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ABSTRACT 

The prediction of tropospheric (surface) ozone episodes is a challenging task that requires 

the integration of physicochemical and statistical techniques. Governmental agencies 

such as the U.S. Environmental Protection Agency (EPA) and Alberta Environment favor 

physicochemical modeling in order to capture the complexity of the underlying physical 

processes. Unlike physicochemical models, statistical techniques are usually based on 

spatial and/or temporal correlations between relevant variates. The statistical models also 

require less exhaustive data sets for accurate predictions; this major advantage is perhaps 

more obvious when ozone prediction is performed for a longer period of interest. 

The primary objective of this research is to investigate statistical techniques for 

modeling ozone and/or other pollutant concentrations given only sparse environmental 

records at the monitoring stations. Straightforward linear regression based techniques are 

implemented initially but the inadequacy of these approaches for predicting detailed 

temporal ozone variations is verified by the results. Then geostatistical paradigms of 

kriging and sequential stochastic simulation are implemented to incorporate temporal 

correlation in the form ofvariogram. Secondary variables (covariates) can also be useful 

for providing extra information and their influence is accounted for in cokriging and co­

simulation. The positive-definiteness of auto and cross-covariances are ensured via a 

linear model of coregionalization (LMC). The "two-point" statistic (variogram) is found 

to be insufficient and hence this thesis strives to explore methodologies for modeling the 

highly fluctuating temporal profiles with a view to providing a sound framework for 

subsequent extensions to spatiotemporal modeling. 
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CHAPTER! 

INTRODUCTION 

Tropospheric ozone has been determined to be detrimental to public health and welfare. 

As a secondary pollutant, ozone is not directly released into the lower atmosphere but is 

formed via complex photochemical reactions of the two main pre-cursors: nitrogen 

oxides (NOx) and volatile organic compounds (VOCs ), produced by anthropogenic 

activities such as fossil-fuel combustion and open biomass burning. Regulating the 

emissions of these pre-cursors may effectively reduce the formation of ozone or more 

importantly photochemical smog, a well-known agent for respiratory diseases especially 

in the major urban areas. 

Since the inception of an Index Quality of Air (IQUA) by the Federal-Provincial 

Committee on Air Pollution (1980), ozone has been identified as one of the "markers" or 

criteria pollutants used for assessing the conditions of life and ecosystem in Canada. 

Understanding the spatiotemporal variations of ozone is an important issue in order to 

quickly alert the public of the high ozone levels; thus serving as an early warning for 

public safety and for monitoring the impact of environmental regulations in reducing the 

concentration level of atmospheric pollutants. However the occurrence of sudden rise in 

ozone concentrations, termed an ozone episode, is often difficult to predict. Early 

simulation packages such as the Empirical Kinetics Modeling Approach (EKMA) and 

Urban Airshed Model (UAM) were developed to tackle this problem. The former is a 

Lagrangian based model and hence deemed inappropriate for regional ozone modeling. 

The latter, a 3D Eulerian based model, is also not without a few shortcomings: (1) it 

requires very small (-hourly) time steps for accurately solving the atmospheric transport 

equations due to the complex reaction kinetics of the pollutant species, and (2) exhaustive 

meteorological and environmental data are needed for simulating at the most five-day 
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ozone episodes. Physicochemical models are therefore inappropriate for modeling 

annual ozone concentration profiles involving arbitrarily sampled data. 

Statistical methods provide an alternative to detailed physicochemical modeling 

and can eliminate some of the drawbacks of the process based modeling approaches. 

Here the ozone concentration at a particular instant in time and location in space is 

considered as an outcome of a spatiotemporal random variable (RV). Secondary 

information in the form of covariates is treated as auxiliary information for modeling the 

probability distribution underlying the RV (ozone concentration). Once historical data 

have been matched and the parameters of the statistical model calibrated, the resultant 

model can be utilized to predict ozone concentrations given only "a few" sample data at 

different time instants and/or locations. The simplest statistical technique would be to 

apply multivariate linear regression on the relevant variables, i.e., ozone (03), dust and 

smoke (COH), carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (N02), total 

hydrocarbon (THC), wind speed (WSPD), daily average temperature (Tavg), relative 

humidity (RHavg), and also bright sunshine hours (bSUN), jointly occurring in space and 

time. Nevertheless the non-linearity of the physicochemical phenomena influencing 

ozone concentrations deems the linear regression technique inappropriate. On the other 

hand, nonlinear and tree-based regression approaches can be adopted but they require a 

priori knowledge of the multivariate probability distribution underlying the stochastic RV 

and therefore may suffer from lack of generality when applied to the "uncharted" regions, 

especially those corresponding to unusual meteorological conditions. 

The traditional statistical notion of linear regression neglects redundancy between 

data. The data-to-estimate covariance is accounted for in regression but not the data-to­

data covariance that measures redundancy between data. This shortcoming of traditional 

linear regression is rectified by using the geostatistical paradigm of kriging. Variable 

interactions in space and/or time are accounted for by a "two-point" statistic known as a 

variogram. The kriged estimates represent the mean or expected value of the conditional 

probability distribution underlying the random variable at time instant t and location u. 

Similar to the linear regression estimate, the kriged profile is a smooth representation of 

the ozone trend. The kriged estimates reproduce the data-to-unknown covariance and the 



3 

histogram of the samples. In addition, kriging is data-exact. However kriging can at very 

best predict the smooth ozone trends. Patterns of ozone variation in the form of ozone 

concentration fluctuations cannot be reproduced by kriging. The remedy is to employ 

stochastic simulation that adds a spatiotemporal residual component to the kriged 

estimate to correct for the reduction in variance and to impart the "true" pattern of 

spatiotemporal variation. 

The stochastic simulation approach has been employed by many researchers, 

including Kyriakidis (1999) who investigated the space-time phenomena of monthly 

average sulfate deposition over several European countries. Following a two step 

approach, the temporal profiles were initially parameterized using a deterministic model 

in the form of Fourier series, and in the second step the parameters were regionalized in 

space to probabilistically obtain the corresponding coefficients of the Fourier series at 

unsampled locations. The accuracy of prediction using this technique requires good 

knowledge of the temporal variability at a number of monitoring stations. The 

appropriateness of the models of temporal variability (such as the Fourier series approach 

in the previous works) has to be verified prior to embarking on the subsequent step of 

spatial modeling. For this reason, a detailed investigation of the temporal ozone 

phenomena in Calgary, Alberta is the focus of the current research. The research will 

endeavor to identify a suitable methodology for modeling temporal variability of ozone 

concentration and then make recommendations for extending the temporal model to the 

selected spatiotemporal problems. 

This thesis begins with extensive reviews of the available literature in Chapter 2. 

The background of the problem and overview of ozone photochemistry are initially 

discussed to gain familiarity with the subject. Then the traditional approaches of ozone 

modeling based on physicochemical models employed by regulatory agencies are 

summarized. Statistical methodologies for modeling atmospheric phenomena are 

assessed for their suitability of implementation in this work. 

In Chapter 3, the CASA data sets are introduced, and the environmental and 

meteorological variables are presented. The annual trends of these predictor variables 
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(covariates) as well as ozone are explored in the form of time-series plots. Based on the 

suggestions from literature and data availability in Calgary, the rationales for selecting 

covariates and temporal scale are justified. Then the method of data standardization is 

elaborated, and using these standardized data, the distributions of all variables are 

illustrated in the form of box plots. 

In Chapter 4, the armual trends of ozone are preliminarily examined via simple 

linear regression using historical ozone data. Since this approach is clearly inadequate to 

emulate the trends based on sparse ozone data, secondary information is introduced into a 

multivariate regression framework. The bivariate relations between the selected 

covariates and ozone are evaluated in the form of correlation coefficients Pw, and their 

similarities with ozone are presented via scatter and quantile-quantile (Q-Q) plots. 

In Chapter 5, the basic concepts of geostatistics are discussed and the stochastic 

framework for temporal modeling of ozone concentration is clarified. As a start, the 

theoretical aspects of variogram, a measure of temporal correlation, and the techniques 

for ensuring positive-definite variogram modeling are described. This "two-point" 

statistic is later applied to a generalized regression technique, commonly known as 

kriging, for ozone prediction. To investigate the effects of covariates on ozone 

formation, cokriging is performed using the variogram model obtained via the linear 

model of coregionalization (LMC). 

In Chapter 6, the paradigm of stochastic simulation is introduced. In particular, 

sequential Gaussian simulation is implemented corresponding to different data sampling 

scenarios. Several realizations of the simulated results using evenly spaced data are 

compared with those randomly selected between the 251h and 30'h day of the month. The 

periodicity in the long-term variations of ozone concentration is modeled using the hole­

effect variogram model, which is subsequently used for simulating the ozone variations 

over a four-year period. The assessment of covariate influence on ozone phenomena is 

performed via co-simulation utilizing the LMC model obtained in the similar manner as 

the cokriging case. 



5 

In Chapter 7, other statistical methods for noise filtration are implemented. Here 

the random fluctuations of ozone signals are filtered out via Fourier series analysis (FSA) 

to obtain a smooth trend for each year. In order to solve for a system of large matrices 

containing sine and cosine series as well as the Fourier coefficients, a technique called 

singular value decomposition (SVD) is utilized. The temporal variability of ozone 

concentrations over four years is compared by examining the similarity between the 

corresponding coefficients. Next the applicability of a neural network for modeling the 

highly nonlinear and complex interactions between ozone and its covariates is explored. 

In Chapter 8, the general conclusions of this work are presented. The limitations 

and potential applications of the previously discussed approaches are highlighted. The 

results of the current research are discussed in the context of temporal modeling of the 

ozone phenomena. New methodologies for improving ozone prediction are suggested as 

part of future research avenues. 

Finally, two appendices are included for showing examples of GSLffi parameter 

files (Appendix A), and discussing the theoretical and practical aspects of the physico­

chemical model, in particular the Urban Airshed Model (UAM) (Appendix B). The 

detailed explanation of the latter appendix is intended for addressing its importance in 

ozone simulation as well as its feasibility to be coupled with statistical approaches as a 

mechanism for training statistical models. 
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CHAPTER2 

LITERATURE REVIEW 

This chapter begins with general discussions on the background of tropospheric ozone 

problem and relevant photochemistry. A brief overview of physicochemical (box and 

trajectory) models, previously employed by regulatory agencies (e.g., US EPA) in air 

pollution abatement, is highlighted to recognize their importance in air quality modeling. 

The use of the above physicochemical models for ensuring "attainment" of the environ­

mental policies has been superseded by the more versatile Urban Airshed Model (UAM: 

SAl, 1999, Appendix B). More recently, statistical modeling has become popular due to 

lesser requirement with regards to the input data sets. Advanced statistical analyses, if 

used correctly, can complement the physicochemical models in a way so as to reduce the 

computing time without sacrificing the accuracy of ozone prediction. As the focal point 

of this thesis, statistical approaches, or more specifically regression and space-time 

modeling, are also reviewed extensively. 

2.1 Background 

Smog (derived from smoke and fog) has been the cause of adverse health effects since it 

was first recorded in Los Angeles (ca. 1942) and then London (ca. 1952); thousands of 

people were hospitalized due to nose, eye and throat irritations. At higher concentrations, 

smog may cause severe respiratory problems, e.g., asthma and bronchitis (British 

Columbia Ministry of Environment, Lands and Parks, 1992). In Canada, smog and other 

air pollution problems commonly occur in major cities like Vancouver and the urban belt 

ranging from Windsor to Quebec City due to dense population and industrialization. 

Recognizing the need to increase public awareness on environmental issues, the Federal-
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Provincial Committee on Air Pollution (Environment Canada, 1980) introduced the Index 

Quality of Air (IQUA), calculated using the following equation (Nkemdirim, 1988): 

!QUA= [OJ]IJ + [NOz] + [C0] 105 + 10[COH]12 + 0.33[S02]
155 (2.1) 

The concentrations (denoted by the square brackets) of gaseous pollutants are expressed 

in parts per million by volume (ppmv) and coefficient of haze (COH) measures the 

amount of dust and smoke (i.e., particulate matter) in the unit of fractional transmittance 

of light. In plain words, the IQUA indicates the seriousness of air pollution due to the 

presence of five so-called criteria pollutants: ozone (03), nitrogen dioxide (N02), carbon 

monoxide (CO), dust & smoke (COH) and sulfur dioxide (S02). The concentrations and 

amount of those pollutants are converted to a single number with a matching description; 

an IQUA rating of0-25 indicates Good, 26-50 Fair, 51-100 Poor, and greater than 100 

Very Poor air quality. Table 2.1 illustrates more descriptive meanings of these numbers. 

Table 2.1 
Index Quality of Air (IQUA). 

IQUA Rating Frequency in Alberta Effects 

"' < ,_z 
<:0 
~~ 

----------------------------------------------------------------- ~~ 
Good Almost all the time 

Fair Occasional (typical when 

Poor 

Very Poor 

weather conditions prohibit 
pollution dispersion 

Very seldom 

Very rare 

Adapted from Environment Canada (1993). 

Desirable range: No known harmful 
effects to soil, water, vegetation, animals, 
materials, visibility or human health. 

Acceptable range: Adequate protection 
against harmful effects to soil, water, 
vegetation, animals, materials, visibility 
and human health. 

Tolerable range: Not all aspects of the 
environment are protected from possible 
adverse effects. Long-term control action 
may be necessary depending on the 
frequency, duration and circumstances of 
the readings. 

Intolerable range: In this range, further 
deterioration of air quality and continued 
high readings could pose a risk to public 
health. 

-'"" :::;a 
"3 
P<O 
<>lZ 

~tj 
~ .... 

"'-.... t: 
<"' 
"'"' ii:~ 
~ 
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The first criteria pollutant (i.e., 0 3) instigates high interest in further research studies 

because of two reasons: (I) 0 3 is one of the main elements (beside hydrocarbons) in the 

smog formation, and (2) 03 is also a secondary pollutant, i.e., it is not directly emitted 

from anthropogenic or biogenic sources and hence its formation may be avoided by 

curbing the emissions of its precursors. In fact, 0 3 only appears in the lower atmosphere 

(troposphere) as a result of photochemical reaction between nitrogen oxides (NO,), 

volatile organic compounds (VOCs) and their derivatives. In an effort to control the 

smog problem, the Alberta Environment (a provincial regulatory body), under Section 14 

of the Environmental Protection and Enhancement Act (EPEA), sets mandatory 

guidelines for the maximum ambient concentrations of 0 3 and various other pollutants. 

The one-hour average concentration limit for tropospheric 0 3 is 160 micrograms per 

cubic meter (!lg/m3
), or 82 parts per billion by volume (ppbv) after approximate 

conversion at standard conditions of25°C and 101.325 kPa (Alberta Ambient Air Quality 

Guidelines: AAAQG, 2000). For convenience, the following equations describe the 

standard procedure for unit conversion (Flagan and Seinfeld, 1988; pg. 5): 

c 6 
[ppmv] = -' x I 0 0 

cair 
r 

c 9 
[ppbv] = -' x 1 0 

cair 

(2.2) 

where C1 and Ca1r are the respective concentrations of species i and air in moles per 

volume (molar), at specific temperature T and pressure P. The pollutant concentration in 

ppmv (or ppbv) can be easily converted to 11g/m3 using the ideal gas law, and assuming 

standard conditions (T and P) as specified by the regulatory agencies, 

[
J.lg] =PM; x [ppmv] 
m' RT 

(2.3) 

where M1 is the molecular weight (in grams per mole or g/mol) of species i and R is the 

universal gas constant in appropriate units (e.g., R = 8.3144 Joules per mole per Kelvin or 

J/mol-K). 
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As noted above, ozone is produced in the troposphere from the photochemical 

reactions between NOx and VOCs. The complexity of the nonlinear associations between 

ozone and its precursors (i.e., NOx and VOCs) poses a challenging research project, at 

least from the statistical point of view. By applying stochastic analyses (e.g., sequential 

Gaussian simulation), we may improve understanding of urban ozone episodes from such 

studies as (1) characterizing the temporal ozone variations and (2) exploring the influence 

of precursors on ozone formation before proceeding to study the space-time phenomena. 

In addition, the underlying physicochemical mechanisms need to be conceptually grasped 

before we can make any sensible interpretation using statistical methodologies. 

2.2 An Overview of Ozone Photochemistry 

Although the smog problem has been drastically reduced through strict regulatory 

measures and technological advancements, it still persists especially in large urban areas 

mainly due to high pollutant emissions from the increased number of fossil-fuel-powered 

vehicles. It is well known that the combustion of fossil fuels, e.g., gasoline and diesel, 

produces among others nitrogen oxides NOx (mainly NO and N02) and volatile organic 

compounds (VOCs). Previous studies (e.g., Fishman et al., 1979; Campbell, 1986; Liu et 

al., 1987; NRC, 1991) have shown that in the presence of "bright" sunlight, ozone is 

formed from the complex photochemical reactions among NOxo VOCs (the ozone 

precursors), and their derivatives. As simplified by de Nevers (1995), the photochemical 

reactions start with the decomposition (also termed photolysis) of nitrogen dioxide (NOz) 

by the high intensity of solar radiation (hv) to nitric oxide (NO) and oxygen radical (0; 

note that the omission of'dot' for the radical is common in the air pollution literature), 

NO ~NO+O 2 (2.4) 

The highly reactive oxygen radical (0) immediately attacks an oxygen molecule (Oz) in 

the presence of another molecule (M; usually in the form of nitrogen Nz or another 

oxygen 0 2), which absorbed some of the energy released from the following reaction, 
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0+0, M 03 (2.5) 

To complete the cycle or restore the equilibrium of natural processes, another product 

(i.e., NO) from the decomposition of nitrogen dioxide (see reaction 2.4) reacts with ozone 

to reproduce the starting materials, 

(2.6) 

At steady state, the rates of all three reactions (2.4-6) are equal and the OJ concentration 

(denoted by square brackets [OJ]) can be solved; after simplifying the kinetics (i.e., 

reaction rates, orders, etc.), the final result is: 

(2.7) 

where [ hv] is the solar intensity in appropriate unit and ko is the rate constant for reaction 

(2.6); [NO] and [N02] are the concentrations of nitric oxide and nitrogen dioxide, 

respectively. This preliminary result suggests that, in the absence of VOCs, ozone 

formation is strongly dependent on the intensity of solar radiation due to the canceling off 

effect of the NOz and NO (i.e., NO,). 

Nowadays, more VOCs are emitted from anthropogenic sources, mainly from the 

combustion of fossil fuel. The VOCs interfere with the above reactions in such a way 

that NO is oxidized to NOz without depleting OJ. Hence the level of tropospheric OJ 

increases, which subsequently induces the formation of photochemical smog. To further 

understand this process, a mechanism on how the VOCs interfere with these reactions 

was proposed by Campbell (1986): 

OH+VOC 7 R02 +HzO (2.8a) 

ROz+NO 7 NOz+RO (b) 

R0+02 7 RCHO+H02 (c) 

HOz+NO 7 NOz+OH (d) 
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where R represents any carbon-hydrogen bonds. Clearly, the free radicals (in the forms 

of hydroxy OH and its derivatives RO, R02 and H02) play important roles in the VOC 

chemistry. Without dwelling too much into the complexity of reaction kinetics, these 

four reactions (2.8a-d) can be summarized as a single overall reaction, 

VOC + 2NO + 02 ~ HzO + RCHO + 2N02 (2.9) 

where 0, C and Hare customarily left unbalanced due to the complex nature ofVOC and 

aldehydes (RCHO). It is obvious that NO is consumed in the VOC-oxidation process and 

therefore cannot be an effective agent for ozone reduction. Later on, other researchers 

(e.g., Milford eta!., 1992; Gao et al., 1995, 1996; Yang eta!., 1995, 1996; Vuilleumeir et 

a!., 1997; Bergin et al., 1998) extended research on the reaction mechanisms and went a 

step further by performing uncertainty/sensitivity analysis on the photochemistry. They 

identified nitrogen dioxide (N02) and aldehydes (RCHO) as the two most important 

chemical species in ozone formation. 

In a related work, Dickerson eta!. (1997) showed that the UV-scattering aerosols 

(e.g., sulfates) could increase the rate of ozone formation whereas the UV-absorbing 

particles (e.g., soot) decrease it. Vuilleumier et a!. (2001) studied how solar irradiance 

(i.e., uncalibrated quantity of radiation) relates to total atmospheric optical depths (i.e., 

the solar direct beam differential extinction rate per unit of vertical path length) in order 

to improve simulation of photochemistry in air quality (physicochemical) modeling. To 

localize the factors influencing the optical depth variability, the authors applied principal 

component analysis (PCA) on the simultaneous measurements of optical depths at seven 

wavelengths (A= 300, 306, 312, 318, 326, 333 and 368 nanometers, nm); they found that 

"light absorption and scattering by aerosols as the major factor, and absorption by ozone 

as the minor factor." In the long run, this contribution was hoped to enrich knowledge on 

the air quality modeling treatment of the solar actinic 1 flux, which is one of the governing 

factors in the photochemical reactions. 

1 Actinic ~ causing chemical changes. 
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2.3 Physicochemical Models 

Air pollution, if left uncontrolled, can cause detrimental effects to the public (health and 

welfare), materials and vegetation. Initially it was thought of as a local phenomenon, 

thus not treated seriously. Since the late 1960s, however, air pollution has been identified 

as both a regional and a global problem, and thus requires long-term solutions, especially 

in controlling the emissions of primary pollutants and processes responsible for 

producing secondary pollutants. Regulatory agencies (e.g., Alberta Environment) are 

well aware of these problems; therefore, strict environmental policies (e.g., AAAQG) 

were introduced to curb excessive emissions of the pollutants from point (e.g., tall 

stacks), line (e.g., highways) and area sources (e.g., a cluster of gas stations in the 

downtown area). On many occasions, the regulatory policies are formulated partly based 

on the results from the physicochemical models, which are the mathematical descriptions 

of the atmospheric transport (dispersion, diffusion and/or surface removal) and the 

relevant chemical reactions. In general, there are three types of air quality models used in 

the practice of air pollution control: (1) box, (2) trajectory, and (3) grid models. 

2.3.1 Box Models 

These models are the simplest of all. Basically, a region to be simulated is treated as a 

single cell (box) bounded by the ground at the bottom, the upper boundary layer (usually 

mixing height) on the top and arbitrarily fixed lateral boundaries. The mixing height is 

often less than a kilometer and the area that the box encloses may be a few hundred 

square kilometers (Seinfeld, 1988). The fundamental theory of these models relies on the 

'perfectly stirred reactor' assumption where the emissions of primary pollutants at 

various locations are treated as spatially uniform due to instantaneous mixing; that is the 

pollutant concentrations in the air within the box volume are homogeneous. The only 

inward and outward flow mechanisms, i.e., bulk transport, are represented by the 

horizontal wind components and rate of convection to the mixing height. One typical 

way to describe the model is by the following equation (Sportisse, 2001 ), which 1s 

rewritten using the familiar notation of this thesis, 
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ac. 1 [ . -] 
--' =-- S,(t)-u~,pc, +R, +E.(t), 

8t H(t) ' 
'ii=l, ... ,N (2.10) 

with an initial condition C, (t) = C,o; the bar above C; represents the spatially average 

concentration of species i due to the instantaneous mixing assumption. The height of 

mixing His spatially homogeneous and only varies with time. E, is the emission flux 

from, say, industrial plants and S, describes the injection rate from elevated surfaces 

(layers), which depends on the growth of atmospheric boundary layer and only a function 

of time (Zannetti, 1990, Van Loon, 1996; Stull, 1988;). The dry deposition velocity (also 

termed surface removal) is denoted by u~,P, and R, is the rate of generation (or depletion) 

by chemical reactions, which is a function of concentration ( C, ), temperature (7) and 

time (t). 

In more realistic processes, pollutant concentrations vary with space and time. 

For example, vehicular emissions are higher in downtown than in the suburban areas or 

industrial zones are more polluted than family residence, and more pollutants are released 

or produced during the day than at nighttime. Thus the treatment of pollutant emissions 

as spatially homogeneous by the box models is clearly misleading. At best, box models 

can forecast the average temporal phenomena of each pollutant species i. In other words, 

box models cannot effectively simulate the complex air pollution episodes, e.g., 

predicting the location-specific profiles of the maximum ozone concentrations, due to 

simplistic assumptions of real life processes. Hence they are not generally implemented 

in air pollution controlling strategies. 

2.3.2 Trajectory Models 

A better approach in physicochemical modeling is to apply trajectory models. Based on 

the theory of mass conservation, the transport of air pollutants and relevant chemical 

reactions are treated in moving coordinates (hence termed Lagrangian), which are 

anchored to a hypothetical or fictitious vertical air column bounded by ground at the 

bottom and inversion base, if exists, on the top. Usually, the starting point is specified at 
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the city limit and the air column moves under the influence of horizontal wind fields. 

When it passes through emission sources, e.g., coal-fired utilities, the pollutants are 

"injected" into the column and chemical reactions occur simultaneously. 

However, it is perhaps easier to understand the mass conservation problems in 

Cartesian coordinates before we proceed to the Lagrangian frame of reference. In a 

simple case, Walters (1969) studied the continuous surface line source by assuming 

uniform wind speed U in the x-direction. The corresponding horizontal and vertical 

dispersion coefficients K H and K v were chosen to be invariant with the wind direction 

and only a functionofaltitude(z); that is KH =Koz and Kv =K1z where Ko and K1 

are average values associated with the horizontal and vertical directions, respectively. 

The governing mass balance equation was given as the following: 

u oc, = K (z) o'c, + _£_[K (z) oc, J Vi= I, ... , N 
OX H ox' oz v oz , (2.11) 

where C, (x, z) denotes the concentration of species i associated with the spatial process; 

the solution to this problem was obtained as: 

C1(x,z) -=----;-q"'L'::------::--:c-:-exp[-). tan -I (-f.l_Z )] 
KJI+e-"')[x 2 +(f.lz)'f' x 

(2.12) 

where q L denotes the pollutant flux for a continuous line source; ). = U I(K 
0
K 1 t 2 and 

In another study, Liu and Seinfeld (1975) improved the model by including the 

temporal component of the concentration, i.e., C,(t), and derived the analytical solution 

in terms of gamma (f) and exponential functions. If K 11 is considered to be constant 

andK v (z) is represented as a power law function of altitude (z), i.e., K v = K1 zm, where 

K1 is an average value associated with the vertical dispersion coefficient and m E (0, 2), 

the solution can be obtained as: 
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c 1 , rL[4~rKH(t-,BWI/2 
,(x,z,t)= (2-m)m/(2-m)r[l/(2-m)] foJo [KI(t-,B)t(2-m) 

[ 
z'-m ] { [x -U(t- ,B) -a]'} 

exp (2-m)' KI (t- ,8) exp - 4K H (t- ,8) q A da d,B 
(2.13) 

where q A (a, ,8) is the space-time area source flux; a and ,8 are the spatial and temporal 

dummy variables, respectively. 

In a similar case but now considering the trajectory model, the solution requires 

prior coordinate transformation, and assumptions that the horizontal dispersion and wind 

shear (vertical component) can be neglected. The governing equation (2.11) may be 

rewritten in the Lagrangian coordinate as: 

ac,- a [ ac,) --- Kv-or op op (2.14) 

Note that horizontal dispersive term is eliminated from the mass balance equation due to 

neglecting horizontal mixing across the boundaries of the air column (i.e., K 11 = 0). The 

downwind distance x in the convective term is converted into traveling time r, i.e., x = Ur 

since the velocity U is assumed uniform. Hence the pollutant concentration associated 

with trajectory model, denoted by the tilde (-), only varies with the distance p above the 

ground (i.e., vertically) and traveling time r. Eqn. (2.14) is subject to the initial 

condition: 

(2.15) 

where QA is the instantaneous emission source, which value exists only at altitude p as 

ensured by the Dirac delta function 5. When coupled with the boundary conditions of no 

flux at the ground (p = 0) and zero concentration aloft, i.e., 



16 

-K ac, =O 
v ap , p=O (2.16a) 

C,(p,r)=O, (b) 

the solution for the trajectory model (area source) is obtained as 

(2.17) 

after simplifYing the vertical dispersivity Kv (z) with the power law representation as in 

the case of Cartesian coordinate above. 

The validity of implementing trajectory models in a full 3D simulation may be 

questioned because three major assumptions were made: (1) the horizontal mixing across 

the air column is neglected, (2) the movement of the column is treated only in 2D (i.e., 

horizontally) by omitting the influence of vertical wind component (w), and (3) the whole 

parcel of air moves with a wind speed that is invariant with altitude, which means that the 

air column is assumed vertically straight at all time. These simplifications may cause 

large error, e.g., when the air column passes in the proximity of a major area source but 

not over it, the horizontal pollutant dispersion due to such source will be neglected in the 

model calculation. A poor result is expected, especially in the direction orthogonal to the 

movement of the air column. 

Under optimal conditions (sufficiently high horizontal but low vertical wind 

speeds), Liu and Seinfeld (1975) found the absolute error of the trajectory model to be 

less than 10 percent when it was compared with the "exact" solution. Consequently, in 

the mid 1970s, the U.S. Environmental Protection Agency (EPA) proposed the use of 

Empirical Kinetics Modeling Approach (EKMA), a Lagrangian model, for estimating the 

effects of volatile organic compounds (VOCs) and nitrogen oxides (NOx) on urban ozone 

episodes. However, 3D photochemical grid models (termed Eulerian due to assumption 

of fixed coordinates) such as the Urban Airshed Model (UAM) have superseded the 
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Lagrangian models for regulatory purposes. A detail description of the UAM is included 

in Appendix B of this thesis. 

2.4 Statistical Approaches 

Besides the physicochemical modeling approaches, the forecasting (in temporal sense) of 

ozone phenomena in the urban area can be accomplished by means of statistical 

methodologies. Recent advancements in theory as well as computing technologies 

encourage researchers to seek statistical representation of ozone data. For example, the 

analysis of complex nonlinear relationships between ozone and its precursors using 

artificial neural networks (e.g., Guardani et al., 1999; Gardner and Dorling, 1998-2000; 

Prybutok et al., 2000) can be achieved in much shorter time than running a 3D 

photochemical grid model (e.g., UAM) for obtaining similar results. The reason is that 

the neural network acts as a proxy to the complex physicochemical transfer functions, 

which are transformed into algebraic expressions that are lighting fast to compute. The 

target output (i.e., ozone concentration) is obtained by minimizing global error through 

efficient optimization techniques, e.g., the scaled conjugate gradient algorithm. In 

general, the statistical methodologies currently applied in the context of atmospheric 

science can be classified into two broad categories: (I) regression, and (2) spatiotemporal 

modeling. 

2.4.1 Regression 

This approach and its derivatives are perhaps the most commonly applied in the field of 

ozone level prediction (in temporal sense) and/or estimation (in spatial sense). With 

some twist in the method complexities, many models for the average behavior of ozone, 

its precursors and relevant meteorological variables exist. The regression-based methods 

can be further divided into three groups as suggested by Thompson et al. (200 I): (I) 

linear regression, (2) nonlinear regression, and (3) regression tree analysis. 
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2.4.1.1. Linear Regression 

Due to its simplicity, linear modeling is perhaps the most popularly implemented in 

predicting ozone episodes based on concurrent meteorological conditions. Examples of 

such works can be found in Feister and Balzer (1991), Korsog and Wolff(l991), Abdul­

Wahab et al. (1996), Katsoulis (1996) and Fiore et al. (1998). Some researchers (e.g., 

Hastie and Pregibon, 1992) argued that many processes have Gaussian (normal) errors 

and a linear model provides an optimal estimate for the expected value of such problem, 

at least within a limited interval. Other phenomena exhibit nonlinear behaviors but often 

can also be modeled linearly by scale-transforming the response variable and predictors. 

However, such transformations only alter the univariate distribution characterizing the 

random variable RV Z(t) without affecting the multivariate distributions of a series ofRV 

{Z;(f), i = I, ... , N} taken jointly at all times. 

In an example of univariate transformation, Turner ( 1970) correlated experimental 

data of the transverse dispersion coefficient O'y as a function of downwind distance x at 

various stability categories (A-F). When the variables were logarithmically transformed, 

he discovered linearity between O'y and x, which was contrary to the theoretical 

hypothesis of the form O'y- x 112 (see for example, de Nevers, 1995). Hence it should not 

be a surprise when the EPA adopted Turner's proposal; that is the simple linear relation 

between the logarithmically-transformed dispersion coefficient O'y and downwind 

distance x in the Gaussian plume model should be applied for the air pollution abatement 

strategies. However, we must proceed with care when dealing with more complicated 

transformations because physical interpretations in the "unnatural" scales may be 

misleading. 

Consider a classic linear model, which takes the form of: 

y;=j(x;)+s, i=l, ... ,N (2.18) 

where y; are the predicted values of the response Y and f is a function of predictor X with 

observations x;. In other words, the error sis assumed to be Gaussian with zero mean and 

constant variance. For univariate cases, e.g., forecasting maximum ozone concentrations 
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(i.e., response Y, possibly in a transformed scale) based on historical ozone data (i.e., 

predictor X, which may have been transformed prior to analysis), the model can be 

written as: 

y1 =a+ bx1, i = 1, ... , N (2.19) 

where a and b are the coefficients of linear best fit intercept and gradient (slope) of the 

model, respectively. 

Unfortunately, univariate analyses often fail to satisfactorily predict future ozone 

concentrations due to the complexity of the phenomena. This problem can be tackled 

partly by including the influence of ozone predictors in the model, i.e., by applying 

multivariate linear analyses. In one study, Chaloulakou et a!. (1999) investigated how 

maximum ozone concentrations relate to meteorological and chemical covariates 

(predictors). Using a seven-year period (1987-1993) of data sets provided by the Greek 

Ministry of Environment, City Planning and Public Works (PERP A), the authors applied 

multivariate linear regression to predict ozone concentrations in 1993. Their approach 

can be divided into three cases: (1) bivariate analyses of ozone concentrations [03] using 

previous day ozone concentrations [03]pd and maximum temperature T max. (2) similar to 

the former, except that Tmax is substituted with inverse wind speed WS-1
, and (3) 

multivariate analysis using six cofactors, i.e., [OJ]pd, Tmax, ws·I, dominant wind direction 

WD, and the concentrations of nitrogen dioxide [NOz] and carbon monoxide [CO]. For 

convenience, the results are tabulated in Table 2.2 according to the order of the above 

cases and the naming conventions used by the authors: 
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Table 2.2 
Models and results of the multivariate linear analysis from the work of Chaloulakou et al. 
(1999). 

Models Equations and Results 

1. TEMPER [OJ]= a+ b*[OJ]pd + c*Tmax 

2. WISPER 

where, 

a= 43.079, b = 0.507, c = 1.255 

R = 0.54, R2 = 0.29 

[OJ]= a+ b*[OJ]pd + c*WS-1 

where, 

a= 35.697, b = 0.478, c = 123.719 

R = 0.61, R2 = 0.37 

3. REGLIN6 [OJ] =a+ b*[OJ]pd + c*T max+ d*WS- 1 + e*WD + f*[N02] + g*[CO] 

where, 

a= -55.374, b = 0.348, c = 1.835, d = 3.002, e = 111.323, f = 0.210, g = 1.928 

R = 0.66, R2 
= 0.43 

where a, b, c, d, e, f, and g are the fitted coefficients of the multiple linear regression 

models. R and R2 denote the coefficients of correlation and determination, respectively. 

Among the three regression models, the most reliable ozone-forecasting equation was the 

REGLIN6, as evidenced from the highest values of R and R2
. However, the authors 

admitted that the multiple linear regression models could not successfully handle extreme 

value cases due to their nature; the assumed simple linear and/or additive associations 

between predictors, i.e., meteorological and chemical data, and response (ozone) were 

clearly inadequate to capture the nonlinearity in the underlying physical and chemical 

mechanisms of these phenomena. Bloomfield et al. (1996) also made the same remark 

and tried the next logical step; that is modeling meteorologically dependent ozone 

episodes in Chicago area over an eleven-year period (1981-1991) with nonlinear 

regression techniques. 
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2.4.1.2. Nonlinear Regression 

The next level in model complexity is the nonlinear regression approach. In the study of 

the meteorological effects on ozone episodes, many workers have acknowledged the 

nonlinear associations between the response variable (ozone) and predictors (e.g., surface 

temperature, wind fields). For example, Bloomfield eta!. (1993a,b and 1996) correlated 

ozone concentration [OJ] with a cubic polynomial of temperature T, and a simple 

function of surface and upper atmospheric (at 700 mbar) wind speeds, respectively, WSPs 

and WSP700, as follows 

[0 3 ]-

1 
+ WSPs + JYSP700 +{other terms} 

poly(T,3) 
(2.20) 

vs v1oo 

where v, and v70o are the corresponding fitted wind speed parameters at the surface and 

upper atmosphere. The seasonal patterns and trend are included in the {other terms}, and 

tailored via a "short" Fourier series (see detailed descriptions in Chapter 7) of the form, 

e.g., [a 1 cos(2nt) + b1 sin(2nt)] and [a, cos(4nt) + b2 sin(4nt)] corresponding to the 

annual and semi-annual frequencies. The a's and b's are the fitted coefficients, and the 

time (year) variable t was scaled to [Julian year + (Julian day/365) - 1985] for easier 

analysis. Based on this model, they found that the R2 value (a measure of nonlinear least 

square fit) increased to 0.8037 when compared to using the wind speed data alone where 

R2 was only 0. 7204 or combining the effects of temperature, relative humidity and wind 

speed where R2 was 0.7499. 

Encouraged by these results, Soja and Soja (1999), and Cobourn and Hubbard 

(1999) applied similar approaches in the areas of eastern Austria and the Ohio River 

Valley (U.S.A), respectively. The former employed daily maximum temperature and 

sunshine duration based on the data sets collected in three-year period (1993-1995). The 

regression models were given for individual months during the ozone 'season' (May­

September) and compared with bivariate linear regression technique ([OJ] =a+ b*T max+ 

c*SUN) where a, b and c were the fitted coefficients; [03], Tmax. SUN are the ozone 

concentration, maximum temperature and sunshine hours, respectively. For convenience, 
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the model equations for the case of seven-hour (0900-1600) mean values are tabulated 

below in Table 2.3: 

Table 2.3 
Models and results of nonlinear regression analyses from the work of Soja and Soja 
(1999) 

Months 

1. May 

2. June 

3. July 

4. August 

5. September 

6. All months 

Model Equations and Coefficients 

[03] =a+ b*exp(-Tmaxlc)*exp(-SUN/c) 

where: a=29.2,b=2.15,c=-13.6 

R2 = 0.716, (R2)blm = 0.670 

[OJ]= a+ b*(Tmax)15 + c*SLJNl 5 

where: a= 9.30, b = 0.210, c = 6.00 

R2 = 0.739, (R2)bim = 0.733 

[OJ]= a+ b*(Tmaxi 5 + c*SLJNl 5 

where: a= 15.6, b = 0.00617, c = 4.93 

R2 = 0.641, (R2)bim = 0.635 

[OJ]= a+ b*(Tmax)25 + c*SUN*In(SUN) 

where: a= I 8.0, b = 0.00720, c = 0.254 

R2 = 0.843, (R2)bim = 0.824 

[OJ] =a+ b*T max *ln(T max)+ c*SUN 

where: a= 9.55, b = 0.291, c = 1.527 

R2 = 0.755, (R2)bim = 0.755 

[OJ]= a+ b*(Tmax)25 + c*SUN 

where: a= 22.0, b = 0.00505, c = I .491 

R2 = 0.735, (R2)bim = 0.724 

where the R2 denotes the coefficient of determination (a measure of prediction variance) 

and the subscript 'blm' refers to bivariate linear model. Interestingly, the R2 for the 

linear model were close to those of the nonlinear models, which means that this approach 

only serves to predict the best fitted values of ozone concentrations. The complex 
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relations between ozone and its predictors were difficult to be physically understood, as 

evidenced from the inconsistency of model representations. 

Coboum and Hubbard (1999) investigated ozone phenomena in the Ohio River 

Valley using the EPA's Aerometric Information and Retrieval Systems (AIRS) database 

for a period of five years (1993-1997). The meteorological variables were averaged at 

several hourly intervals, i.e., cloud cover CC (0900-1400), nighttime "calms" NC (0000-

0400), relative humidity RH (0900-1300) and surface wind speed WS (0900-1500). Other 

variables include maximum temperature TMAX (daily peak value), air mass trajectory 

corridor TRAJ (upwind, previous 36 hours), day of week DOW (number of Saturdays), 

rainfall RF (daily total) and length of day LOD (hours from sunrise to sunset). The 

authors applied a combination of nonlinear and linear regression models in a two-step 

procedure. First, ozone concentrations were calculated using the nonlinear equation: 

where B1-B6 (~ = 76.5, Bz = 181, (}3 = -9.26, (}4 = 0.0933, Bs = -0.115, (}6 = -0.0654) 

are the ordinary least square parameters of best fit. The resulting nonlinear ozone output 

[03]n1 is then used as another predictor variable in the final form of the linear regression 

model, i.e., 

where b0 -b6 (b0 = -43.7, b1 = 0.800, bz = -0.732, b3 = 4.14, b4 = 4.16, bs = 1.55, b6 = 

-2.29, b7 = 11.3) are the coefficients of the linear equation, fitted using ordinary least 

squares and the stepwise method (IMSL, 1992). However, if the data for the linear 

predictors are scarce or unavailable, the authors suggested the use of only nonlinear 

ozone model since its R 2 value is 0.724, close to that of the linear model (R2 
= 0. 790). 

However, the implementation of nonlinear models outside of their respective area 

of development may be inappropriate. For example, Bloomfield eta!. (1996) successfully 

predicted future ozone concentration in Chicago, lllinois but when Davis and Speckman 

(1999) applied the same model in Houston, Texas, they were disappointed with the 
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results. The reason for the poor model performance might be caused by dissimilarity in 

meteorological conditions and/or relations between ozone (response) and the predictors. 

When this happens, we should resort to tree analysis. 

2.4.1.3. Regression Tree Analysis 

When dealing with multivariate statistics where complex relations between the response 

variables and predictors are expected, alternatives to nonlinear regression methods are 

desired; particularly, the methods based on partitioning the predictor space into mutually 

orthogonal subspaces depending on some error criteria. Such nonlinear, orthogonal 

partitioning approaches not only result in more robust predictions but are also useful for 

identifying the most probable criteria responsible for a given process. Examples include 

the implementation of the CART (Classification and Regression Tree; Breiman et al., 

1984) algorithm and the S-Plus built-in tree functions for analyzing censored survival 

data (LeBlanc and Crowley, 1993), predicting maximum tropospheric ozone 

concentrations for the major cities in Canada (Burrows et al., 1995), classifying the 

meteorological covariates of hurricanes (Elsner et al., 1996) and defining meteorological 

regimes influencing ozone trends (Huang and Smith, 1999). In another variation oftree 

analysis, which is based on cluster-specific (average linkage and K-means) generalized 

additive models (GAM), Davis et al. (1998) were able to identify three covariates, i.e., 

daily maximum surface temperature, average v component (y-direction) of the surface 

wind and total global radiation, to be important factors in causing high ozone 

concentrations in Houston, Texas. 

The general idea behind regression tree modeling is analyzing trends within 

different clusters of the data sets by growing the tree, i.e., forming clusters by recursively 

partitioning data into two distinct groups (binary tree) until the difference is no longer 

significant. Consider, for example, a given response variable Y (i.e., ozone) with obser­

vations y;, i = I, ... , M, and a set of predictors {X1, ... , XJ}, which are also termed 

exploratory variables; then assume Y given the predictor values has a normal (Gaussian) 

distribution with varying mean Jl (depends on predictors, i.e., may be heteroscedastic) 
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and common variance d. Note that the assumption of normal distribution could be 

substituted by a different likelihood distribution if the data sets warrant it. 

In order to grow a tree, the measurement space of all predictors X= X 1 181 ... 181 X1, 

where 181 denotes the Cartesian product, are recursively partitioned into two groups XL 

(left) and XR (right) based on certain threshold values x1~,j =I, ... , J, k =I, ... , K, of 

some predictor variables )0. For example, a temperature (X1) of -20°C (x 11 ) and low 

wind speed (Xz) of 7.5 knots (xzi) in the springtime were found to be conducive to ozone 

formation (Gardner and Dorling, 2000); these thresholds x 11 and x21 may determine 

whether a group of data sets goes left or right after successive splits. 

The recursive partitioning regression may be performed via a stepwise procedure; 

particularly, by using indicator function J(x1rn) whose value is one if the variable values 

XJrn are less than a threshold value XJk, i.e., J(x1rn) =I, V(x1rn <:; x1k) E XL, and zero otherwise, 

i.e., I(x1rn) = 0, V(x1rn ~ x1k) E XR. The primary goal of regression tree is to approximate 

the response values y(x 1) by a linear combination of basis functions Brn(XJrn) as follows 

(Friedman, 1990): 

M 

y(x)= ~>mBm(xjm), J= I, ... ,] (2.21) 
m:l 

where am are jointly calculated in such a way that the data fitting error is minimized; the 

basis functions BrnO are modeled as: 

(2.22) 

where I(·) is the indicator function as explained above and Rrn are the subregions of the 

covariate space representing the entire domain. To obtain a more explicit set of basis 

functions based on available data, BrnO are further defined as a collection of Heaviside 

step functions H( TJ), whose value is one if the argument TJ is positive and zero otherwise, 

I.e., 
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Km 

Bm (x1m) = f1 H[skm · (x1m -X ik )], VXJm• Xjk (2.23) 
k=l 

where [skm · (x1m - Xjk)] denotes the argument 77; the parameters Skm carry the values of ±I 

in order to always ensure a positive step function; Km is the total number of splits after 

the tree stops growing; x1m are the values of the predictor variables J0 and x1k are the 

corresponding thresholds. To illustrate a partitioning procedure (growing the binary tree), 

Figure 2.1 shows an example on how to obtain four subregions (R1-R!) by splitting the 

original set of predictor data (x1m) using three threshold values (x1k). Each branch 

(intermediate node), including the root (first node), of the binary tree is represented by a 

step function H(7J), and at the end of the branch(es) lie a leaf (terminal node), which is 

represented by a specific basis function Bm(·). 

Root 

Figure 2.1 
Regression tree structure. Four subregions (R1-R!) are generated from three thresholds XJk 
corresponding to each set of predictor data x1. 
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From the above figure, the basis functions can be written as follows: 

where the minus signs prior to the argument ry are utilized to guarantee that all basis 

functions BmO have nonzero values. 

This process must also satisfy max1mum deviance D; so that the difference 

between the conditional densities fly I XL) and fly I XR) is the highest. For a set of 

observations y;, i = I, ... , M, the deviance D; is written as (Huang and Smith, 1999): 

M 

D,(,u; y) = L (y, - ,u)' (2.24) 
i=l 

where ,u is the arithmetic average of y;, i.e., the minimum deviance estimate. If DP"""' 

represents the deviance of the upper node while DchildL and DchildR are the deviances of the 

binary split (left Land right R), the maximum value (over;) can be determined from: 

tllJ = Dparent- (DchildL + DchildR) (2.25) 

The tree is usually left to grow up to a certain size (denoted by Tmax) when it is stopped 

after the number of observations y;, i = 1, ... , M, in a cluster is less than or equal to 5, or 

when tllJ is less than 1 percent of Dpa,.nr· However, this large tree must be optimized 

because excessive splits increase the variance of the estimated means ,u on all terminal 

nodes. To achieve this, the tree can be pruned by omitting the trivial splits according to a 

certain criterion. In practice, it is common to apply a so-called cost-complexity measure 

Dr (a) to evaluate the goodness of fit in order to obtain the optimized subtree T <:; Tmax· 

The deviance Dr of a subtree can be correlated to the tree size S( T ), i.e., the number of 

terminal nodes, and the cost-complexity parameter a by (Clark and Pregibon, 1992): 
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Dr( a) =Dr+ aS(T) (2.26) 

In other words, the cost-complexity measure (total deviance) is a linear combination of 

the subtree cost (deviance Dr) and its complexity. The tree object T(a) may be readily 

found by minimizing the cost-complexity measure at constant a. However, to obtain an 

optimal tree, we must balance the total deviance Dr (a) and tree size S( 7) based on the 

smallest deviance possible as well as a manageable tree size. 

The application of regression tree analysis in atmospheric science has gained 

momentum because of its ability in identifying the underlying physical and chemical 

mechanisms of complex nonlinear processes. As remarked by Huang and Smith (1999), 

the regression tree approach has the advantage of estimating "different trends in different 

clusters." That is the analysis for average and maximum ozone concentrations can be 

performed simultaneously but separately in a single run, which is useful and time saving. 

However, if the tree is over- or under-pruned, the end results may be less satisfactory 

such that its performance (e.g., R2 statistic) is inferior to, say, a neural network (a form of 

nonlinear black box model) and only comparable to that of simple linear regression. In 

addition, if a process is known to be linear a priori, the implementation of a regression 

tree is only as good as, if not worse than, that of simple linear regression. 

In essence, regression-based models may be easier to be physically interpreted 

than other more sophisticated approaches, e.g., artificial neural network. However, the 

performance of the models may sometime have to be compromised. As Gardner and 

Dorling (2000a) remarked in the comparative study of surface ozone concentration in the 

major cities of the U.K., the reliabilities of linear regression, regression tree and neural 

network modeling approaches could be measured using various goodness-of- fit criteria. 

In particular, they compared the relative performances of the three approaches based on: 

1. Mean bias error (MBE), which indicates the differences between the predicted jL and 

observed f.1. mean concentrations as a measurement of under- or over-prediction. 
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2. Mean absolute error (MAE), which summarizes the absolute differences between the 

predicted Z and observed Z values, i.e., the residual errors. 

3. Root mean squared error (RMSE). Similar to MAE, the RMSE also summarizes the 

residual errors by squaring the differences between the predicted Z and observed Z 

values, adding them and taking the square root of the final result. 

4. Coefficient of determination (R \ which measures the variability in the predicted 

values as compared with the observed data (Section 4.1). R2 is useful since it is 

bounded between 0 and I. 

5. Index of agreement (da), which is a more useful measure than the R2 statistic since it 

indicates deviation from the observed mean values f.l· The index da is defined as 

(Willmott, 1982): 

"MIZ-Z[" d = I - L..;oJ < < 

a M~· )" " Z -f.l.[+[Z.-f.l[ ~1=1 I I I I 

In general, Gardner and Dorling (2000a) found that the regression tree and neural 

network analyses outperformed those of the linear regression models. However, the 

reverse was true in the special case occurring at the city of Southampton in which the 

RMSE, R2 and da statistics of the linear model were superior to those of the regression 

tree and just short of the neural network performance. Comrie (1997) also compared the 

neural network with linear regression models and obtained similar results. He found only 

slight improvements, in term of R2 statistic, after applying neural network analysis for 

predicting maximum ozone concentrations in the U.S. urban areas. 

On the other hand, nonlinear models may not always outperform the linear 

regression approaches. Often the relationships between the response and its predictors, 

like those in the city of Southampton, show linearity and therefore best analyze using 

linear regression models due to their simplicity. Unfortunately, real-life phenomena are 

usually complex and nonlinear; to model them linearly is absurd. The use of nonlinear 

models may be more suitable but even then, the models are only useful at a very limited 
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area as proven by Davis and Speckman (1999) when they tried to apply the model 

developed by Bloomfield et al. (1996) for the Houston metropolitan area. In this manner, 

there is a need for a more versatile approach that can yield good estimations (spatial 

sense) and prediction (temporal sense), both locally and regionally. This approach 

known as spatiotemporal modeling is discussed next. 

2.4.2 Space-Time Modeling 

This approach is historically categorized under the area of geostatistics, which form a 

"new" branch of statistical science dealing with spatial and temporal phenomena. Since 

the pioneering works ofMatheron (1962) in geology and Gandin (1963) in meteorology, 

the application of geostatistical methods has been extended into various fields. Examples 

can be found in the works of: Eynon and Switzer (1983) on the rainfall pH in the 

Northeastern United States, Laslett (1994) on gilgais, which are geographical phenomena 

of naturally "gentle depressions in otherwise flat land," Kyriakidis (1999) on sulfate 

deposition over Europe, and more recently Bechini et al. (2000) on global solar radiation 

over agricultural area in Italy. 

The work of Kyriakidis (1999) instigated significant interest in the environmental 

science community due to the application of stochastic analyses, or more specifically, 

batch and recursive-type direct sequential simulation (DSSIM) to estimate (in spatial 

sense: u) and predict (in temporal sense: t) the monthly average sulfate (SO!-) concen­

trations in various European countries. Here the concepts of space-time phenomena are 

discussed in detail through the use of random variable (RV) and random function (RF), 

both of which are also known as random processes. Owing to the decision in stochastic 

modeling, a random process may be decomposed into two uncorrelated fields, e.g., 

Z(u, t) = M(u, t) + R(u, t), VuE D, 'it E T (2.27) 

where M(u, t) is a stochastic trend modeling the "mean" or smooth variability of the 

spatiotemporal random process (signal) Z(u, t) for every location in space u E D and 
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instant in time t E T, and R( u, t) is a stationary space-time residual component around 

that trend and often modeled independently. 

The procedure begins by establishing a deterministic spatiotemporal trend (mean) 

{m(u",t,),aE(N)} of the sample time series TS {z(ua,l,),iET"}, which can be 

regarded as one realization of a temporal random process { Z ( u a , t, ), i E Ta } at the 

monitoring station u a ED and at the discrete time instants t,. Under stationarity, the 

trend (mean) is inferable and hence the decomposition (a model) of the random process 

can be re-defined as: 

(2.28) 

where m(ua, t,) is a deterministic temporal trend, R(u", t,) is a stationary, zero-mean 

stochastic residual process and Ta is the time span of the measurements available at 

station u" . Having established the above model, which was adopted by many researchers 

including Joumel and Huijbregts (1972) in the context of mining, we now require the 

techniques to determine both the trend m(u", t,) and the residual process R(u", t,). 

2.4.2.1. Modeling the Trend 

It is common to have a cyclical variation of the sample data, especially when we deal 

with the concentrations of air pollutants over a period of time. A good deterministic 

trend model must be able to reproduce such cyclic variation, and one way to proceed is 

by using Fourier series of sine and cosine functions. For further simplification, the 

deterministic trend m(ua, t,) is modeled independently at each station u" by applying 

the following conditional independence assumption: 

E {Z(u, t) I [Z(u, t'), I'E T], [Z(u', t'), t' E T]} = E {Z(u, t) I [ Z(u, 1'), t'E T]} (2.29) 

which says that the random process {Z(u, t), t E T} at each station u is obtained only from 

sample data {Z(u, t'), t'E T} at the same station u, i.e., the temporal records at location u 
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screen those obtained from all other locations u' . This particular assumption allows the 

deterministic trend to be modeled as: 

K 

m(ua,t;)= ~),(ua)f,(t;), i= 1, ... , Ta (2.30) 
k=O 

where b, (ua) are the coefficients of the Fourier functions f 1 (t,), with fo (t;) =I by 

convention. In other words, the deterministic trend is modeled as a summation of (K + I) 

"known" temporal functions f, (t,), i.e., sines and cosines, having certain amplitude Ak 

and frequency OJic. 

However, the objective is to construct a stochastic space-time trend field M(u,t), 

which allows estimation or simulation of a trend at any unmonitored location u. This can 

be accomplished by regionalizing the trend coefficients b, (u) at, for example, three 

monitoring stations ua, up and u, at time instant 1;. Therefore, M(u,l) can be defined 

as a joint realization of a set of (K + I) cross-correlated random functions (RFs) 

{B, (u), u ED}, k = 0, ... , K, over the entire space-time domain D x T: 

K 

M(u,t)=LB,(u)f1 (t), VuED,VtET (2.31) 
k=O 

with the expected value of: 

K K 

E{M(u, t)} = E{LB, (u)f, (I)}= L E{B, (u)}/, (I), VuE D, Vt E T (2.32) 
hO 

or in simple terms, the stochastic spatiotemporal trend model M(u, t) and its expected 

value E{M(u, I)} can be obtained from the weighted linear combinations of the (K +I) 

RFs {B, (u), u ED} and its expected value E{B, (u)}, respectively. 
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2.4.2.2. Modeling the Residue 

The next step is to model the space-time residual field R(u, t). At the data z(ua, t;) 

locations, we obtain the residual TS r(ua, t;) as: 

K 

r(ua, t;) = z(ua, t,)- ~)k (ua )fk (t;), i =I, ... , Ta (2.33) 
k=O 

Note that this residual is algorithm-specific because it depends on the choice of Fourier 

functionfk(t;) and the corresponding coefficients bk(ua). In order to obtain the random 

residual field R(ua. t;), we must regionalize the residual data r(ua, t,) in space by 

initially standardizing them at every monitoring station ua to unit variance. This task 

can be achieved through division of each residual TS r(ua, t,) by the standard deviation 

s R (ua) of the residual profile at that particular station, i.e.: 

i = 1, ... , Ta (2.34) 

where s R (ua) is the square root of the variance s~ (ua), which is defined below: 

(2.35) 

Furthermore, to obtain the standardized residual field {R(u, t), t E T} at any 

unmonitored location u, the standardized residual TS {R(ua, t), t E T} at location ua 

may be decomposed into (L + 1) linear summation of component TS {R1 (ua, t), t E T} 

weighted with w1 as follows: 

L 

R(ua,t)= 2>1(ua)R1(U 0 ,t), aE(n) (2.36) 
l=O 
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with the conditions that the expected value E {RJua, t)} = 0, 'VI and the covariance 

Cov{RJua, t), R1. (ua, t + r)} = <>u.C li [r; q1 (ua )]; 51/' is the Kronecker delta, whose value 

is one if I= I' and zero otherwise, to ensure that the correlogram C Ji [r; qJua )] of the f'h 

component TS R1 (ua, t) is a diagonal matrix. r is the temporal lag and q1 (u") is the 

range of the f'h basic correlogram model and by default q" O = t:, i.e., approaching zero. 

Note that the above is only a modeling decision and carries the implication that the 

residual field R(u, t) can be decomposed into (L + I) mutually independent temporal 

structures. 

Another modeling decision is to constrain all (L + I) basic correlogram models so 

that they share the same characteristics, e.g., Gaussian, spherical or exponential and/or 

the combination of two or more basic structures. The previous decomposition leads to 

the correlogram function c, [r; q(u" )] , which is expressed simply as a linear summation 

L 

C_.[r;q(ua)]= :~.>/(u")C,;[r;q 1 (Ua)l (2.37) 
1=0 

Since the coefficients w1 (u") can only be determined at the monitoring station u", they 

need to be regionalized in such a way that a set of (L + I) coefficients 

{w1 (ua ), a E (n), IE L} and range q1(ua) can be modeled as a joint realization of 

2 · (L + 1) cross-correlated RFs {[W1(u),Q1(u)], u ED}. Therefore, the standardized 

spatiotemporal residual profile R(u,t) at any location u and time instant tis redefined as: 

L 

R(u, t) =I w/ (u)R/ (u, t) (2.38) 
1=0 

and the covariance function C,; [ r; q 1 ( u)] as: 
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L 

c,[r; q(u)] = ~>1 (u)C.;[r;q1 (u)] (2.39) 
l==O 

where a 1(u)=[w1(u)] 2 and qJu), defined at the same location u, are now the 

realizations of the RVs A1(u) and Q1(u), respectively. 

Finally, the space-time residual field R(u,t) can be simulated so as to ensure the 

reproduction of the covariance model c,[r;q1(u)], or in other words, the residual field 

can be calculated by combining expressions (2.35) and (2.38): 

R(u, t) = S" (u)R(u, t) (2.40) 

with the prior assumption that Cov{SR(u)R(u,t)}=O, 'lfu, u', t, and also that the 

following two conditions apply: 

I. Expected (mean) value: 

E{R(u, t)} = E{S R (u)R(u, t)} 

= E{S" (u)}E{R(u, t)} 

=0 (2.41) 

which means that SR(u) and R(u,t) are assumed mutually orthogonal in order to 

obtain the unbiased residual field R(u,t), and 

2. Covariance: 

E{R(u, t)R(u', t')} = E{[S" (u)R(u, t)][S" (u')R(u', t')]} 

= E{S"(u)S"(u')}E{R(u, t)R(u', t')} 

= Cs (u-u')Cov{R(u, t)R(u', t')} 
' 

(2.42) 

or in words, the covariance of SR is only a function of space u whereas that of R 
depends on both space u and time t. 
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The space-time phenomena are complex in natnre and usually modeled by making 

certain decisions on the stochastic trend M(u, t) and residual R(u, t) components. The 

former component is usually modeled deterministically at the station locations whereas 

the latter stochastically. Before going a step further, it is perhaps more useful to gain a 

prior insight of the temporal profiles and annual trends of relevant variables in order to 

preliminarily assess the influence of covariates on ozone. If the first two moments (mean 

and variance) of the temporal phenomena can be correctly reproduced by such methods 

as stochastic simulation, the prediction of random fluctuations in ozone profiles may be 

performed with less uncertainty. The implementation of regression-based methods can 

also be practical due to the more direct approach. However, extreme care must be 

exercised because ozone formation is highly nonlinear. The application of a simple linear 

model in predictive modes may require numerous studies at different spatial locations. 

Otherwise, the statistical analyses investigated at one location may not be useful at the 

other due to dissimilarities in meteorological events. For this reason and to verify the 

accuracy of temporal models before regionalization, various statistical methodologies are 

utilized for investigating ozone phenomena in Calgary, Alberta. 
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CHAPTER3 

EXPLORATORY DATA ANALYSIS 

The majority of data used in this thesis are provided by the Clean Air Strategic Alliance 

(CASA). These continuous (hourly average) data are stored in the Alberta Ambient Air 

Data Management System (AAADMS), a publicly accessible repository1 whose current 

stakeholders include Alberta Environment (AE), Environment Canada (EC), the 

Canadian Forest Service (CFS), the West Central Airshed Society (WCAS) and the 

Strathcona Industrial Association (SIA). In Calgary, Alberta there are three major envi­

ronmental monitoring stations, respectively located on the Northwest, Central and East 

sides of the city area. The types of chemical and meteorological variables recorded at 

each station vary depending on their necessity. For example, the concentration of sulfur 

dioxide (S02) is only recorded at the East station to monitor emissions from the industrial 

zones and wastewater treatment plants such as those in Ogden-Foothills and Bonnybrook. 

This way, the massive data collection campaign is cost effective. 

The availability of relevant environmental data at the monitoring stations IS 

sufficient for studying ozone phenomena. 'Comma-delimited' (in ASCII/ CSV format) 

data sets can be downloaded from the CASA's website. However, care should be taken 

when dealing with enormous amount of data because they may induce confusion due to 

incorrect formatting and/or different units of measurement. With the exception of the 

wind speed, and the amount of dust and smoke, which are measured in the respective 

units of kilometers per hour (km/h) and coefficient of haze (COH), the chemical species, 

e.g., carbon monoxide, nitric oxide, nitrogen dioxide, total hydrocarbon and ozone, are 

recorded in parts per million by volume (ppmv). 

1 See CASA's homepage www.casadata.org 
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Other meteorological variables, i.e., temperature, relative humidity and bright 

sunshine hours, were obtained from the EC's monitoring station at Calgary's Inter­

national Airport (in the northeast quadrant of the city). Temperature and relative 

humidity data, measured in the corresponding units of degree Celsius (0 C) and percentage 

of water in the atmosphere (%), are averaged (by arithmetic means) from the minimum 

and maximum daily average values. The daily duration (in hours, i.e., minutes are 

converted to hourly decimal) of which the sunlight "burns" a standard paper is termed the 

bright sunshine hours, a good surrogate predictor to the intensity of solar radiation (e.g. 

ultraviolet radiation). 

3.1 Selections of Covariates and Temporal Scale 

To a certain degree of confidence, previous studies have identified the covariates 

(predictors) responsible for instigating ozone episodes in major metropolitan areas. For 

example, Derwent and Davies (1994) showed that ozone is produced from the complex 

photochemical reactions between nitrogen oxides (NOx, mainly consisting of NO and 

N02), volatile organic compounds (VOCs) and their radical derivatives. Kajii et al. 

(1998) observed seasonal variations of tropospheric ozone (03) and carbon monoxide 

(CO) in Happo, Japan and found these two variables to be positively correlated, 

especially in the months of April through July. 

In a study of meteorological-dependency of ozone episodes, Cox and Chu (1993, 

1996) studied the effects of about one hundred variables in the major urban areas of the 

U.S. and determined that only some of them, i.e., maximum surface temperature, relative 

humidity, mixing (ceiling) height, opaque cloud cover, as well as average wind speed and 

direction, are significant to ozone prediction. The importance of cloud effects on ozone 

was emphasized by Matthijsen et al. (1996) who investigated aqueous-phase chemistry 

and wet depositions in Europe using the long-term ozone simulation (LOTUS) package. 

These finding were concurred by other researchers, e.g., Bloomfield et al. (1996) who 

extended the list by including barometric pressure, dewpoint temperature, specific 

humidity and visibility. However, the exact determination of the dominant variables is 

difficult due to variations in regional meteorology and pollutant emission patterns. Davis 
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et a!. (1998) verified this fact when they obtained unsatisfactory results for Houston, 

Texas after trying to apply the nonlinear model developed by Bloomfield eta!. (1996) for 

Chicago region. 

Based on various suggestions and conclusive evidence from the literature, nine 

covariates are selected in an attempt to predict daily average ozone concentrations in 

Calgary, Alberta. Seven of the variables (1-7; Table 3.1) used in this work are down­

loaded from CASA's website. These data are those recorded at the East monitoring 

station, chosen due to availability of wind field (speed and direction) data and proximity 

to the meteorological monitoring location (Northeast quadrant). The other three variables 

(8-10; Table 3.1) are provided by the Environment Canada (EC), available on paper 

format at the University of Calgary's main library or from the EC's regional headquarters 

in Calgary. For convenience, the abbreviations of all variables used in this thesis are 

listed below: 

Table 3.1 
Name abbreviations of the chemical and meteorological variables. 

No. Variables Abbreviations 

I. Dust and smoke COH 

2. Carbon Monoxide co 
3. Nitric oxide NO 

4. Nitrogen Dioxide N02 

5. Total hydrocarbon THC 

6. Ozone 03 

7. Wind speed WSPD 

8. Average temperature Tavg 

9. Average relative humidity RHavg 

10. Bright sunshine hours bSUN 

The "quality" of data collection is generally excellent but on rare occasions, a few 

missing data values were observed for several hours in a month. For example, ozone 

concentrations were not recorded for thirty-seven hours, i.e., from 0400 on April 14 to 
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1700 on April 15, 1997. To tackle this problem, twenty-four hourly values are averaged 

to obtain a single daily average "datum;" this approach is also favored by Feister and 

Balzer (1991). In this case, the hourly average data are considered to be time series IS 

za(t,), a= 1, ... , 7, i ENs; 24 and the daily average values as random variables RVs 

Z"(t1 ), a= 1, ... , 7,j E J= 365. Keeping this in mind, the averaging procedure is 

carried out as follows: 

(3.1) 

'<Ia=!, ... , 7,j= I, ... ,J=365 

N denotes the total number of hours where the measurement of each time series IS 

za (t,) is taken continuously on a particular day j E J = 365 (number of days in a year); 

note that N may be less than 24 due to missing values. The index a refers to the predictor 

variables (1-7 in Table 3.1) obtained from CASA. However, it should be stressed that the 

IS z" (t,) are converted to RV Z a (t 1 ) without prior knowledge of their respective 

distributions. This decision is valid only if we analyze the average behaviors of certain 

pollutants in a relatively small region. If we are interested in the study of extreme 

phenomena, e.g., hourly maximum ozone episodes, the better approach is to model the 

IS za (t,) using Weibull distributions (Cox and Chu, 1993 and 1996) 

Next, the simple averaging process above is repeated for the entire year. When 

missing daily values are identified, they are estimated from the previous seven-daily 

average data, i.e., 

(3.2) 

'v'a=1, ... ,7;K=7 
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where i a (t) are the inferred missing values. Of course there are more explicit but 

complicated methods, e.g., smoothing splines, available in the literature but these 

methods are perhaps more appropriate for estimating large number of missing data unlike 

those in this work. The missing values for a particular RV Z a (t) were less than one 

percent (< 72 hours or 3 days) of the total number of daily average values, which are 

always taken to be 365 for the entire period of the case studies. Therefore the decision to 

simply average the previous seven-daily values in order to "fill-in" for the missing data 

will not cause large error in the final results. However, if the temporal phenomena are 

analyzed using hourly data, the more complicated approach should be utilized due to the 

large number of missing data. 

Furthermore, the zero values from the observed TS za (t,) are considered as valid 

data because they indicate the absence of certain pollutants during the measurement 

periods. This approach is contrary to that of Caroll eta!. (1997) who treated zero values 

as missing data. Finally, to avoid complications, the chemical and meteorological data 

values on the last day of the leap year (i.e., December 31, 2000) are assumed negligible 

and therefore omitted. 

3.2 Time Series Plot 

Now that the variables have been selected, it is useful, as a preliminary analysis, to 

understand the seasonal and yearly patterns of ozone and its predictor variables. The 

argument is that if we are able to graphically identify the covariates responsible for 

inducing ozone episodes, the statistical analyses will be meaningful because they are 

more physically interpretable. This task is achieved by plotting time series of: (I) ozone, 

and (2) its individual predictors for the entire four years, i.e., 1997-2000. Here time is 

represented in Julian day (JDay) format where Jan I and December 31 of the year are 

denoted as I and 365, respectively. Note that the last day of the leap year (2000) is taken 

as December 30 to simplify the analysis. Keeping this in mind, the thirty-day moving 

average 30dMA values Wa(t) of the random variables RV Za(t;) are calculated as 

follows: 
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(3.3) 

a=1, ... ,10;j=15, ... ,1=365;k=15 

where 2k denotes the length of the moving window. In words, thirty values of the RV 

Z a (t,) are averaged in a forward process to produce a single value Wa (t 1 ) , which is 

placed at the center of the window; this process is repeated for all values of the Z" (t,) 

over the entire year. The application of fifteen-day temporal lag (k = 15) is to ensure the 

more accurate representations of the yearly trends. 

From Figure 3.1, the seasonal and yearly trends of ozone can be visualized. 

Notice the similarity in the overall patterns, especially between 1997 and 1999 data; there 

is an increasing trend of ozone concentrations, which peak in the spring (April-May), 

slowly decreasing until late fall (around November), and then increasing again in the 

winter season (December-March). On the contrary, the 1998 and 2000 yearly trends 

illustrate an "anomaly" due to the presence of second peaks in the mid-summer season 

(June-July); otherwise, the trends would have been similar to those of 1997 and 1999. In 

general, the 30dMA ozone values Wa (t 1 ) increase from a maximum level of around 

0.025 ppmv in 1997 to 0.030 ppmv in 2000. This significant increase of about 0.005 

ppmv may be caused by ozone episodes (i.e., sudden increase in ozone levels) occurring 

in late April or early May, as depicted by the time series plots of 1999 and 2000. 

The predictor variables for the year 1997 are plotted in Figure 3.2. From the 

visual inspection of the trends, it is difficult to speculate which of the chemical variables 

(COH, CO, NO, N02, THC) are directly responsible for ozone formation. This is 

expected since this process is complex and highly nonlinear. However, if the trends of 

the meteorological variables (WSPD, Tavg, RHavg, bSUN) are inspected, we can 

immediately notice their influence on ozone levels. Lower values of RHavg and WSPD 

cause higher ozone concentrations, which can be seen during ozone episodes in May. 
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Conversely both bSUN and Tavg are positively related to ozone, as they are initially 

expected based on results from the literature. 

3.3 Data Standardization 

As briefly mentioned in Chapter 2 of this thesis, both the response (ozone) and predictor 

(chemical and meteorological) variables are often pre-processed to simplify further 

statistical analysis. In the work of Rao, Zurbenko and colleagues (1994-1998), the data 

are initially transformed into logarithmic values and then filtered using the Kolmogorov­

Zurbenko [KZ(m,p)] algorithm, where m and pare the length of moving window and the 

number of iterations, respectively. This way, the seasonal variation can be separated 

from the short-term component and the analysis can be performed using simple linear 

regresswn. In another approach, Carroll et a!. (1997) applied a square root trans­

formation of only ozone data. They followed the suggestion by Hasslett and Raftery 

(1989), who studied the long-term wind speed variations at twelve monitoring stations in 

Ireland, due to similarity in the data distributions. The predictor variables, in this case 

sunlight and temperature, are left in their original forms because there is too much 

fluctuation in the daily values. 

A similar approach is applied in this work because the data are not only noisy but 

also vary in magnitude. For example, ozone is recorded in the unit of part per million by 

volume (ppmv), in the order of hundredth (0.01) but temperature is in degree Celsius 

ranging from -30 to 30°C; hence the difference is in the order of one thousand. To 

account for this "mismatch," all variables used in this thesis are standardized to zero 

mean and unit variance, which is easily achieved by first subtracting the RV Z" (t 1 ) from 

each variable-specific stationary mean Z = -11 
"

1 
Z (t ) , a= I, ... , 10, and J is the 

a ~r=-l a 1 

total number of Julian days in a year (365 for all case studies). The results are then 

divided by each variable-specific standard deviation s 2" of the RV Z a (t 1 ) ,j E J, i.e., 
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\-fa= I, ... , 10; j E J (3.4) 

The expected value of the standardized random variables RV Xa(t1 ), i.e., E{Xa(t)}, 

which is essentially its mean X a, is zero from the following: 

and the variance of the RV X" (t 1 ), i.e., s~" is one, which can also be easily verified: 

sx' =E{[X"(t.)-Xal'}=E{[X (t.)] 2
} a } a J 

=I 

because X a = 0 and the numerator E {[ z a (t j)- za ]2
} is nothing but the variance of the 

RV Za(t), a= I, ... , IO,j E J= 365. 

3.4 Box Plot 

Another important graphical tool that is helpful for understanding the sample distribution 

is the box plot. The box is bounded by upper (75th percentile) and lower (25th percentile) 

quartiles of the samples, with the median (50th percentile) displayed within. In addition, 

the extreme values are depicted by "whiskers," the two lines extending on both sides of 

the box. The red pluses ( +) symbolize the outliers, which are defined as the observations 

beyond one and a half times the interquartile ranges. For adequately large samples, this 

plot may qualitatively represent the first three moments, i.e., center of the distribution, 
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variability and skewness, of the data. Figure 3.3 illustrates the box plots, drawn using the 

MATLAB® Statistical Toolbox, of the standardized chemical and meteorological 

variables Xa(t1 ), a= I, ... , !O,j E J= 365. As expected, all variables are centered 

around the mean (i.e., zero) of the distributions. However, there is wide variability in 

these variables, as indicated by the large interquartile ranges and long whiskers. 

Note that the box plots can also be substituted with histograms in order to depict 

the distributions of the environmental and meteorological data. However, the analysis 

using such approach is still performed in the univariate sense. It has been shown in this 

chapter that the influence of covariates on ozone formation cannot be directly determined 

from individual time series, or more precisely, annual trends. For example, a rise in the 

average temperature alone does not immediate! y increase the ozone concentration. The 

physical process of tropospheric ozone phenomena involves complex and nonlinear 

associations of multiple covariates at the same time instant. If an 'ingredient' such as 

N02 is missing in that process, ozone may not be formed at all. Furthermore, if the 

intensity of solar radiation is 'low,' N02 cannot be decomposed to form oxygen radical, a 

highly reactive chemical species that will attack an oxygen molecule to produce ozone. 

Perhaps, it is the combinations of two or more covariates that play the major roles in 

ozone formation. The analysis based on a linear regression approach will be imple­

mented in the next chapter by employing correlation coefficients between ozone and its 

covariates. 
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Figure 3.1 
Plots of time series and annual trends of ozone. The solid lines are obtained from 30-day 
moving average values (30d _ YY raw; YY is the last two digits of the year and 'raw' 
denotes the original data) to illustrate the annual trends. Notice the sudden increase in 
daily average concentration data during the ozone episodes (early May). 
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Time series and annual trends of the 1997 chemical and meteorological variables. The 
thick solid lines (blue) are obtained from 30-day moving average values (30d_ YYraw; 
YY is the last two digits of the year and 'raw' denotes the original data) to illustrate the 
annual trends. 
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Time series and annual trends of the 1997 chemical and meteorological variables. The 
thick solid lines (blue) are obtained from 30-day moving average values (30d_YYraw; 
YY is the last two digits of the year and 'raw' denotes the original data) to illustrate the 
annual trends. 
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Figure 3.3 (i) 
Box plots of meteorological/chemical variables (I 997) to show the spread around the 
mean. All variables are standardized to zero mean and unit variance. The 25th, median 
and 75th percentiles of the distributions are illustrated by the lower, middle and upper 
horizontal lines of the box. The outliers are shown by plus(+) symboL 
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Figure 3.3 ( ii) 
Box plots of meteorological/chemical variables (1997) to show the spread around the 
mean. All variables are standardized to zero mean and unit variance. The 25th, median 
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horizontal lines of the box. The outliers are shown by plus(+) symboL 
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CHAPTER4 

REGRESSION APPROACH 

Simple linear fitting based on historical or similar ozone records can be first utilized in 

the statistical approach. The linear fit result obtained from, say, 1997 linear analysis can 

be applied for predicting ozone trends for 1998-2000. However, the outcomes from the 

previous chapter illustrate the inadequacy of univariate data (ozone only) in explaining 

the temporal phenomena. The nonlinear process of ozone formation is better treated in a 

multivariate sense using correlation coefficients between ozone and the predictor 

variables, as well as the complete secondary information. Such prediction can be 

performed via regression accounting for a linear combination of positively correlated 

variables with ozone. 

4.1 Simple Linear Fit of Ozone Data 

As a preliminary assessment of the ozone trend, a simple linear fitting is performed. 

Basically the time series of ozone in a particular year is divided into several windows in 

which they are "best" represented by linear lines. This decision primarily depends on the 

annual trends, visualized in the time series plots (see Figure 2.1). Recall that the thirty­

day moving averages (30dMA) Wa (t i) are defined as: 

a= 1, ... , 4;j = 15, ... , J= 365; k= 15 
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where Za (t) are the raw ozone values and the subscript a refers to a set of ozone data 

for the year:(!) 1997, (2) 1998, (3) 1999, and (4) 2000; Z1 (t) are used as the base case 

for predicting the 1997 values (validation) and also the 1998-2000 values; the denomi­

nator 2k represents the length of the moving window. 

From the time series plot of ozone in 1997 (Figure 4.1 a), there are roughly four 

windows in which the 30dMA values Wa (t j) can be expressed linearly. The piecewise 

linear fit is performed for the following time intervals: (I) 1-100, (2) 101-210, (3) 211-

330, and (4) 331-365. For the simple linear equations, intercepts cap are taken as the 

values on the first day of the respective windows, except for the first window where the 

intercept is graphically extrapolated to be 0.005 ppmv. The slopes map are calculated 

using the first yp(tF) and the last yp(tL) values in the respective Julian days (Jdays) IF and 

tL within each corresponding windows, i.e., 

a=fJ= I, ... ,4 ( 4.1) 

where the index a refers to the ozone data for the year: (I) 1997, (2) 1998, (3) 1999, and 

(4) 2000; and fJ denotes the order (left to right) of windows in each particular year. For 

example, the validation on the same year (1997) and prediction for the years 1998-2000 

can be easily performed using this linear fit formula: 

(4.2) 

a= fJ= I, ... , 4;} =I, ... , J=365 

where Yap (t j) are the inferred values on specific days tj. Note that the above expression 

should be applied with care because it is not always smooth at the borders of windows. 

Discontinuities may occur if the data are highly fluctuated. This happens, for example, 
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when the 30dMA-ozone concentration at Jday 100 is much higher (or lower) than the 

average value at Jday 101. 

The results from the linear analysis are plotted in Figure 4.1. As expected, the 

piecewise linear fit represents the general trends of the 30dMA ozone values Wa (t 1 ) . 

Specific features like the second peak in 1998 are not represented correctly by the fitting 

parameters computed using the 1997 data. The results predicted for 1999 and 2000 do 

not reflect the increase of the ozone trends due to the difference in average ozone 

concentrations in those years that cannot be anticipated a priori, based on the 1997 ozone 

data. In addition, the last linear line unsuccessfully predicts the stationary ozone trend at 

the end of year 2000. It must be emphasized that better linear fits could be obtained by 

establishing the slope and intercept using appropriate annual data, e.g., using annual 

summaries of 1999 to predict the trend in the same year; however, that would render the 

linear fitting method as inadequate to be a prediction tool. 

The coefficient of determination (R2
) values for all years are calculated and 

tabulated below in Table 4.1: 

Table 4.1 
The R2 values for simple linear fitting analysis. 

Year R2 

1997 0.94 

1998 0.83 

1999 0.84 

2000 0.90 

The R2 statistic measures the mismatch between the predicted values Yap (t;) and the 

actual 30dMA values Wa (t;). Typically, R2 is bounded to within [0, 1] where R2 
= 1 

refers to the ideal situation in which the prediction exactly identifies the original data. 

The R2 values for all simple linear fitting cases are quite high, which is expected since the 

approach represents the mean fit of over and under-estimations as shown in Figure 4.2. It 
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should be noted however that ozone phenomena are highly nonlinear and complex; hence 

representing them with simple linear expressions based on historical ozone data hardly 

makes physical sense. The simple linear fit approach must be augmented to include the 

secondary variables (covariates) such as wind speed, bright sunshine hours and average 

temperature. 

4.2 Employing Secondary Variables 

Prior to implementing the multivariate regression analysis, it is imperative for us to have 

some ideas on how the covariates correlate with ozone, and to know whether they share 

similar distributions. This may be accomplished by respectively analyzing scatter- and 

quantile-quantile (Q-Q) plots for the bivariate cases. If ozone and its covariates 

(predictors) are well correlated, all points in the scatterplots will fall on a linear (straight) 

line. The slope of this line may be positive or negative depending on the effects of these 

covariates on ozone. Similarly, if all points in the Q-Q plot are linear, ozone and its 

respective predictors share exactly the same distributions. Figure 4.3 shows both the 

scatter- and Q-Q plots for all cases in 1997. As evidenced in the scatterplots, ozone is 

negatively correlated with dust and smoke (COH), carbon monoxide (CO), nitric oxide 

(NO), nitrogen dioxide (N02) and total hydrocarbon (THC); the positive association is 

only found with respect to the wind speed (WSPD). The effects of other variables, i.e., 

daily average temperature (Tavg), average relative humidity (RHavg) and bright sunshine 

hours (bSUN), on ozone are less obvious and therefore require further statistical analysis. 

Knowing the correlation coefficients between covariates and the response variable 

(ozone), the predictions for the subsequent years can be made with the help of covariate 

data in the corresponding years. However, all variables need to be standardized a priori 

due to the large difference in the order of magnitude between the data. The process of 

standardization of random variables RV Z P (t;) can be easily accomplished using a 

simple procedure explained in Chapter 3 of this thesis. Basically, the standardized RV 

X P (t) are obtained by subtracting the respective stationary means Z P from the RV 

Z P (t 1 ) and dividing by the standard deviations s z, as follows: 
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(4.3) 

where index fJ = 0 refers to the response variable (i.e., ozone concentration); the rests of 

the predictor variables are denoted by the indices fJ = 1, ... , 9 as follows: (I) amount of 

dust and smoke, (2) concentration of carbon monoxide, (3) concentration of nitric oxide, 

(4) concentration of nitrogen dioxide, (5) concentration of total hydrocarbon, (6) wind 

speed, (7) average temperature, (8) average relative humidity, and (9) bright sunshine 

hours. The multivariate regression for the standardized ozone values x: (t 1 ) can then be 

written as a linear combination of the standardized meteorological and chemical variables 

Xp(t) as the following: 

N 

x:(t1 )= LPpoXp(t) (4.4) 

P"' 

N = 9; j E J = 365 

The variable-specific correlation coefficients p po are obtained from the relations between 

the original (raw) ozone Zo (t 1 ) and its predictor variables Z P (t1 ), i.e., 

Cov{Z
0
,Zp} 

Ppo = E [-1, +1] 
~Var{Zo }Var{Z p} 

(4.5) 

where the numerator is the covariance between the response Z o (t) and corresponding 

is the number of data or, in this case, observed days. The denominator consists of the 

square root of the variances (i.e., standard deviations), Var{Z P} = j I~"' (Z1 - Zp )2 
, fJ = 

0, ... , 9. In other words, the correlation coefficients measure the linear dependency 
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between the variables where p f3o =±I denotes the perfect linear relationship, either 

positive or negative, and p f3o = 0 signifies no linear dependence between the two 

variables. The correlation coefficients between ozone and its corresponding predictors 

(covariates) for the entire four-year period (1997-2000) are sunnnarized in Table 4.2 

below: 

Table 4.2 
Correlation coefficients between ozone and chemical/meteorological variables. 

No. Variables p(1997) p (1998) p(1999) p(2000) 

1. 03- bSUN 0.35 0.42 0.36 0.40 

2. 03 -RHavg -0.28 -0.18 -0.16 -0.20 

3. 03 -Tavg 0.38 0.51 0.36 0.45 

4. 03- WSPD 0.61 0.52 0.55 0.56 

5. 03-THC -0.68 -0.67 -0.45 -0.58 

6. 03-N02 -0.63 -0.53 -0.61 -0.55 

7. 03-NO -0.67 -0.66 -0.64 -0.65 

8. 03-CO -0.62 -0.62 -0.63 -0.58 

9. 03-COH -0.61 -0.47 -0.61 -0.61 

It is important to note that the linear estimator ( 4.4) has been determined to be 

unbiased, which can be proven from the following: 

(4.6) 

where the estimator x; is defined as a linear combination of the standardized covariate 

data X a weighted with arbitrary weights Aao. The residual error with respect to the "true" 

unknown value Xo can then be written as: 

N 

X, -x; =X,- LA=Xa 
a=l 
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(4.7) 

where Vaa = 1 if a= 0, and V00 = -A00 for all a= 1, ... , N. The weights Aao can be 

obtained by minimizing the error variance: 

N N 

Var{Xo -X;}= LLVaoviJoCap (4.8a) 
a=O f3=0 

which is the result after employing the linear operator property of the expected value. In 

the traditional linear regression approach, the covariance between data events a and fJ (>' 

a) are ignored; only the covariance between the data 'a' and unknown 'o' is considered. 

This amounts to setting C a/3 = 0 for all a, fJ-,; 0 and a -,; fl. As a result, the error variance 

becomes: 

N N 

Var{Xo -X;}=2LvaoCao + Lv,;,caa 
a=O a=O 

(4.8b) 

Following a standard procedure, the minimization of the error variance can be achieved 

by taking the first derivative of expression (4.8b): 

Setting the above expression to zero, yielding: 

c"" v =---ao C 
aa 

To verify a minimum value, the second derivative ofEq. (4.8b) must be evaluated: 

(4.9) 

which will always be positive since Caa > 0, indicating that the weights Vao = -Cao!Caa 

do indeed result in a minimum error variance. Recall that the correlation coefficient is 

defined as: 
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(4.10) 

Since data standardization is performed at unit variance, i.e., Caa = Var{Xa} = 1 and Coo 

= Var{Xo} = 1, the correlation coefficients Pao = Cao. Also, by recognizing that the 

weights Vao = -A.ao for all a* 0 and employing Eq. (4.9), the unbiased linear estimator is 

obtained exactly as expression (4.4) above. 

As previously discussed in Chapter 2, all covariates except for COH have been 

determined by either physicochemical models or experimental results to have direct 

influence on ozone concentrations. However, the weights associated with the negatively 

correlated variables will offset the influence of the positively correlated variables. Hence 

only WSPD, Tavg and bSUN with the respective correlation coefficients of 0.61, 0.38 

and 0.35 for the year 1997 are considered in the multivariate regression of ozone. This 

regression approach performed well in the case of validating the 1997 ozone data and 

also those in 1998-2000 as shown in Figure 4.4. Here the resultant outputs are highly 

fluctuated just as the original time series data after converting the resultant standardized 

values of ozone X a (t;) back to those of raw values Z" (t;): 

(4.11) 

a= l, ... , 4,) E J= 365 

where s'" and Z" respectively denote the standard deviation and stationary mean of 

ozone in a particular year a: (1) 1997, (2) 1998, (3) 1999, and (4) 2000. This approach 

is promising because the response variable (ozone) can be estimated from its positively 

correlated predictors. Hence there is a good possibility for accurate prediction at a 

location where ozone measurement is unavailable but those of secondary variables are, 

just by employing the correlation coefficients p ao obtained from historical bivariate 

scatterplots. Note that in this multivariate regression analysis, the correlation coefficients 
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between the response variable (ozone) and its covariates are implemented only at the 

same time instants lj. However, it is conceivable that there may be a time lag between a 

covariate event and a peak in the annual ozone trend. This factor can only be accounted 

for by modeling a temporal statistic such as a variogram, which is discussed in the next 

chapter. 



O_OSr----­

O<MO 

2 0_03 

~ 0.025 • 
! 002 

~ 0.015 

8 0_01 

0.005 

0-1---~~ 

1~_30d_97r.nr __ 30d_97sLR] 

0 50 100 150 200 250 300 350 

00,:1-
004 l 0_005 

.Q 0.03 

I 0.025 
! 0.02 

~ 0.015 

8 0_01 

0.005 

Figure 4.1 

Julian Day 

(a) 1997 

100 150 200 250 300 350 

Julian Day 

(c) 1999 

oo; I 
0045" 

' 

I 00.:1 
Q 0_03 1 
;; 

) oo:j 
§ o 015 I 

0 001 ~ 
I 

o~L 

oo; 

""' 
"" lams 

< 
Q 0 03 
;; 
" "'" ~ 
8 002 

g 0 015 

0 001 

0 \ 

60 

100 150 200 250 300 350 

Juhan Day 

(b) 1998 

100 150 200 250 300 3SO 

Jul~an Day 

(d) 2000 

The thirty-day averages (30dMA) of the raw data (observation) as compared with the 
results from simple fit analysis 



61 

Stm~ Linear R~5sion .AN~is (1997) Sim~lle Linear RewessionAnitjsls (19S8) 

00> -------- "" ~, 

0.0< 0.04 

£ 0.03 003 

,! 

/ ~ OD2 002 

0" 

' 

o'J 
R·'-0_94 R;, =0.83 

~~--~ 

0.01 0.02 0.03 0.04 00> 0" 002 003 00. 00> 

Obsenribon (3Gd) Obo.ervJbon (30d) 

(a) 1997 (b) 1998 

Simple linHr R~SJon Malysis {1999) Simple Lonear Regr.,.;s100 Analy!;is (2000) 

0_115\- ~~ ~--· --
l 0, I ---- ~-

I 

00<1 
00. 

~ 
003 003 

• / ' 002 O.D2 • < 

0.01 

' 
0., I 

' ;;< 

oL:~. ~· R 1=084 R:=090 

0 ~ ----

0.01 0.02 003 Q_Q( 0" 0" 002 003 0.0< 0." 

Obwrn!ion (30d} Obsentaflon (30dl 

(c) 1999 (d) 2000 

Figure4.2 
Bivariate scatterplots of the thirty-day averages (30dMA) of the raw data (observation) 
when compared with the results from simple linear fit analysis~ 



0.05~--- -----

0 . .., 

0.0< 

0.01 

0."' 

ol ____ ·~-
02 0.4 06 0.6 

Dust and Smob (COH) 

::r-. 
0.041 

' f 0.035 -j 

e o_03 

' 0.025 

0.02 
-;.'.~/": 

·-~~ ~>}~;~ l 
J 0.01§ 

0.01 

0."' 

0 +-. 
0., ' ' 

Carbon Monolride (ppm~) 

::.J-. 
0.04 l, 

' 'i'-0.035 .. 
~ 0.03 

~ 0.025 

0

·,, 
002 . 

c: 0 015 

~ 

o ... "' 0" 
Nitnc Oxide (ppm~~) 

Figure 4.3 (i) 

62 

" p = -0.61 
' 

·:t 

8 

' 

~ .... 
-2: --; ' . ' ' ' " '·' " OOH 

(a) 03-COH 

p = -062 
14,--. 

,I 
' 10t 

! 

·I 
8 I 

'I ., 
'i . ' 
/~-··~ •I 

,i ; 
" ' ' • (U 

(b) 03-CO 

6,--

I'= -067 I 
,[ 

/ 

" / 

". 

"' 0" 

(c) 03-NO 

Cross correlation between ozone and meteorological/chemical variables for 1997. The 
correlation coefficient p for individual case is shown on the scatter plot [LEFT]. The 
bivariate distribution is illustrated on the Q-Q plot [RIGHT]. 



o_os 1 
' O.G451 

------- p"' -~_63 1 

0" 

-,;DillS 

! o.ro 

:,; 0.025 

"' 8 

. ' . . . . . . 
0.005 ·; '.; •; 

j 0~0~: L1 _· -~· .>·!.:·t~.: .. -

0 - ~~ ~-----

I 
! • ! 
j 

I 
0 

t 
~ 
8 

' 0 

0.01 0 01 0.03 0_()( "' 
Nilrogen Oio»:-ide (ppmv) 

005 

o"' I 
00. j 

0035 

0.03 

0025 

002 

0.015 

"' 
0.005 i ,. l 

oL-~--
18 ;>_O 22 24 2.6 ,_, 

Totol Hyaocarboo (ppmv) 

0.05 ,- -----

0"' 

0" 

0.035 

0.03 

0.025 ,_ 

0.02 ~- •' .. 
--

a 015 -. ,. ' 
' .. 

0.01 

0"" 
0 -~· -' ~-.-----. 

0 " 
Wind Speed (kmlh) 

Figure 4.3 (ii) 

"" 

' 

8 

.. 
:~--~·' .... 

JL --~-~--
0.07 008 

_, 0 J 4 5 

(d) 03-N02 

11
"' -0_68 "r 

" 
•I 

·I 
" 

8 'I 

·I 
'! 

0\ 

'l -2 ---

' 

(e) 03-THC 

p = 061 'r 

" 

., 
,! 

·I 
8 :1 

_,t 

:r 
' 

(f) 03-WSPD 

/ I •' /···' 
-~--" ----L-

1 2 3 4 ~ 

nr· 

---~-~--

-2 0 1 

WSPIJ 

63 

Cross correlation between ozone and meteorological/chemical variables for 1997. The 
correlation coefficient p for individual case is shown on the scatter plot [LEFf]. The 
bivariate distribution is illustrated on the Q-Q plot [RIGHT]. 



0.05,-- -~------

0_045 1 

'-" j 

I 0.035 

! o.ro 

I 0.1125 

002 
8 

j 0.015 • 
0.01 !: 

0"" .;,. 

" ' 0 --~-

-30 -20 
_, 

" 
Tempen~u.. ("C) 

005]---

0"" 

o_ .. 

I 
0.035 

0.03 

i 0.1125 

' ' 002 
8 

J 
0.015 

"' 
0"" 

,.,.,:; 

' 

f' = 0 38 

8 

20 30 

(g) 03-Tavg 

p = -0 28 

'I 
'r 

:I 
! 

-2i 

" 
• • 

'I 
'i 

' 

' 

8 n 

-- "' 

.. -

" 

m m ~ ~ ~ ro ~ oo 100 
•' • 

005 

O.G45 

0" 

o.ro 

0.1125 

002 

0.015 

0_01 

o_.., 

ot-----· 

Figure 4.3 (iii) 

Rela!rveH...nidity('ll.) 

. "· " --,- - ---,--

10 12 

(h) 03-RHavg 

I'= 0_35 

8 

-1! 

,I 
" 

-2 -1.5 

(i) 03-bSUN 

64 

' :I 
/I 

' 

I ... -;: 
I 

·----~1 _, 
i1v)i: . ' 

1 

/] 
I 

--·-~-~-
--0.5 n 0.5 1 15 

"UN 

Cross correlation between ozone and meteorological/chemical variables. The correlation 
coefficient p for individual case is shown on the scatter plot [LEFT]. The bivariate 
distribution is illustrated on the Q-Q plot [RIGHT]. 



'~~j 
~ ' 

~ 0035~ 
~ 0_03 

~ 0.025 

~ 0_02 

j 0015!. . . . 
"' 

0005 . 
0 ~ -~-~~ 

50 "" 

o_os r 

0~1 
;- 0.0< 
K o.o35 
e 
c 
0 O<ll 

~ 0.0>5 
• g 

0.02 8 
~ 0.015 

1l 0.01 

0005 
0 

150 200 

Julian Day 

,50 

0.00 

0045 : 

> "" 
~ 0035 

• O<ll 

!' 

I 
0 025 

"' 0 
g 0 015 

il O.D1 

0005 

'50 

(a) 1997 

l o05 I 

0 045 i 

- 004 i 
, I 

~ 00351 
Q 003 ' 

!' 
E 0025 

g 
8 O.D2 

g 0015 

il om 

0 005 

0 ' 0 50 Hll 150 200 250 JOO 350 0 
Juhan Day 

(b) 1998 

Figure 4.4 (i) 

65 

--~-~-~ 
"" '" "" 250 300 350 

Julian Day 

100 150 200 250 300 350 

Juhan Day 

Employing secondary information in the linear regression analysis. Only the positively 
correlated variables (WSPD, Tavg and bSUN) are used for inferring ozone concentration. 



-~ "'' 

100 150 200 250 300 350 

Julian Day 

'"!·-- ----- ------
0.045 

0.04 
> 
[ 0.035 

" ~ Q_Q3 

I 0.02!i 

• 0.02 
u 
~ 0.015 

5 om 

50 100 150 200 250 300 350 

Julian Day 

Figure 4.4 (ii) 

0 045 

> 
00< 

~ 0035 

0 003 

~ 0.025 

g 002 0 
u 
~ 0015 

5 om 

, 00> I 
0 . 

(c) 1999 

o os I 

0045 j 

> oa4 I 
E ' 

: 0::1 1 0 025 

8 002 I . 
0015 

il '" 
0 005 

0 
0 

(d) 2000 

66 

100 150 200 251) 3(1) 350 

Julian Day 

Jtid-:::OOraw- 36ii ~,1 

" HD '50 200 250 300 350 
Juhan Day 

Employing secondary information in the linear regression analysis. Only the positively 
correlated variables (WSPD, Tavg and bSUN) are used for inferring ozone concentration. 



67 

CHAPTERS 

KRIGING APPROACHES 

To gain familiarity with the geostatistical approaches, the basic concepts of stochastic 

variables are introduced at the beginning of this chapter. The theoretical and modeling 

aspects of a variogram, a form of "two-point" temporal correlation, is discussed in detail 

to acknowledge its importance in the kriging procedure. Several kriging algorithms 

(Deutsch and Joumel, 1998), in particular, simple kriging (SK), ordinary kriging (OK), 

simple cokriging (SCK) and ordinary cokriging (COK), are also discussed. Two of such 

algorithms, i.e., OK and COK, are implemented in various cases of ozone prediction. In 

this research study, the variogram, modeled using the 1997 standardized data, is applied 

for inferring ozone values in 1998-2000. Note that the OK algorithm needs a licit auto­

variogram model in order to ensure a positive variance of the estimation points 

(unknowns). Similarly, the cokriging algorithm requires joint positive-definite auto and 

cross-variograms, usually modeled via the linear model of coregionalization (LMC). 

5.1 The Temporal Framework 

A temporal random variable (RV) Z(t) is a variable that can take multiple outcomes 

(realizations) at any time instant t E T, according to a certain probability density function 

(pdt). Also this RV Z(t) is fully identified by its cumulative distribution function (edt), 

which defines the probability that the variable Z at instant t in time does not exceed a 

given threshold z: 

F(t; z) = Prob{Z(t) :<:: z}, Vz, t E T (5.1) 

A temporal random function (RF), also termed Z, is defined as a collection of RVs Z(t) 

that are occurring simultaneously. These RVs Z(t) must be taken jointly resulting in the 
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regionalization, in a temporal sense, of the RF Z. Therefore, the RF Z is characterized by 

a multivariate probability distribution: 

(5.2) 

where Tis the number of definite stationary time spans, e.g., seasons or years. This set of 

T-variate cdfs is termed the temporal law of the RF Z. 

The inference of the above multivariate distribution requires multiple outcomes of 

the RF Z at the same instant in time t E T. Since such repeated outcomes are impossible 

to arrive at, decision on stationarity that amounts to invariance with temporal translation, 

is employed. Under stationarity, for example, a "two-point" scattergram is inferred by 

pooling together sets of data points separated by similar temporal lags r = t - t', t E T. 

The moment of inertia of the "two-point" scattergram between Z(t) and Z(t + r), t E T, is 

called a variogram and estimated as: 

I ~l 
2y(r)= N(r) b[z(t,)-z(t, +r)]' (5.3) 

where N( r) is the number of tail-head pairs in the scattergram. The quantity t( r), half of 

the moment inertia above, is called a semivariogram (henceforth, termed a variogram for 

convenience), and is related to the more conventional covariance function C( r) and 

variance C(O) through: 

t( r) = C(O)- C( r) (5.4) 

Note that expression (5.4) is important because it is the covariance function that must be 

ensured positive-definite, not the variogram. To clarify, a positive variogram value will 

always exist but the same is not true for the covariance as in the case of the power law 

variogram model (Section 5.2), especially when the exponent (power) w ~ 1. 
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The RF Z(t) is termed the tail value of a pair with expected value E{Z(t)} = m_r 

while the RF Z(t + r) is called the head value of a pair with mean E {Z(t + r)} = m+r. The 

covariance measure C( r) can be written as: 

1~ 
C(r) = -( ) 2.. Z(t,) · Z(t, + r)- m_,m., 

N r ,.J 
(5.5a) 

where: 

(b) 

I 'VN(c) ( ) 
m+r = NTtJ L,..i=l Z ti + r (c) 

and N( r) is the number of tail-head pairs in a set of measurements. The covariance C( r) 

can be standardized using the variance of the tail cr 2
, and head cr~, values. The resultant 

correlogram !( r) is written as: 
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(5.6a) 

where: 

(b) 

2 1 "'N(c)[ ( ) ]' a+r::;::~L..i=l Zt;+r -m+r (c) 

Under second order stationarity, the first two moments of the RF Z(t), i.e., the 

mean m and covariance C( r), remain invariant under translation. Thus: 

E{Z(t)}= E{Z(t + r)}= m, \f (t, r)E T, and (5.7a) 

Cov{Z(t ), Z(t')} = Cov{Z(t +r ), Z(t'+r )} = C(r ), \f(t,t',r)E T (b) 

or in words, the expected value (mean) m is independent of the lag r E T, whereas the 

covariance C( r) is strictly a function of the lag rand is independent of the time t. As a 

result, the correlogram becomes: 

() c(r) E [-1, +1] 
p r = c(o) (5.8) 

The above correlogram p( r) is an important feature because if the historical data for a 

temporal process, e.g., ozone concentration, is known in a particular year, and if ozone 

data in subsequent years are assumed to be a realization of an underlying stationary 

process, then the correlogram inferred based on the historical data can be applied to 

predict the temporal patterns (at least, in "two-point" sense) of the future profiles. 

5.2 Modeling Variogram 

The experimental variogram (Eq. 5.3) lacks statistical mass and is affected by outliers 

especially at larger temporal lag spacing r, resulting in considerable fluctuations in the 
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variogram values. A more practical approach is to use a smooth mathematical function 

(model) that can best fit the experimental variogram. In order to ensure physical 

plausibility of the RF Z(t) and uniqueness of the estimated values, the variogram y(r) or 

more precisely covariance C( r) function must be positive definite. For this reason, 

experimental variograms are modeled using positive definite functions, as summarized in 

Table 5.1 below (Deutsch and Joumel, 1998): 

Table 5.1 
Positive definite variogram models. 

No. Abbreviation Formula 

y(r) = C(O), otherwise. 

2. 

3. Gauss(:) y(r)= C(O). {1-exp[ -(
3
: r ]} 

4. Power y(r)=C·W, O<w<2 

5. Hole Effect 

where r is the temporal lag distance. Recall that the variogram (Eq. 5.3) is a measure of 

temporal variability, or more precisely, its value is higher when the RF Z(t;) is more 

dissimilar than RF Z(t; + r). Hence the variogram value at r = 0 is zero since there is no 

variability between data points when compared with themselves. However, at a short 

distance from the origin, the variogram may show discontinuity due to inherent 

variability of the spatiotemporal phenomena (e.g., the natural occurrence of gold nuggets) 
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or measurement procedures (e.g., finite sampling interval). This near-origin discontinuity 

is customarily termed nugget effect C0 • As the temporal lag distance r increases, the 

variogram values become larger, signifying less correlation between data points. 

Theoretically, the variogram reaches a maximum value known as the sill C(O), which is 

also the variance ofthe distribution. The lag distance (abscissa value) over which the sill 

C(O) is reached is called the range of the variogram and denoted as 'a'. This range a 

represents the greatest distance, over which a datum is related to another within the 

domain of interest. 

The Expand Gauss models (Table 5.1) reach the sill C(O) exponentially and their 

practical (effective) range is defined as the distance over which the variogram reaches 

95% of the sill value. Among the five models, the power model is unique in the sense 

that it lacks a sill value and therefore has no covariance counterpart, indicating a fractal­

typed process or lack of stationarity; consequently, the power model is defined only by a 

positive coefficient (slope) C and an exponent (power) OJ E (0, 2). For the hole-effect 

model, the range a is defined as the length from origin to the first peak of the oscillated 

curve. In a special hole-effect case, i.e., sinusoidal variation, the term in the parentheses 

may be redefined to comprise a complete period of 2tr with a range a = 365 days, as 

implemented in this thesis work. 

The behavior of the variogram near the origin, i.e., as r ~ 0+, must be known 

prior to selecting a particular model. The Sph model exhibits a linear behavior due to the 

vanishing of cubic term at small r. If the Exp model is expanded as Taylor series [e·x = 1 

-x + x2/2! -x3/3! + ... ],the variogram model reduces to x as rapproaches zero; therefore 

the Exp model also behaves linearly near origin. On the other hand, the Gauss model 

when expanded as Taylor series [exp(-i) = 1 - x2 + x4/2!- x6/3! + ... ]will reduce to x2 

as x ~ 0+, i.e., this model approaches the origin parabolically. 

The power model, y(r) = C ·lrl'", with a positive slope C and exponent (power) 

OJ, 0 <OJ < 2 , may show any of the following three behaviors near origin; it can behave 

linearly (OJ= 1), hyperbolically (0 < OJ< 1) as well as semi-parabolically (1 < OJ< 2) 



73 

depending on the value of its exponent w. As a special case of the power law model, a 

nugget effect model, y ( r) = 0 if r = 0 and y( r) = C, otherwise, can also be obtained by 

setting wto 0+. The (pure) nugget effect case is an indication of a temporally uncorrelated 

RF Z(t) 

Often the experimental variogram exhibits fluctuations (hole effect) near the sill 

C(O). If the oscillations decay as r approaches infinity, a general positive definite model, 

termed 'sine' model, can be utilized: 

y(r) = C(O) · [1- A sin;•)] (5.9) 

where A is the first 'overshoot' amplitude and the temporal lag r (in Julian days) is first 

converted to radian by employing the complete period of the oscillation (2~r= 365 days), 

i.e., change r to 2nTI365. For a strongly oscillating variogram, another model, called a 

half-range Fourier series, may be more useful: 

)'( r) =Co+ C(O) ·[I - B cos( r)] (5.1 0) 

where the presence of the nugget effect Co in the variogram model is to ensure the 

positive definiteness of covariance function C( r); B is the amplitude of the fluctuations, 

and the value of r is measured in radians. It is interesting to note that both models, (5.9) 

and (5.10), show parabolic behavior near the origin. However, a major difference is that 

the former model rises slower than the latter does, which is easily verified from the 

Taylor series expansion: 

(i) sin(r) = r- ?!3! +;;51- ?!7! + ... ,and 

(ii) cos( r) = 1- 1"12! + l/4!- !'!6! + .. . 

As r~O+, the variograms models of(5.9) and (5.10) reduce to 1"16 and 1"12, respectively. 

The temporal correlation in terms of variogram (covariance) can be incorporated 

into a more generalized linear regression algorithm, known as kriging. 
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5.3 Kriging 

Kriging is a geostatistical tool for interpolation, or more specifically, the value of an 

attribute in unknown areas (or time) is obtained by considering the conditioning data, and 

the correlation between the data and unknowns (estimates) within the domain of interest. 

Although traditionally formulated for spatial estimations in the contexts of mining and 

reservoir characterization, kriging has also gained acceptance in the environmental 

sciences, e.g., for interpolating the temporal trends of air pollutants and spatial variations 

of terrestrial contaminants. In this thesis, the applications of kriging algorithms for 

estimating ozone temporal trends are explained in the following sections. 

5.3.1 Simple Kriging 

The simple kriging (SK) estimator Z ;K at each time instant t1 is the best linear unbiased 

estimator/predictor (BLUE/P) and is usually written as: 

N 

z;K(t)-m(t1)= _L:A.,(t1)[Z(t,)-m(t,)] (5.11) 
i=ol 

where m(t1) = E{Z(t1)}, j = I, ... , J = 365, is the "known" stationary expected value 

(mean) of the RF Z(t1) defined at time instant t1; in some cases, it may simply be assumed 

equal to m(t;) (a model decision not a hypothesis) if"enough" data are available, or it can 

be estimated a priori from historical records. The locally averaged value m(t;) = E { Z(t;)}, 

i = I, ... , N, of the random function RF Z(t;) defined at time instant!;, may be inferred 

from N data points available for the purpose of estimation. However, prior to solving for 

the SK estimator z;K, kriging weights A.,(t1), 'di =I, .. , N, must be calculated from the 

following system of normal equations: 

N 

_L:A.,(t;)C(t, -t,)=C(t, -t,), 'di= I, ... ,N (5.12) 
k=I 

where t1 is the time instant corresponding to the estimation point (unknown). The kriging 

system is obtained by minimizing the estimation (error) variance CT~K: 
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N 

O"~K(t)=C(O)- ~)-;(t)C(t; -1
1

) 
(5.13) 

i=oi 

where C(O) = Var{Z(t;)} is the sill or positive variance of the RF Z(t), and is generally 

inferred from N sample values or readily known from the prior knowledge of the 

temporal process. Note that the estimation variance O"~K is independent of data values, 

i.e., homoscedastic, and therefore is not a measure of local accuracy of kriging. Other 

measures such as the cross-validation error must be subsequently applied to the final 

results in order to evaluate the goodness of data fit. Simple kriging (Eqs. 5.11-5.13) 

requires complete prior knowledge of: 

0 

0 

0 

the stationary mean m(t1) = m(t;) = m, 

(N x N) square matrix of covariances [C(t;- tk)]: i, k = I, ... , N, between the 

sample data, and 

(N x I) vector of data-to-unknown covariance [C(t;- t1)]T: i = I, ... , N, where 

superscript T denotes the transpose operation, 

The SK estimator can also be applied in the case of estimating a RF Z(t) by 

integrating the N "hard" data with the secondary ("soft") information. As an example, 

consider bright sunshine hours (bSUN) and surface wind speed (WSPD) that may be well 

correlated with ozone but not to each other. This happens, especially, when the secondary 

variables, RFs Za and Zp, a, fJ = I, ... , N, 'd a 7' fJ, are weakly associated with respect to 

the physicochemical processes and yet exhibit almost no linear statistical dependence. In 

such cases, the correlation coefficient PaP between RFs Za and Zp is zero, which implies 

that Cov{Za. Zp} = 0 from: 

(5.14) 

However, the correlation coefficients PC!i and PPJ are not necessarily zero since each 

datum may be independently correlated with the estimation node at time instant IJ· Hence 
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the SK system, a variation of Eq. (5.12), may be simplified to Aa·Cov{Za, Za} = Cov{Za, 

Z(t1)}, or after rearrangement: 

(5 .15) 

since the covariance of the same variable Za is nothing but its variance. Consequently, 

Eq. (5.14) can be combined with (5.15) to reformulate the SK estimator (5.11), or rather 

its variation, as: 

(5.16) 

where 

(5.17) 

in which CT~ = Var{Za(tk)}, the stationary variance of RF Za(tk). Prior to prediction 

(future years) or validation (same year), the stationary mean m(t1) and standard deviation 

a(t1) of the target variable Z(t1), as well as the correlation coefficients Paltk- t1) must be 

inferred based on the information from historical or similar records. The variable-

specific mean rna and standard deviation CTa are obtained from the available data za(tk), 

Va= 1, ... , M, k= 1, ... ,Na. 

Expression (5.16) may also be interpreted as kriging of the standardized RF 

X(t) by assuming independence between the secondary RFs X a and Xp,, a, fJ = 1, ... , M, 

V a ot fJ. The coefficients Pai(tk- t1) are merely correlograms expressed as a continuous 

function at temporal lag r = I tk - t1 I, separating the datum and estimation node at time 

instants tk and ti> respectively. If regression is performed at lag r = 0, this will result in 

ordinary linear regression (Eq. 4.4) of the standardized RFs Xa. weighted with regression 

coefficients PaJ· Note that the variable standardization is merely a process of transforming 
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RFs Za, a = 0, ... , M, into standardized RFs X a by subtracting from their respective 

stationary means ma and dividing by the stationary standard deviations era. The 

implementation of this approach for validating ozone concentrations in Calgary, Alberta 

throughout 1997-2000 has been successful as previously shown in Figure 4.4 of this 

thesis. 

If the attribute a is different from that of the estimated values Z(t1), then a positive 

definite measure of the cross-covariance between RFs Zo{h) and Z(t1) is required; this 

discussion will be deferred to the latter section, i.e., under cokriging. For the rest of this 

section, Zo{tk) is assumed to be the data pertaining to the same RF Z(t1). In a predictive 

mode, the above model (Eq. 5.16) requires the implementation of a positive definite 

variogram model )'( r), or alternatively a covariance model, i.e., 

C( r) = C(O)- )'( r) (5.18) 

The variogram model )'( r) may be selected from Table 5.1 based on its suitability to the 

sample (experimental) variogram plot. Since the RF Z(t1) is standardized to zero mean 

and unit variance, expression (5.14) may be re-written as: 

Pu = Cov{Z(t;), Z(lj)} = C( r), Vi= I, ... , N (5.19) 

where r = I t1 - t1 I is the temporal lag distance between time instants t1 and t1. As a result, 

the simple kriging estimator assuming independence between data (5.16) may be 

reformulated as: 

N 

X(t)= LC(r)·X(t1), Vj= 1, ... ,J=365 (5.20) 
i=l 

where X(·) is the standardized RF, and C(r) is obtained from Eq. (5.18). In other words, 

standardized unknown points X(t1) can be predicted by taking a linear combination of 

independent sample data X(t;), weighted with a covariance model C( r). 
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In general, when data collection is well distributed and are dependent on each 

other, the RF Z(t;) can be assumed stationary with constant mean m and covariance 

function C( r) = C(t, t + r), Yt, r E T. After rearranging Eq. (5.11), the SK estimator z;K 

becomes: 

(5.21) 

and the kriging weights A;(fj) can be obtained by the same SK system as expressed by Eq. 

(5.12). Therefore, the geostatistical concept of kriging is a generalized form of linear 

regression, obtained by considering the redundancy between sample data. 

However, it is difficult and often premature to make any decision on stationarity, 

especially when lacking enough "hard" data. This drawback of SK method is overcome 

by ordinary kriging (OK), which is discussed next. 

5.3.2 Ordinary Kriging 

The robustness of simple kriging (SK) algorithm is enhanced by eliminating the prior 

knowledge requirement for the stationary mean m. This is especially true when the mean 

is deemed unreliable and therefore can be ignored in the formulation (5.21) by setting the 

second term to zero. This amounts to imposing the quantity [1- I:, A-, (t; )] = 0, or 

equivalently, "N X (t . ) = 1, which is an additional constraint to the kriging algorithm. 
L...JJ:J I j 

This improvement gives rise to another approach, termed ordinary kriging (OK) in which 

the mean m is assumed stationary but unknown. The OK estimator Z~K at each time 

instant lj is simply: 

N 

z~K(t;)= IA-,(t)Z(t,) (5.22) 
j;J 

which minimizes the error (estimation) variance (j~K: 
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N 

(j~K(t;)=C(O)- Lil,(t,)C(t, -tj)- p(t) (5.23) 
i"'l 

where C(O) = Var{Z(t1)} denotes the variance of the RF Z(t1), inferred from N sample data 

points z(t1), i = 1, ... , N. The presence of Lagrange multiplier f.J is crucial to satisfy the 

minimization of cr~K subject to the additional constraint I:, il, (t j) = 1. The associated 

OK system is: 

N 

Lil,(tJC(t,-t,)+p(t;)=C(t,-t;), i= 1, ... ,N (5.24a) 
k=I 

N 

Iil,(t) = 1 (b) 
k=1 

which is a system of (N + 1) equations to solve for (N + 1) unknowns ilk(lj) and f.J{tj). The 

OK estimator Z~K can be readily calculated as soon as the weights ilk(lj) are found from 

the OK system (5.24). In essence, the pre-requisites of the OK algorithm are: 

0 

0 

(N x N) square matrix of covariances [C(t1 - t1)]: i, k = 1, ... , N, of the sample 

data, and 

(N x I) vector of data-to-unknown covariance [C(t1 - tj)]T: i = 1, ... , N, where the 

superscript T denotes the transpose operation, 

One important feature of ordinary kriging is that it implicitly re-estimates the 

locally varying mean m~K at each new time instant tj. This condition can be easily proven 

by taking the expected value of OK estimator Z~K, i.e., 

N 

E{Z~K (t; )} = E {Lil,(tj) Z(t, )} 
i=l 

N 

= Lil;(t;) E {Z(t;)} 
i=l 
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N 

= m~K I..t;(t1) = m~K 
i=l 

since the constraint I:, ..t, (t) =I ensures the unbiasedness of the OK estimator Z~K. 

In this sense, the OK algorithm is similar to that of the traditional SK (5.11) where the 

stationary m(t1) and locally averaged m(l;) means are substituted by m~K, i.e., 

N 

Z~K (t; )- m~K(t) = IA-,sK (t1 )[z(t, )- m~K (t 1 )] (5.25a) 
i=l 

After rearrangement, the OK estimator is simply re-written as: 

(5.25b) 

where the SK weights A;, sK(t) are determined from system (5.12) and differ from those 

obtained in terms of the unbiased constraint I:
1 
A0 K (t 1 ) =I in the OK system (5.24). 

Therefore, ordinary kriging can be thought of as an algorithm corresponding to a 

nonstationary RF Z(t;) with locally varying mean m~K but constant covariance C( r), 

especially in the direction orthogonal to the moving trend. This robust feature of 

ordinary kriging makes it suitable for predicting average concentrations of ozone from 

historical data correlation. 

However, just like simple kriging (SK), the ordinary kriging (OK) algorithm can 

also be improved by including secondary information, i.e., "soft" data, in the formulation. 

This addition, in tum, gives rise to another algorithm known as cokriging, which is 

discussed next. 
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5.3.3 Cokriging 

In many cases, a variety of environmental data are measured at monitoring stations no, 

li = 1, ... , D. Thus it is advantageous to include some of the auxiliary information ("soft 

data") in the algorithm in order to improve prediction (or estimation). For example, nitric 

oxide (NO) and volatile organic compounds (VOCs) are two of the many well-known 

chemicals that induce tropospheric ozone formation. These precursors Z,/.J;), a= 1, ... , 

M, i = 1, ... , N, to ozone can "add value" to prediction because of their direct influence in 

the photochemical reaction mechanisms (Section 2.2). The simple kriging (SK) paradigm 

can be extended to incorporate the relevant secondary information. The resulting simple 

cokriging (SCK) estimator z;cK is written as: 

M N" 

z;CK(t)- m, (tj) = LLAa;(t;) [Za (t,)- ma (t,)] (5.26) 
a=O i=l 

where subscript a= 0 refers to the primary variable (i.e., ozone); the stationary mean 

m0 (t1) corresponds to the RF Z 0 (t1) defined at time instant t1 and must be either postulated 

a priori from historical records or estimated from the knowledge of similar phenomena; 

the variable-( a)-specific means mJ.J1) are stationary averages of the respective RFs ZJ.J;), 

a= 0, ... , M. The kriging weights A-a~(t1) are solved via the following system of normal 

equations: 

M Np 

LLAP<(t)Cop(/01 -/Pk)=C<m(tai -t,), (5.27) 
P=O k=l 

'<ia=O, ... ,M, i=1, ... ,N0 

where: 

0 [CaiJ(ta~- lfik)] is the [(M + I )·(N) by (M + l}(N)] square matrix of auto and cross-

covanances, 
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[Can(tai- tan)]T is the [(M + l)·(N) by I] vector of data-to-unknown auto and 

cross-covanances, 

which can be used to solve for (M + I )·(N) weights A.w(t1), a= 0, ... , M; i = I, ... , N a, and 

thus the simple cokriging estimator z;cK at each time instant t1. 

However, the SCK algorithm suffers the same problem as SK does in term of the 

stationarity decision. It is difficult to accurately infer the stationary means ma(t) because: 

(I) for estimation, the availability of "hard" data is often scarce due to missing values at 

the monitoring stations us, and (2) the future values are, of course, unavailable for 

predictive purposes in which case, we have to stochastically determine a few sample 

values from the historical records. To alleviate this predicament, the stationary means 

ma(t) are filtered out from cokriging expression (5.26). The resulting ordinary cokriging 

(COK) estimator z;oK is given by: 

M N 

Z~0AtJ= L~>JtJza(t;) (5.28) 
a=O i"'l 

which should satisfy the following constraints in order to maintain unbiasedness: 

0 

0 

the weights related to the primary variables (denoted by subscript a= 0) must add 

up to one, i.e., "N" A. . =I, and L.,,,] OJ 

for the secondary variables (a> 0), the sum of the variable-specific weights must 

vanish, i.e. "N" A..= 0, a= 1, ... , M. L.,t=l aJ 

The kriging weights can be solved from the following COK system: 

(5.29) 

Va=O, ... ,M, i=I, ... ,Na 
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where J.iaf._/j) are the Lagrange multipliers corresponding to specific secondary RFs Za(t), 

a= 0, ... , M. Just like in the SK and OK algorithms, the covariance matrix needs to be 

positive definite in order to ensure a positive estimation variance cr~ . However, in the 

cokriging paradigm, the large [(M + I )·(N) by (M + I )·(N)] covariance matrix has to be 

positive definite. Such a condition for covariance model legitimacy is usually performed 

by a technique called the linear model of coregionalization (LMC) (Journel and 

Huijbregts, 1978) and is discussed next. 

5.3.4 Linear Model of Coregionalization 

In the case of simple or ordinary kriging, the positive-definiteness of the covariance 

matrix can be ensured through the use of a licit (legitimate) variogram model, thus 

ensuring positive variance of the predicted random function RF Z(t1). However, ensuring 

positive-definiteness of the covariance matrix in cokriging is more complicated since the 

combination of auto and cross-covariances (variograms) has to be modeled jointly. 

The linear model of coregionalization (LMC) is one avenue to ensure positive­

definiteness of the covariance matrix. It states that any positive linear combination of 

simpler, licit variogram structures will result in a positive-definite variogram model. As 

an example of a bivariate case, the auto-variogram yz( r) and yl{ <), as well as the cross­

variogram rzl{ r) models must share common basic structures Yk( r!ak), k = I, .. .K, and 

ranges ak as the following: 

_ (1) ( T ) (2) ( T ) _ ( Yzy(T)-bOJ r, ~ +boJ r, -;;; -r!Z T) 
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where b;j : a, fJ = 0, 1, are the sill contributions for speci fie variogram structures. Note 

that the basic structures are limited to only two for an illustrative purpose; they may 

assume more than two structures depending on the shapes of experimental variograms. 

The sill components b;~1 act as positive weights for the linear combination and can be 

combined into (M + 1) by (M + 1) matrices, called the coregionalization matrices B(kl, 

and written as: 

0 

0 

lb(l) 

For the first structure, i.e., k = 1: B<'l = ~~~ 
b,, 

l
b( 2) 

For the second structure, i.e., k =2: Bi21 = ~~~ b,, 

In order to ensure positive-definiteness of the variogram models, the determinants I B(kl I 

must be greater than zero, i.e., 

0 b<'1 b<'1 - [b<'l ]2 > 0 and 
00 II 01 ' 

0 

This task is quite difficult, especially when modeling with more than two secondary 

variables Za(t1), a= 3, ... , N. 

The following procedure is followed in the LMC modeling: 

1. Model the auto-variograms utilizing the same structures (e.g., Gauss, Exp) with 

the largest possible identical ranges. Any structure not shared by all the auto­

variogram models are neglected in the cross-variograms; 

2. Calculate the determinants of all coregionalization matrices B(kl, k = 1, ... , K. If 

any of these determinants is negative, adjust the contributions b;j: a, fJ = 0, ... , 

M, of the k basic variogram Yk( r) structures in order to satisfy the positive-definite 

conditions; and 
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3. Check the overall quality of auto and cross-variogram (or covariance) models by 

visually examining the plots. Modify the range and/or model types (Section 5.2) 

to obtain the best possible licit models. It is important to remember that all 

models must share the same number of structures, ranges and types. The fitted 

variograms may not exactly match the experimental variograms because the result 

from the LMC procedure is the best compromise for ensuring the positive­

definiteness of the coregionalization matrices B(k) 

5.4 Results and Discussion 

For determining the temporal ozone correlations, first the experimental variograms of 

four-year ozone data (standardized to zero mean and unit variance) were plotted. Here, 

GSLIB programs (Deutsch and Journel, 1998) called gam and vmodel (Appendices A.1 

and A.2) are utilized for calculating the experimental and model values, respectively. 

The experimental variograms in Figure 5.2 exhibit a high nugget effect, as evidenced by 

the discontinuity near the origin. Hence prior to modeling the variograms, the source of 

the nugget effect must be investigated. Figure 5.3 shows the variogram computed using 

the hourly average ozone values, calculated at lags up to 7 days (168 hours). There is 

little or no nugget effect displayed by these higher resolution data. It can therefore be 

concluded that the high nugget effect seen in Figure 5.2 is due to the coarser resolution 

(daily averages) of the data used for variogram computation compared to the actual 

resolution of the ozone data in the form of hourly averages. For this reason, a variogram 

model (Eq. 5.30) based on the 1997 ozone data is developed assuming no nugget effect. 

This variogram model is also applied for the predictive mode, i.e., as a representation of 

the temporal variations in all subsequent years ( 1998-2000). 

y(r) = 0.50 · Exp(i) + 0.50 · GaussC~o l V r E [1, 365] (5.30) 

In addition, a variogram model reflecting the periodicity of the observed long-term ozone 

behavior is also developed. This hole-effect model shown at the bottom of Figure 5.2 

utilizes a cosine function: 
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y(r)=l-0.5·COS ~ , (2"') 
365 

'<f T E (0, 365) (5.31) 

and will be implemented later in the stochastic simulation (Chapter 6). Note that a 

nugget effect of0.5 should be added to the covariance function (5.18) in order to ensure 

positive-definiteness. 

As a preliminary study, "kriging assuming independence between data" (Eq. 5.20) 

is implemented using rigid data sampling. Here twelve evenly spaced data, sampled from 

the daily average values are selected at every 30'h Julian day, i.e., on the 30'\ 60'\ ... , 

and 360'h, and correlated via temporal correlation (5.30). Each set of the resulting 

outputs is obtained by taking a linear combination of the twelve rigid data and then 

superimposed on the 30-day moving averages (30dMA) of the actual ozone values for 

comparison (Figure 5.4). Several small spikes are clearly visible at the data locations but 

the overall outputs reflect smooth trends at all other locations. In general, the resulting 

outputs mimic the actual 30dMA ozone behavior for all four years, signifying that this 

type of kriging can only capture the average annual trends of the ozone phenomena 

without honoring the sample data at their respective locations. 

Further analysis is performed using ten sets of twelve randomly selected data at 

the interval of [25, 30) Julian day of the month. Figure 5.5 shows that the 30dMA of 

actual ozone values are bounded within the minimum and maximum (in a least-square 

sense) 30dMA of the results, implying that sampling uncertainties may greatly influence 

the accuracy of the ozone prediction. To verify this, the correlation coefficients Pao, a= 

I , ... , 10, between the 30dMA of the actual ozone values and the resulting outputs are 

plotted at the bottom graphs. The large variations in the Pao values [0.45, 0.89) and 

[0.57, 0.96) for the 1997 and 1998 cases, respectively, confirm the above statement with 

regards to sampling uncertainties. Conversely, high Pao values [0.85, 0.94) and [0.94, 

0.97) for the corres-ponding 1999 and 2000 cases signify that accurate prediction may be 

obtained if the randomly sampled data are representative of the annual ozone trend when 

they are properly placed at particular locations. 
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The above procedure is updated via ordinary kriging (OK) to account for data 

interactions. It should be noted that simple kriging (SK) can also be implemented but the 

stationary mean must be known previously. The OK algorithm removes this requirement 

and proceeds without prior knowledge of the stationarity mean by constraining the 

kriging weights to one (Section 5.3.2). To determine the performance of the OK 

algorithm (GSLIB kt3d parameter file: Appendix A.3), the variogram inferred based on 

1997 data was used to estimate the 1997 temporal phenomena. This process serves as a 

validation to the suitability of the variogram model, which is subsequently used for 

predicting the ozone trends in 1998-2000. The kriging procedure is carried out for two 

different cases using the following data sampling procedure: 

1. twelve evenly spaced data, selected at every 30th Julian day throughout the year, 

and 

2. ten sets of twelve data, randomly sampled between the 25th and 30th day of the 

month. 

In the first case, the twelve data used for inferring the highly fluctuating daily 

values are sampled at higher resolution (daily average) and therefore may consist of 

extreme high and/or low values. Consequently, this will result in the presence of about 

twelve spikes as depicted in Figure 5.6. These spikes are caused by the extreme short­

range structure in the variogram model (5.30) and the exactitude of kriging at the data 

locations. Another important observation is the smooth variability of the kriged outputs 

at other locations. This phenomenon is due to the second-order stationarity assumption 

of kriging, in which only the first two moments are reproduced. For this reason, it is 

more reasonable to compare the kriged profiles against the 30dMA of the ozone values as 

a measure for evaluating the annual trends. The general profiles show that the temporal 

highs and lows are not accurately modeled, especially in the period between the 90th and 

150th Julian day of 1999. Since the datum at the !20th Julian day is low, kriging will 

honor this datum at its location and thus "bring down" the neighboring values. 

To circumvent the above data-sampling problem, ten sets of twelve data points 

are randomly selected between the 25th and 30th day of the month for all four years. As 
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mentioned previously, this procedure will permit for evaluating the influence of high 

variability in the daily ozone values. The results shown in Figure 5.7 exhibit a marked 

improvement in the accuracy of prediction. Here, the 30-day moving average values of 

the raw data are enclosed within those of the minimum and maximum (in a least-square 

sense) kriged outputs corresponding to different sets of the conditioning data (top 

graphs). The correlation coefficients Pao, a = I, ... , I 0, between the 30dMA of kriged 

profiles and those of the actual values are calculated for the ten sets of random data. The 

resultant distributions of the Pao values shown at the bottom of Figure 5.7 are generally 

greater than 0.8 about 90% of all cases. The correlation coefficients in 2000 are the 

highest and exhibit the least variability, i.e., Pao E [0.96, 0.98] implying excellent kriging 

performance. In contrast, the kriging results for 1997 demonstrate the most variability 

where Pao E [0.25, 0.94]. 

Next, the ordinary kriging (OK) algorithm is extended to include the influence of 

secondary information via ordinary cokriging (COK) (GSLIB cokb3d parameter file: 

Appendix A.4). In this case, the temporal correlations between covariates (e.g., total 

hydrocarbon THC and nitric oxide NO) and ozone are captured using cross-variograms, 

which are calculated at incremental temporal lag rand given as: 

1 N(') 

r zy c r) = I {z(r,)- z(r, +r)}. {y(t,)- y(t, +r)} 
2N(r) '=' 

(5.32) 

where N( r) is the total number of pairs at lag r apart. Note that variogram is a two-point 

statistic and thus only two attributes, i.e., RFs Z(t;) and Y(t1), can be correlated at one 

time. Consequently, the multipoint dependencies between ozone, THC and NO variables 

taken jointly (or simultaneously) cannot be modeled using a single cross-variogram. The 

influences of THC as well as NO on ozone, however, can be modeled using three sets of 

joint cross-variograms, i.e., between (1) ozone and THC, (2) ozone and NO, and finally 

(3) THC and NO in order to account for redundancies between these two covariates. 

Another important point to note is that in the case of a systematic trend for RF Z(t), the 

values of the tail may sometimes be greater than the head, i.e., z(t;) > z(t, + r), and at the 
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same time, the reverse is true for RF Y(t), i.e., y(t;) < y(t; + r). This will result in a 

negative cross-variogram between these two RFs. To circumvent such cases, the cross­

vanogram is calculated by initially taking a negative transformation of the covariate 

values. 

Based on the sample cross-variogram plots (Figure 5.8), two covariates, i.e., total 

hydrocarbon (THC) and nitric oxide (NO) are selected because they show distinct trends 

similar to that exhibited by the ozone auto-variogram (Figures 5.2 and 5.9). Moreover, 

these two covariates have relatively high correlation coefficients (Table 4.2) with ozone 

over the entire four-year study period and are known to be the chemical precursors to 

ozone formation (Chapter 2). The other chemical covariates such as nitrogen dioxide 

(N02), carbon monoxide (CO), and dusk and smoke (COH) also exhibit the above cross­

variogram qualities and may be used as substitutes for THC and NO as the secondary 

information. 

The sample auto-variogram of ozone, and those of the negatively transformed 

THC and NO exhibit discontinuity near origin (Figure 5.9). The cross-variograms plotted 

in the same figure also demonstrate similar behavior but their nugget effects are slightly 

lower. However, it was explained previously that this nugget phenomenon is only due to 

calculating variograms using the coarser resolution of the daily average values as 

opposed to the hourly values. To rectify this circumstance, all variograms are modeled 

with short-range structure (5 days) with appropriate sill contribution. 

The models for cross-variograms are developed following the LMC procedure as 

outlined in Section 5.3.4. Note that the upper limit of the sill values C(O) = Var{Z(t;)} of 

all auto-variogram models are always one; however, for the cross-variogram models, the 

maximum sills C(O) = Cov{Za(t;), ZtJ(t;)} (at lag r = 0) are limited to the correlation 

coefficients Paf!, a, f3 = 0, ... , 2, a * jJ, between the respective variables. To ensure 

positive-definiteness of the coregionalization matrices B(k), k = I, ... , K, the actual sills of 

the cross-variograms are adjusted until all determinants I B(k) I are positive. The general 

isotropic auto and cross-variogram model is given below and the values of the sill 

contributions (cap and dap) are summarized in Table 5.2: 
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(5.33a) 

where a and fJ are the variable indices for the cross-variogram models. Note that the 

range for the Gauss model structure is 120 as opposed to I 00 days in the auto-variogram 

model of ozone ( 1997). This compromise is necessary in order to better fit the rest of the 

sample auto and cross-variograms. 

Table 5.2 
Sill contributions for the auto and cross-variogram models 
to be used in the linear model of coregionalization (LMC). 

Variable Sill Contributions 

Indices Names CafJ dafl 

0 03 0.57 0.43 

I THC 0.46 0.54 

2 NO 0.50 0.50 

01 03-THC 0.24 0.44 

12 NO-THC 0.39 0.50 

02 03-NO 0.26 0.41 

In matrix form, the coregionalized variogram model above is written as: 

[

0.57 0.24 0.26] [0.43 0.44 0.411 
y( r) = 0.24 0.46 0.39 · Exp( i) + 0.44 0.54 0.50 · GaussC;o) 

0.26 0.39 0.50 0.41 0.50 0.50 

(5.33b) 

It can be easily verified that the determinants I B(kl I corresponding to the above matrix 

systems are indeed positive, thus ensuring that the estimation procedure gives rise to 

positive variance. The resultant variogram models for the auto and cross-variograms are 

shown in Figure 5.9 to assess the goodness of fit. 
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Before discussing the kriging results, it is useful to look at the temporal variations 

of the covariates. Figure 5.10 shows that during the four-year study period, the THC and 

NO do not necessarily peak at the same time the ozone does. For example, in 1999, NO 

and ozone peak at about the same months but THC reaches maximum at a later time of 

the year. Hence depending on the weights attributed to THC during cokriging procedure, 

the predicted ozone profile may not emulate the actual trend due to the influence of THC. 

This observation is confirmed by ordinary cokriging (COK) results for 1999 as shown in 

Figure 5.11. In general, the integration of covariates in kriging paradigm improves the 

accuracy of ozone prediction, at least for the years 1997, 1998 and 2000. The mean 

temporal variation of the predicted profiles is brought up, resulting in the better emulation 

of the peaks in the respective years. The results also point to the adequacy of the auto 

and cross-variogram models inferred from the 1997 data for predicting the ozone trends 

in the subsequent years. 

However, similar to SK and OK or any other regression approaches, cokriging 

can only yield smooth estimates. Recall that in order to solve for the weights, kriging 

system only ensures the reproduction of the covariance model between data and the 

estimation points (unknowns). However, covariance between the unknowns themselves 

does not identify the covariance model, resulting in the poor emulation of the high! y 

fluctuating values observed in the daily average ozone data. Furthermore, it will be 

proven in the next chapter that the kriged profiles exhibit less variance and thus 

generating smooth temporal trends. This is readily evidenced from the results presented 

in this chapter. Apart from these shortcomings, the exactitude of kriging at the data 

locations is an asset towards stochastic simulation, which is discussed next. 
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Semivariograms of the daily average standardized ozone data (open diamonds with thin 
gray lines). The variogram models (thick blue lines) based on the sample variogram for 
1997 are shown superimposed on the sample variograms for 1997-2000 in the case of(a) 
the two-structure model y(t) = 0.50Exp(t!5) + 0.50-Gauss(t/100). The periodicity of 
variogram behavior over four-year period is better captured via (e) the hole-effect model 
y(t) =I- 0.50·cos(2nt/365). 
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Semivariograms of hourly average standardized ozone data, calculated up to a maximum 
lag of seven Julian days (168 hours) of the year. The higher resolution of the ozone data 
results in the elimination of the nugget effect observed previously for the daily average 
standardized data. 
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Linear regression results (thick blue line) based on one of the ten sets of twelve randomly 
selected data between the 25th and 30th Julian day of the month are superimposed on the 
actual 30-day moving average values of the raw data (thin gray line) in the respective 
year. Sample data and the unknowns are correlated using a variogram model y( 't) = 

O.SO·Exp('t/5) + 0.50-Gauss('t/1 00). This type of linear regression is also known as 
"kriging assuming independence between data " 



0"',----------------, 
0.<><5 

~ 0_04 

e 0.036 

c 
.Q 0.03 

~ 0.025 
~ 
:5 0.02 
u 
! 0015 

a O.Q1 

""'' 
so 1 00 150 200 250 :DO 350 

Julan Day 

I="""' -;;,;.,I 

"" 

I 
1.00 

I o"' "' 
--1'111 -~ 0.60 ]! 

~ , 
! 040 0 

0.20 

0.45 0.50 0.55 0.60 0.65 0_69 0_74 0.79 O_IU ()_89 

p (actual-predicted) 

Figure 5.5 (i) 

L_Jod 9~-- :nd O:hcMIN 30d_03lttMXI 

"" 
O<MS 

> 004 
E e 0.035 

c 
~ 000 
i' c 0025 
~ 8 002 

g 0015 

0 001 

0005 

3 s -,------

' 
' i 

I 
2 s ;_ 

I 
~ ' 
g 2 t 
~ i 
g- 1 ~.t 
u: ' 

'l 0.!>-i-

! 

" 

100 "" "" 
,., 

""' Julan Day 

il __ --=:l~-- -"""'I 
1.211 

1.00 

001 

~ 
OO<l 

0<0 

I 

I I 
02ll 

I I 
""' 0.57 0.61 0 65 0 70 0 74 0_78 0_83 0.87 0 91 0.96 

P {actual-predicted) 

95 

"" 

Linear regression results using ten sets of twelve randomly selected data between the 25th 
and 30th Julian day of the month for 1997 [LEFf] and 1998 [RIGHT]. In a least-square 
sense, the predicted minimum (green) and maximum (red) annual trends, i.e., the 30-day 
moving averages (30dMA) of the regression profiles, are superimposed on those of raw 
data (gray) [top]. The correlation coefficients between the regression and actual OdMA 
were calculated for all ten cases [bottom]. 
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Linear regression results using ten sets of twelve randomly selected data between the 25th 
and 30th Julian day of the month for 1999 [LEFT] and 2000 [RIGHT]. In a least-square 
sense, the predicted minimum (green) and maximum (red) annual trends, i.e., the 30-day 
moving averages (30dMA) of the regression profiles, are superimposed on those of raw 
data (gray) [top]. The correlation coefficients between the regression and actual 30dMA 
were calculated for all ten cases [bottom]. 



0.05 ...----··-

0.045 ~ 

~ o .. j 
~ 0_035 I 

" _2 0.03 

~ 0.025 
~ 
g 0_02 
u 
~ 0.015 

0
2 

0.01 

000< 

0 

0 

005, __ _ 
00<5 

"' > 
~ 0.035 

" .§ 0.03 

1! i 
E 0.025 • g 3 0.02 

50 

~ 0.015,_, _ _. 

0
2 

0.01 

0.005 

0 -1--------,------

"" 

0 50 100 

Figure 5.6 

l :mt 971'8' -- 97krig l 

150 200 250 300 350 

Julian Day 

(a) 1997 

'50 "" Julian Day 

(c)1999 

I 

0 05 -,------ -­

' 
0045 i 
004 I 

Q. 0.035 

" ~ 003 

" E 
g 
8 002 

g 0015 

0 001 

I 
o"' I 

oL 
0 50 

"' 
"" 
"" > l 0035 

c 
_Q 003 

" ~ 
8 . 
c 
2 
0 001 

0 005 

" 

97 

___ _j 

"" '" "" 250 300 
Juhan Day 

(b) 1998 

····---l 
I 
i 

J 
'" 200 250 300 350 

Juhan Day 

(d) 2000 

Ordinary kriging results (thick blue line) based on twelve evenly spaced data points 
selected at every 30th Julian day are superimposed on the measured 30-day moving 
averages of the raw data (thin gray line) for the respective year. 



0_05 ,------- -

0.046 ~ 
I 

> 0_04 j 
i 0_035 

_g om 

~ O.ca5 

~ :m.·~~: o om 

'""' 
0 -----,----

' 50 

~--

100 150 200 250 

Jutan Day 

----! C::J pdf97 .. odi97) 

0 2S 0 330 41 0 48 0.560.63 0 71 0.79 0 86 0 94 

Figure 5. 7 (i) 

'"' 

"" 
"'" 
"" > 

g_ 0 035 

" ~ 003 

~ 0025 
8 
6 0 02 
0 

~ 0.015 
~ 
0 001 

'005 

,, 

98 

"" "' 200 250 

Ju~an Day 

; 120 

o no 74 o no 79 0.820 M o as 0.1190.111 D-94 

P ( actua~ predicted) 

Ordinary kriging results using ten sets of twelve randomly selected data between the 25th 
and 30th Julian day of the month for 1997 [LEFr] and 1998 [RIGHT]. In a least-square 
sense, the predicted minimum (green) and maximum (red) annual trends, i.e., the 30-day 
moving averages (30dMA) of the kriged profiles, are superimposed on those of raw data 
(gray) [top]. The correlation coefficients between the kriged and actual 30dMA were 
calculated for all ten cases [bottom]. 



[~ 30d_99raW -30d.:_~30ii.:_99kiMAXI 

'"' ~, -~--~------------
0045 i 
'"' I l 0035 

_Q 0_03 

~ 0025 
8 
g 0 02 
0 . 
2 00·"1 0 001 

'":L 
50 1 00 150 200 250 300 350 

Ju~an Day 

I ·::H- 1'="-

3: jj 

''-'""I 
11.20 

[~ 1 00 

i ~ 
' ~ 2.5 

~ ' u: 
'' 1 

':Ill. ' 

'" 
~ 

' 0 60 :f9 
I E 

'" 
8 

'" I 
' 

j--+-----+- 0 ()() 

0.66 0.69 0 72 0 75 0.78 0 81 0 84 0 87 0_00 0.93 

P (actual-predicred} 
[ ___ _ 

Figure 5. 7 (ii) 

'"' 

'"' > 

~ 0035 

g 0 03 

~ 0025 

~ 0 02 
0 

~ 0 015 
2 
0 001 

"'" 

-30d OOaw 30d OOkMIN - 30i(fiiiM\X 

I 
I 

__ ___j 
50 1 00 150 200 250 300 350 

Juian Day 

35 - ' 1 20 

_;_ 100 

+ Q_BQ 

i ~ 
; ] L lo60]! 

i ' ~ 
1 +040° 

~ I n, 
"1.1 I 11

1'" 
0 LJ I ,_. ·~-+'4--_,.l4 - -t Ll j 000 

0 960 96 0 960 960.97 0 97 097 0970 980911 

P (actuai-P"edcled) 

99 

Ordinary kriging results using ten sets of twelve randomly selected data between the 25th 
and 30th Julian day of the month for 1999 [LEFT] and 2000 [RIGHT]. In a least-square 
sense, the predicted minimum (green) and maximum (red) annual trends, i.e., the 30-day 
moving averages (30dMA) of the kriged profiles, are superimposed on those of raw data 
(gray) [top]. The correlation coefficients between the kriged and actual 30dMA were 
calculated for all ten cases [bottom]. 
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Cross semivariograms of ozone and the meteorological/chemical variables based on the 
standardized (zero mean and unit variance) 1997 data. 



101 

0.6 

06 

-0_6 ~ 

-~18 +--------r·- ~· 50 1 00 150 200 250 300 350 0 50 1 00 150 200 250 300 350 

Jul1an Day Jul;an Day 

(g) 03-NO (h) 03-CO 

-0.3 j 

50 1 00 150 200 250 300 350 

Julian Day 

(i) 03-COH 

Figure 5.8 (ii) 
Cross semivariograms between ozone and the meteorological/chemical variables of the 
standardized (at zero mean and unit variance) 1997 data. 



102 

'' 
OTIHCm_<>Ut OOlllCmvarl 

" 
" " 

" 

'·' 
" " 
•l----- '. 

0 50 1 00 150 200 250 300 350 50 1 00 150 200 250 300 350 

Julia~ Day Juhan Day 

(a) 03 (b) 03-THCm 

" " 
" " 
" 1.2 ~ 

E 

~~ 1 

"" ~ 01
1 0_8 

£6 
0 IE: 0_6 
~-

'·' ,, 
- -~--

50 "" '" 200 "" ,00 "' 50 100 150 200 250 300 350 

Ju~an Day Julilln Dlly 

(c) THCm (d) NOm-THCm 
~~~~?Jl-v~rl ·r 1.6 T 

'·' 
~. -l 

" 
" " E , I 

E 

~~ 
?.§; 1 
~~ .. ~ ' 

0!: "'t O_B E 8 o_a . 

~ ~ 0_6 

~z : 
.e. 0_6 1 •o 

~- 2- i u 

"1 " 
0.2 " 

---~ ---; 

---~ ' "' •oo '"' 200 "" ""' "' ' 50 1 00 150 200 250 300 350 

Ju~an Dilly Jul111n Day 

(e) NOm (f) 03-NOm 

Figure 5.9 
Experimental auto and cross-semivariograms (open diamonds with a solid gray line) and 
the model fit (thick blue line). The model sills for auto"variograms [LEFr) are always one 
but those for cross-variograms [RIGHT) are adjusted to ensure positive-definiteness of the 
coregionalization (LMC) matrices, and subject to a maximum dictated by the correlation 
coefficients between the primary and secondary variables. 



103 

j- 30c(0397sld 30d_THCm97sld " 30d_NOm97sttl' 

" 

05 

~0 5 

~' ' 

" 
,, 
'" 
• 

-2.5 _)__ ___ ' -2 5 i • 
50 100 150 200 250 3W 350 0 50 100 150 200 250 3((1 350 

Julian Day Julian Day 

(a) 1997 (b) 1998 

0 5 

'1 0 5 

...; '' 
-1 5 1 

,.5 " 

-----

~--

1 't:7 
' f ~ v 

~>. 

-25_,___________, --

50 100 150 200 250 300 350 0 50 100 150 200 250 300 350 

Ju~an Day Julian Day 

(c) 1999 (d) 2000 

Figure 5.10 
The standardized (at zero mean and unit variance) 30-day moving average values of 
ozone (thin gray line) and its covariates, i.e., total hydrocarbons THC (open pink box) 
and nitric oxide NO (open blue triangle) are plotted on the same graph for comparing the 
annual trends of all variables. 



105 

CHAPTER6 

STOCHASTIC SIMULATION 

Stochastic simulation differs from process simulation in the sense that the latter 

incorporates physicochemical models, which are adapted from the previously published 

studies. Process simulation packages such as the Urban Airshed Model (UAM: SAl, 

1999, Appendix B), have received wide acceptance for regulatory purposes due to the 

better understanding of physicochemical mechanisms underlying the process. However, 

tropospheric ozone phenomena involve many factors, some of which are still not fully 

understood and therefore ignored in the physicochemical models. An alternate approach 

is to consider the temporal variability in ozone values as realizations of a multivariate 

probability distribution underlying a stochastic random functions RF Z(t) (e.g., Deutsch 

and Journel, 1998). The kriged results discussed earlier can be interpreted as the mean of 

the RF characterizing ozone concentrations at each time instant. In stochastic simulation, 

one way to proceed is to sample the entire multivariate distribution following a sequential 

procedure as outlined in the succeeding sections. 

6.1 Theoretical Background 

As discussed in Chapter 5, kriging is an excellent tool for honoring sample data and 

estimating the trends of ozone phenomena. However, these are accomplished at the 

expense of reduced variance, as previously substantiated by the smooth kriged profiles 

and irreproducibility of the correct patterns of temporal variations. Therefore, stochastic 

simulation is implemented in order to rectify the "smoothness effect" of kriging. In this 

sense, kriging serves as the first step towards stochastic simulation, which is a procedure 

of generating a set of L alternative realizations Zl)(t), I= 1, ... , L, 'It E T of a temporal 
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(and/or spatial) process. These realizations are basically sampled from the multivariate 

probability distribution underlying a random function RF Z(t). 

The reduction in variance of the kriged estimator z'(t) can be corrected by adding 

a residual error component R(t) in such a way that: 

• Z,(t) = Z (t) + R(t) (6.1) 

where subscripts indicates the simulated value of RF Z(t). To verify this, consider the 

estimation of a standardized RF Z(t) (zero mean and unit variance). The kriged estimator 

z'(t) is given by a linear combination ofRFs Za, a= 1, ... , M, i.e., 

a 

Thus its variance can be written as: 

a 

= E(LLAaApZaZfl} 
a p 

= LLAaAp ·E{ZaZp} 
a f1 

a 

where subscript 0 refers to the estimation point (unknown), and the last step is obtained 

by employing the kriging system of normal equations. However, the estimation variance 

is given as a~ = C(O)- I..taC=, or after rearranging and substituting for the target 

variance C(O) = 1, the result is I..taC= = 1- a~. This implies that the variance of the 
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kriged profiles is less than the target variance by a quantity of a-; . To resolve this 

problem, we add the residual R(t) to the kriged estimator z'(t) and calculate the resultant 

variance, i.e., 

Var{Z(t)} = Var{Z'(t) + R(t)} 

= Var(Z'(t)} + Var{R(t)} + 2Cov{Z'(t), R(t)} 

If the residual R(t) is orthogonal (independent) to z'(t), then Cov{Z'(t), R(t)} = 0. In turn, 

the new variance of the RF Z(t) is: 

• Var{Z(t)} = Var(Z (t)} + Var{R(t)} 

= 1 - a-i + Var{R(t)} 

entailing that the RF R(t) should have a variance of a-; in order to restore the correct 

variance ofRF Z(t). 

In other words, to uphold unbiasedness, and also to regain the correct variance of 

the simulated values RF Z,(t), the residual R(t) must satisfy the following criteria: 

1. its expected value (mean) must vanish, i.e., E {R(t)} = 0, 

2. its variance Var(R(t)} = a-~ (t), and 

3. R(t) must be orthogonal to the kriged estimate z'(t) so that Cov{Z'(t), R(t)} = 0. 

If the expected value E{R(t)} = 0, expression (6.1) reduces to E{Zs(t)} = E{Z'(t)}, which 

by construction is exact at the data location due to exactitude of kriging estimator z' (t). 
The last two conditions ensure that the RF Z,(t) has the correct variance to overcome the 

"smoothness effect" of kriging algorithm. The remaining task is to ensure that the 

simulated values Z,(t;), '\It; E T reproduce the correct temporal variation, i.e., variogram 

model. Recall that kriging identifies the covariance (or variogram) between data and the 

estimation points. However, the drawback with kriging is that the covariance between 

two estimated points does not identify the model covariance, as shown in the following: 
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E{Z'(t;)Z'(t)} =E{~>ta(t,)Za · LAp(f,)Zp} 
a p 

= E{LLAa (f; )Ap(tj )ZaZ p} 
a fi 

= LAa(ti)LAp(t;)E{ZaZfi} 
a p 

Again, assuming RF Z(t) to be standardized at zero mean and unit variance, the expected 

values E {ZaZp} =CaP· Hence, the covariance between two kriged estimators is: 

Cov{Z' (t, ), z' (t 1 )} = E {Z' (t, )Z' (t 1 )} 

= LAa(t;)LAp(t;)Cap 
a p 

a 

which is different from the target model covariance C(t,- t;). 

To rectify this deficiency, consider updating the kriged data set to include the 

values Zs(t), which are simulated prior to the current time instant t1. Then, 

• =E{Z,(t,)·Z (t1)} + E{Zs(t1)·R(t1)} 

• • 
= E{Z,(t1)·Z (t1)} + E{[Z (t1) + R(t1)}R(t1)} 

• • 
= E{Zs(t1)·Z (t1)} + E{Z (t,)·R(t1)} + E{R(t;)-R(t1)} 

Recall that the kriged values z'(t) are orthogonal to the residual R(t) and the expected 

value of the residual is zero; hence the above expression reduces to: 

• Cov{Zs(t1), Z,(t1)} = E{Z,(ti)-Z (t1)} 

Since the current data set includes the previously simulated value Zs(t;), and kriging 

identifies the data-to-unknown covariance, then by construction the Cov{Z,(t1), Zs(t1)} = 

C(t1- t1) as it should be. Thus the simulation procedure consists of: 
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I. Perform kriging at the first time instant (node) t; to obtain z'(t;) and G'~ (t,). 

2. Assuming z'(t;) and 0': (t,) to be the mean and variance of the probability 

distribution characterizing the RF Z(t;), draw a value from the distribution to yield 

a simulated value Zs(t;). 

3. Update this simulated value Z,(l;) into the conditioning data set. 

4. Proceed to the next node t1, along a random path. Perform kriging at this node 

with the new conditioning data set. 

5. With the kriged estimate z'(t1) and estimation variance G'i (t), draw a value 

from the probability distribution to obtain a new simulated value Z,(t1) and update 

the conditioning data set by adding Zs(t1). 

Repeating Steps 4-5 until all nodes are exhaustively visited, the simulated values Z,(t) 

will reflect the target variance and reproduce the pattern of temporal variability in the 

form of covariance (variogram) identification. It should also be noted that since temporal 

nodes are visited along a random path and the simulated values Z,(t) are obtained by 

random sampling from the kriged distribution, multiple realizations z;l)(t), I= l, ... , L, 

of the temporal process are possible. These multiple realizations are all equiprobable 

representations of the temporal process. 

Stochastic simulation can therefore be thought of as a procedure or process of 

representing the true underlying physical phenomena through probabilistic modeling of 

the temporal (and/or spatial) distribution of the RF Z(t). Each outcome (realization), 

denoted by superscript (/), from the simulation process is equally probable. The higher 

the number of realizations, the better the simulated results reproduce the desired statistics 

(mean and variance). Among the many simulation algorithms currently available in the 

literature, the sequential simulation approach as outlined above is preferred due to its 

ability to ensure the correct pattern of temporal variability between the unknown samples 

and its effectiveness in restoring the variance of the true RF Z(t). 
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The sequential simulation paradigm can also be interpreted as a technique for 

sampling from the multivariate probability distribution underlying the RF Z(t), 

characterized by N-variate conditional cumulative density functions (ccdf's) with a set of 

N data, denoted as (N): 

Prob {Z(tJ) s z(tJ), ... , Z(tN) s z(tN) I (N)} = Fz{z(tJ), ... , z(tN) I (N)} (6.2) 

The above multivariate distribution can be decomposed into multiple univariate ccdf's by 

applying Bayes' Rule, i.e., 

Prob{Z0(tJ) sz(tJ), ... , z<l)(tN) sz(tN) I (N)} 

= Fz{z(l)(tN) I i'l(!J), ... , z(l)(tN.J), (N)} 

· Fz{z(l)(tJ), ... , z10(tN.J), (N)} 

The second and the subsequent terms can be further decomposed as: 

Fz{z10(tJ), ... , z(l)(tN.J), (N)} = Fz{z10(tN.J) I z10(tJ), .. . ,zll)(tN.z), (N)} 

· Fz{zl'l(tJ), ... , zl0(tNz), (N)} 

· Fz{zl0(tz) I i'l(tJ), (N)} 

· Fz{zl0(1J) I (N)} 

(6.3a) 

(b) 

where subscript s referring to the simulated values zs(t) is omitted for convenience. This 

implies that the multivariate distribution can be obtained by multiplying a series of 

univariate ccdf's, each increasingly updated by the conditioning data. To elaborate, the 

first step is to simulate a value zl'l(t1) from the univariate ccdfof Z(t1), given a set of the 

original N data. Then add the simulated value z10(t1) to the conditioning data set, whose 

size is now increased to (N + I). Draw another value z10(t2) from the updated univariate 

ccdf, i.e., Fz{zl0(tz) I z(l)(tJ), (N)}, and add it to the current data set, now with a larger 

dimension of (N + 2). Repeat the subsequent steps of continually drawing a value from 

the updated ccdf and adding it to the data set until all nodes are considered. This process 
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will finally yield simulated values z(l1(t), 'V t E T, that are correctly sampled (drawn) from 

the multivariate probability distribution characterizing RF Z(t). In essence, this entire 

procedure is the core paradigm of the sequential simulation, of which a special case, i.e., 

sequential Gaussian simulation, is implemented in this thesis work. 

6.1.1 Sequential Gaussian Simulation 

The sequential simulation paradigm requires that the first two moments (mean and 

variance) established by kriging at any node be identified with the mean and variance of 

the conditional distribution Fz{z(t;) I zs(tJ)}, 'Vj i' i, where z,(t1) are the previously 

simulated values. If the conditional probability distributions are assumed Gaussian, the 

sequential simulation procedure yields samples from a multivariate Gaussian distribution. 

Thus the following properties hold: 

o The conditional mean is a linear combination of the conditioning data, i.e., 

N, 

E{Z(t;)IZ,(t;)}= LAj(t;)Z,(tj), 'Vji'i 
j=l 

o The variance is independent of the data and strictly a function of variance or more 

precisely covariance, i.e., 

N, 

Var{Z(t;)IZ,(t;)}= LA;(t;)C;,(t; -t;), 'Vji'i 
}"=1 

It can be surmised by comparing the above expressions to those of kriging (for example, 

Eqs. 5.11-5.13) that the kriged estimator z'(t) will be an ideal choice for estimating the 

mean and variance of the Gaussian conditional distributions. 

The sequential Gaussian simulation approach capitalizes on these properties, and 

its procedure is discussed below, following Deutsch and Joumel (1998): 

I. For a random function RF Z(t) relevant to the case study, determine its univariate 

cumulative distribution function (edt) Fz(z), which must be representative for the 

whole stationary domain. This means that the collection of data must be performed 
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wisely, in the sense that there is no preferential clustering over the temporal 

framework. If not, data declustering may be required to ensure the unbiasedness of 

data sampling. 

2. Often the univariate distribution of the RF Z(t) is not Gaussian; hence normal score 

transform of the sample data z(tk), k =I, ... , N, into normally distributed data y(tk) is 

required prior to simulation. To elaborate, a set of evenly spaced (every 30 days) raw 

data {z(tk), k= I, ... , 12} are transformed (Figure 6.1: "nscore") into the normal score 

values y(tk) = G;' {F2[z(tk)]}; G is the standardized (zero mean and unit variance) 

Gaussian operator defined as: 

I Iy ( I ') G(y)= ,f2; oo exp - 2s dt;' 

Or, graphically: 
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3. Before performing sequential Gaussian simulation, it is necessary to at least verify 

whether the data y(ti) are bivariate normal (Section V.2.2 in Deutsch and Journel, 

1998). This verification is necessary since univariate Gaussianity (normality) does not 

automatically ensure normality of higher order distributions. 

4. The steps for the sequential Gaussian simulation are: 

(a) Visit J simulation grid nodes {t1, .•. , IJ, ... , tJ} sequentially along a pre-defined 

random path. 

(b) At each grid node t/ 

1. Calculate the first two moments (mean and variance) of the local ccdf 

F r{y(ti) I y(tk), k = 1, ... , Ni] using the kriging algorithm (Section 5.3.2). 

Note that on the first node t1 along the random path, the original 

conditioning data set only consists of N normally distributed sample data 

{y(tk), k =I, ... , N}. As the simulation progresses, the conditioning data set, 

hereafter denoted as (M), also increases in size to include the N original data 

and all previously simulated values i 0(ti) in the neighborhood of node ti. 

n. Then, perform Monte Carlo drawing from the local ccdf F r[y(ti) I (Ni)] to 

obtained a simulated value ill(ti) at time instant ti. To elaborate, the drawing 

process starts with the generation of a uniformly distributed random number 

rpcn within [0, I] interval. Once rp<0 is identified, the simulated value i 0(tJ) is 

easily acquired by applying the quantile transform: 

(/)( ) - p-1 [ (/)] y tj - YI(N,) ({J 

where JT10 refers to the quantile function of the distribution F r{y(ti) I (Ni)]. 

iii. This simulated value ycn(tJ) acts as an additional datum and therefore is 

included in the conditioning data set (Ni) for the next visit to node tk along 

the random path. In essence, the size of the contemporaneous data set is now 

Hj = Ni + 1 due to adding the additional simulated value i 0(ti) at time instant 

ti. 
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(c) The simulation is completed after all J grid nodes are visited by repeating step 

(3.b). This will, in turn, produces a set of simulated values {y(l)(l_j),j = I, ... , J}, 

which represents the z'h realization of the temporal process y(l)(t). 

5. Finally, the simulated normal values /)(t1),j E J = 365 are back-transformed (Figure 

6.1: "backtm") using the quantile transform il)(l_j) = F;1 {G[y(l)(t)]}; G is the 

Gaussian operator defined above. 

6. In the case of multiple realizations, i.e., {y(l)(t1),j E J}, l =I, ... , L, Steps 4(b-c) are 

repeated L times. But now the time instants t1, Vj E J, are visited along a different 

random path. The kriged conditional distribution is sampled using Monte Carlo 

drawing with a different random seed. The resultant realizations /l)(l_j), j E J, 

represent uncertainty in the ozone temporal profile due to limited samples. 

6.1.2 Sequential Gaussian Co-Simulation 

As mentioned above, sequential Gaussian simulation requires the kriging algorithm as its 

"driving engine." Similarly, the co-simulation procedure needs cokriging as well as the 

temporal correlations, i.e., auto and cross-variogram models (see Figure 5.10), of the 

entire process in order to improve ozone prediction. This way, not only the sample 

values Z0 (t;), i = 1, ... , N, of the primary RF Z0(t;) are used, the "soft data" from other RFs 

Za(t,-), a= 1, ... , M, can also be capitalized upon for secondary information because, in 

some cases, they are often more extensively collected than the primary data. As an 

example, imagine a case when the measurement of ozone data in the year 2001 is 

interrupted for a month because of equipment failure, but data collections for other 

pollutants (e.g., total hydrocarbon THC) are still continued. By applying the temporal 

correlations, i.e., the variogram models, obtained from the previous year (2000) and using 

a few representative samples of ozone and THC in that particular year (2001), the ozone 

concentrations for the entire month can be fully predicted. 

In other words, the sequential co-simulation procedure is very much alike to the 

one previously discussed except for one major difference; that is, the ordinary kriging 

(OK) algorithm applied in Step ( 4.b.i) is replaced with the ordinary co kriging (COK) 
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algorithm as the "driving engine" of the simulation process. Note that (co )kriging is 

retained as the underlying mechanism due to its excellent ability in data identification, 

i.e., at the data locations, the co-simulated outputs are ensured exact by construction. 

However, the tedious task is of course performing the linear model of coregionalization 

(LMC: Section 5.3.4) in order to determine the licit variogram model, and hence to 

guarantee the existence of a unique cokriging solution. 

6.2 Results and Discussion 

As mentioned earlier, sequential Gaussian simulation requires kriging as its "driving 

engine" that in tum utilizes a temporal correlation or variogram model (Figure 5 .2). 

Recall that the variogram was modeled with two structures (Eq. 5.30). For all simulation 

studies, the GSLIB program sgsim (Appendix A.4) is utilized and the RF Z(t), 'It E T, 

is assumed multivariate normal. The sequential Gaussian simulation was attempted using 

the two-structure variogram model (Eq. 5.30) and twelve data points, evenly placed at 

every 301h Julian day. The sequential simulation was carried out for three different cases: 

1. ten realizations (L = I 0), generated by the Monte Carlo sampling from the local 

conditional probability density function ( cpdf), 

2. ten sets of twelve randomly selected data between the 25'h and 301h day of the 

month to account for the variance due to sampling, and 

3. simulation using the hole-effect variogram model: /{ r) = 1 - 0.5·cos( r) with 

nugget effect Co = 0.50, where r is in radians, to replace the two-structure 

variogram model (Eq. 5.30). 

The simulated results were averaged using a thirty-day moving window and then 

compared with the similar average profiles calculated using the raw data. Figure 6.2 

shows the minimum and maximum (in a least-square sense) 30-day moving averages 

(30dMA) computed over the ten realizations. Figure 6.2 also shows the average outputs 

computed over the ten realizations (middle graphs) and the distributions of the correlation 

coefficients between the 30dMA of the raw data and the corresponding 30dMA over all 

realizations (bottom graphs). The temporal fluctuations of ozone concentrations are 
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reproduced by sgsim. While kriging and other forms of linear regressions yield average 

(smooth) predictions, stochastic simulation preserves the two-point correlation 

(variogram) and yields the correct fluctuations in ozone concentrations. In general, the 

correlation coefficients Pan are greater than 0.70 except for 1999 where the Pan E [0.50, 

0.79] 

The influence of the conditioning data on the simulated profiles was explored by 

randomly selecting data between the 25th and 30th Julian day of each month over the 

whole year. Similar to the kriging case, ten sets of twelve randomly selected data are 

utilized. The 30dMA values of the minimum and maximum (in a least-square sense) 

simulated models (top graphs), and the average simulated outputs (middle graphs) over 

the ten realizations, as well as the distributions of the correlation coefficients between the 

30dMA values of the raw data and the simulated results over the ten realizations are 

plotted in Figure 6.3. 

In general, the results from the first two cases of sequential Gaussian simulation 

can be interpreted as follows: 

o The results presented in Figure 6.2 represent the uncertainty in the temporal trend 

arising due to the lack of information beyond the two-point statistic (variogram) 

for predicting the temporal profiles. Thus the results in Figure 6.2 were obtained 

by ignoring the uncertainty in sampling. On the other hand, the results in Figure 

6.3 represent the uncertainty in the temporal profiles due to the variance in 

sampling. The worst model (p = 0.38) therefore represents one realization 

conditioned to the worst possible configuration of data. 

o The results for 1999 indicate that the correct peak between the IOOth and !50th day 

of the year can indeed be correctly reproduced if the conditioning data reflect the 

underlying temporal phenomena accurately. Any one configuration of the 

conditioning data can result in further uncertainty in the simulated profiles due to 

the inadequacy of the two-point statistic to depict the temporal trends. Thus the 

data configuration that corresponds to p = 0. 77 in Figure 6.3 can further yield a 
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range of uncertainty p E [0.50, 0.79] (Figure 6.2) when multiple realizations are 

simulated using that conditioning data. 

Specifically, the discrepancy between the simulated and target ozone profiles can be 

attributed to: 

o Inconsistency between the variogram interpreted on the 1997 data and the actual 

temporal variation exhibited in 1999. 

o Inadequacy of the twelve conditioning data to represent the underlying temporal 

phenomena. For example, a peak in ozone trend is observed between the IOO'h 

and 150'h day of 1999. The nearest conditioning datum is on the 120'h day and the 

instantaneous ozone concentration on that day happens to be low. This causes the 

simulated profile peak at a later time resulting in the offset with respect to the 

actual trend. 

Next, simulation using the hole-effect variogram model was attempted in order to 

account for the annual periodicity in the observed ozone behavior. The 30dMA values of 

the hole-effect results are plotted in Figure 6.4, and compared with those of the raw data 

and the simulated (sequential Gaussian) results using the two-structure variogram model 

(Eq. 5.30). In 1997, the hole-effect model overestimates the temporal trend whereas in 

2000, it grossly underestimates the yearly ozone trend. This is expected since the hole­

effect model was fitted using the long-term ozone trend, i.e., it summarizes the temporal 

correlation over a four-year study period, and thus only represents the ozone trends in the 

sense of the long-term average. To elaborate, the 30-day average time series plots of 

ozone data have distinct features from one year to another; those of 1997 and 1999 share 

some resemblance since they only have one large peak occurring between the IOO'h and 

1501h Julian day of the year. On the other hand, the trends in 1998 and 2000 depict one 

large peak around the same period of the year, and in addition, a smaller peak (flattened 

profile) in the summer season (around the 170'h to 2401
h Julian day). In essence, the hole­

effect model imposes cyclic phenomena of mean amplitude (0.5) and intra-year periodi­

city (about 365 days) on the simulated results based on the data for 1998-2000. 
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To account for the influence of secondary information ("soft data"), co-simulation 

was performed. Since the total hydrocarbon (THC) is slightly better correlated with 

ozone in 1997 (p1o = 0.68) than nitric oxide (NO) <Pl.o = 0.67), sequential co-simulation 

was performed with THC as the covariate. The linear model of coregionalization (LMC) 

was developed in a manner similar to that for cokriging. A variogram model with two 

structures was selected. Since there is only one covariate, the size of the coregionalized 

matrices B(kl, k = I, ... , K, is reduced to (2 x 2). Expression (6.6) below summarizes the 

variogram model in the matrix form: 

[
0.56 0.24] (') [0.44 

y( r) = 0.24 0.46 . Exp 5 + 0.44 0.44] ( r ) ·Gauss-
0.54 120 

(6.4) 

The legitimacy of the above model can be verified by calculating the corresponding 

determinants of the coregionalized matrices, i.e., B(l) and B(2). The co-simulation results 

in the form of one realization are plotted in Figure 6.5. The simulated results indicate 

that the covariate (THC) does indeed provide additional information regarding the 

amplitude of the temporal phenomena. The troughs observed in the "true" profiles 

between the 3001
h and 3501

h day of 1997 and 1999 are reproduced quite well as compared 

to the previous simulation results in Figure 6.2. The peak in ozone trend between the 

1001
h and 1501

h day of the 1999 profile is again simulated much later in the year. As 

explained previously, the offset between the simulated and the actual profiles can be 

explained on the basis of the location and magnitude of the conditioning data. In general, 

the simulated profiles for all four years (1997-2000) exhibit much less amplitude of 

variations. This reduction in variance is due to the integration of secondary information. 

The peaks appear shifted and the extent of the shift is directly related to the temporal 

profiles of the secondary variable (THC) as previously illustrated in Figure 5.1 0. 

Co-simulation was also attempted using NO as the covariate. The coregionalized 

matrices B(kl, k = 1, ... , K, for the variogram model was recalculated to uphold the 

positive-definite constraints, and hence the existence of unique solutions. Since the auto­

variogram of NO is very similar to that of THC, the LMC model for NO is likely to 
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resemble that of THC. The corresponding isotropic variogram model, written in matrix 

notation, is: 

[
0.56 

y(r) = 0.26 ·Ex - + ·Gauss-0.26] (T) [0.44 0.41] ( T ) 

0.50 p 5 0.41 0.50 120 (6.7) 

and the co-simulation results obtained using the above LMC model are plotted in Figure 

6.6. Except for the slight improvement in the simulated profile for 2000 (between the 

250'h and 300'h day), the overall trend is strikingly similar, which is anticipated since the 

LMC models corresponding to NO and THC (Figure 5.9) bear a very close resemblance 

to each other. To investigate further, the sample variograms of the co-simulation results 

using THC and NO as covariates are plotted in Figure 6.7 and 6.8. Evidently, the 

variograms are very much alike suggesting that the co-simulation results using these two 

covariates are similar. Thus the presence of NO as another secondary information is 

redundant, i.e., it makes no extra contribution towards predicting temporal ozone trends. 

The above co-simulation results are obtained over one realization only. However, 

stochastic simulation can be fully capitalized if more realizations are performed. Figure 

6.9 shows the co-simulation results corresponding to ten realizations and the "true" 

profiles. Except in 1999, the minimum and maximum (in a least-square sense) 30dMA 

values of the co-simulated outputs (top graphs) enclose the raw trends throughout the 

whole year. The average trends computed over the ten realizations (middle graphs) also 

emulate the "true" trends quite well. The correlation coefficients calculated over the ten 

realizations indicate a general increase. Thus the addition of covariate data enhances the 

accuracy of sequential simulation. The simulated results for 1999 do indicate little (if 

any) improvement. The relatively poor performance for 1999 is mainly due to the non­

representative conditioning data used for the simulation. The integration of the auxiliary 

data in the form of THC or NO does relatively little to mask the effect of the conditioning 

ozone data. 

By and large, the implementation of sequential simulation algorithms for 

modeling the temporal trends of ozone concentrations does result in improved 
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reproduction of the "true" temporal fluctuations. The pattern of temporal variation 

captured in the form of a temporal variogram is reproduced in an ergodic sense (average 

over multiple realizations) by the simulated realizations. hnproved accuracy of the 

simulated profiles is achieved by integrating auxiliary information in the form of THC or 

NO covariate data. The integration of such covariate information requires a LMC model 

to be fitted jointly, which provides a licit representation of the auto and cross-covariances 

(variograms). 

As mentioned in Chapter 2, various statistical methods have been attempted for 

studying atmospheric phenomena. In the space-time approach, ozone is treated as a 

random variable Z(t), which can then be decomposed into a trend M(t) and a residual R(t) 

component. At a station location, the temporal trend is often modeled deterministically 

using a noise-filtering algorithm such as a Fourier series analysis due to the availability of 

environmental records. Such a technique will be performed next in the case of modeling 

seasonal and annual ozone trends. Another popular approach is to train a neural network, 

or more specifically the multilayer perceptron (MLP), using two independent data sets. 

The network weights obtained from such training procedure can be applied in predictive 

modes. As will be seen subsequently, the neural network is an alternative approach to 

reproducing the temporal patterns; however, it suffers from the requirement of having 

quasi-exhaustive data. 
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Sequential Gaussian simulation results over ten realizations for 1997 [LEIT) and 1998 
[RIGHT) based on twelve data points, evenly spaced at every 30th Julian day of the year. 
In a least-square sense, the 30-day moving averages (30dMA) of the minimum (green) 
and maximum (red) [top] realizations, as well as the daily average fluctuations (blue) 
[middle) are superimposed on those of raw data (gray). The distributions of correlation 
coefficients between the 30dMA of raw data and the simulated realizations are also 
plotted [bottom]. 
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Sequential Gaussian simulation results over ten realizations for 1999 [LEIT] and 2000 
[RIGHT] based on twelve data points, evenly spaced at every 30th Julian day of the year 
In a least-square sense, the 30-day moving averages (30dMA) of the minimum (green) 
and maximum (red) [top] realizations, as well as the daily average fluctuations (blue) 
[middle] are superimposed on those of raw data (gray). The distributions of correlation 
coefficients between the 30dMA of raw data and the simulated realizations are also 
plotted [bottom]. 
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Sequential Gaussian simulation using ten sets of twelve randomly selected data between 
the 25th and 30th Julian day of the month for 1997 [LEFf] and 1998 [RIGHT]. In a least­
square sense, the 30-day moving averages (30dMA) of the minimum (green) and 
maximum (red) [top], as well as the average (blue) [middle] of the ten results are 
superimposed on those of raw data (gray), The distributions of correlation coefficients 
between the 30dMA of raw data and the simulated results are also plotted [bottom]. 
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Sequential Gaussian simulation using ten sets of twelve randomly selected data between 
the 25th and 30th Julian day of the month for 1999 [LEIT] and 2000 (RIGHT]. In a least­
square sense, the 30-day moving averages (30dMA) of the minimum (green) and 
maximum (red) [top], as well as the average (blue) [middle] of the ten results are 
superimposed on those of raw data (gray). The distributions of correlation coefficients 
between the 30dMA of raw data and the simulated results are also plotted [bottom]. 



0.05 
0.045 

"" > 
~ 0.035 

Q 0_03 

~ 0025 
~ a a_02 
u 
~ 0015 
~ 
0 0,01 

50 1 00 150 200 250 300 350 

JuUan Day 

(a) 1997 

_ 30d_ggm;_ ~~,Jl9sHE.=JOd:-99s] 

005 ------· 

0.045 

0 ... 
> 
~ 0.035 e 
g 0 03 

~ 0.025 
~ 8 0.02 

~ 0.015 

0~ O<N 

0 005 

50 1 00 150 200 250 300 350 

Ju~an Day 

(c) 1999 

Figure 6.4 

00:,!-
- 01)4 I 

i 0035! 
:5 0 03 

~ 0025 
8 
a a 02 
u 
~ 0 015 

~ 001 

005 
0 0451 

~ "" . 
3 0035. 

g 0 03 

~ c 0 025 

g 
8 002 . 
§ 0 015 -

0 001 

""" 

125 

50 1 00 150 200 250 300 350 

Junan Day 

(b) 1998 
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(d) 2000 

Sequential Gaussian simulation results based on tbe hole-effect (HE) variogram model 
y('r) = I - 0 50·cos(2m:/365). The figure shows the 30-day moving averages (30dMA) 
computed on: raw data (thin gray line), hole-effect simulated realization (open blue 
circle), and one realization based on tbe two-structure variogram model y('r) = 
0.50Exp(-c/5) + 0.50·Gauss(-c/100) (thick pink line). 
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(d) 2000 

30-day moving averages (30dMA) calculated on one realization obtained by sequential 
Gaussian co-simulation (thick blue line), condition to twelve data evenly spaced on every 
30th Julian day ofthe year. The corresponding "true" profiles are also shown (thin gray 
line). The covariate used for co-simulation is total hydrocarbon (THC). 
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30-day moving averages (30dMA) calculated on one realization obtained by sequential 
Gaussian co-simulation (thick blue line), condition to twelve data evenly spaced on every 
30th Julian day of the year. The corresponding "true" profiles are also shown (thin gray 
line). The covariate used for co-simulation is nitric oxide (NO). 
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Sample variograms of the 30-day moving average values (30dMA) of the co-simulation 
outputs using total hydrocarbon (THC) as the covariate. Since the initial30dMA value of 
the results and raw data are placed on the 15th Julian day of the year, the first time instant 
of the semivariogram must, by construction, also be placed on the same day. 
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Sequential Gaussian co-simulation (using total hydrocarbon THC as the covariate) over 
ten realizations for 1997 [LEFT] and 1998 [RIGHT] based on twelve evenly spaced data. 
In a least-square sense, the 30-day moving averages (30dMA) of the minimum (green) 
and maximum (red) [top], as well as the average (blue) [middle] realizations are 
superimposed on those of raw data (gray). The distributions of correlation coefficients 
between 30dMA of the raw data and the simulated realizations are also plotted [bottom]. 
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Sequential Gaussian co·simulation (using total hydrocarbon THC as the covariate) over 
ten realizations for 1999 [LEFf) and 2000 [RIGHT) based on twelve evenly spaced data. 
In a least·square sense, the 30·day moving averages (30dMA) of the minimum (green) 
and maximum (red) [top], as well as the average (blue) [middle) realizations are 
superimposed on those of raw data (gray). The distributions of correlation coefficients 
between 30dMA of the raw data and the simulated realizations are also plotted [bottom]. 
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CHAPTER 7 

FOURIER SERIES AND NEURAL NETWORK ANALYSES 

This chapter serves as a bridge between the deterministic and stochastic approaches. The 

Fourier series analysis is often utilized for filtering the 'noise' ofthe random data in order 

to better visualize the underlying temporal trend m(t) deterministically. In this case, the 

singular value decomposition (SVD) technique is employed to determine the Fourier 

coefficients of the sine and cosine series. If the "true" trend can be reproduced, at least, 

in an ergodic sense, the residual component R(t) can be obtained using such method as 

sequential simulation (Chapter 6). In the field of atmospheric science, the application of 

neural networks has gained momentum due to its ability to reproduce the complex 

patterns of the temporal profiles. Nonlinear associations between the inputs (predictors) 

and output (ozone) variables are tackled via activation functions at the hidden and, if 

necessary, at the output nodes. 

7.1 Fourier Series 

Historically, Fourier series fall into the category of orthogonal sets of functions, which by 

definition are sets of jointly perpendicular vectors (Churchill, 1963). Consider a three· 

dimensional (3D) vector g(r), r = 1, 2, 3, in Euclidean space. This vector has a length 

II g II, called norm, and defined as: 

II g II= ~[g(l)j' + [g(2)]' + [g(3)]' 

or in words, the norm of a vector g(r) is the quadratic summation of its components; the 

result is square rooted and taken as only the positive number. If II g II= 1, g(r) is termed a 

unit vector or sometimes, normalized vector. On the other hand, g(r) is labeled a zero 

vector if II g II= 0, and this can only happen when each of its component is zero. 
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Now consider two 3D vectors, g 1(r) and g2(r), also in Euclidean space. Their 

algebraic operations, i.e., addition, subtraction and multiplication by a scalar, are linear. 

The scalar product, or inner product, of these vectors is denoted (g,, g 2 ) and written as: 

3 

(g, ,g,) = Ig, (r)g, (r)=ll g, 1111 g, II cos e 
r=l 

Note that the angle B between g 1(r) and g2(r) only exists when both these vectors are 

nonzero. Keeping this in mind, two nonzero vectors g 1(r) and g2(r) can only be 

orthogonal (i.e., perpendicular to each other), if the following condition is satisfied: 

which can only occur when cos e is zero, i.e., when e = k " , I k 1 = I , 3, .... , oo. 
2 

If there are n such orthogonal nonzero vectors {gn(r), n = I, ... , oo} and each is 

divided by its norm, the results constitute a set of unit vectors ¢,. These unit-vectors ¢, 

are mutually perpendicular and therefore termed orthonormal. Analogous to orthogonal 

vectors, an orthonormal set { ¢,} may also be described by means of inner product: 

m, n = 1, ... , oo 

where Omn is the Kronecker delta, whose value is one if m = n and zero otherwise. The 

above condition is termed the property of orthogonal (or orthonormal) functions and 

regularly encountered in various subjects. For example, in the method of separation of 

variables commonly used in the boundary value problems, the auxiliary solution of a 

parabolic PDE (a Sturm-Liouville problem), in terms of infinite series, is obtained by 

utilizing the orthogonality of the eigenfunctions (e.g., Ozisik, 1993) 

Taking advantage of this property, an arbitrary function fix) may be represented 

by a linear combination of orthonormal functions { ¢,(x), n = I, ... , oo} within the interval 

( -L, L) and generalized as: 
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where en (n = 1, ... , oo) are scalars, obtained by multiplying both sides of the equation by 

r/Jm(x) and integrating over the interval (-L, L) as follows: 

The inner product of the orthonormal functions can only assume a value when m = n, due 

to the fact that (¢m, ¢,) = 8 m" or when written in complete form: 

As a result, the only non-vanishing terms on the right side of the equation are c., i.e., 

c, = lJ(x)¢,{x)dx, n = 1, ... , oo 

which are called Fourier constants for the function j(x) corresponding to the orthonormal 

set { 1/J,(x)}. The infinite series 

f(x )"' Ic,¢, (x)= I¢, (x) lJ(~)¢, (~)d~ 
n=l n=l 

is termed the generalized Fourier series, whose convergence property is established by 

the Fourier theorem (Churchill, 1963). 

In practice, the orthonormal functions {rfJ,(x), n = l, ... ,oo} in the Fourier series 

are represented by a complex exponential form (e.g., Lighthill, 1958): 

~ (inm) I f(x)= L.,c, exp --; c, =-(a, -ib,), '<!x 
,=-00 L 2 

where i = ~; a. and b. are defined below. For an even (symmetric) Fourier series, 

each term of the series is periodic within 2L. As a consequence, the series converges to a 
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periodic function h(x), which coincides with fix), within the fundamental interval (-L, L). 

This type of Fourier series is important because it serves two purposes: (I) to represent an 

orthonormal set of functions {y?,(x), n = l, ... ,oo} defined over the interval (-L, L), for all 

values of x, and (2) to represent a periodic function h(x) with period 2L, for all values of 

x. For convenience, however, a Fourier series of period 2L is more commonly written in 

trigonometric form to avoid dealing with imaginary numbers (e.g., Mickley et al., 1957): 

{- (n!lX) {- . (n!lX) f(x)=~a,cos L +~b,sm L 

where the coefficients an and bn are given as: 

ao =-
1 I' f(x)dx 

2L lL 

a,=~ lJ(x)cos( n;r) dt 

b =0 
0 

b, = ~ lrf(x)sin(n;r)dt 

(7 .I a) 

(7.1b) 

Note that the integration of a temporal trend component in inter/extrapolation of time 

series data would require specification of seasonal variations in the response variable 

(i.e., ozone). The Fourier series expressed as trigonometric functions, specifically the 

half-range Fourier series in terms of the cosine functions only, is a viable way to model 

positive-definite covariance functions (e.g., hole-effect) as presented in Chapter 5. 

Fourier series analysis of the form: 

N (2nnt) N (2nnt) y(t) =a,+ I a, cos -- + Lb, sin --
n""l M n=l M 

(7.2) 

is utilized in the following analysis. The timet is expressed in Julian day, e.g., January I 

and December 31 equal to I and 365, respectively, and M is now the number of days in a 

year (365). For 2000, the data on the last day of this leap year is neglected, without loss 

of generality, so that M is always equal to 365. In the case of daily-average data analysis 
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(as in this work), this step results in the elimination of one datum while that of hourly 

average, the same step results in the "loss" of twenty-four data points. 

Theoretically, as the number of coefficients N approaches infinity, the original 

data are reproduced. However, the increment of N results in numerical error associated 

with the computation of the coefficients a. and b.; thus creating noise in the interpolation. 

A feasible way to reduce the number of coefficients N required to fit the temporal trend is 

through the use of singular value decomposition (SVD), which is discussed next. 

7.1.1 Singular Value Decomposition 

When dealing with large systems of equations or matrices, often the methods of Gaussian 

elimination, LU, QR and Cholesky decompositions fail to give satisfactory solutions due 

to the presence of singular or numerically close to singular matrices. One approach for 

solving such systems, at least, in the linear least squares sense is to perform a singular 

value decomposition (SVD) (e.g., Numerical Recipes). 

The SVD technique is based on the following theorem of linear algebra, which 

states that any (M x N) matrix A can be decomposed as: 

A=UWVT (7.3) 

or when expressed in matrix form, 

T 

w, 
= 

QMl ''' QMN UM! ... UMN 

(MxN) (MxN) (NxN) (NxN) 

The (Mx N) matrix U is termed column-orthogonal, i.e. (u,,u 1 )=0 fori""-), where u, 

and u1 denote the i1h and l column vectors, respectively; column-orthogonal because its 

number of rows may exceed that of columns. Matrix U is also column-orthonormal in 
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the sense that I:
1 
uk,u,, = 5., , (1 :s; k :s; N), (1 :s; n :s; N) where 5kn is the Kronecker delta, 

which equals to one if k = n and zero otherwise. The (N x N) matrix W consists of only 

positive diagonal elements w1 (the singular values), and the transpose of the (N x N) 

square matrix V is also orthogonal. In addition, because V is an (N x N) square matrix, it 

is also row-orthonormal in the sense that y.yT =I, where I is the identity matrix having 

the same dimension as V. Or using familiar notation, the condition for orthonormality 

can be written as I:
1 
vk,v,, = 5k,, (1 :s; k :s; N), (1 :s; n :s; N), where bkn is the Kronecker 

delta, whose value is one if k = n and zero otherwise. One unique property of the SVD is 

that the decomposition of an (Mx N) matrix A remains true even if the columns ofU and 

V (or rows ofVT) as well as the elements ofW are permutated in consistent manner. 

To illustrate the usefulness of SVD, let us first consider an (N x N) square matrix 

A. The decomposition of A into the matrices U, Wand VT is relatively straightforward, 

partly, because the decomposed matrices are also square. Since U and V are orthogonal, 

the inverses of these matrices equal to their transposes, i.e., u-l = uT and y-l = vT. As a 

corollary, an identity matrix I is obtained when U and V are multiplied by their respective 

transposes even in reverse order, i.e., UUT = UTU =I and VVT = yiy =I. The inverse of 

matrix W is also a diagonal matrix whose values are the reciprocals of the elements w1. 

Hence, the inverse of A can be written as: 

(7.4) 

Although trivially obtained, the solution to the inverse of matrix A may encounter a 

problem when one of the singular values w1 is zero or approaches the machine's floating­

point precision. That is when any element of the inverse of matrix W is greater than I 06 

for single precision or 1012 for double precision, the element llw1 should be set to zero, 

not left to infinity. 

It is perhaps informative to discuss several important concepts before going to the 

final stage of obtaining solutions using the SVD technique. First, a matrix A is deemed 

singular when its determinant is zero. In SVD approach to solving a linear system of 



138 

equations, i.e., A·x = b where A is a square matrix (N x N), x and b are (N x I) vectors, 

the matrix A is also termed singular when its condition number, the ratio of the maximum 

to the minimum singular values w1, is infinite. Then there exists a nullspace N(A) = { x I 

A·x = 0}, which maps vector x to zero. The dimension of the nullspace is called nullity 

of A, which also quantifies the number of zero diagonal elements (singular values) in the 

matrix W. If vector x can be mapped to a space b, which in tum can also be reached by 

matrix A, there exists a subspace of b termed the ranges pace of A, R(A) = { A·y, \fy} 

where y is usually different from x. The dimension of R(A) is known as the rank of A, 

whose value is less than N if A is singular and exactly N otherwise. More precisely, the 

nullity and rank of A sum up toN. To further illustrate these concepts, consider a (2 x 2) 

matrix A, 

It is easy to determine that its determinant is zero; hence, A is singular. The nullspace of 

A can be found by utilizing the homogeneous system of equations, i.e., A·x = 0 or simply 

setting the first row to zero and solving for the first element of vector x. Therefore the 

nullspace of A, N(A) = A.[2; -5] where A. E IW. is a scalar multiplier and semicolon (;) 

inside the bracket represents a column vector. Note that it is a matter of choice to have a 

positive first element of N(A) since the vector can also be A.[ -2; 5], which lies on the 

same line (nullspace) as the previous vector. Similarly, the rangespace of A can also be 

determined by recognizing that the elemental values in the second row are twice as large 

as those in the first row. Hence the rangespace of A, R(A) =A.[ I; 2] where A. E IW. is a 

scalar multiplier and semicolon (;) represents a column vector. 

Utilizing the above concepts, an (N x N) matrix A when decomposed by SVD will 
l T produce matrices U, w· and V . The columns of U whose same-numbered elements w1 

are nonzero represent a set of orthonormal vectors in the range of A. Conversely, the 

columns of V whose same-numbered elements w1 are zero form a set of orthonormal 

vectors of the nullspace. In the homogenous case, i.e., b = 0, any vector in the nullspace 
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or linear combination thereof is a solution. When b is a nonzero vector, one must 

initially determine whether b is in the range of A or not. If it is in the range of A, then 

the solutions are simply x and its linear combination from the nullspace of A, i.e., x = Xo 

+[any vector from the nullspace of A] where X0 = vw·1U1b. However, ifb is not in the 

range of A, the best approximated solution x is obtained by minimizing the residual error 

IA·x - bl, i.e., a set of {x} that best maps to the desired vector b. The set {x} that 

minimizes the residual error, in most cases is much smaller in length compared to the 

original vector x, hence resulting in dimensionality reduction. 

The next step is to find solutions for the case of non-square matrix. If the number 

of rows are less than that of columns (M < N), i.e., an under-determined system, the 

particular solutions may be obtained by augmenting the matrix A by (N- M) zeros and 

vector b also by (N - M) zeros. The final solutions are just like those in the case of 

square matrix discussed above. On the contrary, if the number of rows are greater than 

that of colunms (M > N), i.e., an over-determined system, the solution is simply written 

as x = vw·1U1b because b is always in the range of A. Keeping this discussion in mind, 

it is perhaps better to summarize the SVD techniques and corresponding solutions in a 

tabulated form (Table 7.1). 

Table 7.1 
The formal solutions using SVD techniques. 

No. Case 

1. M = N (square matrix) 

(a) b = 0 

(b) b * 0 but in R(A) 

(c) b * 0 but not in R(A) 

2. M<N 

3. M>N 

Solution 

Any vector in the null space of A, i.e., columns of V 
whose same-numbered elements w1 are zero. 

x = Xo + [any vector in the nullspace of A], where 
xo=VW.1U1b 

No exact solution. Best approximated "solution" is 
x : miniA·x- bl. 

Augment matrix A and vector b by (N- M) rows of 
zeros. The solutions are analogous to case (1 ). 

x=VW.1U1b 



140 

7.1.2 Results and Discussion 

Environmental and meteorological data sets are generally massJve, and consist of 

observations taken at continuous intervals. The frequency of the data and its redundancy 

render the resultant correlation or covariance matrix strongly singular. The solution of 

equation involving such strongly singular matrices is possible using SVD, which can 

result in reduction in dimensionality and thereby facilitating solution. To illustrate how 

this is achieved, consider the solution of the matrix system A·x = b where matrix A (365 

x N) contains the values of the cosine and sine terms in a Fourier series; vector b (365 x 

I) consists of daily average ozone values Z a (t j), j = I, .... , 365 and a refers to the year 

(I) 1997, (2) 1998, (3) 1999, and (4) 2000. The solution is obtained by constraining 

vector b to within the range of matrix A and mapping it to an (N x I) solution-vector x, 

from which the values of temporal trend coefficients ana and bna, n = I, ... , Nand a= I, 

... , 4, are determined. 

It has been shown earlier that the residual error IA·x ~ bl is minimum when the 

number of terms retained in the Fourier series is large, i.e., the dimension N of the matrix 

A (M x N) approaches infinity. However, it is possible that matrix A is singular, i.e., 

some of the Fourier coefficients are redundant given the temporal correlations in ozone 

profiles. So, the first task is to decompose matrix A using the SVD technique, i.e., A = 

UWVT, where U is a column-orthonormal matrix (365 X N), W is a diagonal matrix (Nx 

N) whose nonzero elements are the singular values, and V T is a row-orthonormal square 

matrix (N x N). The final step is easily accomplished by taking the inverse of the 

decomposed matrix A and multiplying (matrix operation) it with vector b, as sUlllffiarized 

in Table 7 .I (case 3). 

Figure 7.1 shows the results from the application of Fourier senes analysis 

(coupled with SVD) for daily-average ozone values Z a (t j), a= I, ... , 4, j = I, .... , 365; 

here only those for 1997 are shown for example. The Z a (t j) values for that year may be 

reproduced by retaining 320 (160 x 2) temporal trend coefficients ana and bna. which is 

-56% reduction from the original 730 values corresponding to 365 data. Note that aoa is 
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merely a constant and therefore left outside of the summation. On the other hand, boa is 

often dropped from the Fourier series because the first sine term is zero. 

The importance of Fourier series analysis is perhaps more obvious in the study of 

ozone seasonal trends (Figures 7.2 to 7.5). First, the yearly data is arbitrarily divided into 

four seasons, i.e., winter (Jday: 1-90), spring (Jday: 91-180), summer (Jday: 181-270), 

and fall (Jday: 271-365) where Jday denotes the date formatted in Julian day. Here only 

8 (4 x 2) Fourier coefficients are needed to represent each seasonal trend as opposed to 

about 40 (20 x 2) when yearly data are used (Figure 7.la). To illustrate an example, the 

seasonal trend in winter 1997 is obtained from: 

, (2mJ (4mJ (6mJ (8mJ Z, (t) = a 01 + a11 cos M + a21 cos M + a31 cos M + a41 cos M 

where a0 1 = 1; ani and bn1 values for 1997 are tabulated in Table 7.2 and for the rest, in 

Table 7.3 to 7.5; t refers to Julian day from I to 90; and M = 90 for the winter season of 

1997. From Table 7.2 to 7.5, it is confirmed that the values of a0 a are always one whereas 

those of the other coefficients ana and bna vary, i.e., could be either positive or negative, 

depending on the yearly or, in this case, seasonal trend. It is also observed that the first 

two Fourier coefficients correlate for the corresponding seasons from year to year. This 

is intuitively expected since the first two coefficients correspond to the low frequency (or 

large temporal range) structure, and all the annual trends exhibit similar temporal profiles 

within corresponding seasons. However, the Fourier coefficients corresponding to the 

higher frequency structures are difficult to correlate. 

In the case of the thirty-day moving average 30dMA values W" (t1 ): 
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a=l, ... ,4;j=15, ... ,365;k=15 

where a refers to the yearly index as defined above and 2k denotes the size of the moving 

window. As shown in Figure 7.6, the number of coefficients ana and bna required for data 

reproduction using FSA (coupled with SVD) is only 8 ( 4 x 2), compared with 351 values 

(15 to 365) from the original 30dMA values Wa (t 1 ). In other words, the FSA (coupled 

with SVD) requires only 8 Fourier coefficients to be stored, upon which the temporal 

ozone trends can be reconstituted. Data compression of approximately 97% is thus 

achieved. Of course, the residual components (higher frequency structures) may be 

indicative of sudden shifts in environmental parameters, and it may be necessary to 

reproduce some of these residual components. The principles of stochastic simulation 

presented in Chapter 6 provide an avenue for such purpose. The reduced data set of 8 

coefficients of the Fourier series, i.e., sine and cosine terms, can also be used m 

conjunction with the basis functions for stochastic interpolation methods such as 

universal kriging (e.g., Huijbregts and Matheron, 1971). 
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Figure 7.1 
Results of Fourier series analysis (FSA) coupled with SVD for 1997 ozone daily values. 
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Table 7.2 
The values ofF ourier coefficients for 1 997 seasonal ozone data. 

Winter Spring 

a b a b 
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Table 7.3 
The values of Fourier coefficients for 1998 seasonal ozone data. 

Winter Spring 

a 

1.0000 
0. 002 9 
0.0023 
0. 0011 
0.0009 

0.035 

""' 
i 0.025 

g 
002 g 

~ 0 015 

0 

~ 

8 
0.01 

0.005 

0 

0 

00351 

0.1}3 j 
> i O.Olti 

c 
0 g 0 02 

• g 0.015 

8 
• g 0,01 

0 
0 005 

" 

b a b 

-0.0041 0. 9971 0 . 0 041 
-0.0009 -0.0041 -0.0013 
-0.0013 -0.0014 0.0004 

0.0002 0.0005 -0.0009 
-0.0006 

w_98nl_~:-.:..~:-~ 

N = 4: 

20 "' " 50 50 " 50 " JuHan Day 

(a) Winter 

r ~u_98raw -su_~a 1 

•• '" • •o m • • • • m 
Julian Day 

(c) Summer 

Figure 7.3 

Summer Fall 

a b a b 

1.0000 0.0019 1. 000 0 -0.0019 
-0.0032 0.0009 0. 0011 0.0001 
-0.0007 0.0015 -0.0016 -0.0009 

0.0004 0.0000 -0.0016 0.0010 
0.0000 0.0008 

' " .... Sp 98fSi I 

oo•s ______ 

i N:4 

""' I 

i 
! 

> 0 035 
1 E 

!l ' 0 03 4 

~ 
0 025 

~ 
i 

~ ""' I 

0 

I ~ 
0 01!> 

0 

0 001 

0 005 

''-~ 
90 100 110 120 130 uo 150 160 170 180 

0 025 --

I oo2 

!l 
_g 0015' 

~ 
8 
8 001 

~ 
~ a,., 

Julian Day 

(c) Spring 

m ~ m ~ ~o m ~ ~ ~ ~ m 
Julian Day 

(d) Fall 

Fourier series analysis (FSA) for 1998 seasonal ozone data. 



146 

Table 7.4 
The values of Fourier coefficients for 1999 seasonal ozone data. 
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a 
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Table 7.5 
The values ofF ourier coefficients for 2000 seasonal ozone data. 

Winter Spring 

a b a 
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7.2 Neural Network 

Environmental pollution processes often involve highly nonlinear interactions between 

several meteorological and chemical variables. In Calgary, Alberta, nine daily average 

covariates, i.e., dust and smoke (COH), carbon monoxide (CO), nitric oxide (NO), 

nitrogen dioxide (N02), total hydrocarbon (THC), wind speed (WSPD), temperature 

(Tavg), relative humidity (RHavg) and bright sunshine hours (bSUN), have been 

determined to be the key factors affecting ozone formation. Physicochemical models that 

are generally used for predicting ozone concentrations accounting for complex covariate 

interaction are cumbersome and computationally expensive. Most models can be utilized 

to predict ozone variations only within extremely short simulation intervals (around 2-5 

days). 

Neural networks (e.g., Bishops, 1995) offer a relatively straightforward approach 

to substitute for the complex physicochemical models, and can be applied for predicting 

ozone levels subject to nonlinear interaction between covariates. The most commonly 

implemented neural network in the study of atmospheric pollution is the multilayer 

perceptron (MLP) due to its ability to make accurate generalization when presented with 

new sets of input data. In contrast to other statistical approaches, MLP makes no prior 

assumption regarding the data distribution and can be trained to approximate any 

"smooth" pattern underlying the temporal process (Hornik et al., 1989). The multilayer 

perceptron shown in Figure 7.7 comprises a system of inter-connected neurons, which 

map the selected inputs to an output through multiple nodes in the hidden layer. Each 

value a j at the hidden nodes is a linear combination of the inputs or covariates xm) 
weighted with wif, and can simply be written as follows: 

N 

a 1 = Iwifx<mJ (t,), j = 1, ... , J; m = 1, ... , M 
i=I 

(7.6) 
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Schematic of neural network architecture (M:J: I). The co variates (meteorological and 
chemical variables) are mapped into a target output (ozone) through a single hidden layer 
neural network. 
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Here, a set corresponding to the lh time instant is fed contemporaneously to a series of J 

hidden nodes. To add nonlinearity to the process, an activation (transfer) functionfi') is 

then applied to a i : 

(7.7) 

In theory, any nonlinear function may be used but it is more practical to apply an 

activation function, which is bounded and easy to compute. The boundedness of this 

function is preferred to avoid dealing with large weights, which may result in slow 

convergence during the training mode. For example, the hyperbolic tangent (tanh) 

function where A replaces a 1 is given as: 

A -A 

J(A-)= e -e 
A -A e +e 

(7.8) 

The above function has two distinctly nice features; it is bounded at [-1, 1], and its 

derivative is also easily obtained as: 

J'(A-)=1-(e: -e~: I' =1-[j(A-)]' 
e + e ) 

(7.9) 

This relatively simple form of derivative is essential during the back propagation step 

where a gradient-based optimization technique is generally applied. The intermediate 

values h 1 at the hidden nodes are linearly combined to yield: 

J 

Y="v.h L., I J 
}=1 

(7.10) 

where v 1 are the weights associated with the corresponding hidden-node values. To add 

further nonlinearity to the network system and thus increase accuracy of prediction, 

another activation function g(·) may be applied to the output Y. Again, there are no 

theoretical limitations imposed on this function. The function g(·) may even differ from 
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JO if the situation warrants but in general, the activation function should be a nonlinear 

expression with a simple derivative. The final output values are given as: 

(7.11a) 

or when written in the complete form: 

(7.1lb) 

Vm= 1, ... ,M 

where superscript (l) refers to the result after l'h iteration step. This predicted output y(l) is 

compared against the target output corresponding to a training set Y. The norm of the 

residual error II Y- y(l) II is computed, and the iterations I are repeated until the error is 

minimized. This minimization is usually performed using a gradient-based optimization 

approach, or more precisely by back propagating the error through the networks. The 

general back propagation procedure is summarized below following Gardner and Darling 

(1998): 

1. Set the network weights wii and v 1 to small random values. 

2. Compute r<0 corresponding to the assumed weights. 

3. Calculate the residual error, usually in the form of sum of squared error (SSE), by 

comparing the predicted outputs to the target values. 

4. Adjust the weights using the computed error-gradient. 

Steps 2-4 are repeated for the subsequent inputs until the overall error is sufficiently 

small. The resultant weights are applied to an independent data set to test for the 

generalization performance. The generalization step aids in detecting any "overfitting" 

problem, which usually occurs when dealing with noisy data as in the case of ozone 

phenomena. An overfitted network will yield very low SSE corresponding to the training 
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set but high SSE for the generalization set. Finally, the performance of the network is 

validated using an independent (validation) data set. 

7.2.1 Results aud Discussion 

As a preliminary test of the neural network performance, three input variables 

(covariates), i.e., wind speed (WSPD), average temperature (Tavg) and bright sunshine 

hours (bSUN), are used for predicting ozone in 1999 and 2000. These covariates are 

chosen in order to obtain fair comparison between the previous regression results 

(Section 4.2) and those of the neural network. The learning data set is initially divided 

into a training set (1997) and a generalization set (1998). In order to obtain robust 

prediction using the neural network, the training must be performed using a 

representative data set. The complete annual profile for 1997 should be used for training, 

since if the data are randomly sampled, the training set may consist of extreme values and 

thus result in biased prediction. Figure 7.8 shows the daily predicted outputs compared to 

the raw data [top] as well as the 30-day moving averages (30dMA) of the predicted 

ozone values in 1999 and 2000 superimposed on those of the actual data [bottom]. The 

neural network manages to capture the dip occurring in the late fall of 1999 and also the 

second peak season in 2000. This is because the training and generalization data sets of 

1997 and 1998, respectively, reflect these peaks and dips. However, the high ozone 

phenomena occurring in the late spring of all four years are unsuccessfully emulated 

because none of these covariates peak at the same period as ozone does. 

The choice of covariates is important because ozone is formed through complex, 

nonlinear processes. The interactions between the nine variables, as previously tabulated, 

may influence the high and low values of ozone. For this reason, all nine covariates are 

then combined as the inputs to the neural network. The learning data set is divided such 

that the 1997 data are used for training the network and 1998 data for generalization. The 

30dMA results of ozone predictions in 1999 and 2000 are plotted against those of the 

original values (Figure 7 .9). Similar trends can be observed as in the case of three 

covariates above. The visible difference is that the predicted ozone trend in 1999 for the 

nine inputs is relatively smoother than that of three inputs. The magnitude of ozone peak 
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is underestimated for both years as a result of the compromise made in order to fit the 

valleys and peaks in the training data set. 

The performance of the neural network is affected by the choice of the training 

data set. In order to study this influence, the training data set is switched from 1997 to 

1998, and vice-versa for the generalization data set. The 30dMA of the results for ozone 

predictions in 1999 and 2000 are superimposed on those of the actual values in Figure 

7.10. Notice the occurrence of another peak in the third quarter of 1999. This pheno­

menon is most likely due to the second peak of the temporal ozone trend in the training 

data set (1998). Hence it is obvious that the right choice of the training data set is an 

important measure of how accurate the neural network results will be. In essence, the 

neural network is a viable prediction tool in the presence of covariate information. 

Prediction using a neural network is likely to be improved by increasing the duration of 

the training data. A properly calibrated neural network can thus act as a surrogate for the 

physicochemical models provided the combinations of covariate and ozone phenomena 

have been exhaustively sampled. However, the single hidden-layer neural network as 

discussed in this chapter cannot capture the complex, nonlinear relationships that exist 

among the input variables. To rectify this shortcoming, we can resort to several hidden­

layer networks, or employing a multipoint statistic calibrated using a probabilistic neural 

network. The latter approach will be proposed as an avenue of future research in the next 

chapter. 
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The daily average results of neural network predictions (blue) and those of actual ozone 
values (gray) in 1999 and 2000 using three covariates (inputs): WSPD, Tavg, bSUN 
[top]. The 30-day moving averages (30dMA) of the neural network results and actual 
values are also shown [bottom l The 1997 data sets are used for training and 1998 for 
generalization. 
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used for training and I 998 for generalization. 

0.05 r· 
0 045 ~ 

I 
- 0.04 ~ 
> I 
[ 0035~ 
e 1 
<= 0 03 I 
~ - I 
i 0025i 
0 • 8 0.02 j 
:!! 0.015 
~ 
0 0.01 

0.005 

-- _ ~~-99aw 30d_99NN I 

o+-~- -- -~·r· 

0 50 1 00 1 50 200 250 300 350 

Juian Day 

(a) 1999 

Figure 7.10 

0 05 ' 

0 045 ~ 

> 004 ~ 

~ 0.035 i 
0 
Q 0 03 ., 
E 0 025 
~ 
5 0 02 
u 
~ 0 015 
0 

0 001 

0 005 

0 

i 

I 

~ 
50 1 00 150 200 250 300 350 

Jttlian Day 

(b) 2000 

The 30-day moving averages (30dMA) of the neural network predictions (blue) in 1999 
and 2000 using nine covariates (inputs): COH, CO, NO, N02, THC, WSPD, Tavg. 
RHavg, bSUN, and the corresponding actual ozone values (gray). The 1998 data sets are 
used for training and 1997 for generalization. 
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CHAPTERS 

CONCLUSIONS AND FUTURE RESEARCH A VENUES 

Space-time modeling of atmospheric pollutants has been actively attempted by many 

workers, including Kyriakidis (1999) who successfully integrated the deterministic trend 

m(t) and the probabilistic residual R(t) components of a random variable RV Z(t) through 

a stochastic simulation approach. However, many of the spatiotemporal studies carried a 

major assumption that the temporal aspect is fully understood and thus focused primarily 

on spatial modeling. The main objective of this thesis is concerned with evaluating the 

accuracy and suitability of the techniques used for modeling the temporal phenomena. 

For this reason, various statistical methodologies, e.g., linear regression, kriging and 

stochastic simulation, were performed in the case of predicting tropospheric ozone 

concentrations in Calgary, Alberta for 1998-2000. The general conclusions of this study 

are highlighted below and new research avenues are then recommended as part of future 

works. 

8.1 

0 

General Conclusions 

The formation of ozone via photochemical reaction is complex and highly nonlinear. 

Hence to describe the temporal phenomena using linear models is inappropriate as 

illustrated by the results of linear regression in Chapter 4. Here only the positively 

correlated variables, in bivariate sense, such as wind speed (WSPD), average 

temperature (Tavg) and bright sunshine hours (bSUN) were applied for predicting 

ozone concentrations in 1998-2000. This way, the "reducing effect" of the negatively 

correlated variables, i.e., the amount of dust and smoke (COH), the concentrations of 

carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (N02), total hydrocarbon 

(THC) and average relative humidity (RHavg), could be circumvented. The linear 
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regression approach can be best implemented if the relationships between predictor 

variables and ozone were known a priori, either from historicaVcurrent records or 

equivalent scenarios. In addition, complete predictor data in the corresponding years 

must be available. 

The redundancy between data, not accounted for in the above approach, was captured 

via the kriging paradigm. The prediction proceeded through the use of a variogram, a 

"two-point" statistic. Once the variogram of the previous year was determined to be 

adequately representative for modeling the temporal variations in future years, ozone 

predictions could be performed based on "a few" sample data in the corresponding 

years. However, kriging suffered two shortcomings; the data-to-unknown covariance 

was identified but the unknown-to-unknown covariance was not, resulting in poor 

reproduction of the temporal ozone concentrations, and also the estimation variance 

was lower than the true value resulting in the smooth kriged profiles. Nevertheless, 

the exactitude of kriging at the data locations, as shown by the spikes, renders it 

valuable as the basis for stochastic simulation. 

The reduction in kriging variance was corrected by employing stochastic simulation. 

Here a temporal residual component R(t) was added to the kriged estimate z; (t). To 

ensure unbiasedness, the residual was assumed to satisfy certain criteria; its mean 

must vanish, its variance carried the value of kriging estimation variance CTffc, and it 

must be orthogonal to the kriged estimate. The simulated results reflect the temporal 

fluctuations of ozone profiles, as they should be. Based on the evenly spaced data at 

every 30th Julian day of the respective years, the temporal ozone trends were only 

reproducible in an ergodic sense (average over several realizations). The uncertainty 

induced by the data sampling procedure was investigated by selecting samples 

randomly between the 25th and 30th Julian day of the month. To account for 

periodicity in the long-term temporal variations, the hole-effect model was 

implemented in the case of one realization, and the results represented the average 

trends over the four-year period of ozone study. 
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The results from physicochemical modeling (e.g., Roelofs and Lelieveld, 2000) and 

experimentation (e.g., Campbell, 1986) suggested that air pollutants such as THC and 

NO were directly responsible for ozone formation/destruction and thus should be 

incorporated in statistical modeling. Following this observation, cokriging and co­

simulation were performed using twelve evenly spaced data points at every 301
h 

Julian day of the respective years. The integration of the secondary information 

improved the prediction accuracy in the sense that the peak magnitudes of ozone 

trends for 1997, 1998 and 2000 were correctly placed. Fewer fluctuations in the 

temporal trends could also be observed suggesting that these covariates "added value" 

to simulation. Poor performance observed in 1999 was due to the influence of THC, 

whose annual trend peaked much later than that of ozone. 

The performance of linear regression (LR), ordinary kriging (OK) and sequential 

Gaussian simulation (SGSIM) can be assessed by comparing the correlation coeffi­

cients Pao between the 30-day moving averages (30dMA) of actual values and results 

obtained from various cases ofrandom data sampling and multiple realizations (Table 

8.1). Recall that the primary goal is to predict future ozone concentrations using 

sparse data; hence there is likely to be uncertainty associated with those values. That 

uncertainty may be due to: (I) the variance of the samples themselves, which are 

unrepresentative of the annual trend, and (2) the sparse information itself, i.e., the 

complete 365 values were predicted using only twelve data points. Thus the smallest 

variation in Pao, i.e., [0.96, 0.98] obtained from the OK results for 2000, indicates that 

data sampling for that particular year is really not an issue, and that reliable prediction 

can be obtained by constraining the model to the appropriate variogram. Conversely, 

the highest variation in Pao, i.e., [0.25, 0.94] also obtained from the OK results but 

now for 1997, represents large uncertainty in the predicted ozone values attributed to 

the variance of the data. The uncertainty in the simulated result due to the sparse 

information can be investigated if several realizations are imposed on the modeling 

using the same data configuration; for example, the SRND result for 1999 corres-



161 

ponding to Pao = 0. 77 could further yield a range of Pao E [0.50, 0. 79] after ten 

simulated realizations were performed (SRIO). 

Table 8.1 
The variations of correlation coefficients Pao between the 30dMA of actual 
values and predicted results over various cases. 

Cases 1997 1998 1999 2000 

LR [0.45, 0.89] [0.57, 0.96] [0.85, 0.94] [0.94, 0.97] 

OK [0.25, 0.94] [0.72, 0.94] [0.66, 0.93] [0.96, 0.98] 

SRIO [0.56, 0.83] [0.66, 0.83] [0.50, 0.79] [0.67, 0.86] 

SRND [0.38, 0.84] [0.42, 0.82] [0.77, 0.88] [0.75, 0.89] 

Note: LR =linear regression (random data sampling); OK= ordinary kriging 
(random data sampling); SRI 0 = sequential Gaussian simulation (SGSIM, I 0 
realizations); SRND = SGSIM (random data sampling). 

o The Pao tabulated above represent the prediction accuracy obtained by comparing one 

predicted value and the corresponding "true" value at the same instant in time I;. A 

better comparison of model performance can be achieved by employing a variogram, 

a measure of joint variability of two temporal values contemporaneously. The sample 

variograms of the predicted results for 2000 were compared with that of the 1997 

variogram, used as the basis for inference. From Figure 8.1, the variograms for the 

standardized results of linear regression not only failed to emulate the short-range 

structure (5 days) of the original 1997 variogram but also resulted in a higher range 

(-70 days), smooth trends and Gaussian behavior near the origin as opposed to the 

exponential shape in the original variogram (1997). The variograms corresponding to 

kriging begin to bracket the "true" temporal pattern; however, the kriged values were 

unable to reproduce the short-range structure and gave a higher range (-50 days), 

implying less variability in the predicted temporal profiles. The drawbacks of linear 

regression and kriging were significantly alleviated by SGSIM. Here the short-range 

structure was reproduced by both cases of ten realizations and randomly sampled 

data, which indicate that the correct patterns of temporal variability were successfully 

restored. 
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The reproduction ofl997 sample semivariogram (thick blue line with open rectangles) on 
the predicted results (thin gray lines) for different cases in 2000. Note: SGSIM = 

sequential Gaussian simulation; RND l 0 = l 0 randomly selected data sets; Rl 0 = I 0 
realizations. 
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8.2 Future Research Avenues 

While this thesis work has presented a number of promising statistical techniques for 

predicting ozone profiles accurately, some important issues remain to be addressed. In 

the perspective of monitoring atmospheric pollutants, regulatory agencies such as the 

Alberta Environment are interested in determining the effects of certain policies on air 

pollution abatement. For example, can a stricter regulation imposed on the precursors 

(NOx and VOCs) helps reducing tropospheric ozone concentrations within the same city? 

Or, how do regional phenomena play a role in influencing the pollutant levels in Calgary? 

Traditionally, this is accomplished through process-based modeling, which utilizes the 

transport and/or kinetic equations that govern the underlying physicochemical process. 

Such a deterministic model by itself requires massive amount of environmental and 

meteorological data that are not always available at the sites of interest. On the other 

hand, a purely statistical approach may be applied based on the mathematical correlations 

between relevant data but this may in tum render it less useful at other locations due to 

dissimilarity, especially in meteorological conditions. The following discussion attempts 

to solve these challenges by recommending the next plausible steps in tackling ozone 

space-time phenomena: 

0 Modeling the complex patterns of temporal variability in ozone concentrations using 

a "two-point" statistic (i.e., a variogram) is insufficient. For example, consider the 

following set of patterns comprising ozone values at four time instants {Z(t1), Z(tz), 

Z(t3), Z(t4)} (Figure 8.2). The correct profiles can be restored if the variability of 

ozone concentrations at all 4 points is considered jointly. The variogram, being a 

"two-point" statistic, accounts for the variability at only two points and thus for 

example at temporal lag r = 3, the variability Z(t2) and Z(t3) at time instants tz and f3 

that also constitute the temporal patterns is ignored. It should be stressed that 

reproducing the correct temporal patterns requires the identification of a multipoint 

statistic, i.e., the joint variability at all four points. 

In the modeling perspective, the implication is that the conditional probability of 

an ozone concentration at any unsampled time instant ti has to be inferred based on 
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the pattern exhibited by the neighboring values. The inference of such a probability 

can be performed by calibrating a mixture density network (MDN). Once the 

probability is calibrated and inferred, it can be assimilated into a stochastic simulation 

procedure in order to reproduce the correct multipoint patterns signifying the ozone 

temporal phenomena. 
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A set of ozone temporal patterns. 

The calibration of the temporal parameters via MDN, using only historical ozone data 

as mentioned above, can be extended to comprise the influence of predictor variables 

(covariates) on ozone phenomena. Recall that the incorporation of covariates in the 

prediction algorithms was established via cokriging (Chapter 5) and co-simulation 

(Chapter 6). Here the linear model of co-regionalization (LMC) was utilized to 

ensure the legitimacy of the joint auto and cross-variograms. However, cokriging and 

co-simulation were still carried out using a "two-point" (variogram) statistic, which 

was previously found to be inadequate for inferring the highly fluctuated profiles and 

hence resulting in the proposed implementation of a multipoint statistic. 

The accuracy of the multipoint statistical approach can be enhanced by utilizing a 

physicochemical model, e.g., the Urban Airshed Model (UAM), as a way to detect the 

contemporaneous patterns of variability of ozone and covariate events. For example, 

the covariate data sets can be varied one at a time while keeping the others constant 
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and the corresponding ozone profile can be obtained by running the physicochemical 

model. This yields a training set that can be used to calibrate a MDN not only for the 

multipoint interactions between historical ozone data but also those between various 

covariates at different time instants. This difficult task would entail the cross­

calibration of the temporal parameters to account for multipoint associations among 

the covariates. This procedure will again yield the probability of ozone concentration 

at the unsampled time instant I;, conditioned on the pattern of covariate information as 

well as the pattern of available ozone data. This conditional probability can then be 

assimilated into a stochastic simulation algorithm to predict the ozone patterns at 

other unsampled time instants. Such a calibration procedure will inject the physics of 

the ozone phenomena into the statistical methodology. 

Remember that the primary goal in the study of atmospheric pollution is to obtain 

good knowledge of the space-time phenomena. This difficult task can be alleviated 

by first modeling the temporal profiles at independent geographical locations, e.g., 

Calgary, Lethbridge and Medicine Hat, in order to explore the air pollution problems 

in southern Alberta. Once successful, the spatiotemporal interpolation between these 

monitoring stations can be performed by recognizing that the sudden rise in ozone 

concentrations, termed ozone episodes, is likely due to complex nonlinear interactions 

between ozone and its covariates jointly occurring in space u and time t. That is to 

say that the covariate events, e.g., an increase in the precursor levels coupled with 

high southerly wind speed and bright sunshine in Lethbridge may directly affect the 

ozone episodes observed on the following day in Calgary. 

This space-time technique would entail the inference of parameters signifying the 

temporal patterns observed at stations and then subsequently regionalizing those 

parameters in space. It should be emphasized that the more accurate the temporal 

modeling is performed at various environmental monitoring stations, the higher the 

probability of success in estimating ozone values at unknown locations. For this 

reason, exhaustive studies of ozone phenomena must be carried out at as many cities 

in Canada as possible. 
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APPENDICES 

A GSLIB Parameter Files 

I. gam. par (experimental variogram) 

2. vmodel.par (variogram model) 

3. kt3d. par (kriging) 

4. cokb3 d . par (co kriging) 

5. sgsim.par (simulation) 

6. sgs i m. par (co-simulation) 

B Description of the Urban Airshed Model (UAM) 



APPENDIX A 

GSLIB PARAMETER FILES 

Parameters for GAM 
****************** 

START OF PARAMETERS: 
d97std.dat -file with data 

177 

1 8 3 
-1.0e21 1.0e21 

number of variables, column numbers 
trimming limits 

0397.out 
1 
365 0.5 

1 0.5 
1 0.5 

1 73 
5 0 0 

0 
1 
1 1 1 

type 1 
2 
3 
4 
5 

6 
7 
8 = 
9 

10 

Appendix A. I 

1.0 
1.0 
1.0 

-file for variogram output 
-grid or realization number 

-nx, xmn, xsiz 
-ny, yrnn, ysiz 
-nz, zmn, zsiz 

-number of directions, number of lags 
- ixd ( 1) , iyd ( 1) , i zd ( 1) 
-standardize sill? (O=no, 1=yes) 
-number of variograms 

-tail variable, head variable, variogram type 

traditional semivariogram 
traditional cross semivariogram 
covariance 
correlogram 
general relative semivariogram 
pairwise relative semivariogram 
semivariogram of logarithms 
semimadogram 
indicator semivariogram - continuous 
indicator semivariogram - categorical 

Parameter file gam.par that is applied for generating experimental (sample) variogram 
from the 1997 ozone data. Here the standardized (at zero mean and unit variance) ozone 
concentrations are used to enhance the quality of the sample variogram values. 



START OF PARAMETERS: 
0397.var 
1 73 

0. 0 0. 0 5 
2 0.0 
2 0.5 0.0 0.0 

5.0 5.0 
3 0.5 0.0 0.0 

100.0 5.0 

Appendix A.2 
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Parameters for VMODEL 
********************* 

-file for variogram output 
-number of directions and lags 
-azm, dip, lag distance 
-nst, nugget effect 

0.0 -it,cc,angl,ang2,ang3 
10.0 -a_hmax, a_hmin, a_vert 

0.0 -it,cc,angl,ang2,ang3 
10.0 -a_hmax, a_hmin, a vert 

Parameter file vmodel. par that is applied for modeling the sample variogram, generated 
by the gam. par above. This variogram model has 73 temporal lags, 5 days apart. Two 
basic variogram structures are implemented: (1) Exponential model (it = 2) with 0 
nugget, 0.5 sill contribution and range of 5 days, and (2) Gaussian model (it = 3) with 0 
nugget, 0.5 sill contribution and range of 100 days. 



START OF PARAMETERS: 
03 12k.dat 
1 10 0 5 
-l.Oe21 1.0e21 
0 
xvk.dat 
1 2 0 
3 
0397kt_98.dbg 
0397kt 98.out 

3 

365 1.0 1.0 
1 1.0 1.0 
1 0.5 1.0 
1 1 1 
1 8 
0 
250.0 1.0 1.0 

90.0 0.0 0.0 
1 2.302 
0 0 0 0 0 0 0 0 0 
0 
extdrift.dat 
4 
2 0 
2 0.5 90.0 

0 

0 

0. 0 
5.0 5.0 

3 0.5 90.0 0.0 
100.0 5.0 

Appendix A.3 
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Parameters for KT3D 
******************* 

-file with data 
columns for X, Y, Z, var, sec var 
trimming limits 

-option: O=grid, 1=cross, 2=jackknife 
-file with jackknife data 

columns for X,Y,Z,vr and sec var 
-debugging level: 0,1,2,3 
-file for debugging output 
-file for kriged output 

-nx,xmn,xsiz 
-ny,ynm,ysiz 
-nz,zmn,zsiz 

-x,y and z block discretization 
-min, max data for kriging 
-max per octant (0-> not used) 
-maximum search radii 
-angles for search ellipsoid 
-0=SK,1=0K,2=non-st SK,3=exdrift 
-drift: x,y,z,xx,yy,zz,xy,xz,zy 
-0, variable; 1, estimate trend 
-gridded file with drift/mean 

column number in gridded file 
-nst, nugget effect 

0.0 -it,cc,angl,ang2,ang3 
10.0 -a hmax, a hmin, a vert - - -

0. 0 -it,cc,ang1,ang2,ang3 
10.0 -a hmax, a hrnin, a vert - -

Parameter file kt3d. par that is applied in the ordinary kriging (OK) algorithm for 
predicting ozone concentrations in 1998 based on the 1997 variogram model. The 
variogram is modeled using vmodel. par prior to kriging. The 03 _12k. dat is the data 
file consisting of 12 standardized (at zero mean and unit variance) sample values, evenly 
spaced at every 301

h Julian day of 1998. 



START OF PARAMETERS: 
12ck98.dat 
3 
1 5 0 2 3 
-10.01 1.0e21 
0 
somedata.dat 
4 
0 
lvmfl.dat 
4 
3 
0397ck_98.dbg 
0397ck 98.out 
365 1.0 1.0 

1 
1 

1 1 

1 12 
250.0 
250.0 

90.0 

1.0 
0.5 

1.0 
1.0 
0. 0 

1 
8 

1.0 
1.0 

1.0 
1.0 
0. 0 
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Parameters for COKB3D 
********************** 

4 

-file with data 
-number of variables primary + other 

columns for X,Y,Z and variables 
trimming limits 

-co-located cokriging? (O=no, 1=yes) 
file with single gridded covariate 
column for covariate 

- local varying mean (O=no, 1=yes) 
file with local varying mean 
column for local varying mean 

-debugging level: 0,1,2,3 
-file for debugging output 
-file for output 

-nx,xrrm,xsiz 
-ny 1 ymn,ysiz 
-nz,zrrm,zsiz 

-x, y, and z block discretization 
-min primary,max primary,max all sec 
-maximum search radii: primary 
-maximum search radii: all secondary 
-angles for search ellipsoid 
-kriging type (O=SK, 1=0K, 2=0K-trad) 1 

3.38 
3 
0.50 
10.0 
5.0 

2.32 0.00 0.00 -mean(i) ,i=1,nvar 
- model type (1=MM1, 2=MM2, 3=LMC) 
- correlation coefficient for MM1 or MM2 
- variance of secondary variable for MM1 
- variance of primary variable for MM2 

(continued into the next page) 

Appendix A.4 
Parameter file cokb3d. par that is applied in the ordinary cokriging (COK) algorithm 
for predicting ozone concentrations in 1998 based on the 1997 variogram model, and 
using two covariates: total hydrocarbon (THC) and nitric oxide (NO). The auto and 
cross-variogram models have been ensured positive-definite via the linear model of 
coregionalization (LMC) prior to cokriging. The 12ck98. dat is the data file comprising 
three sets of 12 standardized (at zero mean and unit variance) sample values of ozone, 
THC and NO, evenly spaced at every 301

h Julian day of 1998. 
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1 
2 
2 

3 

1 
2 
2 

3 

1 
2 
2 

3 

2 
2 
2 

3 

2 
2 
2 

3 

3 
2 
2 

3 

1 
1e-10 
0.56 90.0 0.0 

5.0 0.0 
0.44 90.0 0.0 

12 0. 0 0. 0 
2 

1e-10 
0.24 90.0 0.0 

5.0 0.0 
0.44 

3 
1e-10 
0.26 

0.41 

2 
1e-10 
0.46 

0.54 

3 
1e-10 
0.39 

0.50 

3 

1e-10 
0.50 

0.50 

90.0 
120.0 

90.0 
5.0 

90.0 
120.0 

90.0 
5.0 

90.0 
120.0 

90.0 
5.0 

90.0 
120.0 

90.0 
5.0 

90.0 

0.0 
0. 0 

0.0 
0. 0 
0.0 
0.0 

0. 0 
0.0 
0.0 
0.0 

0.0 
0.0 
0. 0 
0. 0 

0.0 
0. 0 
0.0 

-semivariogram for "i 11 and "j" (03) 
nst, nugget effect 

0.0 it,cc,ang1,ang2,ang3 
0. 0 a_hrnax, a_ hrnin, a_ vert 
0.0 it,cc,ang1,ang2,ang3 
0.0 a_hrnax, a_hrnin, a vert 

-sernivariograrn for "i" and "j" (03-THCrn) 
nst, nugget effect 

0.0 it,cc,ang1,ang2,ang3 
0.0 a_hrnax, a_hrnin, a vert 
0.0 it,cc,ang1,ang2,ang3n 
0. 0 a_hmax, a_hmin, a vert 

-sernivariograrn for "i" and "j" (03-NOrn) 
nst, nugget effect 

0.0 it,cc,ang1,ang2,ang3 
0.0 a_hrnax, a_hrnin, a_vert 
0.0 it,cc,ang1,ang2,ang3 
0.0 a_hrnax, a_hrnin, a vert 

-semivariogram for 11 i" and 11
]

11 (THCm) 
nst, nugget effect 

0.0 it,cc,ang1,ang2,ang3 
0. 0 a_hmax, a_hmin, a vert 
0.0 it,cc,ang1,ang2,ang3 
0.0 a_hrnax, a_hrnin, a vert 

-sernivariograrn for "i" and "j" (THCrnNOrn) 
nst, nugget effect 

0.0 
0.0 

it,cc,ang1,ang2,ang3 
a_hmax, a_hmin, a vert 

0.0 it,cc,ang1,ang2,ang3 
0.0 a_hmax, a_hmin, a vert 

-semivariograrn for 11 i 11 and 11 j" (NOm) 
nst, nugget effect 

0.0 it,cc,ang1,ang2,ang3 
0.0 a_hrnax, a_hrnin, a vert 
0.0 it,cc,ang1,ang2,ang3 

120.0 0.0 0.0 a_hmax, a_hmin, a vert 

Appendix A.4 
Parameter file cokb3d.par that is applied in the ordinary cokriging (COK) algorithm 
for predicting ozone concentrations in 1998 based on the 1997 variogram model, and 
using two covariates: total hydrocarbon (THC) and nitric oxide (NO). The auto and 
cross-variogram models have been ensured positive-definite via the linear model of 
coregionalization (LMC) prior to co kriging. The 12 ck9 B . da t is the data file comprising 
three sets of 12 standardized (at zero mean and unit variance) sample values of ozone, 
THC and NO, evenly spaced at every 301

h Julian day of 1998. 



START OF PARAMETERS: 
03 12k.dat 
1 10 0 4 0 0 
-1.0 1.0e21 
1 
0397 s98.trn 
0 
histsmth.out 
1 2 
0.0 0.05 
1 0. 0 
1 15 
1 
0397_s98.dbg 
0397 s98.out 
10 
365 1 1.0 
1 1 1. 0 
1 0.5 1.0 
2374321 
1 8 
12 
1 
1 3 
0 
250.0 1.0 1.0 

90.0 0.0 0.0 
1 0.60 1.0 
.. /data/ydata.dat 
4 
2 0 
2 0.5 90.0 

5.0 
1 0.5 90.0 

100.0 

Appendix A.S 

0.0 
5.0 
0.0 
5.0 

Parameters for SGSIM 
******************** 

-file with data 
columns for X,Y,Z,vr,wt,sec.var. 
trimming limits 

-transform the data (O=no, 1=yes) 
file for output trans table 
consider ref. dist (O=no, 1=yes) 
file with ref. dist distribution 
columns for vr and wt 
zmin,zmax(tail extrapolation) 
lower tail option, parameter 
upper tail option, parameter 

-debugging level: 0,1,2,3 
-file for debugging output 
-file for simulation output 
-number of realizations to generate 

-nx,xmn,xsiz 
-ny,ymn,ysiz 
-nz,zmn,zsiz 

-random number seed 
-min and max original data for sim 
-number of simulated nodes to use 
-assign data to nodes (O=no, 1=yes) 
-multiple grid search (O=no, 1=yes) 
-maximum data per octant (O=not used) 

182 

-maximum search radii (hmax,hmin,vert) 
-angles for search ellipsoid 
-ktype: 0=SK,1=0K,2=LVM,3=EXDR,4=COLC 
-file with LVM, EXDR, or COLC variable 

column for secondary variable 
-nst, nugget effect 

0.0 -it,cc,ang1,ang2,ang3 
10.0 -a_hmax, a_hmin, a_vert 

0.0 -it,cc,angl,ang2,ang3 
10.0 -a hmax, a_hmin, a vert 

Parameter file sgsim. par that is applied in the sequential Gaussian simulation (SGSIM) 
algorithm for predicting ozone concentrations in 1998 based on the 1997 variogram 
model. The variogram is modeled using vmodel. par prior to simulation. The 
03 12k. dat is the data file consisting of 12 raw sample values, evenly spaced at every 
30ill Julian day of 1998. 



START OF PARAMETERS: 
12cs98.dat 
1 5 0 2 0 
-100.0 
1 
0397 cs98.trn 
0 
histsmth.out 
1 2 
0.0 0.05 
1 0. 0 
1 0. 0 
1 
0397_cs98.dbg 
0397 cs98.out 
10 
365 1.0 
1 1.0 
1 0. 5 
2374321 
1 8 
12 

3 
1. Oe21 

1.0 
1.0 
1.0 

Parameters for SGSIM 
******************** 

-file with data 
columns for X,Y,Z,vr,wt 1 Sec.var. 
trimming limits 

-transform the data (O=no, 1=yes) 
file for output trans table 
consider ref. dist (O=no, 1=yes) 
file with ref. dist distribution 
columns for vr and wt 
zmin,zmax(tail extrapolation) 
lower tail option, parameter 
upper tail option, parameter 

-debugging level: 0,1,2,3 
-file for debugging output 
-file for simulation output 
-number of realizations to generate 

-nx,xrnn,xsiz 
-ny,yrnn,ysiz 
-nz,zmn,zsiz 

-random number seed 
-min and max original data for sim 
-number of simulated nodes to use 

1 -assign data to nodes (O=no, 1=yes) 
1 3 -multiple grid search (O=no, 1=yes) 
0 -maximum data per octant (O=not used) 
250.0 1.0 1.0 -maximum search radii (hmax,hmin,vert) 

90.0 0.0 0.0 -angles for search ellipsoid 
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6 -ktype: 0=SK,1=0K,2=LVM,3=EXDR,4=MMI,5=MMII,6=LMC 
0.7 
12 
d97rawX.dat 
2 

-correl. coeff. if MMI or MMII 
- number of secondary data to use if LMC 

file with LVM, EXDR, or COLC variable 
column for secondary variable 

(continued into the next page) 

Appendix A.6 
Parameter file sgs im. par that is applied in the sequential Gaussian co-simulation 
algorithm for predicting ozone concentrations in 1998 based on the 1997 variogram 
model, and using one covariate: total hydrocarbon (THC). The auto and cross-variogram 
models are obtained using vrnodel. par and have been ensured positive-definite via the 
linear model of coregionalization (LMC) prior to co-simulation. The 12cs98. dat is the 
data file comprising two sets of 12 raw ozone and THC values, evenly spaced at every 
30'h Julian day of 1998. 
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2 
2 

3 

2 
2 

3 

2 
2 

3 

1e-10 
0.56 90.0 

5.0 1.0 
0.44 90.0 

120.0 1.0 
1e-10 
0.24 90.0 

5.0 1.0 
0.44 90.0 

120.0 1.0 
1e-10 
0.46 90.0 

5.0 1.0 
0.54 90.0 

120.0 1.0 

Appendix A.6 

-nst, 
0.0 0.0 
1.0 

0.0 0.0 
1.0 

-nst, 
0.0 0.0 
1.0 

0.0 0.0 
1.0 

-nst, 
0.0 0.0 
1.0 

0.0 0.0 
1.0 

nugget effect: primary for LMC 
-it,cc,ang1,ang2,ang3 
-a_hmax, a_hmin, a_vert 
-it,cc,angl,ang2,ang3 
-a_hmax, a_hmin, a vert 

nugget effect: cross for LMC 
-it,cc,angl,ang2,ang3 
-a_hmax, a_hmin, a vert 
-it,cc,angl,ang2,ang3 
-a_hrnax, a_hmin, a vert 

nugget effect: secondary for LMC 
-it,cc,ang1,ang2,ang3 
-a_hrnax, a_hmin, a vert 
-it,cc,angl,ang2,ang3 
-a_hmax, a hmin, a vert 
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Parameter file sgsim.par that is applied in the sequential Gaussian co-simulation 
algorithm for predicting ozone concentrations in 1998 based on the 1997 variogram 
model, and using one covariate: total hydrocarbon (THC). The auto and cross-variogram 
models are obtained using vmode l . par and have been ensured positive-definite via the 
linear model of coregionalization (LMC) prior to co-simulation. The 12cs98. dat is the 
data file comprising two sets of 12 raw ozone and THC values, evenly spaced at every 
30'h Julian day of 1998. 
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APPENDIXB 

THE URBAN AIRSHED MODEL (UAM) 

Statistical methods, though useful in the study of ozone phenomena, may not be adequate 

for predicting or estimating ground-level ozone episodes that frequently appear, espe­

cially in large cities like Chicago and Toronto. During an ozone episode, one would like 

to identify what factors (meteorological, chemical, etc.) cause the concentration of ozone 

to suddenly rise above the normal levels. Of course the statistical methods (e.g., artificial 

neural network), through improved learning process, can predict this occurrence to within 

tolerable error provided that historical records exist. However, the application of these 

methods for reliably predicting the variations in ozone concentration and the associated 

adverse effects to humans and their welfare requires a good understanding of the 

atmospheric ozone transport mechanisms. Therefore, if a physicochemical (physical­

chemical) model can be coupled with any of these statistical methods, the end results 

would be more convincing and meaningful. Although detailed numerical simulation 

using physicochemical models such as the Urban Airshed Model (UAM) was not 

performed, relevant information was collected and succinct synopsis (overview) of the 

physicochemical processes, i.e., material balance and ozone chemistry, as well as a three­

dimensional (30) model that is commonly used by the regulatory agencies, e.g., EPA, in 

ozone prediction are discussed for future research work. 

A good physicochemical model should be able to simulate as many chemical 

reactions involved in the formation and destruction of ozone in the atmosphere as 

possible. Relevant models for pollutant emissions, transport and removal processes must 

also be included. Some of the important factors that should be considered are: 

0 Anthropogenic (man-made) and biogenic (natural) spatiotemporal emissions (area 

and point sources) of nitrogen oxides (NO,), volatile organic compounds (VOCs) 

and/or other relevant chemical species, 
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Chemical reactions and kinetics (e.g., N02 photolysis rate) involving NOx, VOCs 

and/or other species, 

Background concentrations of NO,, VOCs and other species in upwind location 

proximity and at the upper atmosphere, 

Space-time variations of the wind fields- direction and speed, 

Stability of the atmosphere (i.e., heights of "diffusion break," diurnally and/or 

nocturnally) in the region of interest, 

Intensities and abnormalities of solar insolation (e.g., global UV radiation) and 

temperature (e.g., hourly-maximum or -average, surface and vertical T gradients), 

Removal of ozone and its precursors by dry (e.g., absorption by leaves' stomata) 

and wet depositions (e.g., rainfall), 

Effects of terrain (surface roughness and deposition factor), and 

Other meteorological factors like atmospheric pressure, opacity/turbidity (e.g., 

haze and cloud cover) and amount of water vapor (e.g., relative humidity), 

Among the many publicly available software packages for modeling 

physicochemical reactions is the Urban Airshed Model (U AM), developed by the 

Systems Applications International, Inc. (SAl). This 3D Eulerian grid model is 

recommended for the simulation of 48- to 120-hour period (2 to 5 days) during an ozone 

episode. The core principle of the UAM is the material balance of chemical species i in 

the atmosphere that can be mathematically expressed as a set of partial differential 

equations (PDEs) of individual species concentration C: 

j= 1,2,3 

which when expanded in familiar notations becomes (SAl, 1999): 
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a(uc,} + a(vc;) +a( we,} 
ax 8y az 

[Advection] 

~(K ac;)+~(K ac;)+~(K ac;) ax xax 8y ray az zaz 

[Turbulent Diffusion] 

+ + D; + W; R; 

[Chemical 
Reaction] 

S; 

[Emissions] [Dry and Wet Depositions] 

The remaining variables are defined as: 

u,v,w 

Kx,Kx 
Kz 
R; 

S; 

D; 

W; 

Horizontal and vertical wind speed components 

Horizontal turbulent diffusion coefficients ( dispersivities) 

Vertical turbulent exchange coefficient ( dispersivity) 

Net production rate of species i by chemical reactions 

Emission rate of species i 

Net removal rate of species i by surface uptake processes 

Net removal rate of species i by wet deposition processes 

Note that C; is a spatiotemporal variable, i.e., it varies jointly in space (x, y, z) and time 

(t), and must be solved simultaneously from all concentrations of reactive species 

(pollutants) involved in this process. 

There are hundreds of species (mostly organic compounds) involved in complex 

chemical reactions to produce ozone. However, the main ones are the reactions of NO" 

VOCs and their derivatives in the presence of "bright" sunlight. Depending on the right 

kinetics, the same species, e.g., atomic oxygen 0, may sometime participate in the 

formation and destruction of ozone (Table B.!). With thousands of chemical reactions 

occurring almost concurrently in this process, one would expect wide temporal variations 

in the reaction rate constants. As a result, the PDEs form a system of "stiff' equations, 

for which explicit solutions demand substantial amount of work. Highly accurate 

solutions require expensive computing time; hence a more suitable approach is to split 
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the family of species i into two groups: (I) the major species, and (2) the remainders or 

"state" species. The UAM solves for the former using a quasi-steady-state assumption, 

and the accompanying variations in the "state" species are obtained by an optimization 

algorithm. This simplification improves the numerical stability of the method and results 

in accurate solutions. 

Table 8.1 
The Carbon Bond Mechanism IV (CB-IV). 

Reactions Rate Constants ( cm3 /molecule/s) 

N02 + hv ~ NO+O Radiation dependent 

O+Oz ~ 03 1.4E3 * exp(1175/T) 

01+NO ~ NOz 1.8E-12 * exp( -1370/T) 

O+NOz ~ NO 9.3E-12 

O+NOz ~ N03 1.6E-13 * exp(687/T) 

O+NO -7 N02 2.2E-13 * exp( 602/T) 

01 + N02 ~ N01 1.2E-13 * exp(-2450/T) 

OJ +hv ~ 0 Radiation dependent 

Adapted from Gery et a! (1989). hv = solar radiation. 

The first step is to divide the simulated region into a coarse 3D grid (10-20 km), 

with a rectangular shape and constant lengths in the horizontal directions (x andy). Finer 

nested grids (1-2 km each) may then be imposed within the coarse grid to enhance 

resolution and thereby improve analysis on the more complex surface transport 

phenomena caused by, e.g., topography (terrain roughness) and oceanic breeze. The 

arbitrarily structure of the vertical layers is user-defined. The diffusion break is often 

determined from the bottom of the inversion layer, i.e., either an unstable diurnal 

convective layer (mixing height) or a stable nocturnal layer at nighttime. Other factors 

influencing the vertical layers are the number of mixing heights and the bottom layer 
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thickness. To elucidate the interpretation of these layers, an example of vertical cell 

structure with accompanying processes in each layer is illustrated in Figure B.l. 
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Figure B. I 
Schematic diagram of the vertical layers used in the Urban Airshed Model (UAM). 
Adapted from Morris and Myers (1990). 

After the grids are fully defined, each term in the PDE, i.e., advection, turbulent 

diffusion, chemical reaction (atmospheric chemistry) and removal mechanisms, is solved 

separately based on the following order: (I) treatment of the horizontal advective­

diffusive processes in the x-(east-west), and (2) in the y-(north-south) directions, (3) in 

the z-(vertical) direction after the "injection" of pollutants, and finally (4) treatment of 
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the reactive chemical reactions. This four-step operation is performed using optimal 

algorithms at particular time interval, usually in the order of three to six minutes 

depending on the grid size and the maximum wind velocity. 

The transport of pollutants in the atmosphere is mainly by advection, a process in 

which a species (or more) is entrained in a bulk fluid (in this case, air) and hence carried 

along when the fluid moves due to external forces (e.g., wind). The UAM treats 

advection from the perspective of the wind fields (direction and speed) and components 

(u, v and w). The horizontal wind components (u and v in each grid cell) are initially 

specified and the vertical component (win the same cell) is determined from the terrain­

factor and material balance of all species i in each grid cell. The process is repeated until 

all wind fields are simulated. The advective terms can then be solved in timely interval 

using the method proposed by Smolarkiewicz (1983). 

Turbulent diffusion (or dispersion) is handled by assuming proportionality of the 

dispersivities (Kx, Kr, Kz) to the spatial concentration gradient C,(x, y, z). Despite this 

modification, the exact values of the dispersivities are still difficult to be obtained 

experimentally. Hence the UAM employs theoretical estimates based on the method 

suggested by Smagorinsky (1963). In essence, the horizontal dispersivities (Kx, Kr) are 

inferred by applying scaling factors to some deformation characteristics of the horizontal 

wind fields (u, v). The vertical diffusivitiy (Kz) is estimated from the vertical wind 

component (w) and temperature field, solved by the UAM meteorological preprocessor 

programs WIND and TEMPERA TUR, respectively. Except for the surface (bottom 

layer), which is specified as dry deposition flux, other boundary conditions (lateral and 

top layer) are assumed zero mass flux, i.e., no flow of materials in or out. 

The removal processes are divided into two major categories - dry and wet 

depositions. While the latter is primarily due to rainfall (i.e., scrubbing), the former 

includes several processes. The most important one occurring in the daytime is the 

absorption of gaseous pollutants (e.g., ozone) into vegetation via stomata, a hole-like 

feature that controls the pore openings in the leaves. These pollutants, once deposited into 

vegetated surfaces, are immediately converted to different chemical compounds, hence 
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reducing their concentrations in the atmosphere. Another process that is also classified as 

dry involves the absorption of the gaseous compounds into water surfaces, e.g., lakes or 

oceans. The solubility of these gases in water of different salinity controls this removal 

process. At nighttime, surface moisture also considered a dry deposition process is 

important. The extent of the dew-wetted surface is estimated from the relative humidity 

and wind velocity data. If rainfall rates are available, the rain-wetted surface effect can 

also be accounted for. 

The final step in the UAM modeling is to calculate the species mass balance due 

to chemical reactions. Because there are thousands of possible reaction mechanisms, it 

would be prudent (in term of execution time) to treat the chemical species and respective 

kinetics according to their reactive functional groups. More specifically, the organic 

compounds are classified based on their carbon bonds. For example, propylene (C3H6), 

butene (C4H8) and acetaldehyde (CH3CHO) are divided into three functional groups, 

comprising three paraffinic bonds (PAR), three olefinic bonds (OLE) and one higher 

molecular weight aldehyde (AD2). It may seem that the carbon bond approach increases 

the computing time but when there are thousands of parallel chemical reactions involved, 

this is the "fastest" way to obtain fairly accurate results. The extended version of this 

approach called the Carbon Bond (CB-IV, version 4) Mechanism is still employed in the 

UAM-V® (version 5) software package. For convenience, several important represen­

tations of the chemical species and functional groups employed by the UAM are listed in 

Table B.2. 



Table B.2 
Definition of the UAM (CB-IV) chemical species. 

UAM Species 

NO 

N02 

03 

OLE 

PAR 

TOL 

XYL 

FORM 

ALD2 

ETH 

CRES 

MGLY 

OPEN 

PNA 

NXOY 

PAN 

co 
HONO 

H202 

HN03 

MEOH 

ETOH 

ISOP 

Species Name 

Nitric oxide 

Nitrogen dioxide 

Ozone 

Olefinic carbon bond (C=C) 

Paraffinic carbon bond (C-C) 

Toluene (C6Hs-CHJ) 

Xylene (C6H6-(CH3)z) 

Formaldehyde (HCHO) 

High molecular weight aldehydes (RCHO, R > H) 

Ethene (CHz=CH2) 

Cresols and higher molecular weight phenols 

Methyl glyoxal (CH3C(O)C(O)H) 

High molecular weight aromatic oxidation ring fragment 

Peroxynitric acid (H02NOz) 

Total of nitrogen compounds (NO+ NOz + NzOs + N03) 

Peroxyacyl nitrate (CH3C(O)OzN02) 

Carbon monoxide 

Nitrous acid 

Hydrogen peroxide 

Nitric acid 

Methanol (optional) 

Ethanol (optional) 

Isoprene (optional) 

Adapted from Morris and Myers (1990). 
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To summarize, the physicochemical models, e.g., the UAM, provide a useful 

insight in a manner where spatiotemporal variations of the predictor variables such as 

carbon monoxide, nitrogen oxides and wind speed affect the variation of ozone. These 

models also form the scientific basis for the air pollution standards adopted by the 

regulatory agencies. However, such physicochemical models embrace several simplifying 

assumptions that might render them unrealistic. They are also computationally expensive 

to implement, and cannot be readily used in predictive mode. Combining physico­

chemical models with stochastic approaches can improve prediction accuracy, provided 

the calibration between the physicochemical model outputs and the stochastic variables is 

rigorously performed. Statistical tools such as disjunctive kriging, neural networks, 

Bayesian estimation can also accomplished such calibration through training and 

likelihood functions. The resultant predictions can be constructed to be locally accurate 

(i.e., data exactitude) and that yielding an assessment of global uncertainty (i.e., annual 

patterns of spatiotemporal variation of ozone). 


