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ABSTRACT 

DESIGN AND MICROFABRICATION OF A CMOS-MEMS PIEZORESISTIVE 
ACCELEROMETER AND A NANO-NEWTON FORCE SENSOR 

by 

Mohd Haris Md Khir 

Adviser: Hongwei Qu, Ph.D. 

This thesis work consists of three aspects of research efforts: 

I. Design, fabrication, and characterization of a CMOS-MEMS piezoresistive 

accelerometer 

2. Design, fabrication, and characterization of a CMOS-MEMS nano-Newton force 

sensor 

3. Observer-based controller design of a nano-Newton force sensor actuator system 

A low-cost, high-sensitivity CMOS-MEMS piezoresistive accelerometer with 

large proof mass has been fabricated. Inherent CMOS polysilicon thin film was utilized 

as piezoresistive material and full Wheatstone bridge was constructed through easy 

wiring allowed by three metal layers in CMOS thin films. The device fabrication process 

consists of a standard CMOS process for sensor configuration and a deep reactive ion 

etching (DRIE) based post-CMOS microfabrication for MEMS structure release. Bulk 

single-crystal silicon (SCS) substrate was included in the proof mass to increase sensor 

sensitivity. Using a low operating power of 1.67 m W, the sensitivity was measured as 

30.7 mV/g after amplification and 0.077 mV/g prior to amplification. With a total noise 
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floor of 1.03 mg!-!Hz, the minimum detectable acceleration is found to be 32.0 mg for a 

bandwidth of I kHz which is sufficient for many applications. 

The second device investigated in this thesis work is a CMOS-MEMS capacitive 

force sensor capable ofnano-Newton out-of-plane force measurement. Sidewall and 

fringe capacitance formed by the multiple CMOS metal layers were utilized and fully 

differential sensing was enabled by common-centroid wiring of the sensing capacitors. 

Single-crystal silicon (SCS) is incorporated in the entire sensing element for robust 

structures and reliable sensor deployment in force measurement. A sensitivity of 8 m V /g 

prior to amplification was observed. With a total noise floor of 0.63 mg!-IHz, the 

minimum detection acceleration is found to be 19.8 mg, which is equivalent to a sensing 

force of 449 nN. 

This work also addresses the design and simulation of an observer-based 

nonlinear controller employed in a CMOS-MEMS nano-Newton force sensor actuator 

system. Measurement errors occur when there are in-plane movements of the probe tip; 

these errors can be controlled by the actuators incorporated within the sensor. Observer

based controller is necessitated in real-world control applications where not all the state 

variables are accessible for on-line measurements. 
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CHAPTER ONE 

INTRODUCTION 

Microelectromechanical systems (MEMS) devices have been initiated and 

enhanced from the integrated circuit industry since 1950s. Charles S. Smith from Bell 

Telephone Laboratories for example reported a uniaxial tension causes a change of 

resistivity (piezoresistive effect) in silicon and germanium ofboth n andp types in 1953 

[1]. In 1967, Harvey C. Nathanson and his colleagues have successfully designed and 

fabricated a variable transistor known as the resonant gate transistor (RGT), which utilize 

an electrostatically excited tuning fork to vary the gate electrode with respect to the 

substrate [2]. Hewlett-Packard pioneered the technology of silicon micromachined ink-jet 

printer nozzles in 1978 [3]. In 1979, Kurt E. Petersen reported a newly integrated planar 

ink-jet nozzles structure fabricated by anisotropically etching silicon [4]. Bulk and 

surface micromachining based on silicon substrate for a variety of MEMS devices have 

dominated the microfabrication of micro devices ever since. Micro motors fabricated in 

1988 by Long-Sheng Fan and his colleague using 1.0 J.lm to 1.5 J.lm thick polycrystalline 

silicon is mentioned in [5]. An interesting thermal accelerometer uses thermopiles to 

detect the temperature difference between the heat source and the sink has been 

highlighted by U. A. Daudersstadt [6] in 1995. In 2000, a single-crystalline-silicon micro

gyroscope has been fabricated in a single wafer using surface/bulk miromachining 

process is reported in [7]. The trend of utilizing silicon based material to fabricate MEMS 

devices has since been greatly appreciated as discussed in [8]-[10]. 
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1.1 Introduction to CMOS-MEMS 

The field of complementary-metal-oxide semiconductor micro-electro-mechanical 

systems (CMOS-MEMS) dates back to mid 1980s, but has grown substantially in the past 

decade especially since the availability of commercial foundry services from fabrication 

companies such as IBM, TSMC, and AMI (ON Semiconductor) to support CMOS

MEMS development. CMOS-MEMS is an approach to building MEMS structures 

directly in widely available CMOS semiconductor materials. The technology represents a 

breakthrough in monolithic devices. Unlike other MEMS technologies, CMOS-MEMS 

devices are not fabricated in the thin films on top of CMOS, but instead are fabricated 

from the metal-dielectric layers of the CMOS itself that are deposited during the standard 

CMOS processing flow. The same metaVdielectric layers which make up the mechanical 

MEMS structures also form the electronic circuits which are integrated with the MEMS 

structures, lead to the highest possible performance. CMOS-MEMS technology enables 

multiple sensors and associated electronics to be integrated into one common platform. 

The level of integration available in CMOS-MEMS results in small sizes, high

performance, and cost-effective solutions for numerous device categories such as inertial 

(accelerometer and gyroscope), RF (resonators and switches), chemical (gas sensors), and 

acoustic (microphone and speakers). 

1.1.1 CMOS-MEMS Technologies 

The integration ofMEMS structures with CMOS circuits for signal conditioning 

can be implemented using three approaches; pre-CMOS, intra-CMOS, and post-CMOS 

technology. 
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In pre-CMOS technology, MEMS devices are processed first followed by a 

standard CMOS steps to build the circuit. This process is also known as 'MEMS-first' 

fabrication approaches [11]. Pre-CMOS technology is developed by Sandia National 

Laboratory. The M
3
EMS (Modular, Monolithic Micro-Electro-Mechanical Systems) 

technology was the first demonstrations of the MEMS-first integration concept [12, 13]. 

In this approach, multi-layer polysilicon microstructure is built in a trench, which has 

been etched into the bulk silicon. After the formation of polysilicon microstructures, the 

trench is refilled with LPCVD oxide and planarized with a CMP (chemical mechanical 

polishing) step. Subsequently, the wafers with embedded microstructures are used as 

starting material in CMOS process, fabricating CMOS circuitry in the area adjacent to 

MEMS area. CMOS metallization is used to interconnect circuitry and MEMS areas. The 

back-end of the process requires additional masks to open the protective silicon nitride 

over the MEMS areas prior to the release of the polysilicon structures by silicon oxide 

sacrificial etching. 

In intra-CMOS technology, MEMS devices are processed in between the regular 

CMOS process steps. Intermediate micromachining is most commonly used to integrate 

polysilicon microstructures in CMOS/BiCMOS process technologies [11]. Commercially 

products fabricated with intermediate micromachining, include Analog Devices ADXL 

series accelerometers and ADXRS series gyroscopes [14], Infineon Technologies' KPIOO 

series pressure sensors [15] and Freescale's MPXY8000 series pressure sensors [16]. 

In post-CMOS technology, MEMS devices are processed after the completion of 

the CMOS process steps [17, 18]. In the case ofpost-CMOS micromachining, the MEMS 

devices are either built: (1) from the CMOS layers themselves, or (2) from additional 
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layers deposited on top of CMOS wafer. In the first approach, most of the microstructures 

are already formed within the regular process sequence. Further process steps such as 

etching is only required to release the microstructures from the CMOS thin film and 

substrate. The fabrication of MEMS devices for this work utilizes the first approach of 

the post-CMOS process sequence. CMOS thin film layers and bulk silicon are used as the 

material for the MEMS devices. In the second approach, MEMS devices are built on top 

of a CMOS substrate. Surface micromachining and sacrificial etching are normally used 

to release the microstructure. Add-on micromachining requires a good planarity of the 

underlying CMOS substrate and electrical and mechanical contact between 

microstructures and CMOS circuits. The constraint of the second approach is the 

limitation of the Aluminum metallization in the CMOS that is used for the signal routing, 

which has a melting point of ~600 °C. The LPCVD deposition and annealing of a thin 

polysilicon films used as a microstructure for example will require a process temperature 

of 2: 900 °C. Thus, special structure materials and sacrificial layers that can be deposited 

and processed at lower temperature such as SiGe/Ge are required. 

The advantages ofpost-CMOS technology compare to other CMOS technologies 

can be summarized as follows: 

• Single-crystal silicon (SCS) can be used as the microstructures compare to only 

polysilicon material normally use as the microstructures in pre-CMOS and intra

CMOS technology. SCS material has better mechanical performance compare to 

polysilicon. Thus, increases device performance and sensitivity. 
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• Structural curling due to residual stress after post-microfabrication can be 

reduced or avoided with the incorporation of SCS as the microstructures. 

• Microfabrication flexibility. Microfabrication process can be performed at 

numerous foundries such as IBM, TSMC, AMI, ... etc. On the hand, pre-CMOS 

and intra-CMOS microfabrication must be performed at a dedicated foundry. 

• Post-microfabrication ofMEMS devices can be performed at a dedicated MEMS 

foundry 

1.1.2 CMOS-MEMS Micromachining Process 

The basic microfabrication technologies described in Section 1.1.1 earlier are 

often combined with special micromachining steps to produce three-dimensional 

microstructures. The micromachining techniques are categorized into bulk and surface 

micromachining processes. In the case of bulk micromachining, the microstructure is 

formed by machining the relatively thick bulk substrate material, whereas in the case of 

surface micromachining, the microstructure comprises thin-film layers, which are 

deposited on top of substrate and are selectively removed in a defined sequence to release 

the MEMS structure [11]. 

Bulk micromachining techniques, i.e. etching techniques to machine the (silicon) 

substrate, can be classified into isotropic and anisotropic, and into wet and dry etching 

techniques, as can be seen in Table 1.1 [19]. 

Surface micromachining technique involves sacrificial-layer etching [12]. In this 

process, a microstructure, such as a cantilever beam or plate, is released by removing a 

sacrificial thin-film material, which was previously deposited underneath the 
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microstructure. The release of polysilicon microstructures by removing a sacrificial 

silicon dioxide film is the most popular surface micromachining technique [12]. Metallic 

microstructures deposited by low-temperature PVD processes can use polymer films as 

sacrificial layers, which are removed using, e.g., an oxygen plasma [20, 21]. 

1.1.3 CMOS-MEMS Research Cycle 

CMOS-MEMS research approach adopted at the Oakland University falls in the 

bulk CMOS-MEMS category. It involves a long and comprehensive research cycle. The 

device research development begins with the theoretical studies and ends at the 

characterization stage, as shown in Fig. 1.1. Referring to Fig. 1.1, the cycle starts with on-

paper theoretical design of the CMOS-MEMS devices as shown in Fig. 1.1 (a). 

Table 1.1 

Etching Techniques for Micromachining the Silicon Substrate 

Type Wet etchif!g D_ty etchil!& 
Isotropic HNAsystem Vapor-phase etching 

HF-HN03-CH3COOH XeF2 

Anisotropic Alkali metal hydroxide Plasma etching 
solutions 
KOH,NaOH RIE, de~-RIE 
Ammonium hydroxide 
solutions 

(CH3)4NOH (TMAH), 

~OH 
EDP solutions 
hydrazine 
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Matlab simulation software is used on the second design stage to estimate device 

electrical and mechanical performances as shown in Fig. 1.1 (b). The simulation results 

obtained from Matlab is further validated using the comprehensive CoventorWare finite 

element analysis (FEA) software as illustrated in Fig. 1.1 (c). Integrated with Electro

thermal-mechanical solver, CoventorWare solver can be used to analyze temperature, 

capacitance, and mechanical behavior of the device. Once all the simulation results have 

satisfied the design performance requirement, the next step is to draw the layout of the 

device using either CoventorWare software itself or a more dedicated layout editor such 

as Mentor Graphic as indicated in Fig. l.l(d). 

The selection of the layout tools is dependent on the fabrication technology and 

the fabrication foundry. In this research, AMI (ON Semiconductor) 0.5 J.lm CMOS 

technology is used to design and fabricate the device through a multiple-wafer project 

service agent (MOSIS). Mentor Graphic software is used for the layout design due to its 

capability and availability of AMI 0.5 J.lm CMOS technology file. The device design 

represented by a layout set is then taped out to CMOS foundry through MOSIS for 

CMOS fabrication. 

The returning chip, which is still in solid condition with all the microstructures 

connected to substrate is then scheduled for the post-CMOS microfabication process as 

shown in Fig. l.l(t). Using a customize process recipes, through post-CMOS 

microfabrication, the movable sensor structures are then released from the substrate. For 

this research, the post-CMOS microfabrication process is conducted at the Lurie 

nanofabrication facility (LNF), University of Michigan. 
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Fig. 1.1. CMOS-MEMS research cycle at Oakland University. 

) 

Prior to device characterization, each sensor is packaged and bonded using 

suitable package such as ceramic dual in-line package (DIP) as demonstrated in Fig. 

1.1 (g). The final step is to perform device characterization as shown in Fig. (l.lh). 

Device performances such as mechanical, off-chip, noise measurement, and temperature 

test have been conducted. 

1.1.4 CMOS-MEMS Capacitive and Piezoresistive Sensors 

This section discusses the operating principle of the CMOS-MEMS capacitive 

and piezoresistive sensors that have been developed in this research. CMOS-MEMS 
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sensors mostly use miniaturized cantilever-type springs that convert force into a 

displacement, which can be measured using either capacitive [22, 23], piezoelectric [24] 

or piezoresistive [25, 26] sensing principles. 

Capacitive sensors normally employ capacitance change of a system to measure 

the physical parameters input to the system. Capacitance is a property that exists between 

any conductive surfaces named electrodes within some proximity. Changes in the 

displacement between two surfaces change the capacitance. It is this change of 

capacitance that capacitive sensors use to indicate changes in position of a target. Design 

of the sensing elements in a capacitive sensor usually takes two forms: parallel-plate 

capacitors oriented in the vertical (perpendicular to substrate) direction, as shown in Fig. 

1.2(a), or, sidewall parallel-plate capacitors oriented in the lateral (in-plane to substrate) 

direction, as shown in Fig. 1.2(b) [11]. The sidewall capacitors are usually formed from 

interdigitated beam fingers, called 'comb', to increase the capacitance in the given layout 

area as illustrated in Fig. 1.2(b). For this research, the interdigitated beam fingers are used 

to detect the sidewall capacitance change, which will be elaborated in Chapter Two. 

A Piezoresistive sensor depends on the piezoresistive effect. Under this effect, 

electrical material will change its resistance when it experiences a strain deformation 

(differential deformation) due to certain loading or force applied to the material. When a 

material is stretched within the limits of its elasticity such that it does not break or 

permanently deform, it will become narrower and longer. This is minimal in 

semiconductors such as silicon. The major effect is the strain that caused the resistivity 

change. The strain is defined as change in length per unit length, MIL. 
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Movable 
electrode 

(a) 

d+x ...,. 

(b) 

Fixed 
electrode 

electrode 

electrode 

Fig. 1.2. Basic parallel-plate capacitive displacement sensors: (a) vertical 
plate electrodes, and (b) sidewall electrodes formed with interdigited comb 

fingers. The arrow shows the direction of motion. 

The change of resistance in metal due to an applied mechanical load was 

discovered by Lord Kelvin in 1856. Large piezoresistive effects in silicon and germanium 

materials were discovered in 1954 by Smith [3]. Fig. 1.3 illustrates an example of a 

uniaxial loading in the direction of x. The uniaxial loading effect contributes to axial 

stress, ax. and strain, &x. The relationship between the change of resistance and the strain 

is defined by the gauge factor, G [11], which will be detailed in Chapter Two. 
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dx 

vcxd 

----+X 

vcxdz 

z 

Fig. 1. 3. A uniaxial tensile force in the direction of x. 

1.1.5 CMOS-MEMS Piezoresistive Accelerometers 

A number of CMOS-MEMS piezoresistive accelerometers have been 

demonstrated, in most of which only CMOS thin film micro-cantilever structures were 

used as proof mass [27-30]. Although the surface micromachining process employed for 

the creation of these devices is quite simple and cost-effective, yet due to the small 

structure thickness, the devices suffer low sensitivity and other shortcomings. Moreover, 

the residual stress in the CMOS thin films often causes large structure curling. Thus, the 

area and mass of the proof mass structure are also limited. Deep reactive ion etching 

(DRIE) based dry bulk CMOS-MEMS technology has paved ways for microfabrication 
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of various devices with robust MEMS structures and considerable device sizes [31, 32]. 

Compared with wet process for single-crystal silicon (SCS) proof mass manufacturing 

[33], DRIE method is more effective and environment-friendly due to its enclosed 

processmg. 

1.1.6 CMOS-MEMS Force Sensor 

Sensors and probes for measurement of small forces ranging from pi co Newton 

(pN) to milli Newton (mN) have been widely explored in various fields such as cell 

motility study [34, 35] and micro object manipulations research [36, 37]. Most MEMS 

force sensor designs as reported in [36, 37] have utilized in-plane (lateral) sensing 

mechanism, which has inherent constrains such as pull-in effect and complicated 

electrical isolation. Moreover, the use of silicon on insulator (SOl) as structural material 

as demonstrated in [36], not only complicates the sensor wiring, but also significantly 

increases the cost for device integration. CMOS-MEMS technology offers an ideal 

approach for monolithic integration of sensors and conditioning circuits, which is critical 

for low parasitic system such as small force sensors [38]. Plasma etching based bulk 

CMOS-MEMS technology has also allowed large proof mass, robust sensor structures in 

addition to easy integration and rapid device prototyping [39]. 

1.2 Control ofMEMS Actuator and Sensor 

MEMS force sensors have been actively explored for biomedical applications. A 

small dimensional device yet with high sensitivity has allowed MEMS force sensors to 

measure extremely small forces ranging from milli-Newton to pico-Newton. The design 

and various applications of such force sensors have been studied and presented [36, 37], 
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[ 40-42]. The integration of an actuator (a micro gripper), and a force sensor with a 

gripping force of 380 JlN at a driving voltage of 140 V has been demonstrated in [ 46]. 

The application of a capacitive force sensor used to characterize flight behaviour of fruit 

flies (Drosophila melanogaster) was investigated in [37]. In [40], an electrostatic micro 

force sensor capable of sensing forces from 490 JlN to 900 11N has been discussed. A 

fabrication of multi-degree-freedom force sensor that operates up to 500 11N was 

explained in [41]. 

Generally, MEMS sensors operate in an open-loop environment. Challenges have 

emerged when certain objectives of the measurements are needed. Many researchers have 

incorporated feedback systems including sensing and actuating elements into MEMS 

sensors to achieve closed-loop measurement. In [ 42], the authors suggested the use of a 

PID controller for force tracking of a micro grasping system with a reference input of 

8 JlN. Similar force tracking objective achieved by using the robust nonlinear control 

technique for a piezoresistance nano mechanical-cantilever system was proposed in [43]. 

A state-feedback force controller in [44] was used in a magnetic levitation system to 

evaluate the bonding quality between circuit and pads. In [ 45], phase-locked loop control 

method was utilized to ensure the operating of MEMS actuators at their resonant 

frequency. Another application which utilized a Taylor series approximated state

feedback to control the deflection of a parallel-plate electrostatic actuated microgripper 

was presented in [ 46]. 
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1.3 Contribution of Thesis 

The main focus of this research is on the design, simulation, fabrication, and 

characterization of two new CMOS-MEMS devices: a piezoresistive accelerometer and a 

nano-Newton force sensor. A low g piezoresistive accelerometer, which utilizes the 

piezoresistivity effects, is implemented using inherent CMOS polysilicon as the sensing 

material. This device is suitable for many applications such as motion sensing in laptop 

computer, mobile phones, PDAs, hard-disk and CD-drive systems, cameras, and gaming 

[47]. The second CMOS-MEMS device is a nano-Newton force sensor, which utilizes 

capacitive sensing principle. It is suitable for many biological applications including cell 

motility study in which flagellar force measurement on the range ofpico-Newton to 

nano-Newton is needed. AMI 0.5 11m CMOS technology has been used for device 

fabrication. A Deep reactive ion etching (DRIB) based dry bulk post-CMOS technology 

is used for device release. 

In addition to CMOS-MEMS device fabrication and characterization, this 

research also explores the potential integration ofCMOS-MEMS and control systems for 

reliable device operation. This aspect of study is to prevent certain device operation 

issues such as the inherited pull-in effect existing in the capacitive sensor or excessive 

unnecessary force that may damage the sensor. An actuator system is integrated in the 

sensor system to provide a feedback for device stabilization. An observer-based 

controller technique is used for the state estimation and controller design. Actuator model 

using mass-spring-damper system is used for device simulation. 
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1.4 Dissertation Organization 

Chapter One is dedicated to the introduction of the MEMS research related to this 

thesis work. This includes the introduction and history ofMEMS and CMOS-MEMS. 

The author also explains the advantages ofpost-CMOS technology compared to pre

CMOS and inter-CMOS technologies from a perspective of device fabrication. This 

chapter also introduces the typical CMOS-MEMS research cycle. Current CMOS-MEMS 

piezoresistive and capacitive sensors are summarized with the inclusion of current 

literatures on similar topics. Next, the necessity of control for MEMS devices is also 

explained in Chapter ONE. Finally, author's contribution on CMOS-MEMS research is 

summarized. 

Chapter Two details the design and simulation of the proposed CMOS-MEMS 

piezoresistive accelerometer. Compared to the reported devices, higher sensor sensitivity 

and larger process tolerance are achieved for this sensor by using a maskless bulk 

CMOS-MEMS microfabrication technology to include single-crystal silicon (SCS) as 

proof mass. Inherent CMOS Si02/Aluminum bimorph layers are employed as sensing 

structures. In the bimorph beams, four polysilicon resistors are appropriately designed to 

harvest the largest piezoresistance. Using multiple CMOS metal layers, the four 

polysilicon resistors are conveniently wired to form a full sensing Wheatstone bridge for 

even higher sensitivity. Next in the same chapter, a CMOS-MEMS nano-Newton force 

sensor employing out-of-plane sensing mechanism is designed and simulated. Due to its 

capability of out-of-plane sensing and high sensitivity, it is particularly suitable for 

biomedical application. Unlike most available force sensors, this device is designed to 

sense forces that are perpendicular to the sensor plane. This will greatly facilitate device 
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deployment in force measurement. To validate the unique sensing mechanism, in this 

work no conditional circuit is integrated on the chip. Instead, a commercially available 

universal capacitive sensing circuit has been used in device test. Common-centroid 

wiring of the symmetrically partitioned sensing capacitors allows fully differential 

sensing and offset cancelation for larger sensitivity. 

In Chapter Three, an observer-based controller design for a CMOS-MEMS nano

Newton force sensor actuator system is discussed. The out-of-plane measurement takes 

place in the sensor system when the sensor is subjected to a force at the probe tip in the z

direction. However, possible twisting in-plane motions (x-y plane) of the sensing 

elements could occur, which will give rise to out-of-plane measurement errors, or even 

damage the sensor in severe cases. Therefore, the objective of the investigation is to 

design of an observer-based nonlinear controller that employs an electrostatic actuator to 

stabilize the in-plane twisting motions of the sensing elements. The nonlinear controller 

design utilizes the input-states and input-output feedback linearization technique, while a 

nonlinear observer is designed to estimate the unknown states. It is well known that 

observer-based controllers are employed in most, if not all, real-world control 

applications where all the state variables are required for feedback control but not all of 

these variables are accessible for on-line, real-time measurements, and/or where the 

measurements are corrupted by noise. 

In Chapter Four, a post-CMOS microfabrication process for the fabrication of the 

two devices explored in this research is elaborated. The process was developed at Lurie 

nanofabrication facility (LNF), University of Michigan, Ann Arbor. A Deep reactive ion 

etching (DRIE) based dry bulk post-CMOS technology is used for device release. 
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Etching processes are discussed with the inclusion of process schematic cross-section, 

optical microscope images, and scanning electron microscope (SEM) images for 

fabrication result examination. 

In Chapter Five, the characterization process and results for the piezoresistive 

accelerometer and nano-Newton force sensor are elaborated and discussed. This includes 

device packaging, equipment setup and calibration, electrical, mechanical, dynamic, 

noise, and thermal tests. Test results and device performance are included and discussed. 

Important conclusions drawn from the finding in this research are presented in 

Chapter Six. Future work for device performance, control improvement, and monolithic 

integration are discussed as well. 
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CHAPTER TWO 

DESIGN AND SIMULATION OF A CMOS-MEMS SENSORS 

This chapter presents the design and simulation of the two CMOS-MEMS 

devices; a piezoresistive accelerometer and a nano-Newton force sensor. Sensors design 

and fabrication are based on AMI (On Semiconductor) 0.5 J.lm CMOS technology. The 

objectives of this research are to design and fabricate these sensors that will meet the 

following specifications as listed in Table 2.1. Both sensors are expected to operate in 

out-of-plane motion and with device resonant frequency between 1.0 kHz to 1.5 kHz. 

This chapter can be divided into two main sections. For the piezoresistive accelerometer, 

the detectable accelerations are expected to be less than 1 Og while the sensing force 

detectable by the nano-Newton force sensor is between nano-Newton to pico-Newton 

range. Section 2.1 discusses the design of a CMOS-MEMS piezoresistive accelerometer, 

which includes the theoretical device design, sensor's self heating effect, simulation 

results, and the conclusion. Section 2.2 elaborates the design of a CMOS-MEMS nano

Newton force sensor, which includes the theoretical device design, the simulation results, 

and the conclusion. Analytical calculation and simulation utilize MATLAB software as 

the first design step to estimate sensors performance. The results are then verified using 

CoventorWare a comprehensive MEMS finite element analysis (FEA) software before 

proceeding to layout design using Mentor Graphic software. 
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Table 2.1 

Sensors Desired Performances 

Piezoresistive Accelerometer Desired Performance 
Sensing axis Out-of-plane (z-axis) 
Resonant frequency 1.0 kHz to 1.5 kHz 
Acceleration < 10 g 

Nano-Newton force sensor Desired Performance 

Sensing axis Out-of-plane (z-axis) 
Resonant frequency 1. 0 kHz to 1.5 kHz 
Sensing force pN to nN-Newton 

2.1 Design of a CMOS-MEMS Piezoresistive Accelerometer 

Fig. 2.1 shows a 3-D model of the piezoresistive accelerometer with inset 

showing the cross-sectional view of the CMOS bimorph beams in which sensing poly 

crystalline silicon piezoresistors are embedded [48]. Inset "A" and "B" shows the cross-

sections of the polysilicon resistors that are arranged in longitudinal and transverse 

orientation, respectively. The sensor has a single crystal silicon (SCS) proof mass with a 

dimension of 500 )liD x 500 )liD in size and approximately 40 )liD of structural thickness. 

The SCS proof mass is anchored through four Si02/ Al bimorph beams that consist of 

inherent CMOS thin films with a total thickness of approximately 5 )liD. The dimension 

of each bimorph beam is 200 )liD x 13 )liD. The inherent CMOS polysilicon layer 

(polysilicon 1 ), which is used as the piezoresistive sensing material for this device, has a 

thickness of approximately 0.35 )liD, according to the standard AMI 0.5 )liD CMOS 

technology used in this project. The schematic cross-section of the CMOS thin films and 

their spatial locations are illustrated in Fig. 2.2. The typical CMOS layer thickness in 
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AMI 0.5 11m CMOS technology, is listed in Table 2.2 [49]. Other parameters such as the 

sensor geometric and material properties used in sensor design and their values are given 

in Table 2.3. 

When the sensor is subject to an out-of-plane motion (z-axis), the induced stress 

on the longitudinal and transverse polysilicon resistors will result in the relative change 

of resistance MIR given by 

(2-1) 

M =(M) =Gpolytvcx, 
R R t 

(2-2) 

Table 2.2 

Typical CMOS Layers Thickness 

Layer Thickness (Jlm) 

Single Crystal Silicon (SCS) -250 

Field Oxide under Poly, Hox 0.4 

Field Oxide under Metal 1 0.375 

Gate Oxide 0.0135 

Polysilicon, fpoly 0.35 

Metal, HAl 0.69 

Boro-phospho-si1icate-glass (BPSG) 0.7 
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Embedded polysilicon resistors 
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Fig. 2.1. A 3D model of the piezoresistive sensor showing the 
embedded polysilicon resistors in the bimorph beams. 

Metal layers 

polysilicon 

Oxide 
layers 

Fig. 2.2. Schematic cross-section of the released sensor showing the 
CMOS thin films and their relative locations. 
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Table 2.3 

Sensor Geometric and Material Parameters 

Parameters ~bol Value Unit 
Geometric: 

Bimorph beam thickness from Hb 4.2 Jlm 
polysilicon layer 
Bimorph beam width 

wb 13 Jlm 
Bimorph beam length Lb 200 Jlm 
Proof mass thickness Hpm 40 Jlm 
Proof mass width Wpm 500 Jlm 
Proof mass length Lpm 500 Jlm 
Polysilicon length, width Lpofy, Wpoly 49.4, 1.2 Jlm 
Proof mass weight 1.05xl0 -7 

Kg 

Electrical: 

Polysilicon sheet resistance Ru 26.1 !1/D 

Polysilicon TCR apoly 5.85xl0 
-3 KI 

Polysilicon resistivity Ppoly 9.135 !l.Jlm 

Mechanical: 
EAI 65 GPa Aluminum Young's modulus 

Si02 Young's modulus Esi02 70 GPa 

Silicon density PSi 2330 Kg/m 3 

Thermal: 

Aluminum thermal conductivity lCAf 237 W/(K.m) 
Si02 thermal conductivity lCox 1.1 W/(K.m) 
Silicon thermal conductivity lCSi 170 W/(K.m) 
Polysilicon thermal conductivity lCpoly 29 W/(K.m) 
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where the subscript 'I' and 't' denote the longitudinal and transverse relative change of 

resistance, vis the Poisson's ratio of the silicon having the value of0.27 while Gpolyl and 

Gpolyt are the longitudinal and transverse gauge factor. 

In AMI 0.5 J.lm CMOS technology used in this work, the polysilicon layer has a 

nominal sheet resistance, Ps of 26.1 Q/0 [ 49] which is equivalent to the resistivity, Ppoly 

of9.14 x 10-4 
Q.cm and a boron doping concentration of 1.42 x 1019 cm-3

. This amount 

of doping concentration corresponds to the longitudinal and transverse gauge factor of 40 

and -15, respectively [50]. The resistivity of the polysilicon can be determined using 

P poly = Psf poly ' (2-3) 

where fpoty is 0.35 as defined in Table 2.2 and Bx is the axial strain. The relationship 

between the axial and transverse strains can be evaluated using 

(2-4) 

Referring to Fig. 2.1 and Appendix A. I, the axial strain, Bx in the direction of x, 

which occurs on the bimorph beam, is given by 

z 
8 =--

X R ' 
c 

where z is the distance from the neutral axis and Rc is the radius of curvature of the 

(2-5) 

bending beam [51]. Since the Young's modulus of aluminum and silicon dioxide (Si02) 

material are close, it is safe to assume that the neutral axis is at the centre of the bimorph 

beam. The beam bending moment is required to solve Eqn. (2-5). The beam bending 

moment can be obtained by the integration of the stress through the thickness of the 
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beam, Hb and is given by [51] 

(2-6) 

where CTx is the axial stress of the beam. Since the relation between the stress and strain is 

CTx = E&x, Eqn. (2-6) led to 

which can be further simplified to 

1 12M M 
(2-8) = 

where I is the beam inertia and is given by 

(2-9) 

Referring to Appendix A.2, the solution of the bending beam with proof mass, 

which result in the maximum bending stress at the beam support to substrate (x = 0) is 

given by 

_1_= d
2

w = M = ma(L + Lpm J 
Rc dx2 EI EI b 2 ' 

(2-1 0) 

and from Eqn. (2-5), the strain occurs at the top (tension) and bottom (compression at 

polysilicon layer) of the beam surface is 

(2-11) 

Inserting Eqn. (2-1 0) to Eqn. (2-11) yields 

24 



(2-12) 

which compute the complete solution of the relative change of resistance due to 

acceleration for four bimorph beams. By substituting Eqn. (2-12) into Eqn. (2-1) and 

Eqn. (2-2) yields 

(2-13) 

(M) 1.5mv [ Lpm J 
- = G polyt 2 Lb + -- a ' 
R t EWbHb 2 

(2-14) 

Lpoly 
R = Ppoly • 

wpolyfpoly 
(2-15) 

where R is the resistance of each poly resistor and is calculated to be 1.1 kn using 

Eqn. (2-15). The resonant frequency,Jofthe sensor is calculated as 1.85 kHz using the 

equation given by 

/=-1 fk, 
2tr v-;;; (2-16) 

in which k is the stiffuess coefficient of the bimorph beam calculated to be 14.21 Nm-
1 

and is defined as 

(2-17) 

Even though from theoretical calculation, the stiffness coefficient is found to be 

very high, but the inclusion of large and thick proof mass will reduce the stiffuess of the 

sensor and hence reduce the resonant frequency of the device. 
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2.1.1 Sensor Self Heating Effect 

Polysilicon resistor is a type of resistor whose resistance varies with temperature. 

When a current flows through a polysilicon resistor, it will generate heat which will raise 

the temperature of the material, which subsequently varies the resistance of the 

polysilicon resistor. This phenomenon is known as the self heating effect. The resistance 

change due to self heating effect is considered as an offset to the change of resistance due 

to acceleration. The joule heating that occurs when a current flows in a resistor can be 

represented as the lumped-element thermal circuit as shown in Fig. 2.3 [51]. 

In Fig. 2.3, the electric circuit consists of a resistor and a voltage source. The thermal 

circuit consists of three elements: a diamond shape dependent current source that 

provides the Joule heat power r!R, a thermal capacitor Cr, which represents the heat 

capacity of the resistor, and a thermal resistor Rr that represents the heat conduction from 

I 

+ 

T=To 

Electric circuit Thermal circuit 

Fig. 2.3. Circuit model for the self heating of a resistor driven by a voltage source. 
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resistor to a thermal reservoir. To = TR is the room temperature and is assumed as 25°C or 

293 °K. In the thermal circuit, the current variable is denoted as /Q. The relative change 

of resistance due to self heating effect in the polysilicon resistor is given by [51] 

( M) = a poly ( Tss - TR) = a polyl'l.T ' 
R thermal 

(2-18) 

where apoly is the polysilicon temperature coefficient of resistance (TCR) as listed in 

Table 2.3, while Tssis the steady state temperature due to self heating. The transient 

response of the temperature, T1, is derived as 

(2-19) 

RR = R = 1.1 ill is the resistance of the polysilicon resistor at room temperature 

and can be calculated using Eqn. (2-15). The heat flux is assumed to travel in series from 

polysilicon resistors to Si02 layer then to metal 3 layers and finally distributed on metal 3 

surface on substrate. The thermal resistance, Rrand thermal capacitance, Cr can be 

calculated using Eqn. (2-20) and Eqn. (2-21). The values used are listed in Table 2.4. 

(2-20) 

1 1 1 
= + +--. 

CT CTpoly CTSi02 CTAI 
(2-21) 
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Table 2.4 

Calculated Values for Thennal Resistances and Capacitances 

Symbol Description Values 

A poly Area of the Polysilicon resistor 5.93 x 10-11 m2 

A ox Area of the Polysilicon resistor 1.37 x 10-10 m2 

WAt Area of the oxide 13.4 x 10-6 m 

LA/ Width of the metal 10.2 x 10-6 m 

Rrpoly Thermal resistance of po1ysilicon layer 233 KIW 

Rrs;o2 Thermal resistance of silicon dioxide layer 
4 1.2 X 10 KIW 

RrAt Thermal resistance of aluminum layer 
3 

4.6 X 10 KIW 

Crpoly Thermal capacitance of polysilicon layer 3.88 X 10-11 J/K 

Crs;m Thermal capacitance of silicon dioxide layer 3.80 X 10-1
0 J/K 

CrAI Thermal capacitance of aluminum layer 2.32 X 10-1
0 J/K 

Rr Total thermal resistance 
4 

1.7 X 10 KIW 

Cr Total thermal capacitance 3.1 X 10-11 J/K 
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2.1.2 Simulation Results 

This section presents the sensor performance analysis through simulation when 

the external out-of-plane acceleration is applied to the sensor. Results from Matlab and 

CoventorWare simulation such as the mechanical sensitivity, modal analysis, and heat 

flow for the thermal capacitance estimation due to self heating of the sensor are included 

and discussed. 
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Fig. 2. 4. Piezoresistance change in longitudinal direction as a function of 
out-of-plane acceleration. 
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Using Eqn. (2-13) and Eqn. (2-14), the longitudinal and transverse relative change 

of resistance with acceleration from 1 g to 1 Og are estimated and the results obtained from 

Matlab simulation are shown in Fig. 2.4 and Fig. 2.5. The calculation results show that 

the longitudinal relative change of the piezoresistance is +4.26 x 10-4 %/g or +4.6 m!1/g, 

while the transverse relative change of resistance of the piezoresistance is 

-4 I -0.43 x 10 %/g or -0.46 mn g. 
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Fig. 2.5. Piezoresistance change in transverse direction as a function of 
out-of-plane acceleration. 
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CoventorWare, a comprehensive finite element analysis (FEA) tools dedicated for 

MEMS design and simulation [52], is used to validate the relative resistance change of 

the piezo resistors design. From CoventorWare simulation as shown in Fig. 2.6, it is 

found that the relative piezoresistance change in longitudinal direction can be as high as 

1.8 x 10-4 %/g or 1.7 mn/g slightly lower from the theoretical result. The FEA simulation 

result is in good agreement with the theoretical calculation as shown in Fig. 2.6. 
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Fig. 2.6. CoventorWare simulation of the piezoresistance change in longitudinal direction 
as a function of out-of-plane acceleration. 
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Using similar FEA tool, the resonant frequencies of the sensor are also 

investigated. The first damped frequency or mode 1 is found to occur at 1.0 kHz with out-

of-plane (z-axis) response. The second mode occurs at 3.2 kHz aroundy-axis while the 

third mode occurs at 162 kHz along x-axis. From modal simulations, the sensor is found 

to meet the design requirement, which required the device to safely operate in out-of-

plane motion at operating frequencies of 160Hz, which is much lower than the first 

resonant frequency at 1 kHz. The theoretical result of the first resonant frequency is 

calculated as 1. 85 kHz slightly higher than the result from FEA simulation. 

CoventorWare modal simulation result is shown in Fig. 2.7. 

Mode 1 Mode2 

Mode3 

z 

ti.x 
Fig. 2. 7. CoventorWare modal simulation to estimate the resonant frequencies of the 

sensor. (This figure is presented in color; the black and white reproduction 
may not be an accurate representation) 
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Self heating effect of the polysilicon resistors has also been simulated. The 

temperature change due to self heating effect of the sensor is found to be -1 7 °K using 

Eqn. (2-19). The transient response of the temperature when a 1.0 V de voltage and 1.0 

rnA of current are applied to the polysilicon resistors is simulated using Matlab as shown 

in Fig. 2.8, which indicates that the temperature raise in the sensor's beam reaches its 

steady-state value at -17 °K in less than 3ms. 
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Fig. 2.8. Transient response of the temperature on the bimorph beam simulated using 
Matlab. 
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CoventorWare simulation is also been conducted to investigate the flow of the 

heat flux. Fig. 2.9 shows the CoventorWare simulation result of the heat flux when a 

current of 1 rnA is applied to the polysilicon resistor. From the simulation, the 

temperature change is found to be -12 ° K, which is slightly lower than the calculated 

result at -17 °K. The heat flow is observed to be from Z -7 Y -7 X direction as predicted 

by Eqn. (2-20). This indicates that the FEA simulation results are in good agreement with 

the theoretical calculation. From the simulation, the relative change of resistance due to 

the selfheating effect is found to be 0.16 %. 

______ ..,.... 
RrAt 

Heat flux- X 

Heat flux- Y Heat flux- Z 

(a) (b) 

Fig. 2.9. CoventorWare simulation of the (a) heat flux on the sensor bimorph beam 
and (b) the thermal resistance equivalent circuit. (This figure is presented in color; 

the black and white reproduction may not be an accurate representation). 
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2.1.3 Conclusion 

A high-sensitivity CMOS compatible piezoresistive accelerometer with large 

proof mass has been successfully designed and simulated. Common issues associated 

with most of the CMOS-MEMS thin film accelerometer such as structural curling and 

low sensitivity have been solved by incorporating the SCS as the proof mass. Four 

bimorph beams employed in the sensor has significantly improved sensor's stability by 

allowing sorely the out-of-plane motion of the proof mass for larger piezoresistive effect 

while minimizing in-plane motion. With a nominal sheet resistance, Ps of 26.1 n/D from 

AMI 0.5 J.Lm CMOS technology, the resistivity, Ppoty is calculated to be 9.14 x 10-4 

Q.cm, which contribute to a boron doping concentration of 1.42 x 10
19 

cm-3
. Using the 

calculated doping concentration, the longitudinal and transverse gauge factors are found 

to be 40 and -15, respectively. Each poly resistor is calculated to be 1.1 ill. The bimorph 

beam stiffness coefficient, k is calculated as 14.21 Nm-
1
, and with this stiffness, the 

resonant frequency is found to be 1.85 kHz from theoretical and 1 kHz from 

CoventorWare FEA simulator. Theoretical calculation and simulation also conclude that 

the longitudinal and transverse relative change of the piezoresistance is +4.26 x 10-4 %/g 

or +4.6 mn/g, and -0.43 x 10-4 %/g or -0.46 mn/g. Using FEA tool, the longitudinal 

relative change is found to be+ 1.8 x 10-4 %/g or+ 1. 7 mQ/g, which is in agreement with 

the calculated value. Since the piezoresistance is a temperature dependence material, the 

effect of self heating shows that temperature is raised -17 °K from theoretical calculation 

and -12 °K from the FEA simulation. This has contributed the change of resistance to 
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0.10% offset from the theoretical calculation and 0.07% offset from the FEA simulation. 

2.2 Design of a CMOS-MEMS Nano-Newton Force Sensor 

Fig. 2.10 shows a 3D model of the force sensor with the arrow on the probe tip 

representing the out-of-plane force. The sensing element has an overall dimension of 

approximately 1. 7 mm x 1.0 mm with a thickness of approximately 40 Jlm. The sensor is 

equipped with a 1100 Jlm x 50 Jlm micro probe for out-of-plane force pick-up; and 76 

pairs of sensing comb fingers [53]. 

Anchor 

z 

~ X 

Fig. 2.1 0. 3D model of the force sensor which illustrates the out-of-plane 
force, Fz at the probe tip and the comb fingers sections. 
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From Fig. 2.10, the asymmetric sensor proof mass is suspended to the substrate 

through two single crystal silicon (SCS) torsional beams. AMI 0.5 Jlm CMOS technology 

is used for sensor design and fabrication. Fig. 2.11 shows the CMOS layers used in the 

device. Note the SCS in the structure is for mechanical support purpose only. The critical 

technological parameters of AMI 0.5 Jlm CMOS technology is summarized in Table 2.5 

[ 49]. Other parameters such as the sensor geometric and material properties and their 

values use for sensor design are listed in Table 2.6. VIAs are used for the connection 

from Metal 1 to Metal 3 layers, while Metal 1 and Metal 2 layers are used for the signal 

routing. All three metals are interconnected for the rotor fingers to form one electrode, 

while Metal 1 and Metal 3 are used as the separate electrodes for the stator fingers. 

Metal layers 

Fig. 2.11. Schematic cross-section view of the sensing element where 
CMOS thin films are used. 
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Table 2.5 

Typical CMOS Layers Thickness 

Layer Thickness (urn) 

Single Crystal Silicon (SCS) -250 

Field Oxide under Poly, Hax 0.4 

Field Oxide under Metal 1 0.375 

Gate Oxide 0.0135 

Via size 0.6 ~m x 0.6 ~m 

Metal,HM 0.69 

Boro-phospho-silicate-glass (BPSG) 0.7 

To construct the sensing capacitors and to implement a fully differential sensing, 

sidewall and fringe capacitances formed by the multiple metal layers is exploited. As 

shown in Fig. 2.12 in which only one set of sensing capacitors is illustrated, stator comb 

fingers, which are connected to substrate, use Metal 1 and Metal 3 as capacitor 

electrodes. In between the stators is a rotor comb finger that is connected to the movable 

element (torsional beams). The rotor comb fmger uses all three metal layers as one 

electrode. They are connected by the very densely placed interconnected VIAs. Upon the 

application of a downward force at the probe tip, which is perpendicular to the sensor 

surface plane, rotor comb fingers in Section B and C will move downward and those in 

Section A and D will move upward with the same displacement due to the same length of 

the proof mass on each side of the torsional springs, as shown in Fig. 2.13. 
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Table 2.6 

Geometric and Material Properties 

Parameters Symbol Value Unit 

Geometric: 

Comb finger length LJ 100 Jlm 

Gap between comb finger g 3 Jlm 

Number of comb fingers N 76 -

Structure thickness HpM 40 Jlm 

Torsional beam length Lrs 365 Jlm 

Torsional beam width Wrs 4 Jlm 

L x W of the top proof mass to LTPM X WTPM 924 Jlm X 250 

middle of the beam Jlm 

L x W of the bottom proof mass 
LsrMx WsrM 700 Jlm X 250 

to middle of the beam Jlm 

Mechanical: 

Aluminum Young's modulus EAt 65 GPa 

Si02 Young's modulus Esi02 70 GPa 

2330 3 
Silicon density PSi Kg/m 

Silicon Young's modulus Es; 165 GPa 

Permittivity of the air Eo 8.85 X 10-IZ F/m 

Shear modulus G 6. 7623 X 10
10 Pa 
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For the sidewall capacitors in Section B, as shown in Fig. 2.12, C 1apB will 

decrease and CbatB will increase due to the position change of the rotor relative to the 

stator. To achieve differential sensing and offset cancellation, common-centroid wiring is 

used to connect the capacitors having the same changing trend together, e.g. CtopB and 

CbatD· The initial capacitances of C 1apB and CbatB are different due to the inhomogeneous 

media surrounding Ml and M2. By connecting C 1apB and CbatD and CbotC and C 1apA 

together, the same total capacitance with opposite changing trend can be reached. 

Stator finger Stator finger 
Rotor finger 

Fig. 2.12. Illustration of the capacitance change when the probe is 
subject to external force that results in the downward motion of the 

rotor comb finger. 
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Stator comb 
fingers 

Rotor comb 

Fig. 2.13. Illustration of the sensing structure motion upon a downward 
force applied to the probe tip. 

Electrical equivalent circuit for the common-centroid configuration of the sensing 

capacitors is shown in Fig. 2.14. The equivalent circuit in Fig. 2.14 can be further 

simplified as shown in Fig. 2.15 where Cn = CropA +Chore, C12 =ChotA+ Ctopc, 

c21 = ChotD + CtopB· and c22 = CtopD + ChotB· Referring to Fig. 2.15 and by considering 

the half-bridge capacitive sensing and ignoring the parasitic effect, the output voltage, 

Vol is given by [54] 

(2-22) 

where r is the moment of force applied perpendicular to the axis of the torsional beam 

and is given by 

(2-23) 
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A c D B 

Fig. 2.14. Electrical equivalent circuit for the common-centroid 
configuration of the sensing capacitors. 

The torsional spring constant, kif in Eqn. (2-22) is found to be 0.002 Nm/rad using 

the following equation [55] 

(2-24) 

From Eqn. (2-24), G = 5.12 x 10
10 

Pais the shear modulus while c2 is determined 

as 0.313 from the aspect ratio of the torsional beam HpMIWrs = 11.25 [56]. 

42 



-Vm 

Fig. 2.15. Simplified equivalent circuit of the sensor. 

Eqn. (2-25) gives the noise floor of the sensor inN/ -!Hz [57]. The noise floor of 

the sensor determines the minimum force detectable by the sensor. The Brownian noise 

of the sensor.Jm is produced by the Brownian motion or the random movement of 

particles suspended in a gas, while fe is the electrical noise from the interface circuit. The 

input-referred circuit noise from the interface circuit, Ve is found to be 4 aF/-IHz when 

referred to MS311 0 universal capacitive readout circuit datasheet from Irvine Sensors 

[58]. 

fn = ~~~ + !1" = f~ +(; r N/-IHz, (2-25) 
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b = pAeff . 
g 

(2-26) 

(2-27) 

Referring to Eqn. (2-25) to Eqn. (2-27), the Brownian noise of the sensor, fm is 

found to be 2.75 x 10-13 N/vfHz. ks = 1.38x10-23 J/K is the Boltzman's constant and b is 

the Couette's film damping, which is calculated as 4.69 x 10-
6 

Kg-s using Eqn. (2-27). 

From Eqn. (2-27), J1 is the viscosity of the air (18.27 x 10-
6 

Kg/ms) while the effective 

common area of the sensor, Ae.ff is calculated to be 7.66 x 10-
7

m
2

. 

The sensitivity, S of the sensor is found to be 0.0201 tF/nN prior to amplification. 

The sensitivity value is obtained through CoventorWare simulation. Theoretical 

calculation is unable to solve the inhomogeneous media surrounding Metall (Ml) and 

Metal2 (M2) layers. Due to the complexity of the capacitance arrangement in the sensing 

structure, the fringing effects are also ignored. Using Eqn. (2-25), the electrical noise,.fe 

is found to be 5 x 10-16 N/viHz and the total noise floor of the sensor,f, is determined as 

2.75 x 10-13 N/viHz. The minimum detectable force.Jmin by the sensor is therefore 

calculated to be 8.7 pN. The next section will discuss on the results obtained from the 

CoventorWare FEA software such as the total capacitance produced by the sensor and the 

z-displacement of the sensor structure when an external force is applied perpendicular to 

the sensor surface. 
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2.2.1 Simulation Results 

Nano-Newton force sensor simulation mainly utilizes CoventorWare FEA 

software to estimate the side wall capacitance change of the comb fingers caused by the 

external force applied perpendicular to the probe tip. Electro-mechanical simulation 

result as shown in Fig. 2.16 illustrates that the external force applied perpendicular to the 

probe from 1 nN to 1mN at the probe tip has resulted in capacitance change with a 

sensitivity of 0.02 fF/nN. The sensitivity of the sensor is used to determine the electrical 

noise in Eqn. (2-25). 

1.2751 

1.27j ~~/ 

1.265~ ~~/~ 
[i:' I X/ a. ' /~ 

i 1.26~/ 
c: 

~ 1.255~~ 
a. ~-

Cil ' 0 1.25~ 
I 
I 

1.245j 
I 
I 

1.24~ 

0 200 400 600 
Force [nN] 

BOO 

J 
I 

-- --

1000 

Fig. 2.16. CoventorWare simulation result of capacitance as the function of the out-of
plane force from 1nN to 1 mN. 
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From the simulation results, a linear response for both the displacement and 

capacitance change are observed as shown in Fig. 2.16 and Fig. 2.17. External force of 1 

mN has resulted in 0.527 J.Lm in z-displacement at sensing finger end and a capacitance 

change of 13.9 fF has been simulated with the same force excitation as shown in Fig. 

2.17. 

0.7 r- - - -- -' --

'E 
::J ........ 
c 0.4 
Q) 

E 
Q) 
u 
~ 0.3 
c. 
CJ) 

C5 
0.2 

I 

200 

;------~-------

400 600 800 1000 
Force [nN] 

Fig. 2.1 7. CoventorWare simulation result of displacement as the function of the out-of
plane force from 1 nN to 1 mN. 
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CoventorWare software is also been used to investigate the resonant frequencies 

of the force sensor. The modal simulation result can be used to predict the dominant 

motion of the sensor within the desired operating frequency. The first resonant frequency 

or mode 1 is found to occur at 1.22 kHz with out-of-plane (z-axis) rotation. The second 

mode occurs at 2.3 kHz, which shows a rotation of the sensor aroundx-y-axis, while the 

third resonant occurs at 3 kHz that indicate a motion along the x-axis. From the 

simulation result, the sensor is found to operate safely in out-of-plane motion at operating 

frequencies of below the first resonant frequency of 1.22 kHz. CoventorWare modal 

simulation is illustrated in Fig. 2.18. 

Mode 1 (out-of-plane) Mode 2 (twisting) 

Mode 3 (in-plane, 
sliding) 

z 

lLx 
Fig. 2.18. CoventorWare modal simulation to estimate the resonant frequencies of 

the force sensor. (This figure is presented in color; the black and white reproduction 
may not be accurate representation). 
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2.2.2 Conclusion 

A capacitive CMOS-MEMS force sensor capable ofnano-Newton measurement 

has been successfully designed, and simulated. The sensor produces a sensitivity of 

0.02 fF/nN. The stiffness coefficient of the torsional spring is calculated to be 0.002 

Nm/rad. The resonant frequency of the sensor structure is found to be 1.6 kHz by 

theoretical calculation and 1.22 kHz by CoventorWare FEA simulation. The mechanical 

noise of the system is found to be 2.75 xl0-
13 

N/"Hz, while the electrical noise is 5.0 

x 10-16 N/"Hz. The total noise by considering the electrical input-referred noise of 4 

aF/"Hz from the MS3110 universal capacitive readout board is calculated as 2.75 xl 0-
13 

N/"Hz, which result in a minimum detection force of8.7 pN. The unique out-of-plane 

sensing mechanism allows sensing of forces applied perpendicular to the sensor plane. 

The device robustness enabled by the inclusion of SCS as sensor structure allows for 

reliable deployment in force measurement. The wide force measurement range of nN to 

mN makes the force sensor suitable for many biomedical applications that operate at 

frequency of lower than 1 kHz. 
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CHAPTER THREE 

OBSERVER-BASED CONTROLLER DESIGN OF A CMOS-MEMS NANO
NEWTONFORCESENSOR 

This chapter reports the observer-based controller design specifically for the 

CMOS-MEMS nano-Newton sensor. An actuator system is integrated with the sensor 

system to provide a controlling action for structure twisting problem. An observer-based 

controller is used for feedback control and Luenberger observer design. Input-state and 

input-output linearization techniques are used for the controller linearization, while exact-

error linearization method is used to obtain a linear observer canonical form. Luenberger 

observer is utilized for the states estimation. Section 3.1 discusses the operating 

principles of the CMOS-MEMS nano-Newton force sensor followed by the description 

on the problem existed with the current force sensor and the requirement of an integrated 

actuator system. Section 3.2 explains the mass-spring-damper model that represents the 

actuator system and the parameters used in the system equation of motion. A state-space 

representation of the actuator system is used for conveniences. Section 3.3 elaborates the 

input-states followed by the second feedback linearization techniques known as the input-

output linearization methods for comparison purposes. Section 3.4 explains the nonlinear 

observer design using exact error linearization techniques while Section 3.5 elaborates 

the observer-based controller design. Section 3.6 presents the simulation results of the 

observer-based controller system. Finally Section 3.7 concludes and discusses the results 

obtained from the observer-based controller simulation. 
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3 .1 Sensor Actuator Design 

A 3D model of the force sensor system that include the sensing and actuating 

elements is illustrated Fig. 3 .1. The structure has the overall dimension of approximately 

1.7 mm x 1.0 mm with the thickness of approximately 40 Jlm. Single crystal silicon 

(SCS) is included underneath the CMOS stacks consisting of multiple layers of silicon 

dioxide (Si02), polysilicon, and aluminum (Al) for robust device structures. In the 

actuator comb drives, SCS is also used as electrode material. A micro probe with a 

dimension of 1100 Jlm x 50 Jlm is attached to the proof mass for force pick-up when an 

external force is applied to the probe tip perpendicular to the sensor surface. The 

displacement between the rotor (movable structure) and stator (fixed structure) comb 

drives is converted into capacitance change, which is processed by the integrated or 

external circuitry. 

Actuators 
system 

Sensors 
system 

Sensors 
system 

z 

Torsional 
beams 

t4x 
Fig. 3.1. 3D model of the CMOS-MEMS nano-Newton force 

sensor. 
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For the sensor element, sidewall and fringe capacitance formed between metal 

layers on neighboring rotor and stator comb drives are exploited for out-of-plane 

displacement and force sensing. The structures are anchored to the substrate using a pair 

of thin SCS torsional beam of dimension 365 J.lm x 4 J.lm. In a normal operation, external 

force perpendicular to the probe tip induces a tilting moment or torque about the torsional 

beam as shown in Fig. 3.2. Fig. 3.3 illustrates the rotor finger motion due to the external 

force using one set of the sensing comb finger. This motion results in the change of 

common area between the stator and rotor fingers, which contributes to the opposite 

change of the sidewall capacitances, C10P and Cbot. The output voltage from the 

sidewall capacitance change is given in [53]. The details of the sensor geometry and 

materials are listed in [53]. 

z 

tcx 
Fig. 3.2. Tilting motion due to force perpendicular to the probe tip. 
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M3 
Ctop Ctop 

M3 

'ti it' 
M1 ' 

, 
M1 

'U, ,rr' 
Cbot Cbot 

Stator finger Stator finger 

Rotor finger 

Fig. 3.3. Illustration of the capacitance change of the sensor when 
the probe tip is subjected to an external force which results in the 

downward motion of the rotor finger. 

Under certain circumstances, the sensor may unexpectedly experience a twist in 

the x-y plane due to undesired in-plane excitations as shown in Fig. 3.4. These forces 

drive the sensor's rotor fingers toward its neighboring stator fingers, which result in non-

uniform sensing gap between them. As a result, measurement errors occur. The twisting 

motions may also result in crashing between both fingers when the gap is less than 1/3 of 

the default gap of 3 ~m due to the electrostatic pull-in effect. To limit the undesired in-

plane twisting mode of the sensor, two sets of the actuators system each consisting of a 4-

pair comb finger with a dimension of l 00 ~m x 5 ~m are attached to both sides of the 

structure as illustrated earlier in Fig. 3 .l. These actuators operate independently. When 
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the driving voltage is applied, they generate electrostatic force to counter the twisting 

motion; one set in the clockwise direction, and the other set in the anti-clockwise 

direction. For each actuator, the displacement change, denoted as p(t), of a rotor finger 

under the twisting in-plane motion is displayed in Fig. 3.5 [59]. 

The relationship between the instant capacitance change Cright and the 

displacement change p(t) is given by 

&Aa 
cright =--, 

p 

where cis the permittivity of the air, and Aa represents the effective area of the 

(3-1) 

neighboring actuator fingers. Time-division sensing and actuating topology is used for 

force feedback. 

z 

t4x 
Fig. 3.4. Undesired in-plane twisting motion. 
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Stator finger Rotor finger Stator finger 

Fig. 3.5. Illustration of the actuator rotor finger lateral motion 
toward the stator finger due to twisting in-plane force. 

In the sensing cycle, the position of the rotor fingers of the feedback comb drives 

will be determined by sampling the capacitance Crighr(t). The measured displacement 

p(t) will also reflect the position of the proof mass and thus the probe position. In the 

actuating cycle, the applied control voltage V(t), will result in electrostatic force, denoted 

as F(t), that stabilizes the rotor finger according to 

c. h F = rzg t v2 
2p ' 

(3-2) 

where the control voltage V(t) is determined by the nonlinear observer-based controller to 

be developed in the sequel. The development of this work focuses on the controller and 

observer design. Time-multiplexing system and sampling process will not be addressed. 
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3.2 Actuator Model 

A CMOS-MEMS nano-Newton actuator system can be approximated as a second 

order mass-spring-damper system. The mass-spring-damper equivalent diagram for a pair 

of actuator finger system is presented in Fig. 3.6. The lump-parameter model of the 

system is given by 

M0 p(t) + b0 jJ(t) +k0 p(t) = F(p,t) (3-3) 

where p(t) is the displacement of a rotor fmger reference to a stator finger, and F(t) is 

the electrostatic force to counter the twisting motion. The parameters and their values 

used in Eqn. (3-3) are presented in Table 3.1. The spring stiffuess coefficient, ka of the 

two beams in parallel is given by [51] 

(3-4) 

v 

p 

Fig. 3.6. Equivalent diagram for a pair of actuator finger. 
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Table 3.1 

Actuator Parameters and Constants 

Symbol Description Value 

A a Finger sensing area 3.567 X 10-~ mL 

Na Number of fingers 8 

Ma Proof mass weight 5.91 x10-10 kg 

ka Spring stiffness 3.87N/m 

ba Squeeze damping coefficient 8.898 x10-~ Ns 

h Thickness of the structure 40 Jlm 

E Silicon Young' s modulus 165 GPa 

f1 Viscosity of the air 18.27 x 10-6 Pas 

WTB Width of the beam 4 Jlm 

LTB Length of the beam 365 Jlm 

WJ Width of the finger 4 Jlm 

and the squeeze film damping between the fingers and substrate, ba is 

(3-5) 

Let x1 (t) = p(t) and x2 (t) = p(t) be the displacement and the velocity of a rotor 

finger, respectively. Define the control input as the square of the applied voltage, 

u(t) ~ V2(t), and choose the rotor finger displacement as the output measurement. Using 

Eqn. (3-1) to Eqn. (3-5), the model in Eqn. (3-3) can be written in state-space form as 

I:. 

XJ = p' (3-6) 
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I>. • • 
xz =xl = P, (3-7) 

(3-8) 

(3-9) 

Eqn. (3-6) to Eqn. (3-9) can be expressed in a more compact form as 

~ f(x) + g(x)u, (3-1 0) 

with the output measurement given by 

y = p = h(x) = x1. (3-11) 

It is seen that the term g(x), the coefficient of u(t) in Eqn. (3-1 0), is nonlinear, 

although the system matrix and the output matrix are in a linear form. Since the overall 

system is nonlinear, the well known linear control theory cannot be applied directly. In 

this thesis, the use of the nonlinear state-feedback linearization technique to solve the 

nonlinear control problem will be chosen. It is well-known in control theory that most 

state-feedback controllers require the information of all the state variables for feedback 

implementation for all t ~ 0. In our case, we know the values of the displacement x1 (t) 

from the capacitance measurement in Eqn. (3-1). However, the value of the velocity 

x2 (t) is not measured and is unknown. In order to estimate the unknown state x2 (t) , we 

may differentiate x1 (t) to obtain x2 (t) = x1 (t) . But it is well known that time 
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differentiation creates noise and is not desirable. Therefore, an observer can be used to 

estimate x2 (t). The linearized linear equation in the z-domain can then be used to design 

a full-order or reduced-order observer to generate the desired estimate utilizing the 

celebrated Luenberger observer theory [60, 64]. 

From the discussions above, we have to solve the following two problems: 

• Controller design using the nonlinear state-feedback linearization technique; 

• Design of observer-based control system. 

3.3 Feedback Linearization of the Nonlinear Actuator System- Controller Design 

This section discusses two feedback linearization techniques, namely the input

state and input-output linearization techniques. A linearized system is required prior to 

actuator controller design. Two linearization methods have been chosen for a comparison 

purpose [63]. 

3.3 .1 Input-State Linearization 

The objective of the input-state linearization is to linearize the mapping from the 

input u to the state x. Once linearized, numerous linear control methods, such as pole 

placement and Linear Quadratic Regulator (LQR), can be used to design a controller for 

the resulting linear system. A nonlinear system such as presented in Eqn. (3-10) is said to 

be input-state linearizable if and only if it meets the controllability and involutivity 

conditions [61]. If the nonlinear system is input-state linearizable, then a transformation 

(diffeomorphism) exists between the x-coordinates in the nonlinear system and the z

coordinates in the linear system. The input-state linearization process for the actuator 

system presented in Section 3.2 is summarized in the following steps: 
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Step 1: (Controllability and Involutivity tests) 

Controllability and involutivity tests will determine whether the system presented 

in Eqn. (3-1 0) is input-state linearizable. 

Recall that an nth-order linear time invariant (L TI) system x(t) = Ax(t) + Bu(t) is 

controllable if and only if 

For a nonlinear system to be controllable, it must also satisfY a controllability condition. 

For the second-order nonlinear actuator system described by Eqn. (3-10) and Eqn. (3-11), 

the rank of its controllability matrix must be equal ton= 2. As defined in [61], the rank 

of the controllability matrix for the actuator system can be calculated as follows: 

rank[g(x) ad}g(x)]=[g(x) (f,g]J, 

where 

in which [ f, g] is the Lie bracket. Hence 

0 

which shows that the system is controllable. 

1 &Aa 

2Maxf 

1 &Aax2 1 &Aaba - + 
2M x3 2 M2x2 

a 1 a 1 

=2 

Next, as defined in [61] and [62], for the system in Eqn. (3-10) with n = 2, the 

distribution is said to be involutive if and only if 
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rank[g(x)] = rank[g(x) [g(x),g(x) ]]. (3-12) 

Since 
[g(x), g(x)] = 0, 

Eqn. (3-12) trivially becomes 

rank[ g(x) [g(x),g(x)]] = rank[g(x)], 

and is involutive. From the controllable and involutive tests, it is found that the nonlinear 

system described by Eqn. (3-1 0) is input-state linearizable. Therefore, a transformation 

(diffeomorphism) z = T(x) exists between the x-coordinates in the nonlinear system and 

the z-coordinates in the linear system as shown in Step 2 below. 

Step 2: (Determine T1(x) and z = T(x)) 

The transformation matrix can be obtained by letting 

(3-13) 

Using Eqn. (3-13), the second component T2(x) ofthe transformation matrix is 

found by 

a11 [ ar, a11 J Tz(x)=Lt1J(x)=-f(x)= - 1 - f(x) 
ax ax! axz 

T2 (x) = [1 (3-14) 

The state transformation which transforms the x-coordinates into the z-coordinates 

is therefore given by 
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[Ji(x)] [xl] 
z = T(x) = T2(x) = x2 . (3-15) 

We remark that the transformation given by Eqn. (3-15) is trivial but is not 

obvious without calculations. For convenience, we prefer to investigate the controller and 

observer-based control system designs in the z-domain in the sequel. Eqn. (3-15) yields 

(3-16) 

~ a(x) + fJ(x)u, (3-17) 

where 

(3-18) 

(3-19) 

Let the control u(t) be defined by 

u = p-l (x)[-a(x)+v], (3-20) 

where v(t) is a new transformed input. The control law given by Eqn. (3-20) is called the 

linearizing feedback control law, and a(x) is a nonlinearity cancelling factor. 

Substituting Eqn. (3-20) into Eqn. (3-17) renders a linear equation 

(3-21) 

To complete the Step 1 design, Eqn. (3-16) and Eqn. (3-21) can be combined and 

expressed in a compact form as 
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(3-22) 

which is a linear system in the z-domain rendered by the linearizing feedback control law 

of Eqn. (3-20). 

Step 3: (Controller design in z-domain) 

A regulator control law for the transformed input v(t) in the z-coordinates can be 

set as 

v=-Kz(t) 

(3-23) 

where K is the controller gain matrix to be determined such that Ac - BcK is Hurwitz, 

that is, every eigenvalue of A - BcK has strictly negative real part; the K matrix can be 

obtained using any convenient design method, such as pole placement and LQR. 

Substituting Eqn. (3-23) into Eqn. (3-20) yields the linearizing feedback control 

law in the x-domain 

(3-24) 

that will provide a control action to drive the twisting sensor's structure back to its 

original position. Substituting Eqn. (3-24) into Eqn. (3-1 0) yields the overall closed-loop 

nonlinear control system as 
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(3-25) 

y=xl. (3-26) 

3.3.2 Input-Output Linearization 

The objective of input-output linearization is to find the linear mapping from the 

input u to the output y. The procedure of input-output linearization consists of taking the 

time derivatives of the output y(t) until the input u(t) appears. A nonlinear system such as 

presented in Eqn. (3-1 0) is input-output linearizable if the relative degree, p of the system 

is equal to the order of the system, n. It is well known that, for a fully linearizable system 

with p = n, input-output linearization and input-state yields the same results [61]. 

The relative degree p of a nonlinear system is defined as the number of 

differentiations of the output required to obtain the input-output map. The input-output 

linearization process for the actuator system presented in Section 3.1 can be summarized 

as follows: 

Taking the time derivative of the output y(t) twice and using Eqn (3-1 0) yields 

(3-27) 

(3-28) 

Eqn. (3-28) shows that the relative degree is p = n = 2, and the transformation has the 

form 
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z = T(x) = [;] = [ =~l (3-29) 

which is identical to Eq. (3-15) as expected. Using the same regulator control law for the 

transformed input v(t) given by Eq. (3-23) and the linearizing feedback control law given 

by Eqn (3-24), the overall closed-loop nonlinear control system is identical to that 

described by Eqn. (3-25) and Eqn. (3-26) and will not repeated here. 

3.4 Nonlinear Observer Design Using Lie Algebraic Exact Error Linearization 

This section addresses the design of two observers [65]: 

• Exact Error Linearization Observer or Normal Form Observer; 

• Luenberger Observer. 

To start, the nano-Newton actuator system given by Eqn. (3-10) and Eqn. (3-ll) 

are repeated in this section and renumbered for convenience as follows: 

(3-30) 

and 

y = p = h(x) = x1. (3-31) 

Exact Error Linearization Observer 

Referring to the nonlinear system in (3-30) and (3-31 ), the problem of designing 

an exact error linearization observer is to find a diffeomorphism 

(3-32) 
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such that after the coordinate transformation, the new state-space realization has the 

observer normal form 

y(y,u) 

or in a compact form 

We note that [ A0 , C0 ] is an observable pair, that is, 

Under the new coordinate system, an observer can be constructed as 

20 = ( A0 -LC0 )z0 + y(y,u)+ Ly, 
~ 

Aacl 

where the gain matrix L = [ L1 L2 f is determined such that Avct = A0 - LC0 is 

(3-33) 

(3-34) 

(3-35) 

(3-36) 

(3-37) 

(3-38) 

Hurwitz. Defining the estimation error as z0 ~ z0 - z0 , it can be shown through an error 

analysis that 

(3-39) 
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Since A"'' is Hurwitz, it follows that the estimation error z0 ---+ 0 as t ---+ :xJ . 

Finally, with the transformation z0 = T0 (x), the observer given by (3-38) can be 

expressed in the original x-coordinates as 

(3-40) 

which is required for the implementation of an observer-based control system. 

Now, returning to (3-38), the exact error linearization observer problem is solvable 

for the 2nd -order system described by Eqn. (3-30) and Eqn. (3-31) if and only if [ 62] 

(ii) the unique vector field solution r(x) of 

a [ h(x) ] [OJ 
ax Lfh(x) r(x) = 1 ' 

is such that 

For the nano-Newton force actuator sensor system with n = 2, we have, from 

condition (i), 

0]=2 
1 ' 

and from condition (ii), 

[OJ=.£...[ h(x) ]r(x) =.£_[xi ]r(x) = [1 Ol]r(x), 
1 ax Lfh(x) ax x2 0 
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which yields 

r(x) = [~]. 

[ r,ad}r J = [ r,[f, r]] = 0. 

Hence, both conditions (i) and (ii) are satisfied, and we can construct the 

diffeomorphism by solving the partial differential equation (PDE) [62]: 

8F = [r(x) -ad t•(x)] = [01 ~a l' 8z x=F(z0 ) --
o m 

a 

(3-41) 

where F(z
0

) ~ T0-
1(z0 ). Note that, in general, it is not an easy task to solve for F(z 0 ) 

from (3-41 ), even for a low order system. Fortunately, the right side of (3-41) is a 

constant matrix and the PDE has a simple solution given by 

[ 

Zo2 l 
X= F(x) = ro-1(x) = ba . 

z 1--z 2 o M o 
a 

(3-42) 

The inverse of (3-42) is given by 

(3-43) 

Eqn. (3-43) yields 

(3-44) 

Finally, Eqn (3-40) becomes 
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(3-45) 

This completes the design of the exact error linearization or normal form observer. 

Luenberger Observer Design 

Consider again the system ofEqn. (3-30) and Eqn. (3-31). Note that g(x) is a 

function of xi where xi = y is the known measurement, it can expressed as a known 

function g(x) = g(y). Since the pair [A, C] is observable, a full-order (2nct_order) 

Luenberger observer can be constructed readily as 

£=(A -LC)X+ g(y)u+Ly, (3-46) 

where L = [ LI L2f is the constant gain matrix to be determined such that (A- LC) is 

Hurwitz. It may be mentioned that the design of a reduced-order observer or 1st -order 

observer in this case is also possible, but will not be considered here. A straightforward 

analysis of the estimation error .X~ x-x yields 

x=(A-LC)x, (3-47) 

which shows that the estimation error is asymptotically stable, that is, lim x(t) ~ x(t) . 
t~oo 

This completes the design of a Luenberger for the nano-Newton sensor system. Next 

section will discuss on the obsever-based controller designs, which will summarize the 

observer-based design using exact-error linearization and using Luenberger observer 

approach. 
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3.5 Observer-Based Controller Designs 

This section presents two observer-based controller designs using the exact error 

linearization and Luenberger observer formulations. 

(i) Observer-based controller using the exact error linearization approach 

The observer-based control system for the nano-Newton force sensor actuator 

system is given by, from Eqn. (3-25) and Eqn. (3-45), 

· /( ) g(x) [ [K K J[.Xl] ka , ba , ] X= X +-- - 1 2 +-XI +-X2 
g(y) x2 Ma Ma 

(3-48) 

(3-49) 

(ii) Observer-based controller using the Luenberger observer approach 

The observer-based control system for the nano-Newton force sensor actuator system is 

given by, from Eqn. (3-25) and Eqn. (3-46), 

· /( ) g(x) [ [K K J[.Xl] ka , ba , ] x= x +-- - 1 2 +-xi +-x2 
g(y) x2 Ma Ma 

(3-50) 

£ = (A-LC)x+ g(y)u +Ly (3-51) 

A block diagram with the observer in the feedback path is as shown in Fig. 3.7. 

Fig. 3.7 illustrates the complete observer-based controller design, which covers the 

nonlinear system block, the observer system block, and the linearize system controller 

block. 
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'-----------

I 

Fig. 3. 7. The schematic diagram of a nonlinear observer-based controller system. 

3.6 Observer-Based Controller Simulation Results 

This section discusses the simulation results of the observer-based controller for 

the nano-Newton actuator system. A poles placement method is applied to obtain the 

controller and observer gain matrix, K and L. Since the device requires a response time of 

less than 10 ms for the external force excitation of approximately 100 Hz or below, care 

must be taken when choosing the pole locations such that the transient responses are 

satisfied with the requirement. By trial and error, it is found that by placing the controller 

and observer poles at { -370, -420}, and { -480, -530}, respectively, have produced 

satisfactory performances. The resulting controller and observer gains resulted from the 

selected poles are summarized in Table 3.2. The simulation result which shows the 

70 



performance of the observer-based controller with the displacement initial position of 0.2 

J.Lm is shown in Fig. 3.8 and Fig. 3.9. 

For simulation purposes, the rotor finger is assumed to start at these initial 

displacements and the objective of the controller is to pull the rotor finger back to the 

zero position in less than 10 ms. Fig. 3.8 illustrates the response of the estimated state 

x1 (t) and £2 (t) converging to the real states x1 (t) and x2 (t), respectively. The control 

voltage signal used to regulate the rotor displacement is shown in Fig. 3.8. From Fig. 3.9, 

it can be seen that the control action takes less 1.5 V in less than 10 ms to drive the rotor 

displacement back to zero position as desired. To observe the overall performance of the 

actuator, four different initial displacements of the rotor finger of x 1(0) = 0.1 Jlm, x 1(0) = 

0.4 J.Lm, x1(0) = 0.6 J.Lm, andx1(0) = 0.8 J.Lm as shown in Fig. 3.10 have been chosen. 

Overall performance shows that both estimated states converge to the original states in 

less than 20 ms. 

Table 3.2 

Resulting Controller and Observer Gains 

Controller Gain, K Observer Gain, L 

KJ = 1.55 X 10' L1 = 1010 

K2 = 790 L2 = 2.54 X 10
5 
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Fig. 3.8. Simulation of the observer-based controller state estimation response with the 
displacement initial condition of0.2 Jlm. 

Control vonage (V) 
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Fig. 3.9. Simulation of the observer-based controller control-input response with the 
displacement initial condition of 0.2 Jlm. 
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Fig. 3.1 0. Simulation of the observer-based controller state estimation response with the 
displacement initial condition ofO.l J.Lm, 0.2 J.Lm, 0.4 J.Lm, 0.6 J.Lm, and 0.8 J.Lm. 

(This figure is presented in color; the black and white reproduction may 
not be accurate representation). 
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Fig. 3.11. Simulation of the observer-based controller control-input response with the 
displacement initial condition ofO.l J.Lm, 0.2 J.Lm, 0.4 J.Lm, 0.6 J.Lm, and 0.8 J.lffi. 

(This figure is presented in color; the black and white reproduction may 
not be accurate representation). 

From Fig. 3.9 and Fig. 3.10, it can be seen that for all the initial displacement 

used, the estimated states converged nicely and control voltage action in less than 15 ms 

and 12 V are observed. 

3. 7 Conclusion 

Two observer-based controllers for the nano-Newton actuator system have been 

designed and simulated. The objective of the actuator system integration within the 

sensor structure is to resolve sensor structure twisting problem. Two sets of actuator 

system consists of 4 pairs of comb finger with a dimension of 100 J.Lm x 5 J.Lm are 
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attached on both sides of the sensor structure. The actuator system is modelled as the 

second order mass spring damper system with two states, the displacement, x 1 and 

velocity, x2 are chosen. Since the actuator is a nonlinear system, prior to the controller 

design, the system is linearized using the input-state and input-output linearization 

techniques. Second linearization technique was used for comparison purposed. A 

nonlinear observer using Lie algebraic exact error linearization method is used for the 

observer design. An observer is a necessity to estimate the unknown states for state 

feedback and controller design. By selecting the poles location of { -3 70, -420} for the 

controller and { -480, -530} for the observer, system response of approximately I 0 ms has 

been observed, which satisfy the design requirement for the controller to response in less 

than 10 ms. 
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CHAPTER FOUR 

POST-MICROFABRICATION OF THE CMOS-MEMS SENSORS 

This chapter presents the post-CMOS rnicrofabrication processes of the CMOS

MEMS sensors. A customize post-CMOS rnicrofabrication processes have been designed 

for successful sensors structure release from the substrate. AMI 0.5 11m CMOS 

technology is used for CMOS fabrication of the sensor through MOSIS. The device 

layout was designed using Mentor Graphic layout tool. The blue print, which shows the 

location of the piezoresistive accelerometer, nano-Newton force sensor, electrostatic 

micromirror, pads, and the test structures are shown in Fig. 4.1. This chapter can be 

divided into three sections. Section 4.1 and Section 4.2 explain the post-CMOS 

microfabrication of the piezoresistive accelerometer and nano-Newton force sensor 

followed by the Section 4.3, which summarizes the post-CMOS microfabrication process 

and its results. Referring to Fig. 4.1, pad array 1 is used for the connection between the 

nano-Newton force sensor and piezoresistive accelerometer with the package pad, while 

pad array 2 is used for the connection between the micromirror with the package pad. 

Test structure 1, 2, and 3 are used for process monitoring purposes, which was used to 

estimate Si02 etching rate and Metal 3 to Metal I distance. Test structures are crucial to 

avoid over-etching of the CMOS materials. The dummy structures were used to meet 

AMI 0.5 11m design rules, which require greater than 14% poly and 30% metals 

densities. 
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Pad 
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Fig. 4.1. CMOS-MEMS layout showing the location of the sensor drawn using 
Mentor Graphic layout tool. (This figure is presented in color; the black and 

white reproduction may not be an accurate representation). 

The schematic cross-section of the CMOS thin films and their spatial locations for 

the piezoresistive and nano-Newton force sensors is illustrated in Fig. 4.2. The typical 

CMOS layer thickness in AMI 0.5 Jlm technology, which was used in this project, is 

listed in Table 4.1 [49]. 
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Metal layers 

(a) Piezoresistive sensor (b) Nano-Newton force sensor 

Fig. 4.2. Schematic cross-section of the release sensor showing the CMOS thin 
films and their relative locations. 

Table 4.1 

Typical CMOS Layers Thickness 

Layer Thickness (J.Lm) 

Single crystal silicon (SCS) -250 

Field oxide under polysilicon 0.4 

Field oxide under metall 0.375 

Gate oxide 0.0135 

Metal 0.69 

Polysilicon 0.35 

VIA size 0.6 Jlm X 0.6 Jlm 

Boro-phospho-silicate-glass (BPSG) 0.7 
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Device sample preparation is conducted at the Oakland University cleanroom, 

while post-CMOS microfabrication processes are conducted at the Lurie nano fabrication 

facility (LNF), University of Michigan, Ann Arbor. 

4.1 Post-CMOS Microfabrication of a CMOS-MEMS Piezoresistive Accelerometer 

The post-CMOS process steps of the piezoresistive accelerometer are carefully 

designed to successfully release the sensor structure. As shown in Fig. 4.3(a), the process 

starts with the selective application of photoresist at the back-side of the die around the 

sensor. Next in Fig. 4.3(b), a 4 inch carrier wafer is fully coated with photoresist then 

placed on the hot-plate at the temperature of 90 °C for 3 minutes. A portion of photoresist 

that exists in the middle of the carrier wafer is removed with aceton solution for sample 

placement. A thin layer of photoresist is then applied to the middle of the carrier wafer, 

followed by sample placement on the wet photoresist area. Both sample and the 4 inch 

carrier wafer are baked again for 3 minutes at 90 °C. 

The second step of the post-CMOS process is the back-side bulk single-crystal 

silicon (SCS) etching to produce proof mass thickness of approximately 40 J.Lm. A deep 

reactive ion etching (DRIE) is performed using STS plasma etcher to anisotropically etch 

the silicon substrate to the desired thickness. Optical microscope and Daktek surface 

profilometer are used to estimate the thickness of the proof mass during the etching 

process. Fig. 4.4(a) shows the schematic cross-section of the sensor after DRIE process 

with Fig. 4.4(b) shows the back-side view of the sensor that has been successfully etched 

to approximately 210 J.Lm depth. The yellowish colour around the sensor shows the 
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photoresist coated area, which is applied prior to DRIE process. The recipe use to process 

the sample is listed in Table 4.2. From the back-side etching of the bulk silicon, the 

silicon etching rate is found to be -5 Jlmlmin. 

The third process is Si02 reactive ion etching (RIE), which is performed from the 

front-side of the device using LAM 9400. Front side RIE process will open the pattern of 

the bimorphs and proof mass. The process starts by first flipping over the die such that 

the thin film is now on the front side. Aceton solution is used to remove the die prior to 

the flip over process. The die is then attached to the 4" carrier wafer using kapton tape 

and placed on another 6" carrier wafer as illustrated in Fig. 4.5. Few drops of 

Perfluoropolyether (PFPE) are used to bond the two carrier wafer together. Fig. 4.6(a) 

Photoresist 

sensor 

(a) 

Light photoresist 
coated 

(b) 

Photoresist 

4" carrier 
wafer 

Fig. 4.3. (a) Back-side photoresist coated around the sensor, and (b) 4" carrier 
wafer coated with photoresist with the center of the wafer cleared for sample 

placement. 
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coated 

Sensor back-side view 

(a) (b) 

Fig. 4.4. (a) Schematic cross-section of the sensor, and (b) the back-side view 
of the sensor under optical microscope after DRIE process. 

Table 4.2 

Anisotropic DRIE Recipe for Back-side Silicon Etching (Recipe: QUI) 

Etch Passivation 

R.F Power: 

Platen power 200 0 

Coil power 800 600 

Etch time: (Start) 13 7 

Gases: 

SF6 160 

C4Fs 85 
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shows the schematic cross-section of the sensor after Si02 RIE process has completed 

with the appearance of trenches up to the SCS surface. Fig. 4.6(b) and Fig. 4.6(c) show 

the front-side view of the sensor during and after the etching process. A white bright 

colour on the sensor surface as shown in Fig. 4.6(b) indicates that metal3 layer is 

exposed and the clearance of BSG material after approximately 10 minutes of etching. 

After 40 minutes of etching, a gray colour (silicon colour) appears in the trenches 

that indicate the completion of Si02 etching as displayed in Fig. 4.6 (c). Referring to Fig. 

4.6 (b), the test structures to the right of the sensor beam are used to estimate Si02 

etching rate and to avoid over-etch of the SiOz material. The total Si02 etching depth is 

approximately 5 Jlm. The recipe use for Si02 etching is listed in Table 4.3. Si02 etching 

rate is found to be approximately 0.1 Jlrnlrnin. 

4" wafer 

Fig. 4.5. Sample preparation prior to Si02 RIE process, which shows a sample 
on top of 4" and 6" carrier wafers. 
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Test structures 

(b) (c) 

Fig. 4.6. (a) Schematic cross-section of the sensor after SiOz RIE, (b) the front
side view of the sensor after metal 3 is exposed, and (c) gray colour in trenches 

indicates that SiOz is fully etched. 

Table 4.3 

RIE Recipe for Front- Side Si02 Etching (Recipe: mnf_oxidel) 

Etch Unit 

Gases: 

SF6 5 

C4Fs 50 
Seem 

He 50 

Ar 50 
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Next step is to perform front-side bulk silicon DRIE process using the etching rate 

of 5 f.lm/min obtained from previous backside DRIE of silicon. The thickness of the 

membrane is approximately 40 f.Lm, which is observed under Daktek and optical 

microscope during back-side etching. The sample on the 4" carrier wafer is etched for 

approximately 10 minutes in STS plasma deep silicon etcher using recipe QUI as listed 

in Table 4.2. Since the trenches are narrower, more time is required and previous etching 

rate is no longer accurate. Therefore the test structures on the chip are used as reference. 

Fig. 4.7(a) illustrates the schematic cross-section of the sensor after the second silicon 

DRIE process with all the trenches etch-through. The image viewed under the optical 

microscope as shown in Fig. 4.7(b) shows part of dummy structure close to the bimorph 

beams has fallen but others still intact to the substrate. Additional 5 more minutes are 

required to fully etch-through. This happen when all the dummy structures dropped, 

which indicate that the etched-through process is completed. 

(a) (b) 

Fig. 4. 7. (a) Schematic cross-section of the sensor after silicon DRIE, and (b) 
image under optical microscope after 10 minutes DRIE process. 
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The final step is to perform isotropic silicon etching that undercut the silicon 

underneath the birnorphs, which released the device, as illustrates by the schematic cross-

section in Fig. 4.8 (a). The recipe use for silicon isotropic etching is listed in Table 4.4. 

During isotropic etching, a small portion of the proof mass and substrate will also 

be undercut. Due to large proof mass dimension, small undercut under the proof mass 

will not affect sensor performance. After 20 minutes of etching as shown in Fig. 4.8(b ), 

the test structures start to curl up, which indicate that silicon underneath the thin film is 

fully etched. Additional5 more minutes are added to release the device. However, even 

with all the test structures found to have curled up, the device is still not release. Many 

un-broken connections from sensor structure to substrate are observed as shown in Fig. 

4.8(c). To avoid too much undercut of the proof mass structure, the sample is flipped over 

for observation. Many un-broken connection between the substrate with sensor proof 

mass are also observed from back-side of the sensor structure. 5 minutes of back-side 

Un-broken 
(a) (b) connection (c) 

Fig. 4.8. (a) Schematic cross-section of the sensor after isotropic silicon etching, 
(b) test structure curling after 25 minutes of isotropic etching process, and (c) 

front-side image under optical microscope after 30 minutes of isotropic etching 
process. 
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silicon DRlE is required to finally release sensor proof mass from the substrate as shown 

in Fig. 4.9. The back-side photoresist is removed by oxygen ashing. 

Fig. 4.10 shows a scanning electron microscope (SEM) photograph of the 

fabricated sensor with inset showing a close-up of the bimorph. The structure curling 

from Fig. 4.10 is due to the residual stress existing among the CMOS thin films. Residual 

stress is the stress that remains after the original cause of stresses such as the heat 

gradient that occur during the fabrication and post-CMOS processing has been removed. 

Table 4.4 

Front-Side Isotropic Silicon Etching (Recipe: QU_ISO) 

Etch Passivation 

R.F Power: 

Platen power 50 0 
Watt 

Coil power 800 0 

Etch time: 5 0 Min 

Gases: 

SF6 160 0 Seem 
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Back-side view of 

• proofmass 
and substrate 

Fig. 4.9. Sensor back-side view under optical microscope with inset showing the 
close-up of the disconnection between substrate and proof mass bottom after 5 

minutes of silicon DRIB process, which releases the structure. 
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Fig. 4.10. SEM image of the fabricated CMOS-MEMS accelerometer with 
inset showing the bimorph beams where the piezoresistors are located. 
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4.2 Post-CMOS Micro fabrication of a CMOS-MEMS Nano-Newton Force Sensor 

The post-CMOS process steps of the nano-Newton force sensor are similar to the 

process steps of the piezoresistive accelerometer except the isotropic bulk silicon etching, 

which is not required in force sensor microfabrication steps and will be explain in the 

sequel. The process starts with the selective application of photoresist at the back-side of 

the die around the sensor followed by sample placement on the lightly coated 4 inch 

carrier wafer area as shown in Fig. 4.11. The carrier wafer is then placed on the hot-plate 

at the temperature of90 °C for 3 minutes. 

The second step of the process is to perform back-side silicon DRIE to achieve 

proof mass thickness of approximately 40 Jlm. STS plasma deep silicon etcher is used to 

anisotropically etch the silicon substrate to the desired thickness. Fig. 4.12 illustrates the 

schematic cross-section of the sensor after DRIE process is completed. Similar process 

Back-side view 

Photoresist 
coated 

Fig. 4.11. Back-side view of the sample coated with photoresist and placed on 
the 4" carrier wafer. 
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Fig. 4.12. Schematic cross-section of the nano-Newton force sensor after 
back-side silicon DRIE process. 

recipe (QUI) as listed in Table 4.2 is used for this process. Etching time of approximately 

45 minutes is required to etch the bulk silicon up to 210 ).ill deep. Using Daktek and 

optical microscope, the etching rate of 3 )lrnlmin is observed for the DRIE process. 

Next, the sample is removed from the 4 inch carrier wafer using aceton solution 

then flipped for the front-side processing to take place. The sample is then transferred to a 

new 4 inch carrier wafer, which is fully coated with photoresist followed by soft baking 

of the sample at a temperature of90 °C for approximately 15 minutes. Prior to front-side 

Si02 RIE, the 4" carrier wafer with the sample is glued to a 6" carrier wafer with PFPE. 

Si02 etch recipe is as listed in Table 4.3. Fig. 4.13 shows a schematic cross-section of the 

sensor after SiOz RIE process and the front-side view of the sensor under the optical 

microscope before Si02 RIE. Etching duration of approximately 36 minutes is required to 

completely etch the BPSG and SiOz layers in the trenches. 
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(a) (b) 
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Fig. 4.13. (a) Schematic cross-section of the nano-Newton force sensor after 
front-side Si02 RIE process and (b) the sensor front-side view under the 

optical microscope. 

The final post-CMOS microfabrication step to release the sensor structure from 

the substrate is to perform front-side anisotropic SCS membrane etch-through using SIS 

plasma deep silicon etcher. Using the recipe listed in Table 4.2, etching duration of 

approximately 27 minutes are required for the structure to be successfully released. The 

unwanted region as shown in Fig. 4.13 (b) will automatically fall when the device is fully 

released. Fig. 4.14 shows a schematic cross-section of the sensor after the sensor is fully 

released and the SEM pictures of the sensor with the inset showing the close-up view of 

the sensing comb fingers. 

91 



Torsional 
beam 

(a) 

(b) 

Fig. 4.14. (a) Schematic cross-section of the nano-Newton force sensor after 
the sensor is fully released and (b) the SEM picture of the sensor with the 

inset showing the close-up view of the sensing comb fingers. 
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4.3 Conclusion 

The post-CMOS microfabrication processes of the piezoresistive and nano

Newton force sensor have been designed and successfully implemented to release the 

device structures. Back-side anisotropic DRIE process using STS deep silicon etcher is 

used to obtain the desired proof mass thickness of approximately 40 Jlm. A selective 

photoresist is been applied around the sensor as the mask for the back-side etching. 

Plasma RIE using LAM 9400 is utilized for the front-side Si02 etching to etch-through 

approximately 5 Jlm of Si02 material in the trenches. Daktek surface profilometer and 

optical microscope are used to estimate the etching rate. The availability of the multi

level test structures are helpful to avoid over-etches of the thin film materials. The use of 

dummy structures to obtain wider gap between the device and the substrate are found to 

be successful but may introduce some problem as it may stuck between the device and 

the substrate, which may prevent the device from releasing successfully. Using the back

side DRIE etching rate, the front-side silicon DRIE process time can be estimated to etch

through and disconnect the device from the substrate. An isotropic etching process with 

no passivation is used to undercut the SCS material underneath the thin film of the 

bimorph beams, which successfully released the piezoresistive accelerometer structure. 
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CHAPTER FIVE 

DEVICE CHARACTERIZATION 

This chapter reports the CMOS-MEMS piezoresistive accelerometer and nano

Newton force sensors device characterization, which is performed after post-CMOS 

microfabrication. To validate the uniqueness of the sensing mechanism, in this work no 

conditional circuit is integrated on the chip. Instead, a commercially available amplifier 

and signal conditioning circuit are used or built for the device test. Prior to device 

characterization, Section 5.1 elaborates on device packaging followed by characterization 

setup in Section 5.2. Section 5.3 discusses the piezoresistive accelerometer 

characterization, which includes accelerometer calibration, resistance measurement, noise 

measurement, mechanical, off-chip, dynamic, and temperature tests. Section 5.4 explains 

the nano-Newton force sensor characterization, which covers universal capacitive board 

calibration, noise measurement, mechanical, off-chip, and dynamic tests. For both 

devices, their characterization setup and result are explained and discussed. 

5 .1 Device Packaging 

CMOS-MEMS sensors are packaged in a standard ceramic 16 pins dual in-line 

package (DIP) for ease connection with external circuitry and instruments. Sensors are 

mounted in the package using silver epoxy, which has to be cured in the oven with a 

temperature of65 °C for approximately 10 minutes. Device pads are connected to the 

package leads using gold wires. Wire bonding process is conducted using K&S 4123 wire 
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bonder, which is performed at the University of Michigan wet chemistry lab. The die pin-

out and the bonding configuration for both sensors is shown in Fig. B.l (Appendix B.l ). 

5 .1.1 Packaging of the Piezoresistive Accelerometer 

The 16 pins DIP that contains the piezoresistive accelerometer chip is shown in 

Fig. 5.1. For ease deployment of sensor characterization, the package is assembled on the 

16 pins socket together with Kistler type 8692B50 reference accelerometer on the printed 

circuit board (PCB). The PCB is mounted on the transparent plastic, which is screwed to 

the shaker pole. The External wires are used for the connection between the sensor and 

the off-chip amplifier. 

Kistler reference 
accelerometer 

Piezoresistive 
accelerometer in 
16 pins DIP 

LMT -100 Shaker 
body 

Fig. 5.1. Test board on which the DUT and the reference 
accelerometer are mounted. 
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5.1.2 Packaging of the Nano-Newton Force Sensor 

A ceramic 16 pins dual in-line package (DIP) with 10 package leads removed is 

used to package the force sensor for convenient sensor deployment. The sensor chip in 

package is mounted into the 8 pins socket, which is soldered to the printed circuit board 

as shown in Fig. 5.2. 

5.2 Sensor Characterization Setup 

This section explains the equipment and their setup for the piezoresistive 

accelerometer and nano-Newton force sensor prior to device characterization. The 

necessity of a dedicated setup is required for each device due to different device 

operations and working principles. Commercial and in-house amplifier and signal 

conditioning circuits are used or built for device test. 

6 pins 
package 

Printed 
circuit board 

Fig. 5.2. Nano-Newton force sensor chip in a ceramic 6 pins 
DIP package. 
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5 .2.1 Piezoresistive Accelerometer Characterization Setup 

Piezoresistive accelerometer characterization setup utilizes standard instruments 

such as digital multimeter, Tektronix AFG3021 signal generator, Tektronix TDS2014B 

oscilloscope, RSR triple power supply, Piezotronics 394C06 hand held shaker, Kistler 

type 8692B50 commercial accelerometer, Kistler 5004 dual mode amplifier, and HP 

2562A dynamic signal analyzer. The setup configures for the piezoresistive 

accelerometer characterization is shown in Fig. 5.3. Piezotronics 394C06 hand held 

shaker is used to calibrate Kistler type 8692B50 reference accelerometer at a frequency 

of-160Hz and amplitude of 100 mV for lg acceleration. The calibrated Kistler 

accelerometer and the piezoresistive accelerometer in package are both placed on the test 

board which is screwed to the threaded pole of the shaker as seen in Fig. 5.3. Input signal 

from Tektronix AFG3021 signal generator is amplified by the Ling's amplifier, which 

drives the Ling LMT -100 shaker. The gain of the amplifier and the signal generator 

amplitude are adjusted accordingly to produce the output of 100 mV, -160Hz at lg, 

which is observed using the oscilloscope. The polysilicon resistors, which are used as the 

sensing materials are arranged in Wheatstone bridge configuration as shown by the 

schematic diagram in Fig. 5.4. Fully differential signal produced by the sensor is then 

amplified by the external off-chip amplifier. 
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lg Piezotronics shaker i 
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Test board 

Ling's LMT-100 shaker 

Oscilloscope 

Kistler 
reference 
accelerometer 

Piezoresistive 
accelerometer 

HP signal analyzer 

Fig. 5.3. Piezoresistive accelerometer characterization setup. 
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+Vee 

Fig. 5.4. Schematic diagram of the Wheatstone bridge configuration 
implemented for the piezoresistive accelerometer. 

R1 to ~ are the longitudinal and transverse polysilicon resistors. The supply 

voltage, Vee is chosen to be 1.49 V to provide approximately 1.12 rnA of supply current 

to the Wheatstone bridge circuit. The output signal from the Wheatstone bridge is fed to 

the differential amplifier and filter circuit. The schematic diagram of the amplifier and the 

filter circuit is shown in Fig. 5.5. The instrumentation amplifier and the band-pass filter 

circuit have an overall gain of -52 dB. The transient and frequency response of the sensor 

can are obtained at the output of the filter circuit, Vaut. which can be measured using the 

oscilloscope and HP 2562A dynamic signal analyzer. 
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r----------------------------------------

Rgain 

I 

----------------------------------------1 
Instrumentation Amplifier circuit Band-pass Filter circuit 

Fig. 5.5. The schematic diagram of the instrumentation 
amplifier and the high Q band-pass filter circuits. 

The total gain of the circuit is given by 

(5-1) 

while the centre frequency and the bandwidth of the band pass filter can be calculated 

using the following equation. 

(5-2) 

(5-3) 
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5.2.2 Nano-Newton Force Sensor Characterization Setup 

Nano-Newton force sensor characterization setup comprises of a standard 

instrument such as digital multimeter, Tektronix TDS2014B oscilloscope, RSR triple 

power supply, Piezotronics 394C06 hand held shaker, Kistler 5004 dual mode amplifier, 

and HP 2562A dynamic signal analyzer. Moreover, the setup also utilizes a commercial 

MS311 0 universal capacitive readout circuit to sense the capacitance change of the 

sensor. The setup configures for the nano-Newton force sensor characterization is shown 

in Fig. 5.6. Piezotronics 394C06 hand held shaker is used to observe the sensor response 

at lg acceleration with the frequency of-160Hz and amplitude of 100 mV. The 

schematic diagram ofMS3310 universal capacitive readout circuit is given in Appendix 

B.2, while its functional block diagram and the output voltage equation, V0 is shown in 

Fig. 5.7 and Eqn. (5-4). The output voltage, V0 , from the capacitive readout circuit is 

given by 

GA!NxV2P25xl.l4x(CS2r -CS1r) 
Vo= +VREF• 

Cp 
(5-4) 

where 

Gain=2 or4V 

V2P25 = 2.25 VDC nominal 

CS2r = CS2IN + CS2 

CS1r = CS1IN + CS1 

Cp =;?: 1.5 pF (optimize) and VREF = 2.25 V. 

101 



Oscilloscope 

HP signal 
analyzer 

--------, 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

lg Piezotronics shaker: 

MS311 0 universal 
capacitive readout circuit 

Close-up picture of 
the force sensor in 6 
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Fig. 5.6. Nano-Newton force sensor characterization setup. 
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Fig. 5. 7. MS311 0 universal capacitive circuit schematic diagram. 
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The output signal, V0 , which is observed at the output of the universal capacitive 

readout circuit is still found to be very noisy and low in amplitude. To overcome this 

problem, another external amplifier and a low pass filter circuits are constructed. The 

schematic diagram of the amplifier and a low pass filter with a total gain of 43 dB is 

shown in Fig. 5.8. AD 627 an integrated, micropower instrumentation amplifier that 

delivers rail-to-rail output swing on single and dual (+2.2 V to ±18 V) supplies is used as 

an amplifier. The dynamic and noise analysis of the sensor are obtained by connecting 

the output of the filter circuit to the input of the oscilloscope and HP 2562A dynamic 

signal analyzer. The total gain of the amplifier and the cut-off frequency of the filter are 

given by 

Vout = [viN(+)- VIN( -) J x( 5 + 200k0 I RG )+ VREF, (5-5) 

1 
fc = 2JTRC' (5-6) 

where Ra is the external gain resistor, which can be connected between pin 1 and pin 8 of 

the AD 627 instrumentation amplifier. The amplifier gain can be varied easily by varying 

the external gain resistor, Ra. A single supply of+ 15 V DC is used for AD 627 power 

supply. To further improve the quality of the output signal and to reduce unnecessary 

external noise interference, the sensor and all its circuitry are placed in the Faraday's 

cage as shown in Fig. 5.9. 
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,-----------~-----------, lOOk 
REF lOOk r-------~------------------------~-----------------, 

' ' AD627 VV-+---+-"'> 
+Vs 25kn 25k0 

+I 

-Vs 

Fig. 5.8. The schematic diagram ofthe amplifier (AD 627) and low pass 
filter used for nano-Newton force sensor characterization. 

MS3110 
capacitive 
board and 
external 
amplifier and 
filter circuits 

Fig. 5.9. Force sensor and its circuitry in the Faraday's cage. 
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5.3 Piezoresistive Accelerometer Characterization 

This section discusses the piezoresistive accelerometer characterization and their 

results. Prior to device characterization, Kistler type 8692B50 commercial accelerometer 

is first calibrated using the Piezotronics 394C06 hand held shaker followed by the poly 

resistors resistance measurement, the mechanical test to estimate device resonant 

frequency, off-chip test, sensor noise measurement, the dynamic test for output waveform 

observation, and the temperature tests. The setup as shown in Fig. 5.3 is used for all the 

tests except for the temperature test, which is performed in the Blue M laboratory oven. 

5.3.1 Kistler Tvoe 8692B50 Accelerometer Calibration 

In this work, Kistler type 8692B50 accelerometer is used as the reference 

accelerometer. For calibration purposes, the reference accelerometer is placed on the 

Piezotronics 394C06 hand held shaker as shown in Fig. 5.10. Hand held shaker operates 

at-160Hz with the sensitivity of 100 mV/g. The output signal from the Kistler 

accelerometer is amplified by the Kistler 5004 dual mode amplifier, which can be 

calibrated to produce the output voltage of-160Hz, 100 mVp-p at 1 gas shown in Fig. 

5 .11. Once the reference accelerometer is calibrated, it is placed on the test board 

together with the tested piezoresistive accelerometer as shown in Fig. 5.3. The initial 

acceleration amplitude produced by Ling's LMT-100 shaker will be based on the 

calibrated value of 100 m V p-p for 1 g acceleration. 
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Kistler 
reference 

Accelerometer 
on lg shaker 

Piezotronics 
Hand held 
shaker 

Fig. 5. 10. Kistler reference accelerometer on Piezotronics 
hand held shaker. 
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Fig. 5.11. Calibrated reference accelerometer output at 1 g acceleration. 
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5.3.2 Resistance Measurement 

The polysilicon resistors embedded in the piezoresistive accelerometer beams are 

arranged in longitudinal and transverse configuration as shown in the schematic diagram 

in Fig. 5.12, where the pin numbers used from the 16 DIP are included. The resistance in 

each beam is measured using a standard voltmeter and its value is listed in Table 5 .1. The 

theoretical value of the polysilicon resistance is calculated at 1.1 .kn, while -1.4 k!1 is 

obtained through measurement. The differences of resistance between the theoretical and 

measurement value may due to the polysilicon sheet resistance tolerance and signal 

routing from device to pads. 

6 

Poly resistors in 
longitudinal orientation 

8 9 10 

Poly resistors in 
transverse orientation 

11 

Fig. 5.12. Polysilicon resistors configuration including the 16 DIP pin 
numbers. 

107 

12 



Table 5.1 

Actual Polysilicon Resistors Measurement 

16 DIP Pin Out Resistance (k.Q) 

6-8 1.33 

8-9 1.36 

10- 11 1.40 

11- 12 1.42 

5.3.3 Mechanical Test 

The mechanical test for the piezoresistive accelerometer is performed to estimate 

the resonant frequency of the device. An impulse signal as shown in Fig. 5.13 is applied 

to the sensor to obtain a frequency sweep. The data is then captured by the oscilloscope 

and is processed in Matlab using fast Fourier transform (FFT) to obtain the frequency 

response of the device. The dynamic output frequency response of the sensor is illustrated 

in Fig. 5 .14, which indicates the first resonant frequency of the sensor at -1.34 kHz. The 

resonant frequency obtained through experimental method is close to the analytical and 

FEA methods, which estimate the resonant frequency of the sensor at 1.85 kHz and 1 

kHz, respectively. The differences are due to the slight undercut of the silicon proof mass 

during the post-CMOS micro fabrication process. 
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Fig. 5.13. Impulse signal applied to the sensor. 
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Fig. 5.14. Dynamic frequency response of the sensor with impulse signal. 
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5.3.4 Off-Chip Circuit Test 

Off-Chip circuit test is conducted to evaluate the performance of the 

instrumentation amplifier and the filter circuits. The picture of this circuit is as shown 

Fig. 5.3. A de voltage of±15 Vis used as the supply voltage. To check the performance 

of the circuit, no sensor is connected at the input. Instead, the input signal of 50 m V in 

amplitude is supplied by the signal generator. The amplifier and filter circuit have 

demonstrated an overall gain of approximately 52 dB. 

5.3.5 Noise Measurement 

The noise floor ofthe system consists of the mechanical (Brownian) and electrical 

noise. The noise measurement is required to determine the minimum acceleration 

detectable by the sensor. The overall noise floor is given by 

an= ~a~ +a;= a~ +(i r, [g/~Hz] (5-7) 

where am am, and ae are the total noise, mechanical noise, and electrical (circuit) noise. 

Ve is the input-referred noise in VI~Hz, whileS is the sensitivity of the piezoresistive 

accelerometer. The overall noise floor is measured on HP signal analyzer, which is 

configured to have a frequency span of800 Hz and an average of 10 for each frequency. 

From the test, the overall noise floor is found to be -90 dB V/~Hz or 31.6 ~ V/~Hz as 

shown in Fig. 5.15. 
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V/-iHz 

Frequency 

Fig. 5.15. Overall noise of the system including the sensor, the 
amplifier and the filter circuits. 

Using HP signal analyzer as shown in Fig. 5 .16, the electrical or circuit noise is 

found to be -100 dB V/-iHz or 10.0 )lV/-iHz, which can be measured from the output of 

the amplifier circuit with no sensor connected to its input. The sensitivity, Sis determined 

as 0.07 mV/g from the dynamic test in Section 5.3.6. At 52 dB amplification gain, the 

input-referred noise is calculated as 25.2 nV/-iHz. With a sensitivity of 31 mV/g after 

amplification, the total noise is found to be 1.03 mgl-iHz and the electrical noise is 

calculated using Eqn. (5-7) as 0.33 mgl-iHz. With the knowledge of the overall noise and 

the electrical noise, the mechanical noise is found to be 0.98 mgl-iHz. By selecting the 

bandwidth of 1 kHz, which is applicable for most applications, the minimum detectable 

acceleration is calculated as 32 mg using Eqn. (5-8). 

(5-8) 
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V/-iHz 

Frequency 

Fig. 5.1 6. Electrical (circuit) noise of the amplifier and filter circuit 
measured using HP signal analyzer. 

5.3.6 Dynamic Test 

The dynamic test for the piezoresistive accelerometer is performed on Ling's 

LMT-100 shaker, which is capable to produce acceleration up to 100g. The dynamic test 

setup is as shown in Fig. 5.3 and Fig. 5.17. Fig. 5.17 shows the device under test with the 

complete equipment wiring connection. The test is conducted for waveform observation 

for the acceleration from 1 g to 7 g. As explained in Section 5.3 .1, prior to the test, the 

reference accelerometer is calibrated at -160 Hz, 100 m V p-p for 1 g acceleration. The 

input signals of 100 mVp-p to 700 mVp-p are being provided by the signal generator. 

Necessary gain tuning of the shaker power amplifier during initial measurement is 

required to obtain exactly 100 mVp-pofreference accelerometer output voltage. 
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Kistler reference accelerometer 
Signal generator and piezoresistive accelerometer on 

Ling's LMT-100 shaker 

Power amplifier External amplifier and filter oscilloscope 

Fig. 5. 1 7. A complete wiring connection of the characterization 
equipment for piezoresistive accelerometer dynamic test. 

With a 3g acceleration applied to the piezoresistive accelerometer, and with the 

amplification gain of 52 db, the output waveforms of approximately 96 m V p-p is observed 

as shown in Fig. 5.18. The response of the reference accelerometer is found to be 

approximately 300 mVp-p at 3g acceleration. Another linear responses of the designed 

accelerometer with a 52 dB amplifier gain and accelerations from lg to 7g is shown in 

Fig. 5.19. From Fig. 5.19, the sensitivity of the accelerometer after amplification is 

calculated to be approximately 30.7 mV!g and approximately 0.077 mV/g prior to 

amplification. 
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Fig. 5.19. Linear responses of the accelerometer with accelerations from lg to 7g. 
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5.3.7 Temperature Test 

This section describes the estimation of a temperature coefficient resistance 

(TCR), a [K1
] of the polysilicon resistor, which is used as the sensing material in the 

piezoresistive accelerometer. The temperature coefficient is the relative change of a 

resistance property when the temperature is changed by 1 Kelvin. By knowing the TCR 

of the polysilicon resistor, the changes of the resistance due to temperature variation can 

be predicted and compensated. The relationship between the resistance change and TCR 

is given by 

Rr =Rr0 (1+aAT), (5-9) 

where RT is the resistance at temperature T, RTO is the resistance at the reference 

temperature, and !l.T is the temperature different between T and To. To estimate the TCR 

of the polysilicon resistor, the sensor with its package is placed in the Blue M laboratory 

oven. At room temperature of approximately 22 °C, the resistance is measured as 1.4 70 

kQ. The temperature is then gradually increased in the step of20 °C until104 °C. Fig. 

5.20 and Fig. 5.21 show the resistance change in the sensor due to temperature variations. 

. . -3 -1 -3 -1 
From th1s test, the TCR IS found to be 2.1 x10 K compared to 5.85 x10 K that is 

used during the device design in Chapter Two. 
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Fig. 5.20. Linear resistance change with temperature from 22°C to 104°C. 
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Fig. 5.21. Resistance change with temperature from 295°K to 377°K. 
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5.3.8 Conclusion 

A CMOS-MEMS piezoresistive accelerometer is successfully characterized. The 

accelerometer is packaged in a standard 16 pins ceramic. Off-chip instrumentation 

amplifier and a filter circuits have been constructed to amplify and filter the output 

signal. Resistance measurement, mechanical, off-chip, dynamic, noise, and temperature 

tests have been conducted for sensor characterization. The resistance of each polysilicon 

resistor is measured to be approximately 1.4 kn. From mechanical test using impulse 

signal, the resonant frequency of the sensor is found to be approximately 1.34 kHz 

compared to 1.85 kHz and 1.00 kHz from theoretical calculation and FEA simulation. 

Through off-chip test, the external amplifier gain is measured as 52 dB. The dynamic test 

for the acceleration from 1 g to 7 g is performed on LMT -100 shaker. Sensor's resolution 

of 30.7 mV/g after amplification and 0.077 mV/g prior to amplification are obtained from 

the dynamic test. Noise measurement is conducted to analyze sensor performance such as 

the minimum detectable acceleration by the accelerometer. 

Noise signal is measured on HP 2562A dynamic signal analyzer. The overall 

noise floor is found to be -90 dB V/-/Hz (31.6 JlV/-/Hz) or 1.03 mg!-/Hz. The electrical 

noise is measured as -100 dB V/-/Hz (10.0 JlV/-/Hz) or 0.33 mg/-/Hz with no sensor 

connected to its input. From noise measurement, the mechanical noise is estimated to be 

0.98 mg!-/Hz. From noise analysis, the minimum detectable acceleration is calculated to 

be 32.0 mg. 

Finally, temperature test is conducted to estimate the temperature coefficient 

resistance (TCR) of the sensor. The temperature is raised from 20 °C to 104 °C. From the 
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-3 -1 
plot of resistance change versus temperature, the TCR is calculated to be 2.1 x 10 K 

compared to 5.85 x 10-3 K-1
, which is used during sensor design. Major device 

performances are obtained from theoretical and experimental and are summarized in 

Table 5.2. The differences between theoretical and experimental values are due to several 

factors such as the tolerance of material properties and undercut of the proof mass during 

post-CMOS micro fabrication, which reduce slightly the sensitivity of the sensor. 

Table 5.2. 

Performance Summary of the Piezoresistive Accelerometer 

Parameters Unit Designed Value Tested Value 

Polysilicon resistor kQ 1.1 1.4 

Resonant frequency kHz 1.00 1.34 

Sensitivity prior to mV/g 91 0.077 

amplification 

Power Consumption mW 1.00 1.67 

Noise floor mg!v'Hz 0.00028 1.03 

TCR K1 5.85 X 10-3 2.1 X 10-3 

Minimum detectable - 8.74 flg 32.0 mg 

acceleration 
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5.4 Nano-Newton Force Sensor Characterization 

This section discusses the nano-Newton force sensor characterization. Capacitive 

sensing is performed utilizing MS311 0 universal capacitive readout circuit as explained 

in Section 5.2.3. Additional external instrumentation amplifier and filter with 

amplification gain of 46 dB is used to further amplify the output waveform. For cleaner 

output signal, the sensor and its circuitry are placed in the Faraday's cage. The 

characterization process covers the configuration of the MS311 0 universal capacitive 

readout circuit, the mechanical test for resonant frequency estimation, off-chip external 

amplifier test for amplification gain determination, noise test analysis to estimate the 

minimum detectable sensing force, and dynamic test to observe the sensor response to 

externallg excitation provided by Piezotronics hand held shaker. 

5.4.1 MS3110 Universal Capacitive Board Calibration 

MS331 0 universal capacitive board reference capacitors, feedback capacitor, gain, 

and low pass filter cut-off frequency are calibrated prior to sensing measurement. 

Referring to Appendix B.2, MS311 0 board is designed to operate at +5 VDC. Using 

MS311 0 dedicated software, initially; MS311 0 chip is required to be reset by pressing the 

'CHPRST' button. Using 'Voltage reference trim', the reference bias voltage at pin 

V2P25 is adjusted to 2.25 V + 0.01 V. The biasing current is set by varying the 'Current 

reference trim' to be approximately 10 JlA, which can be measured across jumper J9. The 

last biasing setting is the oscillator frequency, which can be tuned by using the 'Oscillator 

trim' and is measured at pin 1 of J3. The oscillator frequency is set to be approximately 

2.25 V, 100kHz± 5kHz as shown in Fig. 5.22. Next step is the gain setting of the 
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MS3110 amplifier. To verify that the board is working properly, the output buffer gain is 

set to 2, lAMP feedback capacitance, CF to 5.130 pF, lAMP balance capacitance, CSl 

and CS2 to 0 pF. The output voltage, Vour at pin TP5 is measured to be 2.25 Vas 

calculated using Eqn. (5-4). The balance capacitance, CSI and CS2 have to be varied 

prior to capacitive measurement so that the output voltage, Vour at TP5 is always below 

2.25 V to avoid saturation. 
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Fig. 5.22. MS3110 board oscillator frequency. 
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5.4.2 Mechanical Test 

Mechanical test for the nano-Newton force sensor is performed to estimate the 

resonant frequency of the device. An impulse signal as shown in Fig. 5.23 is applied to 

the sensor to obtain a frequency sweep. The data captured by the oscilloscope is 

processed in Matlab, which convert the time domain signal to the frequency domain 

signal using fast Fourier transform (FFT). The dynamic output frequency response of the 

sensor is illustrated in Fig. 5.24, which indicates the resonant frequency of the sensor at 

approximately 1.0 kHz. 
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Fig. 5.23. Impulse signal applied to the sensor. 
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The resonant frequency which was obtained through experimental method at 1.0 

kHz is closed to the analytical and FEA methods, which estimate the resonant frequency 

of the sensor at 1.6 kHz and 1.22 kHz. The differences are due to the actual thickness 

variation and slight undercut of the single-crystal silicon (SCS) proof mass during the 

post-CMOS microfabrication process. 

• 

0.011 

I 

0.008,-

~ 0.006 

0.004, 

0.002 

X: 977.5 
Y: 0.01149 

- r --

o-1~~~~~~~~----w----
o 1 2 3 4 5 6 

Frequency (Hz) x 1 o4 

Fig. 5.24. Dynamic frequency response of the sensor with impulse signal. 
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5.4.3 Off-Chip Circuit Test 

Off-Chip circuit test is conducted to obtain the performance of the 

instrumentation amplifier and the filter circuits as shown in Fig. 5.25. A de voltage of 

±15 Vis used as the power supply for the AD 627 amplifier integrated circuit (I C), while 

a 5 V DC is used for the voltage divider circuit at the second amplifier input for offset 

cancelation purposes. To check the performance of the circuit, no sensor is connected at 

the input. Instead, the input signal of 12.5 mV in amplitude is supplied by the signal 

generator. The amplifier gain is found be approximately46 dB with the low pass filter 

cut-off frequency of2.0 kHz. 

Low pass 
filter circuit 

Fig. 5.25. External amplifier and filter circuits. 
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5.4.4 Dynamic Test 

The dynamic test for the nano-Newton force sensor is performed on the Kistler lg 

hand held shaker. The test setup is as shown in Fig. 5.26, which shows the complete 

equipment wiring connection and the DUT on the shaker. The test conducted is for sensor 

waveform observation at lg acceleration. Similar to the piezoresistive accelerometer 

setup, Kistler's hand held shaker operates at -160 Hz, for 1 g acceleration. Capacitive 

change produces by the sensor is sensed by the MS3ll 0 capacitive readout circuit and the 

output signal is further amplified and filtered by the 46 dB gain, 2 kHz cut-off frequency 

of the AD 627 external amplifier and a low pass filter circuits. 

Oscilloscope 

MS3110 
board 

Power 
supply 

External amplifier and 
filter circuits 

Force sensor on lg shaker 

~'tL,_-~ 

Faraday's 
cage 

Fig. 5.26. A complete wiring connection of the characterization 
equipment for the nano-Newton force sensor dynamic test. 
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A necessary tuning is required for the CS 1 and CS2 balance capacitors to avoid 

the output signal from saturated. As shown in Fig. 5.27, at lg acceleration, the output 

waveform of approximately 1.6 Vp-p is observed on the oscilloscope. To check on 

whether the output signal actually comes from the sensor and not from coupling effects, 

the sensor is removed from its socket and a lg acceleration is applied using handheld 

shaker to the sensor's printed circuit board. The output of this response is shown in Fig. 

5.28, which clearly shows no output from the amplifier circuit as observed on the 

oscilloscope. 
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Fig. 5.27. Nano-Newton force sensor response to lg acceleration. 
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Fig. 5.28. Response of the amplifier and filter circuits with no sensor input. 

5.4.5 Noise Measurement 

Noise analysis for the nano-Newton force sensor is conducted on HP 2562A 

dynamic signal analyzer. As explained in Section 5.3.5, the overall noise floor consists of 

the mechanical and the electrical (circuit) noises. With the signal analyzer frequency span 

set to 800Hz and the average of 10 for each frequency, the overall noise floor is found to 

be approximately -60 dB V/~Hz or 1.0 mV/~Hz as shown in Fig. 5.29. 

The electrical or circuit noise is found to be -75 dB V/~Hz or 0.18 mV/~Hz, 

which can be measured from the output of the amplifier circuit when no sensor is 

connected to the input. The sensitivity prior to amplification, S is determined as 8 m V /g 

from the dynamic test. 
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V/'>lHz 

Frequency 

Fig. 5.29. Overall noise of the system, which consists of the sensor 
and amplifier and filter circuits. 

At 46 dB gain of off-chip amplifier, the electrical input-referred noise is 

calculated as 0.89 mV/'>lHz. With a sensitivity of 1.6 V/g after amplification, the total 

noise is 0.63 mg!'>lHz. Using the sensitivity, which was previously determined, the 

electrical noise is calculated using Eqn. (5-7) as 0.11 mg!'>lHz. From the overall noise and 

electrical noise analysis, the mechanical noise is therefore calculated as 0.62 mgl'>lHz. 

Choosing the bandwidth of 1 kHz, the minimum detectable acceleration is found to be 

19.8 mg. At lg, the point force calculated at sensor center of mass is 449 nN. 

5.4.6 Conclusion 

A CMOS-MEMS nano-Newton force sensor is successfully characterized. The 

force sensor is packaged in a standard 16 pins ceramic DIP with 10 package leads 

removed for ease sensor deployment. MS3ll 0 universal capacitive readout circuit is used 
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for half-bridge capacitive sensing. External amplifier (AD 627) and a low pass filter are 

utilized to further amplify and filter the output signal from MS311 0 board. To improve 

the quality of the output signal and for noise suppression, force sensor and its circuitries 

are placed in the Faraday's cage. Mechanical, off-chip, dynamic, and noise tests have 

been performed for sensor characterization. From the mechanical test using impulse 

signal, the resonant frequency of the sensor is found to be approximately 1.0 kHz 

compared to 1.6 kHz and 1.22 kHz from the theoretical calculation and FEA simulation. 

Through off-chip test, the external amplifier gain is found to be 46 dB with the low pass 

filter cut-off frequency of2.0 kHz. The dynamic test is performed at lg on Kistler's hand 

held shaker. The resolution of 1.6 V /g and 8 m V /g prior to amplification are obtained 

from the dynamic test. Finally noise measurement is conducted to estimate sensor 

performance such as the minimum detectable force by the sensor. Noise signal is 

measured on HP 2562A dynamic signal analyzer. From this analysis, the overall noise 

floor is found to be -60 dB V/-iHz (1.0 mV/-iHz) or 0.63 mgl-iHz. The electrical noise is 

measured as -75 dB VI-1Hz (0.18 mV/-iHz) or 0.11 mg/-lHz with no sensor connected to 

its input. From previous analysis, the mechanical noise is estimated to be 0.62 mgl-iHz. 

From noise analysis, the minimum detectable acceleration is calculated to be 19.8 mg. 

The major device performance is summarized in Table 5.3. 
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Table 5.3. 

Performance Summary of the Nano-Newton Force Sensor. 

Parameters Unit Designed Value Tested Value 

Resonant frequency kHz 1.60 1.00 

Sensitivity - 0.02 fF/nN 8mV/g 

Noise floor - 0.275 pN/vfHz 0.63 mg!viHz 

Min detectable force - 8.7pN 19.8 mg 

449nN 

(at lg) 
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CHAPTER SIX 

CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH 

6.1 Overall Conclusions 

Two new CMOS-MEMS devices; a piezoresistive accelerometer with large proof 

mass and a nano-Newton force sensor have been successfully designed, fabricated, and 

characterized. Both devices are fabricated using AMI (ON Semiconductor) 0.5 J.Lm 

CMOS technology through MOSIS. Device design utilizes dedicated software such as 

Matlab, CoventorWare, and Mentor Graphic layout editor. A customized post-CMOS 

microfabrication process for device release is conducted at Lurie Nano Fabrication 

Facility (LNF), University of Michigan, Ann Arbor. Device characterizations are 

performed at Oakland University MEMS/NEMS research lab to investigate device 

performance. 

A piezoresistive accelerometer is suitable for low g applications with out-of-plane 

sensing ranges from 1 g to 1 Og. Common issues associated with most of the CMOS

MEMS thin film accelerometers such as structural curling and low sensitivity have been 

solved by incorporating SCS as the proof mass. The four bimorph beams attached to the 

sensor structure has significantly improved sensor stability by allowing sorely the out-of

plane motion (z-axis) of the proof mass for larger piezoresistive effect while minimizing 

in-plane (x, y-axis) motions. Multiple CMOS metal layers permit flexible on-chip sensor 

element wiring for full Wheatstone bridge configuration, which further increase sensor 

sensitivity. Using DRIE post-CMOS microfabrication process, the single-crystal silicon 
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substrate (device proof mass) is anisotropically etched up to approximately 40 J.lm 

thickness during back-side processing. Daktek surface profilometer is used to estimate 

the proof mass thickness. The front-side RIE processing of the chip is employed to 

remove the BPSG and the silicon dioxide (Si02) layers in the trenches followed by the 

anisotropic and isotropic DRIE to successfully release the sensor structure. Post-CMOS 

processes require careful parameter tuning such as etching and passivation rate, R.F 

power, and etching time for a successful device release. With a nominal sheet resistance, 

Ps of 26.1 Q./[ from AMI 0.5 J.lm CMOS technology, each polysilicon resistor exhibits a 

resistance of approximately 1.4 kn. From device characterization, the resonant frequency 

of the accelerometer is found to be 1.34 kHz. With a 52 dB external amplifier gain, the 

accelerometer resolution is 30.1 mV/g after amplification and 0.077 mV/g prior to 

amplification. Noise analysis is conducted to estimate the minimum detectable 

acceleration. The total noise floor of the system is 1.03 mg!v'Hz with the electrical noise 

is estimated at 0.33 mg!v'Hz and the mechanical noise at 0.98 mg!v'Hz. The minimum 

detectable acceleration is therefore calculated to be 32 mg. Finally the TCR of the 

accelerometer is found to be 2.1 x 10-3 K-1 from the temperature analysis. 

A capacitive CMOS-MEMS force sensor capable ofnano-Newton measurement 

is also fabricated. The unique out-of-plane sensing mechanism allows sensing of forces 

applied perpendicular to the sensor plane. The device robustness is enabled by the 

inclusion of SCS as sensor structure. This will allow for a reliable deployment in force 

measurement. The wide force measurement range of nN to mN makes the force sensor 

suitable for many biomedical applications. Using similar post-CMOS microfabrication 
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process as the accelerometer, initially a DRIE is used to anisotropically etch the silicon 

substrate up to approximately 40 Jlm thickness. The front-side RIE processing of the chip 

is then performed to remove the BPSG and the silicon dioxide (Si02) layers in the 

trenches followed by the anisotropic DRIE to successfully release the sensor structure. 

From device characterization, the resonant frequency of the force sensor is found to be 

1.0 kHz. With a 46 dB external amplifier gain, the force sensor resolution is 1.6 V /g after 

amplification and 8 mV/g prior to amplification. Noise analysis is conducted to estimate 

the minimum detectable force. The total noise floor is 0.63 mg!v'Hz with the electrical 

noise is estimated at 0.11 mg!v'Hz and mechanical noise at 0.62 mg!v'Hz. The minimum 

detectable acceleration is calculated to be 19.8 mg. At lg acceleration, the point force 

calculated at sensor center of mass is 449 nN. 

An observer-based controller for the nano-Newton actuator system is also 

designed and simulated to provide a control of the sensor structure. The sensor features 

an out-of-plane force measurement in z-direction. However, due to the structure of the 

device and thin beams, unpredictable in-plane movements in the x-y plane can cause 

undesirable measurement error or even damage the sensor in severe cases. This research 

proposes a solution to the problem by incorporating observer-based controller to regulate 

the in-plane movements during the measurement process. A nonlinear controller is 

designed using input-state and input-output feedback linearization techniques. Based on 

the observation, the input-output feedback linearization offers easier linearization process 

compared to the input-state method. The state estimation which is required for on-line, 

real-time feedback control is implemented by the nonlinear exact error linearization 

technique. Simulation result shows that the observer-based controller implementation for 
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the nano-Newton actuator system performed exceedingly well and effectively by 

providing fast controlling action in less than 10 ms. This approach for stabilizing the 

sensor measurement is found to be practical and effective. 

6.2 Suggestions for Future Research 

A new low-cost, maskless, and easy post-CMOS rnicrofabrication of the CMOS

MEMS devices have been successfully demonstrated as discussed in previous section. 

The future research involves the following suggestions to improve sensor performance 

and reliability: 

• The monolithic integration of the on-chip amplifier and filter circuits for 

better signal conditioning while minimizing the parasitic effect, the 

electrical noise, and the external noises; 

• Proper sensor location during layout design for easy post-CMOS 

microfabrication processing; 

• The integration of actuator system in force sensor structure for control 

implementation to solve any undesired in-plane twisting motion; 

• Proper sensor packaging for ease sensor deployment; 
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APPENDIX A 

MICROELECTROMECHANICAL THEORY 
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A.l Pure Bending of a Transversely Loaded Beam 

Fig. A.l shows a small section of the beam that bent due to the application of a 

transverse load [51]. The positive direction of z is in downward direction. M0 is the 

applied moment, while the radius of curvature is Rc. A differential angular dO is assumed 

to have an axial length dx when not bent. The dashed arc in the middle of the beam is 

called the neutral axis. 

The length of the dashed segment at position z is given by 

dL=(~-z)de, 

and when the beam is not bending, at the position of the neutral axis, the length 

corresponding to that segment is equal to dx, the differential length and is given by 

Tension 

I 
I 

I 
I 

I .....--I 
I 

,' Compression 
I 

I 

Neutral Axis 

Fig. A.l. A segment of a beam in pure bending. 
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and the different in axial length is 

(A-3) 

From Eqn. (A-2) and Eqn. (A-3), the axial strain and stress is therefore given by 

zd(} z zE 
c =---=-- and a =--

x R d(} R ' X R ' 
c c c 

(A-4) 

where E is the Young's modulus of the material. Using Eqn. (A-4), the total internal 

bending moment, M can be derived as 

M=-[H/2 EWz
2 

dz=-(-1 WH3).E._ 
H/2 R 12 R ' c c 

(A-5) 

where Wand Hare the width and thickness of the beam. In another form Eqn. (A-6) can 

be represented as 

= = (A-6) 
Rc WH3E EI' 

where I is the moment of inertia. 

A.2 Differential Equation for Beam Bending 

An example of the bending cantilever is shown in Fig. A.2. The increment of 

beam length, ds along the neutral axis is related to dx and is given by 

dx 
ds=--. 

cos(} 

The slope of the beam from the neutral axis is 

dw 
-=tan(} 
dx 
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dx w(x) 

J-------~~·----j-•x ---- -~~;r· 

1 
z 

Fig. A.2. A bent cantilever beam. 

while the relationship between ds and the incremental subtended angle d(Jis given by 

Since the angle generated by most of the MEMS devices are small, we can 

assume that ds ""' dx. Eqn. (A-8) and Eqn. (A-9) can therefore be assumed as 

and 

dw 
(};:::,-. 

dx 

(A-9) 

(A-10) 

(A-ll) 

Differentiate Eqn. (A-ll) twice and substitute Eqn. (A-10) into the result of Eqn. 

(A-ll) yields 

(A-12) 

Using Eqn. (A-6) obtains from Section A.l, yield the differential equation for a 

small-angle bending beams: 
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(A-13) 

The internal moment at any position x within the beam isM= -F(L- x). Using 

Eqn. (A-13), this leads to the second-order differential equation of 

d2w F -=-(L-x) 
dx2 EI 
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APPENDIXB 

CHIP DIAGRAM AND INSTRUMENT SPECIFICATION 
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B 1 Chip pin-out connection and its labels that include the on-chip wiring connection 

+Vee pie 

Fig. B.l. The schematic diagram of the chip pin-out connection. 
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B.2 MS311 0 Universal Capacitive Readout schematic diagram 
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Fig. B. 2. The schematic diagram of the MS3II 0 universal capacitive 
readout circuit. 
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