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Abstract 

This paper presents a method to recover depth information from a 2-D image taken from 
different viewpoints. An implementation of a passive two-camera system and a region
based matching algorithm implemented in Matlab generates a depth map of a scene based 
on a pair of stereo images. Matlab scripts implementing optical flow algorithms were 
written. The optical flow for a motion sequence was computed and the vector field that 
shows both the direction and magnitude of the corresponding motion displayed. 



Introduction 

Figure 1: Image of an object against a flat background 

A point on an object in a scene is usually described using 3 coordinates. In the Cartesian 
space, this would be the x, y and z-coordinates. Unfortunately, when we take a picture of 
a scene, we lose a dimension of information. For example, in the image of the scene 
above, we do not have information on the height of the object or its z-coordinates. If we 
were to take 2 images of the same object from different viewpoints, the depth information 
or the z-coordinates of the object is actually hidden in the relative displacements between 
the left and right view of an image, which is also known as the image disparities. 

Figure 2: Stereo image of an object. 

This is the basis of stereovision. Stereovision is a vision-based method that enables one to 
recover 3-D depth information from images taken from different viewpoints. 
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Figure 3: A simple stereo system 
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The simplest case for stereovision is where two cameras are pointed in the same direction 
and separated by some baseline distance b. For simplicity the cameras are offset only 
along the x-axis. In this case, the distance z to the point is the same for both cameras. 
With this simple geometry, we can solve for z. The difference, d = x'L- x'R is called the 
horizontal disparity. Based on the geometry and from triangulation, 

z=hfld 

where f is the focal length of the camera. 

Note that if the baseline distance, band focallength,fis unknown, reconstruction up to a 
scale factor is possible. The relative depth, z', is then defined as the inverse of the 
horizontal disparity, d. 

z' = 1 I d 
A variation to the parallel case is when two cameras point to a common position. This is 
known as vergence. If the point of interest is the point of vergence, there is no disparity
the distance can then be obtained based on the camera orientation. All other variations of 

2 



parallel cameras are basically equivalent, simply translate or rotate as needed to reduce to 
the simplest case. 
In principle, stereo range estimation is simple. There are 2 basic problems: 

1. Camera calibration. The process of aligning the cameras physically, and 
mathematically determining the geometric relationships for the camera. 

2. The "correspondence problem" or stereo matching. Essentially, this means that 
for a given stereo image pair, determining which points in one image corresponds 
to points in the other image. 

More problems with correspondence 

1. Occlusion: Points visible in one image and not the other. This would result in 
either a false match or no match in a stereo-matching or correspondence 
algorithm. 

2. Featureless surfaces: An example of a featureless surface would be a completely 
white background. In this case, there exist no discernable features to differentiate 
one region from another. This would also result in no correspondence. 

3. Ambiguous correspondence: A case in point is surfaces that have repeating 
textures. Without any unique features, the correspondence algorithm is rendered 
useless. 

One solution is to use multiple cameras/images. There is less chance of occlusion (some 
subset must have seen it). Also, there will be more information for correspondence. 
However, solving for depth from multiple cameras is over constrained. We need to solve 
for depth using a least -squared-error or similar approach. 

Constraints to assist in stereo matching 

This leads to the introduction of constraints to assist in stereo matching. The basic idea in 
applying constraints in stereo matching is to limit the search space, which reduces both 
the number of false matches and computation time. 

One method is to look for similarities such as intensity, edges, other features, etc. One 
can also take advantage of coherence - when in doubt, assume depth is changing 
smoothly. In addition to coherence, the use of geometric limitation such as limits on 
depth values, initial estimates of depth may assist in constraining the search space. 
Stereo matching algorithms 

Traditionally, there are 2 stereo matching algorithms commonly used, feature-based and 
region-based algorithms. 
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In feature-based matching, the idea is to pick a feature type (e.g. edge), define a matching 
criteria (e.g. orientation or contrast sign) and then look for matches within the search 
space or disparity range. 

In region-based matching, the idea is to pick a region in the image, represent them in 
vector form, and attempt to find the matching region in the second image by maximizing 
some measure such as the normalized cross correlation, normalized sum of squared 
difference, etc. 

Feature-based vs. Region-based 

Feature-based matching algorithms are sensitive to feature 'drop-outs' but produce sparse 
depth or disparity map. As a result, we have to interpolate to fill in the gaps. 

An area-based matching algorithm computes a confidence measure for regions but works 
only where there is texture. 

Feature-based 

/+------ ------------------------>/ 

~---- ---------------------~ 

Region-based 

+---- --------------- -----~ 

+------ -------------------~ 

Figure 4: Feature based and region based matching 
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One good aspect of a region-based matching algorithm is that the technique is well 
documented and researched. Also, there has been more recent success in this field. 

An obvious solution would be to minimize the sum of squares. Let Rand R' be a region 
and candidate region in vector form. 

Sum of squared difference: SSD = (R- R')2 

Note that we can change SSD by making the image brighter or dimmer, or by changing 
the contrast. As a result, it is common to subtract the mean of both images & normalize 
In this case, minimizing SSD is equivalent to maximizing R. This is also known as 
normalized cross correlation. The normalized cross-correlation algorithm is implemented 
in Matlab. 

Normalized cross correlation: 

i j 

where WL and WR are the reference sub images taken from the left and right image, and 
DL, DR are the average intensities ofthe 2 sub images. 

Figure 5: Correspondence search 
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The image above shows the result of a typical correspondence search process. Here, an 
attempt to match a region containing the letters 'c' and a partial 'h' to a candidate region 
containing a subset of the region is carried out. The peak occurs where the sub images are 
best correlated. 

Figure 6: Test images 

Figure 7: Depth map 
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Figure 8: Test images 

Figure 9: Depth map 

It should be possible, even straightforward, to segment moving objects by their motion: 
by image differencing over successive pair of images. However, things are not so simple. 
The reason is that regions of constant intensity give no sign of motion, while edges 
parallel to the direction of motion also give the appearance of not moving: only edges 
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with a component normal to the direction of motion carry information about the motion. 
In addition, there is some ambiguity in the direction of the velocity vector. This is partly 
because there is too little information available to permit the full velocity vector to be 
computed. 

These basic ideas can be expanded upon, and they lead to the notion of optical flow, 
where a local operator, which is applied to all pixels in the image, will lead to a motion 
vector field that varies smoothly over the whole image. The attraction lies in the use of a 
local operator, with its limited computational burden. Ideally, it would have an overhead 
comparable to an edge detector in a normal intensity image- though it would have to be 
applied locally to pairs of images in an image sequence. 

Translation 

An optical flow algorithm, translation.m was tested on two images, 8 x 8 pixels in size. 
Two images representing a simple motion sequences were used. The first image, I (x, y, 
t), represents the image intensity at time, t and spatial coordinates, x andy. Displacing the 
original image in the horizontal and vertical direction pixel-wise produced a synthetic 
motion. The second image, I (x+dx, y+dy, t+dt), represents the synthetic motion of dx 
and dy, and dt change in time. In the figure below, the first image was displaced up one 
pixel and to the right one pixel to produce the second image. Both images are as shown in 
figure 1. 

• 
Figure 10: The two images used 

Using a standard image processing technique, each image was smoothed by convolving 
the image with a 2d filter, first in x and then y. A gaussian filter of standard deviation 
equal to 3 was used and the image contrast was enhanced by histogram equalization. 
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fxu+/yv+f,=O 

wherefx,fy. j,are spatiotemporal derivatives, and u, v are the optical flow components. 
Unfortunately, this is a scalar equation, and will not suffice for determining the two local 
components of the velocity field, as we require. There are two unknowns, u and v, in this 
equation. Instead of using one equation for one pixel, we considered a small 
neighborhood around a pixel, and got an over-constrained system, which was solved 
using the least square fit. Considering a 2 by 2 neighborhood, and assuming optical flow 
to be constant in this neighborhood, we got 4 optical flow equations: 

The system, written in matrix form, is shown below 

fxt fyt - /,, 

[:] = 

fx4 fy4 - !,. 

or 

Au=ft 

u = (AT A)'1 ATft 

Figure 13: The linear equation, used for computing the optical flow components, u and v. 

A linear system is constructed as shown in figure 4, to contain all the gradient 
information. The 4 x 2 matrix containing gradient information for x and y and 4 x 2 
matrix containing the gradient information fort can be solved to yield the optical flow 
components, u and v 

The flow vectors for different motion sequences are shown. 
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Figure 14: Flow vectors for dx=l, dy=O 
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Figure 15: Flow vectors for dx=O, dy=l 
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Figure 16: Flow vectors for dx=l, dy=l 

The algorithm's accuracy in computing optical flow is investigated. The computed 
optical flow is compared to the actual displacement of pixels between images. The 
computed flow for increasing pixel displacements between images is shown. 

Ground truth Optical flow components 

dx dy u v 

0 0 0 0 
1 0 1.0000 2.3592 x w ·IO 

0 1 7.2858 X 10'11 1.0000 
1 1 1.0244 1.0411 
2 0 2.3534 -0.0184 
0 2 0.0876 2.0710 

Figure 17: Comparison between actual displacement and computed displacement based 
on an optical flow algorithm. 

The algorithm accurately computes the optical flow for motion sequences moving at 1 
pixel/image. Visually, the flow vectors appear to be accurate. The algorithm is able to 
detect the corresponding motion, distinguishing between flow in x and y. When pixel 
displacement is greater than 1 pixel, the algorithm fails to correctly determine the actual 
displacement. The algorithm has a resolution of 1 pixel for an 8 x 8 pixel size image. 
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Rotation 

The rotation of an image based on a user-specified angle is determined using an optical 
flow algorithm, rotation.m. However, the algorithm is accurate for images larger than 100 
x 100 pixels in size only. In pure rotation, each image points moves at right angles to the 
line joining it to a fixed point. In rotating an image, each image points moves at a speed 
proportional to its distance from the fixed point. This can be written very simply in terms 
of image coordinates. Suppose Cartesian coordinates (x,y) are set up in the image plane 
with the origin at a fixed point. Then, if the rate of rotation is R, for a point at (x,y), the 
equation is given by: 

Rotation, R = (x x v)- (y x u) 

Where x, y are the coordinates relative to the center of the image and u, v are the pixel 
velocities in the x andy directions respectively. However, if the sample rate between the 
2 images is known, the amount of rotation may be determined. The signs in the equation 
are consistent with the conventions used in the figure. Positive and negative values of R 
correspond to clockwise and anticlockwise rotation respectively. 

Based on an optical flow algorithm, the velocity and coordinates of a pixel can be 
determined. As it turns out, rotation is a function of both these variables. In pure rotation, 
the rotation rates of each pixel in an image are the same. Since the pixels at the edges 
rotate more than pixels closer to the center, the rotation rate is proportional to the distance 
between the a pixel and the rotation center or image center as well as the pixel velocity. 

The geometrical interpretation is give by figure 8. 

u 

/..:~-->: v 
/ I I 

/ I 
/ I 

/ I y 
/ I 

/ : 
I R 

X 

Figure 18: The components of the optical flow vector for an image point at (x,y). 

13 



Figure 19: Sample image used to test an optical flow algorithm to compute rotation 
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angle cornputed angle difference (%) 
0 0 0.00 
1 1.0073 0.73 
2 2.0030 0.15 
3 3.0422 1.40 
4 4.0671 1.68 
5 5.0319 0.64 
6 5.9330 1.12 
7 6.8759 1.77 
8 7.9650 0.44 
9 9.1080 1.20 
10 10.0877 0.88 

Figure 21: Comparison between actual rotation and computed rotation based on an 
optical flow algorithm. 

Perturbation 

When scenes contain moving objects, the analysis becomes more complex than for 
scenes where everything is stationary, since temporal variations in intensity have to be 
taken into account. Optical flow fields must be interpreted in terms of moving objects and 
camera. The first case is where there is no motion. In this case, the velocity field image 
contains only vectors of zero length. Next, the camera is moved, or perturbed. In the 
following scene, the two objects are moved equal distance towards the right. 

Figure 22: Scene where there is no motion. 
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Figure 23: The original scene perturbed by moving the camera 

Figure 24: The original scene with objects moved equi-distance 
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Figure 25: Optical flow vectors of a perturbed scene 

Figure 26: Optical flow vectors of a scene with objects moved equi-distance 
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Figure 27: Compensated optical flow vectors 

Figure 28: Compensated optical flow vectors without background noise 
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Pan 

Panning an image results in uniform expansion or contraction. In panning an image, each 
image points moves along a line joining it to a fixed point, with a speed proportional to 
its distance from the fixed point. This can be written very simply in terms of image 
coordinates. Suppose Cartesian coordinates (x,y) are set up in the image plane with the 
origin at a fixed point. Then, if the rate of rotation is R, for a point at (x,y), the equation is 
given by: 

P = (x x u) + (y x v) 

Where x, yare the coordinates relative to the center of the image and u, v are the pixel 
velocities in the x andy directions respectively. However, if the sample rate between the 
2 images is known, the amount of panning may be determined. 

Based on an optical flow algorithm, the velocity and coordinates of a pixel can be 
determined. As it turns out, panning is a function of both these variables. In pure panning, 
the panning rates of each pixel in an image are the same. Since the pixels at the edges 
rotate more than pixels closer to the center, the panning rate is proportional to the 
distance between the a pixel and the pan center or image center as well as the pixel 
velocity. Note that the signs in the equation are consistent with the conventions used in 
the figure. The pan rate can be positive or negative, corresponding to pan in or pan out 
respectively. 

The geometrical interpretation is given by figure 19. 

~v 
/ I U 
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/ I 

/ I y 
/ I 

/ I 
/ : 

X 

Figure 29: The components of the optical flow vector for an image point at (x,y). 
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Figure 30: Sample images used to test an optical flow algorithm to compute pan 

Figure 31: Optical flow vectors 
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pan distance computed pan distance difference(%) 
0.0100 0.0100 0.0 
0.0100 0.0096 4.0 
0.0100 0.0097 3.0 
0.0100 0.0098 2.0 
0.0100 0.0099 1.0 
0.0100 0.0096 4.0 
0.0100 0.0098 2.0 
0.0100 0.0094 6.0 
0.0200 0.0199 0.5 
0.0300 0.0305 1.7 
0.0400 0.0409 2.3 
0.0500 0.0504 0.8 
0.0600 0.0580 3.3 

Figure 32: Comparison between actual pan distance and computed pan distance based on 
an optical flow algorithm for different source images. 

Conclusion 

An algorithm to generate a depth map of a scene based on a pair of stereo images and to 
compute the optical flow vectors of a scene based on an image sequence was 
implemented. The equations used in the algorithm were explained. It is obvious based on 
the results obtained that there are hidden information that can be extracted from a visual 
system using cross correspondence and optical flow techniques. However, there are 
several aspects of the method that could be improved. First of all, a denser depth map 
could have been generated using smaller regions or finer grids. In order to accomplish 
this, a more sophisticated algorithm with minimal false matches has to be used. Another 
improvement would be to implement an algorithm that uses both left to right and right to 
left correspondence matching to reduce the number of false matches. Here it would be 
possible to try to generate a depth map of a more complex scene. 

In general, for a given a pair of stereo images from 2 cameras with known relative 
positions, to obtain a depth map of an object: 

l.Rectify the two images. 
2.Compute image correspondence using either feature-based or area-based matching. 
3.Use triangulation to compute distance. If baseline is unknown, simply invert disparity 

(reconstruction up to a scale factor). 
4.Interpolate surface. 

For a given a pair of images, to obtain the optical flow of a scene: 

1. Smooth the images by standard image processing techniques. 
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2. Estimate the spatia-temporal gradients in x, y and t for each pixel by convolution with 
a differencing mask. 

3. Set up a over-constrained linear system containing all the gradient information. 
4. The equations can then be solved to yield the optical flow components, u and v 

However, there are several aspects of the method that could be improved. First of all, 
more accurate optical flow vectors could have been obtained by using more advance 
image processing techniques. In order to accomplish this, a more sophisticated algorithm 
has to be used. 

Another improvement would be to implement an algorithm to try to obtain optical flow 
components of a more complex scene. 
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Appendix 

interactive.m 

close all; 
clear all; 

left=imread(1eft7 .jpg); 
right=imread('right1.jpg); 
l=rgb2gray(left); 
r=rgb2gray(right); 

% choose subregions of each image interactively 
axis ij, title('Choose a region), hold on; 
[sub_l,rect_l] = imcrop(l); 
axis ij, title( 'Choose a candidate region), hold on; 
[sub_r,rect_r] = imcrop(r); 

% display sub images 
subplot(2,1,1), imshow(sub_l); 
subplot(2,1,2), imshow(sub_r); 

% do normalized cross-correlation and find coordinates of peak. calculate the normalized cross-correlation 
and display it as a surface plot. 
% the peak of the cross-correlation matrix occurs where the sub _images are best correlated. 
c = normxcorr2(sub_l(:,:,l),sub_r(:,:,1)); 
figure, surf( c), shading flat; 

% find the offset between the images. the total offset or translation between images depends on the location 
of the peak in the cross-correlation matrix, and on the size and position of the sub images. 
% offset found by correlation 
[max_c, imax] = max(abs(c(:))); 
[ypeak, xpeak] = ind2sub(size(c),imax(1)); 
corr_offset = [(xpeak-size(sub_l,2)) 

(ypeak-size(sub_l, 1))]; 

% relative offset of sub images 
rect_offset = [(rect_r(1)-rect_l(l )) 

( rect_r(2)-rect_l(2))]; 

% total offset 
offset = corr_offset + rect_offset; 
xoffset = offset( 1) 
yoffset = offset(2) 

iteration.m 

close all; 
clear all; 

left=imread(1eft7 .jpg); 
right=imread('rightl.jpg ); 
l=rgb2gray(left); 
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r=rgb2gray(right); 

% crop image for correspondence match 
1=1(50:440,80:640); 
r=r(50:440,1 :580); 

% choose subregions of each image. 
m=l; n=l; 
for i=l:20:541 

for j=l:20:361 
rect_l = [ij 19 19]; 
recu = [i-10 j-5 58 38]; 
sub_] = imcrop(l,rect_l); 
sub_r = imcrop(r,rect_r); 

% do normalized cross-correlation and find coordinates of peak. calculate 
% the normalized cross-correlation and display it as a surface plot. the 
% peak of the cross-correlation matrix occurs where the sub_images are best 
% correlated. 
c = normxcorr2(sub_l(:,:,l),sub_r(:,:,l)); 
%figure, surf( c), shading flat; 

% find the offset between the images. the total offset or translation 
% between images depends on the location of the peak in the 
% cross-correlation matrix, and on the size and position of the sub images. 
% offset found by correlation 
[max_c, imax] = max(abs(c(:))); 
[ypeak, xpeak] = ind2sub(size(c),imax(l)); 
corr_offset = [(xpeak-size(sub_l,2)) 

(ypeak-size(sub_l, !))]; 

% relative offset of sub images 
rect_offset = [(rect_r(l)-rect_l(l)) 

(rect_r(2)-rect_l(2))]; 

% total offset 
offset = corr_offset + rect_offset; 

% compensation for range of sub region 
ifi ==I 
xoffset =offset(!)+ 10; 
else 

xoffset =offset(!); 
end 
ifj==l 

yoffset = offset(2) + 5; 
else 

yoffset = offset(2); 
end 

warning off MATLAB :divideB yZero 
Z(m,n) = 1/abs(xoffset); 

% assumption about maximum offset, smoothness of offset changes 
ifZ(m,n) > .2 & n -=I 

Z(m,n) = Z(m,n-1); 

25 



elseif Z(m,n) > .2 & n == 1 
Z(m,n) = Z(m-1,18); 

else 
Z(m,n) = Z(m,n); 

end 

n= n+ 1; 
ifn == 20; 

n= 1; 
m=m+ 1; 

end 
end 
end 

% 3D surface plot 
axis([O 25 0 25 0 1 ]), axis off, hold on, mesh(Z) 

close all; 
clear all; 

left= imread ('stereol.jpg); 
right= imread ('stereo2.jpg); 
I = rgb2gray (left); 
r = rgb2gray (right); 

% crop image to align for correspondence match 

I= I (5:480,132:640); 
r = r (1 :480,1 :520); 

% choose sub regions of each image by iteration. 

m = 1; n = 1; 
for i = 1:20:481 

for j = 1:20:441 
rect_l = [ij 19 19]; 
rect_r = [i-10 j-1 41 21]; 
sub_!= imcrop (1, rect_l); 
sub_r = imcrop(r, rect_r); 

% or interactively 
% [sub_!, rect_l] = imcrop (1); 
% [sub_r, rect_r] = imcrop(r); 

% display sub images 
%subplot (2,1,1), imshow (sub_!); 
%subplot (2,1,2), imshow (sub_r); 

% do normalized cross-correlation and find coordinates of peak. calculate the normalized % cross
correlation and display it as a surface plot. the peak of the cross-correlation 
% matrix occurs where the sub images are best correlated. 

c = normxcorr2 (sub_l(:,:,l),sub_r(:,:,l)); 

% correlation plot; 
figure, surf( c), shading flat; 
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% find the offset between the images. the total offset or translation between images 
% depends on the location of the peak in the cross-correlation matrix, and on the size and 
% position of the sub images. offset found by correlation 

[max_c, imax] = max(abs(c(:))); 
[ypeak, xpeak] = ind2sub(size(c),imax( 1)); 
corr_offset = [(xpeak-size(sub_l,2)) 

(ypeak-size(sub_l, 1))]; 

% relative offset of sub images 

rect_offset = [(rect_r(1)-rect_l(l)) 
(rect_r(2)-rect_l(2))]; 

%total offset 

offset = corr_offset + rect_offset; 

% compensation for range of sub region 

ifi= 1 
xoffset =offset (1) + 10; 
else 

xoffset =offset (I); 
end 
if j == 1 

yoffset = offset (2) + 1; 
else 

yoffset =offset (2); 
end 

Z (m, n) = abs (xoffset); 

% assumption about maximum offset, offset smoothness to eliminate false matches and disambiguate 
multiple matches 

ifZ (m, n) >= 12 & n -= 1 
Z (m, n) = Z (m, n-1); 

elseifZ (m, n) >= 12 & n == 1 
Z (m, n) = Z (m, 22); 

else 
Z (m, n) = Z (m, n); 

end 

n = n + 1; 
ifn == 24; 

n = 1; 
m=m+1; 

end 
end 
end 

% 3D surface plot 
axis ([0 25 0 25 0 100]), axis off, hold on, mesh (Z) 
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translation.m 

close all; 
clear all; 

image=imread("Quarters.jpg); 
image=rgb2gray(image); 

% select window 
figure, axis ij,title('Specify window'),hold on; 
image=imcrop(image); 
image=histeq(image); 
close all; 
[ rows,cols ]=size( image); 

% synthetic motion with dx and dy 
dx=input('dx= '); 
dy=input('dy=); 
image 1 =image( 1 :rows-dy, 1 :cols-dx); 
image2=image(dy+ 1 :rows,dx+ 1 :cols); 

image I =double( image 1); 
image2=double(image2); 

sigma=5; % degree of smoothing 
hsize=ceil(6*sigma); 
gmsk=fspecial('gaussian',hsize,sigma); %gaussian mask 
smthimg=conv2(.5*(image1 +image2),gmsk);% smoothed image 

hor=[-1,1;-1,1]; %horizontal convolution mask 
ver=[-1,-1;1,1]; %vertical convolution mask 

% spatial gradients 
gx=conv2(smthimg,hor); %horizontal gradient 
gy=conv2(smthimg,ver); % vertical gradient 

% temporal gradients 
smthimgl=conv2(imagel,gmsk); 
smthimg2=conv2(image2,gmsk); 
gt=.5*(conv2(smthimg2,[ 1,1; l,l])+conv2(smthimg1,[ -1,-1 ;-1,-1])); % smoothed image difference 
jump=10; %sampling 
edge=hsize; % remove convolution edge 
[rows,cols ]=size(gx); 
gxs=gx( 1 +edge:jump:rows-edge, 1 +edge:j ump:cols-edge ); 
gys=gy( 1 +edge:jump:rows-edge, I +edge:jump:cols-edge); 
gts=gt( 1 +edge:jump:rows-edge, 1 +edge:jump:cols-edge); 

di=[gxs( :),gys(:)]; 
dt=gts(:); 

% calculate u, v 
[ m,n ]=size(gxs ); 
u=zeros(m,n); 
v=zeros(m,n); 

for j=l:n-1 
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for i=l:m-1 
a=gxs(i:i+IJ:j+ I); 
b=gys(i:i+ lj:j+ I); 
c=gts(i:i+ l,j :j+ I); 
d=[a(:),b(:)]; 
uv=-pinv(d)*c(:); 
u(i,j)=uv( I); 
v(i,j)=uv(2); 

end 
end 

[I,J]=size(u); 
u=u(l:I,l:J); 
v=v(l:I,l:J); 
quiver( I :J,I:-1: I ,u,v); 
axis square 

% calculate vx, vy 
var=-pinv(di)*dt; 
vx=var( I, I) 
vy=var(2,1) 

rotation.m 

close all; 
clear all; 

%load image 
imagel=imread('Quarters.jpg); 
imagel=rgb2gray(imagel); 
imagel=histeq(imagel ); 
% select window 
%figure 
%axis ij,title('Specify window),hold on; 
% imagel=imcrop(imagel); 
%close all; 
[rows,cols]=size(imagel); 

% synthetic rotation 
angle=input( 'angle=); 
image2=imrotate(image I ,angle, 'crop); 

imagel=double(imagel); 
image2=double(image2); 
sigma=S; %degree of smoothing 
hsize=ceil( 6*sigma); 
gmsk=fspecial('gaussian',hsize,sigma); %gaussian mask 
smthimg=conv2(.5*(imagel+image2),gmsk);% smoothed image 

hor=[-1,1;-1,1]; %horizontal convolution mask 
ver=[-1,-1;1,1]; %vertical convolution mask 

% spatial gradients 
gx=conv2(smthimg,hor); %horizontal gradient 
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gy=conv2(smthimg,ver); %vertical gradient 

% temporal gradient 
smthimg1=conv2(image l ,gmsk); 
smthimg2=conv2(image2,gmsk); 
gt=.5*(conv2(smthimg2,[1,1 ;l,l])+conv2(smthimg1,[-1,-l;-1,-1])); %smoothed image difference 

jump=IO; %sampling 
edge=hsize; % remove convolution edge 
[rows,cols]=size(gx); 
gxs=gx( 1 +edge:jump:rows-edge, 1 +edge:j ump:cols-edge); 
gys=gy(1+edge:jump:rows-edge,l+edge:jump:cols-edge); 
gts=gt( 1 +edge:jump:rows-edge, 1 +edge:j ump:cols-edge ); 

dt=gts(:); 
[m,n]=size(dt); % number of image points, n 

di=zeros(n,l); %spatial gradients matrix 
[nrows,ncols]=size(gxs); 
rctr=(nrows+l)/2; %image centre coordinates 
cctr=( nco Is+ 1 )/2; 

i=l; %index 

for col= I :nco Is 
x=(col-cctr)*jump; %coordinate relative to center 
for row=! :nrows 

y=(row-rctr)*jump; 
fx=gxs(row,col); %gradients function 
fy=gys(row,col); 
xfy=x*fy; 
yfx=y*fx; 
di(i,:)=[xfy-yfx]; 
i=i+l; 

end; 
end; 

w=-pinv(di)*dt; 
angle=rad2deg(w) 

% calculate u, v 
[m,n]=size(gxs); 
u=zeros(m,n); 
v=zeros{m,n); 

for j=1:n-l 
for i=l:m-1 

a=gxs(i:i+ 1j:j+ 1); 
b=gys(i:i+ lj:j+ 1); 
c=gts(i:i+ l,j:j+ 1); 
d=[a(:),b(:)]; 
uv=-pinv(d)*c(:); 
u(i,j)=uv(l); 
v(ij)=uv(2); 

end 
end 
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jump= I; 
[l,J]=size(u); 
u=u( 1 :jump:!,! :jump:J); 
v=v( 1 :jump:!, I :jump:J); 
quiver(! :jump:J,l:-jump: l,u,-v); 

opticflow.m 

close all; 
clear all; 
img 1 =imread('originall.jpg ); 
img2=imread('perturbed l.jpg); 
img3=imread('offsetl.jpg); 

offset 1 =offset( imgl ,img2); 
offset2=offset( img 1 ,img3); 

[ u, v ,image ]=velocity(img 1 ,img2,5, 1 O,offsetl); 
[ s,t ]=velocity(img 1 ,img3 ,5, 1 O,offset2); 

[m,n]=size(s); 

warning offMATLAB:divideByZero 

vx=s./u; % distance compensation 

for j=l:n-1 
for i=l:m-1 

if abs(vx(i,j))<lO %assumption about maximum allowable offset 
vx(i,j)=vx(ij); 

else 
vx(i,j)=O; 

end 
end 

end 

ux=neighbor(vx,.5, 1.5); 

figure 
axis ij,title('Optical flow vectors of a perturbed scene),hold on; 
imshow(image, 'notruesize) 
hold on 
quiver( I :n,l:m,u,v); 
figure 
axis ij,title('Optical flow vectors of a scene with objects offset equi-distance),hold on; 
imshow(image, 'notruesize) 
hold on 
quiver(! :n,l :m,s,t); 

figure 
axis ij,title('Compensated optical flow vectors),hold on; 
imshow(image,'notruesize) 
hold on 
quiver( 1 :n, 1 :m,vx, v); 
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figure 
axis ij,title('Compensated optical flow vectors without background noise),hold on; 
imshow(image,'notruesize) 
hold on 
quiver( I :n, 1 :m,ux,v); 

figure 
axis ij,title('Choose a region for velocity estimation),hold on; 
[sub_l,rect_J];imcrop(image); 
close 

figure 
axis ij,title('Choose another region for velocity estimation),hold on; 
[sub_r,rect_r]=imcrop(image); 
close 

a=abs(imcrop(ux,rect_l)); 
optic_ velocity 1=abs( numel( a)/sum( a(:))) 
b=abs(imcrop(ux,rect_r)); 
optic_ velocity2;abs( numel(b )/sum(b(:))) 

offset.m 

function xoffsetmax=offset(image1,image2); 

% OFFSET Estimates the maximum horizontal offset of a sampled image 
%sequence. 
% XOFFSETMAX=OFFSET(IMAGE1,IMAGE2) estimates the maximum offset of a 
% sampled image sequence based on a normalized cross correlation method. 

k=1; 

[x y]=size(image1(:,:,1)); 

for j=50:50:y-50 % sampling to determine maximum offset 
for i=50:50:x-50 

rect_J;[j i 50 50]; 
rect_r=U-10 i-10 70 70]; 
sub_l=imcrop(image1,rect_l); % sampled region 
sub_r=imcrop(image2,rect_r); %candidate region 
c;normxcorr2(sub _I(:,:, 1) ,sub _r(: ,: ,1)); % normalized cross correlation 
[max_ c,imax ]=max( abs( c(:))); 
[ypeak,xpeak ];ind2sub( size( c ),imax( 1) ); 
corr_offset=[(xpeak-size(sub_l,2));(ypeak-size(sub_l,1))]; 
rect_offset;[(rect_r(l)-rect_l(1));(rect_r(2)-rect_l(2))]; % relative offset of subimages 
xoffset(k)=abs(corr_offset(l)+rect_offset(1)); %total offset 
k=k+1; 
xoffsetmax;max( abs( xoffset(:))); 
if xoffsetmax<10 

xoffsetmax=xoffsetmax; 
else 

xoffsetmax=10; 
end 

end 
end 
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velocity.m 

function [u,v,image]=velocity(imagel,image2,sigma,jump,xoffsetmax); 

% VELOCITY Finds the velocity components of an image sequence. 
% [U,V,IMAGE]=VELOCITY(IMAGEI,IMAGE2,SIGMA,JUMP,XOFFSETMAX) computes the 
% horizontal velocity component U of an image sequence IMAGE!, IMAGE2 
% based on a optical flow method. The images are convolved with a 
% Gaussian mask of parameter sigma. Jump is the sampling size and 
% xoffsetmax is the estimated maximum horizontal offset based on a 
% normalized cross correlation method. Sampled image may also be 
% displayed. 

imgl=double(histeq(rgb2gray(imagel))); 
img2=double(histeq(rgb2gray(image2))); 

hsize=cei1(6*sigma); %convolution mask size 
gmsk=fspecial('gaussian',hsize,sigma); %gaussian mask 
smthimg=conv2(.5*(imgl+img2),gmsk); %smoothed image 

hor=[-l,l;-1,1]; %horizontal convolution mask 
ver=[-1,-1;1,1]; %vertical convolution mask 

% spatial gradients 
gx=conv2(smthimg,hor); %horizontal gradient 
gy=conv2(smthimg,ver); %vertical gradient 

% temporal gradients 
smthimg I =conv2(img I ,gmsk); 
smthimg2=conv2(img2,gmsk); 
gt=.5*( conv2(smthimg2,[ I ,I; l,l])+conv2(smthimgl ,[ -1,-1 ;-1 ,-!])); % smoothed image difference 

edge=hsize; % remove convolution edge 
[ rows,cols ]=size(gx); 
gxs=gx( I +edge:jump:rows-edge, I +edge:j ump:cols-edge ); 
gys=gy( I +edge:jump:rows-edge, I +edge:jump:cols-edge); 
gts=gt( I +edge:jump:rows-edge, I +edge:jump:cols-edge ); 

% calculate u, v 
[ m,n ]=size(gxs); 
u=zeros(m,n); 
v=zeros(m,n); 

for j=l:n-1 
for i=l:m-1 

fx=gxs(i:i+ l,j :j+ I); 
fy=gys(i:i+ l,j :j+ I); 
ft=gts(i:i+ lj :j+ !); 
xy=[fx(:),fy(:)]; 
uv=-pinv(xy)*ft(:); 
u(i,j)=uv(l); %assumption about horizontal offset only 

end 
end 

for j=l:n-1 
for i=l:m-1 
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if abs(u(ij))<xoffsetmax+ 1 %assumption about maximum offset 
u(i,j)=u(i,j); 

else 
u(i,j)=O; 

end 
end 

end 
image=image1 ( 1 +edge:jump:rows-edge, 1 +edge:jump:cols-edge ); 

neighbor.m 

function new=neighbor( old,lower ,upper); 

%NEIGHBOR Sets the velocity of a pixel to approximate its neighbors. 
% NEW=NEIGHBOR(OLD,LOWER,UPPER) sets the velocity of a pixel within a 
% lower and upper bound limit of its neighbors velocity. The assumption 
% is that the velocity is uniform in a small region. 

[m,n]=size(old); 

for j=1:n-1 
for i=1:m-1 

if sign( old(i,j))==sign( old(i,j+ 1)) 
old(i,j)=old(i,j); 

else 
old(ij)=O; 

end 
end 

end 

for j=l:n-1 
for i=1:m-1 

if sign( old(i,j))==sign( old(i+ 1,j)) 
old(i,j)=old(ij); 

else 
old(i,j)=O; 

end 
end 

end 
for j=1:n-1 

for i=1:m-1 
if lower*old(i,j+ 1)<old(i,j)<upper*old(ij+ 1) 

old(i,j)=old(i,j); 
else 

old(i,j)=O; 
end 

end 
end 

for j=l:n-1 
for i=1:m-1 

if lower*old(i+ 1,j)<old(ij)<upper*old(i+ 1,j) 
old(i,j)=old(ij); 

else 
old(i,j)=O; 
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end 
end 

end 

new=old; 

xytranslation.m 

clear all 
close all 

anim 

xy I =xytrans(image I ,image2,image3); 
xy2=xytrans(image3,image4,image5); 
xy3=xytrans(image5,image6,image7); 
xy4=xytrans(image7 ,image8,image9); 
xy5=xytrans(image9 ,image IO,image II); 
xy6=xytrans( image II ,image 12,image 13); 
xy7=xytrans(image 13 ,image 14,image 15); 
xy8=xytrans(image 15 ,image 16,image 17); 
xy9=xytrans(image17 ,image 18 ,image 19); 

disp(' dxl2 dxl3 dy23 dyl3); 
disp(xyl) 
disp(xy2) 
disp(xy3) 
disp(xy4) 
disp(xy5) 
disp(xy6) 
disp(xy7) 
disp(xy8) 
disp(xy9) 

anim.m 

imagel=irnread(Picture 036.jpg); 
image2=irnread(Picture 037.jpg); 
image3=irnread(Picture 038.jpg); 
image4=irnread(Picture 039.jpg); 
image5=irnread(Picture 040.jpg); 
image6=imread(Picture 041.jpg); 
image7=irnread(Picture 042.jpg); 
image8=irnread(Picture 043.jpg); 
image9=irnread(Picture 044.jpg); 
imageiO=imread(Picture 045.jpg); 
imagell=irnread(Picture 046.jpg); 
imagel2=imread(Picture 047.jpg); 
image13=irnread(Picture 048.jpg); 
imagel4=irnread(Picture 049.jpg); 
imagel5=imread(Picture 050.jpg); 
imagel6=imread(Picture 051.jpg); 
imagel7=irnread(Picture 052.jpg); 
imagel8=imread(Picture 053.jpg); 
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image19=imread(Picture 054.jpg); 

axis off 

for j=1:19 
M(j)=getframe; 

end 

M( 1 )=im2frame(image 1 ); 
M(2)=im2frame(image2); 
M(3)=im2frame(image3); 
M(4)=im2frame(image4); 
M(5)=im2frame(image5); 
M( 6)=im2frame( image6); 
M(7)=im2frame(image7); 
M(8)=im2frame(image8); 
M(9)=im2frame(image9); 
M( 1 0)=im2frame(image 1 0); 
M(l1)=im2frame(image11); 
M(12)=im2frame(image12); 
M( 13)=im2frame(image13); 
M( 14 )=im2frame(image 14 ); 
M( 15)=im2frame(image 15); 
M(16)=im2frame(image16); 
M(17)=im2frame(image17); 
M(18)=im2frame(image18); 
M(19)=im2frame(image19); 

movie(M) 

xytrans.m 

close all; 
clear all; 

image1=imread(Pan0 1.jpg); 
image2=imread(Pan02.jpg); 
img1=double(histeq(rgb2gray(image1))); 
img2=double(histeq(rgb2gray(image2))); 
sigma=5; %degree of smoothing 
hsize=ceil(6*sigma); 
gmsk=fspecial('gaussian',hsize,sigma); % gaussian mask 
smthimg=conv2(.5*(img1+img2),gmsk);% smoothed image 

hor=[-1,1;-1,1]; %horizontal convolution mask 
ver=[-1,-1;1,1]; %vertical convolution mask 

% spatial gradients 
gx=conv2(smthimg,hor); % horizontal gradient 
gy=conv2(smthimg,ver); %vertical gradient 

% temporal gradients 
smthimgl=conv2(img1,gmsk); 
smthimg2=conv2(img2,gmsk); 
gt=.5*(conv2(smthimg2,[1,1 ;1,1])+conv2(smthimg1,[-1,-1;-1,-1])); % smoothed image difference 
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jump=lO; % sampling 
edge=hsize; % remove convolution edge 
[rows,cols]=size(gx); 
gxs=gx( I +edge:jump:rows-edge, I +edge:jump:cols-edge); 
gys=gy( I +edge:jump:rows-edge, I +edge:jump:cols-edge); 
gts=gt( I +edge:jump:rows-edge, I +edge:jump:cols-edge); 

dt=gts(:); 
[m,n]=size(dt); %number of image points, n 
di=zeros(n,I); % spatial gradients matrix 
[nrows,ncols]=size(gxs); 
rctr=(nrows+l)/2; %image centre coordinates 
cctr=(ncols+ 1)/2; 
k=I; %index 

for col=l:ncols 
x=(col-cctr)*jump; %coordinate relative to center 
for row=l:nrows 

y=(row-rctr)*jump; 
fx=gxs(row,col); %gradients function 
fy=gys(row,col); 
xfx=x*fx; 
yfy=y*fy; 
di(k,:)=[xfx+yfy]; 
k=k+l; 

end; 
end; 

pan_distance=-pinv(di)*dt 

% calculate u, v 
[ m,n ]=size(gxs ); 
u=zeros(m,n); 
v=zeros(m,n); 

for j=l:n-1 
for i=l:m-1 

a=gxs(i:i+ lj:j+ I); 
b=gys(i:i+ I ,j:j+ I); 
c=gts(i:i+ l,j :j+ I); 
d=[a(:),b(:)]; 
uv=-pinv( d)*c(:); 
u(i,j)=uv(l); 
v(i,j)=uv(2); 

end 
end 

[u, v ]=region(5,.8,1.2,u,v); 

[I,J]=size(u); 
U=u(I:I,I:J); 
v=v(l :1,1 :J); 
figure,axis ij,hold on; 
image=image I (I +edge:jump:rows-edge, I +edge:jump:cols-edge); 
imshow(image, 'notruesize) 
hold on, quiver(I:J,I:-I:I,u,v); 

37 


