
Compositional Model
Conversion

:Vlohd Fadzil Hassan

:VISe in Artificial Intelligence
Division of Informatics
university of Edinburgh

2001

Abstract

This dissertation presents an initial work towards the development of a tech­

nique to convert compositional models from one modelling paradigm to an­

other, by means of a pair of equivalent compositional modelling domain the­

ories. The mapping between model fragments of the two domain theories is

not necessarily in a one-to-one manner. It might be the case that a model

fragment in one domain theory covers parts of several model fragments in

the other domain theory. This is one of the major conversion problems that

this technique will focus on.

The compositional modelling of ecological systems is used as a test­

ing domain for the implemented conversion technique. For this work, sys­

tem dynamics and object-oriented representations are the two modelling

paradigms adopted. The major intention of this conversion application, im­

plemented in the C++ programming language, is to convert a system dy­

namics model, composed through a compositional modelling technique, to

an object-oriented model. The resulting object-oriented model is expected

to reflect the same scenario, but with a different representation, compared

to the model produced within the system dynamics modelling paradigm.

Acknowledgements

I would like to thank the following: my supervisors, Dr. Qiang Sherr

and Mr. Jeroen Keppens, for their patience, careful guidance, suggestions

and constructive criticisms during the course of the research reported here;

my parents, Fatimah Khamis and Hassan Abdullah for their constant en­

couragements; my !viSe colleagues, for their useful discussions and cama­

raderie during my stay and study here in Edinburgh; and my sponsor, the

PETRONAS University of Technology, Malaysia who provided me the op­

portunity to study at this excellent institute.

11

Contents

1 Introduction
1.1 General overview
1.2 Objective .
1.3 Motivation
1.4 Scope
1.5 Implementation and testing
1.6 Outline of dissertation

2 Background
2.1 Overview of compositional modelling

2.1.1 The compositional modelling task
2.1.2 Model fragments

2. 2 Ecological modelling

2.3

2.2.1 Ecological modelling with system dynamics .
2.2.2 Ecological modelling with object-oriented .
Summary

3 Theory
3.1 General overview of conversion technique

3.1.1 Modelling environment
3.1.2 Assumption classes

1
1
3
3
4
4
5

7
7
7
9

10
1.5

16
18

23
23
25
26

3.2 Technique overview . . 28
3. 3 Model fragment selection . 29
3.4 Model composition 31

3.4.1 Dynamic Constraint Satisfaction problem (DCSP) 31
3.4.2 DCSP for model composition . . 33
3.4.3 Simple choose and repair techniques .

3. 5 Model building
3.6 Bidirectional conversion
3.7 Summary

llJ

34
36
37
38

4 Design and Implementation 41
4.1 Knowledge representation 41

4.1.1 Assumptions design of system dynamics paradigm . . . 42
4.1.2 Design and implementation of object-oriented paradigm 43

4.2 Model fragment selection . 45
4.3 Model composition 48

4.3.1 Example trace . 52
4.4 Model building . . 54
4.5 Actual implementation 55
4.6 Summary 55

5 Testing
5.1 Testing description
5.2 First scenario ...

5.2.1 Input description
5.2.2 Generated output

5.3 Second scenario ..
5.3.1 Input description
5.3.2 Generated output

5.4 Discussion
5.5 Summary ..

6 Conclusion and Future work
6.1 Conclusion .
6.2 Future work

Appendix

A User manual
A.1 The program files
A.2 Input text files
A.3 Compiling the program files
A.4 Expected screen displays
A.5 Concluding remark

lV

59
59
60
60
61
64
64
66
70
71

73
73
7.5

81

83
83
83
85
86
90

List of Figures

2.1 Generic architecture of compositional modellers 8

2.2 l\Iodel fragment to define population growih phenomenon . 11

2.3 System dynamics model of predation . . 16

2.4 Conceptual overview - Object-oriented model of predation 19

2.5 Class definition of an object-oriented model 20

2.6 Class implementation of an object-oriented model 21

3.1 The proposed conversion technique, and its relation to the

generic architecture of compositional modellers 24

3.2 Overview of processes involved m the proposed conversion

technique

3.3 The bidirectional conversion process .

28

37

4.1

4.2

4.3

Data flow diagram of the model fragment selection process 45

Algorithm of the model fragment selection process 4 7

Algorithm of the first subprocess of the model composition stage 50

4.4 Algorithm of the second subprocess of the model composition

stage . . . 51

4.5 Algorithm of the model building process

5.1 Participants of the selected model fragments and their related

underlying assumptions .

5.2 Class definition of an object-oriented model

v

57

60

63

5.3 Class implementation and object instantiation of an object­

oriented model . 63

5.4 Participants of the selected model fragments and their related

underlying assumptions

5.5 Class definition of an object-oriented model

5.6 Class implementation and object instantiation of an object-

oriented model

Vl

65

68

69

List of Tables

3.1 Table of assumption classes and its corresponding domain . 33

3.2 Table of activity constraints 34

3.3 Table of compatibility constraints 34

4.1 Table of assumption classes and its corresponding domain . 48

4.2 Table of activity constraints .. 48

4.3 Table of compatibility constraints 49

4.4 Tracing example 53

5 1 Text file consisting the modelling environment 61

5.2 Table of assumptions set and its content 62

5.3 Text file consisting the modelling environment 66

5.4 Table of assumptions set and its content 66

A.1 Table of assumption type and its corresponding subject 85

Vll

Chapter 1

Introduction

1.1 General overview

The essence of model building is to decide which aspects of the world should

be explicitly described in the model, and which should be omitted. Para­

phrasing Einstein, a model should be as simple as possible, but no simpler;

as complicated as necessary, but no more (Kuipers, 1994).

Compositional modelling addresses the problem of building a model, and

it is one of the predominant approaches to automate the deduction of math­

ematical models of a system. A compositional modeller utilises a potentially

vast background knowledge base, also termed as domain theory, that de­

scribes a class of related phenomena or systems. A domain theory consists

of a set of model fragments, each describing some fundamental pieces of the

domains physics, such as processes (e.g. liquid flows), devices (e.g. transis­

tors), and objects (e.g. containers). The system or situation being modelled

is termed as the scenario, and its model, the scenario model. Given a sce­

nario describing the system under consideration, the compositional modeller

instantiates applicable model fragments from the domain theory, selects the

most appropriate ones, and composes them into a scenario model.

1

As the compositional modelling techniques have been devised to select a

set of model fragments from a range of alternatives, different models can be

deduced from the same scenario under different requirements (and sometimes,

even with the same modelling requirements). This is possible even with a

small knowledge base because the model fragments contain reusable model

parts and the instantiation of these parts may not uniquely determine what

parts to select and combine. Furthermore, due to the domain independent

nature of this technique, a relatively wider variety of modelling paradigms

may be implemented when compared to other automated modellers.

As multiple modelling paradigms may be used in the knowledge repre­

sentation of a domain theory, given the same scenario and modelling envi­

ronments, it is possible to compose a number of scenario models, each corre­

sponds to a different modelling paradigm. Therefore, this project requires the

development of a technique to convert models from one modelling paradigm

to another, by means of a pair of equivalent compositional modelling domain

theories, each implemented in a different modelling paradigm.

2

1.2 Objective

This project involves the development, implementation and testing of a tech­

nique for transforming compositional models between different representa­

tions. The primary aim of this technique is to enable a scenario model in one

particular representation, composed by a compositional modeller, to be con­

verted reliably to different representations given a particular set of domain

theories.

1.3 Motivation

Formulating a model via compositional modelling technique requires search­

ing the modelling space to find an adequate set of model fragments to in­

stantiate. Based on this technique, it is possible to model a scenario from

many different perspective, based on the preference of human users. How­

ever, many existing conventional engineering application of compositional

modelling are mostly involved with a single modelling paradigm or repre­

sentation. Therefore, given this domain, the proposed conversion technique

might not be really crucial. However, for certain important problem domains,

for instance compositional modelling of ecological systems, this technique will

be really beneficial as ecological models may employ a variety of modelling

paradigms. To some extend, many of these modelling paradigms may just

express the same scenario model in different ways. However, each paradigm

of model construction has its own useful features and there is little agreement

amongst expert ecologists with respect to the modelling language they use,

and what constitutes an ideal modelling paradigm. Therefore, this approach

may help bridge the gap between modelling paradigms and languages, and

possibly, enable the exploration of the similarities and differences between

modelling paradigms.

3

1.4 Scope

Due to the domain-independent nature of compositional modelling technique,

a relatively wider variety of modelling paradigms or representations may be

implemented when compared to other automated modellers (Keppens and

Shen, 2001). However, this feature has not been fully explored because most

typical applications only involve a single modelling paradigm. Exploring

the many different modelling paradigms which are applicable, is beyond the

scope of this project, nonetheless it will concentrate on the following issues:

1. Developing a conceptual technique which can be utilised to reliably

convert models from one modelling paradigm to another.

2. As a prove of concept, the developed technique is implemented using a

programming language.

3. Testing the technique that has been implemented. In the testing, two

equivalent compositional modelling domain theories that utilise two

different modelling paradigms are minimally required. Thus. the re­

sponsibility of developing these domain theories is part of this project.

Eventhough various techniques in compositional modelling exist, the com­

positional modelling formalisms developed by Falkenhainer and Forbus (1991)

are adopted to complement the proposed conversion technique in this project.

1.5 Implementation and testing

Ecological domain is used as a testing platform for the implemented con­

version technique. The major intention of this testing application, imple­

mented in the C++ programming language, is to convert a system dynamics

model, composed through a compositional modelling technique, to an object­

oriented model. The resulting object-oriented model is expected to reflect the

4

same scenario, but with a different representation, compared to the system

dynamics model. For example, in the system dynamics modelling paradigm,

a phenomena of interest may be featured via levels and flows between them,

while within the object-oriented modelling paradigm, it is represented as ob­

ject of classes, and the interaction between these objects is provided by the

class attributes and methods.

1.6 Outline of dissertation

• Chapter 2 consists of description on compositional modelling. It also

contains a description of the two modelling paradigms intended to be

used as a testing platform in this work, ecological-modelling with sys­

tem dynamics and object-oriented paradigms.

• Chapter 3 consists of description on the theoretical design underlying

the proposed conversion technique, with the stages involved in this

technique.

• Chapter 4 contains a description on how the proposed theoretical design

ofthe conversion technique is implemented. Algorithms of the processes

involved and the details of the implementation are discussed.

• Chapter 5 discusses about the testing that have been conducted and

the results that have been obtained.

• Chapter 6 contains a summary of this work and some suggestions for

future work.

5

Chapter 2

Background

2.1 Overview of compositional modelling

This section presents a general overview of compositional modelling, with

the stages involved in formulating a model that is relevant to the needs of

the task and consistent with the operating conditions of the system.

Compositional modelling is one of the predominant approaches for au­

tomatically formulating a model, in order to help human analyse a wide

variety of physical-system behaviour in a given domain (Iwasaki, 1997). An

important feature of Compositional Modelling is that it makes most of the

modelling process explicit (Collins and Forbus, 1990). That is, knowledge of

the physical world is organised as a domain model. which describes the basic

conceptual entities and phenomena. Given a particular physical situation,

constructs of the domain model are combined to form a scenario model of

the specific situation.

2.1.1 The compositional modelling task

Figure 2.1 presents a generic architecture for compositional modellers. A

scenario description and task specification are provided to the compositional

7

Scenario description Task specification

r----- ---------------1-------

Domain~ Inference
theory :

'
' '
' '
'
'
: Model

' 1 Revision 1

' '

'

'
'

' '

' ' --

Model fragment
selection

' -~ '---------.--------"

t

Model
Composition

Model
Evaluation

------------------------------1

Compositional
Modelling

Problem
Solver

Figure 2.1: Generic architecture of compositional modellers

modellers as input. The scenario description constitutes the technical level

input and the task specification is a formal description of the criteria imposed

upon the model to be composed. Task specifications come in a variety of

form, and they are usually represented as a query or as an initial state from

which the problem solver must extrapolate future behaviour (Keppens and

Shen, 2001).

First, given the scenario description to be modelled, a modeller will make

an inference on this information to instantiate the constructs of the domain

theory, such as model fragments and rules that apply to the scenario. The

model fragments represent how certain components, processes or concepts

can be modelled. In the model fragment selection stage, given the task spec­

ification on hand, a subset of the instantiated model fragments generated

by the inference mechanism is selected. In the model composition phase,

the selected instantiated model fragments are composed into a model. Vari-

8

ous techniques, namely consistency checking and causal ordering techniques,

might be employed at this stage in order to produce an appropriate scenario

model (Levy eta!. (1997); :'-Jayak (1995)). The models generated during the

model composition phase are to be used by the problem solver. However, as

not all models are equally suitable, each alternative model is assessed and the

best alternative is passed on to the problem solver in the model evaluation

phase. New information may be derived that contradicts earlier assumptions

in the model evaluation and problem solving stages. This information is

fed back to the model fragment selection phase, which replaces the affected

model fragment, hence, revises the model accordingly.

2.1.2 Model fragments

The domain theory of a compositional modeller consists of com posable pieces

of sub-system models called model fragments, which describe numerous as­

pects of physical phenomena. The word phenomena generally includes the

notion of physical objects, behaviour characteristics of objects or combina­

tion thereof, and physical processes (Iwasaki, 1997). In Keppens and Shen

(2001), the content of a model fragment has been formalised as follows:

A model fragment, 11 is a tuple< P',P',C', C0
, C', A> where

• P'(J.L) = {pf, ... ,p;',} is a set of source-participants.

• P'(J.L) ={pi, ... ,p;,} is a set of target-participants.

• C'(!L) U C 0 (M) is a set of preconditions, where C'(M) ={c), ... ,c~} is

the set of structural conditions and apply over the vector of source­

participants p; (1-l) = {pf, ... , p;',} and co (M) = { cj', ... , c~,} is the set of

operating conditions and apply over the vector of target-participants

p; (1-l) = {pi, ... 'p;,}.

9

• C'(J.L) = { ci, ... , c~} is a set of post-conditions which are constraints

that apply over Pi' (J.L) ,

• A(J.L) = {a1 , ... ,a,} is a set of assumptions,

such that fori = 1, ... , u

The source and target participants in a model fragment are variables rep­

resenting domain objects. These objects may be entities or subsystems of the

real-world system of interest. Alternatively, they may be conceptual entities

that, when instantiated, will assume the role of variables within the scenario

model, thus representing significant properties of the system. The relations

that exist between objects represented by the participants are defined by the

conditions in the model fragments.

An example of model fragment JS gJVen m figure 2.2. This fragment

applies to population P. If applied, it introduces two new target-participants

to the scenario model: the biomass B of the population and an intrinsic-rate­

of-increase R of the population. The implication that is formalised by this

model fragment is that, if B, which defines population size, is greater than

0 and the growth-phenomenon of P is modelled, then the rate of increase of

size P at time t (dB/ dt) is equivalent to the multiplication R * B (\lackenzie

et al., 1998).

2.2 Ecological modelling

In this work, ecological modelling, particularly population ecological mod­

elling, is used as a testing domain for the implemented conversion technique.

10

Subject Participant (s)

Source-participant(s) P

Structural condition(s) population(P)

Target-participant(s) B,R

Operating condition(s) B > 0

Assumption(s) consider(relevant (growth(P)))

Post-condition(s) biomass(B,P)

intrinsic-rate-of- increase (R, P)

dB/dt = B*R

Figure 2.2: Model fragment to define population growth phenomenon

11

Two ecological domain theories, one designed with the system dynamics mod­

elling paradigm, and the other with the object-oriented modelling paradigm

are utilised for this purpose. As population ecology is a broad subject by

itself, and consists numerous phenomena of interests which are possible to

be modelled, this section briefly decribes the phenomena that this work will

focus on. In the next two subsections, the description of the two modelling

paradigms used is given.

Colinvaux (1986) defines population as a group of organisms of the same

species, coexisting at the same time and place and capable for the most part

of interbreeding. In this work, two ecological phenomena involving popula­

tion, namely population growth phenomenon and predation phenomenon are

examined.

Models of population growth are basically derived from two theoretical

point of views (Mackenzie et al., 1998). Density-independent or exponen­

tial population growth is described by a continuous population model where

growth is unlimited, and expressed in terms of the rate of change in popula­

tion numbers at time t :

Rate of change of population = Intrinsic rate * Population
size at time t of increase size

The above equation is represented with the following simplified notation;

d:;: = T * N.

On the other hand, the density-dependent growth, which is also termed

as the logistic equation, describes the growth of a simple population in a

confined place, where resources are not unlimited. The population increases

geometrically until the maximum number of individuals, that the environ­

ment can sustainably support, is approached. The maximum number is called

the carrying capacity (K). The population growth rate declines to zero as the

population becomes more crowded and the population size stabilizes. This

can be described as the logistic equation:

12

Rate of change of = Intrinsic * Population * Density
population size
at time t

rate of
increase

size dependent
factor

The above equation is represented with the following simplified notation;

d:: = n N(1 - f?J.
where the density-dependent factor (1- f?J approaches zero as the pop­

ulation growth approaches the carrying capacity.

Predator is defined as an organism that uses other life organisms as an

energy source and, in doing so, reduces the prey individuals from the ecolog­

ical system (Colinvaux, 1986). Therefore, the predation of the predator on

the prey is one of the crucial aspects that have to be considered in modelling

the growth phenomenon on both populations. A variety of models have been

developed to explore predator-prey dynamics. The Lotka-Volterra predator­

prey model is a simple yet valuable example, and the following equations

describe the growth rate of the prey and predator populations:

dd~ = r * X - (J * X * Y)

d}; = f *X * Y - (z * Y)

where

• X and Y respectively are the prey and predator population size

• r - intrinsic growth rate of the prey

• z - mortality rate of the predator

• f - interaction coefficient giving the feeding rate of the predator on the

prey

The Holling-Tanner model (Holling, 1965), is another variation of the

Lotka-Volterra predator-prey model. In the basic Lotka-Volterra predator­

prey model, the predation rate, i.e. the number of prey consumed per unit

13

time per predator, is directly proportional to prey density. This relationship

is known as the predator functional response f(N), and there is no saturation

or upper limit of predation and no account is taken on the effect of predator

density on predation. Therefore, it allows for a situation where predation can

increase irrespective of how low the predator numbers are. Hence, in order

to make the model more realistic, an upper limit on the predation function is

imposed, which is known as the Holling's disc equation. This Holling-Tanner

model presents a limited prey and predator population grovrth, together with

the Holling disc equation, as a functional response of predation rate to prey

density. The equations of this model are as follow:

dX = r *X* (1 _ "-) _ w•X•Y
dt K Y+X

~'; = f *X * (1 - b~"<)

where

• X and Y respectively are the prey and predator population size

• r - relative growth rate of the prey

• f - relative grov:th rate of the predator

• K - carrying capacity

• b - number of prey required to support each predator at equilibrium

• w;~;(- Holling disc equation, where w is a constant representing max­

imum rate of predation

Begon et al. (1996), Colinvaux (1986) and Mackenzie et al. (1998) provide

more elaborate description on these models of population ecology.

14

2.2.1 Ecological modelling with system dynamics

A most common modelling paradigm used in ecology is system dynamics

(Forrester, 1961). In system dynamics, the phenomena of interest are repre­

sented as levels and flows between them. The change in the level's unit over

time is equal to the total of inflows minus the total of outflows. Additional

variables and influences describe the relation between the levels and flows.

As such, system dynamics provides an interface to modelling with differential

equations and allows features of other paradigms to be integrated (Robert­

son et aL 1991). The following scenario, based on the work of Keppens and

Shen (2000), is used in order to illustrate the system dynamics approach to

ecological modelling:

population(predator) II population(prey) II f eeds(predator, prey)

It describes a world consisting of two populations - a predator population

that feeds on the prey population. In the given scenario, various phenomena

can be considered. For instance, reproduction within both populations and

the predation behaviour of the predator with respect to the prey population

might be of relevance.

Many models of these different phenomena exist. Consider the predation

phenomena involving prey, of which figure 2.3 shows one possible model. In

addition, a growth phenomenon conceptualising changes in population size is

necessary for both populations. This is because predation affects the change

in the level of the prey population since predation kills prey, as well as the

change in the level of the predator population since the total amount of

available prey affects the sustainable population.

Referring to figure 2.3, the growth phenomenon is represented by a level,

an inflow and outflow for both populations. In the given case, a simple

linear reproduction model is used which is limited by a maximal sustainable

population level. The capacity of the predators depends on the predation

15

/
• birthrate

[] ''"'
~(Y) 0 io<lowlo"'<low Prey • co controlled by 1<1le of change ':r-7------,w ,

~muomwd [3
food..ru.maud 0

consumpuon

Predator~~

o::,, '--. ~;omwd

lnfume source/sink of flows

endogenous vari~ble

e~ogenous ''ariable

intluence,
controlmfor~ru~tion flow

Figure 2.3: System dynamics model of predation

behaviour and the available prey. The total consumed prey by the predator

is added to the total outflow of prey. This description is represented in figure

2.3 by variables and influences between them.

2.2.2 Ecological modelling with object-oriented

Object-oriented models consist of objects with complex internal dynamics

which interact with each other. The interaction among these objects are

determined by rules, in form of methods or procedures, constructed based

on the properties of each object. The most essential concept in the object­

oriented modelling paradigm is the concept of class, which describes both the

structure of an object and a set of methods or procedures for initialising and

using it (Booch, 1994). Inheritance is another important concept based on

a hierarchical structure which allows a class defined in the lower level of the

hierarchy to inherit all the attributes and methods of the other class or classes

above it (Martin and Odell, 1992). Inherited methods can be redefined to

suit the structure and purpose of the individual class. Thus, an additional

16

control for manipulation of local attributes might be possible.

To illustrate the object-oriented approach to ecological modelling, the

scenario of section 2.2 is reused.

Based on the given scenario, the representation of individual populations

1s achieved through the definition of classes, and the interaction between

populations is imposed through the definition of methods within each class.

The first task is to define the Population class which will become the basic

building block for the model. Populations can be characterised by attributes

such as Biomass and Derivative (Silvert, 1993). Biomass refers to the total

quantity or weight of organism in a given area, and it is necessary to include

Derivative in the class definition to enable objects of this class being used

in a model based on first-order differential equations. Thus, it is possible to

model the changing of any values over time.

Though each type of population is unique, there exists many similarities

between them as all populations are descended from a common ancestor, and

differences arise as we move down the family tree. Thus, different classes of

population (i.e. Predator, Prey) can be treated as descendants of a com­

mon ancestor, Population, which means they inherit all the attributes and

methods defined in Population. Those particular features which make them

distinct from each other are defined in the class itself (Silvert, 1992). In

some cases, a population has different roles, for instance. the population is

a predator and at the same time a competitor. This new specialised role

as a competitor can be introduced as a new class. therefore, a new set of

attributes and methods associated with this competitor class need to be de­

fined, which can be used to establish a relationship with the other defined

classes.

In figure 2.4, there are three classes of objects: the basic Population class

and two derived classes, Prey and Predator. Prey and Predator inherit all

the attributes assigned to Population namely Biomass and Derivative, as well

17

as its methods. In each of these subclasses, the Grow method is redefined

to allow customisation in calculating the Biomass growth for each of the

individual class, since these two populations are functionally different - for

example while the predator is subject to a constant mortality, the prey might

have to consider the grazing factor of the predator, in addition to the other

natural and endogeneous factors. Furthermore, the Eat method is defined in

the Predator class to represent the predation behaviour of the predator on

the prey.

This object-oriented model of predation corresponds to the familiar Lotka­

Volterra model on predator-prey system. Depending on the asserting as­

sumptions and given scenario, various aspects of population growth phe­

nomenon, such as the exponential-growth or logistic-growth might be able

to be modelled. The conceptual overview of this object-oriented model on

ecological predation phenomenon is given in figure 2.4. The detailed imple­

mentation, written in the C++ programming language syntax is provided in

figure 2.5 and 2.6. Type declarations, class constructors and destructors, and

other parts of the code have been omitted for brevity, and all the attributes

are treated as public, in which they are accessible from outside the class. This

detailed implementation follows the work of Silvert (1993) on object-oriented

ecological modelling, which was written in the Turbo Pascal programming

language.

2.3 Summary

In this chapter, an overv1ew of the compositional modelling technique is

given. It covers the processes involved in this technique and a certain design

aspects of the domain theory used by the technique. The proposed con­

version technique is applied to the ecological modelling domain, therefore,

the ecological phenomena that this work will focus are also described. This

18

chapter also contains a description of the two ecological modelling paradigms

intended to be used as a testing platform. They are ecological-modelling with

systems dynamic and object-oriented modelling paradigms.

Class : Prey extends
Population

Attributes:
Growth

Methods:
Procedure Grow

Base class

Class : Population

Attributes:
Biomass, Derivative

Methods:

Procedure SetMass (Value)
Procedure Change (Amount)
Procedure Grow

Class : Predator extends
Population

Attributes:
Appetite, Mortality

Methods:
Procedure Grow
Procedure Eat (Victim: Prey)

Figure 2.4: Conceptual overview - Object-oriented model of predation

19

class Population {

Biomass, Derivative;
Setmass(NewValue);
Change (Amount);
Grow ();

};

//this is the base class

//attributes
//method for setting Biomass
//increment the Derivative
//redefined for each class

class Prey public Population { //descendant class

Growth;
Grow ();

};

//growth parameter attribute
//redefined for each class

class Predator public Population {//descendant class

Appetite, Mortality;
Grow ();
Eat (Prey : Victim)

} ;

//attributes
//redefined for each class
//predation behaviour

Figure 2.5: Class definition of an object-oriented model

20

Population: :SetMass (NewValue)
{ Biomass = NewValue;

Derivative = 0.0;
}

Population: :Change (Amount)
{ Derivative =Derivative +Amount; }

Population: :Grow ()

Prey: :Grow ()
{ Change(Growth*Biomass); }

Predator: :Grow ()
{ Change(-Mortality*Biomass); }

Predator: :Eat (Prey Victim)
{ Victim.Change(-Appetite*Biomass*Victim.Biomass);

Change(Appetite*Biomass*Victim.Biomass);
}

Figure 2.6: Class implementation of an object-oriented model

21

22

Chapter 3

Theory

3.1 General overview of conversion technique

Through the proposed conversiOn technique, models from one modelling

paradigm are converted to another, by means of a pair equivalent compo­

sitional modelling domain theories. Referring to figure 3.1, the proposed

conversion technique can be viewed as an external process, which is only

applicable once the model formulation task on Domain theory I is completed

successfully. The generated output of this completed process is then fed to

the proposed conversion technique as an input. From now on, Domain theory

I is referred to as the source domain theory and Domain theory II is referred

to as the target domain theory.

Though there exist a number of model formulation frameworks in compo­

sitional modelling, for the purpose of this project, compositional modelling

algorithm developed by Falkenhainer and Forbus (1991) is adopted within the

project. This framework uses explicit modelling assumptions to decompose

domain knowledge into semi-independent model fragments, each describing

various aspects of objects and physical processes. Since one of the important

parts of the proposed conversion technique focuses on the manipulation of

23

Domain
theory I

Scenario description Task specification

•..... j l ' ;;;:.:;:'""
I 1

~~ Model fragment 1

:1 Inference .. selection :
' '~L__------.--------'

Model
Revision

' ' I

' ' !
Model
Composition

!
I

' 1 Problem

• • • • ~~:;,,. Tc__s_o_l_v_er_,~_..J

Domain
theory II

Conversion
technique

Figure 3.1: The proposed conversion technique, and its relation to the generic

architecture of compositional modellers

modelling assumptions, the compositional modelling framework of Falken­

hainer and Forbus (1991) naturally complements this requirement.

Therefore, for this project, it is assumed that the compositional modelling

process of the source domain theory is performed through this framework.

The model formulation task of this framework is to select a suitable set of

modelling assumptions. This set of consistent, ground assumption is called

the modelling environment, from which a sufficient scenario model is derived

as the final output. A brief description on the modelling environment and

assumption classes are provided in the next two subsections.

24

Referring to figure 3.1, from the box which represents the conversion

process, there is an explicit arrow that points back to the source domain

theory. This arrow is used to indicate that a converted compositional model

should be able to be translated back to its original scenario model by utilising

the same conversion technique. In a way, this suggests that the proposed

conversion technique should work in a bidirectional manner. A discussion on

this feature is provided in section 3.5.

3.1.1 Modelling environment

In Falkenhainer and Forbus (1991), a detailed description on modelling as­

sumptions, which constitute the modelling environment, is given. These

assumptions, usually embedded within the model fragments, provide control

over the fragments' instantiation and use, so that only the relevant aspects

of a situation are examined. With reference to the model fragment definition

in section 2.1.2, assumptions are used to represent specific features that are

included in the associated model fragments. For example, assumptions may

indicate the inclusion of certain phenomena or distinguish between alterna­

tive ways of modelling these phenomena.

In their work, explicit simplifying assumptions to state each model's un­

derlying commitments (e.g. abstraction level, approximations, perspective,

and granularity) and the conditions under which they are appropriate are

introduced. The problem solver's decision about how to model a particular

scenario is largely driven by this type of assumption.

Simplifying assumptions are required to take the form of:

CONSIDER(AsyType(system))

where Asytype is a predicate denoting the specific kind of assumption,

while system is the subject of the assumption. Therefore,

CONSIDER(relevant(growth(Penguin : population)))

25

indicates that the subject of the assumption is the growth phenomenon

of an entity of type population (e.g. Penguin), which needs to be considered

in the model formulation analysis.

The described assumptions are essential in the conversion process as they

provide the necessary information of the scenario descriptions and modelling

decisions. Therefore, they can be utilised in the selection process of model

fragments, given the target domain theory.

3.1.2 Assumption classes

The possible modelling assumptions for a domain can be described as some

collections of assumptions represent mutually exclusive, alternative ways to

model the same aspect of an object or phenomenon. In order to represent

this important relationship, some assumptions are organised into sets called

assumption classes, which is crucial in this work. Assumption classes, which

are part of a domain theory, represent natural groupings that can be rea­

soned about as a whole, such as the alternative ways to model the same

aspect of an object phenomenon. An assumption class captures one dimen­

sion along which a modelling choice must be made. For example, the growth

phenomenon of a population can be modelled as either exponential or lo­

gistic in terms of the growth rate. :-Jot all dimensions are relevant in all

contexts. Therefore, a condition is required to state when an assumption

class is relevant. For instance, the Holling-Tanner model of predation will

only be relevant if the logistic population growth rate is considered for the

populations involved in the predation relationship.

Assumption classes are declared with the form:

(defAssumptionClass c(a1 , ... , an))

where condition c is an atomic sentence containing (possibly empty) set of

free variables v and (a1, ... an) is a mutually exclusive set of atomic sentences

26

(e.g. CONSIDER statement) whose free variables, if any, must be from v

(Falkenhainer and Forbus, 1991). It is logically equivalent to:

An assumption class is considered active when c holds. Any scenano

model must include exactly one assumption from each active assumption

class. Inactive assumption classes are ignored, and none of their constituent

assumptions are included. Intuitively, when the class condition holds, one

and only one of the assumptions associated with that class must hold in the

scenario model.

27

3.2 Technique overview

Model Conversion

Modelling ~ Model fragment I
environment selection

Model composition

Model building

-------- -------------

Scenario model in different

paradigm

Target
domain
theory

Figure 3.2: Overview of processes involved in the proposed conversion tech-

mque

Figure 3.2 presents a generic architecture of the proposed conversion tech­

nique. Initially, the modelling environment, which io produced as part of the

output of the composition process on the source domain theory, becomes an

essential input fed to the conversion process.

Given a set of modelling assumptions, all the relevant model fragments of

the target domain theory are selected in the model fragment selection stage.

However, it is not necessarily a one-to-one mapping between fragments of

the two domain theories. It might be the case that a model fragment in one

domain theory covers parts of several model fragments in the other domain

28

theory.

Though the provided modelling environment is adequate and consistent

with respect to the source domain theory, the assumptions derived from the

selected model fragments of the target domain theory need to be validated

with respect to their adequacy and consistency. Therefore, in the model

composition stage, adequacy and consistency checking are performed.

As the target domain theory is designed based on a different modelling

paradigm, it is expected that certain choices of a set of assumptions might

raise new choices in turn. Therefore, in adequacy checking, an adequate set

of assumptions, capable of generating the intended scenario model from the

target domain theory is searched . Consistency checking is then performed

to determine whether the underlying assumptions of this selected set are

compatible with one another. Deletion or substitution of assumptions of this

set may be required to repair consistency. Once an adequate and consistent

set of modelling environment of the target domain theory is obtained, this

set is passed to the model building process. This set is then utilised to build

a sufficient scenario model. Throughout the conversion process, the target

domain theory is accessible by each stage of this process.

3.3 Model fragment selection

In the model fragment selection stage, the relevant model fragments, in­

tended to be utilised to build up the scenario model are chosen, by means of

the provided modelling environment of the source domain theory. Assuming

that both domain theories rely on the same syntax and naming convention in

specifying their underlying assumptions, each assumption in the modelling

environment set is pattern-matched with the assumption construct of the

defined model fragments in the target domain theory. The pattern matching

process is focussed specifically on the type and subject of each assumption.

29

For each such collection where the assumption type and subject of the model

fragments matched the provided modelling environment, it can be said that

the model fragment is applied to the scenario to be built. The model fragment

is selected and the corresponding assumption object is then used to instan­

tiate the assumption and the source participants construct of this selected

fragment. The whole matching process terminates once all the assumptions

in the given modelling environment have been evaluated. The formal nota­

tion of this whole process can be described as follows:

Given a modelling environment, E = { a 1, ,an}, a model fragment def­

inition !Lis a tuple< P',P',C',C0 ,C',A >with A(!L)={a, ,a,}, and a

database construct D = empty. Then,

FOR each ai E E, i = l..n in the modelling environment A='ID each !L in

the target domain theory

If A(!L) MATCHED any set of ai E E AND !Lis NOT SELECTED yet

THEN

• SELECT !Land USE object of ai E E to IKSTANTIATE corresponding

A(!L)

• ADD to 1::,

Once the whole process is completed. the database construct, containing

the relevant fragments of the target domain theory, is passed to the next

process.

30

3.4 Model composition

Having derived a model space, which consists of related model fragments

intended to model a certain scenario, composing individual models from these

model fragments is possible. The task of composing a model from these

selected model fragments becomes a trivial process if there exists a one­

to-one mapping between corresponding model fragments of the two domain

theories. However, this may not be the case. Therefore, the task of model

composition becomes more complicated, especially in searching for a sufficient

and consistent set of model fragments from which the intended scenario model

can be deduced.

One approach would be to explicitly reason about combinations of model

fragments to ascertain which set are consistent and sufficient. However, there

can be many combinations, involving many irrelevant model fragments. A

better alternative is to reason about combinations of modelling assumptions,

as each model fragment is conditioned on a set of modelling assumptions

stating their range of applicability and underlying approximations.

Therefore, reasoning will focus on choosing among the set of possible

modelling assumptions, which enable a corresponding set of model fragments,

rather than reasoning about each model fragment individually. The task of

selecting consistent and sufficient modelling assumption then can be cast as

a Dynamic Constraint Satisfaction problem (DCSP).

3.4.1 Dynamic Constraint Satisfaction problem (DCSP)

A constraint satisfaction problem (CSP) is typically defined as the problem

of finding consistent assignment of values to a fixed set of attributes given

some constraints over these attributes.

The simplest of constraint satisfaction problem (CSP) can be generally

specified as triplet <X, D, C >where X is a set of attributes {X1, , Xn},

31

D is a set of domains {D1, ... , Dn} describing the potential values of the

attributes and C is a set of constraints relating some of the attributes. Each

attribute x, E X must be assigned a single value d E D,, and such attribute

assignment will be denoted as x,: d. Each c(x,, ... , x1) E C specifies a subset

of De of D, x ... x D1 such that V(d,, ... , d1) E De, C(d,, .. , d1) is consistent with

C. The purpose of solving a CSP is to find a tuple (d,, ... , dn) such that the

attribute assignment x1 : d1, ... , x, : d, causes all constraints in C to hold.

However, for many synthesis tasks such as configuration and model com­

position, the set of attributes that are part of the CSP changes dynamically

in response to decisions made during the course of problem solving (Niittal

and Falkenhainer, 1990). Therefore, as CSPs are not sufficiently equipped to

cater for features that can be dynamic in nature, which are frequently present

in real-world problems, dynamic CSP (DCSP) is required. DCSP uses two

types of constraints, namely activity constraints and compatibility constraints.

Compatibility constraints correspond to those traditionally found in CSPs,

the constraints over the values of an attribute. Activity constraints, on the

other hand, describe conditions under which an attribute may or may not be

actively considered as part of the final solution. These constrain an attribute

to be active or not active based on the other attributes' activity and value

assignment.

Similar to the work presented in :VIittal and Falkenhainer (1990) and

Keppens and Shen (2000), this task requires the handling of DCSPs in which

the set of relevant attributes is defined by other attributes. In order to solve

such CSPs, active predicates are introduced such that:

Vx, EX : active(x,) <--> Vd E D;x, : d

From this it follows that •active(x,) implies that no attribute assignment

is considered for x,. The compatibility constraint c(x,, ... , x1) is translated as

c(x,, ... , x1) V •active(x,) V ... V •active(x1). As a result, the determination

32

of the truth of an activity predicate implicitly results in a set of constraints

as well. Activity constraints come in the form of implications where the

consequent consists of literal containing the activity predicate of one of the

attributes. Niittal and Falkenhainer (1990), Miguel and Sherr (1999) and

Verfaillie and Schiex (1994) provide more elaborate description on DCSP,

from which the model composition stage of this work is based on.

3.4.2 DCSP for model composition

In the model composition stage, the DCSP framework is used to express and

solve the problem of searching a set of adequate and consistent modelling

assumptions. Therefore, in this subsection, an overview on how the problem

is defined into a DCSP is given. The next subsection will then show how

simple repair and choose techniques can be added to such DCSP and explain

how these aid in guiding the search for a consistent model.

Each assumption class of the domain theory can be used to represent

a DCSP attribute, and its domain is the set of assumptions defined within

that class. For instance, as illustrated in table 3.1, each assumption class in

this table, which corresponds to a certain aspect of a population ecological

phenomena, can be used to represent a DCSP attribute. The corresponding

assumptions within a particular assumption class indicate a set of possible

domain values, which might be assigned to a selected DCSP attribute.

Assumption class Domain

Growth-relevance {growth-phenomenon}

Growth-model {exponential, logistic}

Predation-model {Lotka-Volterra, Holling-Tanner}

Table 3.1: Table of assumption classes and its corresponding domain

A set of minimal required modelling assumptions, derived from the model

33

fragments selected via the model fragment selection stage. can be used to

identify a DCSP's initial attribute. In this work, the dynamic constraint

satisfaction task is to extend this initial attribute set to include any addi­

tional assumptions which might be required, in order to build the intended

scenario model, given the modelling paradigm construct of the target domain

theory. Activity and compatibility constraints, defined around the assump­

tion classes of this modelling paradigm, allow an adequate and consistent set

of modelling environment to be obtained at the end of the process. Activity

and compatibility constraints, which are applied to the attributes defined in

table 3.1, are illustrated in table 3.2 and 3.3.

Activity constraints

Predation-model requires Growth-model

GrO\vth-model requires Grov:th-relevance

Table 3.2: Table of activity constraints

Compatibility constraints

Predation-model= Holling-Tanner ~ Growth-model f exponential

Table 3.3: Table of compatibility constraints

3.4.3 Simple choose and repair techniques

Activity constraints define the conditions under which attributes are active

or not active. Given an initial set of attributes, obtained from the model

fragments which have been selected via the model fragment selection stage,

any new attribute which becomes active, due to the application of the ac­

tivity constraints on this initial set of attributes. is then added to this set.

34

Therefore, the initial set now consists of new attributes, which might be

assigned or unassigned to a set of corresponding domain values.

A simple choose technique, integrated into the DCSP, then repeatedly

selects an attribute from the set that is unassigned and assigns a possible

value to it. If the assignments cause some constraint violations, an attempt

to repair the current set of assignments to resolve the inconsistencies is per­

formed. The repair technique works by unassigning the subset of the assigned

attributes that is perceived to have caused the inconsistency, and attempt­

ing to reassign values to them such that all constraints are satisfied. This

assignment involves replacing the identified assumption value which causes

inconsistency with another value from the same assumption class. However,

the application of the repairs has to be limited to the newly added attributes.

Any attempt to change the assignment of the initial attributes might alter

the modelling descriptions and decisions obtained from the source domain

theory.

For example, consider the task of determining an appropriate set of mod­

elling assumptions for analysing the growth phenomenon of two populations

involved in a prey-predator relationship. based on the DCSP definitions pro­

vided in table 3.1, 3.2 and 3.3.

In this example, it is assumed that the initial attribute set, consists of Vr =

{ Predation-model= Holling-Tanner, Growth-relevance= growth-phenomenon}

is given to the process. For simplicity, an instantiation of each population is

omitted. It is also assumed that the predation phenomenon only involves a

single prey and predator populations.

Given the activity constraints, the initial set is extended to include the

Growth-model attribute. After this extension, Vr = {Predation-model=Holling­

Tanner, Growth-relevance=growth-phenomenon, Growth-model} is obtained.

An assignment of exponential value to the Growth-model attribute by the

choose technique, causes a compatibility constraint violation. The simple

repair technique then performs a repair on this set of assignment to resolve

the inconsistency by replacing the value assigned to the Growth-model at­

tribute with another value from the same assumption class (i.e. logistic).

Therefore, a set of consistent assignments Vr = {Predation-model=Holling­

Tanner, Growth-relevance=growth-phenomenon, Growth-model= logistic} is

obtained, and a coherent and parsimonious scenario model is derivable from

this modelling environment.

3.5 Model building

In the model building process, the consequents of the model fragments, which

are conditioned on the modelling environment generated by the model com­

position phase, are organised in a scenario model form, tailored to the mod­

elling paradigm framework of the target domain theory. For instance, given

a target domain theory, designed based on the object-oriented modelling

paradigm, a model fragment of this domain theory, which is conditioned on

the Growth-relevance=growth-phenomenon assumption may assert the exis­

tence of a class object, and all the relevant attributes and methods to rep­

resent the population. Another model fragment which is conditioned on the

Growth-model=logistic assumption may assert the existence of the logistic

growth attributes, defined within the asserted population class construct.

The corresponding methods to manipulate these attributes are also asserted.

Eventually, a complete scenario model might be obtained by combining and

organising these assertions in a specified form, based on the object-oriented

modelling paradigm.

Therefore, in this work, the model building process can be viewed as an

"organise and display" mechanism, which allows the different consequents of

the selected model fragments to be combined into a solid scenario model form

that corresponds to the modelling paradigm of the target domain theory.

36

3.6 Bidirectional conversion

In this work. the focus is on the unidirectional conversion process, in which

the main task is to convert the compositional model of the source domain

theory to the target domain theory. :'-I onetheless. in reality, the proposed

conversion technique should work in both directions. Once converted, the

scenario model produced within the target domain theory should be able to

be translated back to its original source domain theory paradigm by utilising

the same conversion technique. This whole process, which can be termed as

the bidirectional conversion process. can be viewed as a partial cycle and the

illustration is given in figure 3.3. In the figure, the model building process is

omitted, since it does not significantly influence the whole conversion process.

A

H

I
Model
composition

G

8

Mode! fragment
se!ecuon

D

Model fragment
se!ecuon

F

c

Model
composnion

A-modelling environment
of the source domain theory

8-model fragment librarv
of the target domam theory

C-selected fragments
of the target domain theory

D-scenario model within the
target domain theory paradigm

E-modelling environment
of the target domam theory

F-model fragment libr;uy
of the source domain theory

G-sclected fragments
of the source domain theory

H-scenario model Wlthin the
source domain theory par.:1digm

Figure 3.3: The bidirectional conversion process

Initially, a set of relevant model fragments which corresponds to the given

37

modelling environment of the source domain theory is searched within the

model fragments library of the target domain. The selected model fragments

are then passed to the model composition phase, in which an adequate and

consistent set of modelling environment, to enable the model building pro­

cess within this new modelling paradigm is further searched. Therefore, as­

suming that the model composition task on this new modelling paradigm is

completed successfully, the generated modelling environment of this process

could be fed back to the conversion technique in order to derive the sce­

nario model of the initial modelling paradigm. For this task, another cycle

of model fragment selection and model composition processes are applied, as

illustrated in figure 3.3.

However, within the limited time, it IS not possible to implement this

feature.

3.7 Summary

In this chapter, a description on the theoretical design of the proposed con­

version technique, with the stages involved in the conversion process, is given.

The conversion process basically consists of three subprocesses, namely model

fragment selection, model composition and model building. In the model frag­

ment selection stage, the corresponding model fragments of the target domain

theory are selected by means of the provided modelling environment of the

source domain theory. The adequacy and consistency of the assumptions

of these selected and instantiated model fragments are then determined in

the model compositzon stage. In this stage, the DCSP framework is used to

express and solve the mentioned task. A simple choose and repair techniques

are then integrated into the DCSP, which allows the reassignment of an

attribute value that causes inconsistency with a new value from the same as­

sumption class. In the model building stage, the different consequents of the

38

selected model fragments are combined into a solid form of a scenario model,

which corresponds to the modelling paradigm of the target domain theory.

Though a major part of this work is focused on a unidirectional conversion

process, in the real system, the conversion should work in both directions.

Therefore, this chapter also provides a discussion on the theoretical aspect

of a bidirectional conversion process.

39

40

•

Chapter 4

Design and Implementation

4.1 Knowledge representation

The domain theories used in this work largely consists of a model fragment

library, which is a collection of predefined model fragments. These model

fragments are designed based on the definition described in section 2.1.2.

The representation of model fragments in this work conceptually follows

the general framework of the Compositional Modelling Language (CiviL) (Bo­

brow et a!., 1996). However, since the C++ programming language is used

in designing and implementing the fragments constructs, certain syntacti­

cal difference is necessary in order to accommodate the chosen language of

implementation.

In Keppens and Sherr (2000), a knowledge representation framework is

devised that supports ecological modelling within the system dynamics mod­

elling paradigm. For this project, this devised framework is used as a source

domain theory, from which the modelling environment is obtained.

For the target domain theory, a knowledge representation framework

which supports an object-oriented modelling paradigm is required. Since

there is no existing domain theory of compositional ecological modelling

41

which utilises this particular framework, the task of designing and imple­

menting a domain theory in this paradigm is required. In the next subsection,

an overview of Keppens and Shen (2000) work, especially on the assumptions

design is given. Following this subsection, a detail overview on the design

and implementation aspect of the target domain theory is illustrated.

4.1.1 Assumptions design of system dynamics paradigm

A large part of this model conversion work focuses on assumptions manip­

ulation, where a set of adequate and consistent assumptions to enable the

building of a scenario model is searched. Therefore, assumptions design be­

come an important aspect of the knowledge representation. Keppens and

Shen (2000) introduce two types of assumptions in their system dynamics

framework. The first type of assumption is relevance assumption, denoted as

relevant(h, p1 , ... , pq), states that the associated model fragment describes

a phenomenon h, which applies to the participants Pi, ... ,f!j· Consider, for

example the model fragment:

population(p) 1\ relevant(growth(p)) ----+ level(I) 1\ unit-of(/,population) 1\

rate(r) 1\ size-of(p,l) 1\ flow(r,source-sink.l).

This fragment introduces all objects that are required to represent the

phenomenon growth(p): the growth rate r and the population level I, which

represents the size of p, and the relation between them, flow(r,source-sink, l).

Another type of assumption is model assumption, denoted as model(8, t),

states that the associated model fragment represents the source participants

or structural condition 8 in a specific way described by t. Such assumptions

are used to distinguish between different ways of describing (or explaining)

objects constants or relations between object constants. Consider, for exam­

ple the model fragment:

42

rate(r) 1\ level(I) 1\ unit-of(/,population) 1\ flow(r,source-sink, I) 1\

model(r,exponential) ~ birth-rate(r0) 1\ (r = r 0 * l).

This fragment contains the "exponential" model type for the number of

births per time unit r of a population (being r = ro * l).
Assuming that the model formulation task on this domain theory is com­

pleted successfully, a set of adequate and consistent modelling environment,

in the form of these two modelling assumptions, is obtained. This modelling

environment is then fed to the proposed conversion technique.

4.1.2 Design and implementation of object-oriented paradigm

For this work, a knowledge representation framework that supports an object­

oriented modelling paradigm needs to be designed and implemented. Since

there is no existing compositional domain theory of ecological phenomena

that supports this devised paradigm. Silvert (1992) works on the object­

oriented modelling of population ecology are translated into compositional

modelling model fragments.

As described in section 2.2.2, object-oriented models are basically char­

acterised by objects known as classes. attributes and methods. Therefore, in

the design of the model fragments, these objects become the necessary par­

ticipants of the fragments. In addition, these fragments are designed based

on the ecological phenomena described in section 2.2. Consider an example

of a model fragment which utilises an object-oriented modelling paradigm as

the following:

population(p) 1\ relevant(growth(p)) _____, class(a) 1\ class-of(a,p) 1\

biomass(b) 1\ derivative(d) 1\ attribute-of(b, a) 1\ attribute-of(d, a) 1\

set mass(s) 1\ change(c) 1\ method-of(s, a) 1\ method-of(c, a)

This fragment introduces all objects that are required to represent the

phenomenon growth(p). The class a of type population, two attributes that

43

characterised the class; biomass b and derivative d, two methods; setmass s

and change c to manipulate these attributes, and also the relations between

them. The implementations to manipulate the class and attribute partici­

pants are integrated within the defined methods.

Syntactically, the assumptions of these two domain theories have to be

similar, therefore, the assumptions of the target domain theory are designed

based on the notations specified in the source domain theory (i.e. relevant

and model). Since the ecological phenomena covered by this work is quite

limited, it is possible to design a one-to-one mapping between correspond­

ing fragments of these two domain theories, however, such attempt definitely

defeats the purpose of developing this conversion technique and does not por­

tray the actual situation of model fragments design, involving two different

modelling paradigms.

Besides the phenomena described in section 2.2, the scope of the target

domain theory is purposely extended to include a fragment which explicitly

introduce an intrinsic natural rate of increase for a population. Consider, for

example, the following fragment:

population(p) 1\ class(a) 1\ class-of(a,p) 1\ intrinsic-natural-rate-of-increase(r)

1\ attribute-of(r,a) 1\ model(r,closed) ---> birth-rate(ra) 1\ attribute-of(r0 ,a)

1\ generation-time(T) 1\ attribute-of(T,a) 1\ (r=lfhl)

This fragment contains the "closed" model type of assumption for the

population intrinsic natural rate of increase (being r=lolro)). In this type

of population, no immigration or emigration occurs. The other alternative

would be the "open" population (Mackenzie et al., 1998).

The implementation for each fragment is defined through the structure

called a struct in C++, which forms a shell around one or more values of the

same or different types (Swan, 1999). Each specific part of the fragment then

44

IFX

A set of modelling
envtronment

IF MATCHED?

ASSIGN
TOV

V - Database construct to hold
matched element.

X - There exists dement which
is not evaluated yet.

IF Y Y - All the elements have been

Selected model
fragments

matched.

Figure 4.1: Data flow diagram of the model fragment selection process

becomes the element of this structure. However. for ease of manipulation

and to easily manage each individual fragment, assumptions are the only

element explicitly defined within each fragment. The elements other than

assumption are defined in a separate database and a unique numerical value is

used to identify them. Each unique numerical value reflects the participant's

association with a particular model fragment.

4.2 Model fragment selection

The theoretical design of the model fragment selection process described in

section 3.3 is implemented. For this process, the flow of data is illustrated in

figure 4.1.

The input to this matching process consists of a set of modelling envi­

ronment, E = a 1, ... ,an and a database of model fragments, f.Lt, ... , /.Lk of the

target domain theory. The modelling environment input is in the form spec-

45

ified in section 4.1.1. Therefore, in the actual execution of the system, a text

file consisting the assumptions which correspond to E = a1 , ... , an is provided.

The assumption construct of each f.';, i = 1, ... k is matched with each a; E E

of the modelling environment. Any f.'; which matched with a;, in terms of

its type and subject, is selected and assigned to a vector, V. Providing that

this f.'; is not selected yet, or the instantiated object of ai is not similar to

the instantiated object of any existing vi E V, f.' will be added to a vector

of selected model fragments. The eventual output of this process is a vector

V, of model fragments, in which each vi E V is relevant to the scenario and

modelling decision described in the source domain theory. The algorithm of

this process is provided in figure 4.2.

The assumptions are represented as string of characters. Therefore, the

C++ programming language predefined standard library functions contained

in the header files string. h and string apply naturally to the matching pro­

cess. This is one of the important features which makes C++ a preferable

choice over the others to be used in implementing the proposed technique.

In addition, the author's competency in this language is another important

aspect which has influenced this decision.

Swan (1999), Sellappan (1994) and Lippman and Lajoie (1998) provide

more detailed description on these built-in C++ string functions and other

C++ features, which are largely utilised in this work.

46

Procedure fragment_selection (E,M)
BEGIN

M <--- Database of model fragments
E <--- Modelling environment
V <--- Empty vector construct
N <--- The number of element in M
K <--- The number of element in E

FOR i=l to N
FOR j=l to K

IF Assumption construct of i_th element of M
MATCH the j_th element of E AND

END

i) (i_th element of M is NOT assigned yet to V)

DR

ii) (the instantiated object
DO NOT MATCH
the instantiated object
of V)

THEN

ADD i_th element of M to V

END IF

END FOR
END FOR

RETURN V

of the j_th element of E

of any existing element

Figure 4.2: Algorithm of the model fragment selection process

47

Assumption class Domain

Grovrth-relevance {growth-phenomenon}

Predation-relevance {predation-phenomenon}

Growth-model {logistic, exponential}

Predation-model {Latka-Volterra, Holling-Tanner}

Intrinsic-rate-of-increase-model { open-population,close-population}

Table 4.1: Table of assumption classes and its corresponding domain

Activity constraints

1. Predation-relevance requires Growth-model

2. Growth-model requires Grmvth-relevance

3. Predation-model requires Predation-relevance

4. Growth-model requires Intrinsic-rate-of-increase-model=close-population

Table 4.2: Table of activity constraints

4.3 Model composition

The theoretical design of the model composition process described in section

3.4 is implemented. In the implementation stage, assumption classes of the

target domain theory need to be defined in a DCSP framework. In table

4.1, each assumption class of the target domain theory and its corresponding

domain values are defined. Each assumption class represents a DCSP at­

tribute. The activity and compatibility constraints that correspond to these

attributes are defined in table 4.1 and 4.2 respectively.

The model composition processes consists of two major subprocesses. The

first subprocess consists of a main propagate cycle in which the constraints

relevant to the initial problem statement are checked, and the consequences

and dependencies due to this constraints are propagated. A similar process

48

Compatibility constraints

5. Predation-model= Holling-Tanner ~ Growth-model ol exponential

6. Predation-model=Lotka-Volterra ~ Growth-model i" logistic

Table 4.3: Table of compatibility constraints

is applied to all derivable active attributes, until all relevant attributes are

identified.

Once this is complete, the second subprocess is applied. This second

subprocess consists of the integration of choose, propagate and repair steps.

Each choose step selects an active unassigned attribute and assigns it a value

that has not been ruled out. Each propagate step then checks the con­

straints relevant to the new attribute value assignment and propagates their

consequences and dependencies. Constraint checking is ordered to take ad­

vantage of the differing scope of each constraint type. Activity constraints

are checked first since they apply to attribute activity, encompassing all their

possible value assignments. Then, compatibility constraints are examined to

see if the new attribute assignment is consistent. If an inconsistency occurs,

a repair procedure is invoked that will unassign this value assignment and

replace it with a value that has not been ruled out. The algorithm of these

two subprocesses are provided in figure 4.3 and figure 4.4.

Once an adequate and consistent set of modelling environment is ob­

tained, this set is written into a text output file. This file becomes an es­

sential input fed to the next stage of the conversion technique, which is the

model building process.

49

Procedure first_subprocess_model_composition (Vi)
BEGIN

Vi
v

<--- A set of initial attributes
<--- Initial state - empty

Conflict? <--- false
error? <--- false
Ci <--- a particular constraint from the set of defined

constraints in the problem

Check all applicable activity and compatibility constraints on Vi
IF Conflict? == true

THEN return fail (initial problem statement is inconsistent)
V <-- Vi (Assigning element of Vi to V)

FOR each attribute vl of V

END

IF there is an active Require constraint Ci applicable to vl
run Ci, add new active attribute to V

ELSE IF there is an active Require-Not constraint Ci applicable
to vl then

run Ci, rule out new active attribute

END IF

END FOR

RETURN V

Figure 4.3: Algorithm of the first subprocess of the model composition stage

50

Procedure second_subprocess_model_composition(V)
BEGIN
Conflict? <--- false
error? <--- false

FOR each attribute vl of V not yet assigned a value

value(vl) <--- Choose(vl) (choose an assignment for vl)

Check all applicable compatibility constraints
on assignment

IF Conflict? == true
rule out assignment

DO
repair(value(vl)) <--- (new value assigned to vl)
check all applicable compatibility
constraints on new assignment

UNTIL all constraints are satisfied or error? -- true
END IF

END FOR

RETURN V

END

Figure 4.4: Algorithm of the second subprocess of the model composition
stage

51

4.3.1 Example trace

An example partial trace of the model composition algorithm, described in

figure 4.3 and 4.4, is provided in table 4.4. This partial trace is based on

the DCSP framework of the target domain theory described in table 4.1, 4.2

and 4.3. In this trace example, assume that an initial attribute set provided

to the algorithm is V1 = {Predation-model=Lotka-Volterra}. For simplicity,

the names of all attributes involved are shortened as shown in the following

legend:

Pr - Predation-relevance

Gr - Growth-relevance

Pm- Predation-model

Gm- Growth-model

Rm - Intrinsic-rate-of-increase

In the figure. the active attributes and value assignments are shown in

bold font, constraint propagation and value choices in italics, and explana­

tory comments in roman. A constraint propagation is represented as C;. in

which i is a numeric value referring to an individual constraint out of the six

constraints (i.e. 1-6) that have been defined in table 4.2 and 4.3.

52

Tracing example

Vi= {Pm=Lotka-Volterra}

C3 runs (requires make Pr active)

V = {Pm=Lotka-Volterra, Pr}

Cl runs (requires make Gm active)

V = {Pm=Lotka-Volterra, Pr, Gm}

C2 runs (requires make Gr active)

V = {Pm=Lotka-Volterra, Pr, Gm, Gr}

C4 runs (requires make Rm=close-population active)

V = {Pm=Lotka-Volterra, Pr, Gm, Gr, Rm=close-population}

choose Pr=predation-phenomenon

choose Gm=logistic

C6 runs (leading to a conflict, perform repair on Gm)

choose Gm=exponential

choose Gr=growth-relevance

V = {Pm=Lotka-Volterra, Pr=predation-phenomenon, Gm=exponential

Gr=growth-relevance, Rm=close-population}

Table 4.4: Tracing example

53

4.4 Model building

The theoretical design of the model building process discussed in section

3.5 is implemented and the process is centered on the task of transforming

the adequate and consistent set of modelling environment, generated by the

model composition phase, into an acceptable scenario model form, tailored

to the modelling paradigm of the target domain theory. To accomplish this

task, the consequents of each model fragment that is conditioned on this set of

modelling environment need to be selected and organised into an acceptable

predefined form.

As described in section 4.1.2, the participants of each model fragment

are defined in a separate database, and a unique numerical value is used to

associate each particular model fragment to the corresponding participants.

Therefore, in this model building process, the input to the process consists of

a database of model fragments participants, R1, ... , Rk, and a set of modelling

environment. E = { a1, ... , an}, which is obtained from the model composition

process.

For each a; E E which matched with R3 , j = l..k, in terms of R/s asso­

ciation with a particular model fragment, it is said that the model fragment

to which this participant belongs to, is conditioned on a,. Therefore, Rj

is selected and added to a vector, V,. This process is repeated until all of

a; E E has been evaluated. At the end of this process, a vector VP, which

consists of all the consequents of the model fragments which are conditioned

on the generated modelling environment is obtained. In order to display the

content of V,. the display procedure which is integrated within this process

has to consider the modelling paradigm of the target domain theory (i.e.

object-oriented modelling paradigm). The defined constructs of the mod­

elling paradigm (i.e. class, attributes and methods among others) need to be

considered, as different constructs have a different hierarchy of precedence.

54

For instance, it is not possible to define a particular attribute or method

which is associated with a class, unless this class has been defined first. In

fact, within the class itself, there exists a category of base and derived classes.

The algorithm of this model building process is provided in figure 4.5.

4.5 Actual implementation

In the actual implementation, the model fragment selection and the model

composition processes are combined as one application, and the model build­

ing process is set up as a separate application, which stands on its own.

However, in order to execute the latter application, it requires a text file of

modelling environment produced by the former application. The decision to

split these three processes into two separate C++ programs is due to the

following reasons:

• Unlike the other two subprocesses, the influence asserted by the model

building process on the model conversion task of this project can be

considered insignificant and very minimal. Its core objective is mainly

geared towards organising and displaying the consequents of the se­

lected model fragments into a scenario model form. Therefore, based

on this, it is appropriate to establish the model building process as a

separate application entity.

• The volume of programming codes has to be maintained at a manage­

able and reasonable level. The splitting allows this aim to be achieved.

4.6 Summary

This chapter describes how the theoretical design of the proposed conver­

sion technique is implemented. It includes a description on the knowledge

55

representation aspect of the domain theories used for the testing, with high

focus on how the model fragments of the target domain theory are designed

and implemented. Algorithms of the three processes involved in this proposed

conversion technique; model fragment selection, model composition and model

building, are also provided. An example of a simple tracing of attributes and

their domain values which are involved in the model composition process is

also given. This chapter ends with a brief description on the actual imple­

mentation of the proposed conversion technique.

56

Procedure model_building (E,R)
BEGIN

R <--- Database of model fragments participants
E <--- Modelling environment
Vp <--- Empty vector construct
N <--- The number of element in R
K <--- The number of element in E
FOR i=l to K

END

FOR j=l to N

IF i_th element of E
MATCH the unique numeric value of j_th element of R

THEN

ADD j_th element of R to Vp
END IF

END FOR
END FOR

//To display the selected consequents
FOR each v of Vp

DISPLAY v based on the following hierarchy;

IF inheritance is considered
i) Base class

- Attribute of base class
- Method of base class

ii) Derived class

ELSE

END IF
END FOR

- Attribute of derived class
- Method of derived class

Class
- Attribute of class
- Method of class

Figure 4.5: Algorithm of the model building process

57

58

Chapter 5

Testing

5.1 Testing description

The implemented conversion technique is tested on its ability to reliably con­

vert an ecological scenario model generated from the system dynamics mod­

elling paradigm of the source domain theory to the object-oriented modelling

paradigm of the target domain theory. Given a set of modelling environment

which enables a scenario model to be built within the framework of the source

domain theory, the performance of the system is measured based on its abil­

ity to identify relevant model fragments of the target domain theory that

correspond to the similar scenario. As there is not necessarily a one-to-one

mapping between corresponding fragments of the two domain theories, a con­

sistent and adequate set of modelling environment. to enable the building of

a scenario model within the target domain theory framework. is searched.

Therefore, two textbook's standard ecological modelling scenarios have

been identified to be used in the testing (:'vlackenzie et aL 1998). The descrip­

tion of these scenarios, the input and output involved in the whole process,

are provided in the next two sections.

59

5.2 First scenario

In the first scenano, the growth phenomenon of a single population (i.e.

Rabbit) which considers a logistic growth rate is modelled.

5.2.1 Input description

Within the source domain theory framework, all the participants of the sys­

tem dynamics modelling paradigm which correspond to this scenario are

introduced by two model fragments. These participants include a population

level and growth reproduction, with an equation involving the participants,

which is relevant to the logistic growth model. Figure 5.1 depicts these par­

ticipants and shows how they are related to their underlying assumptions.

relevant growth
Pl= Rabbit population

model I I R : logistic

I participant participant d/dt Nl=R

Q
reproduction Pl;; R size PI= Nl

. t t t
particzpant partzc1pant R = r' Nl '(l- (Nl/K))

parameter K parameter r

Figure 5.1: Participants of the selected model fragments and their related

underlying assumptions

The selected model fragments are basically conditioned on the following

assumptions:

60

(relevant growth ?population)

and

(model logistic ?population_reproduction)

Assuming that the model formulation task on the source domain theory is

completed successfully, the generated modelling environment is simply these

two assumptions applied to the Rabbit population and its growth rate. These

assumptions, listed in a text input file as illustrated in table 5.1, are then fed

to the conversion technique.

I A text file of modelling environment

relevant growth Rabbit

model logistic Rabbit...reproduction

Table 5.1: Text file consisting the modelling environment

5.2.2 Generated output

In the model fragment selection stage. given the set of modelling environment

obtained from the source domain theory, the corresponding model fragments

of the target domain theory are selected. The instantiated assumptions of

these selected fragments are extracted and fed to the model composition

phase. The initial assumptions set obtained from the model fragment se­

lection stage, and the set obtained after the model composition process has

been completed are illustrated in table 5.2. For brevity, the instantiated

object of the assumptions (i.e. Rabbit) is omitted.

This modelling environment. generated by the model composition pro­

cess, enables the building of a scenario model within the object-oriented

framework. This model is expected to correspond to the initial scenario

model produced within the system dynamics framework. This generated

61

Status of assumptions set Content of assumptions set

Pre model composition process, VI {Growth-relevance= growth-phenomenon,

Growth-model=logistic}

Post model composition process, V {Growth-relevance= growth-phenomenon,

Growth-model=logistic,

Intrinsic-growth-rate-model=close-population }

Table 5.2: Table of assumptions set and its content

modelling environment is then fed to the model building process, which al­

lows the consequents of the selected model fragments which are conditioned

on this generated modelling environment to be combined and displayed. The

object-oriented model produced by this conversion technique is illustrated in

figure 5.2 and 5.3.

62

class Population {

public:

float Biomass;
float Derivative;
float Growth;
float Carrying_capacity;

Population();
void Setmass(NewValue);
void Change (Amount);
void Grow () ;

};

//the class definition

//members of class are public

//attributes

//class constructor
//method for setting Biomass
//increment the Derivative
//method to calculate growth rate

Figure 5.2: Class definition of an object-oriented model

Population: :Population() { }

Population: :SetMass (NewValue)
{ Biomass = NewValue;

Derivative = 0.0;
}

Population: :Change (Amount)
{ Derivative = Derivative + Amount; }

Population: :Grow ()
{ Change(Growth*Biomass*(l-(Biomass/Carrying_capacity))); }

Population Rabbit;

Figure 5.3: Class implementation and object instantiation of an object­

oriented model

63

5.3 Second scenario

The second scenario involves the modelling of a predator population (i.e.

Fox) and a prey population (i.e. Rabbit), which considers a Lotka-Volterra

model of predation.

5.3.1 Input description

Within the source domain theory framework, all the participants of the sys­

tem dynamics modelling paradigm which correspond to the scenario are in­

troduced. These include two population levels (i.e. prey and predator),

their growth rates, and the Lotka-Volterra equation involving the mentioned

participants. Figure 5.4 depicts these participants and shows how they are

related to their underlying assumptions.

The selected fragments of this scenario are basically conditioned on the

following assumptions:

(relevant growth ?populationl) <- {The prey population}

(relevant growth ?population2) <- { The predator population}

(relevant predation 7 population2 7 populationl)

(model !atka-volterra (predation 7population2 7 populationl))

Assuming that the model formulation task on the source domain theory is

completed successfully, the generated modelling environment is simply the

four assumptions applied to the Rabbit and Fox populations. These assump­

tions, listed in a text input file as illustrated in table 5.3, are then fed to the

conversion technique.

64

relevant
predation (P2,Pl)

relevant growth
P1= Rabbit population

participant
reproduction PI= Rl

parlicipant
size Pl= Nl

d/dt Nl=Rl

model

predation (P2,P I) Lotka-Volterra

parlicipant
parameter r

parlicipant
parameter a

participant
parameter z

relevant growth
P2 =Fox population

parlicipant
reproduction P2 = R2

parlicipant
size P2 = N2

d/dt N2=R2

Rl = r*Nl-(a*Nl*N2)

R2 = a*Nl *N2- (z*N2)

Figure 5.4: Participants of the selected model fragments and their related

underlying assumptions

65

I A text file of modelling environment

relevant growth Rabbit

relevant growth Fox

relevant predation Fox Rabbit

modellotka-volterra Fox Rabbit

Table 5.3: Text file consisting the modelling environment

5.3.2 Generated output

The initial assumptions set and the set obtained after the model composition

process has been completed are illustrated in table 5.4. For brevity, the

instantiated objects of the assumptions (i.e. Rabbit and Fox) are omitted.

Status of assumptions set Content of assumptions set

Pre model composition process, V1 {Growth-relevance= growth-phenomenon,

Predation-relevance= predation-phenomenon,

Predation-model= lotka-volterra}

Post model composition process, V { G ro\vth-relevance= growth-phenomenon,

Predation-relevance= predation-p he no menon,

Predation-model=lotka-volterra,

Intrinsic-growth-rate-mode 1 =close-population,

Growth-model=exponential}

Table 5.4: Table of assumptions set and its content

This set of generated modelling environment enables a scenario model

which utilises the object-oriented paradigm to be built. This generated mod­

elling environment is then fed to the model building process, which allows the

consequents of the selected model fragments that are conditioned on this set

to be displayed in an object-oriented modelling form. The object-oriented

66

model produced by this conversion technique is illustrated in figure 5.5 and

5.6.

67

class Population {

public:

float Biomass;
float Derivative;

Population ();
void Setmass (NewValue);
void Change (Amount);
virtual void Grow ();
};

//the base class definition

//members of class are public

//attributes

//class constructor
//method for setting Biomass
//increment the Derivative
//to be redefined in descendant class

//the derived class definition

class Prey public Population {

public:

float Growth;

Prey(): Population();
void Grow () ;
};

//members of class are public

//attribute

//derived class constructor
//grow method of Prey

class Predator public Population {

public:

float Appetite;
float Mortality;

Predator(): Population();
void Eat (Prey Victim);
void Grow();
};

//members of class are public

//attributes

//derived class constructor
//predation of the Predator
//grow method of Predator

Figure 5.5: Class definition of an object-oriented model

68

Population: :Population() { }

Population: :SetMass (NewValue)
{ Biomass = NewValue;

Derivative = 0.0;
}

Population::Change (Amount)
{ Derivative = Derivative + Amount; }

Population: :Grow () { }

Prey: :Prey() : Population() { }

Predator: :Predator() : Population() { }

Prey: :Grow ()
{ Change(Growth*Biomass); }

Predator: :Grow ()
{ Change(-Mortality*Biomass); }

Predator: :Eat (Prey Victim)
{ Victim.Change(-Appetite*Biomass*Victim.Biomass);

Change(Appetite*Biomass*Victim.Biomass);
}

Predator Fox;
Prey Rabbit;

Figure 5.6: Class implementation and object instantiation of an object­

oriented model

69

5.4 Discussion

Based on the resulting models of the two scenarios produced within the

object-oriented modelling paradigm, it can be said that the conversion of

compositional models from the system dynamics modelling paradigm to the

object-oriented modelling paradigm is satisfactorily performed by the im­

plemented conversion technique. The conclusions that can be made on

these results, by comparing the models produced within these two modelling

paradigms (refer to figure 5.1, 5.2 and 5.3 for the first scenario; and figure

5.4, 5.5 and 5.6 for the second scenario) are as follow:

• In the first scenario, the logistic reproduction rate of the Rabbit popula­

tion, which is modelled within the system dynamics modelling paradigm

as a direct first-order differential equation involving the Rabbit pop­

ulation level and the other relevant participants, is satisfactorily re­

flected in the model produced within the object-oriented modelling

paradigm, particularly in the defined Gro-w() and Change() methods,

which utilised the Growth, Biomass and Carrying-capacity attributes

in order to achieve the similar aim.

• In the second scenario, the Lotka-Volterra model of the predator-prey

system involving the Fox and Rabbit populations is satisfactorily rep­

resented within the scenario model produced in the object-oriented

modelling paradigm. In this paradigm, the Lotka-Volterra equations

involving the two classes (i.e. Prey and Predator) are explicitly inte­

grated within the Gro-w() and Change() methods of both population

classes, and also the Eat() method of the Predator class.

• Based on the two examples above, it is shown that the implemented

conversion technique works in the given scenarios, which allow similar

scenarios to be represented satisfactorily in both modelling paradigms.

iO

The main focus of this testing is to prove that that the proposed conver­

sion technique works, given a pair of equivalent domain theories, each util­

ising a different modelling paradigm. Therefore, the constructed small-scale

domain theories of ecological phenomena, used in this testing, are considered

adequate in fulfilling this objective.

One of the problems faced by this project is the absence of existing

large-scale compositional domain theories which utilise multiple modelling

paradigms. Therefore, the testing cannot be extended to include a larger

scale domain theory. Given this problem, one of the solutions is to expand

the existing compositional domain theories of ecological modelling to cover

many more possible phenomena within this domain. However, for such task,

further research time and commitment are required, and it is beyond the

scope of this project.

5.5 Summary

This chapter describes the testing performed on the implemented conversion

technique. For the testing, two ecological scenarios are used. The input

provided to the applied system and the output generated by the system in

both scenarios are described.

The first scenario deals with a population growth phenomenon that con­

siders a logistic reproduction rate. In the second scenario, a predation phe­

nomenon involving two populations is examined. The Lotka-Volterra model

of predation is considered for the modelling of this second scenario.

71

72

Chapter 6

Conclusion and Future work

6.1 Conclusion

This dissertation has presented an initial work towards the development of a

technique for converting compositional models between different paradigms

or representations. Assuming that the model formulation task in a partic­

ular domain theory is completed successfully, the generated modelling envi­

ronment, from which the whole modelling process is conditioned, is fed to

the proposed conversion technique. This work, therefore, relies on this set of

modelling environment to select and instantiate the corresponding fragments

of the other domain theory.

One of the major conversion problems is that the mapping between cor­

responding fragments of this pair of domain theories is very unlikely to be

in a one-to-one manner. It might be the case that a model fragment in one

domain theory covers part of several model fragments in the other domain

theory. Given this situation. further adequacy and consistency checking need

to be performed on the assumptions set from which the selected model frag­

ments of the other domain theory is conditioned. In this work, this task is

cast as a dynamic constraint satisfaction problem (DCSP). Each assumption

73

class of the other domain theory is used to represent a DCSP attribute, and

the corresponding domain values of each attribute is the set of assumptions

defined within that class. Activity and compatibility constraints, applied

around these assumptions, allow an adequate and consistent set of modelling

assumptions to be obtained at the end of the process. A choose and repair

techniques are integrated within the DCSP. The choose technique allows any

unassigned attribute of the set to be assigned with a value from the corre­

sponding domain. On the other hand, the repair technique allows any value

assignment that causes inconsistency to be unassigned, and a new value as­

signment is performed.

As a prove of concept, the theoretical design of this conversion technique

is implemented in the C++ programming language, and the compositional

modelling of ecological systems is used as a testing domain for the imple­

mented conversion technique. For this work, system dynamics and object­

oriented are the two modelling paradigms adopted for the knowledge repre­

sentation framework of the domain theories used. The major intention of

this conversion application is to convert a system dynamics compositional

model, to an object-oriented compositional model. The resulting object­

oriented model is expected to reflect the same scenario, but with a different

representation, compared to the model produced within the system dynamics

modelling paradigm.

In the testing, it is shown that the proposed conversion technique works

in the given selected scenarios.

74

6.2 Future work

It is not possible, within the time available, to extent this project beyond the

objectives described in chapter 1. Some suggestions for future work in the

area of compositional model conversion are outlined below in two different

categories; what would be a short term work, and what would require a much

more substantial project:

Short term work:

• In this work, though the conceptual design of the proposed conversion

technique is not restricted to ecological modelling, the implementation

is specifically focused around the ecological phenomena constructs of

the domain theories used for the testing. As a consequence, the ap­

plication's applicability is highly restricted on this domain. In order

to apply the current work on the other domains, a number of modifi­

cations need to be performed on the existing code of this application.

Given this situation, the attention for a short term work in the near

future is to consider a more generic architectural approach, in terms of

the implementation aspect of this proposed conversion technique.

• Two ecological phenomena involving populations, namely population

growth phenomenon and predation phenomenon are examined in the

current work. Future extension that might be considered for this ex­

isting list will include a competition phenomenon between populations

that rely on the same source for food (e.g. Fox and Hawk that feed

on Rabbit). This competition phenomenon can be modelled as either

"intraspecific'' (i.e. competition within the same species) or "interspe­

cific" (i.e. competition between different species) (Mackenzie et al.,

1998).

75

Substantial project:

• In order for the conversion technique to work, a set of consistent and

adequate modelling environment is required. In this work, to obtain

this mentioned set, the compositional modelling algorithm of Falken­

hainer and Forbus (1991) is assumed to be applied to the source domain

theory. In addition, the knowledge representation framework of the do­

main theories involved in this conversion also follows the notation intro­

duced in the Falkenhainer and Forbus (1991) work. This indicates an

explicit dependency of the proposed conversion technique on this com­

positional modelling framework. However, as there exist a number of

other compositional modelling approaches (e.g. QPC, Causal approx­

imation, TRIPEL, DME, Probabilistic), future work should consider

extending the conversion technique on these frameworks.

• The major part of this work focuses on resolving the adequacy and

consistency issues which rise due to the fact that the mapping of the

corresponding model fragments between these two domain theories are

not in a one-to-one manner. A dynamic constraint satisfaction tech­

nique is used to guide the search for a model that meets the adequacy

and consistency requirements. In this work. the task of translating

the given modelling environment and the target model fragment li­

brary into a dynamic constraint satisfaction problem is done manually.

Future work should consider incorporating the method proposed by

Keppens and Shen (2000) to automate this translation process.

• The conversion technique should also consider other forms of input,

besides the one used in this work (i.e. a set of modelling environ­

ment). For instance, given a complete scenario model, how the process

of identifying the scenario description and modelling decisions will be

76

handled.

• A number of research groups, working in different domains, have con­

structed large knowledge bases with extensive domain theories for com­

positional modelling. These include Collins and Forbus (1990) work on

the construction of a large-scale domain theory of engineering knowl­

edge about thermodynamics; Porter et al. (1988) work on the construc­

tion of a large, multi-function domain theory about botany; and Catino

(1993) who has developed a large domain theory within the chemical

engineering domain. However, these constructed domain theories only

consider a single modelling paradigm. Given the rigorous efforts and

commitments, directed into the creation and refinement of high-quality

knowledge bases of model fragments for specific domains in science and

engineering, it is hoped that domains which utilise multiple modelling

paradigms might be available in the near future. This will greatly

benefit future work in the area of compositional model conversion. In

short, before the area of compositional model conversion can be fully

explored. one of the crucial factors that has to be considered is the

research and development in the area of multiple modelling paradigms

domain theories. The development of the former definitely relies on the

progress made on the latter.

77

Bibliography

Begon, M., Harper, J., and Townsend, C. (1996). Ecology: Individuals, Popu­

lations, and Communities - 3rd edition. Blackwell Science Ltd. Cambridge,

:VIA.

Bobrow, D., Falkenhainer, B., Farquhar, A., Fikes, R., Forbus, K., Gru­

ber, T., Iwasaki, Y., and Kuiper. B. (1996). A compositional modelling

language. Proceedings of the lOth International Workshop on Qualitative

Reasoning about Physical Sytems, (12-21).

Booch, G. (1994). Object-Oriented Design with Applications-Second Edition.

The Benjamin/Cummins Publishing Company, Inc.

Catino, C. (1993). Automated 1Vfodeling of Chemical Plants with Application

to Hazard and Operability Studies. PhD thesis, Department of Chemical

Engineering, University of Pennsylvania, Philadelphia, PA.

Colinvaux, P. (1986). Ecology. John Wiley and Sons.

Collins, J. and Forbus, K. (1990). Building qualitative models of thermo­

dynamic processes. Technical report, Beckman Institute, University of

Illinois.

Falkenhainer, B. and Forbus, K. (1991). Compositional modeling: finding

the right model for the job. Arhficial Intelligence, 51(95-143).

Forrester, J. (1961). Industrial Dynamics. MIT Press.

79

Holling, C. (1965). The functional response of predators to prey density

and its role in mimicry a population regulation. Mem. Entomol. Soc. of

Canada, 46(60).

Iwasaki, Y. (1997). Guest editor's introduction: Real-world applications of

qualitative reasoning. IEEE Expert, 12(3)(74-82).

Keppens, J. and Shen, Q. (2000). Towards compositional modelling of eco­

logical systems via dynamic flexible constraint satisfaction. Proceedings of

the 14th International Workshop on Qualitative Reasoning about Physical

Systems, (74-82).

Keppens, J. and Shen, Q. (2001). On compositional modelling. The Knowl­

edge Engineering Review, 16(2)(171-214).

Kuipers, B. (1994). Qualitative Reasoning: Modeling and Simulation with

Incomplete Knowledge. MIT Press.

Levy, A., Iwasaki, Y., and Fikes, R. (1997). Automated model selection for

simulation based on relevance reasoning. Artificial Intelligence, 96(351-

394).

Lippman, S. and Lajoie, J. (1998). C++ Primer- Third Edition. Addison­

Wesley.

Mackenzie, A., Ball, A., and Virdee, S. (1998). Instant Notes in Ecology.

BIOS Scientific Publishers Ltd.

Martin, J. and Odell, J. (1992). Object-Oriented Analysis and Des1gn.

Prentice-Hall, Englewood Cliffs, New Jersey.

Miguel, I. and Shen, Q. (1999). Hard, flexible and dynamic constraint satis­

faction. Knowledge Engineering Review, 14(3)(199-220).

80

tvlittal, S. and Falkenhainer, B. (1990). Dynamic constraint satisfaction prob­

lems. Proceedings of the 8th National Conference on Artificial Intelligence,

(25-32).

Nayak, P. (1995). Automated Modeling of Physical Systems - Lecture Notes

in Artificial Intelligence. Springer.

Porter, B., Lester, J., Murray, K., Pittman, K., Souther, A., Acker, L., and

Jones, T. (1988). Artificial intelligence research in the context of a multi­

functional knowledge base: The botany knowledge base project. Techni­

cal Report TR AI-88-88, Artificial Intelligence Laboratory, Department of

Computer Science, University of Texas at Austin.

Robertson, D., Bundy, A., lvluetzelfeldt, R., Haggith, M., and Uschold, M.

(1991). Eco-logic. Logic-Based Approaches to Ecological Modelling. MIT

Press.

Sellappan, P. (1994). C++ Thro·ugh Examples. Federal Publications Sdn.

Bhd.

Silvert, W. (1992). Object-oriented simulation programming in ecological

modelling. 8th ISEM International Conference on Ecological Modelling.

Silvert, W. (1993). Object-oriented ecosystem modelling. Ecologicallvfod­

elling, 68(91-118).

Swan, T. (1999). GNU C++ for Linux. Que Corporation.

Verfaillie, G. and Schiex, T. (1994). Solution reuse in dynamic constraint sat­

isfaction problems. Proceedings of 12th National Conference on Artificial

Intelligence. (307-312).

81

82

Appendix A

User manual

A.l The program files

The three subprocesses of the proposed conversion technique, namely the

model fragment selection, the model composition and the model building, are

split into two separate C++ programs. The model fragment selection and the

model composition processes are combined as one program, and the program

file is named Conversion.cpp. The model building process is set up as a

separate C++ program which stands on its own. and the program file is

named ModeLbuilding.cpp.

A.2 Input text files

The modelling environment (i.e. set of assumptions) of the source domain

theory (i.e. system dynamics modelling paradigm) is defined in a text input

file named source_rnodelling_environment.txt. Each assumption should

be written as a line of characters corresponding to the format defined in the

following, with a space in between the different element constructs of the

assumption.

83

Legends:

At <---- Assumption type

As <---- Assumption subject

Obl <---- Instantiated object 1

Ob2 <---- Instantiated object 2

Format of definition:

[At] [As] [Obl] [Ob2]

Certain assumption subJect can only be applied to a single instantiated

object, therefore the instantiate obJect 2 part of these assumptions can be

omitted.

Table A.l summarised the assumption type and assumption subject that

correspond to the ecological modelling phenomena covered in this work. For

more details on how these assumptions are derived, please refer to chapter

two on the section of ecological modelling, and chapter four on knowledge

representation.

Based on the assumptions summarised in table A.l, in order to define

a model assumption type which corresponds to the logistic growth rate of a

particular Penguin population, the following statement is written to the text

file:

model logistic Penguin_reproduction

For more example, please refer to chapter four on the section of input

description.

84

I Assumption type I Assumption subject

relevant

model

growth

predation

logistic

exponential

lotka-volterra

holling- tanner

open-population

close-population

Table A.l: Table of assumption type and its corresponding subject

A.3 Compiling the program files

In order to execute the program files, they need to be compiled first. The

GNU C++ compiler, which is installed in the AI machines in South Bridge

and Forrest Hill sites can be used for the compilation. There are many ways

to compile the program. The easiest method, and the one explained in this

manual is by running the GNU C++ compiler. To compile Conversion.cpp

program file for instance, enter the following command:

$ g++ Conversion.cpp

The dollar sign represents the shell prompt. Line preceded with the dollar

sign is those you type at the console. Don't type the dollar sign. To run the

compiler, you may either type g++ or c++ In some version of UNIX, these

commands actually run the GNU C compiler, gee, with options selected for

C++ programming. In newer release, GNU C++ is the stand-alone compiler,

egcs (Experimental GNU Compiler System) which does not rely on gee.

85

After you have compiled Conversion.cpp, a directory listing produced

by the ls command shows a new file named a.out. This file contains the

executable code that g++ has created. It is a finished code file, ready to

run. To run the program, preface its name with a period and slash. This

tells the shell to look for the file in the current directory. For example, m

order to run the executable code, enter the following command:

$./a.out

A.4 Expected screen displays

Consider a text file consisting the modelling environment as described in

table 5.3, is provided to the Conversion.cpp program. After compiling and

executing this program, the following screen displays are expected to appear

on the screen (comments for each segment of the screen display are provided

in bracket) :

(The following indicates the generated output produced by the
model fragment selection process. Two growth-phenomenon
fragments are selected and instantiated, corresponding to the
two populations - Rabbit & Fox. The other two model fragments
which are applicable to these two populations are
predation-phenomenon and lotka-volterra-model.)

The number of selected fragment 4
The fragment's name is growth-phenomenon
The fragment's name is growth-phenomenon
The fragment's name is predation-phenomenon
The fragment's name is lotka-volterra-model

86

(The assumptions obtained from the selected model fragments of
the model fragment selection process become the initial
attribute set. Each assumption class (i.e. an attribute) and
its corresponding assumption value are displayed until all
defined constraints have been satisfied (refer to table 4.1
for description of the displayed attributes and domain values) .
In displaying the current content of V, the data structure used
in holding the attribute set, the instantiated objects which
are associated with different particular assumptions are
omitted. Therefore, though the same assumption class and value
assignment might exist more than once (i.e. applicable to
different populations or instantiated objects of the problem),
it is only displayed once. Each active constraint out of the
six defined activity and compatibility constraints, is identified
and displayed (refer to table 4.2 and 4.3 for description on these
defined constraints). This program also provides a step-by-step
tracing of the model composition process, which requires a user to
key in any keyboard character value and then press the <ENTER> key
to move to the next stage. The process is ended when all attributes
have been assigned a domain value.)

INITIAL CONTENT OF V :

Growth-relevance = growth-phenomenon
Predation-model = Lotka-Volterra
Predation-relevance = predation-phenomenon

Please press any character (ie. A-Z, a-z)
and then press <ENTER> to continue

Active constraint Cl

CURRENT CONTENT OF V :

Growth-relevance = growth-phenomenon

87

Predation-model = Lotka-Volterra
Predation-relevance = predation-phenomenon
Growth-model = unassigned

Please press any character (ie. A-Z, a-z)
and then press <ENTER> to continue

Active constraint C4

CURRENT CONTENT OF V :

Growth-relevance = growth-phenomenon
Predation-model = Lotka-Volterra
Predation-relevance = predation-phenomenon
Growth-model = unassigned
Intrinsic-rate-of-increase-model = close-population

Please press any character (ie. A-Z, a-z)
and then press <ENTER> to continue

New assignment: Growth-model =logistic

CURRENT CONTENT OF V :

Growth-relevance = growth-phenomenon
Predation-model = Lotka-Volterra
Predation-relevance = predation-phenomenon
Growth-model = logistic
Intrinsic-rate-of-increase-model = close-population

Please press any character (ie. A-Z, a-z)
and then press <ENTER> to continue

Active constraint C6

88

CONFLICT ALERT : A conflict on value assignment
of Growth-model = logistic

New assignment : Growth-model = exponential

CURRENT CONTENT OF V :

Growth-relevance = growth-phenomenon
Predation-model = Lotka-Volterra
Predation-relevance = predation-phenomenon
Growth-model = exponential
Intrinsic-rate-of-increase-model = close-population

Please press any character (ie. A-Z, a-z)
and then press <ENTER> to continue

No existing conflict on all attribute assignments

FINAL CONTENT OF V :

Growth-relevance = growth-phenomenon
Predation-model = Lotka-Volterra
Predation-relevance = predation-phenomenon
Growth-model = exponential
Intrinsic-rate-of-increase-model = close-population

Please press any character (ie. A-Z, a-z)
and then press <ENTER> to continue

89

(The following is the eventual set of modelling environment
generated by the model composition process. This set will be
written to a text file named target_modelling_environment.txt.
Model_building.cpp program relies on this text file to
generate a compositional scenario model within the
object-oriented modelling framework. The object-oriented model,
described in figure 5.5 and 5.6, is generated based on this
set of modelling environment.)

relevant growth Fox
relevant growth Rabbit
model exponential Fox-reproduction
model exponential Rabbit-reproduction
model close-population Fox
model close-population Rabbit
relevant predation Fox Rabbit
model lotka-volterra Fox Rabbit

A.5 Concluding remark

These two programs (i.e. Conversion.cpp and ModeLbuilding.cpp), are

developed as a prove of concept for the proposed compositional model con­

version technique. To a large degree, the objectives specified in chapter one

have been fulfilled. However, in terms of the implementation, it should be

noted that these two programs are far from complete, and further work in

refining and enhancing these two programs are required. Therefore, for any

comment, further query or useful discussion, feel free to contact the author

at the following e-mail address:

fadzil@eudoramail.com

90

