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ABSTRACT 

In current embedded computer system development, the methodologies have 

experienced significant changes due to the advancement in reconfigurable computing 

technologies. The availability of large capacity programmable logic devices such as 

field programmable grid arrays (FPGA) and high-level hardware synthesis tools allows 

embedded system designers to explore various hardware/software partitioning options 

in order to obtain the most optimum solution. 

A type of hardware synthesis tool that is gaining significant footing in the 

industry is Handel-C. a programming language based on the syntax of C but able to 

produce gate-level information that can be placed and routed on to an FPGA. 

Controller Area Network (CAN) is an example of embedded system application 

widely used in modem automobiles and gaining popularity in manufacturing 

environments where high-speed and robust networking is needed. CAN was designed 

on a very simple yet effective protocol where messages are identified by their own 

unique identifiers. Message collisions are handled through a non-destructive arbitration 

process, eliminating message re-transmission and unnecessary network overloading. 

A project to design and implement of a version of CAN is presented in this 

dissertation. The project was performed based on hardware/software co-design 

methodology with the utilisation of the above-mentioned rcconfigurable computing 

technologies: FPGA and Handel-C. This disse11ation describes the concepts of 

hardware/software co-design and rcconfigurable computing: the details of CAN 

protocol, the fundamentals of Handel-C. design ideas considered and the actual 

implementation of the system. 
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Chapter 1 Introduction 

1 Introduction 

To most people a computer is equipment that we regularly use in the office, 

school or home to perform various tasks such as word processing, accounting and 

desktop publishing. Technically the type of computer that we are familiar with is called 

a general purposed computer. It is designed to perform various tasks from serious work 

such as database management to entertainment such as watching movies. 

Another type of computer that we use everyday but seldom see it as a computer 

is called an embedded system. Embedded systems can be found in modern domestic 

appliances such as washing machines, dishwashers and microwave ovens. Embedded 

systems can also be found in cars (e.g. auto-cruising and anti-lock braking systems), 

digital cameras, digital televisions, CD players, mobile telephones and a lot of others. 

Since the computer is embedded into a larger device, people seldom think of it a 

computer when they use it. In fact we use more embedded computer systems everyday 

compared to general purpose computers such as the personal computer (PC). 

1.1 Embedded Systems 

An embedded system is a combination of computer hardware and software 

designed to perform a specific function. It is a part of a larger system that may not be a 

computer. A general purposed computer like the PC is built on a general purposed 

hardware subsystem. Different software subsystems can be loaded on top of the 

hardware subsystem to perform different tasks. Unlike a PC, which can be used for a 
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variety of tasks, an embedded system perfonns a specific and fixed function. Its 

hardware subsystem is built from the outset to perfonn this function in the most 

efficient manner. Its software subsystem is written to complement the hardware. 

Because of this, embedded systems are usually very small and perfonn their intended 

function very efficiently [1]. 

Hardware is used mainly because of its perfonnance. A system built on 

hardware is thousands of times faster than an equivalent software system. A typical 

software system contains several layers of hardware and software, thus adding huge 

amount of overhead to the overall perfonnance of the system. However, hardware is 

less flexible. On the other hand, software is more flexible and easier to update. Thus, the 

software subsystem is designed to provide features to the embedded system. 

1.1.1 Embedded System Design 

Traditionally, developing an embedded system was done by writing a piece of 

software to suit a particular hardware architecture. The hardware is usually based on a 

certain type of microprocessor. A variety of microprocessors and microcontrollers with 

different features and strengths have been developed and produced by integrated circuit 

makers for different areas of application. There are microprocessors of varying data 

sizes (i.e. 8-bit, 16-bit, 32-bit etc.) developed for general purpose, and there are also co­

processors developed for specific purpose such as image processing (e.g. digital signal 

processors), mobile communications (e.g. Motorola MXl processor) and internet 

appliances (e.g. Philips TriMedia processor). Certain hardware is more suitable for 

small appliances while another is specifically designed for use in a harsh environment. 

Because the hardware sub-systems are pre-developed, the software sub-systems can 

only be developed after the hardware has been identified. [2,3] 

Design of embedded systems can be subject to many different types of 

constraints, including timing, size, weight, power consumption, reliability, and cost. 

Conventional methods for designing embedded systems require engineers to specify and 

design hardware and software separately. A specification, often incomplete and written 

2 
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in a non-formal language, is developed and sent to the hardware and software engineers. 

The hardware-software partition is decided a priori and is adhered to as much as is 

possible, because any changes in this partition may necessitate extensive redesign. 

Designers often strive to make everything fit in software, and off-load only some parts 

of the design to hardware to meet timing constraints [7]. 

1.1.2 Hardware/Software Co-design 

There are many different approaches of trying to solve the problem of embedded 

system design. Each has its own strengths and weaknesses. Some are more suitable to 

certain types of applications compared to others. With the advent of programmable 

hardware such as Application Specific Integrated Circuits (ASIC), the hardware can be 

designed and built in tandem with the software development- a methodology known as 

hardware/software co-design. In this method, the system's functions are partitioned into 

hardware and software sub-systems, developed separately, optimised, and finally 

integrated. A more detailed discussion about this methodology is presented in Chapter 

2. 

Reconfigurable devices such as Field Programmable Grid Arrays (FPGA) were 

often used for prototyping the ASIC designs [5]. Today, FPGAs are powerful and cheap 

enough to be used as the target hardware - giving birth to the Reconfigurable 

Computing System Development methodology. With this method, the hardware sub­

system invariably contains reconfigurable computing resources (usually FPGA) together 

with conventional processor. The processor takes care of the general-purpose 

computation while the reconfigurable hardware takes care of specific applications. The 

software sub-system is normally developed on a personal computer (PC) connected to 

the hardware. 

A major advantage of a reconfigurable computing system is that the hardware 

sub-system can be reconfigured to suite changes in the application requirements. The 

execution speed of dedicated hardware is retained but there is a great degree of 

functional flexibility. The logic within the FPGA can be changed if or when it is 
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necessary. For example, hardware bug fixes and upgrades can be administered as easily 

as in software. Obviously, during system development changes can be as often as 

needed in order to explore various configurations and features, with the objective of 

producing the most optimum solution possible. 

1.2 The Project 

In this project, the process of designing and implementing an embedded system 

using reconfigurable computing technology was explored. The embedded system 

application implemented was a network interface using the Controller Area Network 

(CAN) bus protocols. The system consisted of a hardware sub-system (on an FPGA) 

and software sub-system (on a Personal Computer). Embedded system design 

methodology and reconfigurable computing techniques were applied throughout the 

project. 

CAN is a serial communications protocols which efficiently supports distributed 

real-time control. It is commonly employed as a Local Area Network (LAN) to 

interconnect electronic devices in automobiles, thus sometimes referred to as Car Area 

Network. However, due to its simplicity and flexibility, it is receiving widespread use in 

a wide variety of embedded applications like industrial control where high-speed 

communication is required [23]. The fundamentals of CAN are discussed in Chapter 2 

and further treated in detail in Chapter 3. 

The aim of the project was to implement the functionality of a Controller Area 

Network (CAN) bus using hardware and software. In order to achieve this aim, the 

following functional objectives have been defined: 

• To demonstrate the operation of CAN as a network interface. 

• To demonstrate the operation of three CAN controller nodes communicating 

with each other using CAN protocol. 

4 



Chapter 1 Introduction 

• To demonstrate the control of the network operation using a personal computer 

(PC) interfaced to the hardware (FPGA). 

In achieving those objectives, the following non-functional objectives were also 

defined: 

• To deliver the implementation in a system of mixed hardware and software. 

• To design and develop the system using the practical methods and techniques 

normally employed in a typical embedded system development environment. 

• To design and implement the system using the concepts of Reconfigurable 

Computing. 

In this project the hardware subsystem was built on Field Programmable Grid 

Array (FPGA) while the software subsystem was written on a PC. The software 

subsystem was written in CIC++ using Microsoft Visual C++. The hardware was 

developed using Handel-C Programming Language - a hardware design language that 

is gaining significant footing the hardware/software co-design world. 

Handel-Cis a high-level language based on ISO/ANSI C for the implementation 

of algorithms in hardware. It includes extensions to C that provide features for 

describing the behaviour of embedded systems in hardware [ 4]. Basic features of 

Handei-C are discussed in Chapter 3. 

1.2.1 Outcomes/Del iverables 

The desired deliverable was a mixed hardware/software implementation of a 

CAN bus network interface. Several CAN "devices" interconnected via a CAN bus 

were to be built into an FPGA. The devices were to communicate with each other via 

the bus and controlled by programs running on a PC connected to the FPGA. 

Essentially, it was aimed to be a network that consists of: 
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• A CAN bus -emulating two pieces of wire that normally required in a CAN 
bus. 

• CAN devices- at least three simulated CAN devices communicating with 
each other. 

• Network Monitor/Controller- the PC wi II be used to monitor the network 
and for initiating data transfer from one node to another. 

At the end of this project, it was desired that the author would gain significant 

insight into the practical aspect of embedded system development. Along the way, 

significant understanding of the concept of Reconfigurable Computing was also aimed 

for. Valuable knowledge in the operation of CAN as a network interface and experience 

gained in the utilisation of Handel-C as a major part of the system development, can be 

shared through this dissertation. 

1.3 Overview of the Dissertation 

This dissertation is divided into seven chapters. This introductory chapter gives 

an overview of the project. In Chapter 2, important concepts are introduced and treated 

in more detail in order to set the appropriate background for further discussions in 

subsequent chapters. These concepts include Embedded System Design Methodology, 

CAN fundamentals, CAN protocols and CAN bus. Chapter 3 sets the requirements of 

the project by discussing specific CAN concepts in more detail. It will introduce the 

CAN data frame format and indicate how CAN handles arbitration. Handel-C, which is 

an important element of the project will also be discussed here. Several important 

Handel-C constructs and functions will be described in detail. 

Chapter 4 builds upon the background and requirements set in the preceding 

chapters. It introduces several design ideas and evaluates their strengths and 

weaknesses. It also discusses the approach taken for the design and development of the 

system. Chapter 5 describes the final product and also highlights how particular critical 

issues, for example hardware-software communications are resolved. 
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The system is the evaluated in Chapter 6. Evaluations are performed in relation 

to the objectives and requirements identified in preceding chapters. Chapter 7 concludes 

the dissertation by revisiting important elements of the project and by looking fmward 

to possible extensions to the current project. 

7 



Chapter 2 Background 

2 Background Discussion 

This chapter presents the background to the area of investigation and establishing 

the context of the problem. Several Important computing concepts will be introduced 

here. We will start with the bas1cs of embedded system development, continued by the 

motivation behind the development of reconfigurable systems. 

After establishing these important fundamentals, Controller Area Network (CAN) 

will be introduced. Befitting its role as the backbone of this project, the fundamentals 

and basic operation of CAN are covered in detail. 

2.1 Hardware/Software Co-design 

In hardware/software co-design methodology. hardware engineers and software 

engineers work on then· designs in parallel. G1vcn a !Jst ol requirements, des1gners 

consider trade-offs in how hardware and software components work together. Naturally, 

there is a need for good feedback and interaction between the two groups of designers. 

Decisions are evaluated on performance, programmability, area, power, development 

and manufacturing costs, reliability, maintenance etc. The ultimate aim is to exploit the 

synergy between hardware and software. [5] 

A critical issue in most hardware-software co-design is finding effective hardware 

and software partitioning early in the process (Figure 2.1). Early system partitioning 

means that designers are clearly aware of the extents of their designs. However, early 

system partitioning also means that optimisation can only be done at the sub-system 
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level. If the partitioning were later discovered not to give the optimum 

price/performance ratio, it still has to be used as it is. 

r·--
I H:-1r-.l\,','_-lr ·' 
iH.11d:~-1t'-- ~::-.1 .. ,, 

r jll \ 

-~I·- T"' ., 1 

System Concepts System 

Req. Analysis lnt~ration 

Software Req. Software 
Design & 

Analysis Test 

Figure 2.1 - Conventional Embedded System Design Process [5] 

In the conventional design process, early partitioning results in what is known a 

Model Continuity Problem i.e. the unavailability of reconfiguration options once the 

partitioning has been done. Model continuity is important because many complex 

systems do not perform as expected in their environment. Continuity allows the 

validation of system level models at all levels of hardware/software tmplementation. 

thus trade-offs are easier to evaluate at several stages. [5] 

Today, the availability of mature high-level and logic-level synthesis tools made it 

possible for various partitioning options to be simulated and evaluated. These tools 

allow for systematic exploration of trade-offs of hardware/software partitioning at the 

system level. They bridge the gap between and algorithmic specification and its 

implementation at the layout level. They also add a great degree of automation in 

hardware/software co-design. [ 6] 

In hardware/software co-design, interaction and the need for reconfiguration 

during the whole of the design process is greatly emphasised. A typical co-design 

process tlow is shown in Figure 2.2 where incremental evaluations are done at various 

stages of the development process [5]. Re-configuration is made possible by 

advancement in reconfigurablc computing technologtcs cspCL'tally FPGA and hardware 

synthesis tools. 
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Figure 2.2 - Unified Des1gn Env~ronment of Hardware/Software Co-des1gn [5] 

2.1.1 FPGA 

FPGA is a type of programmable device that can be configured for a wide 

variety of applications. Before FPGA, PLDs are generally limited to hundreds of gates, 

while FPGAs support thousands or even millions of gates. These gates and their 

interconnects are user-programmable. Some FPGAs include other logic elements such 

as random access memories, flip-flops and input/output buffers. By programming, other 

logic elements can be synthesised. Thus an FPGA can be programmed to perform a 

huge variety of functions. 

Usually hardware description languages such as VHDI. and Vai/og are used to 

describe the logic to be synthesised in an FPGA. A hardware description language can 

be used to describe the hardware at different levels of abstract1on i.e. gate level, register 

transfer level and behavioural level l! j. Computer Aided Design (CAD) vendors 

typically include various other tools such as simulator, performance analyser and system 

verifier. [26] 

Alternatively, the hardware can be described algorithmically - like software 

programming- using a conventional programming language variance or subset such as 

Handel-C. This alternative is becoming more attractive because current embedded 

systems are becoming more complex and require complex algorithmic solutions 
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equivalent to those employed 111 large soft\Vare systems. The· Handci-C programmmg 

language is discussed in Chapter 3. 

2.2 Controller Area Network 

Controller Area Network (CAN) is a serial communications protocols which 

efficiently supports distributed real-time control. It is a type of network that was 

designed to efficiently support distributed real-time control with a very high level of 

security [8]. It is commonly employed as a Local Area Network (LAN) to interconnect 

electronic devices in automobiles. Microchips manufacturers usually categorised their 

CAN-related products under In-Vehicle Ne!H'orking [ 1.', cj because CAN was 

developed in the automotive industry. However. 1ts domain of application ranges from 

high speed networks to low cost multiplex wmng 111 veh1cles and manufacturing 

environment. 

In automotive electronics, engine control units, sensors, anti-skid systems and 

others are connected using CAN because it is physically easier to install compared to 

conventional point-to-point wiring. It also requires a minimum amount of cables and 

connectors, thus weighs less. Effectively it is more cost-effective compared to the 

normal wiring harness. Another important reason of using CAN in vehicles is to enable 

any station to communicate with any other without putting too great a load on the 

controller computer [23]. 

Fundamentally, CAN is a type of Local Area Network (LAN). It 1s built on a 

collision-detection broadcast bus similar to Flhemel, a very popular type of LAN [9]. 

However. in Ethernet collision-detection forces conrlicting message senders to stop and 

resubmit their messages after a random interval. In CAN collision-detection signals the 

message senders to go into a nun-destructive arbitration process. This will be discussed 

further in Section 3.2. 
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2.2.1 Local Area Network 

A Local Area Network can be defined as a network of computers and other 

devices in a limited geographical area such as in a building or within a campus area. A 

common transm1ssion medium is shared hy all the participallng devices. through which 

they communicate w1th each other. They also share resources such as storage and 

printing devices. 

The communication and resource sharing is made possible because a network is 

always built using well-defined hardware and software specifications. These standard 

specifications allow the network to be built systematically and operated smoothly. 

2.2.2 051 Reference Model 

Modem computer networks are designed in a highly structured way. To reduce 

their design complexity, most networks are organized as a series of layers, each one 

built upon its predecessor. This structure is known as the OS! Reference Model (F1gure 

2.3), which is divided into seven layers which can be described as follows [1 0]: 

Layer 7: Application : Provides services that meet the communication requirements 

of specific applications, often defining the interface to a service. 

Layer 6: Presentation : Transmits data in a network representation that is 

independent of the representations used in individual computers. 

Layer 5: Session : Handles problems which are not communication issues such as 

detection of failure and automatic recovering 

Layer 4: Transport : Provides end to end communication control 

Layer 3: Network : Routes the information in the network 

Layer 2: Data Link : Provides error control between adjacent nodes 

Layer I: Physical : Connects the entity to the transmission media 

Layering brings substantial benefits m simpl1fymg and generalising the software 

interfaces for access to the communication serv1ces of a network. 
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2.3 The CAN Protocols 

The fundamental design of CAN has been mapped to the Data Link and Physical 

layers of the ISO/OSI Reference Model. The Data Link layer of CAN is further 

subdivided into two sublayers: Logical Link Control (LLC) and Medium Access 

Control (MAC) sublayers (Figure 2.4). The scope of the LLC sublayer contains the 

following functions: 

• to provide services for data transfer and for remote data request 
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• to decide which messages received by the LLC sublayer are actually 

accepted 

• to provide means for recovery management and overload notifications. 

CAN employs content-oriented addressing scheme. Communication is addressed 

by message identifiers instead of station identifiers as in normal LAN. Each message 

has an identifier that is unique throughout the network. It defines the priority and the 
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content of the message. When a station transmits a message. all other stations in the 

network become rece1vers. The LLC sublayer 111 each station will perform an 

acceptance test to determine whether the data received are relevant for that station. If 

the data is of significance for the station concerned. it is processed, otherwise it IS 

ignored. 

Data Link Layer 

LOGICAL LINK CONTROL 
Acceptance Filtering 
Overload Notification 

Recovery Management 

1---------·----·-·--·--
MEDIUM ACCESS CONTROL 

Data Encapsulation/Decapsulation 
Frame Coding (Stuffing, Destuffing) 

Medium Access Management 
Error Detection 
Error Signalling 

Acknowledgement 
Seri a I is at io n/Deseri a I is at ion 

Physical Layer 

Bit Encodmg/Oecoding 

Bit Timing 

1--·-- --
Driver/Receiver Characteristics 

..,._ .... -

...... -- ........................................ -...... _ ....... : 
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Figure 2.4 - OS! layers in CAN 

In other words, the sender of a message send a broadcast throughout the network 

and the receivers listen to the message and decide whether to act on it or not. No 

physical destination is required. Since the data transmission protocol does not require 

physical destination addresses for individual stations, the system has some degree of 

configuration flexibility. Nodes can be added to or removed from the network without 

bringing it down as long as the said stations are purely receivers. 

2.4 CAN bus 

The bus in a CAN network is a serial communication link onto which a number 

of nodes may be connected. The maximum number of nodes is only limited by delay 
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times and/or electrical loads on the bus line [8]. The bus consists of a single channel 

that carries bit values. Physical implementation of the bus is fixed by CAN 

specification, thus there can be several implementations (see Table 2.1). 

Bitstreams on the bus are coded according to the Non-Return to Zero (NRZ) 

method with bit-stuffing. The two logical b!l values on the bus is known as dominant 

and recessive. When there is a simultaneous transmission ol dominant and recessive 

1 = recessive 

0 =dominant 

+ 

Node Node 

F1gure 2.5- Physical and electncal organ1sation of a CAN bus w~red-AND implementation [7] 

bits, the bus will read as dominant. In the popular wired-AI\D implementation of the 

bus (F1gure 2.5) [7J, the dominant value is represented by a logical 0, while recessive by 

a lor;icall [8]. 

2.4.1 CAN Physical Layer 

Physically, a CAN bus is essentially a cable consisting two pieces of wire which 

are twisted over each other along their length. This type of cable is usually known as 

twisted pair - the most common type of cable used in normal LAN. Usually, CAN 

nodes are connected to the bus in a wired-AND fashion - 1f one node is writing a 

dominant bit (LOW) to the bus, then the whole bus is in dommant state, regardless of 
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the number of other nodes transmitting recessive (LOW) bits. Basic characteristics of a 

CAN bus is listed in Table 2.1 [22]. 

Characteristic 
Standards 

Maximum bus speed 

Maximum cable 
length 

Cable type 

Connectors 

Value 
• ISO 11989 - Two-wire balanced signalling scheme 
• ISO 11519- Low-speed two-wire balanced signalling 

scheme 

• 1 Mbit/s 

• 40 meters at 1 Mbit/s 
• 100 meters at 500 kbit/s 
• 200 meters at 250 kbit/s 
• 500 meters at 125 kbit/s 
• 6 kilometers at 10 kbit/s 

• 108 to 132 Ohms 
• Twisted pair 

• 9-pin DSUB proposed by CiA 
• S-pin Mini-C and/or Micro-C, used by DeviceNet and SDS 
• 6-pin Deutch connector, proposed by CANHUG for mobile 

hydraulics 

Table 2.1 - Physical Charactenstics of CAN bus 

2.5 Related Research 

Research in in-vehicle networking has resulted in many standards developed by 

various manufacturers and organisations. CAN is one of the few that are more popular 

than the rest. Large microchip manufacturers such as Intel, Philips and Fujitsu have 

produced several CAN implementations of their own. And further research into CAN 

has resulted in several extensions such as CANopen, DeviceNet and CAN Kingdom. 

CANopen is a CAN-based higher layer protocol originally developed for 

industrial control systems. The family of specifications includes also different device 

profiles as well as frameworks for specific applications. DeviceNet is also a CAN-based 

higher layer protocol developed based on an object-oriented communications model 
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[22]. CAN Kingdom is also another CAN-based higher layer protocol but was designed 

based on the concept of customisable network. In conventional network concept, 

devices connected to the network must be tailor-made to the network. Thus the system 

must conform to the network. In CAN Kingdom, the network will be tailor-made to suit 

the needs of the system. The system designer can create systems using virtually any 

type of bus management and topology- possibly making the system very flexible to the 

extent of making it very restrictive [11] 

2.5.1 Implementations 

Robert Bosch GmbH developed the CAN controller in the early 1980s and 

worked with Intel on the first tmplementation. The first implementation. 82526 

controller, was based on CAN version 1.2 while the latest controller released in 1993, 

the 82527, supports CAN version 2 OB [l?.j. Intel's programming model of CAN 

implementation is known as Full CAN while those implemented by Philips is known as 

Basic CAN. Most CAN controllers allow for both programming models to be used -­

and they are compatible with each other [22]. 

A few of other commercial organisations actively involved with CAN are 

Philips, Acutest, !+ME actia, and Hitex. Philips produces several versions of on-chip 

CAN controllers based on the popular 80C51 microcontrollcr family [13] and a few 

standalone CAN controllers as well [14]. Smaller companies like Acutest and !+ME 

actia make use of chips produced by larger companies, such as Intel and Philips, to 

conduct research on the application of CAN. particularly in the areas of in-vehicle 

networking and manufacturing automation. 

2.5.2 Academic Research 

Academic research in CAN is usually linked to real-rime systems such as the 

analysis done by Tindell et al [9] in which an idealised scheduling analysis for CAN 

was derived. A study on two CAN chips (Intel 82527 and Philips 82C200) were also 

done using the scheduling theory derived. Although CAN was originally designed for 
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in-vehicle network, today, CAN is used in applications other than in automotive 

electronics. Some studies of CAN applications in machine control S\'Stems were done by 

Fredriksson [ 15] and Zuberi & Shin I 16 I. Studies on CAN systems performance have 

been done by Rauchaupt [1 7] and Upender & Dean [l !3 J among others. 

A work stmilar to this project was done by Lemus et a! [19] - the 

implementation of CAN controllers as communication nodes in a distributed system. 

The controller was modelled using a hardware description language i.e. VHDL as 

opposed to this project, where the hardware will be programmed by a programming 

language variation, i.e. Handel-C. Twenty CAN controllers were connected the bus and 

their operational behaviour were studied. It was noted that the controllers used a global 

clock because bit synchronisation was not implemented. 

At the "physical layer", work on defining a single-wire CAN bus is in progress 

but the standard has not been established yet [22]. Also, there are several Higher Laver 

Protocols already developed and their practical application heing studied [20]. Other 

current research mvolved techmques for comhimng CAN wtth Bluetooth. Fredriksson 

of KV ASER discussed the possibilities and concerns in this area [21 ]. 

2.6 Summary 

In this chapter, we have looked at the concepts of hardware/software co-design and 

the fundamentals of CAN. We have discussed how the OS! layers in CAN relate to the 

lowest two layers of the OS! Reference Model. We have also seen that physically a 

CAN bus is very simple and easy to implement. Details of CAN such as its data format, 

arbitration and error detection are discussed in next chapter. 
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3 Detailed Requirements 

In order to identify the requirements of the project, we need to investigate the 

protocol of CAN. This chapter describes the details of CAN protocol and how CAN 

handles arbitration and enors. As the hardware synthesis was done using Handel-C, this 

chapter also introduces the basic of the Handel-C programming language and specific 

features which make it suitable for the intended purpose. A major part of the 

information in this chapter is obtained from technical specifications of CAN and 

Handel-C. 

3.1 The CAN Protocol 

There are two versions of CAN, each of which is based of CAN specification 

2.0A and 2.08. The two versions ditfer in the size of their identifiers. CAN 2.0A has a 

standard II bit identifier while CAN 2.08 has an extended frame containing a 29 bit 

identifier. CAN controllers from both versions can co-ex1st m the same network as long 

as the 2.08 type controllers send standard frames only [22]. 

3.1.1 Frame Types 

Message transfer is manifested and controlled by four different frame types: 

• Data Frame- carries data from a transmitter to the receiver 

• Remote Frame- transmitted by the bus unit to request the transmission of 

the Data Frame with the same identifier 
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• Error Frame- transmitted by any unit on detecting a bus error 

• Overload Frame - provides an extra delay between the preceding and 

succeeding Data Frames or Remote Frames. 

3.1.2 Data Frame 

A standard CAN data frame is shown in Frgure 3.1: 

Start Identifier RTR. IDE : AO DLC Data CRC ACK ' EOFtiFS 

1bit 11 bits 1 bit 1 bit 1 bit 4 bits 0 to 8 bytes 16 bits 2bits !Obits 

Figure 3.1- Data frame of CAN 2.0A (Standard) [1] 

The above frame consists of the following fields [8.23,24]: 

• Start Bit (I bit)- always LOW. f'alling edge of signal from idle state (HIGH) to 

the Start Bit (LOW) is used for synchrontsation. 

• Identifier (11 bits) - logical idenrirv and priority of the message. The smaller 

the value, the higher the priority- 0000 0000 000 has the highest priority while 

1111 1111 111 has the lowest. 

• RTR (1 bit) - Remote Transmission Request, set to LOW. This bit is set to 

HIGH in Remoteframe. 

• Control Field (6 bits)- contains IDE, RO and DLC: 

• IDE ( 1 bit)- Identifier Extension. Set to LOW to indicate Standard CAN 

Data frame. 

• RO (1 bit)- reserved . 

• DLC (4 btts)- Data Length Code. Indicates the length of data field . 

• Data (0 to 8 bytes)- contains the data of the message. 
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• CRC (16 bits)- Cyclic Redundancy Check. Contains the checksum of the data 

bits. Used for error detection. 

• ACK (2 bits)- ACKnowledge. The first bit is the s!or bit, which is transmitted 

HIGH but subsequently over-written by dommant bits from receiver nodes. The 

second bit is the delimiter (high). 

• EOF (7 bits)- End of Frame. All HIGH (recessive). 

• IFS (7 bits)- Inter Frame Space. All HIGH (recessive). 

An extended CAN data frame (Figure 1.5) contains the all the fields for the 

standard CAN with the following differences/additions: 

• SRR (I bit) - Substitute Remote Request. Replaces the RTR bit in standard 

CAN (relocated after the identifier field). Always HIGH, thus an extended CAN 

frame always has a lower priority than a standard CAN frame during arbitration. 

• IDE (I bit) - Identifier Extension. Always HIGH to indicate extended 

identifier follows. 

• Identifier (18 bits instead of II bits) 

• Control field (6 bits) - now contains an additional reserved bit (rl) which 

replaces IDE. 

Start Identifier SRR i IDE Identifier i RTR! R1 ! RO DLC Data CRC ACK EOF+IFS 

1bit 11 bits 1 bit 1 bit 18 bits 1 bit 1 bit 1 bit 4 bits 8 bytes 16 bits 2 bits 1 o bits 

Figure 3.2 - Data frame of CAN 2.0B (Extended) [23] 
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3.1.3 Remote Frame 

If a node wants to request certam message from another node, it will send a 

remote frame (Figure 3.3). It is identical to a data frame except for the following two 

characteristics [22]: 

• The RTR bit is set to HIGH (recessive) 

• There is no Data Field. 

Start Identifier RTR IDE RO OLC CRC ACK EOFtiFS 

1 bit 11 bits 1 bit 1 bit 1 bit 4 bits 16 bitS 2bits 10bits 

F1gure 3.3 ·A Remote Frame of CAN 2 OA (Standard) [23] 

A receiving node that responses to the request will send out a data frame with an 

identifier identical to the remote frame it received. Most CAN controllers can be 

programmed to either automatically respond to a remote frame, or to notify the local 

Central Proce~~ing Unit (CPU) [22]. 

3.1.4 Error Frame 

When a node detects a fault, it will send out an Error Frame. An error frame is a 

special data that violates the framing rules of CAN messaging [22] Thus. when a node 

sent out an error frame, other nodes will se it as error and send out their own etTor 

frames too. If this situation occurred during transmission, the transmitter will try tore­

transmit the message. 

Error Flag 

5 bits 

Error Delimiter 

8 bits 

Figure 3. 4 - Error Frame 
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The format of an error frame is shown in Figure 3. 4. It consists of an Error Flag 

(six bits of the same value, thus violating bit-stuffing rule) and an Error Delimiter (eight 

recessive bits). The error delimiter provides enough delay for other nodes their error 

frames upon detecting the current one [22]. Error handling is discussed further in 

Section 3.3. 

3.1.5 Overload Frame 

An Overload Frame is identical to an error frame except that it is transmitted by 

node that becomes too busy. It is seldom used because today's CAN controllers are 

clever enough to avoid this kind of situation. 

3.2 Arbitration 

CAN protocol is based on CSMA/CD (Carrier Sense Multiple Access/Collision 

Detection) with added feature called Arbitration on Message Priority 

(CSMNCD+AMP). A CAN node checks if the bus is busy (Carrier Sense) before 

sending a message. If the bus is free, several nodes could be sending at the same time 

Tx 
Node A 

Rx 

Tx 
NodeB 

Rx 

Bus 

'

START BIT IOO IO 

10 10 8 7 6 
10 9 

~· ···· 
~· ···· 
1 r-1 r-- Node B 
L....J L....J sending 

~· ···· 

~· ···· 
Figure 3.5 -An Example of CAN Arbitration Process [23] 
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(Multiple Access). Each transmitting node also checks if other nodes are also 

transmitting by detecting for collision. However, in Ethernet, upon detecting collision, 

all sending nodes will stop transmitting. They then wait for a random length of time 

before trying to send again- making Ethernet very sensitive to high bus loads [24]. 

CAN solves this problem by employing a non-destructive, bitwise arbitration 

[8]. The "winner" of the arbitration does not have to resend the message from beginning 

as happens in Ethernet. The efficiency of the arbitration depends on the physical 

property of the bus. When logical levels 0 and I are both sent to the bus, logical 0 

becomes dominant and overwrite the logical I. 

If a CAN node is writing logic 0 to the bus while another is writing logic I, the 

value that appears on the bus will be logic 0. After writing a bit value into the bus, each 

Figure 3.6 - Arbitration Flow Chart 
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transmitting node reads back the bit value actually registered on the bus. If a node found 

that the bit value it has written is different from the bit value it read back, then it will 

stop transmitting - it has detected a collision and has lost In the arbitration process 

(Figure 3.6). 

The bit values that actually used in the arbitration process are those in the 

identifier field. Because logic 0 is more dominant compared to logic 1 (recessive), an 

identifier with the smallest binary value has the highest priority - always wins the 

arbitration process. Figure 3.5 shows an example an arbitration process of frames 

transmitted from two CAN nodes. A lower priority node that has lost the arbitration, 

switches to receive mode. It will then wait until the bus is idle before attempting re­

transmission. 

3.3 Error handling 

Unlike other bus systems, the CAN protocol does not use acknowledgement 

messages but signals any error that occurs [25]. Its error management function, which is 

part of the Data Link layer, can detect the following errors: 

• Bit Error- when the bit value monitored is different from the bit value written. 

• Bit Stuffing Error- when 6 consecutive equal bit level is detected in frame field. 

Bit stuffing should have been done after each 5 consecutive equal bits. 

• CRC Error- when the CRC sequence read is not identical to the one calculated. 

• Form Error- when f'ixcd-form bit field (CRC. ACK, EOFi contains one or more 

illegal bits. 

• Acknowledgement Error- when a dominant bit is not present in the ACK field. 

As mentioned in Section 3.1.4, upon error detection, an error frame is 

transmitted immediately. If an error is detected, the detecting node will transmit an 
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Error Flag and destroying the bus traffic in the process. Other nodes, upon detecting the 

Error Flag will discard the current message [8]. 

3.4 Handei-C 

Handei-C is a programming language rather than a hardware description 

language. The Handei-C language syntax is based on the C programming language. 

Extensions have been added to support high level hardware constructs such as 

parallelism, concurrency, communication and scheduling. Algorithms can be expressed 

in Handei-C without knowing how the underlying computation engine works. This 

makes Handei-C a programming language rather than a hardware description language. 

While a conventional C generates microprocessor machine codes, Handei-C is generates 

hardware designs. The hardware design - at gate level -- that Handei-C produces is 

generated directly from the source program. The logic gates that make up the final 

Handei-C circuit are comparable to the machine codes in the executable file produced 

with conventional C. The target of the Handei-C compiler is low-level hardware. 

The following is a summary of Handei-C features: 

• It uses much of the syntax of conventional C. 

• It has parallelism built in. By utilising parallelism, huge performance benefit can 

be obtained from the target hardware. 

• It provides channels for communication between parallel branches of the code. 

• Interface can be used to communicate with external device or component. 
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3.4.1 Advantages of using Handei-C 

Software programs are effectively state machines. The flow of execution 

through the program is determined by control statements such as if statements, switch 

statements, while loops and for loops. Handel-C adds the par construct to implement 

parallelism [26]. There is also the channel statement lor pass1ng data between parallel 

parts of the program and for synchronising them. By writing Handel-C program to take 

advantage of inherent parallelism in low-level hardware. massive performance 

advantage can be realised. 

3.5 Handei-C Feature Highlights 

Handel-C parallelism is true parallelism, not the time-sliced parallelism for 

general purpose computers. When instructed to execute two instructions in parallel, 

those two instructions will be executed at exactly the same instant in time by two 

separate pieces of hardware. 

Handel-C uses two kinds of objects: logic types and arch1tccturc types. The logic 

types specify variables. The architecture types spec1fy variables that require a par!Jcular 

sort of hardware architecture e.g. ROMs, RAMs and channels. 

3.5.1 Data Widths 

A crucial difference between Handel-C and conventional Cis Handel-C's ability 

to handle values of arbitrary width. Conventional C handles 8, 16 and 32 bit values well 

but cannot easily handle other widths. When targeting hardware, there is no reason to be 

tied to these data widths. So Handel-C has been extended to allow types of any number 

of bits. It is perfectly valid to use 32-bit values for all data items but a large amount of 

hardware is produced if none of these values exceed 8 bits. Declaring data of suitable 

widths allow for an optimum use of hardware. 
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As in conventional C, the following data types have fixed width: 

signed unsigned char <- 8 bits 

signed unsigned short <- 16 bits 

signed unsigned long <- 32 bits 

The syntax for declaring an integer variable of an arbitrary width is: 

[ signed I unsigned ] int width variable_name; 

For example, to define a 12-bit wide unsigned integer "arbitfield", the 

following declaration can be used: 

unsigned int 12 arbitfield; 

If the width is omitted, the variable width is classified as "undefined". During 

compilation, the compiler will try to infer a suitable width for the variable. However, in 

normal practice, each variable width is always defined the programmer. 

Values of different widths can only be assigned to each other using the append 

operator (@) or the bit selection operator. For example, to assign the value of a 4-bit 

variable x4 to an 8-bit variable yS: 

unsigned int 4 x4; 
unsigned int 8 y8; 

y8 o 0 3 x4; 

In this example, the left side (most significant bit side) of x4 will be appended 

with extra zeros before being assigned toyS. In this case, four zeros will be appended to 

make the total number of bits eight. 
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3.5.2 Bit Selection 

Individual bits or range of bits can be selected from a value by using the [ ] 

operator. Bit 0 is the least significant bit and bit n-1 is the most significant bit where n is 

the width of the value. For example, refening to prev10us example, to assign the value 

of four least significant bits of y8 to x4. the following statement can be used: 

x4 y8 I 3: o I; 

The above statement takes the value of bits 3, 2, I and 0 of y8 and assigns it to 

x4. Another example of bit selection assignment is as follows: 

x4 y8[7:4]; 

In this example, the four most significant bits of y8 is assigned to x4. 

There are other bit manipulation operators in Handei-C but used less extensively 

in this project. Those operators are: 

« shift left 

» shift right 

<- Take least significant bits 

\\ Drop least significant bits 

@ Concatenate bits 

Materials discussed here are only highlights of features used in this project. For 

completeness, the Handei-C Language Reference Manual should be referred to [4]. 

3.6 Physical Resources 

These are the physical resources utiltsed for the design, development 

implementation of this project: 
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a. Personal Computer- Pentium class processor running Microsoft Windows 2000 

b. Microsoft Visual Studio-- C++ compiler 

c. Celoxica DKI -- Handei-C compiler [28] 

d. Celoxica RCIOOO-PP board-- FPGA programming kit/hardware [27]. 

3.7 Celoxica DK1 

DKI is Handel-C system development environment that have been designed with 

the look and feel similar to Microsoft Visual C++ (Microsoft Visual Studio). In its 

debug mode it allows programs written in Handel-C to be simulated in the environment 

without the need for the target hardware to be present. This feature allows the 

correctness of the algorithms to be tested before being applied onto the target hardware. 

This is discussed further in Section 4.3.2. [28] 

The DKI development environment version 2.1 used for the project is equipped 

with a new graphical user interface similar to Microsoft Visual C++ 6.0 (part of Visual 

Studio 6.0). There are four main components is the GUI (Figure ): 

I. Menu and tool bars 

2. Workspace window 

3. Editor window 

4. Output window 

The menu and tool bars contain drop menus (similar to standard Windows 

applications) and shortcut buttons to carry out major tasks (similar to Microsoft Visual 

Studio). Commands assigned to these buttons are, among others: compile, build and 

debug. 
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Figure 3. 7 - DKl Main Display Showing Its Four Main Components 

The workspace window shows a list of source files contained in current workspace. 

These fi les are arranged in the following hierarchy: 

• Workspace 

0 Project 1 

• Source file 1 

• Source file 2 

• 

0 Project 2 

0 

0 Project n 

At any time, only one workspace can be opened in one instance of DKl. Inside a 

workspace, several projects can be defined, each containing its own source files . This 

arrangement allows several projects (perhaps variations to the same design) to be 

written, compiled, built and compared. 
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The editor window contains the source files currently opened for editing. Several 

files can be opened simultaneously (each in its own window) but only one of them can 

be made active at any instance. The other windows are normally hidden behind the 

active one. The source codes are displayed in a variety of colours to distinguish their 

types and functions (e.g. keywords, comments, strings etc.) 

When a source file is compiled or a project is built, vital information is 

displayed in the output window. Errors are displayed with indications and hyperlinks to 

their line numbers in the source file. Clicking on an error message will bring up the 

offending line in the editing window. 

3.7.1 Build Options 

DKl allows projects to be built in several configurations: debug, release, EDIF, 

VHDL and generic. However only two configurations were utilized during the 

development of this project: Debug and EDIF. These will be discussed in the following 

sections. DKl Design Suite User Manual should be referred to for completeness [ ]. 

Debug is the default compilation configuration. Projects built in the debug mode 

can be executed in the built-in simulator allowing for debugging to be done without the 

presence of the target hardware. This method was used at the hardware simulation stage 

of this project. 

EDIF is one of the configurations that can be used to target a particular hardware 

(the other configuration is VHDL). EDIF files generated can be used for placing and 

routing into a targeted FPGA architecture. Obviously, this method was used at a later 

stage of the development when the Handei-C program was tested with an RClOOO-PP 

card. 
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3.7.2 Debugging 

To aid the debugging process, sample inputs for the project can be specified by 

the chanin keyword. For example: 

chanin 8 Input with {infile "data . txt" } ; 

In the above example, an input channel Input (8 bit wide) was declared to read 

from a file named data.txt. Values in the file must be numbers only and written one 

number per line. They are read with the following channel operation (assuming that x 

has been declared as an unsigned int 8 variable): 

Input x; 

The above statement will read one value from the data.txt file and assign it to x. 

If the end of the file has already been reached, a zero value will be read instead. 

Outputs can be channeled either to a debug window (within the output window) 

or to a file using the chanout keyword. Declarations for output channels can be written 

as follows: 

chanout Output with {infile 

chanout myDebug; 

"output. txt"}; 

In the first line of the above example, an output channel Output was declared to 

write values into a file name output.txt. In the second line, no file was specified, thus 

any values sent out through this channel will be displayed in the output window. 

Channeling values through the above channels can be done as follows: 

Output ? x; 

myDebug ? 100; 

II output to file 

II display in window 
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Outputs through these channels are restricted too: only one value per line can be 

written at any one time. Thus, if multiple output values are required, each of them must 

have own channel. 

When executed in a simulation, various execution points in the source code are 

indicated with arrows of different colours i.e. current function calls (green), current 

execution point (yellow), combinatorial codes that will be executed on the next clock 

tick in other threads (white) and combinatorial codes that will be executed on the 

current clock cycle (grey). 

Debugging can be made more effective by placing breakpoints at suitable points 

in the source code. Breakpoints are indicated as active (red dot), disabled (white dot 

with red edge) or mixed (half red, half white dot). 

3.7.3 Targeting hardware via EDlF 

When enough debugging has been done, the build configuration can be changed 

to EDIF so that the program can be tested on the actual target hardware. For the 

RClOOO-PP card, this is a two-step process. Building the source code in the EDIF 

configuration is the first step. The second step is converting the EDIF files into a 

bitstream file that can be loaded directly into the card. This can be performed using the 

edifmake utility supplied with the card. [28] 

The edifmake utility is a DOS batch file, therefore must be executed from a 

command prompt. Edifmake needs access to several files built by the compiler, thus it is 

normally executed in the EDIF subdirectory of the project being worked on. If the 

project name is cansim, a command prompt is opened under its EDIF subdirectory and 

the following command is entered: 

edifmake cansim 
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A file with the name cansim.bit will created under the same subdirectory when 

the conversion process is completed. One method that can be used to load this bitstream 

file into the FPGA is by using the PPJOOOConfigureFPGA() library function supplied 

with the RCJOOO-PP card. This library functions and other information about the card 

are described further in next section. 

3.8 The RC1 000-PP Card 

The RCJOOO-PP design board is included with the DKI design suite. The card 

includes a Xilinx Virtex XCV 1000 FPGA with I million gates, 8 megabytes of RAM 

(in four 2 MB banks) and various expansion slots mapped to a selection of pins on the 

FPGA. This card can be plugged into a PCI slot on a PC and supplied with suitable 

drivers for Microsoft Windows. Also included are a library file and its corresponding 

header file, which add special commands that allow a C program running on the PC to 

access the card. These commands are in form of library functions defined in the header 

file. There is a set of functions for the C program and a corresponding set for a Handel­

C program. Some of these commands (particularly those used in this project) are 

discussed below [27]. 

3.8.1 Configuring the FPGA 

The first step that a host program must do is getting a handle to a RClOOOPP card 

installed on the PC. The easiest way to do this is by opening the first card available by 

calling the following function call: 

PPlOOOOpenFirstCard(&Handle); 

In the above example, Handle is a predefined variable inside the corresponding 

pplOOO .h header file supplied with the card. Then, the clock speed for the card should 

be set with a function call such as follows: 
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PPlOOOSetClockRateiHandle, PPlOOO_MCLK, le6); 

In this example, the clock speed was set at IMHz (le6) with the card operating at 

the same speed (PPlOOO_MCLK). For detailed explanation of clock setting, the RCIOOO 

Software Reference Manual should be consulted [27]. 

The next step is to load the bit file that has been prepared for the FPGA. This is 

typically done by making another function call such as follows: 

PPlOOOSetClockRateiHandle, "canfpga.bit"); 

In the above example, a bit file named "canfpga.bit" was loaded into the FPGA on­

board the RC!OOOPP card. Once loaded the program is started automatically. There are 

other methods of configuring the FPGA. These are covered in detail in the RC!OOO 

Software Reference Manual [27]. 

3.8.2 Software-hardware communications 

Data transmission between software (i.e. a host program running on the PC) and 

hardware (i.e. the FPGA) can be performed in three modes: I bit, I byte and direct 

memory access (DMA). The three types of data transfer operations are handled by the 

following library functions (Table 3.1): 

Data Host FPGA 
Transfer 
Bit- PPlOOOSetGPO I) PPlOOOReadGPO I) 

sized - set the GPO (general purpose -read the status of the GPO pin 
output) pin 

PPlOOOSetGPII) 
PPlOOOReadGPI I) - set the GPI pin 
-read the status of the GPI (general 
purpose input) pin 

Byte- PPlOOOWriteControll) PPlOOOReadControll) 

sized -send one byte of data to the FPGA -receive one byte of data from host 

PPlOOOReadStatusl) PPlOOOWriteStatusl) 
-receive one byte of data from the - send one byte of data to host 

36 



Chapter 3 Detailed Requirements 

FPGA 
DMA PPlOOOSetupDMAChannel() PPlOOORequestMernoryBankll 

- set up a DMA channel - request for access to a memory 
bank 

PPlOOORequestMernoryBank() 

-request access to a memory bank PPlOOOWriteBank() 

-write to a memory bank 
PPlOOODDMA() 
-execute the DMA data transfer PP1000ReadBank() 

- read from a memory bank 
PPlOOOReleaseMernoryBank() 
-relinquish access to a memory bank PPlOOOReleaseMernoryBank(l 

PPlOOOSetupDMAChannel() 
-relinquish access to a memory 
bank 

--close the DMA channel used 

Table 3.1 - Host-FPGA Communication Functions 

The third mode for data transfer, the DMA, is handled through the a set of library 

functions that allow direct access to the onboard memory blocks of the RClOOO-PP card 

(see Figure 3.8). 

,-----

RClOOO-PP board 

"' 
Host Program "' A ~ ~ A ~ A ~ - RAM FPGA 

(C/C++) u 
~ y 0... ~ v 1 r 

(Handel-C) 

-

Figure 3.8 - Host-FPGA DMA of On-board Memory 

An example of a typical system of software (host program in C/C++) and hardware 

(FPGA synthesized by Handel-C) that make use of the features discussed above for data 

transfer is shown in Figure 3.9. 
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HOST PROGRAM FPGA PROGRAM 

Request a handle to a RC1000PP board 
Resets FPGA and set clock 

Configure the FPGA using a bit file FPGA configured, Program executed 
' PPlOOOConfigureFromFile() , automatically 

Do initialisation routine Do initialisation routine 

Setup DMA channel 
PP1000SetupDMAChannel() 

Request access to memory bank 1 
PP1000RequestMemoryBank() 

Transfer data to on board memory 
PPlOOODoDMA I I 

Release memory 
PPlOOOReleaseMemoryBankll 

Send signal to FPGA ' Wait for signal from host 
PPlOOOWriteControl() PP1000ReadControl() 

Request access to the memory bank 1 
PP1000RequestMemoryBank(Ox2) 

Read from memory bank 1 
PP1000ReadBankl() 

Release memory 
PP1000ReleaseMemoryBank(Ox2) 

Process data and compute result 

Wait for result from FPGA .I 

' 
Send result to host 

PP1000ReadStatus() PPlOOOWriteStatus() 
Format and display result 

Figure 3.9- An example of Host~FPGA Communication Process 

3.9 Summary 

In this chapter, the project requirements have been established. We have looked at 

the details of CAN data formats and touched on some important features of Handel~C. 

In next chapter, we will look at how the implementation of a simple CAN 2.0 A was 

designed. 

38 



Chapter 4 Design 

4 Design of the CAN Network 

This chapter describes the design of a CAN network that consists of three hardware 

nodes that will communicate with each other using CAN protocol. Messages will be 

transmitted in form of CAN 2.0A standard dataframes. Overall operation of the system 

will be controlled by software. Discussions will start with the approach, followed by the 

conceptual level design ideas and exploration of the viability of each design. 

4.1 Approach 

Basically, the execution of this project will not follow any one particular Embedded 

System Design Methodology - rather, ideas from a few methods will be considered. 

Some important factors that are considered when outlining the strategy of the execution 

are as follows: 

• The aim of this project IS to create a functional implementation with a 

reasonable degree of performance 

• The objective is to study the implementation rather than produce a marketable 

product 

• The architecture (FPGA) and tools (C, Handel-C) are pre-selected 

• The use of reconfigurable device (FPGA) will makes it possible to optimise the 

whole system through refinement 

39 



Chapter 4 

SPECIFICATION 
& 

ARCHITECTURE 
SELECTION 

MODELLING 
(SW simulation) 

SOFTWARE 
SYNTHESIS 

HARDWARE 
SYNTHESIS 

OPTIMISATION & 
REFINEMENT 

Figure 4.1 - Development Plan (Based on HW/SW Co·design Model) 

Design 

• The use of Handei-C to programme the hardware means that it is possible and 

relatively easy to initially write the entire system in software, do partitioning and 

re-write the hardware parts. 

The basic method will be based on conventional embedded system design 

methodology plus a few ideas taken from SystemC-based design flow (Figure 4.1). The 

outline of the methodology to be employed is as follows: 

• Specification - based on project specification 

• Architecture Selection- pre-selected, i.e. FPGA 

• Modelling - a model of the network will be conceptualise at a high level using 

functional blocks, then refined to lower levels, converted to algorithms and 

flowcharts and finally written in C. The model will be entirely simulated in 

software on a PC. At this phase, the system will start as an Untimed Functional 

implementation and progressively refined to Timed Functional. 
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• Partitioning - those functions that perfonn low-level operations and those that 

have good potential for parallelism are prime candidates for hardware 

implementation. 

• Synthesis - hardware implementation will be written in Handei-C and refined 

for parallelism. Software codes in C will be re-written to accommodate 

communication with the hardware. 

• Optimisation & refinement - the whole system will be optimised for 

perfonnance. Low level functions such as bus emulation will be refined. 

4.2 High-level Design Ideas 

Conceptually, the diagram in Figure 4.2 represents the network implementation. 

It consists of three CAN controllers (nodes) connected to a CAN bus. The CAN bus, 

FPGA 

I 
\ 

CONTROLLER 1 ' , 

CAN BUS 

1CONTROLLER 2 

' I 
/ 

I 

,'CONTROLLER 3 

I 

} 

} 

Figure 4.2 - The Proposed Network Logical Configuration 

PHYSICAL LAYER 

- Bit transmission 

DATA LINK LAYER 

- Media Access Control 

- Logical Unk Control 

- Frame transmission 

APPLICATION LAYER 

- Message transmission 

-Scheduling 

- "Scenario" 

which fonns the physical layer of the network, is essentially two pieces of wire. In the 

actual implementation, the bus wi11 be simulated through hardware logics. However, the 

possibility of directly implementing the physical bus using hardware will be explored. 
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The data-link layer of the network will be implemented in hardware while the 

application layer will be in software so that there is a degree of conformance to the OSI 

layers in CAN model. This means that low-level functions such as frame transmission 

and frame-level error handling will be done here. All messages received will be raised 

to the application layer. 

The application layer handles data at message level. It is essentially the heart of 

the network operation. In the actual implementation, the software will be written to 

handle the application layers for all three CAN controllers. It is likely to be run in an 

executive cycle i.e. a big loop that executes a series of small operations. Each of the 

controllers will take turn to send messages. A message sent by a controller is either 

acted upon or ignored by the other two- depending on the identifier of the message. 

Although early partitioning has been done and the way the system is split was 

more or less determined, there was still a degree of flexibility in the configuration. 

Some functions such as dataframe formatting, CRC computation and error handling can 

be placed either in hardware or software. These options were explored during the 

development process. 

4.3 CAN Bus Emulation 

As stated earlier, the CAN bus will be emulated - although physical 

implementation will also be explored. Two viable options are message/token passing 

and function emulation. 

4.3.1 Message Passing 

In message passing (Figure 4.3), a message is passed from one controller to the 

next until it returns to its origin. The message originator sends the message to its 

42 



Chapter 4 Design 

downstream neighbour, who in turn, passes the message to its downstream neighbour, 

and so on until the message arrives back to the message originator. The data frame 

could be modified slightly to accommodate a token field. The token can be used to store 

the originating controller number so that it will know when the message has returned. A 

CONTROLLER 1 CONTROLLER 2 CONTROLLER 3 

Figure 4.3 CAN bus emulation by message/token passing 

message is destroyed when it returns. More than one controller can send messages at the 

same time. If the originator receives a different message than the one it sent out, it 

simply becomes a receiver. 

Obviously, this technique does not rrum1c a CAN system correctly at the 

physical level. However it is good enough for the study of its functional behaviour. 

Alternatively, the message passing could be done at bit level - an option that will 

remain open for exploration. 

4.3.2 Function Emulation 

When the message passing bus emulation is verified to be working, the "bus" 

can be refined further by emulating its function only. In this option, a separate logical 

circuit device will be created to emulate the function of a CAN bus (F1gure 4.4). Each 
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CONTROLLER 1 CONTROLLER 2 CONTROLLER 3 

Fioure 4.4 - CAN Bus Function Emulation 

CAN controller will write bit data to the device and read from it as if it is a bus. The 

"bus" will also perform bit-level arbitration. 

The arbitration process was planned to be implemented as described in Section 

3.2. Being able to emulate a CAN bus at its function level will give a better 

understanding of the way the arbitration process is executed. 

4.4 Arbitration Handling 

When two or more CAN control lers start to write to the bus at the same time, an 

arbitration process will occur. When the controllers write to the bus, only a dominant 

value i.e. logic 0, get written to bus. A controller that has written a recessive value i.e. 

logic 1 to the bus will back off and becomes a receiver. 

In actual CAN, each controller has to synchronised itself with the network's 

clock. Thus when they write a bit value to the bus, they do it at the same time. Every 

controller on the network operates a specified clock rate. However, the CAN designed 
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m this project has no notion of clock as in actual CAN. The controllers were not 

designed to work in parallel with other. Each of the controllers will be given a time slice 

to execute its tasks. The controllers will take tum to write a bit value to the bus or to 

read from it. 

In order to emulate the arbitration process, the read and write process IS 

separated into two phases that operate in cycles. In the first phase, each controller takes 

tum to write one bit value to the bus until every controller has done so. In the second 

phase, each controller takes tum to read one bit value from the bus. Then the two phases 

are repeated again. This is shown in Figure 4.5. 

When a controller writes a bit value to the bus, that value is "logical-ANDed" 

with the bus value. For example, let say Controller I wants to write a 'I' to the bus; and 

the bus has value of '0'; thus the effective value written to the bus by Controller I is a 

'0' because 'I' AND '0' is '0'. Similarly, writing a '0' to a 'I' will also result in a '0'. 

To make this sub-process work, the bus must be reset to logical I at the start of each 

write phase. At the end of the phase, if every controller has written a '1' to the bus, the 

bus value will remain as '1'. If any of the controllers has written a '0 to the bus, the bus 

value will change to a '0'. 

READ PHASE WRITE PHASE 

CONTROLLER 1 READS 
CONTROLLER 2 WRITES 

CONTROLLER 2 READS 
CONTROLLER 3 WRITES 

CONTROLLER 3 READS 

Figure 4.5- The Write & Read Cycle 
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After a write phase, the controllers will enter a read phase, where every 

controller will take tum to read from the bus. Any controller that found that the value 

read from the bus is different from the value that it has written previously will know that 

it has lost the arbitration process. It will then has to back-off and becomes a receiver. If 

none of the controllers lost the arbitration, the "write and read" cycle will be repeated 

again for the next bit, until only one controller remain as the sole message sender. 

Because of sequential nature of this scheme, it works well whether the program 

is software simulation or actually executed on the hardware. However by utilising the 

simple time-slicing technique the controller nodes appear to work in parallel. The 

process described above can be further enhanced with parallelisation. This technique 

will involve running Handel-C functions in parallel. Detailed discussion regarding this 

enhancement is presented in Chapter 7. 

4.5 Hardware/Software Partitioning 

In a any embedded system, some of the system's functions will be implemented in 

hardware while the rest will be in software. Some functions work better if implemented 

in hardware while some will work better in software. Conventionally, finding the 

optimum partitioning will take into account development time, the overall performance 

of the system, ease of use, code size and customisability. In this project however, the 

system will be partitioned so that at will closely resemble the OSI layers in CAN as 

described in Chapter 2 (Figure 2.4) 

4.5.1 Partitioning strategy 

The first implementation of the system will be done totally in software. Once a 

system that meets the functional requirements is produced, some of the functions will be 

moved to hardware. Those functions that perform low-level communication processing 
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will be the obvious choice because they contribute the most to performance bottlenecks. 

In this particular project, these are the functions that are located at the physical layer. 

High-level functions i.e. those located at the application layer, will be left in the 

software. Other functions will either be moved to hardware or left in software 

depending on whether they contribute significantly to the overall performance of the 

system. Refinement and optimisation will be done until a satisfactory result is obtained. 

4.5.2 Prototyping 

The normal Handel-C program development was followed. The first step is to 

write a basic version of the program in C to test out the correctness of the algorithms. 

Several small programs can be written, each testing a certain algorithm or certain 

portions of an algorithm. When it is satisfied that the algorithms are correct, the C 

program is to be ported to Handel-C. Certain part of initial C program will be changed 

to conform to Handel-C or to take advantage of certain features not available in 

conventional C. 

The Handel-C program can be sun in a simulation on the development PC 

without the need for an FPGA hardware board. When satisfactory result is obtained 

from the simulation, the necessary host program is written. The host program acts as a 

front-end to the FPGA program. 

4.5.3 Software Simulation 

The initial implementation of the main algorithms was written in C to verify 

their correctness. The main advantage of this approach is that C is more flexible 

compared to Handel-C in term of its type handling. In Handel-C, data of different width 

cannot simply be mixed in the same statement. Thus, writing in C allows the idea to be 

explored without worrying about the underlying data width. 
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The efficiency of the C compiler also means that several versions of the codes, 

each with different approach to the same idea, can be tested rapidly. And lastly, because 

CIC++ has an extensive list of input output functions compared to Handel-C, debugging 

by data comparison can be done easily. 

CIC++ 

Handei-C I 

CIC++ 

Prototyplng: totally in software 
(CC++) 

Porting: converting from CIC++ to 
Handei·C 

Simulation: input/output from/to files 

Partitioning: into hardware & 
software (host) parts 

Test: verify functionality 

Figure 4.6 Hardware/Software Partitioning Strategy 

4.5.4 Porting C to Handei-C 

Once the basic idea was successfully implemented in C, the program was ported 

to C. When porting from C to Handel-C the following main tasks were done: 

• specifying data widths 

• breaking certain compound expression into simple statements 

• modifying codes to take advantage of Handcl-C features 

In the first task, most of the data of type int were converted to unsigned int 8. 

Several variables whose values can exceed 255 were converted from int to unsigned int 

16. Several data were converted to their exact width as in the CAN specification. As an 
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example, four important variables that correspond to four fields in the CAN dataframe 

are defined as follows: 

#define nCTRL 3 

unsigned int 12 arbit[nCTRL]; 

unsigned 1nt 6 control[nCTRL]; 

unsigned int 8 data[nCTRL] [8]; 

unsigned int 16 crc[nCTRL]; 

II Arbitration field 

/1 Control field 

//Data field 

II CRC field 

Being able to set the data widths to exactly the same widths as used in an actual 

CAN dataframe has one main advantage. The data can be manipulated without worrying 

about extra unused bits. In conventional C, the width of a data cannot be arbitrarily set 

non-standard values of 8 (for char), 16 (for int), 32 (for float) or sometimes 64 bits. 

There are extensions in Microsoft C++ to set int to 8 bits but this is not standard. 

4.5.5 Hardware Simulation 

The DKI development environment includes several features to make system 

development easier. One of the features is the ability to run a simulation of a Handel-C 

program on a PC without the need for an FPGA board. To run a program in a 

simulation, its build crmfiguration is set to debug [28]. 

The main limitation of the simulation mode is the lack of proper input and 

output constructs. Input and output are handled through channels. An input channel can 

be defined using the chanin keyword and output by using chan out. An input file must be 

specified for every chanin definition while for chanout, a file is optional. During 

simulation, the program will read from the input files specified and send its output to the 

output files. If no output files were specified, the output will be displayed in the debug 

window of the DKI development environment. 
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Each file can only be assigned to one inpuUoutput channel and each channel can 

only read one data per line. Thus, an input file normally consists of a column of 

numbers each on a line of its own. The same limitation applies to the output files. 

To overcome this limitation, sample data input was hard-coded into the program 

and the outputs were written into several output files. These files were then inserted into 

a pre-formulated spreadsheet so that more effective debugging could be made. Using 

the spreadsheet, values of various counters, status and other data could be verified 

against each other. When incorrect values were found on the spreadsheet, corrections 

were made in the program codes and the process was repeated. These were done until a 

satisfactory result was obtained. A copy of the output spreadsheet is in the appendix. 

4.6 Summary 

The basic idea discussed was to create a network of three CAN controller nodes in 

an FPGA. Basic communication protocol was to be built inside each node while the 

whole operation of the system is to be controlled by software. Two inter-node 

communication techniques were discussed (message passing and bus function 

emulation) and function emulation was found to be a more accurate representation of an 

actual CAN bus. The implementation of this design is described in next chapter. 
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5 Implementation 

This chapter presents the end product and describes the various components of the 

system and how they interact with each other. A walkthrough of a typical operation of 

the system is presented. Critical functions of the programs and how they work are also 

discussed. 

5.1 The System 

The system consists of a hardware subsystem and a software subsystem. Both are 

essentially made up of one program each. The program for the software subsystem is 

referred to as the host program and the hardware program is referred as the FPGA 

program. The host program runs on a PC and is written in C++. It was developed as a 

command prompt mode program. The FPGA program is written in Handel-C. 

Basic Setup 

,------~---, 

Host Program .. I Messages 7 FPGA program ! 

I 
., ---- .• I 

~N~de-~ Node j Node ! I 
: 0 1 . 2 I 1 
, ___ ·-·I •...• ---•! 

' . I 
I ___ _'{ -- _____ '{ _______ ,._ __ ! 

"CAN bus" ! 

Figure 5.1 - Basic Setup of the Host and FPGA programs 
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The host program plays the role of the application layer in the OSI Reference 

Model while the hardware acts as the Data Link and Physical layers of CAN. The 

application layer in the host program communicates with three virtual CAN controller 

nodes (data link layer) in the FPGA as shown in Figure 5.1. The nodes are connected to 

a virtual CAN bus (physical layer). The CAN controller nodes are executed as virtually 

independent units by the FPGA programs. The FPGA program acts as a sort of 

intermediary between the host and the nodes. 

5.1.1 Walkthrough 

When the system is started, it initialises the variables and hardware and presents 

the user with a simple menu as shown in Figure 5.2. As an example, an operation of 

sending a message from the first node will be discussed. This operation is done by 

pressing selecting option 1 from the menu. 

When key 1 is pressed, the host program will send a message to the FPGA. The 

host message contains the number of the recipient node (in this case, node 0), a message 

identifier, length of the data and the data itself. This information will be displayed on 

the screen (Figure 5.3). The receiving node will process the host message to convert it 

into a suitable format i.e. a dataframe (Figure 3.1) to be written to the CAN bus. It this 

point, the node will change its mode into a sender. 

Other nodes in the network, upon detecting a message sent by node 0, will change 

their mode into receiver and start reading the message into their own dataframe. When 

the message transmission is completed, each receiver will send a message to the host 

program. The messages received will be displayed on the screen (Figure 5.4). It can be 

verified in a successful transmission that the host messages sent and received would be 

identical. 
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Figure 5.2 -Host Program's Menu 

It-> Msgiype:t:t lte~s:12 0 100d 5~ ?0F ?31 82R 838 84I 0 0 0 0 
ISendHost OJ<. 

Figure 5.3 - Host sends a message to Node 0 

<-OJ<. 

Message received: 1 / 100 / 5 / F I R S I 

<-OJ<. 

Message received: 2 / 100 / 5 / F I R S I 

Figure 5.4 - Host receives messages from Node 1 & 2 
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At any time, the user can press any of the option keys in order to execute intended 

operation. Table 5.1 lists all the available option keys and their operations. Figure 5.5 

shows an example how status reports were received when the S-key was pressed several 

times. The trace mode can be toggled on and off by pressing the T-key. This was used 

extensively during debugging. The program can be ended by pressing the Q-key. When 

it ends, the program sends an appropriate message to the FPGA and closes the RClOOO­

pp board. 

Key Pressed Action 
1 Sends a message to Node 0. Node 0 will write the data to the CAN bus 
2 Sends a message to Node 1. Node 1 will write the data to the CAN bus 
3 Sends a message to Node 2. Node 2 will write the data to the CAN bus 
s Requests status report from FPGA 
T Toggles trace( debug) mode 
Q Ends the programs 

Table 5.1 -Host Program Responses to Key Presses 

I ,-> MsgType: 5:5 
SendHost OJ<. 
I 
,Status t•eceived fl'Oill CAN nodes ••. 

! Node Mode BitU \h•ite Read 
I U0 SEND 8 0 0 [88,.01 I 

I U1 RECU 8 0 0 [0,.881 

I 
U2 RECU 8 0 0 [88,.88 1 

i -> Msglype:5:5 
.SendHost OJ<. 
i 
Status t•eceived h•o111 CAN nodes ••• 

Node Mode BitU \·ll'ite Read 
U0 SEND 9 0 0 [88,.01 
U1 RECU 9 0 0 [0,.881 

I 

U2 RECU 9 0 0 [88 .. 881 

;-> Msglype :5:5 

1

sendHost OJ<. 

'status t•eceived h•o111 CAN nodes ••• 

Node Mode BitU \·h•ite Read 
U0 SEND 10 1 1 [88 .. 01 
U1 RECU 10 0 1 [0,.88 1 
U2 RECU 10 0 1 [88,.881 

Figure 5.5 - Getting Status Reports from FPGA 
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5.2 The Host Program 

During execution, the program on the PC acts as a host to the FPGA program. 

Every input into and output from the FPGA program goes through the host. When 

started, the host program loads the FPGA program from its bit file into the hardware 

using the following function call: 

PPlOOOConfigureFromFile(Handle, •canfpga.bit"); 

In the above statement, PPlOOOConfigureFromFile 11 is one of library functions 

of the RClOOO-PP board. "canfpga. bit" is the name of the bit file that was built from 

the Handel-C program written for the FPGA. Handle is the handle obtained when 

openmg an RCIOOO-PP card by usmg such command as: 

PPlOOOOpenFirstCard(&Handle); 

The FPGA program will then start automatically. As a control measure, the FPGA 

program was written so that at the beginning the execution it will wait for a signal from 

the host before executing its main routine. 

The host program controls the overall operation of the CAN controller nodes. When 

it wants to send some data through node 0, it will send a message to the FPGA program. 

The message contains a node number, a message ID and the data itself. When the FPGA 

program receives a message from the host, it will store it and flag the intended node. 

The host then will wait for the FPGA program to return another message indicating that 

the data has been successfully sent and received. 

To a user, the host program offers a menu of commands as listed in Table 5.1. It 

continually waits for the user to press a command key. When a command key is 

pressed, it will act accordingly. On most commands, the host program will send a 

message to the FPGA (Figure 5.6). The type of messages that can be sent to the FPGA is 

listed in Table 5.2. 
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Host: Main Function 

START 

Send Data? 

N 

N 

N 

Quit? 

y 

8 

y Send Data 

Y Send Request 

Y­

i 

y 

Figure 5.6 - Host's Main Flowchart 

Implementation 

N 

At the same time, it also waits for any messages from the FPGA program. There are 

only two types of messages sent by the FPGA: DATA and TEST. When a message of 

type DATA is received, its contents will be displayed in the following format: 

c I id I n I data 0, data 1, _ , data n-1 

56 



Chapter 5 Implementation 

In this fonnat, c is the controller node number, id is an identifier for the data, n 

is length of the data in number of bytes; and data 0 to data n-1 are the actual data. 

Each component of the message is one byte in size. As discussed earlier in section 3.1.2, 

the identifier in a dataframe is 11 bits in size. Thus, during conversion from a host 

message to a dataframe (and vice versa), the first three MSBs of the identifier are 

ignored. 

TYPE DESCRIPTION 

DATA Contains a message to be sent into the CAN bus 

STATUSREQ Request status report from the FPGA 

TRACEON Switch on "trace" mode 

TRACEOFF Switch off "trace" mode 

TEST Used to test host-FPGA communication and for debugging 

ENDPRG Signals end of program: close the hardware and end program 

Table 5.2 -Types of Messages from Host to FPGA 

5.2.1 Functions 

The followings IS a list of all the functions m the host program and their 

descriptions: 

• Handler 1) -handles errors related to access to the RClOOOPP board. 

• initialise() -initialises the RClOOOPP board i.e. installs the error handler, 

open the first RClOOOPP card available, sets clock rate and loads bit file. 

• fpga_has_message 1) - checks whether the FPGA program has a message to 

send. 

• setup_message 1) -prepares the message to be sent to the FPGA in a suitable 

fonnat. 

• display _message 1) - displays the contents of message received from the 

FPGA. 

• receive_fpga 1) -receives message from the FPGA. 
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• send_fpga 1 1 -sends message to the FPGA. 

• main 1 1 -main function of the program; contains one main loop that checks for 

key press from the user and acts accordingly. It responses to certain inputs as 

listed in Table 5.1 

HOST 

Start 
Load FPGA program (.bit) 
Wait for FPGA to get ready 

Loop 
Read user input 
If "send message" 

Send message to FPGA 
If "request status" 

Receive status from FPGA 
If FPGA has message 

Receive message from FPGA 
Display message 

Repeat 

FPGA 

Main f~nclion 

Start 
Tell Host: "Ready" 

Loop 
Do write 

Controllers 0, 1, 2, ... 
Do read 

Controllers 0, 1, 2, ... 
I Write status 
I Repeat 

I 

Host sends message to FPGA (node) 

If have message to send 
Tell FPGA: "Have Message" 
Send message to FPGA 

I 

I 
Query host for message 
If host has message 

I 
Get message from host 
Node creates data frame 

I Node checks bus whether it is free 
I If bus is free 
I Node writes dataframe to CAN bus 

I 
Host receives message from FPGA 

Query FPGA for message 

If "has message" 
Receive data from FPGA 
Tell FPGA: "OK" 
Display information 

I Node scans CAN bus 
I If other node is writing 
I Node reads from bus into dataframe 

I 

I 

I 

Node writes ACK to bus 
Tell host: "Have message" 
Wait for "OK" 

Table 5.3 - Host - FPGA interaction 
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When the programs are in trace mode, the execution of FPGA program is 

moderated by the host program. At each read/write cycle, the FPGA will wait for a 

message from the host. If the user chooses to request a status at every read/write cycle, 

detailed changes in the CAN nodes can be verified. This is useful for tracing and 

extensively used during debugging. 

A summary of major tasks executed by the host program is listed in Table 5.3 in 

form of algorithms for their relevant functions. It also lists similar information for the 

FPGA program. Essentially, the table shows how the two programs interact with each 

other. 

5.3 The FPGA Program 

The FPGA program is essentially made up of two parts: host communications and 

bus communications. The host communications part consists of several functions that 

handle the necessary communication with the host program. This involved a lot of 

function calls to the RClOOO-PP library. The bus communication part consists of several 

other functions that handle writing to and reading from the virtual CAN bus. This 

involved a lot of bit manipulations and computation of data of various sizes. The 

functions for bus communications are discussed in the following sub-section while 

those for host communications will be described in Section 5.4. 

5.3.1 Writing to the Bus 

Two of the most critical tasks of a CAN controller node are writing to the bus 

and reading from it. In this implementation, these tasks arc handle by two functions 

called controller_wri te () and controller_read () . These two functions are 

executed repeatedly in a cycle of two phases: write phase and read phase; very similar 

to what has been described in Section 4.4 (sec also Figure 4.5 ). In each phase only one 
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bit of data is written to or read by any particular node. Executed repeatedly at a very 

high speed, this gives an appearance that the nodes were running in parallel. This 

technique is similar to time-slicing but without a fixed time allocated for each process. 

A flowchart (some minor tasks have been omitted for clarity) for the main function of 

the FPGA is shown in Figure 5. 7. 

The controller_wri te 1 1 function checks the mode of the CAN node and take 

certain actions as summarized in Table 5.4. The main task of the controller_wri te 1 1 

function is to write each bit in a frame to the bus. It will also handle other tasks 

depending on the mode it is in. If it is in a receive mode, it will check if it is pointing at 

the ACK slot. If so, it will verify the data using CRC calculation. If no error is detected 

from the calculation, the function will write an ACK to acknowledge that correct data 

has been received. If the CAN node is in idle or wait mode, it will do nothing. 

MODE Controller _write() 

IDLE Do nothing 

RECEIVE If ACK slot then write ACK 

SEND Write frame to bus 

WAIT Do nothing 

Table 5.4- Tasks of controller_write() function 

If a node is in send mode, it will call the write_frame() function which will write 

the contents of its dataframe to the bus one bit at a time. Each time the function is 

called, it will write one bit and increase its internal counter. While writing, it also does 

bit-stuffing by calculating the number of consecutive identical bits. If the number of 

identical consecutive bits is more than five, a stuff bit will be inserted. 
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Figure 5. 7 - FPGA's Main Flowchart 
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A 'sending' controller node will also read back the value that it has written to 

the bus. If it is not the same as the value that has written to the bus, that it knows that 

either it has lost an arbitration (if the bit was from an arbitration field) or there was an 

error while writing (if the bit was outside the arbitration field). If it has lost in an 

arbitration process, the node will become change its mode to wait. In this mode, it 

becomes a receiver while waiting the bus to be free and available for a re-transmission 

(Table 5.5). 

A 'waiting' controller node will know that the bus is available when it detected 

idle time of more than the idle threshold of 10 bits. When it detected that there were 10 

consecutive recessive bits (logic 1) on the bus, it will change its mode to send and start 

transmitting its dataframe again. It will go through the arbitration process once again. 

These steps are repeated until its dataframe has been successfully transmitted. 

5.3.2 Reading from the Bus 

List of tasks performed by the controller_read( 1 function is listed in Table 

5.5. Its main task is to read the bit of the dataframe from the bus. However, if it is in 

idle mode, it will check whether other nodes are transmitting any data onto the bus. It 

does so by scanning the bus for a Start of Header (SOF). An SOF is identified by a 

pattern of 10 ones followed by a zero (11111111110). 

A node that was in idle mode, upon detecting an SOF will change its mode to 

receiver. In this mode, the node reads from the bus one bit at a time, removes any 

stuffed bits (de-stuffing) and add the remaining bits into a dataframe. 
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While reading from the bus, the node also checks if what it has written to is the 

same as what it is reading. It also calculates the length of the frame and writes into the 

ACK slot (Figure 3.1) near the end of the frame. Figure 5.9 shows a flowchart for the 

read_frame 1 1 function which handled the operation described above. 

MODE 

IDLE 

RECEIVE 

SEND 

WAIT 

I controller read() 

I 

I 

Scan for SOF (Start of Header) 
If SOF found then Read Frame from bus 
Else query for data from Host 

Read Frame from bus 

Read Frame from bus 
If writing ARBITRATION field, compare written/read bits 
If written bit <> read bit 

Change mode to WAIT 

Read Frame from bus 
Detect whether bus is free 
If bus is free 

Change mode to WRITE 

Table 5.5 -Tasks of the controller _read() function 

5.4 Host- FPGA communications 

Communications between the host program runmng on the PC and the FPGA 

program running on the Celoxica RCLOOO-PP board were be done by using library 

functions supplied with the board. The host can send data to the board and vice versa in 

three modes: 1 bit, 1 byte and direct memory access (DMA). 

The bit-size data transfer is handled by the following library functions: 

Functions used in the host program: 

• PPlOOOSetGPO 11 -set the GPO (general purpose output) pin 

• PPlOOOReadGPI 11 -read the status of the GPI (general purpose input) pin 
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Functions used in the FPGA Handel-C program: 

• PPl o o OReadGPO () -read the status of the GPO pin 

• PPlOOOSetGPI 1) -set the GPI pin 

These functions were used by the host program to send an alert to the FPGA 

program or vice versa. For example, the FPGA can be programmed to check the status 

of the GPO pin at regular intervals using the PPlOOOReadGPO 1) function. When the host 

wants to get the attention of the FPGA it sets the GPO pin to high using the 

PPlOOOSetGPO 1) function. Upon detecting this, appropriate actions are taken by the 

FPGA program. 

The byte-size data transfer is handled by another set of library functions: 

Functions for the host program: 

• PPlOOOWriteControl () -send one byte of data to the FPGA 

• PPlOOOReadStatus () -receive one byte of data from the FPGA 

Functions for the FPGA Handcl-C program: 

• PPlOOOReadControl () -receive one byte of data from host 

• PPlOOOWriteStatus 1) -send one byte of data to host 

When the host sends a data to the FPGA by calling a PPlOOOWriteControl 1) 

function, the FPGA receives it through a corresponding PPlOOOReadControl 1) 

function call. Multiple bytes can be sent and received by having an appropriate number 

of function calls in the host program and the same number of corresponding function 

calls in the FPGA program. This method is used for sending messages from the host to 

the FPGA and vice versa. 

One common property of this set of functions is that if for example the FPGA is 

expecting a byte of data from the host through the PPlOOOReadControl () function, it 

will not continue until the data is received. This particular property of the functions is 
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useful in adding a trace operation to the system where the host needs to send "stop and 

start" signals to the FPGA. The other pair of functions ( PPlOOOReadStatus () and 

PPlOOOWriteStatus () ) also behave in a similar way and were utilised in similar 

manners. 

Message from HOST to FPGA 

HOST FPGA 

Set Flag [r~e~dGPO) ' (SetGPO) 
I i 

Flag set? 

~ 
Send Message Length Get Message Length 

(WriteControl) (ReadControl) i 
: 

Send Rest of Msg Get Rest of Msg l 
(WriteControl) (ReadControl) ! 

I 

Figure 5.10 - Sending Message from Host to FPGA 

The third mode for data transfer, the DMA, is handled through the following set of 

library functions which allow direct access to the onboard memory blocks of the 

RC 1000-PP card [ ]: 

Functions for the host program: 

• PPlOOOSetupDMAChannel () -set up a DMA channel 

• PPlOOORequestMemoryBank () -request access to a memory bank 

• PPlOOODDMA() -execute the DMA data transfer 
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• PPlOOOReleaseMemoryBank I I -relinquish access to a memory bank 

• PPlOOOSetupDMAChannel 11 -close the DMA channel used 

Functions for the FPGA Handel-C program: 

• PPlOOORequestMemoryBank 11 -request for access to a memory bank 

• PPlOOOWriteBankl 1- write to a memory bank 

• PPlOOOReadBank 11 -read from a memory bank 

• PPlOOOReleaseMemoryBank I I -relinquish access to a memory bank 

5.4.1 Host-FPGA Message Transmission 

The set of commands for bit-sized and byte-sized data transmission described above 

were utilised for sending messages from host to FPGA. All message types described in 

Table 5.2 were sent this way. When the host wants to send a message to the FPGA, it 

will alert the FPGA by calling a PPlOOOSetGPO 1 1 function and pushing the first byte of 

the message by calling a PPlOOOWriteControl 11 function. The FPGA, upon detecting 

this signal, read the first byte by calling a PPlOOOReadControl 11 function. The first 

byte contains the length of the rest of the message in number of bytes. The host will 

subsequently push the rest of the data to the FPGA byte hy byte using the same 

PPlOOOWriteControl 11 function as many times as needed. The FPGA read the bytes 

by calling the PPlOOOReadControl 11 function the same number of time. A flowchart 

for this process is shown in Figure 5.10. 

The process of sending a message from the FPGA to the host was handled in the 

same manner but by usmg the PPlOOOSetGPI I I, PPlOOOReadGPI I I, 

PPlOOOWriteStatus 11 and PPlOOOReadStatus 11 functions. 

The DMA functions were used for status reporting. The FPGA will write critical 

values such as bit counts, modes of controller nodes etc to a memory bank at every 

write/read cycle. Because of the way the function set work, the host can read these 

values at any time without interrupting the controller nodes. 
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5.4.2 Data Buffers for Host-FPGA communication 

A message is transmitted from the host to FPGA and vice versa in a data buffer. 

The buffer is twelve words long and its format is shown in Figure 5.11. The same buffer 

is also used for transmitting test messages between the two sub-systems. Variables to 

accommodate the buffer were defined as an array of char in the host's CIC++ program; 

and as an array of unsigned int 8 in the FPGA's Handei-C program. During debugging, 

the size of the buffer has been increased to accommodate the test data transmitted. 

No: 0 2 3 4 5 6 7 8 9 tO t t 

Msg Data Data Data Data Data Data Data Data Data Data 
Node# 

ID length 0 t 2 3 4 5 6 7 8 

Figure 5.11- Message Buffer Format 

When the host wants to send a message to the FPGA, it will set up the buffer by 

calling a function named setup_message 1 1 (see Listing Ll in the appendix). This 

function writes vital information into the buffer an·ay so that it is ready for transmission. 

When the buffer is set up, it is sent to the FPGA through a function named 

send_fpga 1 1 (see Listing L2 in the appendix). This function sends the contents of the 

buffer one byte a time to the FPGA. Sending a message from FPGA to host is also 

handled in a similar manner. 

At the end of each write/read cycle, the FPGA stores vital information into a 

status buffer. The format of the buffer is shown in Figure 5.12. This information is read 

by the host program if so requested by the user and displayed on the screen. 

No: 0 2 3 4 5 6 7 8 9 tO t t 

Mode 
Bit Written Read 

Mode 
Bit Written Read 

Mode 
Bit Written Read 

0 
Count Bit Bit 

t 
Count Bit Bit 2 Count Bit Bit 

0 0 0 t t 1 2 2 2 

y 

Node o Node t Node 2 

Figure 5.12 -Type 2 buffer contents (CAN nodes status) 
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5.5 CRC Calculation 

To verify that any frame sent out by a transmitter is received correctly by a 

receiver, cyclic redundancy checking (CRC) is employed. In order to carry out the CRC 

calculation, the divisor is defined as the polynomial. The coefficient of the polynomial 

is given by the de-stuffed bit stream consisting of Start of Frame, Arbitration Field, 

Control Field and Data Field (if present). The bit stream is padded with 15 zeroes. This 

bitstream is divided with the following polynomial: 

Bit 15 of the polynomial can be ignored in the actual calculation. Thus the 

polynomial value used is 4599hex. The remainder of this polynomial division is the 

CRC Sequence transmitted over the bus. In order to implement this function, a 15-bit 

shift register is used. The following algorithms (Figure 5.13) [8] was referred to when 

coding the CRC calculation for the CAN controllers. Written in Handel-C, the 

equivalent codes are as shown in Listing L3 in the appendix. 

Portion of the dataframe that was included for CRC calculation are the 

arbitration, control and data fields. The result of the calculation is appended as a CRC 

field located after the data field. 

CRC_RG = 0; 
REPEAT 

CRCNEXT = NXTBIT EXOR CRC_RG(14); 
CRC_RG(14:1) = CRC_RG(13:0); 
CRC_RG(O) = 0; 
IF CRCNXT THEN 

CRC_RG(14:0) = CRC_RG(14:0) EXOR (4599hex); 
END IF 

UNTIL( CRC SEQUENCE starts or there is an ERROR condition ) 

Figure 5.13 - CRC Calculation Algorithm 
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Several other established methods of CRC calculation using lookup table have 

also been considered but found to be unsuitable because they are based on 8, 16, 32 or 

64 bit polynomial while CAN uses a 15 bit polynomial in its CRC calculation. 

5.6 Summary 

The implementation consisted of two programs: The Host (written in C/C++) and 

The FPGA (written in Handel-C). Communications between the two programs were 

handled by several library functions supplied with the RCIOOO-PP card. The two OSI 

layers in CAN were totally implemented in the FPGA (hardware), closely resembling an 

actual implementation of CAN. Testing and verification of the system is described in 

next chapter. 
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6 Evaluation!Testing 

This chapter looks at the final artefact in light of the requirements identified in 

Chapter 3. Three stages of evaluation are considered: internal, external and meta-level. 

The internal stage will examine to what extent does the system produce the expected 

results. The external stage will look at how much does it satisfy the requirements 

discussed in Chapter 3. The meta-level stage will reflect on the process/method 

involved in performing the investigation. 

6.1 Internal Evaluation 

The behaviour of the system is like a set of real CAN controllers communicating 

with each other. Messages sent through one controller node are successfully received by 

another. The controller operates at a very high speed, a message will only take a fraction 

of a second to travel from one node to another. 

Virtually, there are three CAN controller nodes in the hardware. Although 

physically, this is not how real CAN is set up, nevertheless, the nodes mimic the exact 

behaviour of real CAN controllers. Ideally, each node should be in its own hardware 

and connected to each other by a pair of wires. 

Overall, the system performs as expected and produces expected results. When a 

message is sent from one controller, the other controllers will receive it correctly. When 

more than one controller try to send messages at the same time, they will go into an 
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arbitration process. The arbitration process has been verified to work correctly in the 

simulation mode and can be traced in the actual program. 

Much of the data produced in the FPGA program is used internally by the 

program itself. It has been found that the most effective was of verifying that the values 

produced are correct are by tracing the values in the simulation mode. In this mode, data 

can be written to files. Due to the fact that the simulator allows only one series of values 

to be written to one files, several files were created. These files were then merged into a 

spreadsheet. 

In the spreadsheet, critical values are listed side by side. They compared to each 

other and how each of the series changes values are also verified whether it is correct or 

not. A copy of the spreadsheet is available in the appendix. 

6.2 External Evaluation 

The system was built to consist of two CAN layers and one OSI layer. The CAN 

layers are: Data Link layer and Physical layer. The OSI layer is Application layer. In 

this implementation the function of the physical layer was simulated but the functions of 

the other two layers were done exactly as in actual CAN system. 

The Handei-C program was written without taking advantage of parallelism. The 

three nodes operate in a sequential manner with time-slicing to give the impression of 

parallelism. It is possible to write the program so that true parallelism can be achieved. 

This is discussed in the next chapter. 

The controller nodes also operate without a reference clock. However, since 

each of the nodes takes tum to write and read one bit value at each execution cycle, they 

appear to operate by referencing to a "virtual clock". However this virtual clock has 

variable period. Its period increases and decreases cycle to cycle depending upon the 

calculation and operation it the program has to execute. 
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Overall, the set of programs gave a satisfactory result in emulating the function 

of a controller area network. Vital features of CAN listed below were successfully 

incorporated: 

• Bit-sized data transmission 

• Bit stuffing while sending 

• Bit de-stuffing while receiving 

• Non-destructive bit-level arbitration 

• CRC computation 

The Handei-C program for the FPGA has been written in modular manner and in 

such way that it can be easily adapted for parallelism. With little modification it can be 

turned to contain only a single node. It is possible to run several copies of the program 

on separate FPGA chips and hard-wire them to each other forming a physical network. 

6.3 Meta-level Evaluation 

When designing and developing this project, the conventional building cycle for 

typical Handei-C project was followed. First, a software simulation of the network was 

written in C/C++. This program simulated the functions of three CAN controller nodes 

communicating with each other through a bit-sized bus. Protocol used for 

communication was CAN version 2.0A. Using this program, the correctness of 

algorithms were checked, particularly the creation of dataframe, bit-stuffing, de-stuffing 

and non-destructive arbitration process. 

Next, the software version was ported to Handel-C. Two major issues faced when 

porting to Handei-C were the fact that Handei-C is very strongly-typed and that it was a 

hardware synthesis language. Every values used in a Handei-C program must be of 

fixed widths. If the width of a value was not specified, the compiler will try to compute 
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it during the build process. However, most of the time, it failed to do so, thus the codes 

must be changed to be more specific. 

Being a hardware synthesis language, there are some constructs in Handel-C that 

were specifically designed for hardware orientated operations such as bit manipulations, 

RAM data type etc. Parts of the original C/C++ codes were changed to take advantage 

of these constructs, particularly those for bit manipulations. For example, instead of 

multiplying a value by eight ( x * 8 ), left-shifts were used instead ( x ~ x « 3 ). 

It was also discovered that when the value of a variable of a certain width is 

increased ( x++ ), it will never overflow. It the value exceeded the maximum allowed 

for that particular width, it will change to zero instead. For example, the following for­

loop will never end because the value for variable x will never reach 8: 

void neverending( void } 

unsigned int 3 x; 
unsigned int 8 y; 

for( x~O; x<8; x++) 
{ 

y ~ 0@(3*x); 

X++; 

The Handel-C program can be run in a simulation mode or as loaded into and run 

on an FPGA. The simulation mode has only simple input output channels to allow for 

debugging. This has led to some difficulty in verifying vital values generated inside the 

program. This was subsequently resolved by writing the values to several files and 

reading them again into a spreadsheet as mentioned earlier. 

The DK 1 package also came with a few plugins that simulate the function of 

input/output hardware (seven-segment display and wave simulator) that can be 

connected to an FPGA. Additional plugins can also be developed for other hardware 
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simulations. However, due to time constraint, this avenue was not pursued. It could 

have made the simulation more accurate and realistic. 

The final stage of the development was writing a separate host program that 

communicates with the Handel-C program through library functions. Once again the 

codes concerning data input/output need to be altered. Debugging the communication 

process was time-consuming because there were two programs to edit and building the 

target bit file was a time-consuming two-step process. 

An alterative to the above issue would be writing a general purpose host that 

handles the host-FPGA communication and writing the FPGA program directly in 

Handel-C. If the host-FPGA communication can executed efficiently, more effort can 

be put into getting the Handei-C codes right. However, this alternative also could not be 

pursued due limited resources. 

Overall, the methodology employed was suitable for design and development of 

the system. However, alternatives mentioned above are worth exploring. 

6.4 Summary 

The system was found to be an accurate representation of a basic CAN operating 

using standard dataframes. The methodology and techniques employed were found to be 

suitable for the project. However it is also noted that variations to the techniques 

employed are worth considering. 
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7 Conclusion & Further Work 

7.1 Conclusion 

Functionally, the system developed as the result of this project satisfies the 

objectives and requirements identified in preceding chapters. It has the fundamental 

properties of a controller area network and operates as such. The system has been tested 

and found to comply with the basic specification of CAN. Some of the more critical 

features of CAN that have been satisfied were: 

• Compliance with the OSI layers in CAN: Physical Layer and Datalink Layer; 

and additionally an application layer as an interface between the controller nodes 

and user. 

• Data transmission between three CAN controller nodes through a virtual CAN 

bus through CAN Protocol Version 2.0A. 

• Creation of Standard CAN Version 2.0A dataframe including CRC computation. 

• Transmissions of dataframcs into the CAN bus with bit stuffing computation. 

• Retrievals of data from the bus and re-creation of dataframes from the data 

retrieved including CRC. 

• Communication between datalink layer (FPGA) and application layer (host). 

• Simple user interface and status reports. 

The system has been build as a basis for further exploration of a reconfigurable 

system. It has been designed with future enhancement in mind. Its codes can be easily 

altered to add more features. These features can be in form of CAN functionalities or 
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exploration in the aspect of system development studies as discussed in the following 

section. 

7.2 Further Work 

Several enhancements can be made to the existing system as discussed in the 

following sections. 

7.2.1 Parallelising 

In this implementation, the CAN nodes are not running parallel to each other. 

They are executed one after another in a time-slicing fashion. Handel-C allows several 

copies of the same function to be executed in parallel to each other. This is done by 

defining the function as an array of functions. Without this construct, the only safe way 

to run a function in parallel with itself would be to explicitly declare two functions with 

different names. 

The syntax for the definition of a function array of an arbitrary size is as follows: 

returnType Narne[Size] (pararneterList); 

For example, to redefine the write_ controller() function as an array of function, 

we can re-write it to be as follows: 

void controller_write[3] I void ) 

In the above example, only three nodes were defined. The number of nodes can 

be increased simply by increasing the size of the array. Other functions should also be 

parallelised so there will not be a conflict when two functions from the same array try to 

access an identical function at the same time. However, care must still be taken because 
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sometimes the function arrays will try to access the same variable at the same time. The 

best way of solving this potential conflict is by utilizing the semaphore construct of 

Handel-C. 

Semaphores are declared with the sema keyword. For example, a semaphore for 

protecting the CAN bus can be defined as: 

sema busSema; 

Semaphores that have been defined can be controlled by two functions: 

• tryserna (semaphore 1 - tests to see if the semaphore is owned. IF not, it 

returns one and take ownership of the semaphore. If it is, it returns a zero. 

• releaseserna 1 semaphore 1 - releases a semaphore that was previously taken 

by tryserna (semaphore I. 

For example a protected write_bus() function array can be defined as follows: 

void write_bus[3] ( serna *busSerna, unsigned int 1 bit) 

while( tryserna(*busSerna)==O) delay; II wait till bus is free 

bus_value bus_value && bit; 

7.2.2 Physical Bus 

The three CAN controller nodes in the system were interconnected through a bus 

that complied to the properties of a CAN bus in term of its functionality only. If each of 

the nodes is placed on a separate FPGA chips, they can be connected to each other 

physically. The most popular form of CAN bus is a piece of twisted pair cable which 

can be easily obtained because it is widely used in Ethernet. 
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With minor modifications, copies of the Handel-C program can be run on its 

own chip. Each chip can be placed on a customized printed circuit board each with line 

buffer/driver circuitry to drive the bus at correct voltage and current level. The functions 

that write to the bus and read from it have to be re-written because they would be 

writing to and reading from a physical bus. 

By adding a clock function in each node, the controllers should be able to 

communicate with each other correctly. Of course, error handling routines need to be 

enhanced so that the system can handle problems associated with serial data 

communications such as synchronization, bit drifting, data losses etc. This would be a 

very challenging but highly interesting endeavour. 

7.2.3 Graphical User Interface 

At the user end, ease of use can be enhanced with a graphical user interface 

(GUI) where the status of operation can be seen clearly, preferably with some graphical 

representation of the network showing th movement of data from one node to another. It 

will also be possible to showing the status of each node with colour or iconic indicators. 

For example: gray when idle, green when sending, blue when arbitrating and red when 

recelVlng. This GUI addition can be coded C++ with Microsoft Foundation Class 

(MFC). 

7.2.4 CRC Calculation 

This implementation uses a 15 bit polynomial for its CRC computation. In this 

project, the basic method of CRC calculation has been used. However, it is possible to 

build a lookup table based on the 15 bit polynomial and write a faster code by utilising 

the said table. This technique can improve the overall performance of the CAN 

controllers. 
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7.3 Summary 

Overall, a basic but expandable system been produced out of this project and 

useful skill and knowledge were acquired through the whole process from the 

investigation into the subject matter to the writing of this dissertation. 
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Listing Ll- setup_message() function 

void setup_message( unsigned int node 

unsigned int i; 

node; I node :cF..:.mbe:;: 
// t<Ic-::ssaqe ID 

Appendix 

Buffer[O] 
Buffer[l] 
Buffer[2] 

o msgiD [node I ; 
datalength[node]; /i Number of bytes of data 

for (ioO; i<datalength[node]; i++] 
Buffer[3+i] o data[node] [i]; /.' Tne c!G:ca ... 

Listing L2- send_fpga() function 

void send_fpga{ unsigned char msgtype, unsigned char Items ) 

unsigned char ReturnVal, i; 

PPlOOOSetGPO(Handle, 1); 

PPlOOOWriteControl(Handle, msgtype); 
PPlOOOReadStatus(Handle, &ReturnVal); 

/i Set flag 

if( msgtypeooMESSAGErnsg I I msgtypeooSTATUSrnsg 
{ 

PPlOOOWriteControl(Handle, Items); 
PPlOOOReadStatus(Handle, &ReturnVal); 

for (i=O; i<Items; i++) 
{ 

PPlOOOWriteControl(Handle, Buffer[i] I; 
cout << u 

11 << (int) Buffer(i] << Buffer[i]; 
PP1000ReadStatus(Handle, &ReturnVal); 

PPlOOOSetGPO(Handle, 0); 
cout << ~\nOK." << endl; 

A-1 

/ 
1 Kes•:t fla<;.J 



Listing L3 - CRC calculation routine 

remainder ;::: 0; 
i;:::O; 

while I i<totlen I 

Appendix 

if I i<msglen nxtbit dataframe[ctrlno] [>]; 

14 

else nxtbit " 0; 

bit14 " 1 remainder A OblOOOOOOOOOOOOOO 

crcnxt " nxtbit A bitl4; 
remainder remainder << 1; 
remainder = remainder & Ox7FFE; 

if lcrcnxt) remainder A" Ox4599; 

i++; 

A-2 

? 1: 0; I I Check bit 

II shift left 1 bit 
II clear bit#O 

II remainder XOR poly 



Spreadsheet for Data Verification (shown partially) 

' ll!llt"' 
1 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

28 
29 
30 
31 

32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

'l~:':uf}tr''l:i~i!E~~- .: 

'"""" IDLE 
IDLE 
IDLE 
IDLE 
IDLE 

0 0 0 1 0 
0 0 0 1 0 
0 0 0 1 0 
0 0 0 1 0 
0 0 0 1 0 

IDLE 0 
IDLE 0 
IDLE 0 
IDLE 0 
IDLE 0 
WAIT 0 
WAIT 0 
WAIT 0 
WAIT 0 
WAIT 0 
WAIT 0 
WAIT 0 
WAIT 0 
WAIT 0 
WAIT 0 
WAIT 0 

WRITE 0 

WRITE 1 
WRITE 2 
WRITE 3 
WRITE 4 
WAITE 5 
WRITE 5 
WRITE 6 
WRITE 7 
WRITE 8 
WRITE 9 
WRITE 10 
WRITE 10 
WRITE 11 
WRITE 12 
WRITE 13 
WRITE 14 
WRITE 15 
WRITE 16 
WAITE 17 
WRITE 18 
WRITE 19 
WRITE 20 
WRITE 21 
WRITE 22 
WRITE 23 
WRITE 24 
WRITE 24 
WRITE 25 
WRITE 26 
WRITE 27 

WRITE 28 
WRITE 29 
WRITE 29 
WAITE 30 
WRITE 31 
WRITE 32 
WRITE 33 
WRITE 34 
WRITE 34 
WRITE 35 
WRITE 36 
WRITE 37 
WRITE 38 

0 0 1 0 
0 0 1 0 
0 0 1 0 
0 0 1 0 
0 0 1 0 
0 0 1 0 
1 0 1 0 
2 0 1 0 
3 0 1 0 
4 0 1 0 
5 0 1 0 
5 0 1 0 
6 0 1 0 
7 0 1 0 
8 0 1 0 
9 0 1 0 
0 0 1 0 
1 0 0 0 
2 0 0 1 
3 0 0 2 
4 0 0 3 
5 0 0 4 
5 1 1 0 
6 0 0 0 
7 0 0 1 
8 0 0 2 
9 0 0 3 

10 0 
10 1 
11 0 
12 1 
13 0 
14 0 
15 0 
16 0 
171 

18 0 
19 0 
20 1 
21 1 
22 1 
23 1 
24 1 
24 0 
25 1 
26 1 
27 1 

28 1 
29 1 
29 0 
30 1 
31 1 
32 1 
33 1 
34 1 
34 0 
35 1 
36 0 
37 0 
38 1 

0 
1 
0 
1 

0 
0 
0 
0 
1 
0 
0 
1 

1 

1 
1 
1 
0 
1 
1 
1 

1 
1 
0 
1 
1 
1 

1 
1 

0 
1 

0 
0 
1 

4 
0 
0 
0 
0 
1 
2 
3 
0 
0 
1 
0 
1 
2 
3 
4 
0 
0 
1 
2 
3 
4 
0 
0 
1 
2 
3 
4 
0 
0 
0 
1 
0 

·' ,,-,,,.,~Jlf'C"''""·'' ~;f>j"' I' . •, . '""""'-11-J ...... ,. 
0 IDLE 0 0 0 1 0 
0 IDLE 0 0 0 1 0 
0 IDLE 0 0 0 1 0 
0 IDLE 
0 IDLE 
0 IDLE 
0 IDLE 
0 IDLE 
0 IDLE 
0 IDLE 
0 WAIT 
0 WAIT 
1 WAIT 
2 WAIT 
3 WAIT 
4 WAIT 

0 WAIT 
1 WAIT 
2 WAIT 
3 WAIT 
4 WAIT 
0 WRITE 
0 WRITE 
1 WRITE 
2 WAITE 

0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 1 0 
0 2 0 
0 3 0 
0 4 0 
0 5 0 
0 5 0 
0 6 0 
0 7 0 
0 8 0 
0 9 0 
0 0 0 
1 1 0 
2 2 0 
3 3 0 

3 
4 
0 
0 
1 
2 
3 
4 
0 
0 
0 
0 

WRITE 4 4 0 
WRITE 5 5 0 
WRITE 5 5 1 
WRITE 6 6 0 
WRITE 7 7 0 
WRITE 8 8 0 
WRITE 9 9 0 
WRITE 10 10 0 
WAITE 10 10 1 
WAIT 0 11 1 
WAIT 0 12 1 
WAIT 0 13 1 

1 WAIT 
2 WAIT 
3 WAIT 
0 WAIT 
0 WAIT 
1 WAIT 
0 WAIT 
1 WAIT 
2 WAIT 
3 WAIT 
4 WAIT 
0 WAIT 
0 WAIT 
1 WAIT 
2 WAIT 
3 WAIT 
4 WAIT 
0 WAIT 
0 WAIT 
1 WAIT 
2 WAIT 
3 WAIT 
4 WAIT 
0 WAIT 
0 WAIT 
0 WAIT 
1 WAIT 
0 WAIT 

0 14 1 
0 15 1 

0 16 1 
0 17 1 
0 18 1 
0 19 1 
0 20 1 
0 21 1 
0 22 1 
0 23 1 
0 24 1 
0 24 1 
0 25 1 
0 26 1 
0 27 1 

0 28 1 

0 29 1 
0 29 1 
0 30 1 
0 31 1 
0 32 1 

0 33 1 

0 34 1 

0 34 1 
0 35 1 

0 36 1 
0 37 1 
0 38 1 
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1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
0 0 
0 1 
0 2 
0 
0 
1 
0 
0 
0 
0 
0 
1 
0 
1 
0 

3 
4 
0 
0 
1 
2 
3 
4 
0 
1 
1 
1 

0 1 
0 1 
0 1 
1 1 
0 1 
0 1 

1 1 
1 1 
1 1 
1 1 
1 1 
0 1 
1 1 
1 1 
1 1 

1 1 
1 1 
0 1 
1 1 
1 1 
1 1 
1 1 
1 1 
0 1 
1 1 
0 1 
0 1 
1 1 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
2 
3 
4 
0 
1 
2 
3 
4 
0 
0 
1 
2 
3 
4 
0 
0 
1 
2 
3 
4 
0 
0 
0 
0 
1 
2 
3 
0 
0 
1 
0 
1 
2 
3 
4 
0 
0 
1 
2 

3 
4 
0 
0 
1 
2 
3 
4 
0 
0 
0 
1 
0 
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· .. ·'1i:m~.-~r~~~~ 
IDLE 0 0 0 1 0 0 1 
IDLE 0 0 0 1 0 0 : 'j 
IDLE 0 0 0 1 0 0 1 
IDLE 0 0 0 1 0 0 ·1 
IDLE 0 0 0 1 0 0 ..• 1 
IDLE 0 0 0 1 0 0 . • 1 
IDLE 0 0 0 1 0 0 1_ 
IDLE 0 0 0 1 0 0 1 
IDLE 0 0 0 1 0 0 .1 
IDLE 0 0 0 1 0 0 ·1 
IDLE 0 0 0 1 0 0 1 
IDLE 
IDLE 
IDLE 
IDLE 
IDLE 
IDLE 
IDLE 
IDLE 
IDLE 
IDLE 
IDLE 
READ 
READ 
READ 
READ 
READ 
READ 
READ 
READ 
READ 
READ 
READ 
READ 
READ 
READ 
READ 
READ 
READ 
READ 
READ 
READ 
READ 
READ 
READ 
READ 
READ 
READ 
READ 
READ 
READ 
READ 
READ 
READ 
READ 
READ 
READ 
READ 
READ 
READ 
READ 
READ 
READ 
READ 
READ 

0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 1 0 
0 2 0 
0 3 0 
0 4 0 
0 5 0 
0 5 0 
0 6 0 
0 7 0 
0 8 0 
0 9 0 
0 10 0 
0 10 0 
0 11 0 
0 12 0 
0 13 0 
0 14 0 
0 15 0 
0 16 0 
0 17 0 
0 18 0 
0 19 0 
0 20 0 
0 21 0 
0 22 0 
0 23 0 
0 24 0 
0 24 0 
0 25 0 
0 26 0 
0 27 0 

0 28 0 
0 29 0 
0 29 0 
0 30 0 
0 31 0 
0 32 0 
0 33 0 
0 34 0 
0 34 0 
0 35 0 

0 36 0 
0 37 0 
0 38 0 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
1 

0 
1 
0 
0 
0 
0 
1 
0 
0 
1 
1 
1 
1 
1 
0 
1 

1 
1 

1 

1 

0 
1 
1 

1 
1 
1 
0 
1 
0 
0 
1 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 ','1 
0 .1 
0 ,. 1 
0 1 
0 1 

0 ' _1, 
0 . 1 
0 ,Ji-
0 ·t 
0 '::,i 
0 '.6· 
1 fO· 
2 .. 0 

3 J: 0/ 
4 •0 

0 't1t:·· 
0 ·;;_;OL: 
1 ' o· 
2 :}';ri~_ 

3 :~:-~o~ 
4 ,.,~ 0 -

0 ~:ih 

6 ~i-~~\:': 

1 
2 
3 
4 
0 

1' ; 
1 
1 
0 

0 1 

1 . 1 
2 1 
3 1 
4 , __ 

0 • 0 

·~··. 0 
0 
1 0 
0 . 1 


