

Figure 3.2 Conceptual structure of the classical neuron [63] 

37 



In the artificial neuron, each input is represented as th< output of another neuron. 

Each input is multiplied by a corresponding weight and all the weighted inputs are 

then assumed to determine the activation level of the ne1ron. Figure (3.3) shows a 

model that implements this idea where a set of inputs (x1,x2, ....... ,xn) are applied to 

the artificial neuron. These inputs are collectively referred to as vector x. Each signal 

is multiplied by an associated weight (w~,w2, ... ,wn) before applying it to the 

summation block. If the summation exceeds a certain thre>hold, the neuron responds 

by issuing a new pulse which is propagated along its axon; otherwise the neurons 

remain inactive. 

Each weight corresponds to the strength of single biological synaptic connections; 

the set of weights is collectively referred to as the vector w, the summation block, 

corresponding roughly to a biological cell body. Adding all of the weighted inputs 

algebraically x, producing an output (s) in vector notation [64]. 

F 

S=XW I _/3-~'utput=F(S) 

Artifidal Nem·ou 

Figure 3.3 Artificial neuron with activation function [64) 

A general neuron model may be defined by the flowing Jive elements [64]: 

1. The nature of its input. 

11. The input function. 

111. The activation function of the neuron. 

IV. The output function. 

v. The nature of the output of its neuron. 
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The neuron input may be binary, with a value of (-1,+1) or (0,1), it may be 

continuous, or a real number. 

Several common types of activation signal functions (Figure 3.4) are defined as 

the following [65]: 

1. Linear function. 

11. Threshold linear function (saturation function). 

111. Unit step function (threshold function). 

tv. Hard limit function (sign function). 

v. Sigmoid logistic function. 

v1. Hyperbolic tangent function. 
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Figure 3.4 Activation signal function [ 65] 

3.3 Why Use Neural Networks 

With their remarkable ability to derive mean from complicated and imprecise data, 

neural networks can be used to extract patterns and detect trends that are too complex 

to be noticed by either humans or other computer techniques. A trained neural 

network can be thought of as an "expert" in the category of information it has been 
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given to analyze. This expert can then be used to provide projections to give new 

situations of interest. 

Other advantages include [66, 67]: 

1. Adaptive learning: the ability to learn how to do tasks based on the data given 

for training or initial experience. 

u. Self-organization: an ANN can create its own organization or order of the 

information it receives during learning time. 

iii. Real time operation: ANN computation may be carried out in parallel. 

Currently, special hardware devices are being designed and manufactured 

which take advantage of this capability. 

tv. Fault tolerance via redundant information coding: partial destruction of a 

network leads to degradation of performance. However some network 

capabilities may be retrained even with major network damage. 

v. Generalization: the process of describing the whole from parts, reasoning from 

the specific to the general case, or defining a class of objects from one or more 

known instances. 

vt. Parallelism: This is fundamental in the architecture of neural networks when 

the neurons are considered as sets of elementary units. Operating 

simultaneously results in a great efficiency of calculation. 

3.4 ANN Taxonomies 

In this section five different ANN taxonomies are presented. Each gives a different 

perspective of ANNs in terms of network models, learning algorithms, performance 

indicators, architectures and general areas of application. 
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3.4.1 ANN Models 

There are more than 30 different types of neural networks currently being used in 

research and applications [ 68). 22 types of common ones are listed below: 

1. ADALINE (Adaptive Linear Neural Element). 

11. ART (Adaptive Resonant Theory). 

111. AM (Associative Memories). 

IV. BAM (Bi-Directional Associative Memory). 

v. BOLTZMANN MACHINE. 

VI. BSB (Brain-State-In-A-Box). 

vn. CCN (Cascade Correlation Network). 

vn1. CAUCHY MACHINE. 

1x. CPN (Counter Propagation Network). 

x. GRNN (Generalized Regression Neural Network). 

x1. HAMMING MODEL. 

xn. HOPFIELD MODEL. 

xm. LVQ (Learning Vector Quantization). 

XIV. MADALINE (Many Adalne). 

xv. MLFF WITH BBP (Multi-Layer Feed-Forward Back-Propagation). 

xv1. NEOCOGNITRON. 

xvn. NLNs (Neural Logis Networks). 

xvn1. PERCEPTRON. 

x1x. PNN (Probabilistic Neural Network). 

xx. RBF (Radial Basis Function). 

xx1. RNN (Recurrent Neural Network). 

XXII. SOFM (Self-Organizing Feature Map). 

3.4.2 ANN Learning Algorithms 

The application of an ANN is to approximate a specific function which is attained 

after a correct selection of the connection weights. This process is called the training 

or learning of the ANN. The correct selection is made by adjusting the weight in order 
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to have an NN predicated output "closer" to the actual system outputs. The adjustment 

of the weights is performed by the training algorithm that tries to minimize the error 

indicator between the NN predicated outputs and actual system outputs [ 69]. The 

classification by learning strategy includes the following broad classes: 

1. Supervised training: is a process of adjusting the weights in a neural net using 

a learning algorithm; the desired output for each set of training input vectors is 

presented to the net. Excessive iteration through the training data is required. 

11. Unsupervised training: can be accomplished by modifying the weights of a 

neural net without specifying the desired output for any input of patterns. It is 

used in self-organizing neural nets for clustering data, extracting principal 

components or curve fitting. 

111. Reinforced training: when a pattern actually belongs to any class but is not 

selected, then the weight vector should be reinforced by adding to it a 

proportion of that training pattern. 

For each of these categories an ANN will fall into one of four sub--categories [70]: 

1. Error correction: This includes algorithms such as perceptron learning, the 

Delta rule and Back-propagation. 

11. Hebbian learning: includes variants of hebbian learning. 

iii. Competitive learning: it can be considered as unsupervised learning in which a 

competitive neural net (or subnet) adjusts its weight after the winning node has 

been chosen. 

IV. Stochastic learning: 1s a probabilistic learning algorithm, which includes 

Boltzmann Machine and Cauchy Machine. 

3.4.3 ANN Performance Indicator 

The total performance error of the network with a particular set of weights can be 

computed by comparing the actual and the desired output patterns for every case. 
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The most commonly used error metric is the Root-Mean-Square-Error, RMSE, 

defined as [71]: 

(3.1) 

Where, 

i =1, 2, 3, .... ,n 

RMSE: is the root-mean-square error for training data set p. 

ps:is the number of training data sets. 

di and oi: are the desired and predicated outputs of node i. 

3.4.4 The Application Type Categories of ANNs Models 

The ANNs demonstrate a capability for a very broad spectrum of applications that 

includes but is not exclusive to: image classification, speech synthesis, sonar return 

classifications, knowledge base sensing, robotics processing, industrial inspection and 

scientific exploration. Areas of applications for neural net:; can be grouped into six 

groups: associative memories, classification, pattern recognition, prediction, 

optimization and general mapping. The taxonomy of ANNs by application is 

illustrated in Figure (3.5) [70]. 
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Figure 3.5 Categories of ANN steps by application type [70] 

3.4.5 Neural Network Architectures 

ANNs can be represented as weighted directed graphs in which artificial neurons are 

nodes and direct edges (with weights) are connections between neuron inputs. 
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Based on the connection pattern (architecture), ANNs can be grouped into three 

categories: 

1. Feed-Back, feed-back network are the type of neural networks that contain 

feedback connections, another name for them is "recurrent" nets [72]. 

Recurrent networks recalculate previous outputs back to inputs hence, their 

outputs are determined both by their current inputs and their previous outputs. 

For this reason recurrent networks can exhibit similarities to short-tern1 

memory in humans in that the state of the network outputs depends in part 

upon their previous inputs. The hopfield model is the simplest and most 

widely used feedback neural architecture; another example of a feedback 

network is the boltzmann machine which is cim:e to the hopfield model 

architecture. 

n. Feed-Forward, which is also called "Non-Recun:ent" is a type of neural 

network that has no feedback connection that connects through weights 

expended from the output of a layer to the input of the same or previous layer. 

m. Self-Organization, a self-forward network such as kohonen feature map, 

monitors itself and corrects errors without receiving any additional 

information. 

3.5 Genetic Algorithms (GAs) 

GAs are optimization tools. GAs are inspired by the mechanism of natural selection 

where stronger individuals are likely the winner in a competing environment. 

GAs have been applied with success to domains such a:;: optimization, automatic 

programming, machine learning, economics, immune systems, ecology, population 

genetics, evolution and learning, and in social systems [73]. 
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3.5.1 GA Components 

A GA has three major components [73]: 

1. GA Component One: 

The first GA component represents the creation of an initial population. The created 

population consists of a number of randomly selected individuals (m) that shape the 

first GA generation. 

ii. GA Component Two: 

The second GA component represents the evaluation process for each one of the 

inputs (m) based on an objective function which is calledfitnessfunction. 

iii. GA Component Three: 

The third GA component represents the formulation of the Next GA generation based 

on the fitness value of the previous one. The evaluation process of generation N 

(component 2) and the production of generation N+l (component 3) are repeated until 

a performance criterion is met. 

3.5.2 GA System Operations 

The GA breeding process is defined as the creation of offspring based on the fitness 

function value of the previous individuals of the generation. The main GA breeding 

procedure includes three basic genetic operations [7 4]: 

1. Reproduction: it begins with a probabilistical selection process that selects one 

of the fittest individuals of generation N and then, passes it to generation N+ I 

without applying any changes to it. 

u. Crossover: it begins with a probabilistical selection process that selects two of 

the fittest individuals of generation N; followed by a randomly chosen 

characteristic process in which a random way to choose a number of the fittest 

individuals characteristics and then exchanges the chosen characteristics in a 
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way that the first individual would be captured by the second and vice versa. 

Finally, two new offspring are created which belong to the new generation. 

iii. Mutation: it begins with a probabilistical selection process that selects one of 

the fittest individuals of generation N and then in a random way, changes a 

number of its characteristics. The new offspring that results out of this 

transformation is passed to the next generation. 

The definition of genes is adopted for the individual characteristics. Upon the 

biological paradigm the set off all genes of an individual form its chromosome and 

each generation can be described by a set of m chromosomes. Figure (3.6) describes 

the main GA system operation [75]. 
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GA System Operations 
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Figure 3.6 GA System Operations [75] 

Based on the fitness function, the selection of an individual, i.e. two in the case of 

crossover, is implemented by a scheme known as roulette wheel [76-78] . 

Using the GAs fact "the higher fitness value of an individual, the better the 

individual is", A roulette wheel is creating by the following steps: 
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1. Place all population members in a specific sequence 

11. Sum the fitness of all population members Fsum. 

iii. Generate a random number (r) between zero and Fsum. 

tv. Return the first population members whose fitness value added to the fitness 

of the preceding population members, is greater than or equal to (r). 

The GA termination criterion is a crucial issue. It can be either a number of 

generations or the amount of variation of individuals between two successive 

generations, or a pre-defined value of fitness [76, 77, 79]. 

3.6 Summary 

Two artificial intelligent monitoring systems specialized in boiler trips were proposed. 

Feed forward ANN methodology was described in details as a major adopted 

computational intelligent tool in the proposed systems. The first intelligent monitoring 

system (IMS-1) represented the use of pure ANN for boiler trip detection. The second 

intelligent monitoring system (IMS-II) presented the use of GA and ANN as a hybrid 

intelligent system. 
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CHAPTER4 

DATA ACQUISITION AND PREPARATION 

4.1 Introduction 

Plant data preparation is a crucial issue and it has an immense impact on the success 

of the IMSs dealing with complex plant data. The quality of the prepared data to be 

used as input to the IMS may strongly influence the system performance. 

In this chapter, the procedure of the raw plant data processing to be ready for IMS 

training and validation is presented. The structure of this chapter is based on the data 

processing sequence shown in Figure (4.1). The first part of this chapter describes an 

MNJ thermal power plant as the data source, specifically the boiler unit and its trips. 

The second part presents the manipulation of the raw data until it is ready for IMS 

training and validation. The various processing methods are discussed in detail. 

4.2 Thermal Power Plant (TPP) 

A major portion of the demand for electric power is met by TPPs. These plants can be 

operated safely, efficiently and economically. The TPP can be considered to have two 

major divisions, namely, the boiler unit and the turbine unit. The boiler unit coverts 

the chemical energy of the fuel into heat energy, and the turbine unit converts the heat 

energy in the steam into electricity. 



Plant Data Processing Steps 

T hermal Power Plant Identification of Seven 
Trips Identification Boiler Trips 
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Figure 4.1 Data processing sequences adopted in the present work 
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In thermal power plants, fossil fuels such as coal, crude oil/furnace oil and natural 

gas are commonly used. The selection of the fuel is decided by availability and 

economic considerations [80]. 

In this study, the JANAMANJUNG coal-fired power plant (MNJTPP) has been 

selected as a real data source for the proposed intelligent monitoring systems. 

Within the scope of this work, the intelligent monitoring systems were 

implemented in the boiler components, where the working fluid is circulated, which 

are the drum, superheater, boiler feed pump and water tube. The main reason behind 

choosing those components was the frequent occurrence of trips within the specific 

period of the plant operation time. 

4.3 MNJTPP Boiler Description and Characteristics 

MNJTPP (3*700MW) boilers are of a sub-critical pressure, single reheat and 

controlled circulation type. Each boiler is fired with pulverized coal to produce steam 

for the continues generation of700 MW(e). 

The combustion circuit consists of a single furnace, with direct tangential firing 

and balanced draught. The coal milling plant consists of 7 vertical bowl mills. The 

maximum heat input that can be achieved when firing fuel oil is 40% of the Boiler 

Maximum Continuous Rate (BMCR). The boiler has been designed to comply with 

the malaysian environmental requirements. NOx control is achieved with a low NOx 

combustion burner system including Over Fire Air (OFA) ports. An Electro-Static 

Precipitator (ESP) removes dust in the flue gas at the boiler outlet and Flue Gas 

Desulphurisation (FGD) plant, scrubs the flue gas and controls the SOz emission level 

at the stack. 

The firing equipment consists of: four elevations; ( 16) of, remote controlled fuel 

oil burners equipped with high energy ignitrons. They are used to start-up the boiler 

and to support combustion of the pulverized coal at low firing rates. The capacity of 

oil burners is 40% of the BMCR. Seven elevations; (28) of, coal burners located just 

above or below a fuel oil burner. The capacity of coal burners is I 00% BMCR when 
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firing coal within the design range. All the burners are located in the furnace comers 

(tangential firing). 

The major auxiliary equipment consists of: three boiler circulating pumps, two 

forced draft fans, two primary air fans and two induced draft fans. All these fans are 

centrifugal fans with control vanes at the inlet to adjust the flow or the pressure. There 

are also two steam air preheaters, one piece of sootblowing equipment, two 

electrostatic precipitators, one coal milling plant consisting of 7 vertical bowl mills, 

type BCP2820 and one wet FGD. The schematic diagram of the steam boiler is shown 

in Figure ( 4.2). 

Figure 4.2 Schematic diagram ofMNJ TPP Boiler 

2 From the operation and maintenance instruction manual for the MNJTPP 
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4.4 Boiler Trips Identification 

Boiler trips are the leading cause of forced outages in a thermal power plant boiler 

(TPPB). To get a TPPB back on line and reduce or eliminate future forced outages 

due to the trip, it is extremely important to determine and correct the root cause. 

The experience of designing, fabricating, building and servicing of the boilers 

shows that the most effective method of determining the root cause of the trip is by a 

comprehensive assessment. 

The full-scope investigation with the plant operator expenence of all boiler 

operation aspects leading to the trip should be considered in order to fully understand 

the root cause and to isolate it. MNJTPP trips can be classified into four types based 

on the part of the boiler most frequently tripped as: 

4.4.1 Boiler Tube Wall Trip 

Water tube boilers were proposed to pem1it increases in boiler pressure and capacity 

with reasonable metal stress. In the water tube boiler, water flows through the tubes 

and flue gases flow outside them, putting the pressure in the tubes and the relatively 

small diameter drums, which are capable of withstanding the extreme pressures of the 

modem steam generator [81]. 

Boiler tube leaks are the single biggest cause of loss of thermal power plant 

availability. Detecting leaks by measuring the make up water or walking the boiler is 

very insensitive and usually gives information about the existence of leak only when 

that tube leak is already large and creating serious secondary damage. A boiler water 

wall leak can be caused by one of the following reasons: caustic attack, oxygen 

pitting, hydrogen damage, acid attack, Stress Corrosion Cracking (SCC), waterside 

corrosion fatigue, superheater fireside ash corrosion, water wall fireside corrosion, 

fireside corrosion fatigue, short-term overheat, long-term overheat, graphitization, 

Dissimilar Metal Weld (DMW) Failure, erosion, and mechanical fatigue. The 

benefits of the early detection of boiler water wall tube leaks are: to increase operating 

profit, to increase personal safety, to mcrcase availability and tube life, avoid 
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unscheduled outages, reduce of outages, repair costs and secondary damage, and 

reduction of financial penalties and insurance costs [29]. 

4.4.2 Superheater Trips 

The superheater consists of a Low Temperature Superheater (L.T.S), an Intermediate 

Temperature Superheater (I.T.S) and a High Temperature Superheater (H.T.S). The 

I.T.S is a horizontal exchanger located in the rear pass of the boiler. The L.T.S and 

H.T.S are pendant exchangers located above the furnace. The dry saturated steam 

flows from the drum via the furnace roof tubes, and the rear passwalls to the L TS inlet 

header for one part of the total flow or directly from the drum to the L TS for the other 

part. The LTS is a vertical exchanger consisting of 3 elements located at the furnace 

top against the front, right and of the left water walls. After crossing the L TS, the 

steam flows via the interconnecting pipes to the ITS. The first stage of desuperheaters 

is installed on the interconnection pipes. The first spray-water injection controls a 

differential steam temperature between the L TS outlet and the ITS inlet. 

The outlet headers of the ITS are linked to the inlet header of the HTS. On these 

interconnection pipes, a second stage of desuperheaters is installed. The second spray 

water injection controls the steam at the HTS outlet. After the outlet header of the 

HTS, steam enters the turbine through the main steam piping. 

The superheated steam temperature is adjusted by spray water injections for the 

LTS and the HTS. The LTS, HTS and the main steam lineG are completely drained. 

Insufficient draining time may result in a trip due to equipment damage. L TS and 

HTS trips can be caused either by the in service spray water injection when the steam 

flow is below 20% of the maximum continuous rate, as it is difficult to obtain a 

regular spray water flow through the control valves slightly opened or that the spray 

water at low steam flow is not completely evaporated and it can be the source of 

considerable damage leading to a unit trip. 
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4.4.3 Boiler Drum Trip 

The purpose of the boiler drum is to ensure a good separation of steam and water and 

to feed the superheaters with a perfectly dried steam at any boiler load. The boiler 

drum is fitted with the necessary instrumentation: three level transmitters at each 

drum end, one local level gauge at each drum end, one electric level transmitter 

(electrode type) at each drum end, three pressure transmitters on the upper part of the 

drum for pressure monitoring and level compensation, and eight pairs of metal 

thermocouples four on drum water side (lower part) and four on the steam drum side 

(upper part) [29, 81]. 

These measures are used to monitor the differential temperature to assure that it 

stays under allowable limits of thermal stress. They are also used for fatigue 

monitoring. Four simple metal thermocouples, two at each drum end, one on the 

lower water part, one on the upper steam part for drum end absolute metal 

temperature monitoring, and one drum steam pressure local regulation manometer. 

The drum is fitted with four regulation relief safety valves ( 4 items) and their 

silencers. The drum is also equipped with tapings for: water sampling, steam 

sampling, continuous blow down, vents, nitrogen injection points and exhaust to 

pressure safety valves. 

The steam boiler drum water level should be maintained for all plant operation 

time as a critically important issue. Too low a level for the boiler drum can lead to 

boiler water tube damage. On the other hand, too high a water level for the boiler 

drum can result in damage in the steam separator or steam turbine from water carry 

over. 

The mam reasons behind a boiler drum level fluctuating are: the feed water 

circuits problem which may be caused by the trip of the three circulating pumps, a 

problem on the drum level start-up feed water control, and the water level indicator. 
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4.4.4 Boiler Circulating Pump Trips 

In a controlled circulation boiler, circulating pumps placed in the downcomer circuits 

insure a proper circulation of water through the water walls. The feed water enters the 

unit through the economiser and is mixed in the drum with the boiler water/steam 

mixture from the risers. The water flows from the drum through the down comers to 

the circulation pumps suction manifold [29]. 

The economiser re-circulation line and the water-cooled spacer tubes are also 

supplied from the lower wall headers. The water rises through furnace wall tubes 

where heat from the combustion is absorbed. 

The boiling process takes place and the resulting mixture of water and steam is 

collected in the water wall outlet headers. The mixture is discharged into the boiler 

drum through the riser tubes. The drum internal equipment separates the steam and 

the water. The steam flows to the superheater circuit and water returns to the lower 

part of the drum. 

The boiler circulating pumps must be in good running condition and the alarm 

devices and interlocks, provided for protection of both the boiler and pumps, should 

be tested before the unit start up. The boiler feed pumps are tripped either due to lose 

suction, as indicated by a very low differential pressure and unstable motor current, or 

pumps not properly filled with water due to a problem with the condensate pumps. 

4.5 Data Preparation Framework 

The present work could be divided into four execution phases as shown in Figure 

( 4.3 ). The integrated data preparation scheme represents the first phase among the 

four identified phases to execute the entire study. 
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This phase is sub-divided into three stages as shown in Figure (4.4). Each stage 

consists of mathematical and statistical processes, each process represents a step. 
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Figure 4A Plant data preparation framework 

4.5.1 Data Pre-Analysis Stage 

The data pre-analysis stage consists of two main steps, in which boiler operational 

variables were identified and collected for each specific boikr trip. 

4.5.1.1 Plant Data Identification Step 

Initially, 1800 observations (actuator and sensor signals) are identified as the boiler 

process observations through the on-line plant control system (ABB). The identified 

observations are passed through a reduction process which involves three stages as 

shown in Figure (4.5). Since the work scope focuses on the diagnosis of working fluid 

components in the boiler, the number of the observations is reduced from 1800 to 177 

by excluding the observations of the furnace items, the induce fans and mills . 
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Figure 4.5 Plant data reduction stages of the observations to variables 

The new sets of observations represent the relevant measurement values of the 

operational variables related to the economizers, drums, headers, circulating water 

pumps, risers and superheaters. The resulted 177 observations from the first stage are 

reduced again to 93 based on the plant operator experience. 

The eighty-four neglected observations were considered as non-effective factors 

on the trip scenarios of the boiler. Many observations were measured by multi 

sensors. Finally, thirty-two influential operation boiler variables, as listed in Table 

( 4.1) fom1ed the final set by adopting the average criteria of various observations. The 

"criteria" column in Table ( 4.1) represents the average number of averaged signals 

acquired for each variable. E.g.; for a feed water valve station, V12, there are eight 

actuators to measure and send signals of the same variable, hence: 

V - 1 "i=B V 
12 - 8 L..i=1 12,i 

(4.1) 
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Table 4.1 Influential boiler operation variables 

;:~~1: Feed water flow tlh 

Boiler drum pressure Barg 

vJi!k'(4 ""0 Superheater steam pressure Barg 

Superheater steam temperature 'C 

&>:; High temperature Re-heater outlet temperature °C 

":::J,, High temperature superheater exchange metal temperature °C 

-.::,--V~;<, Intermediate temperature (A) superheater exchange metal temperature °C 

-~:::!;:: High temperature superheater inlet header metal temperature 

I 
Final superheater outlet temperature 

Superheater steam pressure transmitter (control) 

Feed water valve station 

J7 Feed water control valve position 

1.~ Drum level corrected (control) 

:b~J.J~!l: Drum level compensated (from protection) 

-I~' _i6~ Feed water flow transmitter 

~~ i7 1" Boiler circulation pump l pressure 

'1' Boiler circulation pump 2 pressure 

~ :~i;~~, Low temperature superheater left wall outlet before superheater dryer 

!:,~~' ~~:r temperature oue"'""'" right wall outlet before 

~._.-~.~·I_,;: Low temperature superheater left wall after superheater dryer 

.. ·_yri·~·- Low temperature superheater right wall exchange metal temperature 

-::~_)f~_;i Intermediate temperature (B) superheater exchange metal temperature 

, ... · ... yi4-~ Intermediate temperature superheater outlet before superheater dryer 

;::\IJ<~ Intermediate temperature superheater outlet header metal temperature 

. ·.i:Y~~i High temperature superheater outlet header metal temperature 

" ·'. Y27.: High temperature Re-heater outlet steam pressure 

· ,-.y~~;~_ Superheated steam from intermediate temperatures outlet pressure 

~viJ"!i Superheater water injection compensated flow 

.;;v·~~ Economizer inlet Pressure 

'"-'"' _ y--~~<-0& Economizer inlet temperature 

--::\13~ Economizer outlet temperature 
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4.5.1.2 Plant Data Acquisition Step 

Three different groups of boiler data were captured with different frequency sampling 

times, named as: Group (A) obtained based on a thirty minute time interval to form 

boiler data group (A) and group (B) formed with a one minute sampling time based 

on the outage period for each specified trip. Table (4.2) summarizes the MNJTPP 

boilers outages. Finally, a one minute sample time was used to form group (C) which 

consists of a normal boiler operation mode. 

Table 4.2 MNJTPP boilers outages 

Boiler Water Wall Tube Leak Ul 5.17 

Low Temperature Superheater U3 
05.06.2008 05.06.2008 

0.08 
06:30 08:26 

Boiler Drum Level Low U3 
06.06.2008 06.06.2008 

0.37 
12:57 21:54 

Boiler Drum Level Low U2 
20.12.2008 21.12.2008 

0.55 
12:17 01:31 

Boiler Feed Pump U2 
30.01.2009 31.01.2009 

0.25 
20:48 02:53 

Boiler Drum Level High U2 
05.05.2009 05.05.2009 

0.19 
16:23 20:52 

High Temperature Superheater U1 
01.06.2009 02.06.2009 

1.08 
00:00 02:00 

The details of the groups acquisition process is shown in Table (4.3). The 

selection of the time interval for each trip is decided based on the plant operator 

experience. The trip data interval is chosen upon the shutdown duration. If the 

shutdown period is longer than 24 hours, then, the trip data interval is ±48 hours; 

while, if the shutdown was less than 24 hours, the trip data interval is ±24 hours. 

The decision was made to consider data group (B) as a source data to generalize 

the new (IMSs) due to the short sampling interval, which indeed, means more precise 

training and validation of the pure !MS. 
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Table 4.3 Plant data acquisition grouping 

I. . :>c·"'' ' 
?~;·&;; .':"~D~te!Tlme; 

.. ... . 

Grou~~ 
; .. ,.. "'·' ·sampilng 

nat;; TYPe ~ ;_,tilL';< />,'- -; 

~s~J;:i 
·Dtiratlou Rafe 

I • •;;::; ··· ..... ~;. •. 
From to I· ., 

. . . . .. . .:: 
I • . ; Ul set 

1-· 1\ ~- U2 set 
Normal I 01.06.2008 3l.l2.2008 

6 Months 
Thirty 

Faulty 8:00:00 8:00;00 Minutes 

I"- . ·. •··. U3 set 

I" .•.•.•. 20.04.2008 25.04.2008 
••• • ••• Tl/Ul 

8:00:00 19:23:00 
i days 

.... " 
T2/ U3 

04.06.2008 05.05.2008 
l day i . 8:00;00 6:29:00 ., .... 

05.06.2008 06.06.2008 ( ,,-, T3/U3 l day 
.; . . 8:00:00 12:56:00 
!<· •• 19.12.2008 20.12.2008 One 1··. B . .,• T4/ U2 Faulty 

8:00:00 12:16:00 
l day Minute 

1~-. . , .. 
T5/ U2 

29.01.2009 30.01.2009 
l day 

l~;;~g;-~ 8:00:00 20:47:00 

T6/ U2 
04.05.2009 05.05.2009 

i. • ; 8:00:00 16:22:00 l day 

. ··>:?· T7/Ul 
31.05.2009 01.06.2009 2 days 

8:00:00 23:59:00 

:;; 
Set l 

01.05.2008 31.05.2008 
l Month 

8:00:00 8:00:00 

c.,•: Set 2 Normal 
Ol.ll.2008 30.11.2008 

l Month 
One 

8:00:00 8:00:00 Minute 

Set 3 
01.07.2009 31.07.2009 

l Month 
• ''40 8:00:00 8:00:00 

4.5.2 Data Pre-Processing Stage 

The data pre-processing stage consists of three main steps, in which noisy and non­

number data were filtered and normalized between one and zero. 

4.5.2.1 Data cleaning Process Step 

The data cleaning process dealt with noise values in the information matrix of the 

data. In practice, the majority of the data pre-processing process takes place before 

storing the data. It can be considered as a data storehouse [82-84]. 
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Noise represents a random error in the observed values. For the discussed plant, 

noise can come in a variety of shapes and forms. The common concerns about the 

noise in data can be listed as follows: 

1. Locating Duplicate Records 

Assume that a certain identified variable for example feed water flow has 2000 data 

points and 0.1% of the listed entries have a duplication erroneous listing under the 

variation of the same name, therefore, 200 extra data points will be processed. And 

therefore, errors such as these which were considered as data will be moved from an 

operational environment to a data storehouse facility. Automated graphical tools can 

be used to help with data cleaning. 

ii. Locating Invalid Observation Values 

Error detection in categorical data presents a difficulty in large plant datasets. 

Collected observation values with the zero scores or non-numeric are elected as error 

candidates. 

A numeric or non numeric value for an occurrence such as boiler drum pressure is 

recorded as a certain error. Such an error often occurs when data is missed and the 

default value is assigned to fill in for missed items. In order to pass the difficulty of 

using mean and standard deviation scores testing methods for large datasets like the 

one discussed, a MA TLAB code is devised as a data analysis tool to allow the user to 

input a valid range of values for numerical data (see Appendix B2-l). 

iii. Data Smoothing 

Data smoothing represents data cleaning and data transformation processes. Several 

techniques were used to reduce the number of values for a numeric record. Two well 

known smoothing techniques were used: rounding and computing mean values. Mean 

value smoothing is applicable when we wish to use a classifier that docs not support 

numerical data and would like to train coarse information about numerical 

observation values. In this case, all numerical occurrence values are placed by a 

corresponding class mean. 

Another known data smoothing technique is called outliers removal. Outlier's 

removal is used to find and possibly remove a typical data point from the dataset by 
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examining a data point typically representing those data points with the lowest typical 

scores. It is always useful to identify outliers in data, but it could result in a 

counterproductive removal of outliers from the database. For this propose a 

MATLAB Code is written as a removal tool for outliers with a confident level of 95% 

(see Appendix 82-1). 

4.5.2.2 Missing Data Treatment Step 

Missing data represents a problem that can be solved in several ways. In common 

cases, missed observation values are the lost information. The following are 

applicable options for dealing with missed observation values before the data is 

prepared for another process. 

1. Discard the records with the missing value: which is most applicable when a 

small percent of the total number of occurrences co:~tain missing data, which 

indeed represent lost information. 

11. Replace real data with missed values with the class mean: in many cases, this 

is considered a reasonable approach for numerical occurrences. It is generally 

considered a poor approach to replace numeric missed data with a zero or 

some arbitrary large or small value. 

111. Replace real data with missed values with mathematical forecasting methods: 

the most common mathematical forecasting methods are: extrapolation and 

interpolation which are most suitable for a limited occurrence of missed 

values. 

IV. Replace missed data occurrences with the value found within other highly 

similar instances and fit it with MNJTPP boiler obser;ation missing values. 

4.5.2.3 Data Normalization Step 

Data transformation can be represented in many forms and it is necessary for different 

reasons. The most known data transformation technique is data normalization. A 

common data transformation involves changing numeric values so that they relate to a 

specified range. Data normalization is important for treating multi-scale data. Non 
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scaled data could bias or interfere with the training process and lead to an instable 

operation of the !MS. The IMS performs better with numerical data scaled between 0 

and I. Data normalization is particularly appealing with a distance-based classifier, 

because by normalizing the occurrences, observations with a wide range of values are 

less likely to outweigh observations with a less initial range. 

Four normalization techniques in common use, include [83]: 

1. Decimal scaling: decimal scaling separates each numerical value to the power 

of ten. E.g. if the values for an occurrence range between -1000 and 1000, then 

the range -1 and 1 can be counted by dividing each value by 1000. 

11. Min-Max normalization: Min-Max is an applicable technique when minimum 

and maximum values for an occurrence are known. The Min-Max formula is 

[83]: 

original value- oldMin(newMax- newMin) + newMin 
Newvalue= (4.2) 

oldMax - oldMin 

Where: 

oldMax and oldMin: represent the original maxtmum and mmtmum observations 

values. 

new Max and new Min: specify the new maximum and minimum values. 

New value: represents the transformation of the original value. 

Since the newMax equal is to one and the newMin is equal to zero, the formula 

simplifies to [83]: 

original value- oldMin 
New value = ldM ldM' o ax-om 

(4.3) 

iii. Normalization using Z-Scores: Z-Score normalization converts a value to a 

standard score by subtracting the observation mean (f.l) from the value and 

dividing by the observation standard deviation ( cr). Specifically [83], 
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original value - Jl 
New value=--=------'-

a 
(4.4) 

IV. Logarithmic normalization: the best b logarithm of a. number n is the exponent 

to b must be raised to equal n. e.g. the base 2 logarithm of 64 is 6 because 26 = 

64. Replacing a set of values with their algorithms have an effect on scaling 

the range of values without loss of information. 

4.5.3 Data Post Analysis Stage 

The data post analysis stage consists of three mam steps, m which data were 

segmented into two sets for each trip: sub group data (A) and sub group data (8), NN 

targets were established, the behavior of influencing boiler operation variables were 

analyzed. 

4.5.3.1 Behavioral Study of Boiler Operation Variables Step 

The behaviors of the thirty-two boiler operation variables w~re studied carefully. The 

mean value for each variable is predicated from data group C classified in Table (4.3). 

This mean represents the normal operation value with no trip occurrence, i.e. non­

faulty data. Then, the behavior of each one of the thirty-two variables is investigated 

during the seven specified trips in data group 8, meaning, during the trip data period. 

The results are shown in Figures ( 4.6 through 4.19) for trips Tl, T2 ... T7, 

respectively. 
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Figure 4.6 Boiler operation variables (from V1 to V16) behavior for trip I 
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Figure 4.7 Boiler operation variables (from V17 to V32) behavior for trip I 
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Figure 4.8 Boiler operation variables (from V1 to V16) behavior for trip 2 
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Figure 4.9 Boiler operation variables (from Vn to V32) behavior for trip 2 
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Figure 4. I 0 Boiler operation variables (from V1 to V 16) behavior for trip 3 
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Figure 4.11 Boiler operation variables (from V17 to V32) behavior for trip 3 
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Figure 4.12 Boiler operation variables (from Yt to Yt 6) behavior for trip 4 
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Figure 4.13 Boiler operation variables (from V11 to V32) behavior for trip 4 
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Figure 4.14 Boiler operation variables (from V 1 to V 16) behavior for trip 5 
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Figure 4.15 Boiler operation variables (from V17 to V32) behavior for trip 5 
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Figure 4.16 Boiler operation variables (from V 1 to V ,6) behavior for trip 6 
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Figure 4.17 Boiler Operation variables (from V 17 to V 32 ) behavior for trip 6 
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Figure 4.18 Boiler Operation variables (from V1 to V1 6) behavior for trip 7 
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Figure 4.19 Boiler operation variables (from V 17 to V32 i behavior for trip 7 
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Those figures declare the behavior of each variable during the duration of the trip 

occurrence until the shutdown. The behavior of those variables is included in the 

investigation. The figures show the normalized data values during the trip as extracted 

from data group B and compared with the respective normalized mean of the variable 

which is extracted from data group C. 

Following the desired ANN input range [0,1], the Min-Max data normalization 

transformation method is used as the transformation method for the plant data. A 

normalized mean value for normal and faulty boiler operation is show in Table 

(4.4).The tracking and study of the variables behavior is very important in the analysis 

of the IMS-I results. 

From the variable behavior analysis, an important conclusion was gained as 

illustrated in Table ( 4.5). The table shows the time interval for each variable to reach 

the high alarm indicator "I". Based on the results shown in this table, the IMS target 

for each trip is decided. From the high alarm occurrence table, the effective variables 

for each trip are decided and listed in Table ( 4.6). 
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Table 4.4 Normalized mean values for normal and faulty boiler operation 

v,, 0.684 0.459 0.684 0.843 0.684 0.878 0.685 0.758 0.685 0.899 0.291 0.946 0.291 0.205 

v 12 0.603 0.763 0.603 0.608 0.603 0.108 0.616 0.607 0.616 0.596 0.273 0.831 0.273 0.455 

V13 0.434 0.797 0.434 0.611 0.434 0.624 0.522 0.596 0.522 0.680 0.185 0.811 0.185 0.222 

v 14 o.553 0.656 0.553 o.043 0.553 o.063 0.370 0.592 0.370 0.045 0.294 0.114 0.294 o.034 

V30 0.679 0.813 0.679 0.526 0.679 0.551 0.678 0.596 0.678 0.515 0.299 0.833 0.299 0.351 

v,, 0.662 0.544 0.662 0.313 0.662 0.161 0.695 0.423 0.695 0.308 0.366 0.148 0.366 0.352 

v 32 0.655 0.438 0.655 0.356 0.655 0.363 0.472 0.213 0.472 0.153 o.378 0.118 0.378 0.011 
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Table 4.5 High alarm occurrence of influencing variables corresponding to each trip 

-Tl . T2 T3 ... T4 TS T6 T7 

v, Total Combined Steam Flow Uh 705 582 825 2650 2420 - -

v, Feed Water Flow t/h 704 848 2676 1005 - - -

v, Boiler Drum Pressure Barg 704 992 867 - 2650 2329 212 

v, Superheater Steam Pressure Barg 704 992 - 805 2329 1288 -

v, Superheater Steam Temperature c 2471 1835 389 1329 1102 10 -

v, High Temperature Re-Heater Outlet Temperature 'C 963 - - - 2332 -

v, High Temperature Superheater Exchange Metal Temperature 'C - - 600 504 1959 20 -

v, ,, (A) Metal 'C 2472 1835 389 1329 10 

v, I_Jigh Inlet Header Metal 'C 2471 1835 389 II 

vlll Final Superheater Outlet Temperature 'C - - - 880 757 - -

v, Superheater Steam Pressure Transmitter (Control) bar 2471 1835 389 - 1102 10 -

v, Feed Water Valve Station t/h 704 992 - 805 2329 - -

Vn Feed Water Control Valve Position % 704 852 2675 2410 - - -

v" Drum Level Corrected (Control) mm 2214 - - 958 - - 1180 

v" Drum Level Compensated (From Protection) mm 704 - 867 - 2650 2329 -

Yto Feed Water Flow Transmitter % - - 61 - - - -

Vn Boiler Circulation Pump I Pressure bar 2031 - - - - - -

v" Boiler Circulation Pump 2 Pressure bar 1959 5 713 - - 2369 -

Yto 
Low,, Superheater Left Wall Outlet Before Super 'C 704 853 2676 2433 1095 
Heater Dryer - -

v, Low Superheater Right Wall Outlet Before 'C 2612 1505 59 
Super Heater Dryer - - - -

v" ~;r 
Superheater Left Wall After Super Heater 'C 958 1503 2649 1377 - - -

v, Low ,, Right Wall Metal 'C 2474 612 503 2605 

v, (B) Me" I 'C 1948 599 1953 2603 

v,. i Temperature Superheater Outlet Before Super 'C 1944 829 817 1001 2602 
Heater Drver - -

v, Outlet Header Metal 'C 2007 1953 2603 

v, I_Jigh Superheater Outlet Header Metal 'C 2480 608 1960 1959 358 

v, High Temperature Re-Heater Outlet Steam Pressure bar 2477 - 602 1962 1959 477 -

Vn 
Superheated Steam Fonn Intermediate Temperatures Outlet 

bar 611 1967 1962 490 
Pressure - - -

v, Superheater Water Injection Compensated Flow ton/hr 2479 - - - 2535 128 -

v, Inlet Pressure bar 961 393 2329 

v, r Inlet·,, 'C - IIIJ - 2641 

v, Economizer Outlet Temperature 'C - - 620 509 - - -
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Table 4.6 Results from behavior analysis of the effective and the most effective 

variables 

Trip Shutdown Time/Minute Effective Variables Most Effective 
Variables 

I 2614 V[5,8,9,11,14,17,18,20,22,23,24,25,26,27,29] V20 

2 1837 V[3,4,5,9,11,12,20,21 ,31] V[5,9,11,12] 

3 2226 V[l ,2,3,13,19,24] V3 

4 2179 V[ 5,8,23,25,26,27 ,28] V28 

5 2688 V[ I ,2,3, 13, 15,19,20,21 ,22,23,24,29,31] Vl9 

6 2433 V[ I ,3,4,6, 12, 13, 15, 18,19,30] Vl9 

7 1445 V[2,4,14,19,21] V21 

4.5.3.2 Data Segmentation Step 

For each trip data, only the data before the unit shutdown is used for the training and 

validation. Since this work targets the establishment of the best ANN topology 

combinations for each individual trip, the ANN training is carried out in two stages: 

the preliminary training stage and the basic training stage. For that, the data interval 

before the trip was segmented as follows: 

1. Subdivide the trip data interval before the unit shutdown into two equal data 

sub groups A and B. 

11. Data sub group A: 70% for preliminary training and 30% for preliminary 

validation. 

iii. Data sub group 8: 70% for basic training and 30% for basic validation. 

The segmentation criteria for preliminary and basic training/validation are shown in 

Figure ( 4.20). 

4.5.3.3 ANN Target Matrix Establishment Step 

The results from the high alarm occurrence table were used to establish the target 

matrix. There were a number of influencing variables for each one of the seven trips. 

The fault introduced matrix indicates the time at which ·~ach influencing variable 
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reached its maximum value. i.e. reaching "1". The method of the target matrix 

establishment was repeated by assuming the faulty data with ±5, ±10, ±15, ±20 and 

±25 minutes. The analysis has shown that the ±20 minutes provided optimum training 

performance of the ANN system, where RMSE change compared to the ±25 is 

negligible; i.e., the steady state convergence was achieved. 

It has been decided that the fault target interval was within 20 minutes before and 

20 minutes after reaching "I". Hence all the other values are assumed non-faulty 

values and they are "0" in the normalization format. In such a manner, a new matrix 

assigning the target of each trip was established and used later for the ANN training 

process. 
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Figure 4.20 Data segmentation sub groups for training and validation 
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4.6 Summary 

MNJTPP was described as the source of real data. The steam boiler unit was 

presented as the specific equipment under investigation. Seven TPP boiler trips were 

identified. An integrated plant data preparation framework has been proposed for the 

training and validation of the proposed artificial intelligent monitoring systems. The 

proposed integrated plant data scheme consisted of three phases: data pre-analysis 

phase, in which boiler operational variables were identified and collected for each 

specific boiler trip ; data pre-processing phase, in which noisy and non-number data 

were filtered and normalized between one and zero, and data post-analysis phase, in 

which data were segmented into two sets for each trip: sub group data (A): 70% for 

preliminary training and 30 % for preliminary validation and sub group data (B): 70% 

for basic training and 30% for basic validation, NN targets were established , the 

behavior of influencing boiler operation variables were analyzed. 
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CHAPTERS 

DESIGN AND IMPLEMENTATION OF IMSs 

5.1 Introduction 

In order to achieve the decided goals, two artificial intelligent monitoring systems 

(IMSs) specialized in boiler trips were proposed with the help of MATLAB codes. 

The development procedures are highlighted and discussed in this chapter. The 

adopted major computational intelligent tool in the proposed systems is represented 

by feed-forward ANN methodology which is described in details. 

The first IMS represents the use of a pure ANN system for boiler trip detection. 

The second IMS represents the use of a GA and a ANN as a hybrid intelligent system. 

The NN learning/training phases and the main topologies are identified. The detailed 

design steps of both IMSs are discussed. The genetic algorithms operators and the 

encoding process are identified. 

5.2 Development of IMS-1 (Pure ANN) 

The back-propagation neural network is considered a leap in the development of 

neuro computing systems. The powerful mapping of this scheme has been 

successfully applied to a wide range of problems from credit application scoring to 

pattern classification and recognition [85]. 

Back-propagation is a systematic method for training multilayer artificial neural 

networks [86]. Despite its limitations, a back-propagation can attack any problem that 



concerns pattern mappmg. Given an input pattern, the networks produce an 

associative output pattern. 

5.2.1 Why Use Back-Propagation Neural Networks 

Back-Propagation (BBP) offers several unique advantag,~s over the conventional 

methods which can be illustrated as [9]: 

1. BBP training algorithm is a relatively simple implementation. 

n. BBP is a standard method that leads to faster convergence. 

iii. BBP training algorithms are peculiar with the layer presentation for 

unknowns. 

IV. BBP ability to solve higher order systems of equations. 

5.2.2 Architecture of Back-Propagation Network 

The processing unit or the neuron used here is similar in nature to the perceptron cell. 

It applies an activation function to the weighted sum of its inputs; the activation 

function is a monotonic non-linear which is a smoothed form of the threshold 

function. BBP networks are usually layered, with each layer fully connected to the 

layers before and after. Neurons are not connected to other neurons in the same layer. 

Typically, BBP employs three or more layers of neurons (including an input layer) 

[87]. Figure (5.1) shows the matrix of weight values that correspond to each layer 

interconnections; units are indexed starting with (I) in each layer. Superscripts have 

been added to distinguish weights in different layers. 
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Figure 5.1 Weight matrices of a three layered back-propagation system [88] 

5.2.3 Back-Propagation Learning Method 

The BBP learning rule is generalized from the Widrow-Hoff rule for multilayer 

networks. A BBP is one of the easiest networks to understand and therefore, its 

learning and update procedure is intuitively appealing because it is based on a 

relatively simple concept. If the network results in an inappropriate output then, the 

weights are corrected so that the error is lessened and as a result responses of the 

network are more likely to be correct [89]. A BBP neural network is trained by 

supervised learning. The network is presented with pairs of patterns where an input 

pattern is paired with a target output pattern. Upon each presentation, weights are 

adjusted to decrease the differences between the network outputs and the target 

output. When the network corrects its internal parameters, the correction mechanism 

starts with the output unit and back-propagation backwards through each internal 

layer to the input layer, giving the method its name back-propagation. 
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A learning set (a set of inputs and target outputs) is used for training, and is 

presented to the network iteratively. Before starting the training process, all of the 

weights must be initialized to small random numbers. This msures that the network is 

not saturated by large values of the weights, and prevents certain other training 

pathologies [90]. 

5.2.4 The BBP Training Algorithm 

As shown in Figure (5.2), training the BBP requires the following steps [63]: 

1. Set the weights and thresholds to small random valu·~s for all the neurons. 

11. Put the I/P vector into the 1/P layer and specify the desired 0/P layer. 

iii. Use the sigmoid non-linearity to calculate the 0/P of the hidden and 0/P 

layers. 

tv. Calculate the error (Y d- Yo). 

v. Calculate (ik for the 0/P layer and the changes in the weights i'o.Wjk· 

VI. Working back to the hidden layer, calculate bj for the hidden layer and to. Wij· 

vii. Repeat by going to step 2. 
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Figure 5.2 Back-Propagation NN training steps [63] 

5.2.5 Selection of ANN Topologies 

Choosing a good topology becomes a crucial task for the success of an ANN. Due to 

ANNs robustness, the topology selection influences the learning process time and 

classification. The selection criteria are based on the impact on the network 

performance. The main NN topologies include: training algorithms, learning rate, 

momentum coefficient, activation functions, the number of hidden layers and the 

number of hidden layer neurons. 
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5.2.5.1 Training Algorithms 

A back-propagation training algorithm has several modifications according to the 

multidimensional minimization algorithms that is used to minimize the error 

estimator. Table (5.1) shows the convergence time for nine commonly known BBP 

faster training algorithms on one particular problem. 

Table 5.1 Convergence time for back-propagation algorithms [91] 

Function Techniques Time Epochs Mflops 

traingdx Variable Learning Rate 57.71 980 2.50 

trainRprop Rprop 12.95 185 0.56 

trainscg Scaled Conj. Grad. 16.06 106 0.70 

traincgf Fletcher-Powell CG 16.40 81 0.99 

traincgp Polak-Ribiere CG 19.16 89 0.75 

taincgb Powell-Beale CG 15.0.3 74 0.59 

trainoss One-Step-Secant 18.46 101 0.75 

trainbfg BFGS quasi-Newton 10.86 44 1.02 

trainlm Levenberg- Marquardt 1.87 6 0.46 

Only four different types of minimization algorithms are considered in the present 

work. The selection was based on their computational times [91]. Namely, they are: 

1. Resilient back -propagation (Rprop) 

Rprop is a high performance numerical optimization technique for ANN fast training. 

The main objective of the Rprop training algorithm is to el.iminate the harmful effects 

by using the steepest descent algorithm to train multilaye:r networks with a sigmoid 

activation function which has a very small gradient magnitude that leads to small 

changes in weights and biases. Rprop is faster than the standard steepest descent 

optimization algorithm. Also, Rprop requires only a modest increase in memory 

requirements to store the updated values for each weight and bias, which is equivalent 

to the storage of the gradient and that is considered as a very nice property [91]. 
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11. Scaled Conjugate Gradient (SCG) 

Each one of the conjugate gradient training algorithms requires a line search. This line 

is computationally expensive as it requires that the network response to all training 

must be computed many times for each search trial. The SCG was proposed by Moller 

to avoid the time consumption for a line search at each iteration. The basic idea of the 

SCG algorithm is to combine the model-trust region approach, which is used in the 

Levenberg-Maquardt training algorithm described later, with the conjugate gradient 

approach. 

The SCG training algorithm routine may reqmre more training iterations to 

converge than the other conjugate gradient algorithms; however, the total number of 

training iterations is significantly reduced as no line search is performed. The SCG 

memory storage requirements are about the same as those of Fletcher-Reeves [91]. 

iii. BFGS Quasi-Newton (BFGS) 

The Quasi-Newton training algorithm which has been most successful in published 

studies is the Broyden, Fletcher, Goldfarb, and Shanno (BFGS) update. The BFGS is 

an alternative to the conjugate gradient methods as a fast optimization algorithm. The 

basic step of Quasi-Newton is: 

_ A-t k 
xk+l- xk- k B (5.1) 

Where: xk+ 1 is the update of the search iteration direction 

Ak is the Hussian matrix 

gk is the gradient vector 

BFGS updates an approximate Hussian matrix at each training iteration. The 

update is computed as a function of the gradient. The BFGS requires more 

computation in each training iteration and more memory storage than the conjugate 

gradient algorithms. It generally converges in fewer training iterations for a small 

network. However; BFGS can be considered as an efficient training algorithm [91]. 
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1v. Levenberg-Marquardt (LM) 

The Levenberg-Marquardt 1s a very efficient MATLAB implementation and it 

appears to be the fastest optimization algorithm for training a moderate-sized feed­

forward NN. The Levenberg Marquardt was designed to approach the second order 

training speed without having to compute a Hussian matrix. Once the performance 

function has the form of square, Hussain matrix can be approximated as 

(5.2) 

And the gradient can be computed as: 

(5.3) 

Where: J is the Jacobian matrix, which contains first derivation of the network 

error with respect to the weights. 

e is a vector of network error 

The Levenberg-Marquardt Back-Propagation traimng algorithm uses this 

approximation to the hessian matrix in the following newton update: 

(5.4) 

Where: 1-1 is the network scalar 

All four selected training algorithms calculate the search direction, Xk in many 

different ways. The first three are general optimization algorithms to minimize a 

quadratic error function. Certainly, most error surfaces are not quadratic but they will 

be so in a sufficiently small neighborhood of local minima. The Levenberg-Marquardt 

needs the Jacobian matrix to be calculated and is specifically used to minimize an 

error function that arises from quadratic criterion of the assuming form [91]. 
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5.2.5.2 Learning Rate 

The learning rate ( 8) value (commonly between 0.1 and 0. 9) is chosen by the neural 

network user and usually reflects the rate of learning of the network. Values that are 

very large might result in instability in the network and unsatisfactory learning. On 

the other hand, values that are too small might result in excessively slow learning. 

In the present work, the learning rate is fixed at the value rate of0.5. 

5.2.5.3 Momentum Coefficient 

The momentum coefficient (a) is in the range of 0.0 to 1.0. However, it is commonly 

set to around 0.9. With the adoption of the momentum method, the network tends to 

follow the bottom of narrow qullies in the error surface (if they exist) rather than cross 

rapidly. On the other hand, this method seems to work well on some problems, but it 

has little or negative effect on others. If (a) is 0.0, the smoothing is minimum, the 

entire weight adjustment comes from newly calculated change. If (a) is 1.0 the new 

adjustment is ignored and the previous one is repeated [92]. 

Here, the momentum coefficient is adjusted to the value of 0.8. Also, it should be 

mentioned that the size of epochs (number of iterations) for training and validation is 

adjusted to the value of 100. 

5.2.5.4 Activation Functions 

Several of the more common types of activation signal functions are defined in 

section 4.2. Only three different types of activation signal functions are considered 

and investigated in the present work. The selection was based on the normalized 

values of the plant captured data. Namely, they are: 

1. Linear summation function (P). 

11. Sigmoid logistic function (L). 
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iii. Hyperbolic tangent (T). 

5.2.5.5 Number of Hidden Layers and Number of Hidden Lcryer Neurons 

In order to examine the NN performance, various numbers of the neural network 

hidden layers with various numbers of neurons in each layer should be investigated. 

In this work, one hidden layer (IHL) and two hidden laym (2HL) with one to ten 

neurons in each layer were considered. 

5.3 Design of IMS-1 

An IMS-1 represents a pure ANN monitoring system. The feed-forward methodology 

was adopted to develop the IMS-I. The ANN inputs are listed in Table ( 4.1 ). The 

proposed IMS-1 was formed to have two outputs for ''ach trip: one for normal 

operation, one for tripped operation. Thus, the network had thirty-two inputs as shown 

in Figure (5.3). 

Trip :\ormal Operation 

0/PLanr 

Hidden Layer 

liP layer 

V3 V4 \"5 .............. \"32 

Boiler Proces!i Variables 

Figure 5.3 IMS-I structure 
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The ANNs training output values were binary. An output of unity for a specific 

NN output indicates the existence of the corresponding trip. The values of the other 

NN outputs were zero. The validation outputs of the IMS-I are, of course continuous, 

with values from zero to one. Thus, the crucial decision was formed to determine, 

above, which NN value output should be meaningful in terms of the existence of a 

critical fault. 

The advantage of using a separate NN output for the nonnal boiler operation for 

each trip, instead of assuming normal boiler operation when critical fault output for 

each trip returns zero, is the growth of the ANN's generalization capability. In other 

words, with that additional NN output, the IMS-I is capable of detecting "unknown" 

critical faults. In the case of an unknown critical fault, output would be zero for each 

trip, but also for "normal boiler operation" output would be zero. This means that 

"normal boiler operation" would not be concluded. In this way, a general "faulty 

boiler operation" would be assumed. If the additional NN output of the normal boiler 

operation is not included in the proposed network, then, in the case of an "unknown" 

critical fault, normal boiler operation would be incorrectly-concluded [7]. 

5.3.1 Training Processes ofiMS-1 

In this section, the structured IMS-I performance was investigated based on an RMSE 

indicator. The best performance of the IMS-I would give an insight view into the 

capabilities of the fully structured IMS-I. Consequently, the IMS-I was trained and 

validated. This IMS-I had thirty two inputs as presented before with two outputs, 

either "0" or "1 ". These binary NN outputs, are corresponding to normal with the 

value of "0" and the other, "I" corresponding to an abnormal boiler situation. 

The IMS-I training process included two processes: 

5.3.1.1 Preliminary Training Process 

The preliminary training took place in order to find out the optimal NN topology 

combination. Seven real boiler data sets (Faulty data) were input to the IMS-I as 
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preliminary training sets. Each set represents 70% of sub-group data (A).Various 

candidates of NN topologies were investigated for both one hidden layer (lHL) and 

two hidden layers (2HL ). Several numbers of neurons for (:ach hidden layer ranging 

from one to ten were tested. Thirty-two boiler operation variables were considered as 

network inputs. For each trip, the training results were compared based on the RMSE 

as a network performance indicator. 

5.3.1.2 Basic Training Process 

The preliminary training process of the ANN was followed :oy basic training using the 

optimal topology combination obtained from the preliminary training results. 

Another seven real boiler data sets (faulty data) were presented to the IMS-I as basic 

training sets. Each set represents 70% of sub-group data (B). Again, thirty-two boiler 

operation variables were considered as IMS-I inputs. For all investigated cases, the 

basic training results were analyzed from the point of view of the proposed system 

performance indicator. The main objective of NN basic training process is that the 

calculated RMSE values of the optimal NN topology combination should have equal 

or smaller values than the preliminary training process. 

The sub grouping of the boiler data to sub group (A) and (B) is described and 

shown in Figure (3 .20). 

5.3.2 ANN Validation Processes 

The IMS-I Validation process included two processes: 

5.3.2.1 Preliminary Validation Process 

The ANN basic training process was followed by the \TN preliminary validation 

process by using eight validation real data sets. The first seven sets represent the last 

30% of sub group data set (A). The last set contained only normal boiler operation 

real data. The preliminary validation process was carried out using the optimal NN 
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topology combinations obtained from preliminary training process. The validation 

real data sets were used to validate how rapidly the proposed IMS-I detects the 

specific trip, and validate the performance of the system during normal boiler 

operation. 

5.3.2.2 Basic Validation Process 

Based on the obtained optimal NN topology combinations from basic training, the 

basic NN validation was carried out also using eight validation data sets of the thirty­

two boiler operation variables. The first seven sets represent the remaining 30% of 

sub group data set (B). The last set contained normal boiler operation real data. 

Since our work deals with slowly developing faults, the time indicator becomes 

more important as these faults are more difficult to detect as they begin. Accordingly, 

in that phase, the rapid detection capability of the proposed IMS-1 for the specific 

thermal power plant trip was explored. The proposed system performance was 

examined using the obtained results. 

Training and validation of the IMS-1 were executed usmg fourteen separate 

MATLAB codes which have been built (two codes for each specific boiler trip). 

Figure (5.4) shows the proposed IMS-1 code execution flow chart. For more details 

about the proposed codes, refer back to (Appendix B2-l) 
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Figure 5.4 Execution flow chart of the propost:d IMS-I code 

5.4 Development ofiMS-11 (Hybrid ANN+GA) 

The NN modeling application for a nonlinear system has central drawbacks: the lack 

of a precise method to choose the most appropriate NN topology and the most 

effective parameters for the training process. These two ta~.ks are usually based on the 

trial and error approach of the ANN which is performed by the intelligent system 

developer. Due to the random search and the small portion of explored space of the 

whole search space, the optimality or even near-optimality is not guaranteed. In order 
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to overcome the human network design and parameters optimization problems, an 

evolutionary automated technique of the GA is proposed. The GA develops several 

network designs with different topologies in order that the best possible combination 

is finally chosen. 

There have been several proposed artificial systems that merge (ANNs) with 

(GAs) in various ways. These generally fall into three categories [70]: 

1. Using a GA to determine the structure of ANNs. 

11. Using a GA to calculate the weights of ANNs. 

iii. Using a GA to both determine the structure and the weights of ANNs. 

In this work, a novel sophisticated combination strategy for automated design and 

NN parameter optimization was proposed. 

5.4.1 GA Encoding 

The main issue in a genetic system is the strategy of encoding the several possible 

phenotypes of the NN into specific genotypes. In this study, the phenotype consists of 

the NN topologies. A genotype is a sequence of bits (Oil) with a specific constant 

length. Each genotype corresponds to a unique phenotype. The phenotypes encoding 

representations are generally divided into two categories [7, 93]: the Strong 

Specification Representation (SSR) and the Weak Specification Representation 

(WSR). The (WSR) is used here to encode the NN topologies together with the NN 

training parameters into the genes of the GA. The WSR uses specific correspondences 

of specific binary strings with specific network architectures that are pre-defined by 

the user. For the present work, each binary string (genotype) of the proposed GA 

individual represents specific phenotype of ANN topologies together with training 

parameters. Figure (5.5) shows the proposed individual which consists of: 
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1. Two bit strings for multi dimensional minimization back-propagation 

algorithms. 

11. Seven bit strings for NN structure. 

iii. Five bit strings for activation functions. 

iv. Thirty-two bit strings for boiler operation variables. 

Denloped GA Chromosome 

l 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ............. .46 

I I I I I I I I I I I I I I I I I I 
LJ-

Boiler Procrss uriablt Bits 

'--.. ActiYation Function Biu 

• -\.'"\"X Structure Bits 

~ID Training Algorithm Bits 

Figure 5.5 GA binary representation 

A pnon knowledge is considered for this study to reduce the search space 

drastically. The WSR scheme is proposed and used here for four tasks: 

1. Multidimensional minimization algorithm selection 

11. Selection of activation function types of the hidden nodes and of the output 

nodes. 

m. The ANN architecture. 

tv. Selection of optimal ANN input parameters (Boiler operation variables). 
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5.4.1.1 WSR of Multidimensional Minimization BBP Training Algorithms: 

There are four different multidimensional minimization BBP training algorithms 

considered by the GA: 

1. Resilient Back-propagation (Rprop) 

11. Scaled Conjugate Gradient (SCG) 

iii. BFGS Quasi Newton (BFGS) 

iv. Levenberg-Marquardt (LM) 

These algorithms can be represented by two binary entries as shown in Table (5.2) 

Table 5.2 Binary representation of the training algorithms 

Rprop SCG BFGS LM 

00 01 10 11 

And they form the first two bits of the binary string representation as shown in 

Figure (5.5). 
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5.4.1.2 WSR of ANN Structure 

As shown in Figure (5.5), the next seven binary entries of the string represent 91 

possible ANN structures of one hidden layer (IHL) and two hidden layers (2HL). The 

correspondences are shown in Table (5.3). 

Table 5.3 ANN structures binary represe:1tation 

Bit 
Architecture 

Bit 
Architecture 

Bit 
Architecture 

Sequence Sequence Seq1uence 

0000001 1HL-1 0100000 2HL-4/5 0111111 2HL-7/9 
0000010 1HL-2 0100001 2HL-4/6 1000000 2HL-7/10 
0000011 1HL-3 0100010 2HL-4/7 1000001 2HL-8/2 
0000100 1HL-4 0100011 2HL-4/8 1000010 2HL-8/3 
0000101 1HL-5 0100100 2HL-4/9 1000011 2HL-8/4 
0000110 lHL-6 0100101 2HL-4/10 1000100 2HL-8/5 
0000111 lHL-7 0100110 2HL-5/2 1000101 2HL-8/6 
0001000 lHL-8 0100111 2HL-5/3 1000110 2HL-8/7 
0001001 lHL-9 0101000 2HL-5/4 10C0111 2HL-8/8 
0001010 lHL-10 0101001 2HL-5/5 10C1000 2HL-8/9 
0001011 2HL-2/2 0101010 2HL-5/6 1001001 2HL-8/10 
0001100 2HL-2/3 0101011 2HL-5/7 10(>1010 2HL-9/2 
0001101 2HL-2/4 0101100 2HL-5/8 1001011 2HL-9/3 
0001110 2HL-2/5 0101101 2HL-5/9 1001100 2HL-9/4 
0001111 2HL-2/6 0101110 2HL-5/10 1001101 2HL-9/5 
0010000 2HL-2/7 0101111 2HL-6/2 1001110 2HL-9/6 
0010001 2HL-2/8 0110000 2HL-6/3 1001111 2HL-9/7 
0010010 2HL-2/9 0110001 2HL-6/4 1010000 2HL-9/8 
0010011 2HL-2/10 0110010 2HL-6/5 1010001 2HL-9/9 
0010100 2HL-3/2 0110011 2HL-6/6 10:.0010 2HL-9/10 
0010101 2HL-3/3 0110100 2HL-6/7 10,0011 2HL-10/2 
0010110 2HL-3/4 0110101 2HL-6/8 1010100 2HL-10/3 
0010111 2HL-3/5 0110110 2HL-6/9 1010101 2HL-10/4 
0011000 2HL-3/6 0110111 2HL-6/10 1010110 2HL-10/5 
0011001 2HL-3/7 0111000 2HL-7/2 1010111 2HL-10/6 
0011010 2HL-3/8 0111001 2HL-7/3 1011000 2HL-10/7 
0011011 2HL-3/9 0111010 2HL-7/4 1011001 2HL-1 0/8 
0011100 2HL-3110 0111011 2HL-7/5 1011010 2HL-10/9 
0011101 2HL-4/2 0111100 2HL-7/6 1011011 2HL-10/10 
0011110 2HL-4/3 0111101 2HL-7/7 
0011111 2HL-4/4 0111110 2HL-7/8 

5.4.1.3 WSR of the Activation Function 

Three activation functions were considered for the inpul nodes, hidden nodes and 

output nodes. Namely: Logistic (L ), linear summation (P) and Tanh (T). Thus, for an 

NN with one-hidden layer, nine different combinations were included in the genetic 
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representations and were encoded with 5 final binary entries in the bit string, as 

shown in Table (5.4). 

Table 5.4 Activation function binary representation for I HL 

Hidden Layer 1 Output Layer 
No. Bit Sequence Nodes Activation Nodes Activation 

Function Function 
1 00001 T T 

l2 00010 T L 
' 3 00011 T p 
,4 00100 L L 
I 5 00101 L i 

I 
T 

6 00110 ' L p 

: 7 00111 p p 

i 8 01000 p L ' ' ·---·· 

. 9 01001 p T 
' 

Table 5.5 Activation function binary representation for 2HL 

No. Bit Sequence AFIHLl AFIHL2 AF/Output 

1 00001 T T T 
--

2 00010 T T L 

i 3 00011 T T p 
--

4 00100 T L T 
5 00101 T L p I 

---- "'--

6 00110 T L L I -- --
7 00111 T p T -- -------

8 01000 T p p 

9 01001 T p L -----
10 01010 p T T 

- -- -- -

11 01011 p T L -----
12 01100 p T p 

------ -
13 01101 p L T 

----- --
' 

14 01110 p L p 
' -

15 01111 p L L 
-·-~ 

16 10000 p p T 
17 10001 p p p 

--· -·· 

' 18 10010 p p L 
~ -----

19 10011 L T T 
20 10100 L T L --
21 10101 L T p 

----
22 I 0110 L L T 
23 I 0111 L L p 

·--
24 11000 L L L 

·- ----
25 _11001 L p T ------
26 11010 I L p p 

27 II 0 II L p L -----
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And for an NN with two-hidden layers, 27 different combinations were included 

in the genetic representation and were encoded with 5 final binary entries in the bit 

string, as shown in Table (5.5). 

5.4.1.4 WSR of Optimal NN Inputs 

Thirty-two boiler process variables were encoded with binary entries in a binary string 

in order to form the last thirty-two bits of string as shown in Figure (5.5). The 

combinations probability for the thirty-two boiler process vaiables are computed with 

the formula: 

p = 2n VC 

Where: 

Pvc: Probability of variables combinations. 

n: The number of variables. 

Base (2): Refer to the binary string (0 and I). 

(5.5) 

N different combinations were included in the genetic representation and were 

encoded with thirty-two final binary entries in the bit string as shown in Table (5.6). 
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Table 5.6 Boiler operation variables binary representation 

P, I I I o I o I o I o I o I o I o I o I o I o I o I o I o I o I o I o I o I o I o I o I o I o I o I o I o I o I o I o I o I o I o 
2 P2 I 0 OIOIOIOIOIOIOI o I 0 I 0 I o I o I o I o I o I o I o I o I o I o I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 

3 P, 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 P4 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 P5 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 P6 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 P7 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

8 P, 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

9 P, I o I o I o I o I o I o I 0 I 0 o I o I o I o I o I o I o I o I o I o I o I o I o I o I o I o I o I o I o I o I o I o I o 
10 I P,o I o I o I o I o I o I o I o I o I o o I o I o I o I o I o I o I o I o I o I o I o I o I o I o I o I o I o I o I o I o I o 

P; 

T I ... 

N I PN I o I o I o I o I o I o I o I o I o I o I o I o I o I o I o I o I o I o I o I o I o I o I o I o I o I o I o I o I o I o I o 
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5.4.2 IMS-11 Scheme 

The proposed IMS-II scheme for optimal NN topology combinations and boiler 

operation variables selection is shown in Figure (5.6). The scheme consists of three 

major elements: the user element, the genetic algorithm optimization element and the 

ANN training element. The user element deals with 1/0 processes, while the 

optimization part includes several sub-sections that interact with each other and with 

the user part in order to complete the desired procedure. It is obvious that each box in 

Figure (5.6) represents a separate internal function. Each bc-x for the proposed scheme 

titled with the internal function name and the internal interaction between these 

functions are shown with proper arrows. 

At the first element, the ANN training set (T,), the parameters set for BBP 

training algorithms (BP,), the number of generations of the GA (G0 ), the size of 

population of the GA (P z), the probabilities of crossover of the GA (P ,), and the 

mutation probability of the GA (P m) are provided by the user. The (Xint) stand for the 

initial population of several binary strings, each of which represents a specific 

network topology and the NN training parameters set. Aftt:r that, all the user inputs 

are passed to the main optimization part. 

The internal function namely the "GA decoding" receives the population of binary 

strings in order to decode each string of binary into explicit information about the four 

parts which are: Multidimensional Minimization Training algorithms (MMT.1g0 ), the 

network structure (struct) , the Activation Function type of ~he network (AF) and the 

NN Training Parameters (TP). All of the explicit information goes to the internal 

function namely "NN train". Thus, the optimized parameters with specific topology 

are trained. The RMSE indicator for each individual is calculated after each training 

and is sent to the internal function namely the "GA fitness". The fitness is simply the 

value that the GA tries to minimize. For this study, the fitness of each individual 

string is equal to the RMSE given by the equation: 

Fitness= RMSE (5.6) 
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To perform the GA "selection", the internal function selects the new groups of strings 

based on this fitness which constitute the (Xpar) parents of the next generation of the 

GA. Each string is selected based on the probability of reproduction which is usually 

proportional to the fitness of each string. Then, these strings are subjected to 

crossover and mutation operations of the GA, followed by the formation of the final 

population (Xnw). This process is repeated until the (Gn) is reached to the maximum 

limit. The whole process is ended by returning the value that gave the minimum 

fitness (minimum RMSE) to the user as (Best RMSE). 

More details about the application of the proposed hybrid IMS for the NN 

topology combination and boiler operation variable optimization that were 

considered, are presented in chapter five. Implementation of the proposed scheme is 

performed by devising a MA TLAB code. This code is structured by sequential 

integration of eight sub-codes. The eight MATLAB codes are shown in (Appendix B). 

5.5 Summary 

The development procedures of the adopted IMSs were highlighted and discussed. 

The ANN learning/training processes and the main topologies were identified. The 

proposed intelligent system's advantages were stated. The detailed design steps of 

both proposed IMSs were discussed. The GA operators and the encoding process 

were identified. 
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Figure 5.6 Schematic representation of proposed IMS-II 
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6.1 Introduction 

CHAPTER 6 

ASSESSMENT OF RESULTS 

Two intelligent monitoring systems were proposed in chapter 3, to diagnosis the 

boiler trips. The Feed-forward ANN methodology was adopted for these two 

proposed intelligent systems. It was obvious that the construction of a boiler trip 

detection system should be based on the existence of a "faulty" operation by using 

data sets with fault existence only. 

The two systems were coded in a MA TLAB environment. The results of the 

proposed IMSs (training and validation) together with some additional information 

about the IMSs performance are presented in this chapter. The overall performance 

and adaptability of the proposed IMSs are discussed. The discussion is focused on 

determining the best NN topology combination together with the most influential 

boiler operation variables for each trip. Further more, 'an action to be taken' guide 

was proposed and presented to assist the plant operator in avoiding or reducing the 

trip occurrence. 

This chapter is divided into three parts. The first deals with the results of the IMS­

I. The second deals with the hybrid, IMS-II results. The third is the proposed 'action 

to be taken' guide. 

6.2 Results of IMS-1 

The training and validation results of the proposed IMS-I with some information 

about the IMS-1' performance are discussed in the following sections: 



6.2.1 IMS-1 Training Process Results 

The processes of the IMS-I training are described in section (5.3.1). A preliminary 

training process took place in order to find out the best :--m topology combination. 

Several candidate NN topologies were trained for both a one hidden layer (I HL) case 

and a two hidden layers (2HL) case. Thirty-two boiler operation variables were 

considered as the number of NN inputs and the training results were compared based 

on the NN performance indicator (RMSE). Different numbers of neurons for each 

hidden layer cases ranging from one to ten neurons were tested. The conventional way 

of the NN was adopted for the training exploration. Seven real data sets were 

presented to IMS-I as training sets. These data sets are described in Table (6.1). The 

seven selected sets consisted of real data captured during faulty operation for seven 

boiler trips. 

Table 6.1 Description of training data set 

Fault Starting End No of Interval that 
Data Set Fault Was 

Status Dateffime Date/Time Intervals Introduced 

1 Trip 1 
01.05.2008 02.05.2008 

915 616 
21:41:00 12:51:00 

2 Trip 2 
04.06.2008 05.06.2008 

643 52 
15:15:00 01:55:00 

3 Trip 3 
05.06.2008 06.06.2008 

779 230 
18:29:00 07:22:00 

4 Trip 4 
19.12.2008 19.12.2008 

763 I 
12:33:00 21:18:00 

5 Trip 5 
29.01.2009 30.01.2009 

583 229 
16:16:00 03:38:00 

6 Trip 6 
04.05.2009 05.05.2009 

:l52 619 
20:12:00 10:19:00 

7 Trip 7 
31.05.2009 31.05.2009 

:i06 216 
12:01:00 20:23:00 

6.2.1.1 Training Results of 1HL 

The results of the preliminary training process with the four multidimensional 

minimization back-propagation training algorithms for all boiler trips in the case of 

the one hidden layer NN showed that the logistic activation function for the input 
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node and the output node outperformed the other two activation function in most 

cases with exception of trip 3 and trip 6. More specifically, the performance achieved 

by all activation function probability combinations was proportional to the NN input 

value history. This can be noticed in Tables (6.2 through 6.8), where the exact RMSE 

values achieved from all NN topology combinations for I HL network are illustrated 

in detail. 
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Table 6.2 Trip (I) Scaled RMSE of 1-HL with NHLN nodes in the hidden layer for all activation functions probability combinations with all 
four training algorithms 

Levenberg-Marquardt BFGS Quasi Newton 
1HLN L+L L+T L+P T+T T+L T+P P+P P+L P+T L+L L+T L+P T+T T+L T+P P+P P+L P+T 

1 0.513 0.463 0.522 0.501 0.504 0.511 0.763 0.463 0.588 0.530 0.497 0.522 0.498 0.513 0.530 0.569 0.537 0.699 
2 0.510 0.468 1.000 0.539 0.504 0.518 0.785 0.517 0.594 0.486 0.513 0.534 0.521 0.500 0.512 0.638 0.478 0.688 
3 0.535 0.457 0.522 0.479 0.470 0.525 0.764 0.569 0.586 0.524 0.511 1.000 0.527 0.506 0.459 0.625 0.486 0.555 
4 0.490 0.499 0.561 0.582 0.460 0.551 0.763 0.527 0.589 0.524 0.534 0.486 0.492 0.457 0.508 0.522 0.507 0.724 
5 0.486 0.691 0.534 0.533 0.536 0.540 0.763 0.521 0.596 0.472 0.568 0.481 0.441 0.465 0.711 0.733 0.536 0.698 
6 0.510 0.467 0.487 0.506 0.512 0.537 0.763 0.787 0.878 0.465 0.487 0.757 0.480 0.460 0.474 0.923 0.498 0.666 
7 0.537 0.468 1.000 0.619 0.547 0.589 0.763 0.493 0.593 0.537 0.650 0.520 0.459 0.467 0.465 0.730 0.535 0.738 
8 0.565 0.472 0.524 0.463 0.463 1.000 0.725 0.486 0.844 0.504 0.499 0.553 0.490 0.514 1.000 0.815 0.466 0.675 
9 0.474 0.443 1.000 0.586 0.478 1.000 0.763 0.491 0.844 0.501 0.504 1.000 0.471 0.537 0.488 0.782 0.467 0.616 
10 0.456 0.622 0.505 0.871 0.456 1.000 0.763 0.503 0.596 0.536 0.606 0.501 0.447 0.507 0.489 0.671 0.537 0.657 

Resilient Back-Propagation Scaled Conjugate Gradient 
1HLN L+L L+T L+P T+T T+L T+P P+P P+L P+T L+L L+T L+P T+T T+L T+P P+P P+L P+T 

1 0.513 0.583 0.541 0.526 0.536 0.669 0.580 0.534 0.585 0.449 0.513 0.542 0.500 0.517 0.515 0.562 0.450 0.562 
2 0.537 0.560 0.842 0.637 0.507 0.546 0.558 0.535 0.511 0.462 0.507 0.538 0.613 0.518 0.528 0.579 0.472 0.523 
3 0.537 0.554 0.582 0.532 0.525 0.514 0.529 0.535 0.570 0.536 0.536 0.576 0.612 0464 0.66! 0.564 (\ t::") c A ~/· 

V • .JJV V . .JUJ 

4 (\ .:' 1 0 
V.JlC 0.533 0.530 0.54J 0.536 0.522 0.539 0.536 0.638 0.524 0.607 0.521 0.724 0.520 0.520 0.587 0.498 0.590 

5 0.537 0.585 0.539 0.522 0.536 0.746 0.594 0.536 0.568 0.499 0.603 0.529 0.586 0.464 0.645 0.509 0.470 0.569 
6 0.537 0.495 0.538 0.523 0.535 0.508 0.570 0.536 0.563 0.433 0.559 0.593 0.584 0.460 0.619 0.550 0.482 0.578 
7 0.536 0.624 0.585 0.545 0.536 0.605 0.468 0.524 0.606 0.535 0.539 0.525 0.734 0.526 0.501 0.520 0.536 0.544 
8 0.536 0.679 0.524 0.581 0.500 0.522 0.536 0.534 0.601 0.481 0.497 0.539 0.585 0.521 0.525 0.535 0.537 0.545 
9 0.536 0.508 0.623 0.505 0.525 0.516 0.534 0.536 0.612 0.537 0.511 0.500 0.549 0.511 0.604 0.503 0.531 0.592 
10 0.536 0.483 0.582 0.509 0.522 0.542 0.559 0.537 0.509 0.474 0.596 0.589 0.579 0.529 0.518 0.537 0.473 0.606 
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Table 6.3 Trip (2) Scaled RMSE of 1-HL with NHLN nodes in the hidden layer for all activation functions probability combinations with all 
four training algorithms 

Levenbere;-Marquardt BFGS Quasi Newton 
lHLN L+L L+T L+P T+T T+L T+P P+P P+L P+T L+L L+T L+P T+T T+L T+P P+P P+L P+T 

1 0.331 0.328 0.434 0.328 0.335 0.333 0.378 0.338 0.373 0.324 0.340 0.333 0.331 0.324 0.324 0.323 0.387 0.317 
2 0.343 0.342 0.323 0.340 0.343 0.343 0.378 0.343 0.939 0.342 0.333 0.325 0.339 0.333 0.325 0.332 0.360 0.319 
3 0.343 0.399 0.341 0.343 0.342 0.364 0.378 0.338 0.373 0.322 0.347 0.326 0.325 0.323 0.325 0.313 0.317 0.335 
4 0.311 0.444 0.356 0.343 0.343 0.343 0.378 0.341 0.373 0.324 0.328 0.656 0.320 0.326 0.616 0.322 0.367 0.369 
5 0.343 0.343 0.343 0.314 0.329 0.337 0.378 0.338 0.939 0.333 0.939 0.551 0.333 0.343 0.325 0.356 0.343 0.336 
6 0.343 0.499 0.566 0.378 0.343 0.343 0.378 0.338 0.373 0.325 0.340 0.329 0.331 0.342 0.347 0.340 0.341 0.939 
7 0.338 0.344 0.344 0.351 0.343 0.400 0.378 0.338 0.397 0.335 0.316 0.326 0.326 0.332 0.330 0.339 0.381 0.939 
8 0.343 0.373 0.413 0.343 0.343 0.343 0.378 0.335 0.939 0.335 0.337 0.479 0.321 0.343 0.347 0.355 0.366 0.352 
9 0.343 0.338 0.315 0.408 0.343 0.357 0.378 0.343 0.373 0.335 0.315 0.749 0.353 0.340 0.344 0.368 0.364 0.333 
10 0.343 0.341 0.363 0.347 0.340 0.343 0.378 0.343 0.373 0.311 0.373 0.311 0.324 0.334 0.325 0.373 0.343 0.359 

Resilient Back-Propagation Scaled Coniueate Gradient 
1HLN L+L L+T L+P T+T T+L T+P P+P P+L P+T L+L L+T L+P T+T T+L T+P P+P P+L P+T 

1 0.314 0.316 0.321 0.319 0.311 0.337 0.326 0.318 0.330 0.326 0.311 0.332 0.342 0.324 0.325 0.318 0.319 0.317 
2 0.330 0.372 0.312 0.324 0.329 0.355 0.316 0.328 0.326 0.328 0.323 0.317 0.328 0.330 0.327 0.322 0.343 0.332 
3 0.337 0.346 0.324 0.340 0.317 0.329 0.331 0.323 0.318 0.339 0.376 0.331 0.321 0.323 0.329 0.328 0.315 0.328 
4 0.323 0.339 0.336 0.361 0.327 0.339 0.317 0.316 0.318 0.331 0.304 0.331 0.334 0.322 0.361 0.319 0.324 0.313 
5 0.320 0.379 0.343 0.330 0.328 0.340 0.346 0.321 0.334 0.334 0.331 0.341 0.335 0.324 0.327 0.325 0.323 0.337 
6 0.321 0.351 0.328 0.354 0.313 0.330 0.322 0.319 0.318 0.326 0.347 0.320 0.330 0.338 0.333 0.330 0.343 0.313 
7 0.316 0.352 0.321 0.332 0.315 0.341 0.337 0.318 0.343 0.326 0.348 0.328 0.320 0.328 0.318 0.334 0.341 0.326 
8 0.313 0.327 0.442 0.307 0.343 0.336 0.345 0.326 0.340 0.328 0.378 0.353 0.330 0.336 0.306 0.314 0.326 0.329 
9 0.322 0.376 0.309 0.347 0.321 0.352 0.336 0.322 0.338 0.324 0.327 0.328 0.317 0.321 0.354 0.323 0.341 0.333 
10 0.300 0.323 0.333 0.331 0.325 0.357 0.310 0.322 0.335 0.330 0.311 0.300 0.351 0.317 0.380 0.333 0.326 0.330 
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Table 6.4 Trip (3) Scaled RMSE of 1-HL with NHLN nodes in the hidden layer for all activation functions probability combinations with all 
four training algorithms 

Levenber2-Mar uardt BFGS Quasi Newton 
IHLN L+L L+T L+P T+T T+L T+P P+P P+L P+T L+L L+T L+P T+T T+L T+P P+P P+L P+T 

I 0.321 0.268 0.272 0.272 0.272 0.289 0.268 0.221 0.296 0.184 0.368 0.468 0.492 0.368 0.154 0.486 0.361 0.395 
2 0.635 0.368 0.616 0.616 0.361 0.742 0.269 0.221 0.296 0.684 0.174 0.490 0.478 0.491 0.486 0.352 0.361 0.261 
3 0.562 0.785 0.534 0.534 0.537 0.732 0.273 0.221 0.298 0.406 0.476 0.458 0.781 0.455 0.614 0.285 0.361 0.322 
4 0.356 0.531 1.000 1.000 0.725 0.607 0.269 0.221 0.296 0.610 0.693 0.616 0.249 0.775 0.674 0.372 0.232 0.358 
5 0.757 0.704 1.000 1.000 0.858 0.750 0.269 0.253 0.296 0.505 0.700 0.435 0.488 0.587 0.520 0.340 0.361 0.932 
6 0.686 0.930 0.818 0.818 0.884 1.000 0.269 0.221 0.296 0.361 0.741 0.504 0.619 0.562 0.249 0.312 0.361 0.437 
7 0.573 0.713 1.000 1.000 0.822 1.000 0.269 0.361 0.296 0.573 0.572 0.468 0.561 0.459 1.000 0.304 0.259 0.932 
8 0.887 0.931 1.000 1.000 0.860 1.000 0.270 0.221 0.296 0.612 0.774 0.580 0.659 0.406 0.523 0.346 0.361 0.932 
9 0.743 0.900 0.837 0.837 0.790 1.000 0.269 0.221 0.299 0.578 0.562 0.727 0.611 0.778 0.429 0.337 0.245 0.344 
10 0.648 0.932 1.000 1.000 0.680 1.000 0.269 0.221 0.296 0.449 0.574 0.412 0.640 0.515 1.000 0.318 0.224 0.429 

Resilient Back-Pro a2ation Scaled Coniu2ate Gradient 
IHLN L+L L+T L+P T+T T+L T+P P+P P+L P+T L+L L+T L+P T+T T+L T+P P+P P+L P+T 

1 0.558 0.439 0.499 0.524 0.539 0.525 0.464 0.703 0.553 0.559 0.932 0.558 0.567 0.368 0.543 0.241 0.330 0.285 
2 0.764 0.572 0.614 0.560 0.355 0.719 0.481 0.462 0.584 0.548 0.256 0.939 0.711 0.219 0.318 0.321 0.160 0.353 
3 0.653 0.458 0.581 0.465 0.494 0.564 0.301 0.559 0.450 0.509 0.330 0.674 0.702 0.561 0.541 0.255 0.246 0.413 

-..... , ,...,. 
4 0.505 0.604 0.559 0.548 0 SO'i 0.448 0.581 0.544 f\ A '"1""1 0.326 0.46i 0.)36 0.599 0.339 0.319 0.213 0.424 V."'T/.<... V.l '7U 

5 0.595 0.619 0.593 0.485 0.355 0.725 0.432 0.458 0.600 0.585 0.431 0.310 0.691 0.467 0.555 0.250 0.341 0.461 
6 0.565 0.702 0.485 0.488 0.394 0.722 0.461 0.447 0.593 0.462 0.603 0.722 0.592 0.408 0.646 0.240 0.186 0.320 
7 0.602 0.542 0.641 0.635 0.537 0.653 0.797 0.490 0.498 0.646 0.932 0.877 0.773 0.666 0.602 0.316 0.215 0.330 
8 0.711 0.512 0.549 0.611 0.781 0.759 0.427 0.737 0.531 0.513 0.477 0.804 0.615 0.465 0.895 0.420 0.269 0.317 
9 0.479 0.647 0.601 0.574 0.633 0.645 0.736 0.636 0.486 0.549 0.387 0.667 0.437 0.600 0.966 0.354 0.393 0.400 
10 0.631 0.489 0.553 0.647 0.702 0.620 0.334 0.574 0.517 0.584 0.555 0.979 0.509 0.442 0.371 0.323 0.173 0.324 
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Table 6.5 Trip (4) Scaled RMSE of 1-HL with NHLN nodes in the hidden layer for all activation functions probability combinations with all 
four training algorithms 

Levenberg-Mar uardt BFGS Quasi Newton 
IHLN L+L L+T L+P T+T T+L T+P P+P P+L P+T L+L L+T L+P T+T T+L T+P P+P P+L P+T 

I 0.301 0.262 0.286 0.242 0.259 0.262 0.300 0.262 0.322 0.171 0.153 0.206 0.274 0.274 0.176 0.172 0.262 0.172 
2 0.352 0.261 0.211 0.262 0.161 0.197 0.300 0.262 0.297 0.274 0.142 0.255 0.147 0.254 0.274 0.282 0.206 0.337 
3 0.260 0.262 0.242 0.211 0.339 0.266 0.300 0.262 0.322 0.262 0.133 0.210 0.122 0.254 0.166 0.325 0.167 0.253 
4 0.243 0.193 0.143 0.261 0.262 0.113 0.301 0.262 0.297 0.136 0.195 0.165 0.254 0.165 0.143 0.333 0.262 0.965 
5 0.272 0.121 0.142 0.219 0.249 0.177 0.300 0.262 0.297 0.212 0.133 0.148 0.124 0.227 0.274 0.320 0.202 0.315 
6 0.269 0.375 0.504 0.141 0.167 1.000 0.300 0.262 0.319 0.092 0.148 0.294 0.147 0.125 0.225 0.293 0.169 0.221 
7 0.284 0.153 0.154 0.295 0.283 0.232 0.300 0.262 0.297 0.104 0.164 0.205 0.139 0.092 0.126 0.320 0.231 0.325 
8 0.262 0.392 0.273 0.136 0.262 1.000 0.300 0.262 0.297 0.127 0.200 0.138 0.144 0.106 0.155 0.345 0.156 0.339 
9 0.171 0.473 0.351 0.258 0.147 0.672 0.300 0.262 0.297 0.152 0.130 0.151 0.182 0.158 0.145 0.314 0.262 0.965 
10 0.188 0.270 1.000 0.318 0.262 0.179 0.300 0.262 0.297 0.187 0.115 0.205 0.122 0.099 0.122 0.330 0.262 0.965 

Resilient Back-Pro agation Scaled Conjugate Gradient 
IHLN L+L L+T L+P T+T T+L T+P P+P P+L P+T L+L L+T L+P T+T T+L T+P P+P P+L P+T 

I 0.142 0.208 0.155 0.199 0.254 0.205 0.168 0.137 0.186 0.274 0.215 0.202 0.149 0.274 0.144 0.154 0.147 0.185 
2 0.134 0.143 0.159 0.177 0.206 0.149 0.173 0.187 0.168 0.215 0.220 0.156 0.145 0.206 0.155 0.180 0.137 0.177 
3 0.121 0.152 0.209 0.137 0.129 0.143 0.191 0.145 0.168 0.274 0.145 0.129 0.205 0.143 0.124 0.184 0.169 0.178 
4 0.133 0.153 0.136 0.186 0.142 0.126 0.205 0.138 0.178 0.131 0.177 0.130 0.148 0.144 0.136 0.186 0.182 0.187 
5 0.130 0.135 0.153 0.212 0.122 0.156 0.189 0.120 0.170 0.119 0.116 0.141 0.173 0.149 0.159 0.193 0.140 0.182 
6 0.124 0.130 0.132 0.189 0.110 0.119 0.163 0.144 0.167 0.116 0.114 0.135 0.161 0.119 0.153 0.153 0.262 0.192 
7 0.110 0.130 0.148 0.161 0.146 0.218 0.152 0.155 0.240 0.093 0.137 0.157 0.126 0.135 0.192 0.170 0.153 0.184 
8 0.143 0.161 0.139 0.139 0.136 0.129 0.258 0.154 0.183 0.148 0.179 0.144 0.151 0.131 0.145 0.151 0.164 0.152 
9 0.198 0.188 0.166 0.143 0.144 0.142 0.212 0.130 0.163 0.090 0.127 0.172 0.156 0.134 0.153 0.161 0.149 0.202 
10 0.137 0.127 0.110 0.154 0.102 0.146 0.153 0.149 0.191 0.156 0.196 0.124 0.169 0.194 0.179 0.189 0.141 0.189 
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Table 6.6 Trip (5) Scaled RMSE of 1-HL with NHLN nodes in the hidden layer for all activation functions probability combinations with all 
four training algorithms 

Levenber2-Mar uardt BFGS Quasi Newton 
lHLN L+L L+T L+P T+T T+L T+P P+P P+L P+T L+L L+T L+P T+T T+L T+P P+P P+L P+T 

I 0.464 0.596 0.613 0.471 0.594 0.611 0.595 0.675 0.600 0.447 0.558 0.531 0.418 0.464 0.455 0.560 0.468 0.524 
2 0.503 0.595 0.617 0.598 0.603 1.000 0.595 0.654 0.600 0.538 0.524 0.480 0.562 0.464 0.451 0.559 0.503 0.571 
3 0.503 0.670 0.589 0.555 0.627 0.675 0.595 0.665 0.600 0.461 0.448 0.830 0.469 0.521 0.450 0.577 0.503 0.520 
4 0.503 0.543 0.556 0.618 0.630 1.000 0.599 0.613 0.600 0.471 0.411 0.462 0.537 0.460 0.417 0.521 0.503 0.549 
5 0.592 0.514 0.588 0.670 0.587 0.404 0.604 0.640 0.600 0.462 0.408 0.486 0.481 0.471 0.464 0.537 0.503 0.864 
6 0.503 0.481 0.591 0.502 0.583 0.516 0.595 0.654 0.600 0.458 0.494 0.534 0.507 0.513 0.470 0.541 0.503 0.864 
7 0.503 0.671 0.605 0.574 0.648 0.549 0.595 0.584 0.600 0.477 0.429 0.530 0.494 0.512 0.457 0.591 0.453 0.525 
8 0.503 0.748 1.000 0.506 0.659 0.456 0.595 0.663 0.600 0.561 0.441 0.608 0.538 0.480 0.459 0.590 0.503 0.573 
9 0.507 0.411 0.740 0.629 0.570 1.000 0.595 0.589 0.864 0.602 0.465 0.468 0.616 0.464 0.564 0.589 0.573 0.583 
10 0.546 0.512 0.506 0.625 0.606 1.000 0.595 0.662 0.600 0.503 0.547 0.646 0.547 0.459 0.593 0.579 0.482 0.864 

Resilient Back-Pro a2ation Scaled Coniu2ate Gradient 
IHLN L+L L+T L+P T+T T+L T+P P+P P+L P+T L+L L+T L+P T+T T+L T+P P+P P+L P+T 

1 0.440 0.406 0.464 0.466 0.469 0.499 0.414 0.463 0.429 0.464 0.463 0.420 0.443 0.464 0.429 0.435 0.428 0.534 
2 0.435 0.492 0.447 0.454 0.416 0.489 0.403 0.454 0.409 0.464 0.464 0.437 0.451 0.495 0.433 0.494 0.447 0.521 
3 0.371 0.446 0.536 0.427 0.439 0.492 0.415 0.462 0.414 0.459 0.459 0.459 0.464 0.558 0.420 0.520 0.503 0.448 
4 0.439 0.457 0.449 0.458 0.444 0.566 0.425 0.172 f\ A') 1 1"\ &"/'\'"! 0.462 0.463 U.4/5 0.504 0.486 0.420 0.436 0.510 V."'T..J 1 V.JU.J 

5 0.482 0.428 0.442 0.424 0.461 0.401 0.436 0.471 0.417 0.463 0.422 0.537 0.448 0.472 0.425 0.535 0.464 0.538 
6 0.467 0.500 0.523 0.418 0.559 0.429 0.410 0.464 0.419 0.503 0.506 0.469 0.446 0.443 0.464 0.460 0.444 0.529 
7 0.456 0.482 0.448 0.440 0.460 0.501 0.396 0.473 0.422 0.490 0.446 0.445 0.479 0.466 0.446 0.485 0.455 0.463 
8 0.416 0.491 0.487 0.478 0.527 0.433 0.418 0.467 0.419 0.471 0.480 0.469 0.522 0.468 0.471 0.429 0.503 0.444 
9 0.447 0.542 0.418 0.464 0.449 0.463 0.476 0.465 0.409 0.491 0.480 0.513 0.459 0.522 0.467 0.416 0.446 0.459 
10 0.474 0.414 0.526 0.439 0.565 0.573 0.431 0.467 0.437 0.469 0.467 0.497 0.491 0.476 0.463 0.480 0.467 0.458 
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Table 6.7 Trip (6) Scaled RMSE of 1-HL with NHLN nodes in the hidden layer for all activation functions probability combinations with all 
four training algorithms 

Levenberg-Marquardt BFGS Quasi Newton 
1HLN L+L L+T L+P T+T T+L T+P P+P P+L P+T L+L L+T L+P T+T T+L T+P P+P P+L P+T 

1 0.345 0.324 0.342 0.342 0.324 0.342 1.000 0.345 0.939 0.326 0.324 0.326 0.374 0.326 0.301 0.289 0.294 1.000 
2 0.279 0.391 0.348 0.417 0.345 0.342 1.000 0.345 0.838 0.324 0.287 0.342 0.405 0.328 0.324 1.000 0.420 0.939 
3 0.345 0.417 0.472 0.939 0.345 0.345 1.000 0.345 0.838 0.405 0.403 0.402 0.839 0.326 1.000 1.000 0.346 0.826 
4 0.345 0.345 0.477 0.416 0.345 1.000 1.000 0.345 0.829 0.346 0.340 0.466 0.808 0.326 1.000 1.000 0.345 0.831 
5 0.345 0.399 1.000 0.420 0.340 1.000 1.000 0.345 0.838 0.346 0.477 0.588 0.413 0.346 0.416 1.000 0.345 0.838 
6 0.345 0.833 1.000 0.407 0.345 1.000 1.000 0.345 0.835 0.345 0.725 1.000 0.286 0.345 0.911 1.000 0.345 0.839 
7 0.415 0.388 1.000 0.436 0.347 1.000 1.000 0.345 0.838 0.345 0.464 1.000 0.486 0.346 1.000 1.000 0.345 0.939 
8 0.345 0.358 0.813 0.477 0.349 1.000 1.000 0.345 0.838 0.326 0.462 1.000 0.417 0.346 1.000 1.000 0.346 0.935 
9 0.346 0.373 1.000 0.477 0.346 1.000 1.000 0.345 0.838 0.345 0.284 1.000 0.429 0.345 1.000 1.000 0.345 0.833 
10 0.415 0.671 1.000 0.358 0.270 1.000 1.000 0.345 0.838 0.345 0.840 1.000 0.484 0.346 1.000 1.000 0.345 0.829 

Resilient Back-Propaeation Scaled Conjugate Gradient 
IHLN L+L L+T L+P T+T T+L T+P P+P P+L P+T L+L L+T L+P T+T T+L T+P P+P P+L P+T 

I 0.340 0.384 0.438 0.409 0.343 0.711 0.920 0.416 0.713 0.389 0.454 0.323 0.805 0.417 0.353 0.292 0.346 0.336 
2 0.352 0.386 0.644 0.464 0.326 0.326 0.847 0.414 0.820 0.398 0.473 0.326 0.360 0.298 0.370 0.339 0.352 0.694 
3 0.346 0.333 0.437 0.379 0.374 0.265 0.430 0.413 0.554 0.324 0.614 0.462 0.410 0.270 0.284 1.000 0.337 1.000 
4 0.413 0.366 0.518 0.347 0.332 0.419 0.716 0.380 0.733 0.345 0.565 0.356 0.389 0.346 0.659 0.792 0.347 0.756 
5 0.329 0.280 0.282 0.515 0.311 0.579 0.867 0.397 0.382 0.350 0.745 0.603 0.473 0.336 0.439 1.000 0.357 0.734 
6 0.465 0.570 0.475 0.337 0.413 0.839 0.677 0.346 0.368 0.407 0.325 0.342 0.294 0.321 0.316 0.577 0.345 0.826 
7 0.356 0.446 0.338 0.268 0.279 0.580 1.000 0.389 0.635 0.346 0.462 0.843 0.394 0.398 1.000 0.901 0.347 0.767 
8 0.374 0.429 0.757 0.399 0.416 0.346 0.375 0.410 0.535 0.319 0.353 0.469 0.398 0.350 0.753 0.853 0.349 0.576 
9 0.378 0.467 0.677 0.374 0.293 1.000 0.965 0.312 0.798 0.292 0.470 0.393 0.397 0.340 0.614 0.593 0.345 0.481 
10 0.339 0.422 0.449 0.327 0.345 1.000 0.685 0.347 0.266 0.331 0.571 0.484 0.739 0.275 0.515 0.751 0.345 0.364 
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Table 6.8 Trip (7) Scaled RMSE of 1-HL with NHLN nodes in the hidden layer for all activation functions probability combinations with all 
four training algorithms 

Levenberg-~arquardt BFGS Quasi Newton 
lHLN L+L L+T L+P T+T T+L T+P P+P P+L P+T L+L L+T L+P T+T T+L T+P P+P P+L P+T 

1 0.331 0.328 0.434 0.328 0.335 0.333 0.378 0.338 0.373 0.324 0.340 0.333 0.331 0.324 0.324 0.323 0.387 0.317 
2 0.343 0.342 0.323 0.340 0.343 0.343 0.378 0.343 0.939 0.342 0.333 0.325 0.339 0.333 0.325 0.332 0.360 0.319 
3 0.343 0.399 0.341 0.343 0.342 0.364 0.378 0.338 0.373 0.322 0.347 0.326 0.325 0.323 0.325 0.313 0.317 0.335 
4 0.311 0.444 0.356 0.343 0.343 0.343 0.378 0.341 0.373 0.324 0.328 0.656 0.320 0.326 0.616 0.322 0.367 0.369 
5 0.343 0.343 0.343 0.314 0.329 0.337 0.378 0.338 0.939 0.333 0.939 0.551 0.333 0.343 0.325 0.356 0.343 0.336 
6 0.343 0.499 0.566 0.378 0.343 0.343 0.378 0.338 0.373 0.325 0.340 0.329 0.331 0.342 0.347 0.340 0.341 0.939 
7 0.338 0.344 0.344 0.351 0.343 0.400 0.378 0.338 0.397 0.335 0.316 0.326 0.326 0.332 0.330 0.339 0.381 0.939 
8 0.343 0.373 0.413 0.343 0.343 0.343 0.378 0.335 0.939 0.335 0.337 0.479 0.321 0.343 0.347 0.355 0.366 0.352 
9 0.343 0.338 0.315 0.408 0.343 0.357 0.378 0.343 0.373 0.335 0.315 0.749 0.353 0.340 0.344 0.368 0.364 0.333 

10 0.343 0.341 0.363 0.347 0.340 0.343 0.378 0.343 0.373 0.311 0.373 0.311 0.324 0.334 0.325 0.373 0.343 0.359 

Resilient Back-Propagation Scaled Conjugate Gradient 
lHLN L+L L+T L+P T+T T+L T+P P+P P+L P+T L+L L+T L+P T+T T+L T+P P+P P+L P+T 

1 0.314 0.316 0.321 0.319 0.311 0.337 0.326 0.318 0.330 0.326 0.311 0.332 0.342 0.324 0.325 0.318 0.319 0.317 
2 0.330 0.372 0.312 0.324 0.329 0.355 0.316 0.328 0.326 0.328 0.323 0.317 0.328 0.330 0.327 0.322 0.343 0.332 
3 0.337 0.346 0.324 0.340 0.317 0.329 0.331 0.323 0.318 0.339 0.376 0.331 0.321 0.323 0.329 0.328 0.315 0.328 
4 0.323 0.339 0.336 0.361 0.327 0339 0.3! 7 0.316 (\ ') 1 0 ('\ ,.,,.... 0.304 0.33i 0..534 0.322 0.361 0.319 0.324 0.313 v.J 10 V • .;)JJ 

5 0.320 0.379 0.343 0.330 0.328 0.340 0.346 0.321 0.334 0.334 0.331 0.341 0.335 0.324 0.327 0.325 0.323 0.337 
6 0.321 0.351 0.328 0.354 0.313 0.330 0.322 0.319 0.318 0.326 0.347 0.320 0.330 0.338 0.333 0.330 0.343 0.313 
7 0.316 0.352 0.321 0.332 0.315 0.341 0.337 0.318 0.343 0.326 0.348 0.328 0.320 0.328 0.318 0.334 0.341 0.326 
8 0.313 0.327 0.442 0.307 0.343 0.336 0.345 0.326 0.340 0.328 0.378 0.353 0.330 0.336 0.306 0.314 0.326 0.329 
9 0.322 0.376 0.309 0.347 0.321 0.352 0.336 0.322 0.338 0.324 0.327 0.328 0.317 0.321 0.354 0.323 0.341 0.333 
10 0.300 0.323 0.333 0.331 0.325 0.357 0.310 0.322 0.335 0.330 0.311 0.300 0.351 0.317 0.380 0.333 0.326 o.33o 1 
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The best RMSE of each training algorithm is highlighted in bold, while the overall 

best RMSE is also underlined. In most cases of different numbers of nodes in the 

hidden layer, the "Resilient Back-Propagation" and "Scaled Conjugate Gradient" 

outperforms the other back-propagation algorithms (with the exception of trip 3). In 

general, the NN performance, based on RMSE values get worse as: 

"Scaled Conjugate Gradient"- "BFGS Quasi Newton"- "Levenberg-Marquardt" 

While, based on the generalized suitability point of view as: 

"Resilient back-propagation" - "Scaled Conjugate Gradient" - "BFGS Quasi 

Newton" 

The analysis of preliminary results showed that the "Scaled Conjugate Gradient" 

training algorithm gave a smaller error than the other three training algorithms for trip 

4 among all boiler trips considered for this study. The best NN topology combination 

of JHL for all boiler trips is therefore as illustrated in Table (6.9). 

Table 6. 9 The best ANN topologies combination of l HL for all boiler operation trips 

Trip NHL RMSE Architecture Activation Function Trainin~: Al~:orithm 

I lHL 0.433 6HLI L+L Scaled Conjugate Gradient 

2 IHL 0.300 lOHLI L+L Resilient back-propagation 

3 lHL 0.154 lHLI T+P BFGS Quasi Newton 

4 IHL 0.090 9HLI L+L Scaled Conjugate Gradient 

5 IHL 0.371 3HLI L+L Resilient Back-Propagation 

6 IHL 0.265 3HLI T+P Resilient Back-Propagation 

7 IHL 0.300 lOHLI L+L Resilient Back-Propagation 

6.2.1.2 Training Results of 2HL 

Tables (6.10 through 6.23) show the RMSE results of several two hidden layers NN 

topologies for all boiler trips. Each table has two sections, one for each of the four 

multidimensional minimization training algorithms is considered. In each section the 

minimum RMSE achieved by the corresponding training algorithm is in bold. In 

addition, in each table the minimum of these two RMSE is underlined. The underlined 

RMSE of each table corresponds to the minimum error value achieved by the specific 

training algorithm for that trip. 
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The NN preliminary training results of the 2HL showed that the linear summation 

function for the input node, the logistic activation function for the hidden node and 

the output node outperformed the hyperbolic tangent activation function in most cases 

with the exception of trip 7. More specifically, the performance achieved by all 

activation function probability combinations was found to be proportional to the NN 

input value history. 

The comparison showed that the Levenberg-Marquardt training algorithm gave a 

smaller error value than the other three training algorithms for trips 4 and 7 

respectively. For trips 3 and 5, the smaller error value achieved by the BFGS Quasi 

Newton training algorithm and the Resilient Back-Propagation outperformed the other 

three training algorithms for trip 2. Also, it can be noticed that the Scaled Conjugate 

Gradient gave the best NN combination with a minimum en·or value for trips I and 6. 
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Table 6.10 Scaled RMSE of2-HL structure (with N land N2 in each layer) using Levenberg-Marquardt and Resilient Back-Propagation training 
algorithms for trip (I) 

T+P+T Levenberg-Marquardt 

N1 I N2 1 2 3 4 5 6 7 8 9 10 

1 0.501 0.511 0.494 0.516 0.491 0.477 0.516 0.516 0.509 0.515 
2 0.535 0.537 0.537 0.491 0.516 0.524 0.566 0.537 0.716 0.502 

3 0.495 0.641 0.513 0.536 0.555 0.474 0.687 0.557 0.484 0.478 

4 0.741 0.505 0.650 0.464 0.565 0.496 0.481 0.486 0.482 0.522 

5 0.459 0.531 0.480 0.530 0.578 0.523 0.511 0.440 0.495 0.468 
6 0.466 0.494 0.475 0.595 0.773 0.503 0.721 0.651 0.886 0.472 

7 0.544 0.480 0.514 0.650 0.622 0.616 0.520 0.707 0.637 0.487 
8 0.756 0.765 0.719 0.844 0.429 0.615 0.844 0.492 0.522 0.526 
9 0.498 0.640 0.694 0.624 0.596 0.476 0.493 1.005 0.447 0.575 
10 0.495 0.902 0.458 0.470 0.524 0.562 0.684 0.653 0.527 0.510 

T+T+L Resilient Back-Propagation 

Nl I N2 1 2 3 4 5 6 7 8 9 10 

I 0.524 0.533 0.535 0.531 0.529 0.513 0.506 0.529 0.537 0.534 
2 0.512 0.527 0.533 0.513 0.536 0.532 0.536 0.536 0.531 0.534 
3 0.513 0.512 0.535 0.536 0.535 0.532 0.522 0.537 0.529 0.539 
4 0.513 0.533 0.531 0.536 0.519 0.536 0.536 0.536 0.537 0.537 
5 0.536 0.535 0.524 0.533 0.533 0.536 0.536 0.536 0.528 0.514 ' 
6 0.537 0.512 0.522 0.530 0.535 0.537 0.506 0.448 0.536 0.528 
7 0.536 0.536 0.535 0.537 0.536 0.529 0.534 0.496 0.483 0.537 
8 0.537 0.533 0.510 0.537 0.536 0.487 0.519 0.532 0.473 0.535 
9 0.531 0.537 0.534 0.535 0.446 0.528 0.537 0.534 0.536 0.537 
10 0.537 0.533 0.533 0.536 0.535 0.532 0.531 0.537 0.537 0.508 
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Table 6.11 Scaled RMSE of2-HL structure (with Nland N2 in each layer) using Scaled Conjugate Gradient and BFGS Quasi Newton training 
algorithms for trip (I) 

P+T+L Scaled Conjugate Gradient 

N1 I N2 1 2 3 4 5 6 7 8 9 10 
1 0.513 0.544 0.507 0.505 0.525 0.519 0.530 0.514 0.527 0.465 
2 0.529 0.535 0.513 0.528 0.507 0.532 0.546 0.439 0.459 0.518 
3 0.513 0.513 0.474 0.525 0.579 0.526 0.460 0.497 0.527 0.508 
4 0.452 0.533 0.537 0.523 0.508 0.528 0.513 0.534 0.515 0.522 
5 0.513 0.504 0.515 0.513 0.513 0.537 0.534 0.524 0.503 0.506 
6 0.527 0.513 0.463 0.467 0.525 0.525 0.475 0.515 0.454 0.496 
7 0.513 0.535 0.515 0.536 0.529 0.529 0.503 0.510 0.435 0.448 
8 0.513 0.517 0.471 0.491 0.528 0.472 0.502 0.455 0.531 0.498 
9 0.513 0.522 0.534 0.514 0.528 0.531 0.531 0.531 0.535 0.517 
10 0.513 0.460 0.535 0.531 0.475 0.533 0.510 0.507 0.531 0.515 

T+T+T BFGS Quasi Newton 

N1 I N2 1 2 3 4 5 6 7 8 9 10 

1 0.534 0.508 0.537 0.457 0.872 0.610 0.750 0.884 0.533 0.538 
2 0.535 0.464 0.536 0.513 0.838 0.561 0.452 0.451 O.S10 0.462 
3 0.525 0.531 0.526 0.487 0.460 0.533 0.494 0.535 0.496 0.491 
4 0.465 0.466 0.492 0.520 0.468 0.471 0.505 0.530 0.542 0.458 
5 0.479 0.435 0.536 0.521 0.530 0.536 0.486 0.472 0.470 0.551 
6 0.501 0.467 0.489 0.537 0.562 0.556 0.467 0.446 0.487 0.537 
7 0.610 0.537 0.464 0.468 0.554 0.506 0.595 0.619 0.539 0.515 
8 0.535 0.463 0.551 0.508 0.517 0.496 0.481 0.508 0.516 0.490 
9 0.493 0.475 0.504 0.474 0.587 0.542 0.473 0.483 0.519 0.532 
10 0.462 0.486 0.515 0.654 0.463 0.465 0.583 0.524 0.467 0.528 
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Table 6.12 Scaled RMSE of2-HL structure (with Nland N2 in each layer) using Levenberg-Marquardt and Resilient Back-Propagation training 
algorithms for trip (2) 

T+L+L Levenberg-Marquardt 

Nl I N2 I 2 3 4 5 6 7 8 9 10 

I 0.341 0.337 0.340 0.323 0.327 0.343 0.337 0.324 0.342 0.359 
2 0.330 0.343 0.343 0.343 0.332 0.343 0.343 0.343 0.343 0.343 
3 0.335 0.342 0.335 0.330 0.330 0.343 0.341 0.345 0.343 0.343 
4 0.317 0.343 0.336 0.343 0.343 0.343 0.340 0.343 0.343 0.343 
5 0.343 0.343 0.360 0.327 0.337 0.343 0.343 0.343 0.343 0.328 
6 0.331 0.346 0.339 0.343 0.318 0.337 0.343 0.354 0.343 0.343 
7 0.340 0.343 0.343 0.377 0.343 0.343 0.337 0.326 0.354 0.343 
8 0.399 0.343 0.312 0.357 0.343 0.343 0.343 0.329 0.343 0.343 
9 0.297 0.329 0.343 0.343 0.307 0.343 0.343 0.343 0.343 0.336 
10 0.343 0.343 0.329 0.332 0.333 0.335 0.336 0.326 0.343 0.343 

L+T+L Resilient Back-Propagation 

Nl I N2 I 2 3 4 5 6 7 8 9 10 

I 0.324 0.320 0.319 0.338 0.327 0.328 0.316 0.315 0.330 0.325 
2 0.320 0.321 0.315 0.337 0.331 0.315 0.330 0.326 0.323 0.292 
3 0.302 0.330 0.334 0.321 0.328 0.315 0.320 0.327 0.327 0.292 
4 0.323 0.328 0.315 0.311 0.314 0.322 0.330 0.322 0.317 0.334 
5 0.323 0.318 0.328 0.305 0.333 0.327 0.330 0.321 0.326 0.326 
6 0.335 0.301 0.327 0.336 0.339 0.306 0.339 0.332 0.331 0.327 
7 0.326 0.343 0.332 0.333 0.334 0.340 0.324 0.323 0.332 0.340 
8 0.331 0.319 0.328 0.325 0.323 0.315 0.316 0.340 0.321 0.316 
9 0.316 0.338 0.328 0.335 0.325 0.336 0.329 0.336 0.341 0.313 
10 0.330 0.316 0.339 0.332 0.343 0.338 0.328 0.310 0.340 0.334 
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Table 6.13 Scaled RMSE of2-HL structure (with Nland N2 in each layer) using Scaled Conjugate Gradient and BFGS Quasi Newton training 
algorithms for trip (2) 

L+T+L Scaled Conjugate Gradient 

Nl I N2 1 2 3 4 5 6 7 8 9 10 

1 0.310 0.340 0.335 0.323 0.323 0.320 0.319 0.324 0.320 0.318 
2 0.327 0.323 0.332 0.324 0.337 0.330 0.335 0.322 0.340 0.329 
3 0.322 0.340 0.331 0.323 0.326 0.330 0.333 0.322 0.332 0.317 
4 0.325 0.325 0.323 0.323 0.324 0.338 0.313 0.317 0.313 0.317 
5 0.325 0.318 0.337 0.325 0.322 0.325 0.319 0.331 0.323 0.334 
6 0.316 0.324 0.320 0.315 0.343 0.323 0.331 0.311 0.328 0.326 
7 0.325 0.331 0.299 0.332 0.318 0.321 0.325 0.320 0.338 0.325 
8 0.327 0.326 0.328 0.306 0.329 0.327 0.324 0.294 0.326 0.336 
9 0.324 0.326 0.322 0.329 0.322 0.337 0.323 0.326 0.338 0.337 
10 0.325 0.322 0.330 0.334 0.311 0.330 0.311 0.321 0.308 0.313 

T+T+T BFGS Quasi Newton 

N1 I N2 1 2 3 4 5 6 7 8 9 10 

1 0.324 0.331 0.324 0.324 0.319 0.322 0.294 0.325 0.383 0.326 
2 0.340 0.333 0.309 0.336 0.324 0.332 0.345 0.324 0.352 0 111 

3 0.328 0.325 0.341 0.325 0.330 0.331 0.335 0.326 0.324 0.391 
4 0.325 0.331 0.325 0.337 0.323 0.328 0.334 0.349 0.338 0.339 
5 0.322 0.319 0.332 0.358 0.319 0.342 0.330 0.343 0.333 0.348 
6 0.325 0.332 0.339 0.333 0.327 0.328 0.325 0.318 0.333 0.341 
7 0.332 0.366 0.334 0.338 0.305 0.342 0.329 0.338 0.325 0.339 
8 0.342 0.324 0.328 0.343 0.341 0.333 0.325 0.324 0.331 0.356 
9 0.332 0.323 0.337 0.307 0.337 0.336 0.361 0.342 0.345 0.345 
10 0.327 0.338 0.307 0.330 0.318 0.328 0.375 0.340 0.380 0.343 
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Table 6.14 Scaled RMSE of 2-HL structure (with N I and N2 in each layer) using Levenberg-Marquardt and Resilient Back-Propagation training 
algorithms for trip (3) 

T+P+L Levenberg-Marquardt 

NI I N2 I 2 3 4 5 6 7 8 9 IO 

I 0.241 0.588 0.703 0.283 0.368 0.686 0.696 0.576 0.327 0.244 
2 0.530 0.751 0.809 O.I36 0.784 0.723 0.604 0.665 0.361 0.738 
3 0.787 0.920 0.617 0.796 0.721 0.305 0.896 0.764 0.633 0.537 
4 0.247 0.784 0.701 0.891 0.361 0.685 0.357 0.884 0.797 0.460 
5 0.387 0.539 0.711 0.658 0.361 0.376 0.717 0.669 0.666 0.780 
6 0.552 0.361 0.932 0.361 0.685 0.570 0.804 0.576 0.627 0.454 
7 0.475 0.759 0.735 0.932 0.329 0.419 0.477 0.908 0.812 0.925 
8 0.922 0.932 0.361 0.663 0.932 0.868 0.667 0.354 0.671 0.721 
9 0.680 0.621 0.784 0.844 0.604 0.581 0.830 0.777 0.599 0.579 
IO 0.834 0.789 0.931 0.622 0.361 0.467 0.382 0.882 0.749 0.887 

P+T+L Resilient Back-Propagation 

NI I N2 I 2 3 4 5 6 7 8 9 IO 

I 0.420 0.689 0.615 0.614 0.511 0.439 0.368 0.368 0.312 0.371 
2 0.576 0.439 O.I9I 0.478 0.497 0.468 0.638 0.517 0.554 0.512 
3 0.611 0.466 0.606 0.486 0.332 0.517 0.459 0.550 0.599 0.510 
4 0.475 0.365 0.588 0.665 0.569 0.557 0.624 0.477 0.726 0.479 
5 0.577 0.548 0.656 0.564 0.646 0.577 0.702 0.697 0.728 0.436 
6 0.494 0.531 0.578 0.547 0.498 0.474 0.771 0.495 0.644 0.432 
7 0.355 0.523 0.531 0.600 0.458 0.558 0.551 0.528 0.760 0.601 
8 0.414 0.491 0.552 0.513 0.437 0.438 0.543 0.692 0.573 0.552 
9 0.433 0.587 0.478 0.659 0.607 0.434 0.592 0.660 0.540 0.513 
10 0.605 0.651 0.677 0.556 0.486 0.477 0.462 0.626 0.748 0.479 
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Table 6.15 Scaled RMSE of2-HL structure (with Nland N2 in each layer) using Scaled Conjugate Gradient and BFGS Quasi Newton training 
algorithms for trip (3) 

P+P+L Scaled Conjugate Gradient 

Nl I N2 I 2 3 4 5 6 7 8 9 10 

I 0.325 0.414 0.342 0.248 0.515 0.301 0.155 0.396 0.594 0.506 
2 0.248 0.192 0.253 0.213 0.379 0.336 0.239 0.267 0.258 0.198 
3 0.186 0.329 0.218 0.220 0.306 0.286 0.194 0.361 0.184 0.347 
4 0.210 0.225 0.192 0.194 0.477 0.266 0.442 0.369 0.361 0.245 
5 0.309 0.201 0.251 0.299 0.377 0.236 0.206 0.278 0.210 0.408 
6 0.205 0.348 0.234 0.486 0.293 0.209 0.321 0.216 0.183 0.216 
7 0.399 0.301 0.230 0.239 0.932 0.192 0.361 0.207 0.932 0.263 
8 0.280 0.284 0.932 0.516 0.208 0.239 0.243 0.187 0.932 0.344 
9 0.361 0.356 0.237 0.932 0.399 0.224 0.361 0.279 0.238 0.231 
10 0.184 0.344 0.222 0.146 0.193 0.361 0.241 0.413 0.270 0.191 

P+T+L BFGS Quasi Newton 

Nl I N2 1 2 3 4 5 6 7 8 9 10 

I 0.244 0.570 0.368 0.368 0.529 0.808 0.368 0.368 0.368 0.368 
2 0.368 0.361 0.118 0.163 0.449 0.249 0.737 0.533 0.368 O."ilO 

3 0.368 0.368 0.361 0.422 0.361 0.564 0.789 0.544 0.454 0.579 
4 0.267 0.522 0.692 0.932 0.644 0.626 0.694 0.512 0.395 0.932 
5 0.368 0.251 0.625 0.368 0.819 0.493 0.457 0.534 0.237 0.815 
6 0.577 0.361 0.463 0.368 0.425 0.721 0.664 0.376 0.685 0.722 
7 0.368 0.906 0.236 0.562 0.566 0.631 0.611 0.515 0.365 0.490 
8 0.291 0.472 0.346 0.473 0.516 0.162 0.725 0.624 0.275 0.581 
9 0.368 0.270 0.296 0.605 0.374 0.430 0.789 0.742 0.388 0.907 
10 0.368 0.623 0.571 0.368 0.374 0.410 0.606 0.598 0.463 0.573 

- --
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Table 6.16 Scaled RMSE of 2-HL structure (with N I and N2 in each layer) using Levenberg-Marquardt and Resilient Back-Propagation training 
algorithms for trip ( 4) 

L+L+L Levenberg-Marquardt 

N1 I N2 1 2 3 4 5 6 7 8 9 10 

1 0.219 0.295 0.281 0.142 0.241 0.262 0.146 0.327 0.262 0.144 
2 0.201 0.274 0.262 0.252 0.294 0.263 0.262 0.262 0.171 0.262 
3 0.254 0.296 0.289 0.237 0.207 0.198 0.149 0.099 0.093 0.214 
4 0.219 0.254 0.228 0.207 0.262 0.196 0.194 0.255 0.233 0.106 
5 0.262 0.262 0.177 0.262 0.211 0.184 0.174 0.191 0.233 0.152 
6 0.261 0.071 0.101 0.174 0.235 0.120 0.262 0.169 0.228 0.262 
7 0.213 0.301 0.108 0.262 0.241 0.262 0.130 0.246 0.228 0.210 
8 0.285 0.167 0.241 0.199 0.236 0.165 0.256 0.079 0.173 0.111 
9 0.254 0.128 0.201 0.114 0.262 0.262 0.262 0.244 0.222 0.209 
10 0.274 0.242 0.259 0.207 0.262 0.245 0.122 0.262 0.252 0.114 

P+L+L Resilient Back-Propagation 

N1 1 N2 1 2 3 4 5 6 7 8 9 10 

1 0.146 0.191 0.187 0.200 0.231 0.151 0.184 0.208 0.209 0.261 
2 0.142 0.162 0.148 0.158 0.200 0.159 0.225 0.153 0.109 0.113 
3 0.254 0.145 0.111 0.201 0.130 0.136 0.176 0.143 0.120 0.165 
4 0.191 0.139 0.152 0.173 0.111 0.124 0.167 0.126 0.099 0.131 
5 0.154 0.151 0.127 0.274 0.132 0.197 0.098 0.097 0.131 0.137 
6 0.143 0.141 0.112 0.144 0.125 0.119 0.120 0.130 0.109 0.139 
7 0.274 0.254 0.255 0.159 0.106 0.131 0.095 0.111 0.111 0.132 
8 0.254 0.161 0.131 0.124 0.141 0.092 0.140 0.106 0.164 0.143 
9 0.143 0.148 0.196 0.136 0.115 0.104 0.126 0.079 0.103 0.151 
10 0.274 0.184 0.239 0.118 0.187 0.094 0.117 0.127 0.094 0.107 
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Table 6.17 Scaled RMSE of2-HL structure (with Nland N2 in each layer) using Scaled Conjugate Gradient and BFGS Quasi Newton training 
algorithms for trip (4) 

L+T+L Scaled Conjugate Gradient 

Nl I N2 I 2 3 4 5 6 7 8 9 10 

I 0.221 0.274 0.274 0.154 0.228 0.158 0.234 0.159 0.207 0.201 
2 0.213 0.136 0.274 0.230 0.231 0.218 0.229 0.254 0.103 0.248 

3 0.138 0.163 0.238 0.102 0.086 0.143 0.131 0.202 0.101 0.223 
4 0.216 0.203 0.124 0.119 0.104 0.131 0.108 0.122 0.134 0.091 
5 0.253 0.168 0.093 0.142 0.152 0.153 0.143 0.146 0.155 0.081 
6 0.127 0.133 0.274 0.120 0.159 0.201 0.212 0.237 0.108 0.097 
7 0.113 0.134 0.127 0.106 0.146 0.092 0.214 0.120 0.088 0.262 
8 0.253 0.113 0.147 0.165 0.159 0.104 0.170 0.188 0.158 0.262 
9 0.274 0.098 0.149 0.099 0.147 0.111 0.128 0.098 0.180 0.100 
10 0.128 0.157 0.149 0.124 0.262 0.101 0.135 0.262 0.262 0.155 

P+T+L BFGS Quasi Newton 

Nl I N2 I 2 3 4 5 6 7 8 9 10 

I 0.213 0.274 0.274 0.274 0.274 0.274 0.274 0.181 0.128 0.265 
2 0.262 0.262 0.171 0.211 0.199 0.262 0.274 0.191 0.274 0 141 

3 0.274 0.274 0.303 0.202 0.274 0.227 0.201 0.259 0.145 0.079 
4 0.274 0.262 0.254 0.178 0.123 0.313 0.162 0.225 0.092 0.137 
5 0.239 0.274 0.274 0.254 0.135 0.254 0.173 0.255 0.237 0.252 
6 0.262 0.142 0.274 0.093 0.228 0.130 0.298 0.198 0.146 0.115 
7 0.274 0.176 0.262 0.254 0.255 0.117 0.173 0.203 0.201 0.092 
8 0.255 0.187 0.257 0.246 0.208 0.166 0.155 0.092 0.144 0.240 
9 0.274 0.274 0.142 0.149 0.115 0.306 0.169 0.167 0.225 0.206 
10 0.274 0.143 0.305 0.221 0.254 0.101 0.166 0.252 0.108 0.120 
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Table 6.18 Scaled RMSE of 2-HL structure (with Nl and N2 in each layer) using Levenberg-Marquardt and Resilient Back-Propagation training 
algorithms for trip (5) 

T+L+T Levenberg-Marquardt 

N1 I N2 1 2 3 4 5 6 7 8 9 10 

1 0.597 0.593 0.651 0.518 0.548 0.446 0.448 0.612 0.583 0.586 
2 0.518 0.537 0.630 0.597 0.569 0.593 0.573 0.571 0.608 0.864 
3 0.578 0.614 0.550 0.616 0.581 0.466 0.565 0.672 0.583 0.621 ! 

4 0.532 0.430 0.621 0.573 0.524 0.556 0.864 0.528 0.584 0.393 
5 0.582 0.529 0.557 0.610 0.576 0.533 0.433 0.583 0.565 0.526 
6 0.528 0.554 0.560 0.565 0.610 0.565 0.497 0.579 0.586 0.519 
7 0.563 0.434 0.572 0.577 0.602 0.536 0.544 0.614 0.469 0.607 
8 0.543 0.565 0.569 0.583 0.539 0.561 0.572 0.880 0.547 0.534 
9 0.563 0.579 0.546 0.604 0.528 0.506 0.604 0.523 0.481 0.557 
10 0.545 0.568 0.552 0.593 0.536 0.573 0.547 0.601 0.576 0.579 

T+L+P Resilient Back-Propagation 

N1 I N2 1 2 3 4 5 6 7 8 9 10 

1 0.428 0.414 0.464 0.456 0.449 0.312 0.464 0.451 0.464 0.444 
2 0.451 0.425 0.450 0.437 0.498 0.448 0.426 0.409 0.449 0.422 
3 0.464 0.435 0.471 0.460 0.416 0.456 0.491 0.420 0.448 0.431 
4 0.459 0.464 0.438 0.477 0.406 0.463 0.458 0.449 0.433 0.421 
5 0.417 0.424 0.453 0.484 0.452 0.429 0.432 0.446 0.467 0.489 
6 0.495 0.455 0.475 0.434 0.497 0.483 0.458 0.444 0.480 0.478 
7 0.438 0.425 0.442 0.447 0.474 0.539 0.496 0.496 0.448 0.420 
8 0.429 0.419 0.511 0.505 0.484 0.570 0.468 0.480 0.544 0.467 
9 0.486 0.433 0.492 0.450 0.456 0.438 0.500 0.486 0.490 0.456 
10 0.469 0.536 0.430 0.470 0.496 0.438 0.472 0.489 0.487 0.479 
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Table 6.19 Scaled RMSE of2-HL structure (with N1and N2 in each layer) using Scaled Conjugate Gradient and BFGS Quasi Newton training 
algorithms for trip (5) 

P+T+L Scaled Conjugate Gradient 

Nl I N2 I 2 3 4 5 6 7 8 9 10 

I 0.464 0.464 0.361 0.453 0.464 0.464 0.464 0.464 0.503 0.503 
2 0.464 0.464 0.449 0.444 0.485 0.406 0.437 0.464 0.428 0.423 
3 0.464 0.464 0.410 0.426 0.463 0.464 0.459 0.447 0.453 0.469 
4 0.464 0.464 0.464 0.433 0.450 0.402 0.435 0.427 0.431 0.439 
5 0.447 0.464 0.429 0.464 0.444 0.439 0.481 0.438 0.477 0.454 
6 0.464 0.430 0.444 0.445 0.453 0.434 0.413 0.448 0.440 0.471 
7 0.464 0.460 0.464 0.438 0.452 0.449 0.444 0.449 0.442 0.436 
8 0.464 0.485 0.464 0.427 0.448 0.444 0.444 0.454 0.454 0.455 
9 0.442 0.503 0.436 0.427 0.448 0.464 0.437 0.422 0.439 0.430 
10 0.421 0.452 0.473 0.434 0.439 0.446 0.459 0.434 0.429 0.427 

P+L+L BFGS Quasi Newton 

Nl I N2 I 2 3 4 5 6 7 8 9 10 

1 0.464 0.464 0.464 0.464 0.503 0.464 0.464 0.464 0.464 0.464 
2 0.462 0.428 0.503 0.464 0.464 0.464 0.464 0.466 0.464 O.'i03 

3 0.464 0.464 0.419 0.464 0.503 0.477 0.426 0.424 0.503 0.464 
4 0.462 0.503 0.428 0.464 0.462 0.471 0.462 0.462 0.358 0.503 
5 0.503 0.464 0.446 0.426 0.448 0.480 0.485 0.503 0.464 0.493 
6 0.464 0.503 0.432 0.503 0.503 0.419 0.449 0.475 0.433 0.499 
7 0.503 0.464 0.464 0.445 0.503 0.464 0.453 0.465 0.519 0.530 
8 0.464 0.451 0.451 0.442 0.503 0.447 0.483 0.501 0.424 0.473 
9 0.503 0.503 0.503 0.457 0.484 0.451 0.421 0.486 0.443 0.458 
10 0.503 0.462 0.455 0.451 0.456 0.456 0.503 0.503 0.466 0.449 

134 



Table 6.20 Scaled RMSE of2-HL structure (with Nland N2 in each layer) using Levenberg-Marquardt and Resilient Back-Propagation training 
algorithms for trip ( 6) 

L+P+T Levenberg-~arquardt 

Nl I N2 1 2 3 4 5 6 7 8 9 10 

1 0.324 0.342 0.320 0.342 0.341 0.336 0.340 0.326 0.340 0.341 
2 0.366 0.421 0.338 0.347 0.348 0.398 0.326 0.347 0.440 0.836 
3 0.939 0.407 0.426 0.341 0.477 0.403 0.313 0.477 0.832 0.811 
4 0.416 0.387 0.430 0.475 0.459 0.477 0.390 0.422 0.419 0.475 
5 0.477 0.680 0.418 0.529 0.379 0.838 0.391 0.405 0.340 0.374 
6 0.361 0.486 0.475 0.488 0.400 0.412 0.533 0.507 0.471 0.385 
7 0.478 0.420 0.832 0.488 0.477 0.364 0.477 0.444 0.421 0.531 
8 0.717 0.477 0.423 0.416 0.397 0.477 0.398 0.477 0.344 0.242 
9 0.477 0.399 0.516 0.477 0.510 0.836 0.939 0.828 0.476 0.477 
10 0.939 0.939 0.792 0.408 0.808 0.471 0.479 0.477 0.921 0.477 

L+L+L Resilient Back-Propagation 
N1 I N2 1 2 3 4 5 6 7 8 9 10 

1 0.440 0.338 0.426 0.247 0.477 0.248 0.358 0.361 0.317 0.438 
2 0.480 0.323 0.326 0.267 0.478 0.468 0.460 0.441 0.417 0.398 
3 0.361 0.323 0.342 0.367 0.330 0.365 0.383 0.383 0.339 0.346 
4 0.405 0.399 0.363 0.410 0.335 0.406 0.405 0.410 0.336 0.364 
5 0.357 0.351 0.366 0.335 0.309 0.272 0.347 0.313 0.287 0.349 
6 0.386 0.251 0.413 0.303 0.411 0.269 0.340 0.429 0.340 0.307 
7 0.460 0.346 0.345 0.411 0.283 0.413 0.411 0.315 0.463 0.330 
8 0.366 0.407 0.384 0.403 0.398 0.354 0.386 0.463 0.429 0.292 
9 0.424 0.382 0.341 0.347 0.451 0.328 0.390 0.345 0.341 0.456 
10 0.345 0.318 0.346 0.358 0.342 0.362 0.284 0.393 0.410 0.415 
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Table 6.21 Scaled RMSE of2-HL structure (with Nland N2 in each layer) using Scaled Conjugate Gradient and BFGS Quasi Newton training 
algorithms for trip (6) 

L+L+L Scaled Conjugate Gradient 

Nl I N2 1 2 3 4 5 6 7 8 9 10 

I 0.404 0.333 0.394 0.277 0.439 0.374 0.345 0.333 0.462 0.330 
2 0.392 0.356 0.279 0.334 0.269 0.325 0.413 0.456 0.402 0.285 
3 0.343 0.336 0.276 0.366 0.416 0.401 0.229 0.365 0.279 0.298 
4 0.390 0.430 0.416 0.345 0.326 0.347 0.465 0.429 0.287 0.472 
5 0.327 0.348 0.353 0.414 0.299 0.409 0.324 0.416 0.321 0.443 
6 0.363 0.392 0.347 0.324 0.381 0.289 0.339 0.332 0.399 0.289 
7 0.467 0.423 0.327 0.237 0.409 0.296 0.321 0.416 0.272 0.306 
8 0.335 0.376 0.391 0.318 0.298 0.317 0.396 0.329 0.348 0.408 
9 0.392 0.310 0.307 0.429 0.391 0.287 0.365 0.283 0.413 0.415 
10 0.267 0.390 0.345 0.412 0.339 0.343 0.363 0.382 0.309 0.412 

L+T+L BFGS Quasi Newton 

Nl I N2 I 2 3 4 5 6 7 8 9 10 

I 0.325 0.277 0.324 0.325 0.326 0.389 0.332 0.324 0.423 0.346 
2 0.324 0.326 0.267 0.457 0.399 0.479 0.345 0.350 0.326 0174 

3 0.346 0.307 0.326 0.346 0.359 0.345 0.346 0.331 0.333 0.414 
4 0.345 0.330 0.416 0.345 0.337 0.325 0.346 0.343 0.268 0.335 
5 0.406 0.297 0.346 0.345 0.347 0.414 0.436 0.417 0.345 0.274 
6 0.325 0.324 0.326 0.346 0.369 0.391 0.418 0.416 0.324 0.347 
7 0.422 0.477 0.417 0.252 0.328 0.343 0.318 0.340 0.346 0.345 
8 0.324 0.399 0.346 0.416 0.416 0.345 0.347 0.440 0.345 0.343 
9 0.395 0.394 0.417 0.346 0.347 0.345 0.346 0.347 0.330 0.333 
10 0.478 0.416 0.325 0.416 0.378 0.416 0.457 0.378 0.354 0.347 
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Table 6.22 Scaled RMSE of2-HL structure (with Nland N2 in each layer) using Levenberg-Marquardt and Resilient Back-Propagation training 
algorithms for trip (7) 

T+T+T Levenberg-Marquardt I 

N1 I N2 1 2 3 4 5 6 7 8 9 10 
1 0.553 0.493 0.699 0.640 0.631 0.740 0.768 0.644 0.768 0.629 
2 0.704 0.668 0.768 0.768 0.666 0.672 0.768 0.941 0.762 0.667 
3 0.646 0.653 1.000 0.716 0.768 0.708 0.725 1.000 0.736 0.768 
4 0.728 1.000 0.666 0.755 0.674 1.000 0.665 0.879 0.630 0.658 
5 0.663 0.599 0.782 0.768 0.765 0.856 0.767 0.672 1.000 1.000 
6 0.536 0.636 1.000 0.757 0.783 0.634 0.801 1.000 1.000 1.000 
7 0.611 0.663 0.993 1.000 0.805 0.673 1.000 1.000 1.000 0.814 
8 0.672 0.652 0.670 0.654 0.734 0.770 1.000 0.671 0.762 0.830 
9 0.713 0.688 0.763 1.000 0.607 1.000 0.748 1.000 0.673 1.000 I 
10 0.728 0.656 1.000 1.000 0.825 0.622 1.000 0.727 1.000 1.000 

L+L+P Resilient Back-Propagation 

N1 I N2 1 2 3 4 5 6 7 8 9 10 
1 0.627 0.638 1.000 0.556 0.629 0.832 1.000 1.000 0.508 0.781 
2 0.903 1.000 0.629 0.755 0.676 1.000 0.561 0.606 1.000 0.596 
3 0.607 0.711 0.627 0.636 0.712 0.740 0.532 0.902 0.782 1.000 
4 0.634 0.608 0.996 0.683 0.672 0.812 0.657 0.590 0.546 0.582 
5 0.541 0.970 0.630 0.533 0.854 0.645 0.785 0.995 0.615 0.589 
6 0.845 0.834 0.720 0.789 0.728 0.615 0.619 0.875 0.732 0.715 
7 0.733 0.619 0.918 0.645 0.674 0.701 0.726 0.508 0.587 0.827 
8 0.618 0.490 0.821 0.814 1.000 1.000 0.692 0.602 0.718 1.000 
9 0.604 0.807 0.617 0.646 0.542 0.828 0.652 0.569 0.841 1.000 
10 0.626 0.545 0.590 0.881 0.627 0.864 0.608 0.732 0.772 0.743 
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Table 6.23 Scaled RMSE of2-HL structure (with Nland N2 in each layer) using Scaled Conjugate Gradient and BFGS Quasi Newton training 
algorithms for trip (7) 

T+P+P Scaled Conjugate Gradient 

Nl I N2 I 2 3 4 5 6 7 8 9 10 
I 1.000 1.000 0.597 1.000 0.716 0.562 0.753 0.618 0.892 0.902 
2 0.969 1.000 0.580 1.000 1.000 0.744 0.881 0.561 0.641 0.929 
3 1.000 1.000 1.000 1.000 1.000 0.902 1.000 1.000 1.000 1.000 
4 0.674 0.761 0.798 1.000 0.576 1.000 1.000 1.000 0.595 1.000 
5 1.000 0.908 1.000 1.000 1.000 1.000 0.501 0.928 0.738 0.689 
6 1.000 0.562 0.824 1.000 0.666 1.000 1.000 0.831 0.894 0.773 
7 1.000 1.000 0.624 0.914 1.000 1.000 0.849 1.000 1.000 0.948 
8 1.000 0.697 0.649 0.758 0.729 0.735 0.483 0.584 0.757 0.486 
9 1.000 1.000 0.705 1.000 1.000 0.665 1.000 1.000 0.935 1.000 
10 0.744 1.000 0.685 1.000 1.000 0.815 0.766 0.590 0.698 1.000 

P+P+P BFGS Quasi Newton 

Nl I N2 I 2 3 4 5 6 7 8 9 10 
I 0.525 0.634 0.500 0.645 0.583 1.000 0.584 0.578 0.485 0.654 
2 0.948 0.697 0.887 0.741 1.000 1.000 0.998 0.627 0.771 1 000 
3 1.000 0.965 0.750 0.964 1.000 1.000 1.000 0.837 1.000 0.649 
4 1.000 1.000 1.000 0.922 1.000 1.000 1.000 0.508 1.000 1.000 
5 0.612 1.000 0.812 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
6 0.570 0.701 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
7 0.899 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
9 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
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It can be concluded that the exploration of the most fitting training algorithm 

among the four multidimensional minimization training algorithms for all boiler trips 

was quite difficult. For more details refer to Table (6.24). 

Table 6.24 The best ANN topology combination of a 2HL for all boiler operation trips 

Trip RMSE Architecture 
Activation 

Training Algorithm 
Function 

I 0.434 7HLl-9HL2 P+T+L Scaled Conjugate Gradient 

2 0.292 3HLl-IOHL2 L+T+L Resilient Back-Propagation 

3 0.118 2HLl-3HL2 P+T+L BFGS Quasi Newton 

4 0.071 6HLI-2HL2 L+L+L Levenberg-Marquardt 

5 0.358 4HLl-9HL2 P+L+L BFGS Quasi Newton 

6 0.229 3HLl-7HL2 L+L+L Scaled Conjugate Gradient 

7 0.483 IHLl-2HL2 T+T+T Levenberg-Marquardt 

It should be highlighted that in all of the combinations of activation functions, the 

last one is a logistic activation function with exception of trip 7. The reason behind 

this is that the output of this function is limited between 0 and I, which indeed suites 

the normalized input (0 Min. to I Max.). 

Table ( 6.25) shows the overall best performance (optimal RMSE) in the 

preliminary training exploration for both I HL and 2HL architectures for all boiler 

trips. It can be seen that the logistic activation function for the output node performed 

better than the other two activation functions in most training cases. 

Table 6.25 The best ANN topology combination for both the lHL and the 2HL for all 
boiler operation trips 

Trip NUL RMSE Architecture 
Activation 

Training Algorithm 
Function 

1 1HL 0.433 6HLl L+L Scaled Conjugate Gradient 

2 2HL 0.292 3HL1-10HL2 L+T+L Resilient Back-Propagation 

3 2HL 0.118 2HLl-3HL2 P+T+L BFGS Quasi Newton 

4 2HL 0.071 6HLl-2HL2 L+L+L Levenberg-Marquardt 

5 2HL 0.358 4HLl-9HL2 P+L+L BFGS Quasi Newton 

6 2HL 0.229 3HLl-7HL2 L+L+L Scaled Conjugate Gradient 

7 1HL 0.300 IOHLl L+L Resilient Back-Propagation 

139 



6.2.2 IMS-1 Validation Process Results 

This section presents the basic validation result process of the proposed IMS-I for 

boiler trips. Eight validation real data sets were constructed for this proposes. The first 

seven sets contained faulty real data and were used to validate how rapidly the 

proposed IMS-1 detects the fault. The last set contained only normal operation real 

data and was used to validate the performance of the system during normal boiler 

operation. Details of the validation real data sets are shown in Table (6.26). 

Table 6.26 Description of basic validation data sets for IMS-1 

Fault Starting End No of Interval that 
Data Set Fault Was 

Status Date/Time Date/Time Intervals Introduced 

I Trip I 
02.05.2008 02.05.2008 

392 225 
12:52:00 19:22:00 

2 Trip 2 
05.06.2008 05.06.2008 

275 251 
01:56:00 06:29:00 

3 Trip 3 
06.06.2008 06.06.2008 

333 17 
7:23:00 12:54:00 

4 Trip 4 
19.12.2008 20.12.2008 

326 50 
21:19:00 01:03:00 

5 Trip 5 
30.01.2009 30.01.2009 

293 118 
03:39:00 08:31:00 

6 Trip 6 
05.05.2009 05.05.2009 

364 239 
10:20:00 16:22:00 

7 Trip 7 
31.05.2009 31.05.2009 

216 38 
20;24:00 23:59:00 

8 Normal 
06.07.2008 06.07.2008 

358 
06:05:00 12:00:00 -

The proposed IMS-I was trained to come up with an output of "zero" during 

normal boiler operation and "one" during faulty boiler operation. The system 

predicated an output range of values from "zero" to "I", therefore, some thresholds 

were to be applied in order to decide, below, which NN output value a nonnal boiler 

operation is assumed; and, above, which NN output value a fault boiler operation is 

detected. Due to alarm boundaries of the selected boiler op•:ration variables, the NN 

output lower and upper thresholds were fixed at 0.4 and 0.5 correspondingly. 

Thus, if the NN output was within the range of these two values, the system could 

assume that neither normal nor faulty operation occurs. The lower threshold is used 
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for shifting from faulty to normal boiler operation and the upper threshold is used for 

shifting from normal to faulty boiler operation. 

6.2.2.1 IMS-I Validation Results ofTrip 1 

Figure (6.1) shows the IMS-I output on the first real data set. The time step is a one 

minute interval. Trip (I) represents the "boiler water wall tube leak" trip. The total 

data sampling interval is of the 392"d minute before the shutdown instance. The 

faulty operation is introduced in the 2251h interval. The fault was detected by the 

intelligent system within the 220'h interval. The system output is 0.95, which is 

considered as a strong fault indication (close to one). 
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Figure 6.1 IMS-1 outputs for trip (I) 

350 400 

It can be seen from the plot that even though the fault is detected, there are several 

significant intervals that the system output returned to the normal boiler operation 

value (below normal operation value 0.4). This happened once during the main boiler 

faulty operation and it also happened towards the end of the specific fault (after the 
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276th interval) where that was fault about to disappear. Thus, the boiler operation is 

returned to normal again. 

6.2.2.2 IMS-1 Validation Results of Trip 2 

In Figure (6.2), the IMS-I response to the corresponding data set of trip (2) is 

presented. This trip is denoted as a "low temperature superheater" trip. The total data 

sampling interval is at the 2751h minute before the shutdown instance. The data started 

with a normal boiler operation and the faulty operation is introduced in the 251 '' 

interval. The intelligent system detects the fault within the 235'h interval (which is 16 

minutes before the plant monitoring system). The IMS-I output is 0.57, which is 

considered as a weak fault indication (close to the threshold range). 
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Figure 6.2IMS-l outputs for trip (2) 

6.2.2.3 IMS-1 Validation Results of Trip 3 

Figure (6.3) shows the IMS-1 result outputs classified under "boiler drum level low" 

trip. The total data sampling interval is at the 3341
h minute before the shutdown 
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instance. The fault was introduced in the 171h interval. The proposed IMS-1 detects the 

fault just 10 intervals before the plant monitoring system with an output value of0.65. 

The IMS-I output drops below 0.5 (normal boiler operation) five minutes after the 

occurrence of the fault and stays in that region for several more intervals. 
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Figure 6.3 IMS-I outputs for trip (3) 

6.2.2.41MS-1 Validation Results of Trip 4 

This trip, as trip (3), is also referred to as a "boiler drum level low" trip. But it 

happened in another plant unit. Figure (6.4) shows the proposed IMS-I output via the 

time interval for the corresponding real data set. The total data sampling interval is at 

the 327'h minute before the shutdown instance. The fault was introduced in the 501h 

interval. It is clear here that the proposed IMS-I successfully captured the fault, even 

from the 401
h step, the system gives a strong indication that a fault has occurred with 

an output value of 0.65. It should be mentioned, that even after the fault has been 

detected, it is not an important issue if the intelligent system fails to continuously 

detect it. The important indicator for the fault detection is the rapidness of detection. 
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Figure 6.4 IMS-I outputs for trip (4) 

6.2.2.5 IMS-I Validation Results of Trip 5 

In Figure ( 6.5) the proposed intelligent system output during the fifth real data set for 

the "boiler feed pump" trip is shown. The total data sampling interval is at the 293'd 

minute before the shutdown instance. As in the case of trip (2), the data started with a 

normal boiler operation and the faulty operation is introduced in the llS'h interval. It 

can be seen in the same figure, that the IMS-I detects the fault at the same time as the 

plant monitoring system interval (1181h step) with an output of0.53. 

The proposed intelligent system output becomes high enough with a value of 0.96, 

which is considered as a very strong indication and during the occurrence of fault; the 

system output drops suddenly before the fault has started to vanish. As mentioned 

earlier, that sudden drop is not considered as a network disadvantage; however, the 

important factor for fault detection is the rapidness of detection. 
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Figure 6.5 IMS-I outputs for trip (5) 

6.2.2. 6JMS-I Validation Results of Trip 6 

The proposed intelligent system output during the sixth real data set is shown in 

Figure (6.6). For a "boiler drum high level high" trip, the total data sampling interval 

is at the 3651
h minute before the shutdown instance. The boiler data started with a 

normal operation and the fault was introduced at the 2391
h interval. The faulty 

operation was detected by the intelligent system within 5 steps before the fault was 

introduced by the plant monitoring system with an IMS-I output value of 0.71. The 

intelligent system output value was also considered as a strong indication that the 

boiler operation was not normal, with higher values toward the end of the fault. 

6.2.2. 7 JMS-1 Validation Results of Trip 7 

Figure (6.7) shows the IMS-I output through the seventh real data set for a "high 

temperature superheater" trip. The total data sampling interval is at the 217'h minute 

before the shutdown instance. From the graph, it can be observed that even though the 
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fault is detected by the intelligent system; there are several intervals that the system 

output returned to the normal operation limit. That occu::red twice during the main 

period of the specific fault and it also took place towards the end of the fault (after 

interval 78). The rather periodical oscillation of the NN output values are caused by 

the nature of the sensor or actuator fault. This kind of fault was reproduced by adding 

a periodically changing noise to the reading of boiler water wall tube sensors and 

actuators. The form of noise is a sine function. The sys1:em was extremely fast in 

detecting the fault within 15 intervals (23 minutes be:'ore the plant monitoring 

system). The IMS-I output value was 0.78. With that outpm value, it's considered as a 

strong indicator of the faulty boiler operation existence. 
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Figure 6.6 IMS-I outputs for trip (6) 

6.2.2.8 IMS-1 Validation Results of Normal Operation 

350 

Finally, the last real data set contains only normal boiler operation data and it was 

used to check the proposed intelligent system ability to continuously recognize 

normal boiler operation. The IMS-I output is shown in Figure (6.8). The plot shows 
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that the system output values are close to "zero" for almost the whole operating 

period. 
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In brief, the proposed IMS-I here was capable of detecting the specific thermal power 

plant trip within a period of around 20 minutes before or at the same time as the trip 

occurrence. This time period is considered satisfactory. 

6.3 Application of IMS-Il 

NN topologies and boiler operation variables optimization are extremely important 

issues and many related studies are presented. Here, an intelligent solution "Genetic 

Algorithm (GA)" for the IMS-II. To date, GAs have become a popular optimization 

method as they often succeed in finding the best optimization in contra! to the most 

common optimization algorithms. 

As described in chapter 4, the main NN topologies and boiler operation variables 

to be optimized are presented by a chromosome whereby NN topologies and boiler 

operation variables are encoded in a binary string. In this work, the initial population 

of the GA is randomly generated, except for one chromosome, which was set to use 

all NN topologies and boiler operation variables. The subs(~quent work is to evaluate 

the chromosomes generated by previous operations by the fitness function, while the 

design of the fitness function is a crucial point of using the GA, which determines 

what a GA should optimize. The evaluation of the fitness starts with the encoding of 

the chromosomes into neural networks. Then, the ANNs are trained and validated. It 

should be mentioned here that the same real boiler training and validation data sets 

which have been used to train and validate the IMS-1 wer·e used again to train and 

validate the IMS-II. 

In addition, the other aspect in an evolutionary system (GA) is the way of 

encoding the several possible phenotypes of the NN topologies and boiler operation 

variables into specific genotypes. The basic GAs parameter:; that should be explored 

are: 

1. The probability of crossover (P ,), 

11. The population size (Pz), 

iii. The probability of mutation (P m), 

tv. And the number of generations (Gn). 
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Where the Gn: is a number of trials which had to be carried out to try to explore 

the best possible combination. 

6.3.1 Determination of Crossover Probability 

An important issue in this hybrid system is the determination of the best values of P, 

and P m; these GA system trials were made with a P, of 46 bit strings. The most 

common crossover type, one point crossover, was adopted. Corresponding to trips (I) 

to (7), Figures (6.9 through 6.15) show the (RMSE) results achieved by the hybrid 

IMS as a function of the probability of crossover for three different values of the 

probability of mutation (Pm), 0.01, 0.05 and 0.1. The best hybrid IMS performance 

was achieved with P, values as below: 

Trip: Tl T2 T3 T4 T5 T6 T7 
Pc 0.6 0.95 0.8 0.8 0.9 0.9 0.95 

The comparison showed that the probability of a mutation with the value of 0.05 

outperformed the other two in most cases with expectation for trip 5 with a P m value 

of 0.1. The usual range of the explored basic GA parameter values for the probability 

of a crossover range from 0.6 to 0.95 and for the probability of a mutation from 0.01 

to 0.1 [94]. For more details refer to Table (6.27). 
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Table 6.27 Several probabilities of crossover and mutation for GA System for seven 
trips 

T1 T2 T3 T4 
Scaled Conjugate Resilient Back- BFGSQuasi Levenberg-

Gradient Propagation Newton Marquardt 

lHL-L+L 2HL-L+T+L 2HL-P+T+L 2HL-L+L+L 

PM! PM, PM, PM! PM, PM, PM! PM, PM, PM! PM, PM, 
Pn 0.6 0.507 0.451 0.458 0.33 I 0.315 0.368 0.580 0.927 0.591 0.284 0.270 0.117 

Pn 0.7 0.510 0.466 0.469 0.350 0.375 0.322 0.565 0.662 0.447 0.253 0.296 0.235 

Po 0.8 0.466 0.811 0.496 0.350 0.364 0.383 0.569 0.127 0.695 0.171 0.082 0.307 

Pn 0.9 0.456 0.460 0.524 0.391 0.348 0.410 0.572 0.818 0.353 0.203 0.217 0.175 

Pc, 0.95 0.476 0.508 0.516 0.349 0.303 0.386 0.678 0.521 0.658 0.164 0.308 0.305 

T5 T6 
T7 

BFGS Quasi Scaled Conjugate 
Resilient Back-Propagation 

Newton Gradient 

2HL- P+L+L 2HL-L+L+L IHL-L+L 

PM! PM, PM, PM! PM, pl\13 P:o.fl PM, pl\13 

Pn 0.6 0.454 0.444 0.435 0.351 0.334 0.316 0.322 0.326 0.323 

Pn 0.7 0.457 0.438 0.434 0.374 0.371 0.386 0.333 0.551 0.343 

Po 0.8 0.448 0.452 0.457 0.351 0.468 0.402 0.335 0.326 0.332 

Pc. 0.9 0.448 0.437 0.419 0.598 l!,lli 0.300 0.335 0.749 0.340 

Pc, 0.95 0.456 0.439 0.449 0.419 0.359 0.381 0.3 II 0,311 0.334 

6.3.2 Determination of Population Size 

The investigations of the most appropriate size of population (P z) were limited to 

population size L to 2*L, where L is the length of the bit strings [95]. Therefore, 

population sizes between 46 and 92 were explored. Figures ( 6.16 through 6.22) show 

the best hybrid system perfom1ance for all seven boiler trips using two different 

values of generation numbers ( 15 and 30). It can be concluded from the results that 

the best performance was achieved with P z as bellow: 

Trip: 
Pz: 

T1 
76 

T2 T3 
56 66 

T4 T5 
46 66 

T6 T7 
56 46 

The results after 15 generations were better, with exception of trip 2 and trip 3 

cases (within 30 generations). For more information refer to Table (6.28). 
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Table 6.28 Several population sizes for two values generations 

T1 T2 T3 T4 
Scaled Conjugate Resilient Back- BFGS Quasi Levenberg-

Gradient Propagation Newton Marquardt 

1HL-L+L 2HL-L+T+L 2HL-P+T+L 2HL-L+L+L 
G, G, G, G, G, G, G, G, 

46 0.468 0.509 0.323 0.324 0.578 0.532 0.232 0.262 

56 0.497 0.510 0.323 0.297 0.548 0.359 0.274 0.262 

66 0.513 0.513 0.324 0.323 0.776 0.340 0.274 0.260 

76 0.462 0.509 0.323 0.322 0.530 0.501 0.965 0.261 

86 0.513 0.509 0.303 0.309 0.403 0.623 0.274 0.274 

92 0.516 0.513 0.331 0.325 0.557 0.671 0.258 0.274 

TS T6 
T7 

BFGS Quasi Scaled Conjugate 
Resilient Back-Propagation Newton Gradient 

2HL-P+L+L 2HL-L+L+L lHL-L+L 
G, G, G, G, G, G, 

46 0.446 0.425 0.454 0.387 0.314 0.316 

56 0.742 0.428 0.319 0.440 0.330 0.372 

66 0.409 0.447 0.402 0.351 0.337 0.346 

76 0.43 0.422 0.714 0.452 0.323 0.339 

86 0.47 0.447 0.339 0.374 0.320 0.379 

92 0.451 0.428 0.473 0.443 0.321 0.351 
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For all boiler operation trips, the best RMSEs found after each generation during 

the best run of the IMS-II are shown in Figures (6.23 through 6.29). Generally, one 

can see that the performance of the population improve's due to the evolutionary 

selection process of the algorithm. For more information refer to Table (6.29). 
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Table 6.29 Best RMSE found during the best GA run for seven boiler trips 

T1 LM T2 Rprop T3 BFGS T4 LM T5 Rprop T5 SCG T7 Rprop 

Generation IHL 2HL 2HL 2HL 2HL 2HL IHL 
(L+L) (L+T+L) (P+T+L) (L+L+L) (P+L+L) (L+L+L) (L+L) 

G, 0.501 0.324 0.244 0.219 0.428 0.404 0.553 
G, 0.535 0.320 0.368 0.201 0.451 0.392 0.704 
G, 0.495 0.302 0.368 0.254 0.464 0.343 0.646 
G, 0.741 0.323 0.267 0.219 0.459 0.390 0.728 
a, 0.459 0.323 0.368 0.262 0.417 0.327 0.663 
G, 0.466 0.335 0.577 0.261 0.495 0.363 0.536 
G, 0.544 0.326 0.368 0.213 0.438 0.467 0.611 
G, 0.756 0.331 0.291 0.285 0.429 0.335 0.672 
G, 0.498 0.316 0.368 0.254 0.486 0.392 0.713 

GIO 0.495 0.330 0.368 0.274 0.469 0.267 0.493 

G" 0.511 0.320 0.570 0.295 0.414 0.333 0.668 

012 0.537 0.321 0.361 0.274 0.425 0.356 0.653 

Gu 0.641 0.330 0.368 0.296 0.435 0.336 1.313 

G" 0.505 0.328 0.522 0.254 0.464 0.430 0.599 
o,, 0.531 0.318 0.251 0.262 0.424 0.348 0.493 

016 0.301 0.361 
G., 0.343 0.906 
G,. 0.319 0.472 

019 0.338 0.270 
o,, 0.316 0.623 
G, 0.319 0.368 
G, 0.315 0.118 
G,. 0.334 0.361 
G,, 0.315 0.692 

G" 0.328 0.625 
G, 0.327 0.463 
G, 0.332 0.236 
a,. 0.328 0.346 
G, 0.328 0.296 

010 0.339 0.571 
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6.3.3 IMS-11 Result Analysis 

In IMS-II, the GA selection process of a bit string may or may not be selected as a 

parent for the next generation based on the overall perfom1ance of the bit string. The 

GA fitness function may have different forms for different optimization techniques. 

The GA fitness function was defined in chapter four to guide the search for the best 

combination of NN topology combinations and the most effective boiler operation 

variables. The GA fitness function should be designed to select fewer boiler operation 

variables by penalizing the selection which chooses more than necessary variables or 

the best NN topology while making the training error smaller for a fixed number of 

IMS-II training iterations. 

6.3.3.1 Analysis of Trip 1 Results 

The best GA search selections for each generation for a boiler water wall tube leak 

trip was actually found at generation 10 with the following individual's bit string of 

[0010010110111 011111100010000000111100010000000],(see Table A-1, Appendix 

A), which is interpreted as a 2HL with 9 and 3 neurons in the first and second hidden 

layers respectively, linear summation in the first hidden and output layer neurons, 

logistic function in the second hidden layer neurons trained with Resilient Back­

Propagation training algorithm, 12 selected variables as ANN inputs. This best 

selection gave a value of RMSE ~ 0.456. Table ( 6.30) summarizes the best selection 

interpretation where "HSG." is the abbreviation of "hybrid system generation". It can 

be seen from that table, that the 2"d and the 3'd best GA optimization process 

selections, with slightly worse performance, were generation 15 and 9. For these 

results, two hidden layer architecture seemed to outperform in general the one hidden 

layer ones. Also, global optimal selections during the GA search for these generations 

were operation variables 2 and I 0. 
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Table 6.30 Best GA selection interpretations for trip (I) 

Tl RMSE 
No. of 

ANN Topologies 
Selected Input Variables 

Inputs Training Activation 
HSG. Fitness 

Algorithm 
Architecture Function 

Gl 0.512541 V[1 ,4,6, 7,9, 10, 12,13] 8 SCG 6HLl-2HL2 L+L+T 

G2 0.510131 V[l,2,7,10,11,12] 6 BFGS 4HLl-4HL2 L+P+T 

G3 0.534745 V[l,3,7,10] 4 Rprop IOHLl L+P 

G4 0.489741 V[ I ,2,3,4,5,6, I 0] 7 BFGS 3HLl-5HL2 L+T+T 

GS 0.485571 V[l,2,3,4,7,10,11,12] 8 BFGS 3HLl-IOHL2 L+P+P 

G6 0.510384 V[2,7,10] 3 LM 7HLl-4HL2 L+P+L 

G7 0.536561 V[2,3,4,5,9] 5 SCG 3HLl-2HL2 T+T+P 

G8 0.564870 V[17,20,22,23,24,25,26,27,29,30] 10 BFGS 4HLl-IOHL2 T+P+T 

G9 0.474437 V[2,7, 10,17, 18,23,26,27,281 9 LM 2HLl-7HL2 P+T+T 

GIO 0.456288 V[l 2 3,4 5,6 10 18,19,20,21,251 12 Rprop 9HL1-3HL2 P+L+P 
Gll 0.530030 V[l6, 17,18,21 ,24,25,26] 7 LM 6HLl-8HL2 P+P+P 

Gl2 0.486163 V[l ,2,23,25,26,27,28,30,311 9 Rprop 3HLl-8HL2 P+T+P 

Gl3 0.523695 V[ I ,4,5,6,7 ,9, 10, 12,29] 9 SCG 2HLl-9HL2 T+T+T 

Gl4 0.523899 V[ll, 12, 13, 14, 15, 16, 19,20,23,31 ,32] II SCG 2HLl-4HL2 T+P+L 

GIS 0.471608 V[2,4,7,101 4 LM 4HLl-5HL2 L+T+L 

6.3.3.2 Analysis of Trip 2 Results 

For the low temperature superheater trip, the best GA optimization solution was 

formed at generation 30. The following string represents that best optimal solution, 

[11011101011011010000010010000000000000000000000], (see Table A-2, 

Appendix A), which is interpreted as a 2HL with 7 and 4 nodes in the first and second 

hidden layer respectively, logistic activation function in input and output nodes, linear 

summation activation function for hidden nodes trained with the Levenberg­

Marquardt training algorithm and three selected boiler operation variables as ANN 

inputs. 

This best optimal solution gave a smaller error with a value of 0.300. The 

interpretations of the best optimal solutions for each generation in the GA search are 

given in Table (6.31). 
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Table 6.31 Best GA selection interpretations for trip (2) 

T2 RMSE 
No.of 

ANN Topologies 
Selected Input Variables 

Inputs Training Activation HSG. Fitness 
Algonthm 

Architecture Function 
Gl 0.330945 V[I,2,7,10,11,12J 6 BFGS 4HLI-4HL2 L+P+T 
G2 0.343152 V[ I ,2,3,4,5,6,1 0, 17, 18, 19,20,21,25J 13 Rpr•>P 9HLI-3HL2 P+L+P 
G3 0.343152 V[ 1,2,23,25,26,27,28,30,31 J 9 Rprop 3HLI-8HL2 P+T+P 
G4 0.311258 V[ 17,20,22,23,24,25,26,28,29J 9 BFGS 4HLI-IOHL2 T+P+T 
GS 0.343152 V[2,7,10J 3 LM 7HLI-4HL2 L+P+L 
G6 0.343152 V[2, 7 ,I 0, 16, 17,23,26,27,28J 9 LM 2HLI-7HL2 P+T+T 
G7 0.337884 V[ I ,2,3,4,5,6, I OJ 7 BFGS 3HLI-5HL2 L+T+T 
GS 0.343150 V[ll, 12,13,14, 15,16, 19,20,23,31 ,32J II SCG 2HLI-4HL2 T+P+L 
G9 0.343152 V[2,3,4,5,9J 5 SCG 3HLI-2HL2 T+T+P 
GIO 0.343152 V[2,4,7,10J 4 LM 4HLI-5HL2 L+T+L 
Gil 0323658 V[1,2,3,4,7,10,11,12J 8 BFGS 3HLI-IOHL2 L+L+P 
Gl2 0341953 V[2,4,5,6, 7,9, I 0, 12,29J 9 SCG 2HLI-9HL2 T+T+T 
G13 0.322375 V[ 16,17,18,21 ,24,25,26J 7 LM 6HLI-8HL2 P+P+P 
Gl4 0.323532 V[I,3,7,10J 4 Rprop IOHLI L+P 
GlS 0.332782 V[l,4,6,7,8,9,10,12, 13J 9 SCG 6HLI-2HL2 L+L+T 
Gl6 0325263 V[ 16,17, 18,21,24,27,28J 7 LM 6HLI-8HL2 P+P+P 
Gl7 0335066 V[I,2,3,4,5,7,11J 7 BFGS 3HLI-5HL2 L+T+T 
GIS 0.335068 V[2, 7, I 0, 16,17,23,26,29,30J 9 LM 2HLI-7HL2 P+T+T 
G19 0.335140 V[2,4,8, II J 4 LM 4HLI-5HL2 L+T+L 
G20 0.311030 V[ I ,2,3,4,5,6, I 0,17, 18, 19,20,22,26J 13 Rprop 9HLI-3HL2 P+L+P 
G21 0313608 V[2,4,5,6,7,9, I 0,13,301 9 sec 2HLI-9HL2 T+T+T 
G22 0330046 V[ 17 ,20,22,23,24,25,26,30,31 J 9 BFGS 4HLI-IOHL2 T+P+T 
G23 0.337142 V[1,2,7,10,13,14J 6 BFG:l 4HLI-4HL2 L+P+T 
G24 0.323244 V[ 1,2,11,12,13,14,15, 16,19,20,23J II SCG 2HLI-4HL2 T+P+L 
G25 0.319979 V[l,2,3,4,7,10, 13,14J 8 BFGS 3HLI-IOHL2 L+L+P 
G26 0.321165 V[2,3,4,6, I OJ 5 SCG 3HLI-2HL2 T+T+P 
G27 0.316047 V[I,3,8,11J 4 Rprop IOHLI L+P 
G28 0.312531 V[ I ,2,4,5,23 ,25 ,26,27 ,28J 9 Rprop 3HLI-8HL2 P+T+P 
G29 0.322184 V[l,4,6,7,8,9,10, 14,15J 9 SCG 6HLI-2HL2 L+L+T 
G30 0.300041 V(2,8,11] 3 LM 7HL1-4HL2 L+P+L 

The 2"d and the 3'd best optimal solutions, with slightly worse performance, were 

generation 20 and 4. Two hidden layer networks seemed to 'Jutperform in general the 

one hidden layer ones. Interestingly, the trade-off between the number of selected 

variables and the network error is not always true. No additiOnal variables have been 

added into the global optimal selection to form the best selection. 
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6.3.3.3 Analysis of Trip 3 Results 

Table (6.32) illustrates the interpretation of the best selections for a boiler drum level 

low trip. Among 30 generations, the best GA search selection was found at generation 

ll. 

Table 6.32 Best GA selection interpretations for trip (3) 

T3 RMSE 

Selected Input Variables 
HSG. Fitness 

Gl VI 30,31] 
G2 V[l6,17,18,21,24,25,26] 
GJ 0.561774 V[2,4,7,101 
G4 ·.35623 I Vl16.17.18.21.24.27. 
G5 0.756969 V[1,3,7,10] 
G6 0.686279 V[ll,l2,13,14,15,16, 11,321 

G7 O~i.72845 V ,1,7,10, ,I!] 
G8 . '247 V , .7. 
G9 0. '736 V 
GIO 0.647519 V[1,4,6, 

v 121 
,s4: v 
06: 53 v 

v 24 
GIS V[. 
G16 0.361325 V[2,4,9,121 
Gl7 0.573284 V ,2,3,4,5, :,121 
GIS 0.611913 V 24 ll] 
Gl9 0.578195 v·2,3,4, ,I 
G20 V IC 
G21 .557859 V 
G22 0.764343 V 
G23 0.652641 
G24 0.504517 V[ 11 ,25] 
c:s :,3, , 0.1 
G :,3, , 
G: 0.6 09 ,19,20.23.271 
G28 0.711433 V[' 
G29 0.479057 V[2,9, 12] 
GJO Vf2,4,5,6,7,9,1 0, 14,31] 

~o.of 

Inputs 

9 

7 

4 
7 
4 
11 
8 
8 
9 
9 

7 
4 

7 
9 
5 
9 
9 
11 
9 
13 
8 
8 

13 
9 
3 
9 

The interpretations of the best GA 

ANN Topologies 

. :·"" Architecture 

Rprop 
LM 
LM 
LM 

Rprop 
SCG 

BFGS 
BFGS 

SCG 
SCG 

Rprop 
SCG 
LM 

BFGS 
BFGS 
LM 

BFGS 
BFGS 
SCG 
LM 
LM 
SCG 
SCG 

Rprop 
BFGS 
BFGS 
Rprop 
Rprop 

LM 
SCG 

3HLI-8HL2 
6HLI-8HL2 
4HLI-5HL2 
6HLI-8HL2 
10HLI 
2HLI-4HL2 
3HLI-IOHL2 
lie 1-10HL2 
61c 1HL2 
61c 1-2HL2 

IOHL 
IHI 
IHL2 
JHI 

3HLI-5HL2 
4HLl-5HL2 
3HLl-5HL2 
4Hl -10HI 
3HLI-2HL2 
2HLI-7HL2 
2HLI-7HL2 
1HI 1-4HI 
2HLI-9HL2 
9HLI-3HL2 
3HLl-IOHL2 
311Ll-10HL2 
9HI1-3H1 

7HLl-4HL2 
2H 

selection bits 

Activation 
Function 

P+T+P 
P+P+P 
L+T+l 
P+P+P 
L+P 
T+P+L 
L+L+P 
L+L+P 
L+L+l 
L+L+T 
L+P 
r+ 

L+T+L 
L+T+T 
r+P+T 
T+T+P 
P+T+T 
P+T+T 
f+P+L 
T+T+T 
P+L+P 
L+L+P 

T+T+T 

string, 

[0000010100011010100000100000000000000000000], (see Table A-3, Appendix A), 

are: IHL network with I 0 neurons in the hidden layer, logistic function in hidden 

neurons and linear summation activation function in output neurons trained with a 

Resilient Back-Propagation training algorithm and four selected variables as ANN 

inputs. 

This best string gave a value of RMSE = 0.183. From the Best GA selection 

interpretation table, the 2nd and the 3'd best GA optimization process selections, with 

slightly worse performance, were generations I and 4. From these results, it can be 
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concluded that there was no general architecture and optimal selection during the GA 

search for these generations. 

6.3.3.4 Analysis of Trip 4 Results 

For each generation, the optimal selection of a GA optimization process for a boiler 

drum level low trip was essentially explored at generation 14 with the optimal string 

of [1000101111001111111100010000000000000000000000], (see Table A-4, 

Appendix A), which is interpreted as a 2HL with 3 and 5 neurons in the first and 

second hidden layers respectively, logistic function in the first hidden layer neurons, 

hyperbolic tangent activation function in the second hidden layer neurons and output 

layer neurons which were trained with a BFGS Quasi Newton training algorithm, and 

seven boiler operation variables were selected as ANN inputs. This best selection 

gave a value ofRMSE = 0.135. 

Table (6.33) shows the list ofthe best selections interpn:tation. The 2nd and the 3'd 

best GA search selections, with slightly worse performance, were generation II and 

9. The comparison of these best generation results showed that the two hidden layer 

architecture seemed to outperform in general the one hidden layer ones. Also, there 

was no global optimal selection during the GA search for the,se generations. 

Table 6.33 Best GA selection interpretations for trip ( 4) 

T4 RMSE 
No.of 

ANN Topologies 
Selected Input Variables 

Inputs Trainin1~ Activation 
HSG. Fitness 

Algorithm 
Architecture 

Function 
Gl 0.300613 V[ II, 12, 13, 14, 15, 16, 19,20,23,31,321 II SCG 2HLI-4HL2 T+P+L 
G2 0.352365 Y[l ,4,6, 7,8,9,1 0, 12,131 9 SCG 6HL1-2HL2 L+L+T 
G3 0.259901 Y[2,4,7,10] 4 LM 4HLI-5HL2 L+T+L 
G4 0.243125 V[ I ,4,6, 7,8,9, 1 0,12, 13,25,26] 11 SCG 6HLI-2HL2 L+L+T 
G5 0.271718 V[2,7,10l 3 LM 711LI-4HL2 L+P+L 
G6 0.268666 vr 1 ,2,23,25,26,27,28,3o,31l 9 Rprop 3HLI-8HL2 P+T+P 

G7 0.283586 Y[l7,20,22,23,24,25,26,28,29l 9 BFGS 4HL1-10HL2 T+P+T 

GS 0.262282 V[1,3,7,10] 4 Rprop 10HLI L+P 
G9 0.170900 Y[1,2,7,10,11,12] 6 BFGS 4HL1-4HL2 L+P+T 

G!O 0.187712 V[2,3,4,5,9] 5 SCG 3HLI-2HL2 T+T+P 
Gil 0.170509 V[l6, 17,18,21 ,24,25,26] 7 LM 6HL1-8HL2 P+P+P 

G12 0.273633 V[1,2,7, 10,21,23,24] 7 Rprop 10HLI L+P 
G13 0.262282 Y[l,2,7,10,11,12, 25,27,31,321 10 BFGS 4HL1-4HL2 L+P+T 
G14 0.135982 V[1,2,3,4,5,6 91 7 BFGS 3HL1-5HL2 L+T+T 
GIS 0.211557 Y[l ,2, 16,1718,21 ,24,25,26] 7 LM 6HL1-8HL2 P+P+P 
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6.3.3.5 Analysis of Trip 5 Results 

The best GA search selections for each generation for a boiler feed pump trip was 

actually found at generation II with the following individual's bit string of 

[0100100110111100100010011100001000011001000000], (see Table A-5, Appendix 

A), which is interpreted as a 2HL with 2 and l 0 neurons in the first and second hidden 

layers respectively, a linear summation in the first hidden layer, logistic function in 

the second hidden layer neurons and output layer neurons which were trained with a 

Scaled Conjugate Gradient training algorithm, and nine selected variables as ANN 

inputs. This best selection gave a value of RMSE = 0.447. Table (6.34) summarizes 

the best selections interpretation. It can be seen from that table, that the 2nd and the 3'd 

best GA optimization process selections, with slightly worse performance, were 

generation 13 and 15. For these results, two hidden layer architecture seemed to 

outperform in general the one hidden layer ones. Also, global optimal selections 

during the GA search for these generations were operation variables (3, 7, 11 and 12). 

Table 6.34 Best GA selection interpretations for trip (5) 

TS RMSE 
No.of 

ANN Topologies 
Selected Input Variables 

Inputs Training Activation 
HSG. Fitness 

Algorithm 
Architecture 

Function 
Gl 0.463750 v 1,2,7,10,16,19,21,25,27] 9 SCG IOHLI-4HL2 T+L+P 

G2 0.502983 v 6,7,8,9,10,12,13,23,26] 9 LM 9HLI-8HL2 P+T+L 

G3 0.502681 v 1,2,3,7,10,11,12,16,17,20] 10 BFGS 4HLI P+T 

G4 0.502983 v 2,3,4,7,10,11,121 7 Rprop 2HLI-6HL2 L+L+L 

GS 0.592105 v 4,7,101 3 BFGS 9HLI-4HL2 P+P+T 

G6 0.502983 v 7,10,11,12,31] 5 BFGS 5HLI-7HL2 T+L+L 

G7 0.503142 v 7,10] 2 BFGS 4HLI-611L2 L+T+P 

GS 0.502983 Vr3,4,7, I 0, II, 12,18,20,251 9 Rprop 8HLI-7HL2 P+L+T 

G9 0.506503 vr 4,5,7, 11, 12, 13, 19,29,30,3ll 10 BFGS IOHLI L+T 

GIO 0.546013 vr 1 ,4,7, 10,20,251 6 BFGS 2HLI T+L 
Gil 0.447213 v 3 7 10 ll 12,17 22,23 261 9 SCG 2HL1-10HL2 P+L+L 
Gt2 0.537946 v 2,3,4,5,6,10,17,21,27,311 10 SCG 611L 1-911L2 T+L+T 

Gl3 0.461338 v 1,3,4,7,11,12,13,18,25] 9 BFGS IOHLI-9HL2 L+P+P 

G14 0.471404 v 2,4,7,10,11,12] 6 Rprop 4HLI-9HL2 T+P+P 

GIS 0.462237 v 3,5,7,11,12,13] 6 SCG 3HLI-9HL2 T+T+L 

6.3.3.6 Analysis of Trip 6 Results 

Table (6.35) illustrates the interpretation of the best selections for a boiler drum level 

high trip. Among 15 generations, the best GA search selection was found at 

generation 2. The interpretations of the best GA selection bit string of 
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[1001000011010100000001001000000000000000000000], (see Table A-6, Appendix 

A), are 2HL with 4 and 6 neurons in the first and second hidden layers respectively, a 

logistic activation function in the first hidden layer, hyperbolic tangent activation 

function in the second hidden layer neurons and linear summation in the output layer 

neurons which were trained with a BFGS Quasi Newton training algorithm, and two 

selected variables as ANN inputs. 

Table 6.35 Best GA selection interpretations for trip (6) 

T6 RMSE No.of ANN Topologies 
Selected Input Variables Inputs Training Activation HSG. Fitness Aleorithm Architecture 

Function 
Gl 0.345222 vri,4,7, 10,21,26] 6 BFGS 2HLI T+L 
G2 0.279432 vrs111 2 BFGS 4HLI-6HL2 L+T+P 
G3 0.345352 v 3,7,10,11,12,17,22,24,27] 9 SCG 2HLI-IOHL2 P+L+L 
G4 0.345458 v 1,2,3,7,10,11,12,16,18,21] 10 BFGS 4Hll P+T 
GS 0.345222 V[6,7,8,9, I 0, 12, 13,24,27] 9 LM 9HLI-8HL2 P+T+L 
G6 0.345352 V[7,10,11,13,32] 5 BFGS 5Hll-7HL2 T+L+L 
G7 0.414909 v 3,5,7,11,14,15] 6 SCG 3Hll-9HL2 T+T+L 
G8 0.345370 v 1,3,4,7,11,12,13,19,26] 9 BFGS IOHLI-9HL2 L+P+P 
G9 0.345639 v 3,4,7,10,11,12,18,21,26] 9 Rprop 8HL1-7HL2 P+L+T 

GIO 0.415308 v 2,4,7,10,13,14] 6 Rprop 4HL1-9HL2 T+P+P 
Gll 0.325963 v 2,3,4,7,10,13,14] 7 Rprop . 2HLI-6HL2 L+L+L 
G12 0.324384 v 1,2,7,10,16,19,21,26,28] 9 SCG 10Hll-4HL2 T+L+P 
G13 0.404811 V 2,3,4,5,6, I 0,17,21 ,28,32] 10 SCG : 611L 1-911L2 T+L+T 
G!4 0.345777 v 1,4,5,7,11,12,13,19,29,32] 10 BFGS I 10HL1 L+T 
GIS 0.346405 v 4,7,101 3 BFGS I 9HL1-4HL2 P+P+T 

This best string gave a value of RMSE = 0.279. From the best GA selection 

interpretation table, the 2"d and the 3'd best GA optimization process selections, with 

slightly worse performance, were generations 12 and 11. From these results, two 

hidden layer architecture seemed to outperform in general the one hidden layer ones. 

Moreover, there was no global optimal selection during the GA searches for these 

generations. 

6.3.3. 7 Analysis of Trip 7 Results 

For a high temperature superheater trip, the best GA optimization solution was 

formed at generation 4. The following string represents that best optimal solution, 

[1001010110011010000010011001000000000000000000), (:;ee Table A-7, Appendix 

A), which is interpreted as a 2HL with 5 and 7 nodes in the first and second hidden 

layers respectively, a hyperbolic tangent activation function in the first hidden layer 
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nodes, a logistic activation function for the second hidden layer nodes which were 

trained with BFGS Quasi Newton, and five selected boiler operation variables as 

ANN inputs. 

This best optimal solution gave a smaller error with a value of 0.311. The 

interpretations for the best optimal solutions for each generation in the GA search are 

given in Table (6.36). The znd and the 3'd best optimal solutions, with a slightly worse 

performance, were generation 13 and 14. The two hidden layer network seemed to 

outperform in general the one hidden layer ones. As well, the global optimal 

selections during the GA search for these generations were operation variables 7 and 

ll. 

Table 6.36 Best GA selection interpretations for trip (7) 

T7 RMSE 
No.of 

ANN Topologies 
Selected Input Variables 

Inputs Training Activation 
HSG. Fitness 

Al2orithm 
Architecture Function 

Gl 0.330945 v 1,2,7,10,16,19,21,28,291 9 SCG 10HLI-4HL2 T+L+P 
G2 0.343152 v 4.9,12] 3 BFGS 9HLl-4HL2 P+P+T 

G3 0.343152 v 1,2,3,4,5,6,10, 17,21,291 lO SCG 6HLl-9HL2 T+L+T 

G4 0.311258 Vl2, 7,10,11,12,141 5 BFGS SHLI-7HL2 T+L+L 

GS 0.343152 v 3,7,10,11,12,17,22,25,28] 9 SCG 2HLI-10HL2 P+L+L 

G6 0.343152 v 6.7.8,9,10.12.13,25,27] 9 LM 9HLI-8HL2 P+T+L 

G7 0.337884 v 1,4,7,10,22,27] 6 BFGS 2HLI T+L 

G8 0.343150 v 1.4,5.7,11,12,13,19,29,32] 10 BFGS 10HL1 L+T 

G9 0.343152 v 2,4,7,10,13,14] 6 Rprop 4HLI-9HL2 T+P+P 

G10 0.343152 v 9,121 2 BFGS 4HLI-6HL2 L+T+P 

Gil 0.323658 v 1,3,4,7,11,12,13,20,27] 9 BFGS IOHLI-9HL2 L+P+P 

G12 0.341953 v 3,4,7,10,11,12,18,22,27] 9 Rprop 8HLI-7HL2 P+L+T 

G13 0.322375 v 3,5,7,11,14,151 6 SCG 3HL1-9HL2 T+T+L 

Gl4 0.323532 v 1,2,3,7,10,11,12,16,19,22] 10 BFGS 4HL1 P+L 

GIS 0.332782 v 2,3,4,7,10,13,15] 7 Rprop 2HLI-6HL2 L+L+L 

Table ( 6.3 7) shows the best GA search selections for all of the boiler operation 

trips. It can be observed that the two hidden layers network outperformed the one 

hidden layer network in most cases with the exception of the trip 3 case. In general, 

the IMS-11 gave a smaller error value of less than 0.5. Moreover, few numbers of 

selected operation variables as ANN inputs were explored. Also, it seemed that the 

BFGS Quasi Newton and Resilient Back-Propagation training algorithms did better 

than the other two training algorithms in most cases. 
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Table 6.3 7 Best GA selection interpretations for all boiler operation trips 

RMSE ANN Topologies 

Trip HSG. Selected input variables 
No.of 

Fitness 
Inputs :·· Architecture 

Activation 
Function 

I GIO V[1. ·,1 0,18,19,20,21.25] 12 Rpcop P+L+P 

• :,Ill LM ~+P+l 

,1,9, .oroP .1 

' 
If(; 

~ 
f+ 

14721 12. L+ 

8,1 Bf( T+ 
7 G4 0.311258 V[2.7, 1,11,12,14] 5 BFCiS ,-7HL2 T+L+L 

6.4 IMS-11 Performance 

The validation process is repeated again on the IMS-L But this time using the optimal 

obtained results from the IMS-11. The same real boiler validation data sets which have 

been used to validate how rapidly the IMS-I detects the fault were used. These 

validation data sets are described in Table (6.19). 

The same decision support approach as adopted in the IMS-1 (refer to section 

6.2.2) was used in order to make a decision whether a fault has been indicated or not. 

In addition, the decision support approach was used here in order to evaluate the 

intelligent system initially. 

Consequently, the IMS-1 output values above 0.5 indicate a faulty boiler 

operation; output values below 0.4 indicate a normal boiler operation and the output 

values in the threshold range [0.4-0.5] indicate the previously known condition of the 

system output. 

6.4.1 IMS-11 Validation Results of Trip 1 

Figure (6.30) shows the IMS-11 output on the first validation :lata set. The time step is 

a "one" minute interval. The "boiler water wall tube leak" trip was introduced in the 

225'h interval. The fault was detected by the intelligent system within the 2231h 

interval. The system output is 0.65, which is considered as a strong fault indication 

(close to one). The comparison of the validation results before and after using the 

IMS-11 outcomes shows that the first validation process outperformed the second one 
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based on the rapid fault detection. Hence, the interval time difference was 3 minutes 

only. 
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Figure 6.30 IMS-I output during the first validation real data set (Tl) 

6.4.2 IMS-11 Validation Results of Trip 2 

In Figure ( 6.31) the system response in the second validation data set is presented. 

This real set contains a "low temperature superheater" trip. The data started with a 

normal boiler operation and the faulty operation is introduced in the 2251
h interval. It 

is clear that the IMS-I detected the fault within the 2251
h interval (at the same time as 

the plant control system); the system output is 9.1, which is considered a very strong 

fault indication (close to one). The comparison of the validation results before and 

after using the IMS-II outcomes shows that the first validation process outperformed 

the second one based on the rapid fault detection. Hence, the interval time difference 

was 16 minutes. 

171 



Trip 2 
______........,---·-

' .I'"''"''' D<mod d I Shutdown Instance 

I - - - - - L - - - - - - -- ~ . -- Predicted -r· 

' 

0.8, 
/( 

/ 
NN Detection 

' 
I 

"[ 0.6 
I 
I 

:; 
0 

~ 
0.4 

' 0.2 

0 ! ! j rlu___Ll_ 
0 50 100 !50 200 250 300 

Time Interval Minute 

Figure 6.31 IMS-I output during the first validation real data set (T2) 

6.4.3 IMS-11 Validation Results of Trip 3 

Figure ( 6.32) shows the specific period of the third validation data set for a "boiler 

drum level low" trip, where the fault was introduced in the 17'h interval. The IMS-I 

takes a few steps before the boiler control system to indic:ate a possible fault (15th 

interval) with a model output value of 0.55, while the system output drops below 0.5 

(normal boiler operation) 5 minutes after the occurrence of the fault and stays in that 

region for a few more intervals. The comparison of the validation results before and 

after using the IMS-II outcomes shows that the first validation process outperformed 

the second one based on the rapid fault detection. Hence, th,~ interval time difference 

was 8 minutes only. 
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Figure 6.32 IMS-I output during the first validation real data set (T3) 

6.4.4 IMS-11 Validation Results of Trip 4 

These can be better seen in Figure (6.33), where the proposed IMS-I outputs are 

shown for the entire validation data set for a "boiler drum level low" trip also, but in a 

different unit. The fault was introduced in the SO'h intervaL It is clear here that this 

kind of fault is detected very fast by the intelligent system, even from the to'h step, 

the system gives a weak indication that a fault has occurred with an output value of 

0.55. Therefore, after the fault has been detected, it is not an important issue if the 

IMS-I fails to continuously detect it. The validation results before and after using the 

IMS-II outcomes shows that the second validation process outperformed the first one 

based on the rapid fault detection. Hence, the interval time difference was 30 minutes. 
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Figure 6.33 IMS-I output during the first validation real data set (T4) 

6.4.5 IMS-11 Validation Results of Trip 5 

In Figure (6.34) the IMS-I output during the fifth validation data set for the "boiler 

feed pump" trip is shown. As in the case of the second real data set, the data started 

with a normal boiler operation and the faulty operation i~; introduced in the IIS'h 

intervaL It can be seen in the figure, that the proposed system detects the fault two 

steps before the plant control system interval ( 116'h step). 

The intelligent system output becomes high enough at 0.61, which is considered 

as a strong indication of the fault and during the occurrenct~ of the fault; the system 

output drops suddenly before the fault has started to vanish. As mentioned earlier, that 

sudden drop is not considered as a network disadvantage; however, the important 

factor for fault detection is the rapidness of detection. The validation results before 

and after using the IMS-II outcomes shows that the second validation process 

outperformed than first one based on the rapid fault detection. Hence, the interval 

time difference was 2 minutes only. 
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Figure 6.34 IMS-I output during the first validation real data set (T5) 

6.4.6 IMS-11 Validation Results of Trip 6 

The IMS-I output during the sixth validation data set is shown in Figure (6.35). The 

boiler data started with a normal operation and the "boiler drum level high" trip was 

introduced at the 239'h interval. It is clear that the intelligent system detected the fault 

within the l55'h interval (84 steps before the plant monitoring system) with a system 

output value of 0.78. The proposed IMS-I output value was also considered as a 

strong indication that the boiler operation was not normal with higher values toward 

the end of the fault. 

The comparison of validation results before and after using the IMS-II outcomes 

shows that the second validation process outperformed the first one based on the rapid 

fault detection. Hence, the interval time difference was 84 minutes. It considers such a 

high difference in the detection time instance needs more effort to study the nature of 

the influencing operation variables of the plant. 
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Figure 6.35 IMS-I output during the first validation real data set (T6) 

6.4.7 IMS-11 Validation Results of Trip 7 

Figure (6.36) shows the IMS-I output through the seventh validation data set for a 

"high temperature superheater" trip. From the graph, it can be observed that even 

though the fault is detected by the intelligent system; there are several intervals where 

the system output returned to the normal operation limit. That occurred twice during 

the main period of the specific fault and it also took place towards the end of the fault 

(after interval 78). The system was extremely fast in det<:cting the fault within 5 

intervals (35 minutes before the plant monitoring system). The IMS-I output value 

was 0.62. With that output value it's considered as a strong indicator of the faulty 

boiler operation existence. The validation results before and after using the IMS-II 

outcomes shows that the second validation process did better than the first one based 

on the rapid fault detection. Thus, the difference in detection time instance was 12 

minutes. 
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Figure 6.36 IMS-I output during the first validation real data set (T7) 

6.5 Comparison between IMS-1 and IMS-11 Performances 

The proposed IMS-I was capable of detecting the specific boiler operation trips before 

the fault occurrence with exception of trip 2 (at the same time as the plant control 

system), with slight differences from the first proposed system and it's considered 

satisfactory. 

Based on the previous section results, it is obvious that the IMS-II was capable of 

finding an optimal solution that provided satisfactory accuracy in the NN training and 

validation processes. The IMS-II was proposed in order to optimize and automate the 

procedure of selection of the optimal combination of NN topologies and boiler 

operation variables for a specific boiler trip. 

The most commonly used technique for that purpose is a pure NN. It was clear 

that the general problem space under investigation is infinite. The problem space can 

be radically diminished after some limitations on the selection of the available NN 

topologies and the number of the most influential boiler operation variables as NN 

inputs. A pure NN technique in this kind of problem covers limited portions of them. 
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It can be noticed from the literature, that for some cases the pure NN technique 

may be "profitable", while for some others it may be "unprofitable". However, when 

the problem space is enormous, the probabilities of being profitable decrease 

radically. But, the luck of the pure NN technique to be successful increases with the 

use of experience and achievable knowledge by the user who performs the technique 

[14-19]. 

In this work, the problem space consisted of 246 possible combinations. If one also 

considers that each combination has to be trained several times with different initial 

conditions, then it's clear that an exhaustive search becomes almost impractical and 

the pure NN technique becomes quite ambiguous. A sophisticated optimization 

technique merged with an NN technique as a hybrid intelligent system, is able to 

explore vast spaces of the considered problem in a computationally intelligent way so 

that the processing power is radical to an exhaustive search and the problem results 

are more probable to be an optimal solution than the result of a pure NN technique. 

After all of these, it can be concluded that a direct comparison of results achieved 

by IMS-II and by IMS-I cannot lead to a complete decision on which the best system 

is, but it can give an insight into the successful degree of the IMS-II. Therefore, a 

preliminary training process was performed using a pure NN in order to find the 

optimal NN topology. 

The search explorations were essentially focused on lHL and 2HL architectures. 

Detailed results that were obtained by the IMS-I, together with the ones achieved by 

the IMS-II, are shown in Table (6.38). 

Table 6.38 Optimal solution given by the IMS-I and IMS-II 

IMS-1 IMS-11 

ANN Topologies ANN Topologies 
T RMSE 

Architecture 
Activation Training RMSE 

Architecture 
Activation Training 

Function Algorithm Function Al2orithm 
I 0.0642 6HLI L+L SCG 0.2029 9HLI-3HL2 P+L+P Rprop 

2 0.1414 3HL1-10HL2 L+T+L Rprop 0.1387 711LI-4HL2 L+P+L LM 
3 0.2752 211LI-311L2 P+T+L BFGS 0.2564 IOHLI L+P Rprop 
4 0.3597 6HL1-2HL2 L+L+L LM 0.2599 311Ll-5HL2 L+T+T BFGS 
5 0.3571 4HLI-9HL2 P+L+L BFGS 0.2835 2HLI-10HL2 P+L+L SCG 
6 0.337 3HLI-711L2 L+L+L SCG 0.3367 411LI-6HL2 L+T+P BFGS 
7 0.4247 IOHLI L+L Rprop 0.3794 5HLI-7HL2 T+L+L BFGS 
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Table (6.38) shows that the IMS-II did slightly better than the IMS-I in most 

boiler trips with exception of trip I. The two hidden layer network seemed to 

outperform in general the one hidden layer ones. Also, it seemed that the BFGS Quasi 

Newton and Resilient Back-Propagation training algorithms outperformed the other 

two training algorithms in most cases. 

The logistic activation function and linear summation in the first hidden and 

output layer nodes outperformed other activation functions in most cases. A slightly 

lower RMAE was observed in the second system which reveals that the IMS-II 

perfonned better than the IMS-I. Only for the first trip of the hybrid system does it 

give a worse performance than the performance of the IMS-I (higher error). 

Concerning trip (1 ), it is the opinion of the researcher to extend the work on the 

tube leakage fault, where its nature is different than the other boiler trips. It is not 

subjected to sensing and measurable variables in contrast to the other trips, where the 

related variables were measurable. 

The global optimal selections by a plant control system and a hybrid IMS system 

are given in Table (6.39). From this table; it's clear that the IMS-II succeeded in 

finding the most effective boiler operation with expectation of trip 6. 

Table 6.39 The most effective boiler variables by plant control system and IMS-II 

Effective boiler operation variables 

Trip Plant control system IMS-11 

I V[5,8,9, II, 14, 17,18,20,22,23,24,25,26,27,29] V[1 ,2,3,4,5,6, 1 0,18, 19,20,21 ,25] 

2 V[3,4,5,9,11, 12,20,21 ,31] V[2.8.11] 

3 V[l ,2,3, 13, 19,24] V[l,3,9, 12] 

4 V[5,8,23,25,26,27 ,28] V[1,2,3,4,5,6,9] 

5 V[ I ,2,3, I3, I5, I9,20,2I,22,23,24,29,31] V[3,7,IO,II,I2,I7.22,23,26] 

6 V[ I ,3,4,6, I2, I3, I5, I8, I9,30] V[8,II] 

7 V[2,4,14, I9,2I] V[2,7,IO,II,l2,14] 
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6.6 Actions on Detecting the MNJTPP Boilers Trips 

After the detection of the faulty boiler operation and id•:ntification of the specific 

trip(s), taking a certain remedial action is possible and a more appropriate approach. 

The corrective action might come in many different forms. It is fairly possible, and 

evidently a simple remedy, to read just some control component so as to restore a 

satisfactory operation. On the other hand, the fault has to be pinpointed so that a 

replaceable component or sub-system can be introduced. 

The former course of action has many similarities with the concept of adaptive 

control. In fact, tracing a fault back to its real cause 1 s not essential since the 

interaction of different components is likely to cause different faults that can be traced 

back to many alternate sources. 

When a failure or incipient failure, has been detected, 1t is considerably possible 

to come up with substitute measurements to reduce downtime. Substitute 

measurements involve the determination of the missing measurements mainly from 

general energy and mass balances. The provision for substitute measurements is, in 

fact, equivalent to providing stand-by or redundant instruments in the process of a 

failure, but without incurring any extra costs except computer cost [2]. 

If an operator detects a malfunction, he generally manipulates the process control 

system in order to place the automatic loop on manual control. Similarly, with a 

computer control, a supervisory program can prevent control action from being taken 

based on incorrect information by closing paths in the redundancy network which 

include the faulty equipment, and divert the information flow through a path known to 

be functioning correctly [2]. 

This function can be easily implemented as a simple computer program, there by 

improving plant availability in the face of instrument or equipment failure. In either 

case, when the fault is detected, distinguishing whether the trouble is in the plant or in 

the detectors is an important decision that should be made. Second, a decision has to 

be made to determine whether the fault is fatal or just temporary. A real failure might 

call for an urgent plant shutdown, whereas, if the trouble resides in the measuring 
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instruments, the plant continues running, but the operators will be alarmed about the 

anomalies. 

Tables ( 6.40 through 6.46) illustrate the necessary actions that should be taken by 

the MNJTPP operator to take appropriate corrective action. These tables have been 

built based on the proposed IMS-II results. The shaded table fields represent the 

global influential boiler variables to the plant monitoring system and the proposed 

IMS-II. 
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Table 6.40 Necessary actions for trip (I) 

Investigations Possible Causes Actions To Be Taken 

Ask The Instrumentation Specialist For 

Failure In Investigations Anti Take The Appropriate 
High Alarm 

Measurements Corredive Action 

Sensors Actuators 
TOTAL COMBINED 

STEAM FLOW JMJG _ Ul_ HACO lCF50lX5V 

FEED WATERFLOW JMJG Ul HAC61CF501X5V - -

JMJG_ U l_HADO! CP50l AX\' I 

BOILER DRUM JMJG_UI_HADO!CPSOJBXVl 
PRESSURE 

JMJG_Ul_HADOICP501CXv l 

JMJG Ul HADOICP501X3\' 

SH STEAM PRESSURE JMJG Ul HAH92CP50JX3\' 

SHSTEAM JMJG UJ HAH92CT501X3\' 
TEMPERATURE 

""' JMJG_ Ul_HACO! CT50JX3v ..... ..... 
= ECONOMISER INLET 

JMJG_UI_HACOlCTSOJXVl 

;:;;J TEMPERATURE 
I JMJG_UI_HACOlCT502XVl 
~ 
~ JMJG _ Ul_HACO!CT503XVl 
a. 
..J JMJG _ U l_ HAH9l CT55l XV l 
a. 

,.Q JMJG Ul HAH9lCT552XVl = - -

E-o HT S/HTR 1/L HDR MET JMJG Ul HAH9lCT553XVl - TEMP -~ JMJG _ U l_ HAH9lCT554XVl 

~ JMJG_Ul_HAH9lCT60JXVl 
j,., 
a. JMJG _ U l_HAH9lCT602XVl ..... 
~ 

JMJG _ U l_ HAC2l CT50l XV l 

~ ECONOMISER OIL TEMP 

j,., 
JMJG _ U l_HAC22CT50 I XV I 

a. - JMJG_UJ_HAC61CF501AXVl ..... 
0 

=:l FEEDWATER FLOW TX 
JMJG_Ul_HAC61CF501BXVI 

JMJG_ Ul_HAC6l CF50l CXVl 

JMJG Ul HAC61CF501X3V - -

BOILER CIRC PMPI JMJG_Ul_HAGOICPSOJXVl 
DIFFPRESS 

JMJG_Ul_HAGOJCP502XVl 

BOILER CIRC PUMP2 JMJG Ul HAG02CP50lXVl - -

DIFF PRESS 
JMJG Ul HAG02CP502XVl 

- -

LT S/HTR RW EXCH JMJG Ul HAH39CT5l!XVl - -

MET TEMP 
JMJG _ U l_ HAH39CT512XVl 
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Table 6.41 Necessary actions for trip (2) 

Investigations Possible Causes Actions To Be Taken 
Ask The Instrumentation Specialist For 

Failure In Investigations And Take The Appropriate 
High Alarm 

Measurements Corrective Action 

Sensors Actuators 

FEED WATER FLOW JMJG_ UJ _HAC61 CF50 IX5V 

"' ~ JMJG UJ HAH90CT511XV! ..... 
eo: JMJG UJ HAH90CT512XV! ~ 

= JMJG UJ HAH90CT51JXV! 

"' 
HT S/HTR EXCH MET 

~ TEMP JMJG UJ HAH90CT514XV! 
Q.. 

= JMJG UJ HAH90CT5!1XVI 
[/) 

!"') JMJG UJ HAH90CT512XVI 
~ 

"' 
..... 
·~ JMJG UJ HAH90CT51JXVI = = - -..... ;:;. JMJG UJ HAH92CT50!XVI eo: 

"' ~ JMJG UJ HAH92CT502XVI 
Q.. 

e FINAL SIHTR OIL 
JMJG UJ HAH92CT503XVI 

~ TEMPERATURE JMJG UJ HAH93CT501XVI f-< 
~ JMJG _ UJ _ HAH93CT502XVI 

0 JMJG UJ HAH93CT50JXVI 
....;l 

JMJG UJ HAH93CT501XJV 
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Table 6.42 Necessary actions for trip (3) 

Investigations Possible Causes Actiom To Be Taken 

Ask The Instrumentation Specialist For 

Failure In Investigations And Take The Appropriate 
High Alarm 

Measurements Corr<·ctive Action 

Sensors Actuators 

TOTAL COMBINED JMJG _ UJ _HACO I CF501 X5V 
STEAM FLOW 

JMJG_U3_HADOICP501AXVI 

BOILER DRUM JMJG _ UJ _HADOI CPSOI BX'/1 

PRESSURE 

~ JMJG_ U3_HADOICP501CXVI 
Q 
~ JMJG_ UJ _ HADO I CP50 IXJ\' -~ 
> JMJG_ U3_HAH90C'T515XVI 
~ 

~ ~ 

s ..... JMJG_U3_HAH90CT516XVI ·- IT SIHTR EXCH MET = = ~ TEMP 
JMJG_ UJ _ HAH90CT517XVI 

'"' Q 

'"' JMJG_ U3_HAH90CT518XVI 
~ -·-Q 
~ JMJG_ UJ_HAH92CT501XVI 

JMJG_ UJ_HAH92CT502XVI 

JMJG _ UJ _ HAH92CT50JXVI 

FINAL S/HTR OIL 
TEMPERATURE JMJG_ U3_HAH9JCT501XVI 

JMJG_ UJ_HAH93CT502XVI 

JMJG _ UJ _ HAH93CTSOJXV I 

JMJG_ U3_HAH93CT501XJV 
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Table 6.43 Necessary actions for trip (4) 

Investigations Possible Causes Actions To Be Taken 
Ask The Instrumentation Specialist For 

Failure In Investigations And Take The Appropriate 
High Alarm 

Measurements Corrective Action 

Sensors Actuators 

TOTAL COMBINED 
JMJG_ U2 _ HACO I CF50 IXSV 

STEAM FLOW 

FEED WATERFLOW JMJG _ U2 _ HAC61 CF501 XSV 

JMJG _ U2 _ HADO I CP501AXVI 

BOILER DRUM JMJG U2 HADOICP501BXVI 
N 

- -

PRESSURE ... .• JMJG U2 HADOICP501CXVI = - -

;;;J 
I JMJG _ U2 _ HADOI CPSO!XlV 

~ 
SH STEAM PRESSURE Q JMJG_ U2_HAH92CP501X3V 

....:l - SHSTEAM 
~ JMJG U2 HAH92CT501XJV 
> TEMPERATURE - -

~ 
JMJG U2 HACOICT501XJV ....:l - -

e JMJG _ U2 _ HACOI CT501 XVI = ECONOMISER INLET ... TEMPERATURE 
~ JMJG U2 HACO I CT502XV! - -... 
~ 

JMJG U2 HACO!CT50JXV! -.• - -

Q 
~ JMJG U2 HAH90CT5!5XV! - -

JMJG U2 IIAII90CT516XV! 
IT SIHTR EXCH MET 

- -

TEMP 
JMJG_U2_HAH90CT51JXV! 

JMJG U2 HAH90CT518XV! - -
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Table 6.44 Necessary actions for trip (5) 

Investigations Possible Causes Actions To Be Taken 
Ask The Instrumentation Specialist For 

Failure In Investigations And Take The Appropriate 
High Alarm 

Measurements Corredive Action 

Sensors Actuators 

!MIG U2 HADOICP501AXVI 

BOILER DRUM !MIG U2 HADOICP501BXVI 
PRESSURE 

!MIG U2 HADOICP501CXVI 

!MIG U2 HADOICP501XJV 

!MIG U2 HAJ61CT501AXVI 

ECONOMISER INLET JMJG U2 HAJ61CT501BXVI 
TEMPERATURE 

!MIG U2 HAJ62CTlOIAXVI 

!MIG U2 HAJ62CT501BXVI 

JMJG_U2_HAH91CT551XVI 

JMJG_U2_HAH91CT552XVI 

HT S/HTR IlL HDR MET JMJG U2 HAH91CT553XVI - -

TEMP 
JMJG_U2_HAH91CT554XVI 

JMJG_U2_HAH91CT601XVI 

!MIG_ U2 _IIAH91 CT602XVI 

JMJG_U2_HAH92CT501XVI 
M .... !MIG_ U2_HAH92CT502XV I ... = !MIG_ U2 _IIAH92CT503XVI 
;;J FINAL S/HTR 0/L 

I TEMPERATURE JMJG_ U2_HAH93CT50 lXVI 

Q. JMJG U2 HAH93CT502XVI e - -

= !MIG_ U2_HAJI93CT503XV I 
~ 

!MIG U2 HAH93CT50 IXJV 
"0 - -

~ JMJG_ U2_HAII93CP501XV I 
~ .... JMJG_ U2_HAH93CP502XV I 

'"' JMJG_ U2_HAH93CP50JXV I ~ -... c S/HTR STEAM PRESS TX !MIG_ U2_HAH92CP501 XV I 
~ (CONTROL) 

JMJG _ U2 _HAH92CP502XV I 

JMJG U2 HAH92CP503XV I - -

JMJG_ U2 _IIAH92CP501X3V 

JMJG _ U2 _ HAH93CP501 XJV 

DRUM LEVEL JMJG _ U2_HADO I CL651 X5V 
COMPENSATED ~~OM 

PROTECTION 
LT S/HTR LW OIL BFR 

!MIG_ U2_HAH37CT50 I XVI D/SHTR 

LT S/HTR RW OIL BFR 
JMJG _ U2 _ HAH38CT50 I XVI D/SHTR 

JMJG_U2_HAH80CT511XVI 

JMJG U2 HAH80CT512XVI - -

IT S/HTR EXCH MET !MIG_ U2_HAH80CT513XVI 
TEMP 

JMJG U2 HAH80CT514XVI - -

JMJG _ U2_HAH80CT515XV I 

JMJG U2 HAH80CT516XVI - -
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Table 6.45 Necessary actions for trip (6) 

Investigations Possible Causes Actions To Be Taken 
Ask The Instrumentation Specialist For 

Investigations And Take The Appropriate 
High Alarm Failure In Measurements Corrective Action 

Sensors Actuators 

JMJG U2 HAH90CT51\XV I - -

M JMJG_ U2_HAH90CT512XV I -... HT S/HTR EXCH MET TEMP 

= JMJG U2 HAI\90CT51 JXV I 
;;J 

- -

..c: JMJG_U2_HAH90CT514XVI 
~ ... 
= JMJG_ U2_HAH92CT50\ XV I -QJ .. JMJG U2 HAH92CT502XVI 
QJ - -

~ 

e JMJG U2 HAH92CT503XVI - -

= FINAL S/HTR 0/L 

"' TEMPERATURE 
JMJG_ U2 _HAH9JCT50 \XVI 

Q 

"' JMJG_ U2_HAH9JCT502XVI 
QJ -... 0 JMJG _ U2_HAH9JCT503XVI = 

JMJG U2 HAH93CT50\XJV - -
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Table 6.46 Necessary actions for trip (7) 

Investigations Possible Causes Actions To Be Taken 

Failure In 
Ask The Instrumentation Specialist For Investigations 

High Alarm And Take The Appropriate Corrective Action 
Measurements 

Sensors Actuators 
FEED WATER FLOW JMJG Ul HAC61CF501X5V 

JMJG_UI_HAJ61CT501AXVI 

ECONOMISER INLET JMJG_ UI_HAJ61CT50 IBXVI 

TEMPERATURE 
JMJG _ UI_HAJ62CT501AXVI 

JMJG _ Ul_ HAJ62CT50 I BXVI 

JMJG Ul HAH91CT551XVI - -

JMJG Ul HAH91CT552XVI - -

JMJG Ul HAH91CT55JXVI 
HT S/HTR IlL HDR - -

MET TEMP 

..... JMJG_ U I_HAH91 CT554XV1 ... ... JMJG_Ul_HAH91CT601XVI = ::-
I JMJG_Ul_HAH91CT602XVI .. 
~ ... JMJG_UI_HAH92CT501XVI 
~ 
~ -= JMJG_UI_HAH92CT502XVI I .. 
~ 
c. JMJG_UI_HAH92CT50JXVI = rJ) FINAL S/HTR 0/L 
~ TEMPERATURE 

JMJG_UI_HAH93CT501XVI .. = JMJG _ U I_HAH93CT502XV I ... 
~ .. 
~ JMJG _ Ul_HAH93CT503XV I ' 

c. 
e JMJG _ Ul_HAH93CT501X3V ~ 

E--
-= JMJG_Ul_HAH93CP501XV1 
OJ) ... 
:I: JMJG_U I_HAH93CP502XVI 

JMJG _ U I_HAH93CP503XV I 

SIHTR STEAM PRESS 
JMJG_U I_ HAH92CP501 XV I 

TX (CONTROL) 
JMJG _ Ul_HAH92CP502XV I 

JMJG_ U I_HAH92CP503XVI 

JMJG Ul HAH92CP501X3V - -

JMJG _ Ul_HAH93CP501XJV 

FEEDWATER SIU JMJG_UI_HACOICGI23CXVI 
CONTROL VALVE 
POSIT ON 
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6.7 Summary 

The two systems were coded in MA TLAB environment. The results of the proposed 

IMSs (training and validation) together with some additional information about the 

IMSs' performance were presented. Consequently, the achieved results from the 

proposed systems were led to some complete decision on which was the best system 

but it gave an insight into the successful degree of the IMS-II. The overall 

performance and adaptability of the proposed IMSs were discussed. Slightly lower 

root mean square error was observed in the second system which reveals that the 

IMS-II performed better than IMS-I. The discussion focused on determining the best 

NN topologies combination together with the most influence boiler operation 

variables for each trip. Furthermore, an 'action to be taken' guide was proposed and 

presented to assist the plant operator to avoid or reduce the trip occurrence. The 

proposed intelligent systems could be applied on-line as a reliable controller of 

thermal power plant boiler. 
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7.1 Introduction 

CHAPTER 7 

CONCLUSIONS AND FUTURE WORKS 

Motivated by the need for an "early boiler trips" detection system to maintain normal 

and safe operational conditions. two artificial intelligent monitoring systems (IMSs) 

specialized in boiler trips diagnosis were proposed in this work. The IMS-1 represents 

the use of a pure artificial neural network technique (Pure ANN). The IMS-11 was a 

hybrid intelligent system which merges Genetic Algorithms and Artificial Neural 

Networks as a hybrid intelligent system (ANN+GA). 

The processes of training and validation of the two systems have been performed 

using real boiler operational data captured from the plant int,~gration acquisition (PIA) 

system of the MNJ coal-fired power plant. Seven boiler trips were considered as 

follows: boiler water wall tube leak trip (Tl), low temperature superheater trip (T2), 

boiler drum water low level trip (occurred twice in different identical boiler units, T3, 

T4), boiler feed pump trip (5), boiler drum water high level trip (T6), and high 

temperature superheater trip (T7). 

An integrated plant data preparation framework for seven boiler trips with related 

operational variables has been proposed for the IMSs data analysis. The MLP feed­

forward NN methodology has been adopted as a major computational intelligent tool 

in both systems. The main advantage of this computational tool is that no 

mathematical model for boiler trip detection was needed. 



In order to achieve the overall objectives of the research, four implemental phases 

have been proposed and executed in the order below: 

1. Plant data preparation phase. 

n. Development ofiMS-I (Pure ANN) phase. 

iii. Development ofiMS-II (ANN+GA) phase. 

iv. Analysis and development of advisory guide phase. 

7.2 Contributions of the Research 

The main contributions of the present work presented m this thesis could be 

summarized in the following order: 

I. Adoption of real data for training and validation 

The reviewed literature addresses that a few relevant approaches have been conducted 

using real site data. The majority of the literature works (which were applied mostly 

in nuclear power plants) are based on mathematically simulated data, which is 

inappropriate for decision making. In this work, real plant data containing normal and 

faulty boiler operation patterns from the MNJ coal-fired power plant have been 

identified, captured, manipulated and used to train and validate the established codes. 

2. Integrated data preparation framework for (IMSs) 

No standard data preparation framework for IMSs so far has been suggested. 

Following the envisaged importance of plant data preparation, a framework for seven 

boiler trips with thirty-two operational variables has been proposed to train, validate 

and analyze the IMSs. The integrated plant data scheme consisted of three stages: 

1. Data pre-analysis stage, in which boiler operational variables were 

identified and collected for each specific boiler trip. 

11. Data preprocessing stage, in which noisy and non-number data was 

filtered and normalized between one and zero. 
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iii. Data post-analysis stage, in which data was segmented into two sub groups 

for each trip, NN targets were identified and the behaviors of the 

influencing boiler operation variables were analyzed. 

The data preparation framework presented in this research was much broader than 

other proposed frameworks and it is aimed at filling up a gap in the literature. 

3. Development of MA TLAB codes for IMSs 

The proposed IMSs were coded in MATLAB software. The first code permits training 

and validation of the IMS-I. The second code was structured to permit optimization, 

training and validation of the IMS-II. The hybrid system is capable of performing 

optimal selection of main NN topology combinations and boiler operation variables. 

4. Development of IMS-II for thermal power plant boiler 

After the investigation of various main ANN topology combinations, a new technique 

has been introduced in the IMS-II which couples the ANN with the GA into a hybrid 

to explore the final architecture of the hybrid intelligent system. In addition, the IMS­

II has been adopted to select the most influential variables from hundreds of boiler 

operation variables. This technique replaces the trial and error of the pure NN 

approach and overcomes the difficulties in human intervention which are commonly 

used in the ANN training. 

7.3 Critique of the Work 

The two IMSs presented in this work were proposed to guide the search for an 

optimal NN topology combinations and boiler operational variables selection. 

However, there are some limitations in the current proposed IMSs which require 

further efforts to enhance their capability. 

The first limitation is on the pure NN training algorithm. The back-propagation 

NN is probably the best known and the most commonly used among the current types 

of ANN training algorithms. This network is an outgrowth of perceptrons, with the 

addition of hidden layers and the use of the Generalized Delta Rule for learning. The 
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principle disadvantage of the back-propagation is the processing speed (computational 

time) at which the learning converges or learns. The elementary back-propagation 

topology was manipulated in many ways to bias this algorithm to converge faster. 

The second limitation is on the GAs. GAs can be trapped in local minima if initial 

population is not good enough and it requires some general a priori knowledge or 

intuition about the proposed system. The degree of the GA success is based on its full 

automation for the combinational problems. More specifically, it incorporates some 

user experience about the system problem. 

The other limitation is the number of the effective operational variables. The 

boiler operation variables selection is extremely an important issue. In the present 

work, thirty-two boiler operation variables have been selected for the proposed IMS-1 

based on the plant operator experience. Such decision requires further searches and 

investigations to improve the IMSs performance by identity, more specifically, the 

most influential variables on each boiler trip. 

7.4 Conclusions ofiMSs 

Since different results were gained from the two proposed IMSs, the conclusions 

would be segregated to present the findings from each system, separately: 

7.4.1 The IMS-1 Conclusions 

1. The feed forward NN methodology was capable of exploring the most suitable 

NN topology combination for each trip, involving: type of multidimensional 

minimization training algorithms, type of activation function, the number of 

neurons for each hidden layer and the number of hidden layers based on the 

NN performance indicator (RMSE). 

11. The one Hidden Layer NN structure (IHL) and two Hidden Layer NN 

structure (2HL) were applied for each trip. No general trend of the HL 

selection was gained. The I HL produced better detection, in cases of trip l and 

trip 7, while 2HL performed better for all other trips. 
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iii. The Levenberg-Marquardt training algorithm pro"ided a smaller error value 

compared to the other three training algorithms for trip 4 and trip 7. For trip 3 

and trip 5, the smallest error value was achieved by the BFGS Quasi Newton 

training algorithm. The Resilient Back-Propagation outperformed the other 

three training algorithms for trip 2. The Scaled Ccnjugate Gradient gave the 

best NN topology combination with a minimum error value for trip I and trip 

6. 

IV. The logistic activation function for the output node performed better than the 

other two activation functions in most cases. 

v. All the seven boiler trips considered in this study were detected by the 

proposed pure system before or at the same time as the plant control system, 

so that the IMS-I can be applied on-line as a reliabk monitoring system of the 

operation of a thermal power plant boiler. 

7.4.2 The IMS-11 Conclusions 

1. Encoding and optimization process of a GA was suc:essfully applied to select 

the best NN topology and boiler operation variabl·~s combination problems 

such as the decision of what are the optimal NN topology combination and the 

most effective boiler operation variable for a specific trip. 

n. In most cases, the IMS-II should be preferable, mostly due to its automated 

methodology, compared to the IMS-I based on the properties of optimization. 

iii. Slightly better trip detection performance was observed in the IMS-II 

compared with the IMS-1. Only for the first trip of the hybrid system was it 

retarded in detecting compared with IMS-1. The reason behind this is that the 

tube leakage case is more likely to be a breakdown fault than a measurable 

boiler trip. 

IV. In most cases, the IMS-II results could give useful information about the 

specific trip and insight for further, more flexible methodology of the IMS-1. 
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7.5 Recommendations and Future Works 

1. The heuristic optimization method of genetic algorithms can be used to 

explore the optimal learning rate, NN connections weight, coefficient of 

momentum, number ofNN iterations and partial connections. 

n. There was some confusion about the boiler wall tube leak trip (trip!) 

diagnosis. In order to overcome this kind of confusion, trip one should be 

considered as a break down. More operational variables need to be sampled in 

order to distinguish this type of break down, which is not an operational 

variable; e.g. corrosion, acid attack, graphitization ... etc. 

iii. To approach the actual thermal power plant application, many boiler trips have 

to be monitored, which requires more real data from the plant to train and 

validate the IMSs. 

tv. The IMSs could be coupled with a "safety variables display" control system in 

order to assist the plant operator in monitoring the plant operating conditions. 

v. The effectiveness of the intelligent monitoring systems reported here relayed 

strongly on two resources of information. The first resource was the domain 

knowledge of boiler trips. The second resource was the boiler operational 

measurements for each specific boiler trip. Complete and detailed 

measurements will increase the results reliability of the intelligent monitoring 

systems. Therefore, addition of any measurement will enhance the 

performance of these intelligent monitoring systems. Analytical process 

development of intelligent monitoring systems for cost and benefits evaluation 

with utilizing additional measurements would be worth more for guiding 

future applications. 

vt. The plant operators' experience, whose knowledge will be elicited, should be 

educated on the basics of methods that are adopted in the intelligent 

monitoring systems. This would be more helpful for them to judge the level of 

their knowledge and to provide the domain knowledge consequently. 

vii. Maintaining the knowledge bases is recommended in thermal power plants 

concerning the boiler operation before and during the actual execution of the 

proposed IMSs performance. 
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viii. A comprehensive intelligent trip detection interface should be designed in 

order to provide the analyzed performance status and advisory results from the 

IMSs to the user at the thermal power plant. Clear and efficient display of the 

IMSs results adds extra reliability to the trip detection system. 

IX. Two issues should be taken into account; the first is the history of the trips and 

the performance status in the detection domain. The second is the information 

about the plant maintenance schedule (the time left until the beginning or end 

of a scheduled maintenance). 

x. The present work provides intelligent trip detection for future thermal power 

plants. Therefore, its application in currently operating thermal power plant is 

recommended. 

XL Repeatability of the training and validation by different segregation criteria of 

the real data will provide important recommendations to the AIS researchers 

to train and validate their systems. 
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APPENDIX A: AUXILIARY IMS-II OUTCOMES 

Table A-1: Binary representation ofNN topologies for trip (l) 

T1 
Bit Sequence 

TA Architecture AF Boiler Operation Variables 

G I 2 3 4 5 6 7 8 9 0 I 2 3 4 5 6 7 8 9 0 I 2 3 4 5 6 7 8 9 0 I 2 3 4 5 6 7 8 9 0 I 2 3 4 5 6 

I 0 I 0 I 0 I I I I I 0 I I 0 I 0 0 I 0 I I I I I 0 I I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 I 0 0 0 I I I I I I I 0 0 I I I 0 0 0 0 I 0 0 I I I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 I 0 I 0 0 0 I I 0 I 0 I 0 0 0 I 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 I 0 0 0 I 0 I I I I 0 0 I I I I I I I I 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 I 0 0 0 I I I 0 0 I 0 I I I I I I I 0 0 I 0 0 I I I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 I I 0 I I I 0 I 0 I I 0 I I 0 I 0 0 0 0 I 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 0 I 0 0 I 0 I 0 0 0 0 0 I I 0 l I I I 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

8 l 0 0 I 0 0 I 0 I 0 0 l l I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 I 0 I I I I I 0 I I 0 0 0 

9 I I 0 0 I 0 0 0 0 0 I 0 I 0 0 I 0 0 0 0 I 0 0 I 0 0 0 0 0 0 I I 0 0 0 0 I 0 0 I I I 0 0 0 0 

iO 0 0 i u 0 I 0 I I 0 I I I 0 I I I I I I 0 0 0 I 0 0 0 0 0 0 0 I I I I 0 0 0 I 0 0 0 0 0 0 0 

II I I 0 I I 0 I 0 I I 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I I I 0 0 I 0 0 I I I 0 0 0 0 0 0 

12 0 0 0 0 I I 0 I 0 0 I I 0 0 I I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 I I I I 0 I I 0 

13 0 I 0 0 I 0 0 I 0 0 0 0 0 I 0 I 0 I I I I 0 I I 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 

14 0 l 0 0 0 I I 0 I 0 I 0 0 I 0 0 0 0 0 0 0 0 0 0 I I I I I I 0 0 I I 0 0 I 0 0 0 0 0 0 0 I I 

15 I I 0 I ,0 0 0 0 0 I 0 I 0 0 0 I 0 I 0 0 I 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
--··-
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Table A-2: Binary representation ofNN topologies for trip (2) 

Tl 
Bit Sequence 

TA Architecture AF Boiler OJ eratlon Variables 
G I 2 3 4 5 6 7 8 9 0 I 2 3 4 5 6 7 8 9 0 I 2 3 4 5 6 7 8 9 0 I 2 3 4 5 6 7 8 9 0 I 2 3 4 5 6 
I I 0 0 0 I I I I I I I 0 0 I I I 0 0 0 0 I 0 0 I I I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
2 0 0 I 0 0 I 0 I I 0 I I I 0 I I I I I I 0 0 0 I 0 0 0 0 0 0 0 I I I I 0 0 0 I 0 0 0 0 0 0 0 
3 0 0 0 0 I I 0 I 0 0 I I 0 0 I I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 I I I I 0 I I 0 
4 I 0 0 I 0 0 I 0 I 0 0 I I I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 I 0 I I I I I 0 I I 0 0 0 
5 I I 0 I I I 0 I 0 I I 0 I I 0 I 0 0 0 0 I 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
6 I I 0 0 I 0 0 0 0 0 I 0 I 0 0 I 0 0 0 0 I 0 0 I 0 0 0 0 0 0 I I 0 0 0 0 I 0 0 I I I 0 0 0 0 
7 I 0 0 0 I 0 I I I I 0 0 I I I I I I I I 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
8 0 I 0 0 0 I I 0 I 0 I 0 0 I 0 0 0 0 0 0 0 0 0 0 I I I I I I 0 0 I I 0 0 I 0 0 0 0 0 0 0 I I 
9 0 I 0 0 I 0 I 0 0 0 0 0 I I 0 I I I I 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
10 I I 0 I 0 0 0 0 0 I 0 I 0 0 0 I 0 I 0 0 I 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
II I 0 0 0 I I I 0 0 I 0 I I I I I I I 0 0 I 0 0 I I I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
12 0 I 0 0 I 0 0 I 0 0 0 0 0 I 0 I 0 I I I I 0 I I 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 
13 I I 0 I I 0 I 0 I I 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I I I 0 0 I 0 0 I I I 0 0 0 0 0 0 
14 0 0 0 0 0 I 0 I 0 0 0 I I 0 I 0 I 0 0 0 I 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
15 0 I 0 I 0 I I I I I 0 I I 0 I 0 0 I 0 I I I I I 0 I I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
16 I I 0 I I 0 I 0 I I 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I I I 0 0 I 0 0 I 0 0 I I 0 0 0 0 
17 I 0 0 0 I 0 I I I I 0 0 I I I I I I I 0 I 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
18 I I 0 0 I 0 0 0 0 0 I 0 I 0 0 I 0 0 0 0 I 0 0 I 0 0 0 0 0 0 I I 0 0 0 0 I 0 0 I 0 0 I I 0 0 
19 I I 0 I 0 0 0 0 0 I 0 I 0 0 0 I 0 I 0 0 0 I 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
20 () 0 I 0 0 I 0 I I 0 I I I () I I I I I I 0 0 0 I 0 0 0 0 0 0 0 I I I 0 I 0 0 0 I 0 0 0 0 0 0 
21 0 I 0 0 I 0 0 I 0 0 0 0 0 I 0 I 0 I I I I 0 I I 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 
22 I 0 0 I 0 0 I 0 I 0 0 I I I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 I 0 I I I I I 0 0 0 I I 0 
23 I 0 0 0 I I I I I I I 0 0 I I I 0 0 0 0 I 0 0 I 0 0 I I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
24 0 I 0 0 0 I I 0 I 0 I 0 0 I I 2 0 0 0 0 0 0 0 0 I I I I I I 0 0 I I 0 0 I 0 0 0 0 0 0 0 0 0 
25 I 0 0 0 I I I 0 0 I 0 I I I I I I I 0 0 I 0 0 I 0 0 I I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
26 0 I 0 0 I 0 I 0 0 0 0 0 I I 0 I I I 0 I 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
27 0 0 0 0 0 I 0 I 0 0 0 I I 0 I 0 I 0 0 0 0 I 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
28 0 0 0 0 I I 0 I 0 0 I I 0 0 I I I I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 I I I I 0 0 0 0 
29 0 I 0 I 0 I I I I I 0 I I 0 I 0 0 I 0 I I I I I 0 0 0 I I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
30 I I 0 I I I 0 I 0 I I 0 I I 0 I 0 0 0 0 0 I 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Table A-3: Binary representation ofNN topologies for trip (3) 

T3 
Bit Sequence 

TA Architecture AF Boiler Ow: eration Variables 
G I 2 3 4 5 6 7 8 9 0 I 2 3 4 5 6 7 8 9 0 I 2 3 4 5 6 7 8 9 0 I 2 3 4 5 6 7 8 9 0 I 2 3 4 5 6 
I 0 0 0 0 I I 0 I 0 0 I I 0 0 I I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 I I I I 0 I I 0 
2 I I 0 I I 0 I 0 I I 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I I I 0 0 I 0 0 I I I 0 0 0 0 0 0 
3 I I 0 I 0 0 0 0 0 I 0 I 0 0 0 I 0 I 0 0 I 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
4 I I 0 I I 0 I 0 I I 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I I I 0 0 I 0 0 I 0 0 I I 0 0 0 0 
5 0 0 0 0 0 I 0 I 0 0 0 I I 0 I 0 I 0 0 0 I 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
6 0 I 0 0 0 I I 0 I 0 I 0 0 I 0 0 0 0 0 0 0 0 0 0 I I I I I I 0 0 I I 0 0 I 0 0 0 0 0 0 0 I I 
7 I 0 0 0 I I I I I I I 0 0 I I I 0 0 0 0 I 0 0 I I I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
8 I 0 0 0 I I I I I I I 0 0 I I I 0 0 0 0 I 0 0 I 0 0 I I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
9 0 I 0 I 0 I I I I I 0 I I 0 I 0 0 I 0 I I I I I 0 I I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
10 0 I 0 I 0 I I I I I 0 I I 0 I 0 0 I 0 I I I I I 0 0 0 I I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
II 0 0 0 0 0 I 0 I 0 0 0 I I 0 I 0 I 0 0 0 0 0 I 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
12 0 I 0 0 I 0 I 0 0 0 0 0 I I 0 I I I I 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
13 I I 0 I I I 0 I 0 I I 0 I I 0 I 0 0 0 0 I 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
14 I 0 0 I 0 0 I 0 I 0 0 I I I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 I 0 I I I I I 0 I I 0 0 0 
IS I 0 0 0 I 0 I I I I 0 0 I I I I I I I I 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
16 I I 0 I 0 0 0 0 0 I 0 I 0 0 0 I 0 I 0 0 0 0 I 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
17 I 0 0 0 I 0 I I I I 0 0 I I I I I I I 0 0 I 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
18 I 0 0 I 0 0 I 0 I 0 0 I I I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ! 0 0 1 0 l . l l 1 0 0 0 i I u • 
19 0 1 0 0 i Q I u 0 0 0 0 I I 0 I I I 0 0 I 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
20 I I 0 0 I 0 0 0 0 0 I 0 I 0 0 I 0 0 0 0 I 0 0 I 0 0 0 0 0 0 I I 0 0 0 0 I 0 0 I I I 0 0 0 0 
21 I I 0 0 I 0 0 0 0 0 I 0 I 0 0 I 0 0 0 0 I 0 0 I 0 0 0 0 0 0 I I 0 0 0 0 I 0 0 I 0 0 I I 0 0 
22 0 I 0 0 0 I I 0 I 0 I 0 0 I I I 0 0 0 0 0 0 0 0 I I I I I I 0 0 I I 0 0 I 0 0 0 0 0 0 0 0 0 
23 0 I 0 0 I 0 0 I 0 0 0 0 0 I 0 I 0 I I I I 0 I I 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 
24 0 0 I 0 0 I 0 I I 0 I I I 0 I I I I I I 0 0 0 I 0 0 0 0 0 0 0 I I I I 0 0 0 I 0 0 0 0 0 0 0 
25 I 0 0 0 I I I 0 0 I 0 I I I I I I I 0 0 I 0 0 I I I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
26 I 0 0 0 I I I 0 0 I 0 I I I I I I I 0 0 I 0 0 I 0 0 I I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
27 0 0 I 0 0 I 0 I I 0 I I I 0 I I I I I I 0 0 0 I 0 0 0 0 0 0 0 I I I 0 0 I 0 0 0 I 0 0 0 0 0 
28 0 0 0 0 I I 0 I 0 0 I I 0 0 I I I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 I I I I 0 0 0 I 
29 I I 0 I I I 0 I 0 I I 0 I I 0 I 0 0 0 0 0 0 I 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
30 0 I 0 0 I 0 0 I 0 0 0 0 0 I 0 I 0 I I I I 0 I I 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 
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Table A-4: Binary representation ofNN topologies for trip (4) 

T4 
Bit Sequence 

TA Architecture AF Boiler Operation Variables 

G I 2 3 4 5 6 7 8 9 0 I 2 3 4 5 6 7 8 9 0 I 2 3 4 5 6 7 8 9 0 I 2 3 4 5 6 7 8 9 0 I 2 3 4 5 6 

1 0 I 0 0 0 I I 0 I 0 I 0 0 I 0 0 0 0 0 0 0 0 0 0 I I I I I I 0 0 I I 0 0 I 0 0 0 0 0 0 0 I I 
2 0 I 0 I 0 I I I I I 0 I I 0 I 0 0 I 0 I I I I I 0 I I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 I I 0 I 0 0 0 0 0 I 0 I 0 0 0 I 0 I 0 0 I 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 I 0 I 0 I I I I I 0 I I 0 I 0 0 I 0 I I I I I 0 I I 0 0 0 0 0 0 0 0 0 0 0 I I 0 0 0 0 0 0 
5 I I 0 I I I 0 I 0 I I 0 I I 0 I 0 0 0 0 I 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 I I 0 I 0 0 I I 0 0 I I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 I I I I 0 I I 0 

7 I 0 0 I 0 0 I 0 I 0 0 I I I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 I 0 I I I I I 0 I I 0 0 0 

8 0 0 0 0 0 I 0 I 0 0 0 I I 0 I 0 I 0 0 0 I 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

9 I 0 0 0 I I I I I I I 0 0 I I I 0 0 0 0 I 0 0 I I I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

10 0 I 0 0 I 0 I 0 0 0 0 0 I I 0 I I I I 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
11 I I 0 I I 0 I 0 I I 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I I I 0 0 I 0 0 I I I 0 0 0 0 0 0 

12 0 0 0 0 0 I 0 I 0 0 0 I I 0 I 0 I 0 0 0 I 0 0 I 0 0 0 0 0 0 0 0 0 0 I 0 I I 0 0 0 0 0 0 0 0 

13 I 0 0 0 I I I I I I I 0 0 I I I 0 0 0 0 I 0 0 I I I 0 0 0 0 0 0 0 0 0 0 0 0 I I 0 0 0 0 I I 

14 I 0 0 0 I 0 I I I I 0 0 I I I I I I I I 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
15 I I 0 I I 0 I 0 I I 0 0 0 I I I 0 0 0 0 0 0 0 0 0 0 0 0 0 I I 1 0 0 I 0 0 1 I I 0 0 0 0 0 0 
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Table A-5: Binary representation ofNN topologies for trip (5) 

TS 
Bit Sequence 

TA Architecture AF Boiler Operation Variables 

G I 2 3 4 5 6 7 8 9 0 I 2 3 4 5 6 7 8 9 0 I 2 3 4 5 6 7 8 9 0 I 2 3 4 5 6 7 8 9 0 I 2 3 4 5 6 

I 0 I I 0 I 0 I 0 I 0 0 I 0 I 0 I I 0 0 0 I 0 0 I 0 0 0 0 0 I 0 0 I 0 I 0 0 0 I 0 I 0 0 0 0 0 

2 I I I 0 I 0 0 0 0 0 I 0 I I 0 0 0 0 0 I I I I I 0 I I 0 0 0 0 0 0 0 0 0 I 0 0 I 0 0 0 0 0 0 

3 I 0 0 0 0 0 I 0 0 0 I 0 0 I I I I 0 0 0 I 0 0 I I I 0 0 0 I I 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 I I I I I I 0 0 0 0 I I I 0 0 I 0 0 I I I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 I 0 I 0 0 I I 0 0 I 0 0 0 0 0 0 0 I 0 0 I 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 I 0 0 I 0 I 0 1 I 0 0 I I 0 0 0 0 0 0 0 I 0 0 I I I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 

7 I 0 0 I 0 0 0 0 I I 0 I 0 I 0 0 0 0 0 0 I 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

8 0 0 I 0 0 0 I I 0 0 I I 0 I 0 0 I I 0 0 I 0 0 I I I 0 0 0 0 0 I 0 I 0 0 0 0 I 0 0 0 0 0 0 0 

9 I 0 0 0 0 I 0 I 0 0 0 I 0 I 0 0 0 I I 0 I 0 0 0 I I I 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 I I I 0 

10 I 0 0 0 0 0 0 I 0 0 0 0 I 0 I 0 0 I 0 0 I 0 0 I 0 0 0 0 0 0 0 0 0 1 0 0 0 0 I 0 0 0 0 0 0 0 

II 0 I 0 0 I 0 0 I I 0 I I I I 0 0 I 0 0 0 I 0 0 I I I 0 0 0 0 I 0 0 0 0 I I 0 0 I 0 0 0 0 0 0 

12 0 I 0 I I 0 I I 0 0 0 I 0 0 0 I I I I I 0 0 0 I 0 0 0 0 0 0 I 0 0 0 I 0 0 0 0 0 I 0 0 0 I 0 

13 I 0 I 0 I I 0 I 0 I I 0 I 0 I 0 I I 0 0 I 0 0 0 I I I 0 0 0 0 I 0 0 0 0 0 0 I 0 0 0 0 0 0 0 

H 0 A A ' A 0 1 0 0 0 i 0 0 u u I 0 I 0 0 I 0 0 I I I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 v v ' v v 

15 0 I 0 0 I I 0 I I 0 0 0 I 0 0 0 I 0 I 0 I 0 0 0 I I I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Table A-6: Binary representation ofNN topologies for trip (6) 

T6 
Bit Sequence 

TA Architecture AF Boiler Operation Variables 
G I 2 3 4 5 6 7 8 9 0 I 2 3 4 5 6 7 8 9 0 I 2 3 4 5 6 7 8 9 0 I 2 3 4 5 6 7 8 9 0 I 2 3 4 5 6 
I I 0 0 0 0 0 0 I 0 0 0 0 I 0 I 0 0 I 0 0 I 0 0 I 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 I 0 0 0 0 0 0 

2 I 0 0 I 0 0 0 0 I I 0 I 0 I 0 0 0 0 0 0 0 I 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
3 0 I 0 0 I 0 0 I I 0 I I I I 0 0 I 0 0 0 I 0 0 I I I 0 0 0 0 I 0 0 0 0 I 0 I 0 0 I 0 0 0 0 0 

4 I 0 0 0 0 0 I 0 0 0 I 0 0 I I I I 0 0 0 I 0 0 I I I 0 0 0 I 0 I 0 0 I 0 0 0 0 0 0 0 0 0 0 0 

5 I I I 0 I 0 0 0 0 0 I 0 I I 0 0 0 0 0 I I I I I 0 I I 0 0 0 0 0 0 0 0 0 0 I 0 0 I 0 0 0 0 0 

6 I 0 0 I 0 I 0 I I 0 0 I I 0 0 0 0 0 0 0 I 0 0 I I 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 

7 0 I 0 0 I I 0 I I 0 0 0 I 0 0 0 I 0 I 0 I 0 0 0 I 0 0 I I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

8 I 0 I 0 I I 0 I 0 I I 0 I 0 I 0 I I 0 0 I 0 0 0 I I I 0 0 0 0 0 I 0 0 0 0 0 0 I 0 0 0 0 0 0 

9 0 0 I 0 0 0 I I 0 0 I I 0 I 0 0 I I 0 0 I 0 0 I I I 0 0 0 0 0 I 0 0 I 0 0 0 0 I 0 0 0 0 0 0 

10 0 0 0 I 0 0 I 0 0 0 I 0 0 0 0 I 0 I 0 0 I 0 0 I 0 0 I I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

II 0 0 0 0 0 I I I I I I 0 0 0 0 I I I 0 0 I 0 0 I 0 0 I 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

12 0 I I 0 I 0 I 0 I 0 0 I 0 I 0 I 1 0 0 0 I 0 0 1 0 0 0 0 0 I 0 0 I 0 0 I 0 0 I 0 0 I 0 0 0 0 

13 0 I 0 I I 0 I I 0 0 0 I 0 0 0 I I I I I 0 0 0 I 0 0 0 0 0 0 I 0 0 0 I 0 0 0 0 0 0 I 0 0 0 I 

14 I 0 0 0 0 I 0 I 0 0 0 I 0 I I 0 0 I I 0 I 0 0 0 I I I 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 I 0 0 I 

15 I 0 I 0 0 I I 0 0 I 0 0 0 0 0 0 0 I 0 0 I 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Table A-7: Binary representation ofNN topologies for trip (7) 

T7 
Bit Sequence 

TA Architecture AF Boiler Or eration Variables 
G I 2 3 4 5 6 7 8 9 0 I 2 3 4 5 6 7 8 9 0 I 2 3 4 5 6 7 8 9 0 I 2 3 4 5 6 7 8 9 0 I 2 3 4 5 6 
I 0 I I 0 I 0 I 0 I 0 0 I 0 I 0 I I 0 0 0 I 0 0 I 0 0 0 0 0 I 0 0 I 0 I 0 0 0 0 0 0 I I 0 0 0 
2 I 0 I 0 0 I I 0 0 I 0 0 0 0 0 0 0 I 0 0 0 0 I 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
3 0 I 0 I I 0 I I 0 0 0 I 0 0 I I I 1 1 I 0 0 0 I 0 0 0 0 0 0 I 0 0 0 I 0 0 0 0 0 0 0 I 0 0 0 
4 1 0 0 I 0 1 0 1 1 0 0 1 1 0 1 0 0 0 0 0 1 0 0 I I 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
5 0 I 0 0 1 0 0 1 I 0 I I I 1 0 0 I 0 0 0 I 0 0 I 1 1 0 0 0 0 I 0 0 0 0 I 0 0 1 0 0 I 0 0 0 0 
6 I I I 0 I 0 0 0 0 0 I 0 1 I 0 0 0 0 0 1 1 I I I 0 I I 0 0 0 0 0 0 0 0 0 0 0 I 0 0 I 0 0 0 0 
7 I 0 0 0 0 0 0 I 0 0 0 0 I 0 I 0 0 I 0 0 I 0 0 I 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 I 0 0 0 0 0 
8 I 0 0 0 0 I 0 1 0 0 0 I 0 1 I 0 0 I I 0 I 0 0 0 1 1 I 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 1 0 0 I 
9 0 0 0 I 0 0 I 0 0 0 I 0 0 0 0 I 0 1 0 0 I 0 0 I 0 0 I I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
10 I 0 0 1 0 0 0 0 1 I 0 I 0 I 0 0 0 0 0 0 0 0 I 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
II I 0 I 0 1 I 0 I 0 I I 0 I 0 1 0 1 1 0 0 I 0 0 0 I I I 0 0 0 0 0 0 I 0 0 0 0 0 0 I 0 0 0 0 0 
12 0 0 I 0 0 0 I I 0 0 I I 0 I 0 0 I 1 0 0 1 0 0 I I I 0 0 0 0 0 I 0 0 0 1 0 0 0 0 I 0 0 0 0 0 
13 0 I 0 0 I I 0 1 I 0 0 0 I 0 0 0 I 0 I 0 I 0 0 0 1 0 0 I 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

14 I 0 0 0 0 0 I 0 0 0 I 0 0 I I I 1 0 0 0 I 0 0 I I I 0 0 0 I 0 0 I 0 0 I 0 0 0 0 0 0 0 0 0 0 

15 0 0 0 0 0 I 1 1 I 1 I 0 0 0 0 I I I 0 0 I 0 0 1 0 0 I 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0_ cJl_ 
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APPENDIX B: IMS-I and IMS-II Codes 

The proposed codes for IMS-I and IMS-II are found in the attached CD. Table B-1 

shows the attached CD contain. 

Table B-1 Proposed codes name for IMS-1 and IMS-II 

Code No. IMS-1 Codes Code No. IMS-11 Codes 

I Rprop Training Algorithm-! HL 9 GATrain Function 

2 Rprop Training Algorithm-2HL 10 GA Function 

3 BFG Training Algorithm-IHL II Decoding Function 

4 BFG Training Algorithm-2HL 12 NNTrain Function 

5 LM Training Algorithm-! HL 13 Fitness Function 

6 LM Training Algorithm-2HL 14 Selection Function 

7 SCG Training Algorithm-IHL 15 Crossover Function 

8 SCG Training Algorithm-2HL 16 Mutation Function 
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