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Abstract 

It is well established that the laminar burning rate plays an important role in 

turbulent combustion and previous work at Leeds has suggested that the laminar 

burning velocity of an aerosol mixture is little different from that of a gaseous 

mixture at similar conditions. However, it has been shown that flames within well 

defined droplet suspensions (aerosols) more readily become unstable than for 

gaseous ones. Flame instabilities, characterised by wrinkling and cellular surface 

structure, increase the burning rate due to the associated increase in surface area. For 

gaseous mixtures, the effect has been shown theoretically and experimentally to be a 

function of Markstein number and critical Peclet number, which marks the flame 

radius at which cellularity is first observed. In aerosol combustion, the presence of 

liquid droplets has been shown to influence instabilities by causing earlier onset of 

cellularity than for gaseous flames. Therefore it is imperative to conduct a 

fundamental study to understand the complex interactions between droplets and 

combustion. 

In the present work, spherically expanding flames were employed to quantify 

the burning rates in gaseous and aerosol flames and to determine their differences. 

!so-octane-air aerosols were generated by expansion of the gaseous pre-mixture, 

based on the Wilson cloud chamber principle of expansion cooling, to produce a 

homogeneously distributed suspension of fuel droplets. Flames were centrally 

ignited for quiescent aerosols at near atmospheric pressures, drop sizes of up to 

30 ~m and overall equivalence ratios between 0.8 to 2.0. The flame progress was 

monitored using high-speed schlieren photography, from which burning rates were 

determined. In turbulent studies, measurements were made for stoichiometric 

aerosols at root mean square turbulence velocities of between 1.0 and 4.0 m/s. For 

companson, gaseous combustion at conditions similar to those of aerosols were 

studied. 

From the laminar study, it was shown that the burning rate of lean mixtures is 

independent of droplet diameter. However, at higher equivalence ratios, the burning 

rate became a strong function of droplet diameter and equivalence ratio. This was 

associated with the onset of instabilities, which were, in tum, related to measured 

values of Markstein number and critical Peclet number for aerosol flames in a 

similar manner to those for gaseous flames. Heat loss from the flame due to droplet 

evaporation is probably the main reason for instabilities in aerosol flames. 

Interestingly, droplets which were assumed by previous workers to be fully 

evaporated at the flame front, were shown, at certain conditions in the present work, 
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to survive behind the flame front. Thus other possible mechanisms for instabilities in 

aerosol flames could be important. 

For very rich mixtures, gaseous flames were shown to be partially smooth, 

slow, and were strongly affected by natural convection. Conversely, with the 

presence of droplets at similar mixture conditions, flames were found to be fully 

cellular and faster, with little sign of the effect of natural convection. This was 

suggested to be due to early instabilities caused by the presence of droplets, which, 

in tum, increased the burning rates. 

Oscillating flames, in which the flame speed and flame structure alternated 

between low and high values and smooth and cellular respectively, during flame 

development, were observed for some experimental conditions. These oscillations 

were most probably caused by aerodynamic interaction between droplets and gas 

motion ahead of the flame. This was examined using simultaneous laser sheet 

imaging and PIV analysis, with a simple model proposed by Atzler et al. (2001) 

which simulated aerodynamic interaction between droplets and gas phase motion 

ahead of the flame front. 

A dimensionless comparison between turbulent flames of aerosol and gaseous 

mixtures showed similar burning rates. The measurements were compared with 

existing turbulent burning velocity expressions and correlations. In general, these 

expressions are in quite good agreement with the present results, particularly at low 

stretch rate. 
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