
I: MIST

~
RECONFIGURABLE COMPUTING: NETWORK INTERFACE

CONTROLLER AREA NETWORK (CAN)

A dissertation submitted to
The University of Manchester Institute of Science and Technology

for the degree of MSc.

By:

ABS Mohd Saman

Under the supervision of:

Dr Martyn Edwards

Computation Department

2002

ABSTRACT

In current embedded computer system development, the methodologies have

experienced significant changes due to the advancement in reconfigurable computing

technologies. The availability of large capacity programmable logic devices such as

field programmable grid arrays (FPGA) and high-level hardware synthesis tools allows

embedded system designers to explore various hardware/software partitioning options

in order to obtain the most optimum solution.

A type of hardware synthesis tool that is gaining significant footing in the

industry is Handel-C. a programming language based on the syntax of C but able to

produce gate-level information that can be placed and routed on to an FPGA.

Controller Area Network (CAN) is an example of embedded system application

widely used in modem automobiles and gaining popularity in manufacturing

environments where high-speed and robust networking is needed. CAN was designed

on a very simple yet effective protocol where messages are identified by their own

unique identifiers. Message collisions are handled through a non-destructive arbitration

process, eliminating message re-transmission and unnecessary network overloading.

A project to design and implement of a version of CAN is presented in this

dissertation. The project was performed based on hardware/software co-design

methodology with the utilisation of the above-mentioned rcconfigurable computing

technologies: FPGA and Handel-C. This disse11ation describes the concepts of

hardware/software co-design and rcconfigurable computing: the details of CAN

protocol, the fundamentals of Handel-C. design ideas considered and the actual

implementation of the system.

CONTENTS

I Introduction ..]

1.1 Embedded Systems..................... 1
I. 1.1 Embedded System Design .. 2
I. 1.2 Hardware/Software Co-design.. 3

1.2 The Project 4
1.2.1 Outcomes/Deliverables 5

1.3 Overview of the Dissertation. .. 6

2 Background Discussion ... 8

2.1

2.2

2.3
2.4

2.5

2.6

Hardware/Software Co-design 8
2.1.1 FPGA 10
Controller Area Network 11
2.2.1 Local Area Network 12
2.2.2 OS! Reference Model ... 12
The CAN Protocols 13
CAN bus 14
2.4.1 CAN Physical Layer........ . .. 15
Related Research 16
2.5.1 Implementations.............................. 17
2.5.2 Academic Research .. 17
Summary............................. 18

3 Detailed Requirements .. 19

3. I

3.2
3.3
3.4

3.5

3.6
3.7

3.8

3.9

The CAN Protocol 19
3. \.1 Frame Types ... 19
3. 1.2 Data Frame 20
3.1.3 Remote Frame 22
3. 1.4 Error Frame 22
3. 1.5 Overload Frame 23
Arbitration 23
Error handling 25
Handel-C. 26
3.4.1 Advantages of using Handel-C. 27
Handel-C Feature Highlights. 27
3.5.1 Data Widths.. 27
3.5.2 Bit Selection 29
Physical Resource~ ... 29
Celoxica DKl 30
3.7.1 Build Options 32
3.7.2 Debugging.. 33
3.7.3 Targeting hardware via EDIF......... 34
The RClOOO-PP Card................... . .. 35
3.8.1 Configuring the FPGA 35
3.8.2 Software-hardware communications..... . .. 36
Summary... 38

4 Design of the CAN Network .. 39

4.1 Approach 39

II

4.2 High-level Design Ideas ... 41
4.3 CAN Bus Emulation ... 42

4.3.1 Message Passing .. 42
4.3.2 Function Emulation ... 43

4.4 Arbitration Handling .. 44
4.5 Hardware/Software Partitioning .. 46

4.5.1 Partitioning strategy .. 46
4.5.2 Prototyping .. 47
4.5.3 Software Simulation .. 47
4.5.4 Porting C to Handel-C................................48
4.5.5 Hardware Simulation ... 49

4.6 Summary.................. 50

5 Implementation .. 51

5.1 The System. 51
5 .I. I Walkthrough 52

5.2 The Host Program.. 55
5.2.1 Functions.. 57

5.3 The FPGA Program.. 59
5.3.1 Writing to the Bus 59
5.3.2 Reading from the Bus... 62

5.4 Host- FPGA communications ... 64
5.4.1 Host-FPGA Message Transmission .. 68
5.4.2 Data Buffers for Host-FPGA communication ... 69

5.5 CRC Calculation .. 70
5.6 Summary............................. . .. 71

6 Evaluationffesting ... 72

6.1 Internal Evaluation .. 72
6.2 External Evaluation .. 73
6.3 Meta-level Evaluation....................................... 74

7 Conclusion & Further Work ... 77

7.1
7.2

7.3

Conclusion ... 77
Further Work.................................. 78
7.2.1 Parallelising............................ 78
7.2.2 Physical Bus.. 79
7.2.3 Graphical User Interface........................ 80
7 .2.4 CRC Calculation.. 80
Summary.. 81

111

LIST OF FIGURES

Figure 2.1 -Conventional Embedded System Design Process 9
Figure 2.2- United Design Environment of Hardware/Software Co-design 10
Figure 2.3- OSI Reference Model .. 13
Figure 2.4- OSI Layers in CAN .. 14
Figure 2.5- Physical and Electrical Organisation of a CAN Bus 15
Figure 3.1 -Data Frame of CAN 2.0 A (Standard) ... 20
Figure 3.2- Data Frame of CAN 2.0B (Extended) ... 21
Figure 3.3- A Remote Frame of CAN 2.0A (Standard) ... 22
Figure 3.4 - Error Frame .. 22
Figure 3.5- An Example of CAN Arbitration Process .. 23
Figure 3.6- Arbitration Flow Chart ... 24
Figure 3.7- DKI Main Display Showing Its Four Main Components 31
Figure 3.8- Host-FPGA DMA of On-board Memory ... 37
Figure 3.9- An Example of Host-FPGA Communication Process 38
Figure 4.1- Development Plan (Based on HW/SW Co-Design Model) 40
Figure 4.2- The Proposed Network Logical Configuration 41
Figure 4.3- CAN Bus Emulation by Message/Token Passing 43
Figure 4.4- CAN Bus Function Emulation ... 44
Figure 4.5- The Write & Read Cycle ... 45
Figure 4.6- Hardware/Software Partitioning Strategy .. 48
Figure 5.1- Basic Setup of the Host and FPGA Programs 51
Figure 5.2- Host Program's Menu .. 53
Figure 5.3- Host sends a message to Node 0 .. 53
Figure 5.4- Host receives messages from Node I & 2 ... 53
Figure 5.5- Getting Status Reports from FPGA ... 54
Figure 5.6- Host's Main Flowchart .. 56
Figure 5.7- FPGA's Main Flowchart .. 56
Figure 5.8- Flowchart for write_frame() function .. 63
Figure 5.9- Flowchart for read_frame() function ... 65
Figure 5.10- Sending Message from Host to FPGA ... 67
Figure 5.11- Message Buffer Format .. 69
Figure 5.12- Type 2 Buffer Contents (CAN Nodes Status) 69
Figure 5.13- CRC Calculation Algorithm .. 70

LIST OF TABLES

Table 2.1- Physical Characteristics of CAN Bus ... 16
Table 3.2- Host-FPGA Communication Functions .. 37
Table 5.2- Types of Messages from Host to FPGA ... 57
Table 5.3 - Host -FPGA Interaction ... 58
Table 5.4- Tasks of controller_ write() function ... 60
Table 5.5- Tasks of controller_read() function ... 64

Chapter 1 Introduction

1 Introduction

To most people a computer is equipment that we regularly use in the office,

school or home to perform various tasks such as word processing, accounting and

desktop publishing. Technically the type of computer that we are familiar with is called

a general purposed computer. It is designed to perform various tasks from serious work

such as database management to entertainment such as watching movies.

Another type of computer that we use everyday but seldom see it as a computer

is called an embedded system. Embedded systems can be found in modern domestic

appliances such as washing machines, dishwashers and microwave ovens. Embedded

systems can also be found in cars (e.g. auto-cruising and anti-lock braking systems),

digital cameras, digital televisions, CD players, mobile telephones and a lot of others.

Since the computer is embedded into a larger device, people seldom think of it a

computer when they use it. In fact we use more embedded computer systems everyday

compared to general purpose computers such as the personal computer (PC).

1.1 Embedded Systems

An embedded system is a combination of computer hardware and software

designed to perform a specific function. It is a part of a larger system that may not be a

computer. A general purposed computer like the PC is built on a general purposed

hardware subsystem. Different software subsystems can be loaded on top of the

hardware subsystem to perform different tasks. Unlike a PC, which can be used for a

Chapter 1 Introduction

variety of tasks, an embedded system perfonns a specific and fixed function. Its

hardware subsystem is built from the outset to perfonn this function in the most

efficient manner. Its software subsystem is written to complement the hardware.

Because of this, embedded systems are usually very small and perfonn their intended

function very efficiently [1].

Hardware is used mainly because of its perfonnance. A system built on

hardware is thousands of times faster than an equivalent software system. A typical

software system contains several layers of hardware and software, thus adding huge

amount of overhead to the overall perfonnance of the system. However, hardware is

less flexible. On the other hand, software is more flexible and easier to update. Thus, the

software subsystem is designed to provide features to the embedded system.

1.1.1 Embedded System Design

Traditionally, developing an embedded system was done by writing a piece of

software to suit a particular hardware architecture. The hardware is usually based on a

certain type of microprocessor. A variety of microprocessors and microcontrollers with

different features and strengths have been developed and produced by integrated circuit

makers for different areas of application. There are microprocessors of varying data

sizes (i.e. 8-bit, 16-bit, 32-bit etc.) developed for general purpose, and there are also co­

processors developed for specific purpose such as image processing (e.g. digital signal

processors), mobile communications (e.g. Motorola MXl processor) and internet

appliances (e.g. Philips TriMedia processor). Certain hardware is more suitable for

small appliances while another is specifically designed for use in a harsh environment.

Because the hardware sub-systems are pre-developed, the software sub-systems can

only be developed after the hardware has been identified. [2,3]

Design of embedded systems can be subject to many different types of

constraints, including timing, size, weight, power consumption, reliability, and cost.

Conventional methods for designing embedded systems require engineers to specify and

design hardware and software separately. A specification, often incomplete and written

2

Chapter 1 Introduction

in a non-formal language, is developed and sent to the hardware and software engineers.

The hardware-software partition is decided a priori and is adhered to as much as is

possible, because any changes in this partition may necessitate extensive redesign.

Designers often strive to make everything fit in software, and off-load only some parts

of the design to hardware to meet timing constraints [7].

1.1.2 Hardware/Software Co-design

There are many different approaches of trying to solve the problem of embedded

system design. Each has its own strengths and weaknesses. Some are more suitable to

certain types of applications compared to others. With the advent of programmable

hardware such as Application Specific Integrated Circuits (ASIC), the hardware can be

designed and built in tandem with the software development- a methodology known as

hardware/software co-design. In this method, the system's functions are partitioned into

hardware and software sub-systems, developed separately, optimised, and finally

integrated. A more detailed discussion about this methodology is presented in Chapter

2.

Reconfigurable devices such as Field Programmable Grid Arrays (FPGA) were

often used for prototyping the ASIC designs [5]. Today, FPGAs are powerful and cheap

enough to be used as the target hardware - giving birth to the Reconfigurable

Computing System Development methodology. With this method, the hardware sub­

system invariably contains reconfigurable computing resources (usually FPGA) together

with conventional processor. The processor takes care of the general-purpose

computation while the reconfigurable hardware takes care of specific applications. The

software sub-system is normally developed on a personal computer (PC) connected to

the hardware.

A major advantage of a reconfigurable computing system is that the hardware

sub-system can be reconfigured to suite changes in the application requirements. The

execution speed of dedicated hardware is retained but there is a great degree of

functional flexibility. The logic within the FPGA can be changed if or when it is

3

Chapter 1 Introduction

necessary. For example, hardware bug fixes and upgrades can be administered as easily

as in software. Obviously, during system development changes can be as often as

needed in order to explore various configurations and features, with the objective of

producing the most optimum solution possible.

1.2 The Project

In this project, the process of designing and implementing an embedded system

using reconfigurable computing technology was explored. The embedded system

application implemented was a network interface using the Controller Area Network

(CAN) bus protocols. The system consisted of a hardware sub-system (on an FPGA)

and software sub-system (on a Personal Computer). Embedded system design

methodology and reconfigurable computing techniques were applied throughout the

project.

CAN is a serial communications protocols which efficiently supports distributed

real-time control. It is commonly employed as a Local Area Network (LAN) to

interconnect electronic devices in automobiles, thus sometimes referred to as Car Area

Network. However, due to its simplicity and flexibility, it is receiving widespread use in

a wide variety of embedded applications like industrial control where high-speed

communication is required [23]. The fundamentals of CAN are discussed in Chapter 2

and further treated in detail in Chapter 3.

The aim of the project was to implement the functionality of a Controller Area

Network (CAN) bus using hardware and software. In order to achieve this aim, the

following functional objectives have been defined:

• To demonstrate the operation of CAN as a network interface.

• To demonstrate the operation of three CAN controller nodes communicating

with each other using CAN protocol.

4

Chapter 1 Introduction

• To demonstrate the control of the network operation using a personal computer

(PC) interfaced to the hardware (FPGA).

In achieving those objectives, the following non-functional objectives were also

defined:

• To deliver the implementation in a system of mixed hardware and software.

• To design and develop the system using the practical methods and techniques

normally employed in a typical embedded system development environment.

• To design and implement the system using the concepts of Reconfigurable

Computing.

In this project the hardware subsystem was built on Field Programmable Grid

Array (FPGA) while the software subsystem was written on a PC. The software

subsystem was written in CIC++ using Microsoft Visual C++. The hardware was

developed using Handel-C Programming Language - a hardware design language that

is gaining significant footing the hardware/software co-design world.

Handel-Cis a high-level language based on ISO/ANSI C for the implementation

of algorithms in hardware. It includes extensions to C that provide features for

describing the behaviour of embedded systems in hardware [4]. Basic features of

Handei-C are discussed in Chapter 3.

1.2.1 Outcomes/Del iverables

The desired deliverable was a mixed hardware/software implementation of a

CAN bus network interface. Several CAN "devices" interconnected via a CAN bus

were to be built into an FPGA. The devices were to communicate with each other via

the bus and controlled by programs running on a PC connected to the FPGA.

Essentially, it was aimed to be a network that consists of:

5

Chapter 1 Introduction

• A CAN bus -emulating two pieces of wire that normally required in a CAN
bus.

• CAN devices- at least three simulated CAN devices communicating with
each other.

• Network Monitor/Controller- the PC wi II be used to monitor the network
and for initiating data transfer from one node to another.

At the end of this project, it was desired that the author would gain significant

insight into the practical aspect of embedded system development. Along the way,

significant understanding of the concept of Reconfigurable Computing was also aimed

for. Valuable knowledge in the operation of CAN as a network interface and experience

gained in the utilisation of Handel-C as a major part of the system development, can be

shared through this dissertation.

1.3 Overview of the Dissertation

This dissertation is divided into seven chapters. This introductory chapter gives

an overview of the project. In Chapter 2, important concepts are introduced and treated

in more detail in order to set the appropriate background for further discussions in

subsequent chapters. These concepts include Embedded System Design Methodology,

CAN fundamentals, CAN protocols and CAN bus. Chapter 3 sets the requirements of

the project by discussing specific CAN concepts in more detail. It will introduce the

CAN data frame format and indicate how CAN handles arbitration. Handel-C, which is

an important element of the project will also be discussed here. Several important

Handel-C constructs and functions will be described in detail.

Chapter 4 builds upon the background and requirements set in the preceding

chapters. It introduces several design ideas and evaluates their strengths and

weaknesses. It also discusses the approach taken for the design and development of the

system. Chapter 5 describes the final product and also highlights how particular critical

issues, for example hardware-software communications are resolved.

6

Chapter 1 Introduction

The system is the evaluated in Chapter 6. Evaluations are performed in relation

to the objectives and requirements identified in preceding chapters. Chapter 7 concludes

the dissertation by revisiting important elements of the project and by looking fmward

to possible extensions to the current project.

7

Chapter 2 Background

2 Background Discussion

This chapter presents the background to the area of investigation and establishing

the context of the problem. Several Important computing concepts will be introduced

here. We will start with the bas1cs of embedded system development, continued by the

motivation behind the development of reconfigurable systems.

After establishing these important fundamentals, Controller Area Network (CAN)

will be introduced. Befitting its role as the backbone of this project, the fundamentals

and basic operation of CAN are covered in detail.

2.1 Hardware/Software Co-design

In hardware/software co-design methodology. hardware engineers and software

engineers work on then· designs in parallel. G1vcn a !Jst ol requirements, des1gners

consider trade-offs in how hardware and software components work together. Naturally,

there is a need for good feedback and interaction between the two groups of designers.

Decisions are evaluated on performance, programmability, area, power, development

and manufacturing costs, reliability, maintenance etc. The ultimate aim is to exploit the

synergy between hardware and software. [5]

A critical issue in most hardware-software co-design is finding effective hardware

and software partitioning early in the process (Figure 2.1). Early system partitioning

means that designers are clearly aware of the extents of their designs. However, early

system partitioning also means that optimisation can only be done at the sub-system

8

Chapter 2 Background

level. If the partitioning were later discovered not to give the optimum

price/performance ratio, it still has to be used as it is.

r·--
I H:-1r-.l\,','_-lr ·'
iH.11d:~-1t'-- ~::-.1 .. ,,

r jll \

-~I·- T"' ., 1

System Concepts System

Req. Analysis lnt~ration

Software Req. Software
Design &

Analysis Test

Figure 2.1 - Conventional Embedded System Design Process [5]

In the conventional design process, early partitioning results in what is known a

Model Continuity Problem i.e. the unavailability of reconfiguration options once the

partitioning has been done. Model continuity is important because many complex

systems do not perform as expected in their environment. Continuity allows the

validation of system level models at all levels of hardware/software tmplementation.

thus trade-offs are easier to evaluate at several stages. [5]

Today, the availability of mature high-level and logic-level synthesis tools made it

possible for various partitioning options to be simulated and evaluated. These tools

allow for systematic exploration of trade-offs of hardware/software partitioning at the

system level. They bridge the gap between and algorithmic specification and its

implementation at the layout level. They also add a great degree of automation in

hardware/software co-design. [6]

In hardware/software co-design, interaction and the need for reconfiguration

during the whole of the design process is greatly emphasised. A typical co-design

process tlow is shown in Figure 2.2 where incremental evaluations are done at various

stages of the development process [5]. Re-configuration is made possible by

advancement in reconfigurablc computing technologtcs cspCL'tally FPGA and hardware

synthesis tools.

9

Chapter 2 Background

------,
H.ar·d·Nar;::. I

/. HmdWill8 Re'l - Ot:!:SI~Irl ~.

Analy'"
•

Test
' - __ ___j

•
System Concepts

lnt jJ r< t<d '!Od e) in)Su ~trate
System

Req. Analysis Integration

...... 1/

Software ~Software Req

Analy~1'
n~sll,J11 "

~ lncrernen
Evaluatio

tal

n
Test _j

Figure 2.2 - Unified Des1gn Env~ronment of Hardware/Software Co-des1gn [5]

2.1.1 FPGA

FPGA is a type of programmable device that can be configured for a wide

variety of applications. Before FPGA, PLDs are generally limited to hundreds of gates,

while FPGAs support thousands or even millions of gates. These gates and their

interconnects are user-programmable. Some FPGAs include other logic elements such

as random access memories, flip-flops and input/output buffers. By programming, other

logic elements can be synthesised. Thus an FPGA can be programmed to perform a

huge variety of functions.

Usually hardware description languages such as VHDI. and Vai/og are used to

describe the logic to be synthesised in an FPGA. A hardware description language can

be used to describe the hardware at different levels of abstract1on i.e. gate level, register

transfer level and behavioural level l! j. Computer Aided Design (CAD) vendors

typically include various other tools such as simulator, performance analyser and system

verifier. [26]

Alternatively, the hardware can be described algorithmically - like software

programming- using a conventional programming language variance or subset such as

Handel-C. This alternative is becoming more attractive because current embedded

systems are becoming more complex and require complex algorithmic solutions

Ill

Chapter 2 Background

equivalent to those employed 111 large soft\Vare systems. The· Handci-C programmmg

language is discussed in Chapter 3.

2.2 Controller Area Network

Controller Area Network (CAN) is a serial communications protocols which

efficiently supports distributed real-time control. It is a type of network that was

designed to efficiently support distributed real-time control with a very high level of

security [8]. It is commonly employed as a Local Area Network (LAN) to interconnect

electronic devices in automobiles. Microchips manufacturers usually categorised their

CAN-related products under In-Vehicle Ne!H'orking [1.', cj because CAN was

developed in the automotive industry. However. 1ts domain of application ranges from

high speed networks to low cost multiplex wmng 111 veh1cles and manufacturing

environment.

In automotive electronics, engine control units, sensors, anti-skid systems and

others are connected using CAN because it is physically easier to install compared to

conventional point-to-point wiring. It also requires a minimum amount of cables and

connectors, thus weighs less. Effectively it is more cost-effective compared to the

normal wiring harness. Another important reason of using CAN in vehicles is to enable

any station to communicate with any other without putting too great a load on the

controller computer [23].

Fundamentally, CAN is a type of Local Area Network (LAN). It 1s built on a

collision-detection broadcast bus similar to Flhemel, a very popular type of LAN [9].

However. in Ethernet collision-detection forces conrlicting message senders to stop and

resubmit their messages after a random interval. In CAN collision-detection signals the

message senders to go into a nun-destructive arbitration process. This will be discussed

further in Section 3.2.

11

Chapter 2 Background

2.2.1 Local Area Network

A Local Area Network can be defined as a network of computers and other

devices in a limited geographical area such as in a building or within a campus area. A

common transm1ssion medium is shared hy all the participallng devices. through which

they communicate w1th each other. They also share resources such as storage and

printing devices.

The communication and resource sharing is made possible because a network is

always built using well-defined hardware and software specifications. These standard

specifications allow the network to be built systematically and operated smoothly.

2.2.2 051 Reference Model

Modem computer networks are designed in a highly structured way. To reduce

their design complexity, most networks are organized as a series of layers, each one

built upon its predecessor. This structure is known as the OS! Reference Model (F1gure

2.3), which is divided into seven layers which can be described as follows [1 0]:

Layer 7: Application : Provides services that meet the communication requirements

of specific applications, often defining the interface to a service.

Layer 6: Presentation : Transmits data in a network representation that is

independent of the representations used in individual computers.

Layer 5: Session : Handles problems which are not communication issues such as

detection of failure and automatic recovering

Layer 4: Transport : Provides end to end communication control

Layer 3: Network : Routes the information in the network

Layer 2: Data Link : Provides error control between adjacent nodes

Layer I: Physical : Connects the entity to the transmission media

Layering brings substantial benefits m simpl1fymg and generalising the software

interfaces for access to the communication serv1ces of a network.

12

Chapter 2 Background

2.3 The CAN Protocols

The fundamental design of CAN has been mapped to the Data Link and Physical

layers of the ISO/OSI Reference Model. The Data Link layer of CAN is further

subdivided into two sublayers: Logical Link Control (LLC) and Medium Access

Control (MAC) sublayers (Figure 2.4). The scope of the LLC sublayer contains the

following functions:

• to provide services for data transfer and for remote data request

7

6

5

4

3

2

1

Application

Presentation

Session

Transport

Network

Data Link

Application

Presentation

Session

Transport

<:- --------- Packet ----------- 3> Network

<:---------- Frames -----------3> Data Link

<:-----------. Brts ------------ 3>

Frgure 2.3 ·OS! Reference Model

• to decide which messages received by the LLC sublayer are actually

accepted

• to provide means for recovery management and overload notifications.

CAN employs content-oriented addressing scheme. Communication is addressed

by message identifiers instead of station identifiers as in normal LAN. Each message

has an identifier that is unique throughout the network. It defines the priority and the

Chapter 2 Background

content of the message. When a station transmits a message. all other stations in the

network become rece1vers. The LLC sublayer 111 each station will perform an

acceptance test to determine whether the data received are relevant for that station. If

the data is of significance for the station concerned. it is processed, otherwise it IS

ignored.

Data Link Layer

LOGICAL LINK CONTROL
Acceptance Filtering
Overload Notification

Recovery Management

1---------·----·-·--·--
MEDIUM ACCESS CONTROL

Data Encapsulation/Decapsulation
Frame Coding (Stuffing, Destuffing)

Medium Access Management
Error Detection
Error Signalling

Acknowledgement
Seri a I is at io n/Deseri a I is at ion

Physical Layer

Bit Encodmg/Oecoding

Bit Timing

1--·-- --
Driver/Receiver Characteristics

..,._ -

...... -- .. -...... _ :
SUPERVISOR

Fault
Confinement I c__ ___ _j

' Bus Failure
Manaaement

Figure 2.4 - OS! layers in CAN

In other words, the sender of a message send a broadcast throughout the network

and the receivers listen to the message and decide whether to act on it or not. No

physical destination is required. Since the data transmission protocol does not require

physical destination addresses for individual stations, the system has some degree of

configuration flexibility. Nodes can be added to or removed from the network without

bringing it down as long as the said stations are purely receivers.

2.4 CAN bus

The bus in a CAN network is a serial communication link onto which a number

of nodes may be connected. The maximum number of nodes is only limited by delay

14

Chapter 2 Background

times and/or electrical loads on the bus line [8]. The bus consists of a single channel

that carries bit values. Physical implementation of the bus is fixed by CAN

specification, thus there can be several implementations (see Table 2.1).

Bitstreams on the bus are coded according to the Non-Return to Zero (NRZ)

method with bit-stuffing. The two logical b!l values on the bus is known as dominant

and recessive. When there is a simultaneous transmission ol dominant and recessive

1 = recessive

0 =dominant

+

Node Node

F1gure 2.5- Physical and electncal organ1sation of a CAN bus w~red-AND implementation [7]

bits, the bus will read as dominant. In the popular wired-AI\D implementation of the

bus (F1gure 2.5) [7J, the dominant value is represented by a logical 0, while recessive by

a lor;icall [8].

2.4.1 CAN Physical Layer

Physically, a CAN bus is essentially a cable consisting two pieces of wire which

are twisted over each other along their length. This type of cable is usually known as

twisted pair - the most common type of cable used in normal LAN. Usually, CAN

nodes are connected to the bus in a wired-AND fashion - 1f one node is writing a

dominant bit (LOW) to the bus, then the whole bus is in dommant state, regardless of

15

Chapter 2 Background

the number of other nodes transmitting recessive (LOW) bits. Basic characteristics of a

CAN bus is listed in Table 2.1 [22].

Characteristic
Standards

Maximum bus speed

Maximum cable
length

Cable type

Connectors

Value
• ISO 11989 - Two-wire balanced signalling scheme
• ISO 11519- Low-speed two-wire balanced signalling

scheme

• 1 Mbit/s

• 40 meters at 1 Mbit/s
• 100 meters at 500 kbit/s
• 200 meters at 250 kbit/s
• 500 meters at 125 kbit/s
• 6 kilometers at 10 kbit/s

• 108 to 132 Ohms
• Twisted pair

• 9-pin DSUB proposed by CiA
• S-pin Mini-C and/or Micro-C, used by DeviceNet and SDS
• 6-pin Deutch connector, proposed by CANHUG for mobile

hydraulics

Table 2.1 - Physical Charactenstics of CAN bus

2.5 Related Research

Research in in-vehicle networking has resulted in many standards developed by

various manufacturers and organisations. CAN is one of the few that are more popular

than the rest. Large microchip manufacturers such as Intel, Philips and Fujitsu have

produced several CAN implementations of their own. And further research into CAN

has resulted in several extensions such as CANopen, DeviceNet and CAN Kingdom.

CANopen is a CAN-based higher layer protocol originally developed for

industrial control systems. The family of specifications includes also different device

profiles as well as frameworks for specific applications. DeviceNet is also a CAN-based

higher layer protocol developed based on an object-oriented communications model

Chapter 2 Background

[22]. CAN Kingdom is also another CAN-based higher layer protocol but was designed

based on the concept of customisable network. In conventional network concept,

devices connected to the network must be tailor-made to the network. Thus the system

must conform to the network. In CAN Kingdom, the network will be tailor-made to suit

the needs of the system. The system designer can create systems using virtually any

type of bus management and topology- possibly making the system very flexible to the

extent of making it very restrictive [11]

2.5.1 Implementations

Robert Bosch GmbH developed the CAN controller in the early 1980s and

worked with Intel on the first tmplementation. The first implementation. 82526

controller, was based on CAN version 1.2 while the latest controller released in 1993,

the 82527, supports CAN version 2 OB [l?.j. Intel's programming model of CAN

implementation is known as Full CAN while those implemented by Philips is known as

Basic CAN. Most CAN controllers allow for both programming models to be used -­

and they are compatible with each other [22].

A few of other commercial organisations actively involved with CAN are

Philips, Acutest, !+ME actia, and Hitex. Philips produces several versions of on-chip

CAN controllers based on the popular 80C51 microcontrollcr family [13] and a few

standalone CAN controllers as well [14]. Smaller companies like Acutest and !+ME

actia make use of chips produced by larger companies, such as Intel and Philips, to

conduct research on the application of CAN. particularly in the areas of in-vehicle

networking and manufacturing automation.

2.5.2 Academic Research

Academic research in CAN is usually linked to real-rime systems such as the

analysis done by Tindell et al [9] in which an idealised scheduling analysis for CAN

was derived. A study on two CAN chips (Intel 82527 and Philips 82C200) were also

done using the scheduling theory derived. Although CAN was originally designed for

17

Chapter 2 Background

in-vehicle network, today, CAN is used in applications other than in automotive

electronics. Some studies of CAN applications in machine control S\'Stems were done by

Fredriksson [15] and Zuberi & Shin I 16 I. Studies on CAN systems performance have

been done by Rauchaupt [1 7] and Upender & Dean [l !3 J among others.

A work stmilar to this project was done by Lemus et a! [19] - the

implementation of CAN controllers as communication nodes in a distributed system.

The controller was modelled using a hardware description language i.e. VHDL as

opposed to this project, where the hardware will be programmed by a programming

language variation, i.e. Handel-C. Twenty CAN controllers were connected the bus and

their operational behaviour were studied. It was noted that the controllers used a global

clock because bit synchronisation was not implemented.

At the "physical layer", work on defining a single-wire CAN bus is in progress

but the standard has not been established yet [22]. Also, there are several Higher Laver

Protocols already developed and their practical application heing studied [20]. Other

current research mvolved techmques for comhimng CAN wtth Bluetooth. Fredriksson

of KV ASER discussed the possibilities and concerns in this area [21].

2.6 Summary

In this chapter, we have looked at the concepts of hardware/software co-design and

the fundamentals of CAN. We have discussed how the OS! layers in CAN relate to the

lowest two layers of the OS! Reference Model. We have also seen that physically a

CAN bus is very simple and easy to implement. Details of CAN such as its data format,

arbitration and error detection are discussed in next chapter.

18

Chapter 3 Detailed Requirements

3 Detailed Requirements

In order to identify the requirements of the project, we need to investigate the

protocol of CAN. This chapter describes the details of CAN protocol and how CAN

handles arbitration and enors. As the hardware synthesis was done using Handel-C, this

chapter also introduces the basic of the Handel-C programming language and specific

features which make it suitable for the intended purpose. A major part of the

information in this chapter is obtained from technical specifications of CAN and

Handel-C.

3.1 The CAN Protocol

There are two versions of CAN, each of which is based of CAN specification

2.0A and 2.08. The two versions ditfer in the size of their identifiers. CAN 2.0A has a

standard II bit identifier while CAN 2.08 has an extended frame containing a 29 bit

identifier. CAN controllers from both versions can co-ex1st m the same network as long

as the 2.08 type controllers send standard frames only [22].

3.1.1 Frame Types

Message transfer is manifested and controlled by four different frame types:

• Data Frame- carries data from a transmitter to the receiver

• Remote Frame- transmitted by the bus unit to request the transmission of

the Data Frame with the same identifier

19

Chapter 3 Detailed Requirements

• Error Frame- transmitted by any unit on detecting a bus error

• Overload Frame - provides an extra delay between the preceding and

succeeding Data Frames or Remote Frames.

3.1.2 Data Frame

A standard CAN data frame is shown in Frgure 3.1:

Start Identifier RTR. IDE : AO DLC Data CRC ACK ' EOFtiFS

1bit 11 bits 1 bit 1 bit 1 bit 4 bits 0 to 8 bytes 16 bits 2bits !Obits

Figure 3.1- Data frame of CAN 2.0A (Standard) [1]

The above frame consists of the following fields [8.23,24]:

• Start Bit (I bit)- always LOW. f'alling edge of signal from idle state (HIGH) to

the Start Bit (LOW) is used for synchrontsation.

• Identifier (11 bits) - logical idenrirv and priority of the message. The smaller

the value, the higher the priority- 0000 0000 000 has the highest priority while

1111 1111 111 has the lowest.

• RTR (1 bit) - Remote Transmission Request, set to LOW. This bit is set to

HIGH in Remoteframe.

• Control Field (6 bits)- contains IDE, RO and DLC:

• IDE (1 bit)- Identifier Extension. Set to LOW to indicate Standard CAN

Data frame.

• RO (1 bit)- reserved .

• DLC (4 btts)- Data Length Code. Indicates the length of data field .

• Data (0 to 8 bytes)- contains the data of the message.

20

Chapter 3 Detailed Requirements

• CRC (16 bits)- Cyclic Redundancy Check. Contains the checksum of the data

bits. Used for error detection.

• ACK (2 bits)- ACKnowledge. The first bit is the s!or bit, which is transmitted

HIGH but subsequently over-written by dommant bits from receiver nodes. The

second bit is the delimiter (high).

• EOF (7 bits)- End of Frame. All HIGH (recessive).

• IFS (7 bits)- Inter Frame Space. All HIGH (recessive).

An extended CAN data frame (Figure 1.5) contains the all the fields for the

standard CAN with the following differences/additions:

• SRR (I bit) - Substitute Remote Request. Replaces the RTR bit in standard

CAN (relocated after the identifier field). Always HIGH, thus an extended CAN

frame always has a lower priority than a standard CAN frame during arbitration.

• IDE (I bit) - Identifier Extension. Always HIGH to indicate extended

identifier follows.

• Identifier (18 bits instead of II bits)

• Control field (6 bits) - now contains an additional reserved bit (rl) which

replaces IDE.

Start Identifier SRR i IDE Identifier i RTR! R1 ! RO DLC Data CRC ACK EOF+IFS

1bit 11 bits 1 bit 1 bit 18 bits 1 bit 1 bit 1 bit 4 bits 8 bytes 16 bits 2 bits 1 o bits

Figure 3.2 - Data frame of CAN 2.0B (Extended) [23]

21

Chapter 3 Detailed Requirements

3.1.3 Remote Frame

If a node wants to request certam message from another node, it will send a

remote frame (Figure 3.3). It is identical to a data frame except for the following two

characteristics [22]:

• The RTR bit is set to HIGH (recessive)

• There is no Data Field.

Start Identifier RTR IDE RO OLC CRC ACK EOFtiFS

1 bit 11 bits 1 bit 1 bit 1 bit 4 bits 16 bitS 2bits 10bits

F1gure 3.3 ·A Remote Frame of CAN 2 OA (Standard) [23]

A receiving node that responses to the request will send out a data frame with an

identifier identical to the remote frame it received. Most CAN controllers can be

programmed to either automatically respond to a remote frame, or to notify the local

Central Proce~~ing Unit (CPU) [22].

3.1.4 Error Frame

When a node detects a fault, it will send out an Error Frame. An error frame is a

special data that violates the framing rules of CAN messaging [22] Thus. when a node

sent out an error frame, other nodes will se it as error and send out their own etTor

frames too. If this situation occurred during transmission, the transmitter will try tore­

transmit the message.

Error Flag

5 bits

Error Delimiter

8 bits

Figure 3. 4 - Error Frame

22

Chapter 3 Detailed Requirements

The format of an error frame is shown in Figure 3. 4. It consists of an Error Flag

(six bits of the same value, thus violating bit-stuffing rule) and an Error Delimiter (eight

recessive bits). The error delimiter provides enough delay for other nodes their error

frames upon detecting the current one [22]. Error handling is discussed further in

Section 3.3.

3.1.5 Overload Frame

An Overload Frame is identical to an error frame except that it is transmitted by

node that becomes too busy. It is seldom used because today's CAN controllers are

clever enough to avoid this kind of situation.

3.2 Arbitration

CAN protocol is based on CSMA/CD (Carrier Sense Multiple Access/Collision

Detection) with added feature called Arbitration on Message Priority

(CSMNCD+AMP). A CAN node checks if the bus is busy (Carrier Sense) before

sending a message. If the bus is free, several nodes could be sending at the same time

Tx
Node A

Rx

Tx
NodeB

Rx

Bus

'

START BIT IOO IO

10 10 8 7 6
10 9

~· ····
~· ····
1 r-1 r-- Node B
L....J L....J sending

~· ····

~· ····
Figure 3.5 -An Example of CAN Arbitration Process [23]

23

stops

Chapter 3 Detailed Requirements

(Multiple Access). Each transmitting node also checks if other nodes are also

transmitting by detecting for collision. However, in Ethernet, upon detecting collision,

all sending nodes will stop transmitting. They then wait for a random length of time

before trying to send again- making Ethernet very sensitive to high bus loads [24].

CAN solves this problem by employing a non-destructive, bitwise arbitration

[8]. The "winner" of the arbitration does not have to resend the message from beginning

as happens in Ethernet. The efficiency of the arbitration depends on the physical

property of the bus. When logical levels 0 and I are both sent to the bus, logical 0

becomes dominant and overwrite the logical I.

If a CAN node is writing logic 0 to the bus while another is writing logic I, the

value that appears on the bus will be logic 0. After writing a bit value into the bus, each

Figure 3.6 - Arbitration Flow Chart

24

Chapter 3 Detailed Requirements

transmitting node reads back the bit value actually registered on the bus. If a node found

that the bit value it has written is different from the bit value it read back, then it will

stop transmitting - it has detected a collision and has lost In the arbitration process

(Figure 3.6).

The bit values that actually used in the arbitration process are those in the

identifier field. Because logic 0 is more dominant compared to logic 1 (recessive), an

identifier with the smallest binary value has the highest priority - always wins the

arbitration process. Figure 3.5 shows an example an arbitration process of frames

transmitted from two CAN nodes. A lower priority node that has lost the arbitration,

switches to receive mode. It will then wait until the bus is idle before attempting re­

transmission.

3.3 Error handling

Unlike other bus systems, the CAN protocol does not use acknowledgement

messages but signals any error that occurs [25]. Its error management function, which is

part of the Data Link layer, can detect the following errors:

• Bit Error- when the bit value monitored is different from the bit value written.

• Bit Stuffing Error- when 6 consecutive equal bit level is detected in frame field.

Bit stuffing should have been done after each 5 consecutive equal bits.

• CRC Error- when the CRC sequence read is not identical to the one calculated.

• Form Error- when f'ixcd-form bit field (CRC. ACK, EOFi contains one or more

illegal bits.

• Acknowledgement Error- when a dominant bit is not present in the ACK field.

As mentioned in Section 3.1.4, upon error detection, an error frame is

transmitted immediately. If an error is detected, the detecting node will transmit an

25

Chapter 3 Detailed Requirements

Error Flag and destroying the bus traffic in the process. Other nodes, upon detecting the

Error Flag will discard the current message [8].

3.4 Handei-C

Handei-C is a programming language rather than a hardware description

language. The Handei-C language syntax is based on the C programming language.

Extensions have been added to support high level hardware constructs such as

parallelism, concurrency, communication and scheduling. Algorithms can be expressed

in Handei-C without knowing how the underlying computation engine works. This

makes Handei-C a programming language rather than a hardware description language.

While a conventional C generates microprocessor machine codes, Handei-C is generates

hardware designs. The hardware design - at gate level -- that Handei-C produces is

generated directly from the source program. The logic gates that make up the final

Handei-C circuit are comparable to the machine codes in the executable file produced

with conventional C. The target of the Handei-C compiler is low-level hardware.

The following is a summary of Handei-C features:

• It uses much of the syntax of conventional C.

• It has parallelism built in. By utilising parallelism, huge performance benefit can

be obtained from the target hardware.

• It provides channels for communication between parallel branches of the code.

• Interface can be used to communicate with external device or component.

26

Chapter 3 Detailed Requirements

3.4.1 Advantages of using Handei-C

Software programs are effectively state machines. The flow of execution

through the program is determined by control statements such as if statements, switch

statements, while loops and for loops. Handel-C adds the par construct to implement

parallelism [26]. There is also the channel statement lor pass1ng data between parallel

parts of the program and for synchronising them. By writing Handel-C program to take

advantage of inherent parallelism in low-level hardware. massive performance

advantage can be realised.

3.5 Handei-C Feature Highlights

Handel-C parallelism is true parallelism, not the time-sliced parallelism for

general purpose computers. When instructed to execute two instructions in parallel,

those two instructions will be executed at exactly the same instant in time by two

separate pieces of hardware.

Handel-C uses two kinds of objects: logic types and arch1tccturc types. The logic

types specify variables. The architecture types spec1fy variables that require a par!Jcular

sort of hardware architecture e.g. ROMs, RAMs and channels.

3.5.1 Data Widths

A crucial difference between Handel-C and conventional Cis Handel-C's ability

to handle values of arbitrary width. Conventional C handles 8, 16 and 32 bit values well

but cannot easily handle other widths. When targeting hardware, there is no reason to be

tied to these data widths. So Handel-C has been extended to allow types of any number

of bits. It is perfectly valid to use 32-bit values for all data items but a large amount of

hardware is produced if none of these values exceed 8 bits. Declaring data of suitable

widths allow for an optimum use of hardware.

27

Chapter 3 Detailed Requirements

As in conventional C, the following data types have fixed width:

signed unsigned char <- 8 bits

signed unsigned short <- 16 bits

signed unsigned long <- 32 bits

The syntax for declaring an integer variable of an arbitrary width is:

[signed I unsigned] int width variable_name;

For example, to define a 12-bit wide unsigned integer "arbitfield", the

following declaration can be used:

unsigned int 12 arbitfield;

If the width is omitted, the variable width is classified as "undefined". During

compilation, the compiler will try to infer a suitable width for the variable. However, in

normal practice, each variable width is always defined the programmer.

Values of different widths can only be assigned to each other using the append

operator (@) or the bit selection operator. For example, to assign the value of a 4-bit

variable x4 to an 8-bit variable yS:

unsigned int 4 x4;
unsigned int 8 y8;

y8 o 0 3 x4;

In this example, the left side (most significant bit side) of x4 will be appended

with extra zeros before being assigned toyS. In this case, four zeros will be appended to

make the total number of bits eight.

28

Chapter 3 Detailed Requirements

3.5.2 Bit Selection

Individual bits or range of bits can be selected from a value by using the []

operator. Bit 0 is the least significant bit and bit n-1 is the most significant bit where n is

the width of the value. For example, refening to prev10us example, to assign the value

of four least significant bits of y8 to x4. the following statement can be used:

x4 y8 I 3: o I;

The above statement takes the value of bits 3, 2, I and 0 of y8 and assigns it to

x4. Another example of bit selection assignment is as follows:

x4 y8[7:4];

In this example, the four most significant bits of y8 is assigned to x4.

There are other bit manipulation operators in Handei-C but used less extensively

in this project. Those operators are:

« shift left

» shift right

<- Take least significant bits

\\ Drop least significant bits

@ Concatenate bits

Materials discussed here are only highlights of features used in this project. For

completeness, the Handei-C Language Reference Manual should be referred to [4].

3.6 Physical Resources

These are the physical resources utiltsed for the design, development

implementation of this project:

29

Chapter 3 Detailed Requirements

a. Personal Computer- Pentium class processor running Microsoft Windows 2000

b. Microsoft Visual Studio-- C++ compiler

c. Celoxica DKI -- Handei-C compiler [28]

d. Celoxica RCIOOO-PP board-- FPGA programming kit/hardware [27].

3.7 Celoxica DK1

DKI is Handel-C system development environment that have been designed with

the look and feel similar to Microsoft Visual C++ (Microsoft Visual Studio). In its

debug mode it allows programs written in Handel-C to be simulated in the environment

without the need for the target hardware to be present. This feature allows the

correctness of the algorithms to be tested before being applied onto the target hardware.

This is discussed further in Section 4.3.2. [28]

The DKI development environment version 2.1 used for the project is equipped

with a new graphical user interface similar to Microsoft Visual C++ 6.0 (part of Visual

Studio 6.0). There are four main components is the GUI (Figure):

I. Menu and tool bars

2. Workspace window

3. Editor window

4. Output window

The menu and tool bars contain drop menus (similar to standard Windows

applications) and shortcut buttons to carry out major tasks (similar to Microsoft Visual

Studio). Commands assigned to these buttons are, among others: compile, build and

debug.

30

Chapter 3 Detailed Requirements

~queuei3 - DKJOe"gnSuotr-[queueJJ~c] . • - ~:-~-f'f.

u~ E'e ~dlt Ylew eroject ~ lools ~ tfelp

...Jm~

-='"~~
] ~ ~ lill " ~ ~ ~~ c 1 ~lro
!•sr~ tJ I ~ ••.- l•

~queue13

I ~·~ Jilt
At• (l ~ l_ll~

I

Menu and tool bars

queue13
r- <:;;;. quouo13

~ quoue13c
E Kleonal D open

h fdef SIMULATE
#def~ne WORD_SIZE 8
#def~ne BIT_OFFSET VORD_SIZE-1

!~~f~~~~·~;!~r~al "J::
lelS:et part • "VlOOOBG560 Editor window

ldehne PP10 00_8BIT_RAib--'t-=::--======:J
ldef~ne PP1000_DIVIDE1
#def~ne PP1000_CLOCK PP1000_MCLK
ldef~ne VORD_SIZE 8
#deftne BIT_OFFSET VORD_SIZE-1
ldef~ne RAM_SIZE 8
l~nclude "pplOOO h "

.~~set fa•1ly • Xll~nx4000XV .

.!!1 8 ----CorflglntlCirt queue13 · Debug·-·-·----·-
.!1 e~ w13

I
· e F1e 'P'\majdi\quteot\queue13\0ebug\queue13 obt' 11" nvaid lonna!

81errO<.Owa<ITf!l$
It DK1 desrgn Me could not 1 Output window ~:I'll>~ P.\majdi\quteot\queue13\0ebug\queue13.hb: the browse-ric

• •
~· ~~~~ ~~~2

---~----
Ready

Figure 3. 7 - DKl Main Display Showing Its Four Main Components

The workspace window shows a list of source files contained in current workspace.

These fi les are arranged in the following hierarchy:

• Workspace

0 Project 1

• Source file 1

• Source file 2

•

0 Project 2

0

0 Project n

At any time, only one workspace can be opened in one instance of DKl. Inside a

workspace, several projects can be defined, each containing its own source files . This

arrangement allows several projects (perhaps variations to the same design) to be

written, compiled, built and compared.

31

Chapter 3 Detailed Requirements

The editor window contains the source files currently opened for editing. Several

files can be opened simultaneously (each in its own window) but only one of them can

be made active at any instance. The other windows are normally hidden behind the

active one. The source codes are displayed in a variety of colours to distinguish their

types and functions (e.g. keywords, comments, strings etc.)

When a source file is compiled or a project is built, vital information is

displayed in the output window. Errors are displayed with indications and hyperlinks to

their line numbers in the source file. Clicking on an error message will bring up the

offending line in the editing window.

3.7.1 Build Options

DKl allows projects to be built in several configurations: debug, release, EDIF,

VHDL and generic. However only two configurations were utilized during the

development of this project: Debug and EDIF. These will be discussed in the following

sections. DKl Design Suite User Manual should be referred to for completeness [].

Debug is the default compilation configuration. Projects built in the debug mode

can be executed in the built-in simulator allowing for debugging to be done without the

presence of the target hardware. This method was used at the hardware simulation stage

of this project.

EDIF is one of the configurations that can be used to target a particular hardware

(the other configuration is VHDL). EDIF files generated can be used for placing and

routing into a targeted FPGA architecture. Obviously, this method was used at a later

stage of the development when the Handei-C program was tested with an RClOOO-PP

card.

32

Chapter 3 Detailed Requirements

3.7.2 Debugging

To aid the debugging process, sample inputs for the project can be specified by

the chanin keyword. For example:

chanin 8 Input with {infile "data . txt" } ;

In the above example, an input channel Input (8 bit wide) was declared to read

from a file named data.txt. Values in the file must be numbers only and written one

number per line. They are read with the following channel operation (assuming that x

has been declared as an unsigned int 8 variable):

Input x;

The above statement will read one value from the data.txt file and assign it to x.

If the end of the file has already been reached, a zero value will be read instead.

Outputs can be channeled either to a debug window (within the output window)

or to a file using the chanout keyword. Declarations for output channels can be written

as follows:

chanout Output with {infile

chanout myDebug;

"output. txt"};

In the first line of the above example, an output channel Output was declared to

write values into a file name output.txt. In the second line, no file was specified, thus

any values sent out through this channel will be displayed in the output window.

Channeling values through the above channels can be done as follows:

Output ? x;

myDebug ? 100;

II output to file

II display in window

33

Chapter 3 Detailed Requirements

Outputs through these channels are restricted too: only one value per line can be

written at any one time. Thus, if multiple output values are required, each of them must

have own channel.

When executed in a simulation, various execution points in the source code are

indicated with arrows of different colours i.e. current function calls (green), current

execution point (yellow), combinatorial codes that will be executed on the next clock

tick in other threads (white) and combinatorial codes that will be executed on the

current clock cycle (grey).

Debugging can be made more effective by placing breakpoints at suitable points

in the source code. Breakpoints are indicated as active (red dot), disabled (white dot

with red edge) or mixed (half red, half white dot).

3.7.3 Targeting hardware via EDlF

When enough debugging has been done, the build configuration can be changed

to EDIF so that the program can be tested on the actual target hardware. For the

RClOOO-PP card, this is a two-step process. Building the source code in the EDIF

configuration is the first step. The second step is converting the EDIF files into a

bitstream file that can be loaded directly into the card. This can be performed using the

edifmake utility supplied with the card. [28]

The edifmake utility is a DOS batch file, therefore must be executed from a

command prompt. Edifmake needs access to several files built by the compiler, thus it is

normally executed in the EDIF subdirectory of the project being worked on. If the

project name is cansim, a command prompt is opened under its EDIF subdirectory and

the following command is entered:

edifmake cansim

34

Chapter 3 Detailed Requirements

A file with the name cansim.bit will created under the same subdirectory when

the conversion process is completed. One method that can be used to load this bitstream

file into the FPGA is by using the PPJOOOConfigureFPGA() library function supplied

with the RCJOOO-PP card. This library functions and other information about the card

are described further in next section.

3.8 The RC1 000-PP Card

The RCJOOO-PP design board is included with the DKI design suite. The card

includes a Xilinx Virtex XCV 1000 FPGA with I million gates, 8 megabytes of RAM

(in four 2 MB banks) and various expansion slots mapped to a selection of pins on the

FPGA. This card can be plugged into a PCI slot on a PC and supplied with suitable

drivers for Microsoft Windows. Also included are a library file and its corresponding

header file, which add special commands that allow a C program running on the PC to

access the card. These commands are in form of library functions defined in the header

file. There is a set of functions for the C program and a corresponding set for a Handel­

C program. Some of these commands (particularly those used in this project) are

discussed below [27].

3.8.1 Configuring the FPGA

The first step that a host program must do is getting a handle to a RClOOOPP card

installed on the PC. The easiest way to do this is by opening the first card available by

calling the following function call:

PPlOOOOpenFirstCard(&Handle);

In the above example, Handle is a predefined variable inside the corresponding

pplOOO .h header file supplied with the card. Then, the clock speed for the card should

be set with a function call such as follows:

35

Chapter 3 Detailed Requirements

PPlOOOSetClockRateiHandle, PPlOOO_MCLK, le6);

In this example, the clock speed was set at IMHz (le6) with the card operating at

the same speed (PPlOOO_MCLK). For detailed explanation of clock setting, the RCIOOO

Software Reference Manual should be consulted [27].

The next step is to load the bit file that has been prepared for the FPGA. This is

typically done by making another function call such as follows:

PPlOOOSetClockRateiHandle, "canfpga.bit");

In the above example, a bit file named "canfpga.bit" was loaded into the FPGA on­

board the RC!OOOPP card. Once loaded the program is started automatically. There are

other methods of configuring the FPGA. These are covered in detail in the RC!OOO

Software Reference Manual [27].

3.8.2 Software-hardware communications

Data transmission between software (i.e. a host program running on the PC) and

hardware (i.e. the FPGA) can be performed in three modes: I bit, I byte and direct

memory access (DMA). The three types of data transfer operations are handled by the

following library functions (Table 3.1):

Data Host FPGA
Transfer
Bit- PPlOOOSetGPO I) PPlOOOReadGPO I)

sized - set the GPO (general purpose -read the status of the GPO pin
output) pin

PPlOOOSetGPII)
PPlOOOReadGPI I) - set the GPI pin
-read the status of the GPI (general
purpose input) pin

Byte- PPlOOOWriteControll) PPlOOOReadControll)

sized -send one byte of data to the FPGA -receive one byte of data from host

PPlOOOReadStatusl) PPlOOOWriteStatusl)
-receive one byte of data from the - send one byte of data to host

36

Chapter 3 Detailed Requirements

FPGA
DMA PPlOOOSetupDMAChannel() PPlOOORequestMernoryBankll

- set up a DMA channel - request for access to a memory
bank

PPlOOORequestMernoryBank()

-request access to a memory bank PPlOOOWriteBank()

-write to a memory bank
PPlOOODDMA()
-execute the DMA data transfer PP1000ReadBank()

- read from a memory bank
PPlOOOReleaseMernoryBank()
-relinquish access to a memory bank PPlOOOReleaseMernoryBank(l

PPlOOOSetupDMAChannel()
-relinquish access to a memory
bank

--close the DMA channel used

Table 3.1 - Host-FPGA Communication Functions

The third mode for data transfer, the DMA, is handled through the a set of library

functions that allow direct access to the onboard memory blocks of the RClOOO-PP card

(see Figure 3.8).

,-----

RClOOO-PP board

"'
Host Program "' A ~ ~ A ~ A ~ - RAM FPGA

(C/C++) u
~ y 0... ~ v 1 r

(Handel-C)

-

Figure 3.8 - Host-FPGA DMA of On-board Memory

An example of a typical system of software (host program in C/C++) and hardware

(FPGA synthesized by Handel-C) that make use of the features discussed above for data

transfer is shown in Figure 3.9.

37

Chapter 3 Detailed Requirements

HOST PROGRAM FPGA PROGRAM

Request a handle to a RC1000PP board
Resets FPGA and set clock

Configure the FPGA using a bit file FPGA configured, Program executed
' PPlOOOConfigureFromFile() , automatically

Do initialisation routine Do initialisation routine

Setup DMA channel
PP1000SetupDMAChannel()

Request access to memory bank 1
PP1000RequestMemoryBank()

Transfer data to on board memory
PPlOOODoDMA I I

Release memory
PPlOOOReleaseMemoryBankll

Send signal to FPGA ' Wait for signal from host
PPlOOOWriteControl() PP1000ReadControl()

Request access to the memory bank 1
PP1000RequestMemoryBank(Ox2)

Read from memory bank 1
PP1000ReadBankl()

Release memory
PP1000ReleaseMemoryBank(Ox2)

Process data and compute result

Wait for result from FPGA .I

'
Send result to host

PP1000ReadStatus() PPlOOOWriteStatus()
Format and display result

Figure 3.9- An example of Host~FPGA Communication Process

3.9 Summary

In this chapter, the project requirements have been established. We have looked at

the details of CAN data formats and touched on some important features of Handel~C.

In next chapter, we will look at how the implementation of a simple CAN 2.0 A was

designed.

38

Chapter 4 Design

4 Design of the CAN Network

This chapter describes the design of a CAN network that consists of three hardware

nodes that will communicate with each other using CAN protocol. Messages will be

transmitted in form of CAN 2.0A standard dataframes. Overall operation of the system

will be controlled by software. Discussions will start with the approach, followed by the

conceptual level design ideas and exploration of the viability of each design.

4.1 Approach

Basically, the execution of this project will not follow any one particular Embedded

System Design Methodology - rather, ideas from a few methods will be considered.

Some important factors that are considered when outlining the strategy of the execution

are as follows:

• The aim of this project IS to create a functional implementation with a

reasonable degree of performance

• The objective is to study the implementation rather than produce a marketable

product

• The architecture (FPGA) and tools (C, Handel-C) are pre-selected

• The use of reconfigurable device (FPGA) will makes it possible to optimise the

whole system through refinement

39

Chapter 4

SPECIFICATION
&

ARCHITECTURE
SELECTION

MODELLING
(SW simulation)

SOFTWARE
SYNTHESIS

HARDWARE
SYNTHESIS

OPTIMISATION &
REFINEMENT

Figure 4.1 - Development Plan (Based on HW/SW Co·design Model)

Design

• The use of Handei-C to programme the hardware means that it is possible and

relatively easy to initially write the entire system in software, do partitioning and

re-write the hardware parts.

The basic method will be based on conventional embedded system design

methodology plus a few ideas taken from SystemC-based design flow (Figure 4.1). The

outline of the methodology to be employed is as follows:

• Specification - based on project specification

• Architecture Selection- pre-selected, i.e. FPGA

• Modelling - a model of the network will be conceptualise at a high level using

functional blocks, then refined to lower levels, converted to algorithms and

flowcharts and finally written in C. The model will be entirely simulated in

software on a PC. At this phase, the system will start as an Untimed Functional

implementation and progressively refined to Timed Functional.

40

Chapter 4 Design

• Partitioning - those functions that perfonn low-level operations and those that

have good potential for parallelism are prime candidates for hardware

implementation.

• Synthesis - hardware implementation will be written in Handei-C and refined

for parallelism. Software codes in C will be re-written to accommodate

communication with the hardware.

• Optimisation & refinement - the whole system will be optimised for

perfonnance. Low level functions such as bus emulation will be refined.

4.2 High-level Design Ideas

Conceptually, the diagram in Figure 4.2 represents the network implementation.

It consists of three CAN controllers (nodes) connected to a CAN bus. The CAN bus,

FPGA

I
\

CONTROLLER 1 ' ,

CAN BUS

1CONTROLLER 2

' I
/

I

,'CONTROLLER 3

I

}

}

Figure 4.2 - The Proposed Network Logical Configuration

PHYSICAL LAYER

- Bit transmission

DATA LINK LAYER

- Media Access Control

- Logical Unk Control

- Frame transmission

APPLICATION LAYER

- Message transmission

-Scheduling

- "Scenario"

which fonns the physical layer of the network, is essentially two pieces of wire. In the

actual implementation, the bus wi11 be simulated through hardware logics. However, the

possibility of directly implementing the physical bus using hardware will be explored.

41

Chapter 4 Design

The data-link layer of the network will be implemented in hardware while the

application layer will be in software so that there is a degree of conformance to the OSI

layers in CAN model. This means that low-level functions such as frame transmission

and frame-level error handling will be done here. All messages received will be raised

to the application layer.

The application layer handles data at message level. It is essentially the heart of

the network operation. In the actual implementation, the software will be written to

handle the application layers for all three CAN controllers. It is likely to be run in an

executive cycle i.e. a big loop that executes a series of small operations. Each of the

controllers will take turn to send messages. A message sent by a controller is either

acted upon or ignored by the other two- depending on the identifier of the message.

Although early partitioning has been done and the way the system is split was

more or less determined, there was still a degree of flexibility in the configuration.

Some functions such as dataframe formatting, CRC computation and error handling can

be placed either in hardware or software. These options were explored during the

development process.

4.3 CAN Bus Emulation

As stated earlier, the CAN bus will be emulated - although physical

implementation will also be explored. Two viable options are message/token passing

and function emulation.

4.3.1 Message Passing

In message passing (Figure 4.3), a message is passed from one controller to the

next until it returns to its origin. The message originator sends the message to its

42

Chapter 4 Design

downstream neighbour, who in turn, passes the message to its downstream neighbour,

and so on until the message arrives back to the message originator. The data frame

could be modified slightly to accommodate a token field. The token can be used to store

the originating controller number so that it will know when the message has returned. A

CONTROLLER 1 CONTROLLER 2 CONTROLLER 3

Figure 4.3 CAN bus emulation by message/token passing

message is destroyed when it returns. More than one controller can send messages at the

same time. If the originator receives a different message than the one it sent out, it

simply becomes a receiver.

Obviously, this technique does not rrum1c a CAN system correctly at the

physical level. However it is good enough for the study of its functional behaviour.

Alternatively, the message passing could be done at bit level - an option that will

remain open for exploration.

4.3.2 Function Emulation

When the message passing bus emulation is verified to be working, the "bus"

can be refined further by emulating its function only. In this option, a separate logical

circuit device will be created to emulate the function of a CAN bus (F1gure 4.4). Each

43

Chapter 4 Design

CONTROLLER 1 CONTROLLER 2 CONTROLLER 3

Fioure 4.4 - CAN Bus Function Emulation

CAN controller will write bit data to the device and read from it as if it is a bus. The

"bus" will also perform bit-level arbitration.

The arbitration process was planned to be implemented as described in Section

3.2. Being able to emulate a CAN bus at its function level will give a better

understanding of the way the arbitration process is executed.

4.4 Arbitration Handling

When two or more CAN control lers start to write to the bus at the same time, an

arbitration process will occur. When the controllers write to the bus, only a dominant

value i.e. logic 0, get written to bus. A controller that has written a recessive value i.e.

logic 1 to the bus will back off and becomes a receiver.

In actual CAN, each controller has to synchronised itself with the network's

clock. Thus when they write a bit value to the bus, they do it at the same time. Every

controller on the network operates a specified clock rate. However, the CAN designed

44

Chapter 4 Design

m this project has no notion of clock as in actual CAN. The controllers were not

designed to work in parallel with other. Each of the controllers will be given a time slice

to execute its tasks. The controllers will take tum to write a bit value to the bus or to

read from it.

In order to emulate the arbitration process, the read and write process IS

separated into two phases that operate in cycles. In the first phase, each controller takes

tum to write one bit value to the bus until every controller has done so. In the second

phase, each controller takes tum to read one bit value from the bus. Then the two phases

are repeated again. This is shown in Figure 4.5.

When a controller writes a bit value to the bus, that value is "logical-ANDed"

with the bus value. For example, let say Controller I wants to write a 'I' to the bus; and

the bus has value of '0'; thus the effective value written to the bus by Controller I is a

'0' because 'I' AND '0' is '0'. Similarly, writing a '0' to a 'I' will also result in a '0'.

To make this sub-process work, the bus must be reset to logical I at the start of each

write phase. At the end of the phase, if every controller has written a '1' to the bus, the

bus value will remain as '1'. If any of the controllers has written a '0 to the bus, the bus

value will change to a '0'.

READ PHASE WRITE PHASE

CONTROLLER 1 READS
CONTROLLER 2 WRITES

CONTROLLER 2 READS
CONTROLLER 3 WRITES

CONTROLLER 3 READS

Figure 4.5- The Write & Read Cycle

45

Chapter 4 Design

After a write phase, the controllers will enter a read phase, where every

controller will take tum to read from the bus. Any controller that found that the value

read from the bus is different from the value that it has written previously will know that

it has lost the arbitration process. It will then has to back-off and becomes a receiver. If

none of the controllers lost the arbitration, the "write and read" cycle will be repeated

again for the next bit, until only one controller remain as the sole message sender.

Because of sequential nature of this scheme, it works well whether the program

is software simulation or actually executed on the hardware. However by utilising the

simple time-slicing technique the controller nodes appear to work in parallel. The

process described above can be further enhanced with parallelisation. This technique

will involve running Handel-C functions in parallel. Detailed discussion regarding this

enhancement is presented in Chapter 7.

4.5 Hardware/Software Partitioning

In a any embedded system, some of the system's functions will be implemented in

hardware while the rest will be in software. Some functions work better if implemented

in hardware while some will work better in software. Conventionally, finding the

optimum partitioning will take into account development time, the overall performance

of the system, ease of use, code size and customisability. In this project however, the

system will be partitioned so that at will closely resemble the OSI layers in CAN as

described in Chapter 2 (Figure 2.4)

4.5.1 Partitioning strategy

The first implementation of the system will be done totally in software. Once a

system that meets the functional requirements is produced, some of the functions will be

moved to hardware. Those functions that perform low-level communication processing

46

Chapter 4 Design

will be the obvious choice because they contribute the most to performance bottlenecks.

In this particular project, these are the functions that are located at the physical layer.

High-level functions i.e. those located at the application layer, will be left in the

software. Other functions will either be moved to hardware or left in software

depending on whether they contribute significantly to the overall performance of the

system. Refinement and optimisation will be done until a satisfactory result is obtained.

4.5.2 Prototyping

The normal Handel-C program development was followed. The first step is to

write a basic version of the program in C to test out the correctness of the algorithms.

Several small programs can be written, each testing a certain algorithm or certain

portions of an algorithm. When it is satisfied that the algorithms are correct, the C

program is to be ported to Handel-C. Certain part of initial C program will be changed

to conform to Handel-C or to take advantage of certain features not available in

conventional C.

The Handel-C program can be sun in a simulation on the development PC

without the need for an FPGA hardware board. When satisfactory result is obtained

from the simulation, the necessary host program is written. The host program acts as a

front-end to the FPGA program.

4.5.3 Software Simulation

The initial implementation of the main algorithms was written in C to verify

their correctness. The main advantage of this approach is that C is more flexible

compared to Handel-C in term of its type handling. In Handel-C, data of different width

cannot simply be mixed in the same statement. Thus, writing in C allows the idea to be

explored without worrying about the underlying data width.

47

Chapter 4 Design

The efficiency of the C compiler also means that several versions of the codes,

each with different approach to the same idea, can be tested rapidly. And lastly, because

CIC++ has an extensive list of input output functions compared to Handel-C, debugging

by data comparison can be done easily.

CIC++

Handei-C I

CIC++

Prototyplng: totally in software
(CC++)

Porting: converting from CIC++ to
Handei·C

Simulation: input/output from/to files

Partitioning: into hardware &
software (host) parts

Test: verify functionality

Figure 4.6 Hardware/Software Partitioning Strategy

4.5.4 Porting C to Handei-C

Once the basic idea was successfully implemented in C, the program was ported

to C. When porting from C to Handel-C the following main tasks were done:

• specifying data widths

• breaking certain compound expression into simple statements

• modifying codes to take advantage of Handcl-C features

In the first task, most of the data of type int were converted to unsigned int 8.

Several variables whose values can exceed 255 were converted from int to unsigned int

16. Several data were converted to their exact width as in the CAN specification. As an

48

Chapter 4 Design

example, four important variables that correspond to four fields in the CAN dataframe

are defined as follows:

#define nCTRL 3

unsigned int 12 arbit[nCTRL];

unsigned 1nt 6 control[nCTRL];

unsigned int 8 data[nCTRL] [8];

unsigned int 16 crc[nCTRL];

II Arbitration field

/1 Control field

//Data field

II CRC field

Being able to set the data widths to exactly the same widths as used in an actual

CAN dataframe has one main advantage. The data can be manipulated without worrying

about extra unused bits. In conventional C, the width of a data cannot be arbitrarily set

non-standard values of 8 (for char), 16 (for int), 32 (for float) or sometimes 64 bits.

There are extensions in Microsoft C++ to set int to 8 bits but this is not standard.

4.5.5 Hardware Simulation

The DKI development environment includes several features to make system

development easier. One of the features is the ability to run a simulation of a Handel-C

program on a PC without the need for an FPGA board. To run a program in a

simulation, its build crmfiguration is set to debug [28].

The main limitation of the simulation mode is the lack of proper input and

output constructs. Input and output are handled through channels. An input channel can

be defined using the chanin keyword and output by using chan out. An input file must be

specified for every chanin definition while for chanout, a file is optional. During

simulation, the program will read from the input files specified and send its output to the

output files. If no output files were specified, the output will be displayed in the debug

window of the DKI development environment.

49

Chapter 4 Design

Each file can only be assigned to one inpuUoutput channel and each channel can

only read one data per line. Thus, an input file normally consists of a column of

numbers each on a line of its own. The same limitation applies to the output files.

To overcome this limitation, sample data input was hard-coded into the program

and the outputs were written into several output files. These files were then inserted into

a pre-formulated spreadsheet so that more effective debugging could be made. Using

the spreadsheet, values of various counters, status and other data could be verified

against each other. When incorrect values were found on the spreadsheet, corrections

were made in the program codes and the process was repeated. These were done until a

satisfactory result was obtained. A copy of the output spreadsheet is in the appendix.

4.6 Summary

The basic idea discussed was to create a network of three CAN controller nodes in

an FPGA. Basic communication protocol was to be built inside each node while the

whole operation of the system is to be controlled by software. Two inter-node

communication techniques were discussed (message passing and bus function

emulation) and function emulation was found to be a more accurate representation of an

actual CAN bus. The implementation of this design is described in next chapter.

50

Chapter 5 Implementation

5 Implementation

This chapter presents the end product and describes the various components of the

system and how they interact with each other. A walkthrough of a typical operation of

the system is presented. Critical functions of the programs and how they work are also

discussed.

5.1 The System

The system consists of a hardware subsystem and a software subsystem. Both are

essentially made up of one program each. The program for the software subsystem is

referred to as the host program and the hardware program is referred as the FPGA

program. The host program runs on a PC and is written in C++. It was developed as a

command prompt mode program. The FPGA program is written in Handel-C.

Basic Setup

,------~---,

Host Program .. I Messages 7 FPGA program !

I
., ---- .• I

~N~de-~ Node j Node ! I
: 0 1 . 2 I 1
, ___ ·-·I •...• ---•!

' . I
I ___ _'{ -- _____ '{ _______ ,._ __ !

"CAN bus" !

Figure 5.1 - Basic Setup of the Host and FPGA programs

51

Chapter 5 Implementation

The host program plays the role of the application layer in the OSI Reference

Model while the hardware acts as the Data Link and Physical layers of CAN. The

application layer in the host program communicates with three virtual CAN controller

nodes (data link layer) in the FPGA as shown in Figure 5.1. The nodes are connected to

a virtual CAN bus (physical layer). The CAN controller nodes are executed as virtually

independent units by the FPGA programs. The FPGA program acts as a sort of

intermediary between the host and the nodes.

5.1.1 Walkthrough

When the system is started, it initialises the variables and hardware and presents

the user with a simple menu as shown in Figure 5.2. As an example, an operation of

sending a message from the first node will be discussed. This operation is done by

pressing selecting option 1 from the menu.

When key 1 is pressed, the host program will send a message to the FPGA. The

host message contains the number of the recipient node (in this case, node 0), a message

identifier, length of the data and the data itself. This information will be displayed on

the screen (Figure 5.3). The receiving node will process the host message to convert it

into a suitable format i.e. a dataframe (Figure 3.1) to be written to the CAN bus. It this

point, the node will change its mode into a sender.

Other nodes in the network, upon detecting a message sent by node 0, will change

their mode into receiver and start reading the message into their own dataframe. When

the message transmission is completed, each receiver will send a message to the host

program. The messages received will be displayed on the screen (Figure 5.4). It can be

verified in a successful transmission that the host messages sent and received would be

identical.

52

Chapter 5 Implementation

Figure 5.2 -Host Program's Menu

It-> Msgiype:t:t lte~s:12 0 100d 5~ ?0F ?31 82R 838 84I 0 0 0 0
ISendHost OJ<.

Figure 5.3 - Host sends a message to Node 0

<-OJ<.

Message received: 1 / 100 / 5 / F I R S I

<-OJ<.

Message received: 2 / 100 / 5 / F I R S I

Figure 5.4 - Host receives messages from Node 1 & 2

53

Chapter 5 Implementation

At any time, the user can press any of the option keys in order to execute intended

operation. Table 5.1 lists all the available option keys and their operations. Figure 5.5

shows an example how status reports were received when the S-key was pressed several

times. The trace mode can be toggled on and off by pressing the T-key. This was used

extensively during debugging. The program can be ended by pressing the Q-key. When

it ends, the program sends an appropriate message to the FPGA and closes the RClOOO­

pp board.

Key Pressed Action
1 Sends a message to Node 0. Node 0 will write the data to the CAN bus
2 Sends a message to Node 1. Node 1 will write the data to the CAN bus
3 Sends a message to Node 2. Node 2 will write the data to the CAN bus
s Requests status report from FPGA
T Toggles trace(debug) mode
Q Ends the programs

Table 5.1 -Host Program Responses to Key Presses

I ,-> MsgType: 5:5
SendHost OJ<.
I
,Status t•eceived fl'Oill CAN nodes ••.

! Node Mode BitU \h•ite Read
I U0 SEND 8 0 0 [88,.01 I

I U1 RECU 8 0 0 [0,.881

I
U2 RECU 8 0 0 [88,.88 1

i -> Msglype:5:5
.SendHost OJ<.
i
Status t•eceived h•o111 CAN nodes •••

Node Mode BitU \·ll'ite Read
U0 SEND 9 0 0 [88,.01
U1 RECU 9 0 0 [0,.881

I

U2 RECU 9 0 0 [88 .. 881

;-> Msglype :5:5

1

sendHost OJ<.

'status t•eceived h•o111 CAN nodes •••

Node Mode BitU \·h•ite Read
U0 SEND 10 1 1 [88 .. 01
U1 RECU 10 0 1 [0,.88 1
U2 RECU 10 0 1 [88,.881

Figure 5.5 - Getting Status Reports from FPGA

54

Chapter 5 Implementation

5.2 The Host Program

During execution, the program on the PC acts as a host to the FPGA program.

Every input into and output from the FPGA program goes through the host. When

started, the host program loads the FPGA program from its bit file into the hardware

using the following function call:

PPlOOOConfigureFromFile(Handle, •canfpga.bit");

In the above statement, PPlOOOConfigureFromFile 11 is one of library functions

of the RClOOO-PP board. "canfpga. bit" is the name of the bit file that was built from

the Handel-C program written for the FPGA. Handle is the handle obtained when

openmg an RCIOOO-PP card by usmg such command as:

PPlOOOOpenFirstCard(&Handle);

The FPGA program will then start automatically. As a control measure, the FPGA

program was written so that at the beginning the execution it will wait for a signal from

the host before executing its main routine.

The host program controls the overall operation of the CAN controller nodes. When

it wants to send some data through node 0, it will send a message to the FPGA program.

The message contains a node number, a message ID and the data itself. When the FPGA

program receives a message from the host, it will store it and flag the intended node.

The host then will wait for the FPGA program to return another message indicating that

the data has been successfully sent and received.

To a user, the host program offers a menu of commands as listed in Table 5.1. It

continually waits for the user to press a command key. When a command key is

pressed, it will act accordingly. On most commands, the host program will send a

message to the FPGA (Figure 5.6). The type of messages that can be sent to the FPGA is

listed in Table 5.2.

55

Chapter 5

Host: Main Function

START

Send Data?

N

N

N

Quit?

y

8

y Send Data

Y Send Request

Y­

i

y

Figure 5.6 - Host's Main Flowchart

Implementation

N

At the same time, it also waits for any messages from the FPGA program. There are

only two types of messages sent by the FPGA: DATA and TEST. When a message of

type DATA is received, its contents will be displayed in the following format:

c I id I n I data 0, data 1, _ , data n-1

56

Chapter 5 Implementation

In this fonnat, c is the controller node number, id is an identifier for the data, n

is length of the data in number of bytes; and data 0 to data n-1 are the actual data.

Each component of the message is one byte in size. As discussed earlier in section 3.1.2,

the identifier in a dataframe is 11 bits in size. Thus, during conversion from a host

message to a dataframe (and vice versa), the first three MSBs of the identifier are

ignored.

TYPE DESCRIPTION

DATA Contains a message to be sent into the CAN bus

STATUSREQ Request status report from the FPGA

TRACEON Switch on "trace" mode

TRACEOFF Switch off "trace" mode

TEST Used to test host-FPGA communication and for debugging

ENDPRG Signals end of program: close the hardware and end program

Table 5.2 -Types of Messages from Host to FPGA

5.2.1 Functions

The followings IS a list of all the functions m the host program and their

descriptions:

• Handler 1) -handles errors related to access to the RClOOOPP board.

• initialise() -initialises the RClOOOPP board i.e. installs the error handler,

open the first RClOOOPP card available, sets clock rate and loads bit file.

• fpga_has_message 1) - checks whether the FPGA program has a message to

send.

• setup_message 1) -prepares the message to be sent to the FPGA in a suitable

fonnat.

• display _message 1) - displays the contents of message received from the

FPGA.

• receive_fpga 1) -receives message from the FPGA.

57

Chapter 5 Implementation

• send_fpga 1 1 -sends message to the FPGA.

• main 1 1 -main function of the program; contains one main loop that checks for

key press from the user and acts accordingly. It responses to certain inputs as

listed in Table 5.1

HOST

Start
Load FPGA program (.bit)
Wait for FPGA to get ready

Loop
Read user input
If "send message"

Send message to FPGA
If "request status"

Receive status from FPGA
If FPGA has message

Receive message from FPGA
Display message

Repeat

FPGA

Main f~nclion

Start
Tell Host: "Ready"

Loop
Do write

Controllers 0, 1, 2, ...
Do read

Controllers 0, 1, 2, ...
I Write status
I Repeat

I

Host sends message to FPGA (node)

If have message to send
Tell FPGA: "Have Message"
Send message to FPGA

I

I
Query host for message
If host has message

I
Get message from host
Node creates data frame

I Node checks bus whether it is free
I If bus is free
I Node writes dataframe to CAN bus

I
Host receives message from FPGA

Query FPGA for message

If "has message"
Receive data from FPGA
Tell FPGA: "OK"
Display information

I Node scans CAN bus
I If other node is writing
I Node reads from bus into dataframe

I

I

I

Node writes ACK to bus
Tell host: "Have message"
Wait for "OK"

Table 5.3 - Host - FPGA interaction

58

Chapter 5 Implementation

When the programs are in trace mode, the execution of FPGA program is

moderated by the host program. At each read/write cycle, the FPGA will wait for a

message from the host. If the user chooses to request a status at every read/write cycle,

detailed changes in the CAN nodes can be verified. This is useful for tracing and

extensively used during debugging.

A summary of major tasks executed by the host program is listed in Table 5.3 in

form of algorithms for their relevant functions. It also lists similar information for the

FPGA program. Essentially, the table shows how the two programs interact with each

other.

5.3 The FPGA Program

The FPGA program is essentially made up of two parts: host communications and

bus communications. The host communications part consists of several functions that

handle the necessary communication with the host program. This involved a lot of

function calls to the RClOOO-PP library. The bus communication part consists of several

other functions that handle writing to and reading from the virtual CAN bus. This

involved a lot of bit manipulations and computation of data of various sizes. The

functions for bus communications are discussed in the following sub-section while

those for host communications will be described in Section 5.4.

5.3.1 Writing to the Bus

Two of the most critical tasks of a CAN controller node are writing to the bus

and reading from it. In this implementation, these tasks arc handle by two functions

called controller_wri te () and controller_read () . These two functions are

executed repeatedly in a cycle of two phases: write phase and read phase; very similar

to what has been described in Section 4.4 (sec also Figure 4.5). In each phase only one

59

Chapter 5 Implementation

bit of data is written to or read by any particular node. Executed repeatedly at a very

high speed, this gives an appearance that the nodes were running in parallel. This

technique is similar to time-slicing but without a fixed time allocated for each process.

A flowchart (some minor tasks have been omitted for clarity) for the main function of

the FPGA is shown in Figure 5. 7.

The controller_wri te 1 1 function checks the mode of the CAN node and take

certain actions as summarized in Table 5.4. The main task of the controller_wri te 1 1

function is to write each bit in a frame to the bus. It will also handle other tasks

depending on the mode it is in. If it is in a receive mode, it will check if it is pointing at

the ACK slot. If so, it will verify the data using CRC calculation. If no error is detected

from the calculation, the function will write an ACK to acknowledge that correct data

has been received. If the CAN node is in idle or wait mode, it will do nothing.

MODE Controller _write()

IDLE Do nothing

RECEIVE If ACK slot then write ACK

SEND Write frame to bus

WAIT Do nothing

Table 5.4- Tasks of controller_write() function

If a node is in send mode, it will call the write_frame() function which will write

the contents of its dataframe to the bus one bit at a time. Each time the function is

called, it will write one bit and increase its internal counter. While writing, it also does

bit-stuffing by calculating the number of consecutive identical bits. If the number of

identical consecutive bits is more than five, a stuff bit will be inserted.

60

Chapter 5

Receive message from host

y

...
(__ EN_o_)

y

FPGA: Main Function

START

Host has
message?

N

Read?

N

Read?

N

Node#~ Reads

omplet
Data frame

Read?

y_,

Send message to host

Send message to host

Send message to host

N

Figure 5. 7 - FPGA's Main Flowchart

61

Implementation

•
I

I

·~ ' '

I
I
I

I

I

"----1

Chapter 5 Implementation

A 'sending' controller node will also read back the value that it has written to

the bus. If it is not the same as the value that has written to the bus, that it knows that

either it has lost an arbitration (if the bit was from an arbitration field) or there was an

error while writing (if the bit was outside the arbitration field). If it has lost in an

arbitration process, the node will become change its mode to wait. In this mode, it

becomes a receiver while waiting the bus to be free and available for a re-transmission

(Table 5.5).

A 'waiting' controller node will know that the bus is available when it detected

idle time of more than the idle threshold of 10 bits. When it detected that there were 10

consecutive recessive bits (logic 1) on the bus, it will change its mode to send and start

transmitting its dataframe again. It will go through the arbitration process once again.

These steps are repeated until its dataframe has been successfully transmitted.

5.3.2 Reading from the Bus

List of tasks performed by the controller_read(1 function is listed in Table

5.5. Its main task is to read the bit of the dataframe from the bus. However, if it is in

idle mode, it will check whether other nodes are transmitting any data onto the bus. It

does so by scanning the bus for a Start of Header (SOF). An SOF is identified by a

pattern of 10 ones followed by a zero (11111111110).

A node that was in idle mode, upon detecting an SOF will change its mode to

receiver. In this mode, the node reads from the bus one bit at a time, removes any

stuffed bits (de-stuffing) and add the remaining bits into a dataframe.

62

Chapter 5

2

3

N

START

Stuffed bit?

N

ACK slot?

y

Control field?

N

End of
Frame?

y

END

y

N

y

FPGA: write_frame()

Write stuff bit to bus

Reset stuffing
counter

dentica
consecutive

bits?

y

Threshold?

N

Figure 5.8 - Flowchart for write_frame() function

63

Implementation

y_.: Set flag
(stuffed bit)

Chapter 5 Implementation

While reading from the bus, the node also checks if what it has written to is the

same as what it is reading. It also calculates the length of the frame and writes into the

ACK slot (Figure 3.1) near the end of the frame. Figure 5.9 shows a flowchart for the

read_frame 1 1 function which handled the operation described above.

MODE

IDLE

RECEIVE

SEND

WAIT

I controller read()

I

I

Scan for SOF (Start of Header)
If SOF found then Read Frame from bus
Else query for data from Host

Read Frame from bus

Read Frame from bus
If writing ARBITRATION field, compare written/read bits
If written bit <> read bit

Change mode to WAIT

Read Frame from bus
Detect whether bus is free
If bus is free

Change mode to WRITE

Table 5.5 -Tasks of the controller _read() function

5.4 Host- FPGA communications

Communications between the host program runmng on the PC and the FPGA

program running on the Celoxica RCLOOO-PP board were be done by using library

functions supplied with the board. The host can send data to the board and vice versa in

three modes: 1 bit, 1 byte and direct memory access (DMA).

The bit-size data transfer is handled by the following library functions:

Functions used in the host program:

• PPlOOOSetGPO 11 -set the GPO (general purpose output) pin

• PPlOOOReadGPI 11 -read the status of the GPI (general purpose input) pin

64

Chapter 5

2

3

FPGA: read_frame()

Start

N

ACK slot?

y

Control field?

N

End of
Frame?

y

End

y

N

y

Reset stuffing
counter

dentica
consecutive

bits?

y

Counter=
Threshold?

N

v-.

Figure 5.9- Flowchart for read_frame() Function

65

Implementation

Set flag
(stuffed bit)

Chapter 5 Implementation

Functions used in the FPGA Handel-C program:

• PPl o o OReadGPO () -read the status of the GPO pin

• PPlOOOSetGPI 1) -set the GPI pin

These functions were used by the host program to send an alert to the FPGA

program or vice versa. For example, the FPGA can be programmed to check the status

of the GPO pin at regular intervals using the PPlOOOReadGPO 1) function. When the host

wants to get the attention of the FPGA it sets the GPO pin to high using the

PPlOOOSetGPO 1) function. Upon detecting this, appropriate actions are taken by the

FPGA program.

The byte-size data transfer is handled by another set of library functions:

Functions for the host program:

• PPlOOOWriteControl () -send one byte of data to the FPGA

• PPlOOOReadStatus () -receive one byte of data from the FPGA

Functions for the FPGA Handcl-C program:

• PPlOOOReadControl () -receive one byte of data from host

• PPlOOOWriteStatus 1) -send one byte of data to host

When the host sends a data to the FPGA by calling a PPlOOOWriteControl 1)

function, the FPGA receives it through a corresponding PPlOOOReadControl 1)

function call. Multiple bytes can be sent and received by having an appropriate number

of function calls in the host program and the same number of corresponding function

calls in the FPGA program. This method is used for sending messages from the host to

the FPGA and vice versa.

One common property of this set of functions is that if for example the FPGA is

expecting a byte of data from the host through the PPlOOOReadControl () function, it

will not continue until the data is received. This particular property of the functions is

66

Chapter 5 Implementation

useful in adding a trace operation to the system where the host needs to send "stop and

start" signals to the FPGA. The other pair of functions (PPlOOOReadStatus () and

PPlOOOWriteStatus ()) also behave in a similar way and were utilised in similar

manners.

Message from HOST to FPGA

HOST FPGA

Set Flag [r~e~dGPO) ' (SetGPO)
I i

Flag set?

~
Send Message Length Get Message Length

(WriteControl) (ReadControl) i
:

Send Rest of Msg Get Rest of Msg l
(WriteControl) (ReadControl) !

I

Figure 5.10 - Sending Message from Host to FPGA

The third mode for data transfer, the DMA, is handled through the following set of

library functions which allow direct access to the onboard memory blocks of the

RC 1000-PP card []:

Functions for the host program:

• PPlOOOSetupDMAChannel () -set up a DMA channel

• PPlOOORequestMemoryBank () -request access to a memory bank

• PPlOOODDMA() -execute the DMA data transfer

67

Chapter 5 Implementation

• PPlOOOReleaseMemoryBank I I -relinquish access to a memory bank

• PPlOOOSetupDMAChannel 11 -close the DMA channel used

Functions for the FPGA Handel-C program:

• PPlOOORequestMemoryBank 11 -request for access to a memory bank

• PPlOOOWriteBankl 1- write to a memory bank

• PPlOOOReadBank 11 -read from a memory bank

• PPlOOOReleaseMemoryBank I I -relinquish access to a memory bank

5.4.1 Host-FPGA Message Transmission

The set of commands for bit-sized and byte-sized data transmission described above

were utilised for sending messages from host to FPGA. All message types described in

Table 5.2 were sent this way. When the host wants to send a message to the FPGA, it

will alert the FPGA by calling a PPlOOOSetGPO 1 1 function and pushing the first byte of

the message by calling a PPlOOOWriteControl 11 function. The FPGA, upon detecting

this signal, read the first byte by calling a PPlOOOReadControl 11 function. The first

byte contains the length of the rest of the message in number of bytes. The host will

subsequently push the rest of the data to the FPGA byte hy byte using the same

PPlOOOWriteControl 11 function as many times as needed. The FPGA read the bytes

by calling the PPlOOOReadControl 11 function the same number of time. A flowchart

for this process is shown in Figure 5.10.

The process of sending a message from the FPGA to the host was handled in the

same manner but by usmg the PPlOOOSetGPI I I, PPlOOOReadGPI I I,

PPlOOOWriteStatus 11 and PPlOOOReadStatus 11 functions.

The DMA functions were used for status reporting. The FPGA will write critical

values such as bit counts, modes of controller nodes etc to a memory bank at every

write/read cycle. Because of the way the function set work, the host can read these

values at any time without interrupting the controller nodes.

68

Chapter 5 Implementation

5.4.2 Data Buffers for Host-FPGA communication

A message is transmitted from the host to FPGA and vice versa in a data buffer.

The buffer is twelve words long and its format is shown in Figure 5.11. The same buffer

is also used for transmitting test messages between the two sub-systems. Variables to

accommodate the buffer were defined as an array of char in the host's CIC++ program;

and as an array of unsigned int 8 in the FPGA's Handei-C program. During debugging,

the size of the buffer has been increased to accommodate the test data transmitted.

No: 0 2 3 4 5 6 7 8 9 tO t t

Msg Data Data Data Data Data Data Data Data Data Data
Node#

ID length 0 t 2 3 4 5 6 7 8

Figure 5.11- Message Buffer Format

When the host wants to send a message to the FPGA, it will set up the buffer by

calling a function named setup_message 1 1 (see Listing Ll in the appendix). This

function writes vital information into the buffer an·ay so that it is ready for transmission.

When the buffer is set up, it is sent to the FPGA through a function named

send_fpga 1 1 (see Listing L2 in the appendix). This function sends the contents of the

buffer one byte a time to the FPGA. Sending a message from FPGA to host is also

handled in a similar manner.

At the end of each write/read cycle, the FPGA stores vital information into a

status buffer. The format of the buffer is shown in Figure 5.12. This information is read

by the host program if so requested by the user and displayed on the screen.

No: 0 2 3 4 5 6 7 8 9 tO t t

Mode
Bit Written Read

Mode
Bit Written Read

Mode
Bit Written Read

0
Count Bit Bit

t
Count Bit Bit 2 Count Bit Bit

0 0 0 t t 1 2 2 2

y

Node o Node t Node 2

Figure 5.12 -Type 2 buffer contents (CAN nodes status)

69

Chapter 5 Implementation

5.5 CRC Calculation

To verify that any frame sent out by a transmitter is received correctly by a

receiver, cyclic redundancy checking (CRC) is employed. In order to carry out the CRC

calculation, the divisor is defined as the polynomial. The coefficient of the polynomial

is given by the de-stuffed bit stream consisting of Start of Frame, Arbitration Field,

Control Field and Data Field (if present). The bit stream is padded with 15 zeroes. This

bitstream is divided with the following polynomial:

Bit 15 of the polynomial can be ignored in the actual calculation. Thus the

polynomial value used is 4599hex. The remainder of this polynomial division is the

CRC Sequence transmitted over the bus. In order to implement this function, a 15-bit

shift register is used. The following algorithms (Figure 5.13) [8] was referred to when

coding the CRC calculation for the CAN controllers. Written in Handel-C, the

equivalent codes are as shown in Listing L3 in the appendix.

Portion of the dataframe that was included for CRC calculation are the

arbitration, control and data fields. The result of the calculation is appended as a CRC

field located after the data field.

CRC_RG = 0;
REPEAT

CRCNEXT = NXTBIT EXOR CRC_RG(14);
CRC_RG(14:1) = CRC_RG(13:0);
CRC_RG(O) = 0;
IF CRCNXT THEN

CRC_RG(14:0) = CRC_RG(14:0) EXOR (4599hex);
END IF

UNTIL(CRC SEQUENCE starts or there is an ERROR condition)

Figure 5.13 - CRC Calculation Algorithm

70

Chapter 5 Implementation

Several other established methods of CRC calculation using lookup table have

also been considered but found to be unsuitable because they are based on 8, 16, 32 or

64 bit polynomial while CAN uses a 15 bit polynomial in its CRC calculation.

5.6 Summary

The implementation consisted of two programs: The Host (written in C/C++) and

The FPGA (written in Handel-C). Communications between the two programs were

handled by several library functions supplied with the RCIOOO-PP card. The two OSI

layers in CAN were totally implemented in the FPGA (hardware), closely resembling an

actual implementation of CAN. Testing and verification of the system is described in

next chapter.

71

Chapter 6 Evaluation/Testing

6 Evaluation!Testing

This chapter looks at the final artefact in light of the requirements identified in

Chapter 3. Three stages of evaluation are considered: internal, external and meta-level.

The internal stage will examine to what extent does the system produce the expected

results. The external stage will look at how much does it satisfy the requirements

discussed in Chapter 3. The meta-level stage will reflect on the process/method

involved in performing the investigation.

6.1 Internal Evaluation

The behaviour of the system is like a set of real CAN controllers communicating

with each other. Messages sent through one controller node are successfully received by

another. The controller operates at a very high speed, a message will only take a fraction

of a second to travel from one node to another.

Virtually, there are three CAN controller nodes in the hardware. Although

physically, this is not how real CAN is set up, nevertheless, the nodes mimic the exact

behaviour of real CAN controllers. Ideally, each node should be in its own hardware

and connected to each other by a pair of wires.

Overall, the system performs as expected and produces expected results. When a

message is sent from one controller, the other controllers will receive it correctly. When

more than one controller try to send messages at the same time, they will go into an

72

Chapter 6 Evaluation/Testing

arbitration process. The arbitration process has been verified to work correctly in the

simulation mode and can be traced in the actual program.

Much of the data produced in the FPGA program is used internally by the

program itself. It has been found that the most effective was of verifying that the values

produced are correct are by tracing the values in the simulation mode. In this mode, data

can be written to files. Due to the fact that the simulator allows only one series of values

to be written to one files, several files were created. These files were then merged into a

spreadsheet.

In the spreadsheet, critical values are listed side by side. They compared to each

other and how each of the series changes values are also verified whether it is correct or

not. A copy of the spreadsheet is available in the appendix.

6.2 External Evaluation

The system was built to consist of two CAN layers and one OSI layer. The CAN

layers are: Data Link layer and Physical layer. The OSI layer is Application layer. In

this implementation the function of the physical layer was simulated but the functions of

the other two layers were done exactly as in actual CAN system.

The Handei-C program was written without taking advantage of parallelism. The

three nodes operate in a sequential manner with time-slicing to give the impression of

parallelism. It is possible to write the program so that true parallelism can be achieved.

This is discussed in the next chapter.

The controller nodes also operate without a reference clock. However, since

each of the nodes takes tum to write and read one bit value at each execution cycle, they

appear to operate by referencing to a "virtual clock". However this virtual clock has

variable period. Its period increases and decreases cycle to cycle depending upon the

calculation and operation it the program has to execute.

73

Chapter 6 EvaluationfTesting

Overall, the set of programs gave a satisfactory result in emulating the function

of a controller area network. Vital features of CAN listed below were successfully

incorporated:

• Bit-sized data transmission

• Bit stuffing while sending

• Bit de-stuffing while receiving

• Non-destructive bit-level arbitration

• CRC computation

The Handei-C program for the FPGA has been written in modular manner and in

such way that it can be easily adapted for parallelism. With little modification it can be

turned to contain only a single node. It is possible to run several copies of the program

on separate FPGA chips and hard-wire them to each other forming a physical network.

6.3 Meta-level Evaluation

When designing and developing this project, the conventional building cycle for

typical Handei-C project was followed. First, a software simulation of the network was

written in C/C++. This program simulated the functions of three CAN controller nodes

communicating with each other through a bit-sized bus. Protocol used for

communication was CAN version 2.0A. Using this program, the correctness of

algorithms were checked, particularly the creation of dataframe, bit-stuffing, de-stuffing

and non-destructive arbitration process.

Next, the software version was ported to Handel-C. Two major issues faced when

porting to Handei-C were the fact that Handei-C is very strongly-typed and that it was a

hardware synthesis language. Every values used in a Handei-C program must be of

fixed widths. If the width of a value was not specified, the compiler will try to compute

74

Chapter 6 Evaluation!Testing

it during the build process. However, most of the time, it failed to do so, thus the codes

must be changed to be more specific.

Being a hardware synthesis language, there are some constructs in Handel-C that

were specifically designed for hardware orientated operations such as bit manipulations,

RAM data type etc. Parts of the original C/C++ codes were changed to take advantage

of these constructs, particularly those for bit manipulations. For example, instead of

multiplying a value by eight (x * 8), left-shifts were used instead (x ~ x « 3).

It was also discovered that when the value of a variable of a certain width is

increased (x++), it will never overflow. It the value exceeded the maximum allowed

for that particular width, it will change to zero instead. For example, the following for­

loop will never end because the value for variable x will never reach 8:

void neverending(void }

unsigned int 3 x;
unsigned int 8 y;

for(x~O; x<8; x++)
{

y ~ 0@(3*x);

X++;

The Handel-C program can be run in a simulation mode or as loaded into and run

on an FPGA. The simulation mode has only simple input output channels to allow for

debugging. This has led to some difficulty in verifying vital values generated inside the

program. This was subsequently resolved by writing the values to several files and

reading them again into a spreadsheet as mentioned earlier.

The DK 1 package also came with a few plugins that simulate the function of

input/output hardware (seven-segment display and wave simulator) that can be

connected to an FPGA. Additional plugins can also be developed for other hardware

75

Chapter 6 Evaluation/Testing

simulations. However, due to time constraint, this avenue was not pursued. It could

have made the simulation more accurate and realistic.

The final stage of the development was writing a separate host program that

communicates with the Handel-C program through library functions. Once again the

codes concerning data input/output need to be altered. Debugging the communication

process was time-consuming because there were two programs to edit and building the

target bit file was a time-consuming two-step process.

An alterative to the above issue would be writing a general purpose host that

handles the host-FPGA communication and writing the FPGA program directly in

Handel-C. If the host-FPGA communication can executed efficiently, more effort can

be put into getting the Handei-C codes right. However, this alternative also could not be

pursued due limited resources.

Overall, the methodology employed was suitable for design and development of

the system. However, alternatives mentioned above are worth exploring.

6.4 Summary

The system was found to be an accurate representation of a basic CAN operating

using standard dataframes. The methodology and techniques employed were found to be

suitable for the project. However it is also noted that variations to the techniques

employed are worth considering.

76

Chapter 7 Conclusion & Further Work

7 Conclusion & Further Work

7.1 Conclusion

Functionally, the system developed as the result of this project satisfies the

objectives and requirements identified in preceding chapters. It has the fundamental

properties of a controller area network and operates as such. The system has been tested

and found to comply with the basic specification of CAN. Some of the more critical

features of CAN that have been satisfied were:

• Compliance with the OSI layers in CAN: Physical Layer and Datalink Layer;

and additionally an application layer as an interface between the controller nodes

and user.

• Data transmission between three CAN controller nodes through a virtual CAN

bus through CAN Protocol Version 2.0A.

• Creation of Standard CAN Version 2.0A dataframe including CRC computation.

• Transmissions of dataframcs into the CAN bus with bit stuffing computation.

• Retrievals of data from the bus and re-creation of dataframes from the data

retrieved including CRC.

• Communication between datalink layer (FPGA) and application layer (host).

• Simple user interface and status reports.

The system has been build as a basis for further exploration of a reconfigurable

system. It has been designed with future enhancement in mind. Its codes can be easily

altered to add more features. These features can be in form of CAN functionalities or

77

Chapter 7 Conclusion & Further Work

exploration in the aspect of system development studies as discussed in the following

section.

7.2 Further Work

Several enhancements can be made to the existing system as discussed in the

following sections.

7.2.1 Parallelising

In this implementation, the CAN nodes are not running parallel to each other.

They are executed one after another in a time-slicing fashion. Handel-C allows several

copies of the same function to be executed in parallel to each other. This is done by

defining the function as an array of functions. Without this construct, the only safe way

to run a function in parallel with itself would be to explicitly declare two functions with

different names.

The syntax for the definition of a function array of an arbitrary size is as follows:

returnType Narne[Size] (pararneterList);

For example, to redefine the write_ controller() function as an array of function,

we can re-write it to be as follows:

void controller_write[3] I void)

In the above example, only three nodes were defined. The number of nodes can

be increased simply by increasing the size of the array. Other functions should also be

parallelised so there will not be a conflict when two functions from the same array try to

access an identical function at the same time. However, care must still be taken because

78

Chapter 7 Conclusion & Further Work

sometimes the function arrays will try to access the same variable at the same time. The

best way of solving this potential conflict is by utilizing the semaphore construct of

Handel-C.

Semaphores are declared with the sema keyword. For example, a semaphore for

protecting the CAN bus can be defined as:

sema busSema;

Semaphores that have been defined can be controlled by two functions:

• tryserna (semaphore 1 - tests to see if the semaphore is owned. IF not, it

returns one and take ownership of the semaphore. If it is, it returns a zero.

• releaseserna 1 semaphore 1 - releases a semaphore that was previously taken

by tryserna (semaphore I.

For example a protected write_bus() function array can be defined as follows:

void write_bus[3] (serna *busSerna, unsigned int 1 bit)

while(tryserna(*busSerna)==O) delay; II wait till bus is free

bus_value bus_value && bit;

7.2.2 Physical Bus

The three CAN controller nodes in the system were interconnected through a bus

that complied to the properties of a CAN bus in term of its functionality only. If each of

the nodes is placed on a separate FPGA chips, they can be connected to each other

physically. The most popular form of CAN bus is a piece of twisted pair cable which

can be easily obtained because it is widely used in Ethernet.

79

Chapter 7 Conclusion & Further Work

With minor modifications, copies of the Handel-C program can be run on its

own chip. Each chip can be placed on a customized printed circuit board each with line

buffer/driver circuitry to drive the bus at correct voltage and current level. The functions

that write to the bus and read from it have to be re-written because they would be

writing to and reading from a physical bus.

By adding a clock function in each node, the controllers should be able to

communicate with each other correctly. Of course, error handling routines need to be

enhanced so that the system can handle problems associated with serial data

communications such as synchronization, bit drifting, data losses etc. This would be a

very challenging but highly interesting endeavour.

7.2.3 Graphical User Interface

At the user end, ease of use can be enhanced with a graphical user interface

(GUI) where the status of operation can be seen clearly, preferably with some graphical

representation of the network showing th movement of data from one node to another. It

will also be possible to showing the status of each node with colour or iconic indicators.

For example: gray when idle, green when sending, blue when arbitrating and red when

recelVlng. This GUI addition can be coded C++ with Microsoft Foundation Class

(MFC).

7.2.4 CRC Calculation

This implementation uses a 15 bit polynomial for its CRC computation. In this

project, the basic method of CRC calculation has been used. However, it is possible to

build a lookup table based on the 15 bit polynomial and write a faster code by utilising

the said table. This technique can improve the overall performance of the CAN

controllers.

80

Chapter 7 Conclusion & Further Work

7.3 Summary

Overall, a basic but expandable system been produced out of this project and

useful skill and knowledge were acquired through the whole process from the

investigation into the subject matter to the writing of this dissertation.

81

References

References

1 J G Ganssle. "The Art of Designing Embedded Systems", 1\:ewncs 2000

2 T M Conte. "Choosing the Brain(s) of an Embedded System", IEEE Computers July 2002

3 Philips Semiconductors (http://www.scmiconductors.philips.com)

4 Handel-C Language Reference Manual, Version 2.1, Celoxica 2001.

5 M Serra & W 8 Gardner, "Hardware/Software Codesign- introducing an interdisciplinary course", Univ.
of Victoria, Victoria. B.C. Canada, WCCCE Conference- Vancouver, 1998.

6 A Jantsch, P Eltervee, J Oberg, A Hemani, H Tenhunen "A Software Oriented Approach to
Hardware/Software Codesign", Royal Institute ofTechnology, Kista, Sweden, 1994

7 W Wolf ·'Computers as Components: Principles of Embedded Computing System Design", Morgan
Kaufmann Publishers, 2001: pp567-578.

8 CAN Specitlcatlon Version 2.0, Robert Bosch GmbH, 1991

9 KW Tindell, H Hansson, AJ Wellings ''Analysing Real-Time Communications: Controller Area Nctwrok
(CAN)"

10 G Coulouris, J Dollimore, T Kind berg, ''Distributed Systems- Conceptual Design'', Addison-Wesly 3/ed
2001

11 LB Fredriksson, "A CAN Kingdom Rev. 3.01 ",CAN Kingdom Specitlcat1on Manual. KV ASER AB 1995

12 Intel Introduction to In-Vehicle Networking, (http://dcveloper.intel.corn/dcsign/auto/autolxbk.htm) (April
2002)

13 Philips Semiconductors P8xCE598 8-bit microcontroller with on-chip CAN (http://wv .. w.­
semiconductors.philips.com)

14 Philips Semiconductors SJAlOOO Stand-alone CAN controller (http://www.semiconductors.philips.corn)

15 L Fredriksson ''Controller Area Network and the CAN protocol for machine control systems",
Mechatronics Vol 4 No.2 pp159-192: 1994

16 KM Zuberi, KG Shin, ''Real-time decentralised control with CAN", Proc. IEEE Conference on Emerging
Technologies and Factory Automation, pp 93-99, Nov 1996

17 L Rauchaupl, "Performance analysis of CAN based system~'', I 'l International CAN Conference. Mainz
1994

18 BP Upender, A Dean, ''Variabliity of CAN Network Performance''

19 L Lemus, J Gracia and P Gil ''Designing, modelling and implementing a Controller Area Network (CAN)
on a FPGA using VHDL, I 999

82

References

20 K Lennartsson and L Fredriksson, "Fundamental parts in SDS, DeviceNet and CAN Kingdom". 1995

21 L Fredriksson "Bluetooth in Automotive applications", Bluctooth '99 Conference, 1999

22 Kvaser CAN Pages- The CAN Protocol, http://wv..'w.b·ascr.com/can/prnlocol (Apri\2002)

23 I+ME ACTIA, ''Introduction to CAN- Controller Area Network", http://www.imc-actia.com/­
can intro.htm (I st March 2002)

24 S Nilsson "Controller Area Network- CAN InformatiOn" 1997, http://www.algonct.~e/­
-staffann/developer/CAN.htm (March 2002)

25 Accutest "The CAN Guru Classroom", http://www.act:utcst.co.uk (April 2002)

26 C Sweeney "Hardware Design Methodologies", Ce\oxica Limited 2002

27 Ccloxica, "RC\000 Software Reference Manual", Ccloxica Limited 2001

28 Celoxica, "OK! Design Suite User Manual". Celoxica Limited 2001

83

Listing Ll- setup_message() function

void setup_message(unsigned int node

unsigned int i;

node; I node :cF..:.mbe:;:
// t<Ic-::ssaqe ID

Appendix

Buffer[O]
Buffer[l]
Buffer[2]

o msgiD [node I ;
datalength[node]; /i Number of bytes of data

for (ioO; i<datalength[node]; i++]
Buffer[3+i] o data[node] [i]; /.' Tne c!G:ca ...

Listing L2- send_fpga() function

void send_fpga{ unsigned char msgtype, unsigned char Items)

unsigned char ReturnVal, i;

PPlOOOSetGPO(Handle, 1);

PPlOOOWriteControl(Handle, msgtype);
PPlOOOReadStatus(Handle, &ReturnVal);

/i Set flag

if(msgtypeooMESSAGErnsg I I msgtypeooSTATUSrnsg
{

PPlOOOWriteControl(Handle, Items);
PPlOOOReadStatus(Handle, &ReturnVal);

for (i=O; i<Items; i++)
{

PPlOOOWriteControl(Handle, Buffer[i] I;
cout << u

11 << (int) Buffer(i] << Buffer[i];
PP1000ReadStatus(Handle, &ReturnVal);

PPlOOOSetGPO(Handle, 0);
cout << ~\nOK." << endl;

A-1

/
1 Kes•:t fla<;.J

Listing L3 - CRC calculation routine

remainder ;::: 0;
i;:::O;

while I i<totlen I

Appendix

if I i<msglen nxtbit dataframe[ctrlno] [>];

14

else nxtbit " 0;

bit14 " 1 remainder A OblOOOOOOOOOOOOOO

crcnxt " nxtbit A bitl4;
remainder remainder << 1;
remainder = remainder & Ox7FFE;

if lcrcnxt) remainder A" Ox4599;

i++;

A-2

? 1: 0; I I Check bit

II shift left 1 bit
II clear bit#O

II remainder XOR poly

Spreadsheet for Data Verification (shown partially)

' ll!llt"'
1

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

28
29
30
31

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

'l~:':uf}tr''l:i~i!E~~- .:

'"""" IDLE
IDLE
IDLE
IDLE
IDLE

0 0 0 1 0
0 0 0 1 0
0 0 0 1 0
0 0 0 1 0
0 0 0 1 0

IDLE 0
IDLE 0
IDLE 0
IDLE 0
IDLE 0
WAIT 0
WAIT 0
WAIT 0
WAIT 0
WAIT 0
WAIT 0
WAIT 0
WAIT 0
WAIT 0
WAIT 0
WAIT 0

WRITE 0

WRITE 1
WRITE 2
WRITE 3
WRITE 4
WAITE 5
WRITE 5
WRITE 6
WRITE 7
WRITE 8
WRITE 9
WRITE 10
WRITE 10
WRITE 11
WRITE 12
WRITE 13
WRITE 14
WRITE 15
WRITE 16
WAITE 17
WRITE 18
WRITE 19
WRITE 20
WRITE 21
WRITE 22
WRITE 23
WRITE 24
WRITE 24
WRITE 25
WRITE 26
WRITE 27

WRITE 28
WRITE 29
WRITE 29
WAITE 30
WRITE 31
WRITE 32
WRITE 33
WRITE 34
WRITE 34
WRITE 35
WRITE 36
WRITE 37
WRITE 38

0 0 1 0
0 0 1 0
0 0 1 0
0 0 1 0
0 0 1 0
0 0 1 0
1 0 1 0
2 0 1 0
3 0 1 0
4 0 1 0
5 0 1 0
5 0 1 0
6 0 1 0
7 0 1 0
8 0 1 0
9 0 1 0
0 0 1 0
1 0 0 0
2 0 0 1
3 0 0 2
4 0 0 3
5 0 0 4
5 1 1 0
6 0 0 0
7 0 0 1
8 0 0 2
9 0 0 3

10 0
10 1
11 0
12 1
13 0
14 0
15 0
16 0
171

18 0
19 0
20 1
21 1
22 1
23 1
24 1
24 0
25 1
26 1
27 1

28 1
29 1
29 0
30 1
31 1
32 1
33 1
34 1
34 0
35 1
36 0
37 0
38 1

0
1
0
1

0
0
0
0
1
0
0
1

1

1
1
1
0
1
1
1

1
1
0
1
1
1

1
1

0
1

0
0
1

4
0
0
0
0
1
2
3
0
0
1
0
1
2
3
4
0
0
1
2
3
4
0
0
1
2
3
4
0
0
0
1
0

·' ,,-,,,.,~Jlf'C"''""·'' ~;f>j"' I' . •, . '""""'-11-J ,.
0 IDLE 0 0 0 1 0
0 IDLE 0 0 0 1 0
0 IDLE 0 0 0 1 0
0 IDLE
0 IDLE
0 IDLE
0 IDLE
0 IDLE
0 IDLE
0 IDLE
0 WAIT
0 WAIT
1 WAIT
2 WAIT
3 WAIT
4 WAIT

0 WAIT
1 WAIT
2 WAIT
3 WAIT
4 WAIT
0 WRITE
0 WRITE
1 WRITE
2 WAITE

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 1 0
0 2 0
0 3 0
0 4 0
0 5 0
0 5 0
0 6 0
0 7 0
0 8 0
0 9 0
0 0 0
1 1 0
2 2 0
3 3 0

3
4
0
0
1
2
3
4
0
0
0
0

WRITE 4 4 0
WRITE 5 5 0
WRITE 5 5 1
WRITE 6 6 0
WRITE 7 7 0
WRITE 8 8 0
WRITE 9 9 0
WRITE 10 10 0
WAITE 10 10 1
WAIT 0 11 1
WAIT 0 12 1
WAIT 0 13 1

1 WAIT
2 WAIT
3 WAIT
0 WAIT
0 WAIT
1 WAIT
0 WAIT
1 WAIT
2 WAIT
3 WAIT
4 WAIT
0 WAIT
0 WAIT
1 WAIT
2 WAIT
3 WAIT
4 WAIT
0 WAIT
0 WAIT
1 WAIT
2 WAIT
3 WAIT
4 WAIT
0 WAIT
0 WAIT
0 WAIT
1 WAIT
0 WAIT

0 14 1
0 15 1

0 16 1
0 17 1
0 18 1
0 19 1
0 20 1
0 21 1
0 22 1
0 23 1
0 24 1
0 24 1
0 25 1
0 26 1
0 27 1

0 28 1

0 29 1
0 29 1
0 30 1
0 31 1
0 32 1

0 33 1

0 34 1

0 34 1
0 35 1

0 36 1
0 37 1
0 38 1

A-3

1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
0 0
0 1
0 2
0
0
1
0
0
0
0
0
1
0
1
0

3
4
0
0
1
2
3
4
0
1
1
1

0 1
0 1
0 1
1 1
0 1
0 1

1 1
1 1
1 1
1 1
1 1
0 1
1 1
1 1
1 1

1 1
1 1
0 1
1 1
1 1
1 1
1 1
1 1
0 1
1 1
0 1
0 1
1 1

0
0
0
0
0
0
0
0
0
0
0
0
1
2
3
4
0
1
2
3
4
0
0
1
2
3
4
0
0
1
2
3
4
0
0
0
0
1
2
3
0
0
1
0
1
2
3
4
0
0
1
2

3
4
0
0
1
2
3
4
0
0
0
1
0

Appendix

· .. ·'1i:m~.-~r~~~~
IDLE 0 0 0 1 0 0 1
IDLE 0 0 0 1 0 0 : 'j
IDLE 0 0 0 1 0 0 1
IDLE 0 0 0 1 0 0 ·1
IDLE 0 0 0 1 0 0 ..• 1
IDLE 0 0 0 1 0 0 . • 1
IDLE 0 0 0 1 0 0 1_
IDLE 0 0 0 1 0 0 1
IDLE 0 0 0 1 0 0 .1
IDLE 0 0 0 1 0 0 ·1
IDLE 0 0 0 1 0 0 1
IDLE
IDLE
IDLE
IDLE
IDLE
IDLE
IDLE
IDLE
IDLE
IDLE
IDLE
READ
READ
READ
READ
READ
READ
READ
READ
READ
READ
READ
READ
READ
READ
READ
READ
READ
READ
READ
READ
READ
READ
READ
READ
READ
READ
READ
READ
READ
READ
READ
READ
READ
READ
READ
READ
READ
READ
READ
READ
READ
READ
READ

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 1 0
0 2 0
0 3 0
0 4 0
0 5 0
0 5 0
0 6 0
0 7 0
0 8 0
0 9 0
0 10 0
0 10 0
0 11 0
0 12 0
0 13 0
0 14 0
0 15 0
0 16 0
0 17 0
0 18 0
0 19 0
0 20 0
0 21 0
0 22 0
0 23 0
0 24 0
0 24 0
0 25 0
0 26 0
0 27 0

0 28 0
0 29 0
0 29 0
0 30 0
0 31 0
0 32 0
0 33 0
0 34 0
0 34 0
0 35 0

0 36 0
0 37 0
0 38 0

1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
1
0
0
0
0
0
1

0
1
0
0
0
0
1
0
0
1
1
1
1
1
0
1

1
1

1

1

0
1
1

1
1
1
0
1
0
0
1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0 ','1
0 .1
0 ,. 1
0 1
0 1

0 ' _1,
0 . 1
0 ,Ji-
0 ·t
0 '::,i
0 '.6·
1 fO·
2 .. 0

3 J: 0/
4 •0

0 't1t:··
0 ·;;_;OL:
1 ' o·
2 :}';ri~_

3 :~:-~o~
4 ,.,~ 0 -

0 ~:ih

6 ~i-~~\:':

1
2
3
4
0

1' ;
1
1
0

0 1

1 . 1
2 1
3 1
4 , __

0 • 0

·~··. 0
0
1 0
0 . 1

