RECONFIGURABLE COMPUTING: NETWORK INTERFACE
CONTROLLER AREA NETWORK (CAN)

A dissertation submitted to
The University of Manchester Institute of Science and Technology
for the degree of MSc.

By:

ABS Mohd Saman

Under the supervision of:

Dr Martyn Edwards

Computation Department

2002

ABSTRACT

In current embedded computer system development, the methodologies have
experienced significant changes due to the advancement in reconfigurable computing
technologies. The availability of large capacity programmable logic devices such as
field programmable grid arrays (FPGA) and high-level hardware synthesis tools allows
embedded system designers to explore various hardware/software partitioning options

in order to obtain the most optimum solution.

A type of hardware synthesis tool that 1s gaining significant footing in the
industry is Handel-C. a programming language based on the syntax of C but able to

produce gate-level information that can be placed and routed on to an FPGA,

Controller Area Network (CAN} is an example of embedded system application
widely used in modern automobiles and gaining popularity in manufacturing
environments where high-speed and robust networking is needed. CAN was designed
on a very simple vet effective protocol where messages are identified by their own
unique jdentifiers. Message collisions are handled through a non-destructive arbitration

process, eliminating message re-transmission and unnecessary network overloading.

A project to design and implement of a version of CAN is presented in this
dissertation. The project was performed based on hardware/software co-design
methodology with the utilisation of the above-mentioned rcconfigurable computing
technologies: FPGA and Handel-C. This dissertation describes the concepts of
hardware/software co-design and reconfigurable computing; the details of CAN
protocol, the fundamentals of Handel-C, design ideas considered and the actual

implementation of the system.

1

2

3

4

IIEEOAUCTION. cocueeenres et nnnsss e sn s bs e b s4s 40000 000 b4 14040848 06040 0404040408 um mrd e varsranssnstnennnn
L1 Embedded SYStEmS ... s l
L1l Embedded System Design ..o s 2
1.1.2 Hardware/Software Co-desiZn ... 3
1.2 TRE PTOJBCT. oottt 4
L2.1 Qutcomes/Deliverables ... 5
1.3 Overview of the DISSErtAON ...t 6

Background Discussion

2.1

22

23

24

25

2.6

Detailed Requirements

3.1

3.2
33
34

35

3.6
37

3.8

39

Design of the CAN Network

4.1

CONTENTS

Hardware/Software Co-desi@noooiiiiiiie e 8
2 Ll B P A e e 10
Controller Area NEIWOTK oot ettt eae s 11
22,1 Local Area NetworK ..ot 12
222 OSIReference Model .o 12
The CAN ProtOCOLS oo et et 13
CAN BUS oot e et e e e et e eeaeeeaae s 14
2.4.1 CAN Physical Layer ... e 15
Related RESEarch ..ot ver e st st s st estasstsaans e 16
251 Implementations..........coooiiiiiiii e 17
252 Academic Researchi. ..o 17
SUITHTIANY 1ottt e e e em e e et e e saeean e eaneens 18

The CAN Protoco] ..ot s e b e arb s ar e e ens 19
FoLl Frame Ty Pes. oot 19
312 Data Frame. ..o 20
313 Remote Frame oo 22
314 Error Frame ... 22
3015 Overload FIUmME (oot 23
ATDITFAEION ..ottt et ettt er ekt s e e b e s et e es e e st nban b 23
Error BandLENg ..ot 25
HANAEI-C ottt sttt ettt eete e et e et e e eteeetaantt e et b ane e e anaeas 26
34.1 Advantages of using Handel-C .. e 27
Handel-C Feature Highlights ..o e 27
350 Data WIALhS .o et 27
352 Bt SeIeCtion . oo e 29
Physical RESOUTTES .o ovii ettt e et a e e 29
CelOXICH DKL s et st 30
370 BUIld OPIONS oottt ens 32
372 DebBUZZING ..o e 30
3.7.3 Targeting hardware via EDIF....coci e 34
The RCTO00-PP Card .o e 35
3.8.1 Configuring the FPGA e 35
3.8.2 Software-hardware COMMUMICAHONS c.ocviiviiiiee e 36
SUITUTIATY .o et e et a e e f e e s e e nnt e e s bt e sbeeabee e sbbessbaearebssine e s 38

APPIOACH Lo 39

...

..

--

42 High-level Design Ideas. ..ottt s 41

43 CAN BUS EMUIAHON ..ot vcae e s 42

43,1 Message Passing ..o e s en e 42

4.3.2 Function EMUulation. ...t 43

4.4 Arbitration Handling........cooovieeiiiineeeec e 44

4.5 Hardware/Software PArtitioningoooereiereecrieer e e eicssesrn e e e snens 46

4.5.1 Partitioning SHAEEY ...oviiiiiiiiiiiic it bt 46

.52 PrOtOLYPITEZ oot et e s 47

4.5.3 Software SHNUIALION....ceceiirieeec e e et rnas 47

4.5.4 Porting Cto Handel-C......oocooriiiiiiiiiiiii i 48

4.5.5 Hardware SImulationococoeeiiiinieiceee e 49

4.6 SUITIIIATY 1+ttt ettt et ettt b e e e et sttt e ee e r et e 50
5 IMPleMEntation ... ressssssss s sesesee crermsaeas ressrbeesasseressnnns 51

5.1 TRE SYSIRIN ..o et 51

5.1 Walkthrough (e 52

5.2 The HOSt PTOBIAIT. ..o e e 35

S. 200 FUNCHOMS oottt s 57

5.3 The FPGA PIOGIATE ..o ittt e b 59

53.1 Writingtothe Bus.......oov e e 59

5.3.2 Reading from the Bus ... e 62

54 Host — FPGA COMMUIECAUONSooiiviiiies e eccece s v ss e e e aranrnrs e 64

54.1 Host-FPGA Message Transmission ..o 68

54.2 Data Buffers for Host-FPGA communication...........cccveiniecnienieieerernne 69

5.5 CROC CalCULAIOT .o e cviri et ettt et re st es e st b bsss e smeese s s nananrees 70

5.6 SUTTIILATY ettt ae st e e et st 71
6 Evaluation/Testingoueeveresessinn rr Rt LLA LTSS Loy a4 AR PR e e A O E PRE A EERSRSS AL SRS OSSR BAS A S 72

6.1 Internal Evaluation.....c.oocooiiiiiiiiiii et et asb s s e s 72

6.2 External EvalUuation e o 73

6.3 Meta-level EvAIUATION.......ooiiiiiiiee e et e e 74
7 Conclusion & Further Work......ccuummnninniii “ trotsrsassanserenstsisebnrsness 77

7.1 CONCIUSION ...ttt e b ettt 77

7.2 FUPHEr WOTK L.ttt 78

T21 ParalleliSINg. ..ottt s 78

722 Physical BUS ... 79

7.2.3 Graphical User Interface ... v g0

7.24 CROC CalCulabion ..ot s 80

73 SUITIMIATY -1ttt ettt ettt e e s s et ea e et et arb e er s e 81

iii

LIST OF FIGURES

Figure 2.1 — Conventional Embedded System Design Processooovvviviiiininnnnn, 9
Figure 2.2 - United Design Environment of Hardware/Software Co-design 10
Figure 2.3 — OSI Reference Model ...t 13
Figure 2.4 - OST Layers in CAN ... e 14
Figure 2.5 — Physical and Electrical Organisation of a CAN Bus ... 15
Figure 3.1 — Data Frame of CAN 2.0 A (Standard) ..o 20
Figure 3.2 — Data Frame of CAN 2.0B (Extended) ..., 21
Figure 3.3 — A Remote Frame of CAN 2.0A (Standard) ... 22
Figure 3.4 — Error Frame. ... 22
Figure 3.5 — An Example of CAN Arbitration Process.........cc.ocooevviveiininncninne 23
Figure 3.6 — Arbitration Flow Chart............ccoiiiiiiiii e 24
Figure 3.7 — DK1 Main Display Showing Its Four Main Components 31
Figure 3.8 - Host-FPGA DMA of On-board MemOry.......c.cccoccoiviniininceicnenes 37
Figure 3.9 — An Example of Host-FPGA Communication Process...............c......... 38
Figure 4.1 — Development Plan (Based on HW/SW Co-Design Model)................. 40
Figure 4.2 — The Proposed Network Logical Configuration...........cccccoovirecnnnanne 41
Figure 4.3 - CAN Bus Emulation by Message/Token Passing........ccccoccovenniinnee 43
Figure 4.4 — CAN Bus Function Emulation.........c..cccooiiiin 44
Figure 4.5 — The Write & Read Cycle ... 45
Figure 4.6 — Hardware/Software Partitioning Strat€gyc.covvvveieeerevernrcieneenns 48
Figure 5.1 — Basic Setup of the Host and FPGA Programscccocvininciiene. 51
Figure 5.2 — Host Program’s MenU..........ccoooiiiiiiiiiiicncniieniieeee e 53
Figure 5.3 — Host sends a message to Node O..........oovviiiiiiiiii e 53
Figure 5.4 — Host receives messages from Node 1 & 2 ..o, 53
Figure 5.5 — Getting Status Reports from FPGAc..oooooiiii i, 54
Figure 5.6 — Host’s Main FIOWChartc.cooeciiiiiiecin e 56
Figure 5.7 - FPGA’s Main Flowchart.............c.ccooiiiccv 56
Figure 5.8 — Flowchart for write_frame()} function..........cccoveerioivsicnvei e 63
Figure 5.9 — Flowchart for read_frame() function ... 65
Figure 5.10 — Sending Message from Host to FPGA.............o 67
Figure 5.11 — Message Buffer Format ... 69
Figure 5.12 — Type 2 Buffer Contents (CAN Nodes Status)c.ocooeoverviinnnne. 69
Figure 5.13 — CRC Calculation Algorithm ... 70
LIST OF TABLES
Table 2.1 — Physical Characteristics of CAN BUScooccvivvciniciiciies 16
Table 3.2 — Host-FPGA Communication Functions............ccccov e 37
Table 5.2 — Types of Messages from Host to FPGA ... 57
Table 5.3 — Host-FPGA INteractionccccoovveeierriniineniens et 58
Table 5.4 — Tasks of controller_write() funCtioncc.oeeivvieii e, 60

Table 5.5 — Tasks of controller_read(} function..........ccocevieeie e 64

Chapter 1 Introduction

1 Introduction

To most people a computer is equipment that we regularly use in the office,
school or home to perform various tasks such as word processing, accounting and
desktop publishing. Technically the type of computer that we are familiar with is called
a general purposed computer. It is designed to perform various tasks from serious work

such as database management to entertainment such as watching movies.

Another type of computer that we use everyday but seldom see it as a computer
is called an embedded system. Embedded systems can be found in modern domestic
appliances such as washing machines, dishwashers and microwave ovens. Embedded
systems can also be found in cars (e.g. auto-cruising and anti-lock braking systems),
digital cameras, digital televisions, CD players, mobile telephones and a lot of others.
Since the computer is embedded into a larger device, people seldom think of it a
computer when they use it. In fact we use more embedded computer systems everyday

compared to general purpose computers such as the personal computer (PC).

1.1 Embedded Systems

An embedded system is a combination of computer hardware and software
designed to perform a specific function. It is a part of a larger system that may not be a
computer. A general purposed computer like the PC is built on a general purposed
hardware subsystem. Different software subsystems can be loaded on top of the

hardware subsystem to perform different tasks. Unlike a PC, which can be used for a

Chapter 1 Introduction

variety of tasks, an embedded system performs a specific and fixed function. Its
hardware subsystem is built from the outset to perform this function in the most
efficient manner. Its software subsystem is written to complement the hardware.
Because of this, embedded systems are usually very small and perform their intended

function very efficiently [1].

Hardware is used mainly because of its performance. A system built on
hardware is thousands of times faster than an equivalent software system. A typical
software system contains several layers of hardware and software, thus adding huge
amount of overhead to the overall performance of the system. However, hardware is
less flexible. On the other hand, software is more flexible and easier to update. Thus, the

software subsystem is designed to provide features to the embedded system.

1.1.1 Embedded System Design

Traditionally, developing an embedded system was done by writing a piece of
software to suit a particular hardware architecture. The hardware is usually based on a
certain type of microprocessor. A variety of microprocessors and microcontrollers with
different features and strengths have been developed and produced by integrated circuit
makers for different areas of application. There are microprocessors of varying data
sizes (i.e. 8-bit, 16-bit, 32-bit etc.) developed for general purpose, and there are also co-
processors developed for specific purpose such as image processing (e.g. digital signal
processors), mobtle communications (e.g. Motorola MXI1 processor) and internet
appliances (c.g. Philips TriMedia processor). Certain hardware is more suitable for
small appliances while another is specifically designed for use in a harsh environment.
Because the hardware sub-systems are pre-developed, the software sub-systems can

only be developed after the hardware has been identified. [2,3]

Design of embedded systems can be subject to many different types of
constraints, including timing, size, weight, power consumption, reliability, and cost.
Conventional methods for designing embedded systems require engineers to specify and

design hardware and software separately. A specification, often incomplete and written

Chapter 1 Introduction

in a non-formal language, is developed and sent to the hardware and software engineers.
The hardware-software partition is decided a priori and is adhered to as much as is
possible, because any changes in this partition may necessitate extensive redesign.
Designers often strive to make everything fit in software, and off-load only some parts

of the design to hardware to meet timing constraints [7].

1.1.2 Hardware/Software Co-design

There are many different approaches of trying to solve the problem of embedded
system design. Each has its own strengths and weaknesses. Some are more suitable to
certain types of applications compared to others. With the advent of programmable
hardware such as Application Specific Integrated Circuits (ASIC), the hardware can be
designed and built in tandem with the software development — a methodology known as
hardware/software co-design. In this method, the system’s functions are partitioned into
hardware and software sub-systems, developed separately, optimised, and finally
integrated. A more detailed discussion about this methodology is presented in Chapter
2.

Reconfigurable devices such as Field Programmable Grid Arrays (FPGA) were
often used for prototyping the ASIC designs [5]. Today, FPGAs are powerful and cheap
enough to be used as the target hardware — giving birth to the Reconfigurable
Computing System Development methodology. With this method, the hardware sub-
system invariably contains reconfigurable computing resources (usually FPGA) together
with conventional processor. The processor takes care of the general-purpose
computation while the reconfigurable hardware takes care of specific applications. The
software sub-system is normally developed on a personal computer (PC) connected to

the hardware.

A major advantage of a reconfigurable computing system is that the hardware
sub-system can be reconfigured to suite changes in the application requirements. The
execution speed of dedicated hardware is retained but there is a great degree of

functional flexibility. The logic within the FPGA can be changed if or when it is

Chapter 1 Introduction

necessary. For example, hardware bug fixes and upgrades can be administered as easily
as in software. Obviously, during system development changes can be as often as
needed in order to explore various configurations and features, with the objective of

producing the most optimum solution possible.

1.2 The Project

In this project, the process of designing and implementing an embedded system
using reconfigurable computing technology was explored. The embedded system
application implemented was a network interface using the Controller Area Network
(CAN) bus protocols. The system consisted of a hardware sub-system (on an FPGA)
and software sub-system (on a Personal Computer). Embedded system design
methodology and reconfigurable computing techniques were applied throughout the

project.

CAN is a serial communications protocols which efficiently supports distributed
real-time control. It is commonly employed as a Local Area Network (LAN) to
interconnect electronic devices in automobiles, thus sometimes referred to as Car Area
Network. However, due to its simplicity and flexibility, it is receiving widespread use in
a wide variety of embedded applications like industrial control where high-speed
communication 1s required [23]. The fundamentals of CAN are discussed in Chapter 2

and further treated in detail in Chapter 3.

The aim of the project was to implement the functionality of a Controller Area
Network (CAN) bus using hardware and software. In order to achieve this aim, the

following functional objectives have been defined:

e To demonstrate the operation of CAN as a network interface.
¢ To demonstrate the operation of three CAN controller nodes communicating

with each other using CAN protocol.

Chapter 1 Introduction

¢ To demonstrate the control of the network operation using a personal computer

(PC) interfaced to the hardware (FPGA).

In achieving those objectives, the following non-functional objectives were also

defined:

¢ To deliver the implementation in a system of mixed hardware and software.

e To design and develop the system using the practical methods and techniques
normally employed in a typical embedded system development environment.

* To design and implement the system using the concepts of Reconfigurable

Computing.

In this project the hardware subsystem was built on Field Programmable Grid
Array (FPGA) while the software subsystem was written on a PC. The software
subsystem was written in C/C++ using Microsoft Visual C++. The hardware was
developed using Handel-C Programming Language — a hardware design language that

1s gaining significant footing the hardware/software co-design world.

Handel-C is a high-level language based on ISO/ANSI C for the implementation
of algorithms in hardware. It includes extensions to C that provide features for
describing the behaviour of embedded systems in hardware [4]. Basic features of

Handel-C are discussed in Chapter 3.

1.2.1 Outcomes/Deliverables

The desired deliverable was a mixed hardware/software implementation of a
CAN bus network interface. Several CAN “devices” interconnected via a CAN bus
were to be built into an FPGA. The devices were to communicate with each other via
the bus and controlled by programs running on a PC connected to the FPGA.

Essentially, it was aimed to be a network that consists of:

Chapter 1 Introduction

e A CAN bus — emulating two pieces of wire that normally required in a CAN
bus.

e CAN devices — at least three simulated CAN devices communicating with
each other.

¢ Network Monitor/Controller — the PC will be used to monitor the network
and for initiating data transfer from one node to another.

At the end of this project, it was desired that the author would gain significant
insight into the practical aspect of embedded system development. Along the way,
significant understanding of the concept of Reconfigurable Computing was also aimed
for. Valuable knowledge in the operation of CAN as a network interface and experience
gained in the utilisation of Handel-C as a major part of the system development, can be

shared through this dissertation.

1.3 Overview of the Dissertation

This dissertation is divided into seven chapters. This introductory chapter gives
an overview of the project. In Chapter 2, important concepts are introduced and treated
in more detail in order to set the appropriate background for further discussions in
subsequent chapters. These concepts include Embedded System Design Methodology,
CAN fundamentals, CAN protocols and CAN bus. Chapter 3 sets the requirements of
the project by discussing specific CAN concepts in more detail. It will introduce the
CAN data frame format and indicate how CAN handles arbitration. Handel-C, which is
an important element of the project will also be discussed here. Several important

Handel-C constructs and functions will be described in detail.

Chapter 4 builds upen the background and requirements set in the preceding
chapters. It introduces several design ideas and evaluates their strengths and
weaknesses. It also discusses the approach taken for the design and development of the
system. Chapter 5 describes the final product and also highlights how particular critical

issues, for example hardware-software communications are resolved.

Chapter 1 Introduction

The system is the evaluated in Chapter 6. Evaluations are performed in relation
to the objectives and requirements identified in preceding chapters. Chapter 7 concludes

the dissertation by revisiting important elements of the project and by looking forward

to possible extensions to the current project.

Chapter 2 Background

2 Background Discussion

‘This chapter presents the background to the area of investigation and establishing
the context of the problem. Several important computing concepts will be introduced
here. We will start with the basics of embedded system development, continued by the

motivation behind the development of reconfigurable systems.

After establishing these important fundamentals, Controller Area Network (CAN)
will be introduced. Befitting its role as the backbone of this project, the fundamentals

and basic operation of CAN are covered in detail.

2.1 Hardware/Software Co-design

In hardware/software co-design methodology. hardware engineers and software
engineers work on their designs in parallel. Girven a list of requirements, designers
consider trade-offs in how hardware and soltware components work together. Naturally,
there is a need for good feedback and interaction between the two groups of designers.
Decisions are evaluated on performance, programmability, area, power, development
and manufacturing costs, reliability, maintenance etc. The ultimate aim 1s to exploit the

synergy between hardware and software. [5]

A critical issue in most hardware-software co-design is finding eftective hardware
and software partitioning early in the process (Figure 2.1). Early system partitioning
means that designers are clearly aware of the extents of their designs. However, early

system partitioning also means that optimisation can only be done at the sub-system

Chapter 2 Background

level. If the partitioning were later discovered not to give the optimum
price/performance ratio, it still has to be used as 1t is.

' o Hardwenoo

?'rhui.‘«jaru Fo=u R T

System Concepts System
Integration

Req. Analysis

Software Req. Bg'st;zire .
Analysis Tes!

Figure 2.1 - Conventional Embedded System Design Process [5]

In the conventional design process, early partitioning results in what is known a
Model Continuity Problem i.e. the unavailability of reconfiguration options once the
partitioning has been done. Model continuity is important because many complex
systems do not perform as expected in their environment. Continuity allows the
validation of system level models at all levels of hardware/software implementation,

thus trade-offs are easier 1o evaluate at several stages. [5]

Today, the availability of mature high-level and logic-level synthesis tools made it
possible for vartous partitioning options to be simulated and evaluated. These tools
allow for systematic exploration of trade-offs of hardware/software partitioning at the
system level. They bridge the gap between and algorithmic specification and its
implementation at the layout level. They also add a great degree of automation in

hardware/software co-design. [6]

In hardware/software co-design, interaction and the need for reconfiguration
during the whole of the design process is greatly emphasised. A typical co-design
process flow is shown in Figure 2.2 where incremental evaluations are done at various
stages of the development process |[5]). Re-configuration 1s made possible by
advancement in reconfigurable computing technologies especially FPGA and hardware

synthesis tools.

Chapter 2 Background

[d i o !
Hardwene Ren. L g %l’:j{‘mfr" ;
Analysis Test w e
A4 [
.l
Svstem C t System
ystem Loncepts Integr d Modeli Ing trate integration
Req. Analysis g
-

Saftware
Design %

Software Req |

Incremental
Analys: Evaluation
elySls

Figure 2.2 - Umhed Design Environment of Hardware/Software Co-design [5]

211 FPGA

FPGA is a type of programmable device that can be configured for a wide
variety of applications. Before FPGA, PLDs are generally limited to hundreds of gates,
while FPGAs support thousands or even millions of gates. These gates and their
interconnects are user-programmable. Some FPGAs include other logic elements such
as random access memories, flip-flops and input/output buffers. By programming, other
logic elements can be synthesised. Thus an FPGA can be programmed to perform a

huge variety of functions.

Usually hardware descriprion languages such as VHDI. and Verilog are used to
describe the logic to be synthesised in an FPGA. A hardware description language ¢an
be used to describe the hardware at different levels of abstraction 1.e. gate level, register
transfer level and behavioural level [7]. Computer Aided Design (CAD) vendors
typically include various other tools such as simulator, performance analyser and system

verifier. [26]

Alternatively, the hardware can be described algorithmically — like software
programming — using a conventional programming language variance or subset such as
Handel-C. This alternative is becoming more attractive because current embedded

systems are becoming more complex and require complex algorithmic solutions

Chapter 2 Background

equivalent to those employed in large software systems. The Handel-C programming

language is discussed in Chapter 3.

2.2 Controller Area Network

Controller Area Network (CAN) is a serial communications protocols which
efficiently supports distributed real-time control. It is a type of network that was
designed to efficiently support distributed real-time control with a very high level of
security [8]. It is commonly employed as a Local Area Network (LAN) to interconnect
electronic devices in automobiles. Microchips manufacturers usually categorised their
CAN-related products under [n-Vehicle Networking [t:,. 3] because CAN was
developed in the automotive industry. However. its domain ol application ranges from
high speed networks 1o low cost multuplex winng in vehicles and manufacturing

cnvironment.

In automotive electronics, engine control units, sensors, anti-skid systems and
others are connected using CAN because it is physically easier to install compared to
conventional point-to-point wiring. It also requires a minimum amount of cables and
connectors, thus weighs less, Effectively it is more cost-effective compared to the
normal wiring harness. Another important reason of using CAN In vehicles is to enable
any station to communicate with any other without putting too great a load on the

controller computer [23].

Fundamentally, CAN 1is a type of Local Area Network (LAN). It 1s built on a
collision-detection broadcast bus similar to Erherner, a very popular type of LAN [9].
However, in Ethernet collision-detection forces conflicting message senders to stop and
resubmit their messages after a random interval, In CAN collision-detection signals the
message senders to go into a non-destructive arbitration process. This will be discussed

further in Section 3.2.

11

Chapter 2 Background

2.21 Local Area Network

A Local Area Network can be defined as a network of computers and other
devices in a limited geographical area such as in a building or within a campus area. A
common transmission medium is shared by all the participating devices. through which
they communicate with each other. They also share resources such as storage and

printing devices.

The communication and resource sharing is made possible because a network is
always built using well-defined hardware and software specifications. These standard

specifications allow the network to be built systematically and operated smoothly.

2.2.2 Sl Reference Model

Modern computer networks are designed in a highly structured way. To reduce
their design complexity, most networks are organized as a series of layers, each one
built upon its predecessor. This structure is known as the OSI Reference Model (Figure

2.3), which is divided into seven layers which can be described as follows [10]:

Layer 7. Application : Provides services that meet the communication requirements
of specific applications, often defining the interface to a service.

Layer 6: Presentation : Transmits data in a network representation that is
independent of the representations used in individual computers.

Layer 5: Session : Handles problems which are not communication issues such as
detection of failure and automatic recovering

Layer 4: Transport : Provides end to end communication control

Layer 3: Network : Routes the information in the network

Layer 2; Data Link : Provides error control between adjacent nodes

Layer 1: Physical : Connects the entity to the transmission media

Layering brings substantial benefits in simplifying and generalising the software

interfaces for access to the commurnication services of a network.

Chapter 2 Background

2.3 The CAN Protocols

The fundamental design of CAN has been mapped to the Data Link and Physical
layers of the ISO/OSI Reference Model. The Data Link layer of CAN is further
subdivided into two sublayers: Logical Link Control (LLC) and Medium Access
Control (MAC) sublayers (Figure 2.4). The scope of the LLC sublayer contains the

following functions:

* (0 provide services for data transfer and for remote data request

7 Application Appilication
] 1

6 Presentation Presentation
I i

5 Session Session
[I

4 Transport Transport
|]

3 Netwerk L Packet -----------2 Network
| I

2 Data Link L Rt Frames ------=nea-> Data Link
| 1

1 Physical R i Bits -evnvin-> Physical

Figure 2.3 - OSI Reference Model

¢ to decide which messages received by the LLC sublayer are actually

accepted

* to provide means for recovery management and overload notifications.

CAN employs content-oriented addressing scheme. Communication is addressed
by message identifiers instead of station identifiers as in normal LAN. Each message

has an identifier that is unique throughout the network. It defines the priority and the

Chapter 2

content of the message. When a station (ransmits a message, all other stations in the
network become receivers. The LLC sublaver in each station will perform an
acceptance test to determine whether the data received are relevant for that station. If

the data is of significance for the station concerned. it 1s processed, otherwise it is

ignored.

Data Link Layer

LOGICAL LINK CONTROL
Acceptance Filtering
Overload Notification

Recovery Management

MEDIUM ACCESS CONTROL
Data Encapsulation/Decapsulation
Frame Coding (Stuffing, Destuffing)

Medium Access Management

Error Detection
Error Signalling
Acknowledgement
Serialisation/Deserialisation

Physical Layer

Bit Encoding/Decoding
Bit Timing

Driver/Receiver Characteristics

Figure 2.4 - OSI layers in CAN

In other words, the sender of a message send a broadcast throughout the network
and the receivers listen to the message and decide whether to act on it or not. No
physical destination is required. Since the data transmission protocol does not require
physical destination addresses for individual stations, the system has some degree of

configuration flexibility, Nodes can be added to or removed from the network without

SUPERVISOR

Fault
Confinement

Bus Failure
Manaaement

bringing it down as long as the said stations are purely receivers.

2.4 CAN bus

The bus in a CAN network is a serial communication link onto which a number

of nodes may be connected. The maximum number of nodes is only limited by delay

14

Background

Chapter 2 Background

times and/or electrical loads on the bus line [8]. The bus consists of a single channel
that carries bit values. Physical implementation of the bus is fixed by CAN

specification, thus there can be several implementations (see Table 2.1).

Bitstreams on the bus are coded according to the Non-Return to Zero (NRZ)
method with bit-stuffing. The two logical bit values on the bus is known as dominant

and recessive. When there is a simultaneous transmission of dominant and recessive

1 = recessive

0 = dcminant

Node Node

Figure 2.5 - Physical and electrical organisation of a CAN bus - wired-AND implementation [7]

bits, the bus will read as dominant. In the popular wired-AND implementation of the
bus (Figure 2.5} [7], the dominant value is represented by a logical 0, while recessive by

alogical 1[8].

2.4.1 CAN Physical Layer

Physically, a CAN bus 1s essentially a cable consisting two pieces of wire which
are twisted over each other along their length. This type of cable is usually known as
twisted pair — the most common type of cable used in normal LAN. Usually, CAN
nodes are connected o the bus in a wired-AND fashion — 1f one node 18 writing a

dominant bit (LOW} to the bus, then the whole bus i1s in domimant state, regardless of

Chapter 2 Background

the number of other nodes transmitting recessive (LOW) bits. Basic characteristics of a

CAN bus 1s listed in Table 2.1 [22].

Characteristic Value
Standards » [SO 11989 - Two-wire balanced signaliing scheme
» [SO 11519 - Low-speed two-wire balanced signalling
scheme

Maximum bus speed 1 Mbit/s

Maximum cable = 40 meters at 1 Mbit/s
length *» 100 meters at 500 kbit/s

s 200 meters at 250 kbit/s

» 500 meters at 125 kbit/s

» 6 kilometers at 10 kbit/s
Cable type *» 108 to 132 Ohms

» Twisted pair
Connectors * 9-pin DSUB proposed by CiA

» 5-pin Mini-C and/or Micro-C, used by DeviceNet and SDS
* 6-pin Deutch connector, proposed by CANHUG for mobile
hydraulics

Table 2.1 - Physicat Characteristics of CAN bus

2.5 Related Research

Research in in-vehicle networking has resulted in many standards developed by
various manufacturers and organisations. CAN is one of the few that are more popular
than the rest. Large microchip manufacturers such as Intel, Philips and Fujitsu have
produced several CAN implementations of their own. And turther research into CAN

has resulted in several extensions such as CANopen, DeviceNet and CAN Kingdom.

CANopen is a CAN-based higher layer protocol coriginally developed for
industrial control systems. The family of specifications includes also different device
profiles as well as frameworks for specific applications. DeviceNet is also a CAN-based

higher layer protocol developed based on an object-oriented communications model

16

Chapter 2 Background

[22]. CAN Kingdom is also another CAN-based higher layer protocol but was designed
based on the concept of customisable network. In conventional network concept,
devices connected to the network must be tailor-made to the network. Thus the system
must conform to the network. In CAN Kingdom, the network will be tailor-made to suit
the needs of the system. The system designer can create systems using virtually any
type of bus management and topology — possibly making the system very flexible to the

extent of making it very restrictive [11]

2.5.1 Implementations

Robert Bosch GmbH developed the CAN controller in the early 1980s and
worked with Intel on the first implementation. The first implementation. 82526
controiler, was based on CAN version .2 while the latest controller released in 1993,
the 82527, supports CAN version 2.0B [1Z]. Intel’s programming model of CAN
implementation is known as Full CAN while those implemented by Philips is known as
Basic CAN. Most CAN controllers allow for both programming models to be used --

and they are compatible with each other [22].

A few of other commercial organisations actively involved with CAN are
Philips, Acutest, /+ME actia, and Hitex. Philips produces several versions of on-chip
CAN controllers based on the popular 80C51 microcontroller family [13] and a few
standalone CAN controllers as well [14]. Smaller companies like Acutest and [+ME
actta make use of chips produced by larger companies, such as Intel and Philips, to
conduct research on the application of CAN, particularly in the areas of in-vehicle

networking and manufacturing automaton.

2.5.2 Academic Research

Academic research in CAN is usually linked to real-rime systems such as the
analysis done by Tindell et al [9] in which an idealised scheduling analysis for CAN
was derived. A study on two CAN chips (Intel 82527 and Philips 82C200) were also
done using the scheduling theory derived. Although CAN was originally designed for

17

Chapter 2 Background

in-vehicle network, today, CAN is used in applications other than in automotive
electronics. Some studies of CAN applications in machine control systems were done by
Fredriksson [15] and Zubert & Shin [16]. Studies on CAN systems performance have

been done by Rauchaupt [17] and Upender & Dean [18] among others.

A work similar to this project was done by Lemus et al [19] — the
implementation of CAN controllers as communication nodes in a distributed system.
The controller was modelted using a hardware description language i.e. VHDL as
opposed to this project, where the hardware will be programmed by a programming
language varnation, 1.e. Handel-C. Twenty CAN controllers were connected the bus and
their operational behaviour were studied. It was noted that the controllers used a global

clock because bit synchronisation was not implemented.

At the “physical layer”, work on defining a single-wire CAN bus is in progress
but the standard has not been established yet {22]. Also, there are several Higher Layer
Protocols already developed and their practical application being studied [20]. Other
current research mvolved techmques tor combining CAN with Bluetooth. Fredriksson

of KVASER discussed the possibilitics and concerns in this arca [21].

26 Summary

In this chapter, we have looked at the concepts of hardware/software co-design and
the fundamentals of CAN. We have discussed how the OSI tayers in CAN relate to the
lowest two layers of the OSI Reference Model. We have also seen that physically a
CAN bus is very simple and easy to implement. Details of CAN such as its data format,

arbitration and error detection are discussed in next chapter.

18

Chapter 3 Detailed Requirements

3 Detailed Requirements

In order to identify the requirements of the project, we need to investigate the
protocol of CAN. This chapter describes the details of CAN protocol and how CAN
handles arbitration and errors. As the hardware synthesis was done using Handel-C, this
chapter also introduces the basic of the Handel-C programming language and spectific
features which make it suitable for the intended purpose. A major part of the
information in this chapter is obtained from technical specifications of CAN and

Handel-C.

3.1 The CAN Protocol

There are two versions of CAN, each of which is based of CAN specification
2.0A and 2.0B. The two versions ditfer in the size of theiridentifiers. CAN 2.0A has a
standard 11 bit identifier while CAN 2.0B has an extended frame containing a 29 bit
identifier. CAN controllers from both versions can co-exist in the same network as long

as the 2.0B type controtlers send standard frames only [22].

3.1.1 Frame Types

Message transfer 1s manifested and controlled by four different frame types:
o Data Frame — carries data from a transmitter to the receiver

¢ Remote Frame - transmitted by the bus unit to request the transmission of

the Data Frame with the same identifier

Chapter 3 Detailed Requirements

e Error Frame - transmitted by any unit on detecting a bus error

* Overload Frame - provides an extra delay between the preceding and

succeeding Data Frames or Remote Frames,

3.1.2 Data Frame

A standard CAN data frame is shown in Figure 3.1:

fStan Identifier HTH§ IDE; RO DLGC Data CRC | ACK © EOF+FS

| 1bit 11 bits 1 bit. 1bit 1hit 4bits 0to 8 bytes 16 bits 2bits 10bits

Figure 3.1 - Data frame of CAN 2.0A (Standard) [1]

The above frame consists of the following fields [8,23,24]:

o Start Bit (I bit) - always LOW. FFulling edge of signal from idle state (HIGH) to
the Start Bit (LOW) is used for synchronisation.

e ldentifier (11 bits) — logical idensiry and priority of the message. The smaller
the value, the higher the priority ~ 0000 0000 000 has the highest priority while
TITL 11T 11T has the lowest.

e RTR (1 bit) - Remote Transmission Request, set to LOW. This bit is set to
HIGH in Remoteframe.

e Control Field (6 bits) — contains IDE, R0 and DLC:

= IDE (1 bit) — Identifier Extension. Set to LOW to indicate Standard CAN
Data frame.

= RO (1 bit) — reserved.

* DLC {4 bits) - Data Length Code. Indicates the length of data field.

e Data (0 to 8 bytes) — contains the data of the message.

Chapter 3 Detailed Requirements

e CRC (16 bits) - Cyclic Redundancy Check. Contains the checksum of the data

bits. Used for error detection.

e ACK (2 bits) — ACKnowledge. The first bit is the slor bit, which is transmitted
HIGH but subsequently over-written by dominant bits from receiver nodes. The

second bit is the delimiter (high).
e EOF (7 bits) — End of Frame. All HIGH (recessive).

e IFS (7 bits) — Inter Frame Space. All HIGH (recessive).

An extended CAN data frame (Figure 1.5) contains the all the fields for the
standard CAN with the following differences/additions:

¢ SRR (] bit) — Substitute Remote Request. Replaces the RTR bit in standard
CAN (relocated after the identifier field). Always HIGH, thus an extended CAN

frame always has a lower priority than a standard CAN frame during arbitration.

e IDE (I bit) — Identifier Extension. Always HIGH to indicate extended

identifier follows.
¢ Identifier (I8 bits instead of 11 bits)

e Control field (6 bits) — now contains an additional reserved bit (rl) which

repltaces IDE.
‘Stat™Icenter |SRR| DE | Wdentfler RTA| A1 | A0 DLC | Data T CAC ACK ECF#FS .
ot T1o@ bt Tbit J8bE 1D 1Bl 0% 4oms B byles 5o 2bts 10Dk

Figure 3.2 - Data frame of CAN 2.0B (Extended) {23]

21

Chapter 3 Detailed Requirements

3.1.3 Remote Frame

If a node wants to request certain message from another node, it will send a
remote frame (Figure 3.3). It is identical to a data frame except for the following two
characteristics [22]:

e The RTR bit is set to HIGH (recessive)

o There is no Data Field.

‘Stané Identifier %RTHf IDEEHOj pLe - CRC ACK = EOF4IFS

Tor 1lofs ibit Tof 1ol 4b0 6ot 20l 1000s

Figure 3.3 - A Remote Frame of CAN 2.0A (Standard) [23]

A recelving node that responses to the request will send out a data frame with an
identifier identical to the remote frame it received. Most CAN controllers can be
programmed to either automatically respond to a remote frame, or to notify the local

Central Processing Unit (CPU) [22].

3.1.4 Error Frame

When a node detects a fault, it will send out an Error Frame. An error frame 18 a
special data that violates the framing rules of CAN messaging [22]. Thus, when a node
sent out an error frame, other nodes will se it as error and send out their own error
frames too. If this situation occurred during transmission, the transmitter will try to re-

transmit the message.

Emor Flag Emor Delimiter

5 bits 8 bits

Figure 3. 4 - Error Frame

Chapter 3 Detailed Requirements

The format of an error frame is shown in Figure 3. 4. It consists of an Error Flag
(six bits of the same value, thus violating bit-stuffing rule) and an Error Delimiter (eight
recessive bits). The error delimiter provides enough delay for other nodes their error
frames upon detecting the current one [22]. Error handling is discussed further in

Section 3.3.

3.1.5 Overload Frame

An Overload Frame is identical to an error frame except that it is transmitted by
node that becomes too busy. It is seldom used because today’s CAN controllers are

clever enough to avoid this kind of situation.

3.2 Arbitration

CAN protocol is based on CSMA/CD (Carrier Sense Multiple Access/Collision
Detection) with added feature called Arbitration on Message Priority
(CSMA/CD+AMP). A CAN node checks if the bus is busy (Carrier Sense) before

sending a message. If the bus is free, several nodes could be sending at the same time

START BIT

oD 1D
p 1D st 8
10

Node B stops
sending

Figure 3.5 - An Example of CAN Arbitration Process [23]

23

Chapter 3 Detailed Requirements

(Multiple Access). Each transmitting node also checks if other nodes are also
transmitting by detecting for collision. However, in Ethernet, upon detecting collision,
all sending nodes will stop transmitting. They then wait for a random length of time

before trying to send again — making Ethernet very sensitive to high bus loads [24].

CAN solves this problem by employing a non-destructive, bitwise arbitration
[8]). The “winner” of the arbitration does not have to resend the message from beginning
as happens in Ethernet. The efficiency of the arbitration depends on the physical
property of the bus. When logical levels 0 and 1 are both sent to the bus, logical 0

becomes dominant and overwrite the logical 1.

If a CAN node is writing logic O to the bus while another is writing logic 1, the

value that appears on the bus will be logic 0. After writing a bit value into the bus, each

(START ’

—

4

BUS
Yes BuUSY?

» No

»

A
WRITE
NEXT BIT

Y
READ BIT FROM CHANGE TO
BUS RECEIVER MODE

READ =
WRITE? o

No STOP
—P TRANSMISSION

Figure 3.6 — Arbitration Flow Chart

24

Chapter 3 Detailed Requirements

transmitting node reads back the bit value actually registered on the bus. If a node found
that the bit value it has written is different from the bit value it read back, then 1t will
stop transmiiting — it has detected a cotlision and has lost in the arbitration process

(Figure 3.6).

The bit values that actually used in the arbitration process are those in the
identifier field. Because logic 0 is more dominant compared to logic 1 (recessive), an
identifier with the smallest binary value has the highest priority — always wins the
arbitration process. Figure 3.5 shows an example an arbitration process of frames
transmitted from two CAN nodes. A lower priority node that has lost the arbitration,
switches to receive mode. It will then wait until the bus is idle before attempting re-

transmission.

3.3 Error handling

Unlike other bus systems, the CAN protocol does not use acknowledgement
messages but signals any error that occurs [25]. Its error management function, which is

part of the Data Link layer, can detect the following errors:

o Bit Error — when the bit value monitored is different from the bit value written.

¢ Bit Stuffing Error — when 6 consecutive equal bit level is detected in frame field.

Bit stuffing should have been done after each 5 consecutive equal bits,
¢ (CRC Error — when the CRC sequence read is not identical to the one calculated.

¢ Form Error — when fixed-torm bit tield (CRC, ACK, EOF) contains one or more

illegal bits.

e Acknowledgement Error — when a dominant bit is not present in the ACK field.

As mentioned in Section 3.1.4, upon error detection, an error frame is

transmitted immediately. If an error is detected, the detecting node will transmit an

25

Chapter 3 Detailed Requirements

Error Flag and destroying the bus traffic in the process. Other nodes, upon detecting the

Error Flag will discard the current message [8§].

3.4 Handel-C

Handel-C i1s a programming language rather than a hardware description
language. The Handel-C language syntax is based on the C programming language.
Extensions have been added to support high ievel hardware constructs such as
parallelism, concurrency, communication and scheduling. Algorithms can be expressed
in Handel-C without knowing how the underlying computation engine works. This
makes Handel-C a programming language rather than a hardware description language.
While a conventional C generates microprocessor machine codes, Handel-C is generates
hardware designs. The hardware design - at gate level -- that Handel-C produces is
generated directly from the source program. The logic gates that make up the final
Handel-C circut are comparable to the machine codes in the executable file produced

with conventional C. The target of the Handel-C compiler is low-level hardware.

The following is a summary of Handel-C features:
* It uses much of the syntax of conventional C.

e It has parallelism built in. By utilising parallelism, huge performance benefit can

be obtained from the target hardware.
e [t provides channels for communication between parallel branches of the code.

o Interface can be used to communicate with external device or component.

Chapter 3 Detailed Requirements

3.4.1 Advantages of using Handel-C

Software programs are effectively state machines. The flow of execution
through the program is determined by control statements such as if statements, switch
statements, while loops and for loops. Handel-C adds the par construct to implement
parallelism [26]. There is also the channel statement for passing data between parallel
parts of the program and for synchronising them. By writing Handel-C program to take
advantage of inherent parallelism in low-level hardware, massive performance

advantage can be realised.

3.5 Handel-C Feature Highlights

Handel-C parallelism is true parallelism, not the time-sliced parallelism for
general purpose computers. When instructed to execute two instructions in parallei,
those two instructions will be executed at exactly the same instant in time by (wo

separate pieces of hardware.

Handel-C uses two kinds of objects: logic types and architecture types. The logic
types specify variables. The architecture types specity variables that require a particular

sort of hardware architecture e.g. ROMs, RAMs and channels.

3.5.1 Data Widths

A crucial difference between Handel-C and conventional C is Handel-C’s ability
to handle values of arbitrary width. Conventional C handles 8. 16 and 32 bit values well
but cannot easily handle other widths. When targeting hardware, there is no reason to be
tied to these data widths. So Handel-C has been extended to allow types of any number
of bits, It i1s perfectly valid to use 32-bit values for all data items but a large amount of
hardware is produced if none of these values exceed § bits. Declaring data of suitable

widths allow for an optimum use of hardware.

27

Chapter 3 Detailed Requirements

As in conventional C, the following data types have fixed width:

[signed | unsigned] char <— 8 hits
[signed | unsigned] short <~ 10 Dits

[signed | unsigned] long <— 32 bits

The syntax for declaring an integer variable of an arbitrary width is:

[signed | unsigned] int width variable_name;

For example. to deftne a 12-bit wide unsigned integer “arbitfield”. the

following declaration can be used:

unsigned int 12 arbitfilield;

If the width is omitted, the variable width is classified as “undefined”. During
compilation, the compiler will try to infer a suitable width for the variable. However, in

normal practice, each variable width is always defined the programmer.

Values of different widths can only be assigned to each other using the append
operator (@) or the bit selection operator. For example, to assign the value of a 4-bit

variable x4 to an 8-bit variable v8:

unsigned int 4 x4;
unsigned int 8 v8;

In this example, the left side (most significant bit side) of x4 will be appended
with extra zeros before being assigned to v8. In this case, four zeros will be appended to

make the total number of bits eight.

Chapter 3 Detailed Requirements

3.5.2 Bit Selection

Individual bits or range of bits can be selected from a value by using the []
operator. Bit 0 is the least significant bit and bit n-1 is the most significant bit where n is
the width of the value. For example, referring to previous example, to assign the value

of four least significant bits of y§ to x4, the following statement can be used:

x4 = y8[3:0];

The above statement takes the value of bits 3, 2, 1 and 0 of y& and assigns it to

x4. Another example of bit selection assignment is as follows:

x4 = yB8[7:4];

In this example, the four most significant bits of y8 is assigned to x4,

There are other bit manipulation operators tn Handel-C but used less extensively

in this project. Those operators are:

<< shift left

>> shift right

<- Take least significant bits
A Drop least significant bits

@ Concatenate bits

Materials discussed here are only highlights of features used in this project. For

completeness, the Handel-C Language Reference Manual should be referred to [4].

3.6 Physical Resources

These are the physical resources utilised for the design, development

implementation of this project:

Chapter 3 Detailed Requirements

a. Personal Computer — Pentium class processor running Microsoft Windows 2000
b. Microsoft Visual Studio -- C++ compiler
c. Celoxica DK1 -- Handel-C compiler [28]

d. Celoxica RC1000-PP board -- FPGA programming kit/hardware [27].

3.7 Celoxica DK1

DK1 is Handel-C system development environment that have been designed with
the look and feel similar to Microsoft Visual C++ (Microsoft Visual Studio). In its
debug mode it allows programs written in Handel-C to be simulated in the environment
without the need for the target hardware to be present. This feature allows the
correctness of the algorithms to be tested before being applied onto the target hardware.

This is discussed further in Section 4.3.2. [28]

The DK 1 development environment version 2.1 used for the project is equipped
with a new graphical user interface similar to Microsoft Visual C++ 6.0 (part of Visual

Studio 6.0). There are four main components is the GUI (Figure)

1. Menu and tool bars
Workspace window

Editor window

B

Qutput window

The menu and tool bars contain drop menus (similar to standard Windows
applications) and shortcut buttons to carry out major tasks (similar to Microsoft Visual
Studio). Commands assigned to these buttons are, among others: compile, build and

debug.

30

Chapter 3 Detailed Requirements

l|ll¢ uel3 - DK1 Design Suite - [l]ln uel 1(! o it 7 i RS ‘: i SEaN G Jiﬂl,?_sl
L@EEJ&P’,‘E‘* ot Tocks ot , BRI s
DR |fao (o [B@| |
@ o -rm.m.:a.ulwfm 5| [ewwnl
_J;j ll&'#'l*li’lHCV*I*‘I**I!‘I"'QL(& el 3
[1nto | #ifdef SIKULATE
= ﬁ queuell #define WORD_SIZE 8
= ém queueld ... #define BIT_OFFSET WORD_SIZE-1

B 13.c H #define RAM_SIZE 8 T

‘ Extamal D set clock = external
einal Depen. . telse i
: set part = “V1000BG560 Editor window
Workspace window #define PP1000_BBIT_R
ooy i #define PP1000_DIVIDEL
SRR A P S #define PP1000_CLOCK PP1000_MCLK
#define WORD_SIZE 8
#define BIT_OFFSET WORD_SIZE-1
#define RAM_SIZE 8

#include “ppl000.h" i

ss/set family = XilinxdOO00XV; v||
»

) File P:\majdiquiest\queusl \Debug\queuel3.cby is in invalid format
- 1 enor, 0 wamings
"\ DK1 design suite could not o

hb" P:\maidi\qutest\queuel3\Debug\queue13.hb: the biowse-infc

1 il
Macl [MM[| 4

Figure 3.7 - DK1 Main Display Showing Its Four Main Components

The workspace window shows a list of source files contained in current workspace.

These files are arranged in the following hierarchy:

e Workspace
o Project 1
= Source file |

= Source file 2

o Project 2
o
o Projectn

At any time, only one workspace can be opened in one instance of DK1. Inside a
workspace, several projects can be defined, each containing its own source files. This
arrangement allows several projects (perhaps variations to the same design) to be

written, compiled, built and compared.

31

Chapter 3 Detailed Requirements

The editor window contains the source files currently opened for editing. Several
files can be opened simultaneously (each in its own window) but only one of them can
be made active at any instance. The other windows are normally hidden behind the
active one. The source codes are displayed in a varnety of colours to distinguish their

types and functions {e.g. keywords, comments, strings etc.)

When a source file is compiled or a project is built, vital information is
displayed in the output window. Errors are displayed with indications and hyperlinks to
their line numbers in the source file. Clicking on an error message will bring up the

offending line in the editing window.

3.7.1 Build Options

DK allows projects to be built in several configurations: debug, release, EDIF,
VHDL and generic. However only two configurations were utilized during the
development of this project: Debug and EDIF. These will be discussed in the following

sections. DK1 Design Suite User Manual should be referred to for completeness [].

Debug is the default compilation configuration. Projects built in the debug mode
can be executed in the built-in simulator allowing for debugging to be done without the
presence of the target hardware. This method was used at the hardware simulation stage

of this project.

EDIF is one of the configurations that can be used to target a particular hardware
(the other configuration is VHDL). EDIF files generated can be used for placing and
routing into a targeted FPGA architecture. Obviously, this method was used at a later
stage of the development when the Handel-C program was tested with an RC1000-PP

card.

32

Chapter 3 Detailed Requirements

3.7.2 Debugging

To aid the debugging process, sample inputs for the project can be specified by

the chanin keyword. For example:

chanin 8 Input with {infile = *“data.txt”};

In the above example, an input channel Input (8 bit wide) was declared to read
from a file named data.txt. Values in the file must be numbers only and written one
number per line. They are read with the following channel operation (assuming that x

has been declared as an unsigned int 8 variable):

Input ! x;

The above statement will read one value from the data.txt file and assign it to x.

If the end of the file has already been reached, a zero value will be read instead.

Outputs can be channeled either to a debug window (within the output window)
or to a file using the chanout keyword. Declarations for output channels can be written

as follows:

chancut Output with {infile = “output.txt”};

chanout myDebug;

In the first line of the above example, an output channel Output was declared to
write values into a file name output.txt. In the second line, no file was specified, thus
any values sent out through this channel will be displayed in the output window.

Channeling values through the above channels can be done as follows:

Qutput ? x; // output teo file

myDebug ? 100; // display in window

33

Chapter 3 Detailed Requirements

Outputs through these channels are restricted too: only one value per line can be
written at any one time. Thus, if multiple output values are required, each of them must

have own channel.

When executed in a simulation, various execution points in the source code are
indicated with arrows of different colours i.e. current function calls (green), current
execution point (yellow), combinatorial codes that will be executed on the next clock
tick in other threads (white) and combinatorial codes that will be executed on the

current clock cycle (grey).

Debugging can be made more effective by placing breakpoints at suitable points
in the source code. Breakpoints are indicated as active (red dot), disabled (white dot

with red edge) or mixed (half red, half white dot).

3.7.3 Targeting hardware via EDIF

When enough debugging has been done, the build configuration can be changed
to EDIF so that the program can be tested on the actual target hardware. For the
RC1000-PP card, this is a two-step process. Building the source code in the EDIF
configuration is the first step. The second step is converting the EDIF files into a
bitstream file that can be loaded directly into the card. This can be performed using the

edifmake utility supplied with the card. [28]

The edifmake utility is a DOS batch file, therefore must be executed from a
command prompt. Edifmake needs access to several files built by the compiler, thus it is
normally executed in the EDIF subdirectory of the project being worked on. If the
project name is cansim, a command prompt is opened under its EDIF subdirectory and

the following command 1s entered:

edifmake cansim

34

Chapter 3 Detailed Requirements

A file with the name cansim.bit will created under the same subdirectory when
the conversion process is completed. One method that can be used to load this bitstream
file into the FPGA is by using the PP1000ConfigureFPGA() library function supplied
with the RC1000-PP card. This library functions and other information about the card

are described further in next section.

3.8 The RC1000-PP Card

The RC1000-PP design board is included with the DK1 design suite. The card
includes a Xilinx Virtex XCV 1000 FPGA with 1 million gates, 8 megabytes of RAM
(in four 2 MB banks) and various expansion slots mapped to a selection of pins on the
FPGA. This card can be plugged into a PCI slot on a PC and supplied with suitable
drivers for Microsoft Windows. Also included are a library file and its corresponding
header file, which add special commands that allow a C program running on the PC to
access the card. These commands are in form of library functions defined in the header
file. There is a set of functions for the C program and a corresponding set for a Handel-
C program. Some of these commands (particularly those used in this project) are

discussed below [27].

3.8.1 Configuring the FPGA

The first step that a host program must do is getting a handle to a RC1000PP card
installed on the PC. The easiest way to do this is by opening the first card available by

calling the following function call:

PP10000penFirstCard{&Handle) ;

In the above example, Handle is a predefined variable inside the corresponding
pp1000.h header file supplied with the card. Then, the clock speed for the card should

be set with a function call such as follows:

35

Chapter 3 Detailed Requirements

PP1000SetClockRate (Handle, PP100C_MCLK, leb);

In this example, the clock speed was set at IMHz (le6) with the card operating at
the same speed (Pp1000_MCLK). For detailed explanation of clock setting, the RC1000

Software Reference Manual should be consulted [27].

The next step is to load the bit file that has been prepared for the FPGA. This is

typically done by making another function call such as follows:

PP1000SetClockRate (Handle, "“canfpga.bit”);

In the above example, a bit file named “canfpga.bit” was loaded into the FPGA on-
board the RC1000PP card. Once loaded the program is started automatically. There are
other methods of configuring the FPGA. These are covered in detail in the RC1000

Software Reference Manual [27].

3.8.2 Software-hardware communications

Data transmission between software (i.e. a host program running on the PC) and
hardware (i.e. the FPGA) can be performed in three modes: 1 bit, 1 byte and direct
memory access (DMA). The three types of data transfer operations are handled by the

following library functions Table 3.1):

Data Host FPGA

Transfer

Bit- PP1000SetGPO() PPL000ReadGPO ()

sized — set the GPO (general purpose — read the status of the GPO pin
output) pin

PP1000SetGPI ()

PP1000ReadGPI () — set the GPI pin
—read the status of the GPI {general
purpose input) pin

Byte- FPP1GQ0WriteControl () PP1000ReadControl ()

sized - send one byte of data to the FPGA ~ receive one byte of data from host
PP1000ReadStatus () PP1000WriteStatus(}
— receive one byte of data from the — send one byte of data to host

36

Chapter 3

Detailed Requirements

FPGA

DMA

PP1000SetupDMAChannel ()
— set up a DMA channel

PP1000RequestMemoryBank ()
— request access to a memory bank

PP10O0ODDMA ()
~execute the DMA data transfer

PP1000ReleaseMemoryBank ()
— relinquish access to a memory bank

PP1000SetupDMAChannel ()
-- close the DMA channel used

PP1000ReguestMemoryBank { }
— request for access to a memory
bank

PP100CWriteBank{)
— write to a memory bank

PP100CReadRank ()
- read from a memory bank

PP1000ReleaseMemoryBank {}
- relinquish access to a memory
bank

Table 3.1 - Host-FPGA Communication Functions

The third mode for data transfer, the DMA, is handled through the a set of library

functions that allow direct access to the onboard memory blocks of the RC1000-PP card

(see Figure 3.8).

RC1000-PP board

Host Program
(C/C++)

PCI Bus
T

_!\
j/

FPGA
(Handel-C)

RAM

JEY
\—/

Figure 3.8 - Host-FPGA DMA of On-board Memary

An example of a typical system of software (host program in C/C++) and hardware

(FPGA synthesized by Handel-C) that make use of the features discussed above for data

transfer is shown in Figure 3.9.

37

Chapter 3

Detailed Requirements

HOST PROGRAM

Request a handle to a RC1000PP board

Resets FPGA and set clock

Configure the FPGA using a bit file
PP1000ConfigureFromFile!)

Do initialisation routine

Setup DMA channel
PP1000SetupDMAChannel {)

Request access to memory bank 1
PP1000RequestMemoryBank ()

Transfer data to on board memory
PP1000DoDMA ()

Release memory
PP1000ReleaseMemoryBank {}

Send signal to FPGA
PE1000WriteControl (}

Wait for result from FPGA
PPL000ReadStatus ()

—

Format and display result

—

FPGA PROGRAM

FPGA configured, Program executed
automatically

Do initialisation routine

Wait for signal from host
PP1000ReadControl ()

Request access to the memory bank 1
PP1000RequestMemoryBank (0x2}

Read from memory bank |
PP1000ReadBankl ()

Release memory
PP1000ReleaseMemoryBank (0x2)

Process data and compute result

Send result to host
PP1000WriteStatus ()

Figure 3.9 - An example of Host-FPGA Communication Process

3.9 Summary

In this chapter, the project requirements have been established. We have looked at

the details of CAN data formats and touched on some important features of Handel-C.

In next chapter, we will look at how the implementation of a simple CAN 2.0 A was

designed.

38

Chapter 4 Design

4 Design of the CAN Network

This chapter describes the design of a CAN network that consists of three hardware
nodes that will communicate with each other using CAN protocol. Messages will be
transmitted in form of CAN 2.0A standard dataframes. Overall operation of the system
will be controlled by software. Discussions will start with the approach, followed by the

conceptual level design ideas and exploration of the viability of each design.

4.1 Approach

Basically, the execution of this project will not follow any one particular Embedded
System Design Methodology — rather, ideas from a few methods will be considered.
Some important factors that are considered when outlining the strategy of the execution

are as follows:

¢ The aim of this project is to create a functional implementation with a

reasonable degree of performance

e The objective is to study the implementation rather than produce a marketable

product
e The architecture (FPGA) and tools (C, Handel-C) are pre-selected

¢ The use of reconfigurable device (FPGA) will makes it possible to optimise the

whole system through refinement

39

Chapter 4 Design

SPECIFICATION
&
ARCHITECTURE
SELECTION

h 4

MODELLING
(SW simulation)

h
PARTITIONING

VAN

SOFTWARE HARDWARE
SYNTHESIS SYNTHESIS

\ _/

OPTIMISATION &
REFINEMENT

Figure 4.1 - Development Plan (Based on HW/SW Co-design Model)

¢ The use of Handel-C to programme the hardware means that it is possible and
relatively easy to initially write the entire system in software, do partitioning and

re-write the hardware parts.

The basic method will be based on conventional embedded system design
methodology plus a few ideas taken from SystemC-based design flow (Figure 4.1). The

outline of the methodology to be employed is as follows:

» Specification — based on project specification
* Architecture Selection — pre-selected, i.e. FPGA

¢ Modelling — a model of the network will be conceptualise at a high level using
functional blocks, then refined to lower levels, converted to algorithms and
flowcharts and finally written in C. The model will be entirely simulated in
software on a PC. At this phase, the system will start as an Untimed Functional

implementation and progressively refined to Timed Functional.

40

Chapter 4

Design

¢ Partitioning — those functions that perform low-level operations and those that

have good potential for parallelism are prime candidates for hardware

implementation.

o Synthesis — hardware implementation will be written in Handel-C and refined

for parallelism. Software codes in C will be re-written to accommodate

communication with the hardware.

¢ Optimisation & refinement — the whole system will be optimised for

performance. Low level functions such as bus emulation will be refined.

4.2 High-level Design Ideas

Conceptually, the diagram in Figure 4.2 represents the network implementation.

It consists of three CAN controllers (nodes) connected to a CAN bus. The CAN bus,

CAN BUS

h

\ ! N
CONTROLLER 2

CONTROLLER ,’ CONTROLLER 3

~ 1

.

Figure 4.2 - The Proposed Network Logical Configuration

PHYSICAL LAYER
- Bit transmission

DATA LINK LAYER
- Media Access Control
- Logical Link Control
- Frame transmission

APPLICATION LAYER
- Message transmission
- Scheduling
- “Scenario”

which forms the physical layer of the network, is essentially two pieces of wire. In the

actual implementation, the bus will be simulated through hardware logics. However, the

possibility of directly implementing the physical bus using hardware will be explored.

41

Chapter 4 Design

The data-link layer of the network will be implemented in hardware while the
application layer will be in software so that there is a degree of conformance to the OSI
layers in CAN model. This means that low-level functions such as frame transmission
and frame-level error handling will be done here. All messages received will be raised

to the application layer.

The application layer handles data at message level. It is essentially the heart of
the network operatton. In the actual implementation, the software will be written to
handle the application layers for all three CAN controllers. It is likely to be run in an
executive cycle i.e. a big loop that executes a series of small operations. Each of the
controllers will take turn to send messages. A message sent by a controller is either

acted upon or ignored by the other two — depending on the identifier of the message.

Although early partitioning has been done and the way the system is split was
more or less determined, there was still a degree of flexibility in the configuration.
Some functions such as dataframe formatting, CRC computation and error handling can
be placed either in hardware or software. These options were explored during the

development process.

4.3 CAN Bus Emulation

As stated earlier, the CAN bus will be emulated — although physical
implementation will also be explored. Two viable options are message/token passing

and function emulation.

4.3.1 Message Passing

In message passing (Figure 4.3), a message is passed from one controller to the

next until it returns to its origin. The message originator sends the message to its

42

Chapter 4 Design

downstream neighbour, who in turn, passes the message to its downstream neighbour,
and so on until the message arrives back to the message originator. The data frame
could be modified slightly to accommodate a token field. The token can be used to store

the originating controller number so that it will know when the message has returned. A

CONTROLLER 1 CONTROLLER 2 CONTROLLER 3

Figure 4.3 CAN bus emulation by message/token passing

message is destroyed when it returns. More than one controller can send messages at the
same time. If the originator receives a different message than the one it sent out, it

simply becomes a receiver.

Obviously, this technique does not mimic a CAN system correctly at the
physical level. However it is good enough for the study of its functional behaviour.
Alternatively, the message passing could be done at bit level — an option that will

remain open for exploration.

4.3.2 Function Emulation

When the message passing bus emulation is verified to be working, the “bus”
can be refined further by emulating its function only. In this option, a separate logical

circuit device will be created to emulate the function of a CAN bus (Figure 4.4). Each

43

Chapter 4 Design

Le

¥ & ¥ A .
CONTROLLER 1 CONTROLLER 2 CONTROLLER 3

Fiqure 4.4 - CAN Bus Function Emulation

CAN controller will write bit data to the device and read from it as if it is a bus. The

“bus” will also perform bit-level arbitration.

The arbitration process was planned to be implemented as described in Section
3.2. Being able to emulate a CAN bus at its function level will give a better

understanding of the way the arbitration process is executed.

4.4 Arbitration Handling

When two or more CAN controllers start to write to the bus at the same time, an
arbitration process will occur. When the controllers write to the bus, only a dominant
value i.e. logic 0, get written to bus. A controller that has written a recessive value i.e.

logic 1 to the bus will back off and becomes a receiver.
In actual CAN, each controller has to synchronised itself with the network’s

clock. Thus when they write a bit value to the bus, they do it at the same time. Every

controller on the network operates a specified clock rate. However, the CAN designed

44

Chapter 4 Design

in this project has no notion of clock as in actual CAN. The controllers were not
designed to work in parallel with other. Each of the controllers will be given a time slice
to execute its tasks. The controllers will take turn to write a bit value to the bus or to

read from it.

In order to emulate the arbitration process, the read and wrte process 1s
separated into two phases that operate in cycles. In the first phase, each controller takes
turn to write one bit value to the bus until every controller has done so. In the second
phase, each controller takes turn to read one bit value from the bus. Then the two phases

are repeated again. This is shown in Figure 4.5.

When a controller writes a bit value to the bus, that value is “logical-ANDed”
with the bus value. For example, let say Controller I wants to write a ‘1’ to the bus; and
the bus has value of *0’; thus the effective value written to the bus by Controller 1 is a
‘0" because ‘1’ AND ‘0’ 1s ‘0", Similarly, writing a ‘0’ to a ‘1’ will also result in a ‘0’.
To make this sub-process work, the bus must be reset to logical | at the start of each
write phase. At the end of the phase, if every controlier has written a ‘1’ to the bus, the
bus value will remain as ‘1. If any of the controllers has written a ‘0 to the bus, the bus

value will change to a ‘0.

READ PHASE Reset WRITE PHASE
l CONTROLLER 1 WRITES
CONTROLLER 1 READS \
(CONTROLLER 2 WRITES
CONTROLLER 2 READS CONTROLLER 3 WRITES

\

CONTRCLLER 3 READS

Figure 4.5 - The Write & Read Cycle

45

Chapter 4 Design

After a write phase, the controllers will enter a read phase, where every
controller will take turn to read from the bus. Any controller that found that the value
read from the bus is different from the value that it has written previously will know that
it has lost the arbitration process. It will then has to back-off and becomes a receiver. If
none of the controllers lost the arbitration, the “write and read” cycle will be repeated

again for the next bit, until only one controller remain as the sole message sender.

Because of sequential nature of this scheme, it works well whether the program
is software simulation or actually executed on the hardware. However by utilising the
simple time-slicing technique the controller nodes appear to work in parallel. The
process described above can be further enhanced with parallelisation. This technique
will involve running Handel-C functions in parallel. Detailed discussion regarding this

enhancement is presented in Chapter 7.

4.5 Hardware/Software Partitioning

In a any embedded system, some of the system’s functions will be implemented in
hardware while the rest will be in software. Some functions work better if implemented
in hardware while some will work better in software. Conventionally, finding the
optimum partitioning will take into account development time, the overall performance
of the system, ease of use, code size and customisability. In this project however, the
system will be partitioned so that at will closely resemble the OSI layers in CAN as

described in Chapter 2 (Figure 2.4)

4.5.1 Partitioning strategy

The first implementation of the system will be done totally in software. Once a
system that meets the functional requirements is produced, some of the functions will be

moved to hardware. Those functions that perform low-level communication processing

46

Chapter 4 Design

will be the obvious choice because they contribute the most to performance bottlenecks.

In this particular project, these are the functions that are located at the physical layer.

High-level functions i.e. those located at the application layer, will be left in the
software. Other functions will either be moved to hardware or left in software
depending on whether they contribute significantly to the overall performance of the

system. Refinement and optimisation will be done until a satisfactory result is obtained.

4.5.2 Prototyping

The normal Handel-C program development was followed. The first step is to
write a basic version of the program in C to test out the correctness of the algorithms.
Several small programs can be written, each testing a certain algorithm or certain
portions of an algorithm. When it is satisfied that the algorithms are correct, the C
program is to be ported to Handel-C. Certain part of initial C program will be changed
to conform to Handel-C or to take advantage of certain features not available in

conventional C.

The Handel-C program can be sun in a simulation on the development PC
without the need for an FPGA hardware board. When satisfactory result is obtained
from the simulation, the necessary host program is written. The host program acts as a

front-end to the FPGA program.

4.5.3 Software Simulation

The initial implementation of the main algorithms was written in C to verify
their correctness. The main advantage of this approach is that C is more flexible
compared to Handel-C in term of its type handling. In Handel-C, data of different width
cannot simply be mixed in the same statement. Thus, writing in C allows the idea to be

explored without worrying about the underlying data width.

47

Chapter 4 Design

The efficiency of the C compiler also means that several versions of the codes,
each with different approach to the same idea, can be tested rapidly. And lastly, because
C/C++ has an extensive list of input output functions compared to Handel-C, debugging

by data comparison can be done easily.

C/C++
Prototyping: totally in software
{CC++)

Porting: converting from C/C++ to
Handel-C

Handel-C
Qimulation: input/output from/o files

C/IC++

Partitioning: into hardware &
software (host) parts

Handel-C
! Cest: verify functionality

Figure 4.6 Hardware/Software Partitioning Strategy

4.5.4 Porting C to Handel-C

Once the basic idea was successfully implemented in C, the program was ported

to C. When porting from C to Handel-C the following main tasks were done:

¢ specifying data widths
* breaking certain compound expression into simple statements

e modifying codes to take advantage of Handel-C features
In the first task, most of the data of type int were converted to unsigned int 8.
Several variables whose values can exceed 255 were converted from int to unsigned int

16. Several data were converted to their exact width as in the CAN specification. As an

48

Chapter 4 Design

example, four important variables that correspond to four fields in the CAN dataframe

are defined as follows:

#define nCTRL 3

unsigned int 12 arbit[nCTRL];: // Arbitration field
unsigned int 6 control[nCTRL]; // Control field
unsigned int 8 data[nCTRL]I[8]; // Data field
unsigned int 16 crcinCTRL]; // CRC field

Being able to set the data widths to exactly the same widths as used in an actual
CAN dataframe has one main advantage. The data can be manipulated without worrying
about extra unused bits. In conventional C, the width of a data cannot be arbitrarily set
non-standard values of 8 (for char), 16 (for int), 32 (for float) or sometimes 64 bits.

There are extensions in Microsoft C++ to set int to 8 bits but this is not standard.

4.5.5 Hardware Simulation

The DK1 development environment includes several features to make system
development easier. One of the features is the ability to run a simulation of a Handel-C
program on a PC without the need for an FPGA board. To run a program in a

simulation, 1ts build configuration 1 set to debug [28].

The main limitation of the simulation mode is the lack of proper input and
output constructs. Input and output are handled through channels. An input channel can
be defined using the chanin keyword and output by using chanout. An input file must be
specified for every chanin definition while for chanout, a file 1s optional. During
simulation, the program will read from the input files specified and send its output to the
output files. If no output files were specified, the output will be displayed in the debug

window of the DK development environment.

49

Chapter 4 Design

Each file can only be assigned to one input/output channel and each channel can
only read one data per line. Thus, an input file normally consists of a column of

numbers each on a line of its own. The same limitation applies to the output files.

To overcome this limitation, sample data input was hard-coded into the program
and the outputs were written into several output files. These files were then inserted into
a pre-formulated spreadsheet so that more effective debugging could be made. Using
the spreadsheet, values of various counters, status and other data could be verified
against each other. When incorrect values were found on the spreadsheet, corrections
were made in the program codes and the process was repeated. These were done until a

satisfactory result was obtained. A copy of the output spreadsheet is in the appendix.

4.6 Summary

The basic idea discussed was to create a network of three CAN controller nodes in
an FPGA. Basic communication protocol was to be built inside each node while the
whole operation of the system is to be controlled by software. Two inter-node
communication techniques were discussed (message passing and bus function
emulation) and function emulation was found to be a more accurate representation of an

actual CAN bus. The implementation of this design is described in next chapter.

50

Chapter 5 implementation

5 Implementation

This chapter presents the end product and describes the various components of the
systemn and how they interact with each other. A walkthrough of a typical operation of
the system is presented. Critical functions of the programs and how they work are also

discussed.

5.1 The System

The system consists of a hardware subsystem and a software subsystem. Both are
essentially made up of one program each. The program for the software subsystem is
referred to as the host program and the hardware program is referred as the FPGA
program. The host program runs on a PC and is written in C++. It was developed as a

command prompt mode program. The FPGA program is written in Handel-C.

Basic Setup

0 1|2
_— A ! A .- i - x,,,
I U, 2
“CAN bus’ ;

Figure 5.1 - Basic Setup of the Host and FPGA programs

51

Chapter 5 Implementation

The host program plays the role of the application layer in the OSI Reference
Model while the hardware acts as the Data Link and Physical layers of CAN. The
application layer in the host program communicates with three virtual CAN controller
nodes (data link layer) in the FPGA as shown in Figure 5.1. The nodes are connected to
a virtual CAN bus (physical layer). The CAN controller nodes are executed as virtually
independent units by the FPGA programs. The FPGA program acts as a sort of

intermediary between the host and the nodes.

5.1.1 Walkthrough

When the system is started, it initialises the variables and hardware and presents
the user with a simple menu as shown in Figure 5.2. As an example, an operation of
sending a message from the first node will be discussed. This operation is done by

pressing selecting option 1 from the menu.

When key 1 is pressed, the host program will send a message to the FPGA. The
host message contains the number of the recipient node (in this case, node 0), a message
identifier, length of the data and the data itself. This information will be displayed on
the screen (Figure 5.3). The receiving node will process the host message to convert it
into a suitable format i.e. a dataframe (Figure 3.1) to be written to the CAN bus. It this

point, the node will change its mode into a sender.

Other nodes in the network, upon detecting a message sent by node 0, will change
their mode into receiver and start reading the message into their own dataframe. When
the message transmission is completed, each receiver will send a message to the host
program, The messages received will be displayed on the screen (Figure 5.4). It can be
verified in a successful transmission that the host messages sent and received would be

identical.

52

Chapter 5 Implementation

B T Y N Y Y

MSc Computer System Design

Dissertation Project
[Reconf igurable Computing: Metwork Intewrface
| {Controller Area Network — CAN>

|G BB L L Y R AR E B et L Y R B T N O T N N L e e L S Bt L BV L T
|

| 8imCAN V1.8
f A set of programs to simulate the function of a
| Controller Area Network <(CAN>

ABS MOHD SAMAN UMIST 2062

T A A T N U P ST S U N T I RS S IS

Error handler installed.
Card initialised.

Clock set to 1 MH=z.
Pﬁogramming FPGA. ..
Initialisation OK
Initialising sample data...

B8 EF BN BN EE BN ®E
% &% BN WR BN N AN

Test #1.. -> MsgType:B:41
iSendHost OK.

Test #1 OK.

Test #2..-> MsgType:@:41
SendHost OK.

Test #2 OK.

GOV LN AV AR BN BN BN VT BN R RN DN E RV N R B Y Y e Y N I T T N A T U e B T A T e Lt T

OPTIONS MENU

Send DATA via Node B
Send DATA via Node 1
Send DATA via Node 2

8 = Status T = Trace <{debug? Q = Quit

G Y T Y T e L L T Y Lt

Figure 5.2 -Host Program’s Menu

\1—> MsgType:1:1 Items:12 8 1808d 5¢ 78F 731 82R 838 84T 68 8 @ @

‘SendHust OK.

Figure 5.3 - Host sends a message to Node 0

ﬁ—OK.
‘Hessage received: 1 » 168 » 5 # F1 RS T

<-OK.

Message received: 2 » 188 /5 FI RS T

Figure 5.4 - Host receives messages from Node 1 & 2

Chapter 5 Implementation

At any time, the user can press any of the option keys in order to execute intended
operation. Table 5.1 lists all the available option keys and their operations. Figure 5.5
shows an example how status reports were received when the S-key was pressed several
times. The trace mode can be toggled on and off by pressing the T-key. This was used
extensively during debugging. The program can be ended by pressing the Q-key. When
it ends, the program sends an appropriate message to the FPGA and closes the RC1000-

PP board.

Key Pressed Action

Sends a message to Node 0. Node 0 will write the data to the CAN bus

Sends a message to Node 1. Node 1 will write the data to the CAN bus

Sends a message to Node 2. Node 2 will write the data to the CAN bus

Requests status report from FPGA

Toggles trace(debug) mode

Ol|n|w(rn|—=

Ends the programs

Table 5.1 - Host Program Responses to Key Presses

!—) MsgType:=5:5
SendHost OK.

Btatus received from CAN nodes...

| Node Mode Bith Urite

| #0 SEND 8 (5 [88.81
| # RECU 8 (7 [0,.881
| #2 RECU 8 7 [88.881

1—) MsgType:5:5
SendHost OK.

1Status received from CAN nodes...
Mode Bith Hrite

SEND 9 a [88.81
RECU 9 a [B.881

|
|
| RECU 9) [88.881
|
|

iSendHnst OK.
iStatus received CAN nodes...

|

| Node Bit#h Urite
! #o 10 1

= i1 10 7}

! 12 10 2

Figure 5.5 - Getting Status Reports from FPGA

Chapter 5 Implementation

5.2 The Host Program

During execution, the program on the PC acts as a host to the FPGA program.
Every input into and output from the FPGA program goes through the host. When
started, the host program loads the FPGA program from its bit file into the hardware

using the following function call:

PP100CConfigureFromFile (Handle, “canfpga.bit”};

In the above statement, PP1000ConfigurerromFile() is one of library functions
of the RC1000-PP board. “canfpga.bit” is the name of the bit file that was built from
the Handel-C program written for the FPGA. Handle is the handle obtained when

opening an RC1000-PP card by using such command as:
PP10000penFirstCard (&Handle};

The FPGA program will then start automatically. As a control measure, the FPGA
program was written so that at the beginning the execution it will wait for a signal from

the host before executing its main routine.

The host program controls the overall operation of the CAN controller nodes. When
it wants to send some data through node 0, it will send a message to the FPGA program.
The message contains a node number, a message 1D and the data itself. When the FPGA
program receives a message from the host, it will store it and flag the intended node.
The host then will wait for the FPGA program to return another message indicating that

the data has been successfully sent and received.

To a user, the host program offers a menu of commands as listed in Table 5.1. It
continually waits for the user to press a command key. When a command key is
pressed, it will act accordingly. On most commands, the host program will send a
message to the FPGA (Figure 5.6). The type of messages that can be sent to the FPGA is

listed in Table 5.2,

55

Chapter 5 _ Implementation

Host: Main Function

START

g

Get command

Send Data? Y —» Send Data

"

Request
Status?

Y—» Send Request

Trace On/Cff? Y—» Toggle Trace

FPGA has
message”?

Receive msg from
FPGA

END

Figure 5.6 - Host's Main Flowchart

At the same time, it also waits for any messages from the FPGA program. There are
only two types of messages sent by the FPGA: DATA and TEST. When a message of

type DATA is received, its contents will be displayed in the following format:

c / id / n / data 0, data 1, .. , data n-1

56

Chapter 5 Impiementation

In this format, ¢ is the controller node number, id is an identifier for the data, n
is length of the data in number of bytes; and data 0 to data n-1 are the actual data.
Each component of the message is one byte in size. As discussed earlier in section 3.1.2,
the identifier in a dataframe is 11 bits in size. Thus, during conversion from a host

message to a dataframe (and vice versa), the first three MSBs of the identifier are

ignored.
TYPE DESCRIPTION
DATA Contains a message to be sent into the CAN bus
STATUSREQ Request status report from the FPGA
TRACEON Switch on "“trace” mode
TRACEQOFF Switch off “trace” mode
TEST Used to test host-FPGA communication and for debugging
ENDPRG Signals end of program; close the hardware and end program

Table 5.2 - Types of Messages from Host to FPGA

5.2.1 Functions

The followings is a list of all the functions in the host program and their

descriptions:

e Handler () — handles errors related to access to the RCI1000PP board.

® initialise() — initialises the RC1000PP board i.e. installs the error handler,

open the first RC1000PP card available, sets clock rate and loads bit file.

¢ fpga_has_message() — checks whether the FPGA program has a message to

send.

* setup_message() — prepares the message to be sent to the FPGA in a suitable
format.

e display_message() — displays the contents of message received from the
FPGA.

®* receive_fpga() —receives message from the FPGA.

57

Chapter 5

Implementation

® send_fpga() — sends message to the FPGA.

* main{) — main function of the program; contains one main loop that checks for

key press from the user and acts accordingly. It responses to certain inputs as

listed in Table 5.1

HOST FPGA
Main function
Start
Load FPGA program {.bit)
Wait for FPGA to get ready Start
Tell Host: “Ready”

Loop

Read user input Loop

If “send message” Do write

Send message to FPGA Controllers 0, 1, 2,...
If “request status” Do read

Receive status from FPGA
If FPGA has message
Receive message from FPGA
Display message
Repeat

Controllers 0, 1, 2,...
Write status
Repeat

Host sends message to FPGA (node)

If have message to send
Tell FPGA: “Have Message”
Send message to FPGA

Query host for message
If host has message

Get message from host

Node creates data frame

Node checks bus whether it is free
If bus is free

Node writes dataframe to CAN bus

Host receives message from FPGA

Query FPGA for message

If “has message”
Receive data from FPGA
Tell FPGA: “OK”
Display information

Node scans CAN bus

if other node is writing
Node reads from bus into dataframe
Node writes ACK to bus

Tell host: “Have message”

Wait for “OK”

Table 5.3 - Host — FPGA interaction

58

Chapter 5 Implementation

When the programs are in trace mode, the execution of FPGA program 1s
moderated by the host program. At each read/write cycle, the FPGA will wait for a
message from the host. If the user chooses to request a status at every read/write cycle,
detatled changes in the CAN nodes can be verified. This is useful for tracing and

extensively used during debugging.

A summary of major tasks executed by the host program is listed in Table 5.3 in
form of algorithms for their relevant functions. It also lists similar information for the
FPGA program. Essentially, the table shows how the two programs interact with each

other.

5.3 The FPGA Program

The FPGA program is essentially made up of two parts: host communications and
bus communications. The host communications part consists of several functions that
handle the necessary communication with the host program. This involved a lot of
function calls to the RC1000-PP library. The bus communication part consists of several
other functions that handle writing to and reading from the virtual CAN bus. This
involved a lot of bit mantpulations and computation of data of various sizes. The
functions for bus communications are discussed in the following sub-section while

those for host communications will be described in Section 5.4.

5.3.1 Writing to the Bus

Two of the most cnitical tasks of a CAN controller node are writing to the bus
and reading from it. In this implementation, these tasks arc handle by two functions
called controller write() and controller read(}. These two functions are
executed repeatedly in a cycle of two phases: write phase and read phase; very similar

to what has been described in Section 4.4 (see also Figure 4.5). In each phase only one

59

Chapter 5 Implementation

bit of data is written to or read by any particular node. Executed repeatedly at a very
high speed, this gives an appearance that the nodes were running in parallel. This
technique is similar to time-slicing but without a fixed time allocated for each process.
A flowchart (some minor tasks have been omitted for clarity) for the main function of

the FPGA is shown in Figure 5.7.

The controller_write () function checks the mode of the CAN node and take
certain actions as summarized in Table 5.4. The main task of the controller_write{)
function is to write each bit in a frame to the bus. It will also handle other tasks
depending on the mode it is in. If it is in a receive mode, it will check if it is pointing at
the ACK slot. If so, it will verify the data using CRC calculation. If no error is detected
from the calculation, the function will write an ACK to acknowledge that correct data

has been received. If the CAN node is in idle or wait mode, 1t will do nothing.

MODE Controller_write()
IDLE Do nothing
RECEIVE If ACK slot then write ACK
SEND Write frame to bus
WAIT Do nothing

Table 5.4 - Tasks of controller_write() function

If a node is in send mode, it will call the write_frame() function which will write
the contents of its dataframe to the bus one bit at a time. Each time the function is
called, it will write one bit and increase its internal counter. While writing, it also does
bit-stuffing by calculating the number of consecutive identical bits. If the number of

identical consecutive bits is more than five, a stuff bit will be inserted.

60

Chapter 5

Implementation

Receive message from host

Y

End Program?

FPGA: Main Function

START

Host has
message?

N
4

Node #0 Writes

'

Node #1 Writes

|
h 4

Node #2 Writes

y

Node #0 Reads

omplete
Dataframe
Read?

Send message to host

N
h 4

Node #1 Reads

omplete
Dataframe
Read?

Y —p Send message to host

N

v

Node #2 Reads

L

cmplete
Dataframe
Read?

Y —b Send message to host

Figure 5.7 - FPGA’s Main Flowchart

61

Chapter 5 Implementation

A ‘sending’ controller node will also read back the value that it has written to
the bus. If it is not the same as the value that has written to the bus, that it knows that
either it has lost an arbitration (if the bit was from an arbitration field) or there was an
error while writing (if the bit was outside the arbitration ficld). If it has lost in an
arbitration process, the node will become change its mode to wait. In this mode, it
becomes a receiver while waiting the bus to be free and available for a re-transmission

(Table 5.5).

A ‘waiting’ controller node will know that the bus is available when it detected
idle time of more than the idle threshold of 10 bits. When it detected that there were 10
consecutive recessive bits (logic 1) on the bus, it will change its mode to send and start
transmitting its dataframe again. It will go through the arbitration process once again.

These steps are repeated until its dataframe has been successfully transmitted.

5.3.2 Reading from the Bus

List of tasks performed by the controller read() function is listed in Table
5.5. Its main task is to read the bit of the dataframe from the bus. However, if it is in
idle mode, it will check whether other nodes are transmitting any data onto the bus. It
does so by scanning the bus for a Start of Header (SOF). An SOF is identified by a

pattern of 10 ones followed by a zero (11111111110).
A node that was in idle mode, upon detecting an SOF will change its mode to

receiver. In this mode, the node reads from the bus one bit at a time, removes any

stuffed bits (de-stuffing) and add the remaining bits into a dataframe.

62

Chapter 5 Implementation

FPGA: write_frame()

START
3
1 Stuffed bit? Y —p Write stuff bit to bus
N
_— Reset stuffing
Write bit to bus counter

dentica

2 ACK slot? N consecutive Y- Stuffing counter++
bits?
Counter = Set fiag
Threshold? ¥ (stuffed bit
v ;

;- Z

¥

Bit counter++

Y —» Get data length

!

Calculate frame
tength

|

End of
Frame?

Y

L 4

Reset Counters

:

Set mode=IiDLE

Figure 5.8 - Flowchart for write_frame() function

63

Chapter 5 Implementation

While reading from the bus, the node also checks if what it has written (o is the
same as what it is reading. It also calculates the length of the frame and writes into the
ACK slot (Figure 3.1) near the end of the frame. Figure 5.9 shows a flowchart for the

read_frame{) function which handled the operation described above.

MODE controller_read()

IDLE Scan for SOF (Start of Header)
if SOF found then Read Frame from bus
Else query for data from Host

RECEIVE Read Frame from bus

SEND Read Frame from bus
If writing ARBITRATION field, compare written/read bits
If written bit <> read bit

Change mode to WAIT

WAIT Read Frame from bus
Detect whether bus is free
If bus is free

Change mode to WRITE

Table 5.5 - Tasks of the controller_read{) function

5.4 Host — FPGA communications

Communications between the host program running on the PC and the FPGA
program running on the Celoxica RC1000-PP board were be done by using library
functions supplied with the board. The host can send data to the board and vice versa in

three modes: | bit, 1 byte and direct memory access (DMA).

The bit-size data transfer is handled by the following library functions:

Functions used in the host program:
* PP1000SetGPO() — set the GPO (general purpose output) pin

®* PP1000ReadGPI () —read the status of the GPI (general purpose input) pin

o4

Chapter 5 Implementation

FPGA: read_frame()

Start

Read next bit

Reset stuffing

Y counter

Store bit

dentica

consecutive ¥ Stuffing counter++

K

bits?
Counter = Set flag
Threshold? Y (stuffed bit
]
i
N :
¥

Bit counter++

Y—»| Getdata length

Calculate frame
length

I

End of
Frame?

Reset Counters

Set mode=IDLE

End

Figure 5.9 - Flowchart for read_frame() Function

65

Chapter 5 Implementation

Functions used in the FPGA Handel-C program:
¢ PP1000ReadGPO() —read the status of the GPO pin

® Ppp1000SetGPI() — set the GPI pin

These functions were used by the host program to send an alert to the FPGA
program or vice versa. For example, the FPGA can be programmed to check the status
of the GPO pin at regular intervals using the PP100C0ReadGPO () function. When the host
wants to get the attention of the FPGA it sets the GPO pin to high using the
PP1000SetGPO{) function. Upon detecting this, appropriate actions are taken by the

FPGA program.

The byte-size data transfer is handled by another set of library functions:

Functions for the host program:
* DP1000OWriteControl() —send one byte of data to the FPGA

* PP1000ReadStatus(} —receive one byte of data from the FPGA

Functions for the FPGA Handel-C program:
® DPP1000ReadControl () —receive one byte of data from host

® PP100OWriteStatus() — send one byte of data to host

When the host sends a data to the FPGA by calling a pP1000WriteControl ()
function, the FPGA receives it through a corresponding PP1000ReadControl()
function call. Multiple bytes can be sent and received by having an appropriate number
of function calls in the host program and the same number of corresponding function
calls in the FPGA program. This method is used for sending messages from the host to

the FPGA and vice versa.
One common property of this set of functions is that if for example the FPGA 1s

expecting a byte of data from the host through the pPP1000ReadControl () function, it

will not continue until the data is received. This particular property of the functions is

66

Chapter 5 Implementation

useful in adding a frace operation to the system where the host needs to send “stop and
start” signals to the FPGA. The other pair of functions { PPL000ReadStatus () and

PP1000WriteStatus(}) also behave in a similar way and were utilised in similar

manners.

Message from HOST to FPGA

HOST FPGA
1
Set Flag ‘
(SetGPO) (Read GPQ) |
f |

Y
Send Message Length Get Message Length l
(WriteControl) (ReadControl) ;
_
Y

Send Rest of Msg Get Rest of Msg !
{WriteContral) (ReadControl) !
]

Figure 5.10 - Sending Message from Host to FPGA

The third mode for data transfer, the DMA, is handled through the following set of

library functions which allow direct access to the onboard memory blocks of the

RC1000-PP card []:

Functions for the host program:
e PP1000SetupDMAChannel () — set up a DMA channel
¢ PP1000RequestMemoryBank () — request access to a memory bank

e PP100ODDMA{) —execute the DMA data transfer

67

Chapter 5 Implementation

* PP1000ReleaseMemoryBank () — relinquish access to a memory bank

® PP1000SetupDMAChannel () — close the DMA channel used

Functions for the FPGA Handel-C program:
®¢ PP1000RequestMemoryBank () — request for access to a memory bank
¢ PPl000WriteBank() — wrile o @ memory bank
® PP1000ReadBank () —read from a memory bank

* PPl000ReleaseMemoryBank () — relinquish access to a memory bank

5.4.1 Host-FPGA Message Transmission

The set of commands for bit-sized and byte-sized data transmission described above
were utilised for sending messages from host to FPGA. All message types described in
Table 5.2 were sent this way. When the host wants to send a message to the FPGA, it
will alert the FPGA by calling a pP1000setGro(} function and pushing the first byte of
the message by calling a PP1000WriteControl () function. The FPGA, upon detecting
this signal, read the first byte by calling a pr1000ReadControl () function. The first
byte contains the length of the rest of the message in number of bytes. The host will
subsequently push the rest of the data to the FPGA byte by byte using the same
PP1000WriteControl () function as many times as needed. The FPGA read the bytes
by calling the PP1000ReadControl () function the same number of time. A flowchart

for this process is shown in Figure 5.10.

The process of sending a message from the FPGA to the host was handled in the
same manner but by using the PPL000SetGPI(), PP1000ReadGPI(},

PP1000WriteStatus (} and PP100GReadStatus () functions.

The DMA functions were used for status reporting. The FPGA will write critical
values such as bit counts, modes of controller nodes etc to a memory bank at every
write/read cycle. Because of the way the function set work, the host can read these

values at any time without interrupting the controller nodes.

68

Chapter 5 Implementation

5.4.2 Data Buffers for Host-FPGA communication

A message is transmitted from the host to FPGA and vice versa in a data buffer.
The buffer is twelve words long and its format is shown in Figure 5.11. The same buffer
is also used for transmitting test messages between the two sub-systems. Variabies to
accommodate the buffer were defined as an array of char in the host’s C/C++ program;
and as an array of unsigned int 8 in the FPGA’s Handel-C program. During debugging,

the size of the buffer has been increased to accommodate the test data transmitted.

No: 0 1 2 3 4 5 6 7 8 9 10 11
Nodes Msg | Data | Data | Data | Data ; Data | Data | Data | Data | Data | Data
ode
ID | length 0 1 2 3 4 5 6 7 8

Figure 5.11 - Message Buffer Format

When the host wants to send a message to the FPGA, it will set up the buffer by
calling a function named setup_message() (see Listing L1 in the appendix). This
function writes vital information into the buffer array so that it is ready for transmission.
When the buffer is set up, it is sent to the FPGA through a function named
send_fpga() (see Listing L2 in the appendix). This function sends the contents of the
buffer one byte a time to the FPGA. Sending a message from FPGA to host is also

handled in a similar manner.

At the end of each write/read cycle, the FPGA stores vital information into a
status buffer. The format of the buffer is shown in Figure 5.12. This information is read

by the host program if so requested by the user and displayed on the screen.

No: 0 1 2 3 4 5 8 7 8 g 10 11
Bit (Written| Read Bit |Written| Read Bit [Written| Read
Mode | Gount | Bt | Bit |M3% | count | Bit | Bt |MO%®|count| Bit | Bit
0 Q Q 1 1 1 2 2 2
[I N S
v v ~
Node O Node 1 Node 2

Figure 5.12 - Type 2 buffer contents (CAN nodes status)

69

Chapter 5 Implementation

5.5 CRC Calculation

To verify that any frame sent out by a transmitter is received correctly by a
receiver, cyclic redundancy checking (CRC) is employed. In order to carry out the CRC
calculation, the divisor is defined as the polynomial. The coefficient of the polynomial
is given by the de-stuffed bit stream consisting of Start of Frame, Arbitration Field,
Control Field and Data Field (if present). The bit stream is padded with 15 zeroes. This

bitstream is divided with the following polynomial:

X XM e X0 e X X X e X3+ 1

Bit 15 of the polynomial can be ignored in the actual calculation. Thus the
polynomial value used is 4599hex. The remainder of this polynomial division is the
CRC Sequence transmitted over the bus. In order to implement this function, a 15-bit
shift register is used. The following algorithms (Figure 5.13) [8] was referred to when
coding the CRC calculation for the CAN controllers. Written in Handel-C, the

equivalent codes are as shown in Listing L3 in the appendix.

Portion of the dataframe that was included for CRC calculation are the
arbitration, control and data fields. The result of the calculation 18 appended as a CRC

field located after the data field.

CRC_RG =0;
REPEAT
CRCNEXT = NXTBIT EXOR CRC_RG(14);
CRC_RG(14:1) = CRC_RG(13:0);
CRC_RG(0) = 0;
IF CRCNXT THEN
CRC_RG(14:0) = CRC_RG(14:0) EXOR (4599hex);
ENDIF
UNTIL(CRC SEQUENCE starts o there is an ERROR condition)

Figure 5.13 - CRC Calculation Aigerithm

70

Chapter 5 Implementation

Several other established methods of CRC calculation using lookup table have
also been considered but found to be unsuitable because they are based on 8, 16, 32 or

64 bit polynomial while CAN uses a 15 bit polynomial in its CRC calculation.

5.6 Summary

The implementation consisted of two programs: The Host (written in C/C++) and
The FPGA (written in Handel-C). Communications between the two programs were
handled by several library functions supplied with the RC1000-PP card. The two OSI
layers in CAN were totally implemented in the FPGA (hardware), closely resembling an
actual implementation of CAN. Testing and verification of the system is described in

next chapter.

71

Chapter 6 Evaluation/Testing

6 Evaluation/Testing

This chapter looks at the final artefact in light of the requirements identified in
Chapter 3. Three stages of evaluation are considered: internal, external and meta-level.
The internal stage will examine to what extent does the system produce the expected
results, The external stage will look at how much does it satisfy the requirements
discussed in Chapter 3. The meta-level stage will reflect on the process/method

involved in performing the investigation.

6.1 Internal Evaluation

The behaviour of the system is like a set of real CAN controllers communicating
with each other. Messages sent through one controller node are successfully received by
another. The controller operates at a very high speed, a message will only take a fraction

of a second to travel from one node to another.

Virtually, there are three CAN controller nodes in the hardware. Although
physically, this is not how real CAN is set up, nevertheless, the nodes mimic the exact
behaviour of real CAN controllers. Ideally, each node should be in its own hardware

and connected to each other by a pair of wires.

Overall, the system performs as expected and produces expected results. When a
message is sent from one controller, the other controllers will receive it correctly. When

more than one controller try to send messages at the same time, they will go into an

Chapter & Evaluation/Testing

arbitration process. The arbitration process has been verified to work correctly in the

simulation mode and can be traced in the actual program.

Much of the data produced in the FPGA program is used internally by the
program itself. It has been found that the most effective was of verifying that the values
produced are correct are by tracing the values in the simulation mode. In this mode, data
can be written to files. Due to the fact that the simulator allows only one series of values
to be written to one files, several files were created. These files were then merged nto a

spreadsheet.

In the spreadsheet, critical values are listed side by side. They compared to each
other and how each of the series changes values are also verified whether it is correct or

not. A copy of the spreadsheet 1s available in the appendix.

6.2 External Evaluation

The system was built to consist of two CAN layers and one OSI layer. The CAN
layers are: Dara Link layer and Physical layer. The OSI layer is Application layer. In
this implementation the function of the physical layer was simulated but the functions of

the other two layers were done exactly as in actual CAN system.

‘The Handel-C program was written without taking advantage of paralielism. The
three nodes operate in a sequential manner with time-slicing to give the impression of
parallelism. It is possible to write the program so that true parallelism can be achieved.

This is discussed in the next chapter.

The controller nodes also operate without a reference clock. However, since
each of the nodes takes turn to write and read one bit value at each execution cycle, they
appear to operate by referencing to a “virtual clock”. However this virtual clock has
variable period. Its period increases and decreases cycle to cycle depending upon the

calculation and operation it the program has to execute.

73

Chapter 6 Evaluation/Testing

Overall, the set of programs gave a satisfactory result in emulating the function
of a controller area network. Vital features of CAN listed below were successfully

incorporated:

e Bit-sized data transmission

e Bit stuffing while sending

e Bit de-stuffing while receiving

e Non-destructive bit-level arbitration

e (CRC computation

The Handel-C program for the FPGA has been written in modular manner and in
such way that it can be easily adapted for parallelism. With little modification it can be
turned to contain only a single node. It is possible to run several copies of the program

on separate FPGA chips and hard-wire them to each other forming a physical network.

6.3 Meta-level Evaluation

When designing and developing this project, the conventional building cycle for
typical Handel-C project was followed. First, a software simulation of the network was
written in C/C++. This program simulated the functions of three CAN controller nodes
communicating with each other through a bit-sized bus. Protocol used for
communication was CAN version 2.0A. Using this program, the correctness of
algorithms were checked, particularly the creation of dataframe, bit-stuffing, de-stuffing

and non-destructive arbitration process.

Next, the software version was ported to Handel-C. Two major issues faced when
porting to Handel-C were the fact that Handel-C 1s very strongly-typed and that it was a
hardware synthesis language. Every values used in a Handel-C program must be of

fixed widths. If the width of a value was not specified, the compiler will try to compute

74

Chapter 6 Evaluation/Testing

it during the build process. However, most of the time, it failed to do so, thus the codes

must be changed to be more specific.

Being a hardware synthesis language, there are some constructs in Handel-C that
were specifically designed for hardware orientated operations such as bit manipulations,
RAM data type etc. Parts of the original C/C++ codes were changed to take advantage
of these constructs, particularly those for bit manipulations. For example, instead of

multiplying a value by eight (x = 8), left-shifts were used instead (x = x << 3).

It was also discovered that when the value of a variable of a certain width is
increased (x++), it will never overflow. It the value exceeded the maximum allowed
for that particular width, it will change to zero instead. For example, the following for-

loop will never end because the value for variable x will never reach 8:

void neverending(void)}
{

unsigned int 3 x;
unsigned int 8 v;

for(x=0; x<8; x++}
{
y = 08(3*x);
K++;

The Handel-C program can be run in a simulation mode or as loaded into and run
on an FPGA. The simulation mode has only simple input output channels to allow for
debugging. This has led to some difficulty in verifying vital values generated inside the
program. This was subsequently resolved by writing the values to several files and

reading them again into a spreadsheet as mentioned earlier.
The DK package also came with a few plugins that simulate the function of

input/output hardware (seven-segment display and wave simulator) that can be

connected to an FPGA. Additional plugins can also be developed for other hardware

75

Chapter 6 Evaluation/Testing

simulations. However, due to time constraint, this avenue was not pursued. It could

have made the simulation more accurate and realistic.

The final stage of the development was writing a separate host program that
communicates with the Handel-C program through library functions. Once again the
codes concerning data input/output need to be altered. Debugging the communication
process was time-consuming because there were two programs to edit and building the

target bit file was a time-consuming two-step process.

An alterative to the above issue would be writing a general purpose host that
handles the host-FPGA communication and writing the FPGA program directly in
Handel-C. If the host-FPGA communication can executed efficiently, more effort can
be put into getting the Handel-C codes right. However, this alternative also could not be

pursued due limited resources.

Overall, the methodology employed was suitable for design and development of

the system, However, alternatives mentioned above are worth exploring.

6.4 Summary

The system was found to be an accurate representation of a basic CAN operating
using standard dataframes. The methodology and techniques employed were found to be
suitable for the project. However it is also noted that variations to the techniques

employed are worth considering.

76

Chapter 7 Conclusion & Further Work

7 Conclusion & Further Work

7.1 Conclusion

Functionally, the system developed as the result of this project satisfies the
objectives and requirements identified in preceding chapters. It has the fundamental
properties of a controller area network and operates as such. The system has been tested
and found to comply with the basic specification of CAN. Some of the more critical

features of CAN that have been satisfied were:

¢ Compliance with the OSI layers in CAN: Physical Layer and Datalink Layer;
and additionally an application layer as an interface between the controller nodes
and user.

e Data transmission between three CAN controller nodes through a virtual CAN
bus through CAN Protocol Version 2.0A.

e Creation of Standard CAN Version 2.0A dataframe including CRC computation.

e Transmissions of dataframes into the CAN bus with bit stuffing computation.

o Retrievals of data from the bus and re-creation of dataframes from the data
retrieved including CRC.

¢ Communication between datalink layer (FPGA) and application layer (host).

o Simple user interface and status reports.

The system has been build as a basis for further exploration of a reconfigurable
system. It has been designed with future enhancement in mind. Its codes can be easily

altered to add more features. These features can be in form of CAN functionalities or

77

Chapter 7 Conclusion & Further Work

exploration in the aspect of system development studies as discussed in the following

section.

7.2 Further Work

Several enhancements can be made to the existing system as discussed in the

following sections.

7.21 Parallelising

In this implementation, the CAN nodes are not running parallel to each other.
They are executed one after another in a time-slicing fashion. Handel-C allows several
copies of the same function to be executed in parallel to each other. This is done by
defining the function as an array of functions. Without this construct, the only safe way
to run a function in parallel with itself would be to explicitly declare two functions with

different names,

The syntax for the definition of a function array of an arbitrary size is as follows:

returnType Name[Size] (parameterlList);

For example, to redefine the write_controller() function as an array of function,

we can re-write it to be as follows:

void controller_write([3]({ void }

{

In the above example, only three nodes were defined. The number of nodes can
be increased simply by increasing the size of the array. Other functions should also be
parallelised so there will not be a conflict when two functions from the same array try to

access an identical function at the same time. However, care must still be taken because

78

Chapter 7 Conclusion & Further Work

sometimes the function arrays will try to access the same variable at the same time. The

best way of solving this potential conflict is by utilizing the semaphore construct of
Handel-C.

Semaphores are declared with the sema keyword. For example, a semaphore for

protecting the CAN bus can be defined as:

sema busSema;

Semaphores that have been defined can be controlled by two functions:

® trysema({semaphore) — tests to see if the semaphore is owned. IF not, it
returns one and take ownership of the semaphore. If it is, 1t returns a zero.
¢ releasesema(semaphore) — releases a semaphore that was previously taken

by trysema (semaphore) .

For example a protected write_bus() function array can be defined as follows:

void write_bus[3](sema *busSema, unsigned int 1 bit)
{
while{ trysema(*busSema)==0) delay; // wait till bus is free

bus_value = bus_value && bit;

7.2.2 Physical Bus

The three CAN controller nodes in the system were interconnected through a bus
that complied to the properties of a CAN bus in term of its functionality only. If each of
the nodes is placed on a separate FPGA chips, they can be connected to each other
physically. The most popular form of CAN bus is a piece of twisted pair cable which

can be easily obtained because 1t 1s widely used in Ethernet.

79

Chapter 7 Conclusion & Further Work

With minor modifications, copies of the Handel-C program can be run on its
own chip. Each chip can be placed on a customized printed circuit board each with line
buffer/driver circuitry to drive the bus at correct voltage and current level. The functions
that write to the bus and read from it have to be re-written because they would be

writing to and reading from a physical bus.

By adding a clock function in each node, the controllers should be able to
communicate with each other correctly. Of course, error handling routines need to be
enhanced so that the system can handle problems associated with serial data
communications such as synchronization, bit drifting, data losses etc. This would be a

very challenging but highly interesting endeavour.

7.2.3 Graphical User Interface

At the user end, ease of use can be enhanced with a graphical user interface
(GUI) where the status of operation can be seen clearly, preferably with some graphical
representation of the network showing th movement of data from one node to another. It
will also be possible to showing the status of each node with colour or iconic indicators.
For example: gray when idle, green when sending, blue when arbitrating and red when
receiving. This GUI addition can be coded C++ with Microsoft Foundation Class
(MEC).

7.2.4 CRC Calculation

This implementation uses a 15 bit polynomial for its CRC computation. In this
project, the basic method of CRC calculation has becn used. However, it is possible to
build a lookup table based on the 15 bit polynomial and write a faster code by utilising
the said tabte. This technique can improve the overall performance of the CAN

controllers.

80

Chapter 7 Conclusion & Further Work

7.3 Summary

Overall, a basic but expandable system been produced out of this project and
useful skill and knowledge were acquired through the whole process from the

investigation into the subject matter to the writing of this dissertation.

81

References

References

10

11

12

13

14

15

16

17

18

19

I G Ganssle, "The Art of Designing Embedded Sysiems”, Newnes 2000

T M Conte, “Choosing the Brain(s) of an Embedded System”, IEEE Computers July 2002
Philips Semiconductors (http://www.semiconductors.philips.com)

Handel-C Language Reference Manual, Version 2.1, Celoxica 2001

M Serra & W B Gardner, “Hardware/Software Codesign - introducing an interdisciplinary course”, Univ.
of Victoria, Victoria. B.C. Canada, WCCCE Counference - Vancouver, 1998,

A Jantsch, P Ellervee, J Oberg, A Hemani, H Tenhunen A Software Qriented Approach to
Hardware/Software Codesign”, Royal Institute of Technology, Kista, Sweden, 1994

W Wolt “Computers as Components: Principles of Embedded Computing System Design”, Morgan
Kaufmann Publishers, 2001; pp367-578.

CAN Specification Version 2.0, Robert Bosch GmbH, 1991

KW Tindell, H Hansson, AJ Wellings “Analysing Real-Time Communications: Controller Arca Netwrok
(CAN)Y”

G Coulouris, J Dollimore, T Kindberg, "Distributed Systems — Conceptual Design”, Addison-Wesly 3/ed
2001

LB Fredriksson, “A CAN Kingdom Rev. 3.01", CAN Kingdom Specification Manual, KVASER AB 1995

Intel Introduction to In-Vehicle Networking, (http://developer.intel.com/design/auto/autolxbk.htm) (April
2002)

Philips Semiconductors PExCES98 8-bit microcontroller with on-chip CAN (hiip:/www.-
semiconductors.philips.com)

Philips Semiconductors SJA 1000 Stand-alone CAN controller (hitp:/fwww.semiconductors.philips.com)

L Fredriksson “Controller Area Network and the CAN protocol for machine control systems”,
Mechatronics Vol 4 No.2 ppl59-192; 1994

KM Zuberi, KG Shin, *Real-time decentralised control with CAN", Proc. [EEE Conference on Emerging
Technologies and Factory Automation, pp 93-99, Nov 1996

L Rauchaupt, "Performance analysis of CAN based systems”, 1™ Intemational CAN Conference, Mainz
1994

BP Upender, A Dean, “Variabliity of CAN Network Performance”

L Lemus, J Gracia and P Gil “*Designing, modelling and implementing a Controller Area Network (CAN)
on a FPGA using VHDL, 1999

82

References

20

21

22

23

24

25

26

27

28

K Lennartsson and L Fredriksson, “Fundamental parts in SDS, DeviceNet and CAN Kingdom™, 1995

L Fredriksson “Bluetooth in Automotive applications”, Bluctooth "99 Conference, 1999

Kvaser CAN Pages — The CAN Protocol, http:/www.kvaser.com/can/protocol (April 2002)

[+ME ACTIA, “Introduction to CAN — Controfler Area Network”, http//Awww. ime-actia.com/-
can_intro.hum (1st March 2002)

S Nilsson "Controller Area Network — CAN Information™ 1997, http:/fwww.algonet se/-
~staffann/developer/CAN.htm (March 2002)

Accutest “The CAN Guru Classroom”, hip:/www.accutest.co.uk {April 2002)

C Sweeney “Hardware Design Mcthodologies™, Celoxica Limited 2002

Celoxica, “RC1000 Software Reference Manual”, Celoxica Limited 2001

Celoxica, "DKI1 Design Suite User Manual”, Celoxica Limited 2001

Appendix

Listing L1 — setup_message() function

volid setup_message(unsigned int node)

{
unsigned int 1i;
Buffer[0] = node; S/ node number
Buffer(l] = msgID[ncde]; S/ Message ID
Buffer{2] = datalength(node]; /4 Number of bytes of data

for (i=0; i<datalength(node]; i++)
Buffer{3+i] = data[nodel{i]; // The da:za...

Listing 1.2 - send_fpga() function

void send_fpga{ unsigned char msgtype, unsigned char Items)
{
unsigned char ReturnvVal, 1i;

PP1000SetGPO{Handle, 1}; /1 Set flag

PP1000WriteContrel (Handle, msgtype);
PP1000ReadStatus {Handle, &Returnval);

if(msgtype==MESSAGEmsg || msgtype==STATUSmsg)

{
PP1000WriteControl (Handle, Items):
PP1000ReadStatus ({Handle, &Returnval);
for (i=0; i<Items; i++)
{
PP1000WriteControl (Handle, Buffer[i]);
cout << " " << {int) Buffer[i] << Buffer[i};
PP1000ReadStatus {Handle, &Returnval);
}
}
PP1000SetGPO(Handle, 0); /4 Hesetr flag

cout << "\nOK." << endl;

A-1

Listing L3 — CRC calculation routine

Appendix

remainder = 0;
i=0;

while { i<totlen)
{

if { i<msglen } nxtbit =

else nxtbit = 0;
bitld4 = { remainder
14
crcnxt = nxtbit ~ bitld;

dataframe(ctrlne] {i];

0bl000C00000G0000

remainder = remainder << 1;

remainder = remainder & Ox7FFE;

if (crcnxt) remainder ~= 0x4599;

i++;

!

)

?

/7
/7

)

1:0; // Check kit

shift left 1 bit
clear bit#0

remainder XOR poly

A-2

Appendix

Spreadsheet for Data Verification (shown partiaily)

0
0

READ
READ
READ

0
t
2
3
4
9
0
1
2
3
4
0
0
0
0
1

2

0
i
2
3
4
0
0
1
2
3
4
0
1
1
1
1
1
1
1
1
1

1

1

TE

2

3

4

5

5

6

7

8

9
010 0
010 0

o]
0
0

0

0

3

3

TE

READ
READ
READ
READ
READ
READ
READ
READ
READ

0

o]
0
Q
0
Q

5

5

TE

0
0
o

0
0

1

0
0

g g
16 10

TE

0
0

0

1

TE

0 0 0 WR

0

1

2 2 WR

0

]

3

1 0 ¢ WR

5

0 3 3 WR

0
0

1

9

4. 4 WR
0 0 WR

0

1

11

0
012 ¢

READ
READ
READ
READ
READ
AEAD
READ
READ
READ
READ
READ
READ
READ
READ
READ
READ
READ
READ
READ
READ
READ
READ
READ
READ

0

0
0

1
]
0

1

1
1
1
1
1
1
1
1
1

13 0
0 14 0

0

0
o]
0

15
016 0

0

0

3
0
0

1

0
1
0
0

1

0 17

018 0
018 0
0 20 0

0
0

0
0

1

t

0
1
2
3

1
t
1
1

021
022 0

1
1
1

0

1
]
1

1
1
1
1
1

0
0

023 0

024 0

4
Q0
[¥]
i
2
3
4
0
4]
1

2

1

024 0
028 0

.
1

0

1

1
1
1

026 0

1
1
1
1

027 0
028 0

1

1

029 0

G

5}

1

029 0

1
i
1
1

0

0 30 0

0 31
0 32 0

2

0

i

1

1

0 34
0 3 0

READ
READ

0
0
0
1
0

1
1
1
1
1

o]

1

1
1
1
1
1

0
o

0
0

i

o}
0

i

0 38 0
037 0

READ
READ
AEAD

0
0

0

0

038 0

1

1

20

TE 20

1
1
1

0

1

22

TE 22

3

i

TE 23 23

24

TE 24

24

TE 24

G

1
1

TE 25 25

4

3

TE 26 26

TE 27

27
28
29
29
30
31

1
1

TE 28

TE 29

0

1
1
1

TE 29

TE 30

TE 31

32

TE 32

0

34

TE 34

0

0

TE 36 36 O

0

1

37
38

TE 37

TE 38

50
51

WR

WH

62

WR

53
54

WR

WR

55
56
57
58

WH

WH

WR

-
™
oo
o O
o <
o &
oo
ca
< <
Wi
C
o
-
oo
[ap Blas]
oo
=
R
™ <
® =
- -
o <
5 ®
)
Mo m
wow
(=
M i
@ o
L o

WH

61

62
63
64

WR

WH

WR

65

A-3

