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Chapter 1
Introduction

The insight at the root of artificial intelligence was that these "bits"
(manipulated by computers) could just as well stand as symbols for
concepts that the machine would combine by the strict rules of logic or
the looser associations of psychology.

- Daniel Crevier (1947-1993)

The Tumultuous History of the Search for Artificial Intelligence

1.1 Introduction

The Intelligent Virtual Environment (IVE) is concerned with the development of new
technologies that emerged from the intersection between Virtual Environments (VEs)
and Artificial Intelligence (AI). One of the main factors is the continuing growth in
the amount of computing power that can be put on a desktop. The desktop not only
supports a much higher degree of visual realism, but even leaves a little additional
processing power that can be used to add intelligence [Aylett 00].

A virtual environment is a simulated environment that appears to have the char-
acteristics of some other environment, and in which participants perceive themselves
as interactive parts [ATIS 00]. Al is a branch of computer science dealing with the
simulation of intelligent behaviour in computers, where the system has the capability
to imitate intelligent human behaviour [Merriam Webster 56). IVEs consider the use
of Al techniques as a component which can be used to enhance the interactivity of a
virtual environment.

One of the fundamental aspects of a virtual environment is the virtual agents that
inhabit them. A virtual agent can be defined as an autonomous entity in a virtual

environment. An autonomous virtual agent is situated within, and as a part of an
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environment that senses that environment and acts on it, over time, in pursuit of its
own agenda and so as to influence what it senses in the future [Franklin 97). A virtual
agent should not only look like, but also behave as a living organism in a synthetic 3D
world, and be able to interact with the world and its inhabitants [Vosinakis 01].

Another important aspect of a virtual agent is to make it look real. One of the ways
is to endow them with a strong personality, emphasizing differences among virtual
agents. If a virtual agent has a visible personality, a user will be more willing to believe
in them and overlook defects in their behaviour. Additional to that the virtual agent
must combine aspects of an autonomous robot with some of the skills of a human ac-
tor in an improvisational theatre [Reynolds 99]. For example, virtual agent/characters
used in computer games or in 3D animated films, are designed as autonomous agents
and then complex behaviours can be produced with minimal intervention from the an-
imator,

There are two main types of virtual agent in virtual environments which are repre-
sentations of the user in the virtual environment (also known as avatar), and are com-
puter controlled virtual agents with which the user can interact [Gillies 01]. Avatars
in virtual environments are controlled by a user of the environment. They are the per-
sonification of the user in the environment and must perform the actions that the user
wants to perform. Computer controlled virtual agents are entirely autonomous, their
behaviour is entirely controlled by the computer. This means that they need behaviour
animation as all the behaviour must be simulated.

In a virtual environment, objects and avatars are connected to a virtual agent, which
reflect a behaviour with other virtual agents and users [Noll 99]. The virtual agent acts
autonomously and improves interaction between objects. The virtual agent should be
proactive in the user’s interest [Ralph 97]. It fulfills its tasks based on internal states,
rules, and goals, and does not need any guidance by a human.

When designing any virtual agent based system, it is important to determine how
sophisticated the virtual agent’s reasoning will be [Remondino 08]. This is because
virtual agents can play different types of roles, accomplish different tasks and respon-
sibilities. Depending on their role definitions, different virtual agents tend to differ in
their autonomy, cooperation ability or intelligence. For example, a virtual agent that
supplies decision support functionality acts autonomously and proactively to gather
information, and makes recommendations. The ultimate decision will, however, be
made by a human decision-maker. In contrast, a virtual agent may also assume a com-

pletely autonomous role. That is, the virtual agent is entirely responsible for the whole
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process of problem solving. Not all virtual agents can exhibit smart problem solving
behaviour; some do, and they are limited by the current state of the art in related fields.
In some cases the individual virtual agents of a system may not be that intelligent at
all, but in combination and cooperation they lead to the intelligence and smartness of
an agent-system [Hermans 96}.

As most researchers developed increasingly interesting, larger and more complex
virtual environments, the ability of virtual agents to consciously find their way around
the environment plays a more important role in their behaviour [Champandard 02].
This can be seen in various virtual agent applications such as engincering, entertain-
ment and management. There may be a significant amount and variety of research
going on in the field of autonomous virtual agents, but not ali aspects of the problem

have yet been explored.

1.2 Aim

This thesis aims to improve the performance of the reactive behaviour of autonomous
virtual agents in virtual environments. The virtual agent acquires some capabilities
of perceiving their environment and is able to react and make decisions, depending
on this input. It is important that the virtual agent needs to be situated in a common
environment otherwise, no interaction is possible.

In this thesis we focus on reactive (non-adaptive or engineering) approaches. The
aim is to develop a new control architecture for virtual agents so that they can be-
have autonomously in virtual environments. Autonomy will be judged based on their
capabilities to react to changes in the environment, reason and make decisions by them-

selves, based on acquired information. The objectives are:

1. to improve the level of autonomy by having reliable action-selection mecha-

nisms;

2. to design individual behaviours, synchronization and fusion using fuzzy logic

and to integrate these behaviours with a fuzzy controller and the virtual agent;
3. to generate smooth behaviour animation of the virtual agent in real-time.

The main implemention of the proposed method is for solving problems in autonomous
virtual agent navigation in virtual environments. Autonomous virtual agent navigation

can be described as the ability of a virtual agent to move purposefully without user
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intervention. The basic problem of navigation is moving from one place to another
by the coordination of planning, sensing and control. Not all of this information is
known prior to the planning process, and the navigation path is generated according
to on-line user specifications; and the virtual agent cannot be prepared ahead of time
{Li99]. Experiment and evaluation has been conducted to measure the robustness of
the proposed method and the results have also been presented.

The secondary implementation is to investigate how the same method can be used
in other domains. Computer game domains have been used. The main challenge in the
development of virtual agents in computer games is what should be the general nature
of this kind of virtual agent for interesting game playing; and what type of architec-
ture will best facilitate such character and environment. This is important where each
game has its own strategy, action, curiosity, challenge and fantasy that make the game
unique and interesting and which can essentially motivate games players [Hsu 06].
Only simple performance and user evaluation is done in this case since full evaluation

is conducted in the autonomous virtual agent navigation implementation.

1.3 Problem Description

Reactive virtual agents perceive their environment and respond in a timely fashion to
changes that occur in it. They maintain no internal model of how to predict future states
of the world. They choose actions by using the current world state as an index into a
table of actions, where the indexing function’s purpose is to map known situations to
appropriate actions. These types of virtual agent are sufficient for limited environments
where every possible situation can be mapped to an action or set of actions. The major
drawback is its lack of adaptability. This type of virtual agent cannot generate an
appropriate plan if the current world state was not considered a priori. In domains that
cannot be completely mapped, using reactive virtual agents can be too restrictive.

Reactive virtual agents simply retrieve pre-set behaviours similar to reflexes, with-
out maintaining any internal state. In contrast, deliberative virtual agents behave more
like they are thinking, by searching through a space of behaviors, maintaining internal
state, and predicting the effects of actions. Although the line between reactive and
deliberative agents can be somewhat vague, a virtual agent with no internal state is
certainly reactive, and one which bases its actions on the predicted actions of other
virtual agents is deliberative.

Besides reactive virtual agents are the deliberative ones. The key component of
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a deliberative agent is a central reasoning system [Ginsberg 89] that constitutes the
intelligence of the agent. Deliberative agents generate plans to accomplish their goals.
A world model may be used in a deliberative agent, increasing the agent’s ability to
generate a plan that is successful in achieving its goals even in unforeseen situations.
This ability to adapt is desirable in a dynamic environment.

Therefore, when the deliberative virtual agent is dealing with real-time systems it
has problems with reaction time [Pérez 00]. They behaved more like they are thinking,
by searching through a space of behaviours, maintaining their internal state, and pre-
dicting the effects of their actions. For simple, well known situations, reasoning may
not be required at all. In some real-time domains, minimizing the latency between
changes in world state and reactions is important. The constraints with this kind of
behaviour are conflicts with cost, time and quality. Optimization of one or two of the
objectives, often results in a sacrifice of a third objective.

Most reactive (behaviour-based) systems rely on their modularity as their source
of reactiveness. Complex behaviour can be achieved by combining several simple
behaviour-producing units. Any particular behaviour may express itself opportunisti-
cally or when needed [Bryson 00]. They provide a framework in which different sub-
problems can be isolated, dealt with, and integrated. Unfortunately, this architecture

gives rise to three main problems as follows:

1. how to design a simple behaviour that guarantees robust operation and decides

which behaviour should be activated at each instant;

2. how to integrate the process at different levels and combine the results from

different behaviours into one command to be sent to the virtual agent;

3. how to ensure consistency between behaviours used by different modules, at

different levels of abstraction and affected by different types of uncertainty.

The control of a virtual agent is shared between multiple behaviours with different and
possibly incompatible goals. Each behaviour is responsible for controlling the virtual
agent to achieve or maintain a particular objective. The goal of one behaviour might
be in conflict with the goals of others. Therefore, the main problem is to decide what
next action to select. Action selection is the means by which a virtual agent (either an
animal or an autonomous artificial system) determines at any instant what to do next.
The questions are what and how is it being selected. Thus, a main consideration is the
formulation of effective mechanisms for coordination of the behaviour activities into

strategies for rational and coherent behaviour.
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However in most cases the virtual environment itself also plays a major role, re-
sulting in the failure of the virtual agent to reach its goal. The main reasons are
[Latome 91, Zhukov 00, Lozano 02}:

L. intelligent virtual agents may have arbitrary complex locomotion capabilities

that are required to simulate a real world or imaginary character;
2. all computation must be performed in real time;

3. depending on the environment description the global path obtained will contain

the set of cell centroids the virtual agent must visit to reach its target goal;

4. knowledge of the environment is partial, uncertain, imprecise and approximate;
and

5. the environment is vast and dynamic and the obstacles can move, appear or dis-

appear.

Issues (4) and (5) affect the behaviour rule selection.

In the past, several works relating to virtual agents have been done which describe
mathematical models [Lerman 01} and fuzzy logic systems [ Yen 99] for behaviour se-
lection. However the limitations are the insufficient knowledge based perception of
the environment and the absence of a decision making capability similar to that of a
human driver.

1.4 The method

The main idea is to incorporate a virtual agent with behaviour-based control using
only fuzzy logic (such as fuzzy rules and fuzzy reasoning) for coordinating conflicts
and competition among different operations of reactive behaviour. This can be done by
subdividing the overall task into small independent behaviours that focus on execution
of specific sub-tasks [Seraji 02]. A coordinator is needed in order to send only one
command at a time for action execution. The basic structure consists of all behaviours,
taking input from the sensors and sending output to the actuators. A new behaviour-
based fuzzy controller is established to optimize the fuzzy behaviour rules using Fuzzy
Associative Memory (FAM). FAM maps the complete input space to the outputs. The
fuzzy o — level technique, as a behaviour selection method, has been developed to
decide which behaviour task needs to be executed. The local minima algorithm has

also been used to help the virtual agent escape from traps or dead-ends.
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1.5 Why Fuzzy Logic

Reactive systems are systems whose role is to maintain an ongoing interaction with
their environment rather than produce some final value upon termination. Additional
to that, most reactive control systems do not utilize sets of behaviours; instead, they
rely on a single type of behaviour to guide the system. The architecture sometimes
is too complex and integration among ditferent behaviours is very difficult. For that
reason, one of the solutions is to use fuzzy logic.

Fuzzy logic does not need a mathematical description of how the output function-
ally depends on the input. It is relatively easy to implement a system that deals with
many situations without defining an analytical model of the environment, by represent-
ing relations between inputs and outputs in an /F — THEN manner and constructing a
knowledge base. It is reactive because there is no planning stage [Reignier 94].

Fuzzy logic provides a means of transforming a linguistic control strategy based
on expert knowledge into an automatic control strategy {Ross 04]. It appears to be
very useful for handling problems that are too complex to be analyzed by conven-
tional quantitative techniques or when the available sources of information provide
qualitative, approximate, or uncertain data. Reactive navigation of a mobile robot, for
example, falls into this class of problems that fuzzy control systems cope well with.
Fuzzy logic is suitable for multi-sensor fusion and integration.

The goal of behaviour-based systems is to subdivide the overall task into small
independent behaviours that focus on execution of specific sub-tasks [Pérez 00). Fuzzy
logic can be used to design individual behaviour. Behaviour complexity can be reduced
by a divide and conquer approach, which attempts to break down the overall problem
into more manageable sub-behaviours.

Fuzzy logic also gives promising results in addressing the integration problem.
Fuzzy control can be used to integrate explicit domain knowledge in the form of lin-
guistic rules that describe the behavioural mapping from perception to action. These
rules constitute an initial, sub-optimal behaviour that is later refined through experi-
ences gathered from the virtual agent’s interaction with the environment {Hoffmann 03].

Behaviour coordination has two distinct problems which are: (i) how to decide
which behaviour should be activated; and (ii) how to fuse the output of concurrent,
possibly conflicting behaviours [Saffiotti 97]. IF-THEN rules can be used for the first
problem and fuzzy connectives used for the second problem. Fuzzy /F-THEN rules

allow for partial activation depending on how much that behaviour is relevant to the



Chapter 1. Introduction 8

current situation in which truth can assume a continuum of values between 0 and 1.
This leads to a fusing of different local control laws (behaviours) into an overall com-
plex control strategy.

Other Al techniques such as neural networks {Zurada 95], machine learning [Alpaydin 04|
and evolutionary algorithms [Eiben 03] are an inspiration from the capabilities of an-
imals and humans to adapt and learn in dynamic environments under varying condi-
tions, situations and tasks. Fuzzy logic is inspired by the approximate type of reasoning
that allows humans to make decisions under uncertain and incomplete information. In
the context of the above mentioned trade-offs imposed on virtual agent learning, fuzzy
techniques offer a means to sacrifice optimal performance for a reduction in complex-
ity, elimination of unnecessary details and increased robustness of solutions.

Finally, a fuzzy controller provides efficient implementation. These characteristics
are required for an autonomous virtual agent where a mathematical model of the envi-
ronment is not available, sensor data is uncertain and imprecise and real-time operation

is required.

1.6 Thesis Organization

Chapter 2: Literature Review

The literature review contains an overview of virtual environments and continue with
what is an autonomous virtual agent, types of virtual agent and some of the applica-
tions. Then, we continue with virtual agent control architecture and how virtual agents
can be fitted in solving specific problems. Finally, there is a discussion on the action
selection problem, its classification and some of the methods that have been used in

solving the problem.

Chapter 3: Methodology

This chapter describes the method that has been used in solving the problem of au-
tonomous virtual agents. The behaviour design and modeling of virtual agent control
systems are described here. Then, we continue with action selection methods and the

integration with virtual agent control systems.



Chapter 1. Introduction 9

Chapter 4: Autonomous Virtual Agent Navigation

This chapter describes the behaviour-based architecture developed for autonomous vir-
tual agents. We discusses the integration of the fuzzy controller with the virtual agent
and how this integration can be used so that the virtual agent can perform navigation
tasks in unknown virtual environments. We also describe the experimental objectives,
setup and methods used for autonomous virtual agent navigation. The results from ex-
periments are discussed and used to evaluate how and to what extent the fuzzy system

solution has solved the problem.

Chapter 5: Autonomous Virtual Agent in Computer Game

The aim of Chapter 5 is to describe how the fuzzy method can be used in other
domains. A computer game domain is selected which requires controlling virtual
agents/characters. The Pacman game is used and modified to fit with our fuzzy method.

Evaluation and results are discussed.

Chapter 6: Conclusion

The final conclusions of the thesis, its contribution and some future research directions

have been proposed.
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Chapter 2
Literature Review

Thinking is easy, acting is difficult, and to put one’s thoughts into
action is the most difficult thing in the world.

-Johann Wolfgang von Goethe (1749-1832)

German Playwright, Poet, Novelist and Dramatist

2.1 Introduction

Generally there is still a gap between the methods implemented by researchers from
graphics backgrounds for controlling a virtual agent and those favoured by researchers
from Al and ALife backgrounds. The dividing issue is often one of artistic or directo-
rial control versus agent autonomy. Many researchers who have moved from animation
still favour various kinds of scripting where Al and ALife researchers often think in
terms of sensor driven behavioural control or of goal driven action supported by sym-
bolic reasoning.

Autonomy is recognizably and undeniably a critical issue in the field of intel-
ligent virtual agents and multi-agent systems, yet it is often ignored or simply as-
sumed. Autonomous virtual agents should operate without the direct intervention of
humans or others, and have some kind of control over their actions and internal state
[Wooldridge 95]. They continuously perform three functions: perception of dynamic
conditions in the environment; action to aftect conditions in the environment; and rea-
soning to interpret perceptions, solve problems, draw inferences, and determine actions
[Hayes-Roth 95].

In relation to that, action selection mechanisms play a major role in autonomous
agents. The agents are normally created to perform several different tasks. The acting

agent typically must select its action in dynamic and unpredictable environments; act

11
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in real time; and make decisions in a timely fashion. These tasks may conflict for
resource allocation.

In recent years, researchers have proposed many approaches to solve the prob-
lem. These approaches, in general, can be divided into engineering (non-adaptive)
and adaptive approaches. Both approaches can use reactive, deliberative and hybrid

architectures, to achieve the same goal in different ways based on their basic features.

2.2 Virtual Environments

A virtual environment or virtual world is a simulated environment that appears to have
the characteristics of some other environment, and in which participants perceive them-
selves as interactive parts [ATIS 00). Virtual environments have been used in many
different fields such as computer games, entertainment, engineering and manufactur-
ing. Computer hardware is not a major issue; however, production of more dynamic
and interesting virtual environment systems or applications remains a challenge to de-
velopers in this field.

A general definition of a virtual environment is as a computer-based simulated
environment (computer-generated world) intended for its users to inhabit and interact
via avatars [Durlach 95]. This habitation usually is represented in the form of two or
three-dimensional graphical representations of humanoids (or other graphical or text-
based avatars) [Ellis 94, Brooks 99] with which the user can interact, with the purpose
of altering the state of the user or the computer [Youngblut 96]. The environment
contains synthetic sensory information that leads to perceptions of environments and
their contents as if they were not synthetic [Blascovich 02]. The challenge is to make
that virtual environment look real, move and respond to interaction in real time, and
even feel real. The user views the virtual environment indirectly through a computer
monitor or some other display.

Virtual environments have been increasingly used for a variety of contexts as fol-
lowing [Aylett O1]:

l. adding a problem-solving component to the virtual environment;

2. building a knowledge level supporting conceptual scene representation, which
can support high-level processing of the graphic scene itself, or interface with

natural language processing systems;
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3. describing causal behaviours in the virtual environment, as an alternative to

physical simulation;

4. enhancing interactivity, i.e. by recognizing user interaction in terms of high-level

actions to determine adaptive behaviour from the system.

2.3 Autonomous Agent

Nowadays, there has been a marked increase in interest in autonomous agents in di-
verse industries. Although using different names, they use the same principles in dif-
ferent settings. Figure 2.1 shows a natural taxonomy for autonomous agents which can

be derived based on its aims and features.

Autonomous Agent

——

._.‘—-~‘//-
Biological Robotic Computational
Agents Agents Agents
Software Artificial
Agents Life Agents
//
Task-spedific Entertainment  Viruses

Agents Agents

Figure 2.1: Autonomous Agent Taxonomy [Franklin 97]

An autonomous agent has goals, can sense certain properties of its environment,
and can execute specific actions [Nareyek 00]. There are some special senses and ac-
tions dedicated to communicating with other agents. Based on this, a virtual agent
might require elements as in Figure 2.2. This element is based on the Belief-Desire-
Intention (BD1) system [Rao 95]. It decomposes Knowledge into Beliefs, Goals, Plans,
Internal States and Internal Variables [Monzani 02]. All these sub-modules are han-
dle by a Behaviour Engine, which is tried against plans so that Goals are fully filled.
A global database provides a list of common knowledge that can be shared between
agents. Each time new Beliefs are added to the database, the behaviour engine checks
the plans preconditions and executes the corresponding effects. Incoming Beliefs can
come from the agent or the world.
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Intelligent Virtual Agent

Behaviour Engine -l

Plans

Goals

Beliefs

_______________________________________________________

Figure 2.2: Virtual Agent Element

2.3.1 What is an Autonomous Agent?

It is noticeable how the following definition includes the impact of the autonomous
agent’s own current behaviours on its own future behaviours. An agent is anything that
can be viewed as perceiving its environment through sensors and acting upon that envi-
ronment through effectors [Russell 03]. According to [PCAI 02], an autonomous agent
is software that is given a particular mission, carries out that mission, and then reports
back to the user. Therefore, the agent is a software routine that waits in the back-
ground and performs an action when a specified event occurs [ZDNet Dictionary 07].
The problem is that if the environment provides input and receives output, and consid-
ers input to be sensing, and produces output to be acting, then every computer program
is a virtual ageat.

[Franklin 96] has introduced an agent as a system situated within and a part of an
environment that senses that environment and acts on it, over time, in pursuit of its own
agenda and so as to effect what it senses in the future. This includes all of the basic fea-
tures of intelligent agents except their sociability. It provides a good approximation of
the basic features of the large variety of intelligent agents now under development. An
intelligent agent is a system that performs diverse behaviours in its efforts to achieve
multiple goals in a dynamic, uncertain environment [Morignot 96].

There is a convergence of opinion that an autonomous agent is a computer software

system whose main characteristics are [Wooldridge 95}:

reactivity: agents perceive their environment and respond in a timely fashion to changes

that occur in it;

pro-activeness: agents do not simply act in response to their environment, they are

able to exhibit goal-directed behaviour by taking the initiative, when appropriate;
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and learning from its own experience, its environment, and interactions with
others.

autonomy: agents operate without the direct intervention of humans or others, and

have some kind of control over their actions and internal state;

sociability: agents interact with other agents (and possibly humans) via some kind of

agent-communication language;

In this thesis, sociability has not been considered as a characteristic of the virtual agent.
The main reason is that each agent has its own preferred behaviour and works individ-
ually. Even though there is more than one agent, the agents do not interact with each
other.

Fach autonomous agent is situated in, and is a part of some environment. Each
senses its environment and acts autonomously within it. No other entity is required
to feed it input, or to interpret and use its output. Each acts in pursuit of its own
agenda, whether satisfying evolved drives as in humans and animals, or pursuing goals
designed in by some other agent. Each acts so that its current actions may affect its
later sensing, that is, its actions effect its environment. Finally, each acts continually
over some period of time [Franklin 97].

The notion of individuality is very important for autonomous agents because they
should decide their actions according to internal and external states on their own. The
final decision is made by the agents. Further, along with being reactive, an agent must
also be proactive. That is, it must be able to take initiative and be opportunistic when
necessary. The notion of planning their behaviours to anticipate future actions is also

necessary and to plan sequences of actions to reach a specific goal.

2.3.1.1  Autonomy

Autonomous systems must be automatic systems and, in addition, they must have
the capacity to form and adapt their behaviour while operating in the environment
[Steels 95]. It is generally a necessary condition that the behaviour of an autonomous
system is characterized by some capacity for stable and/or flexible interaction with its
environment.

Autonomy has many interpretations in terms of the field in which it is being used
and analysed, but the majority of the researchers in IVEs argue in favour of a strong and

life-like notion of autonomy, which should first of all replace omniscience in virtual
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worlds. As such, even from a practical perspective, autonomy is not a needless over-
head. Since believability is considered as a crucial factor, virtual agents should appear
to have limitations in their interaction with the environments, just as agents in the real
world have [Arnellos 08]. Here we adopt the robotic definition that an autonomous
agent has a sense-reflect-act cycle of its own operating in real-time in interaction with
its environment. The amount of autonomy possessed by an agent is therefore related
to its control architecture,

However, some researchers take autonomy as an all-or-nothing property: either
a system is autonomous or it is not [Luck 95]. Table 2.1 shows the characteristics

of different autonomous agent controls. It seems that the level of autonomy is a key

Table 2.1: Characteristics of Different Virtual Agent Controls [Ferreira 02]

o "‘("”"W"” [ [ 7"']-/“ Tt T
Behaviour | Guided Programmed | Autonomous
Control Agents ' Agents Agents
' ,
Level of Low Medium High
Autonomy
NP —— - - __,,,,,k,_-,._.,._.ﬂ_,__..._,-H,A,._._.,,.{
Level of _ o -
Intefligence Low Medium High
Execution , i .
Frame-ra High ! Medium Low
‘rame-rate |
Complexity of | v 1 Variable High
Behaviour l
i
| I.evc] (.)‘t High ! Variable Variable
nteraction i

property of the agent. The agent is engineered so as to be able to interact with its
environment without requiring ongoing human intervention. It must be capable of
satisfying some goal (or even of generating its own goals) and also have robust and
flexible behaviour. The virtual agent, at least to some extent, is independent and also
not entirely pre-programmed, but can make decisions based on information from its
environment or other agents without intervention by any other agent |Monzani 02},
Concerning autonomy in behavioural choice, several levels exist depending on the
importance of the user control of the virtual agents. [Boden 96, Blumberg 97] define

dimensions of autonomy based on their degree of autonomy or levels of autonomy:

* The virtual agent is a direct extension of the user, but the desired level of inter-

action is such that the user wishes to provide control at a high level and rely on
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the competence of the virtual agent to accomplish the task.

The virtual agent is not directly driven by the user but interacts with him and

other virtual agents in a relatively structured environment.

* The virtual agent is intended to give the illusion of being alive and of having an

existence independent of the user.
* The extent to which responses to the environment are direct or indirect.

* The extent to which the controlling mechanisms are self-generated rather than

externally imposed.

* The extent to which inner directing mechanisms can be reflected upon and/or

selectively modified.

Fundamentally, autonomy is about choices, and about being self-contained. The im-
plicit assumption is that the agent is constantly faced with non-trivial choices, and must
decide on its own how to respond. It is self-contained in the sense that it does not rely
on an external entity, i.e., a virtual agent or a centralized decision-maker to make its

decisions for it.

2.3.1.2 Autonomous Behaviour

Behaviour refers to the actions or reactions of an object or organism, usually in relation
to the environment. In other words, behaviour itself means a complex action of a
human or other animal based on volition or instinct and the autonomous agent might
need this. Behaviour of autonomous agents is generally viewed as goal-directed which
contributes to the following features [Reynolds 99]:

1. action selection - noticing that the state of the world has changed and setting a
goal,

2. steering - represented by the virtual agent, who decomposes the goal into a series

of simple sub-goals; and

3. locomotion - taking the virtual agent’s control signals as input and moving in the
indicated direction. This motion is the result of a complex interaction of visual
perception, its sense of balance, and muscles applying torques to the joints of its
skeleton.
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Figure 2.3 shows an cxample of autonomous behaviour framework of a virtual agent

that can reproduce several human behaviour features {Iglesias 04]. Each system can
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Figure 2.3: Example of Framework for Virtual Agents [lglesias 04]

be broken up into smaller subsystems, each associated in turn with more specific rou-
tines. The physical system includes the perception and motion subsystems, while the
behavioural system includes the analyzer, the knowledge motor, the internal states and

the goal subsystems.

2.3.2 Types of Agents

An autonomous agent can be defined as an autonomous entity in a virtual environment.
It should not only look like, but also behave as a living organism in a synthetic 3D
world, and be able to interact with the world and its inhabitants [ Vosinakis 01]. The
virtual agent must combine aspects of an autonomous robot with some of the skills
of a human actor in an improvisational theatre [Reynolds 99]. [Brooks 91] refers to
embodiment and situatedness as the two cornerstones to the new approach to Artificial

Intelligence, and defines them as follows:

Situatedness

The agents are situated in the world - they do not deal with abstract descriptions
but with the here and now of the world directly influencing the behaviour of the

system.
Embodiment

The agents have bodies and experience the world directly - their actions are
part of a dynamic with the world and have immediate feedback on their own

sensations.
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The notion of situatedness is often forgotten compared to the others and is very impor-
tant in real-time environments. It implies the use of a bottom-up approach. A situated

agent is defined as an agent which [Steegmans 04]:

L]

is situated in an environment,

is driven by a survival/satisfaction function,

» possesses resources of its own in terms of power and tools,

is capable of perceiving its environment (but to a limited extent),

has practically no representation of its environment
* possesses skills
* can perhaps reproduce

Situatedness places an agent in a context in which it is able to perceive its environment
and in which it can (inter)act. The agent also acts in such a way as to possibly influence
what it senses at a later time. It is structurally coupled to its environment {Maturana 75,
Maturana 80). Situated agents do not use long-term planning to decide what action
sequence should be executed, but select actions based on the locally perceived state
of the world and limited internal state. Contrary to knowledge-based agents, situated
agents do not emphasize internal modelling of the environment. Instead, they prefer to
employ the environment itself as a source of information. The environment can serve as
a robust self-revising common memory for agents. This can unburden the distinctive
agents from continuously keeping track of their knowledge about the system. The

benefits of situatedness are well known: flexibility, robustness and efficiency.

2.4 Control Architectures

An agent’s control architecture is the structure of its agent program, and the description
of information and control flows through its different components. Different architec-
tures can produce the same agent function, but their implementation will be different.

Maes [Maes 91] defines an agent architecture as:

A particular methodology for building [agents]. It specifies how ... the
agent can be decomposed into the construction of a set of component mod-
ules and how these modules should be made to interact. The total set of
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modules and their interactions has to provide an answer to the question
of how the sensor data and the current internal state of the agent deter-
mine the actions ... and future internal state of the agent. An architecture
encompasses techniques and algorithms that support this methodology.

Kaelbling [Kaelbling 91] considers an agent architecture to be:

A specific collection of software (or hardware) modules, typically desig-
nated by boxes with arrows indicating the data and control flow among the
modules. A more abstract view of an architecture is as a general methodol-
ogy for designing particular modular decompositions for particular tasks.

In general, the autonomous agents are controlled by four main approaches which are
scripting, reactive, deliberative and hybrid approaches. Scripting allows a very de-
tailed level of control, but is very inflexible [Thalmann 04]. Reactive architectures in
Figure 2.4(b) use a bottom-up philosophy and react to the changing environment ac-
cording to the sets of rules. They should be sufficiently flexible to adapt to changing
environments and changing requirements. Reasoning strategies allow them to antici-

pate the consequences of possible actions and choose the most rational action.

Deliberative
Goal Finding [_ !—?Y?L_]
~Sensor~ | ® | €| 3 ~Actuator-  —Sensor— Obstacle  _actuator— Controf
8 B|e § Avoidance Execution
gl=|=|&
" Reactive
Wanderin — -
9 Sensor—-‘ tayer | -Actuator-
(a) Deliberative architecture (b) Reactive architecture (c) Hybrid Architecture

Figure 2.4: Three Types of Agent Control Architecture [Brooks 86, Pérez 00}

Deliberative architecture in Figure 2.4(a) is similar to reactive agents, and this most
popular implementation is probably seen in games such as The Sims. Deliberation is
typically a time and space consuming operation. The design of the control architecture
is based on a top-down philosophy, and the control architecture is broken down into an
orderly sequence of functional components, and the user formulates explicit tasks and
goals for the system.

Hybrid architectures, in Figure 2.4(c), are a combination of deliberation with a
reactive behaviour pattern to allow timely reactions within a dynamic environment
[Wooldridge 95]. Hybrid systems attempt to compromise between bottom-up and top-
down methodologies. Usually the control architecture is structured in three layers: the

deliberative layer, the control execution layer and the functional reactive layer.
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As an alternative to using the above mentioned approaches some researchers have
used L-systems [Noser 95, Noser 05 and vision systems [Peters 02, Peters 03). The
L-system is a timed production system designed to model the development and be-
haviour of static objects, plant-like objects and autonomous creatures. It is based on a
timed, parametric, stochastic and conditional production system, force ficlds, synthetic
vision and audition, which are completely defined by production rules. Furthermore,
in vision systems, the virtual agent senses external stimuli through a synthetic vision
system. The vision system incorporates muitiple modes of vision in order to accom-
modate a perceptual attention approach. A memory model is used to store perceived

and attended object information at different stages in a filtering process.

2.4.1 Deliberative Architecture

Deliberative agents are also called cognitive agents, intentional agents or goal-directed
agents, which is the classical architecture. The deliberative approach involves the agent
knowing its environment, developing an internal world model, a map, and making de-
cisions based on this information. This virtual agent will move about and perform
tasks in a deliberate manner. It relies on planning and hypothesis exploration. A de-
liberative architecture is one that reasons about future events, takes into consideration
the outcome of its action, and tries to build a set of actions towards a specific goal. It

generally uses logic and symbolic reasoning. This approach has two main problems:
1. how to translate the environment into the appropriate symbolic description, and

2. how to symbolically represent information about a complex environment, and

all that in time for the agent to act properly.

Computation time is not a problem in a step by step simulation, but it can be in a real-
time context. This type of architecture lacks reactivity, having to consider several steps
ahead before taking any action. Figure 2.5 shows an example implementation of the
JADEX architecture [Pokahr 03] based on the BDI model [Rao 95]. The BDI model
enables us to view an agent as a goal-directed entity that acts in a rational manner.
Viewed from the outside, the agent is a black box, which receives and sends mes-
sages. Incoming messages, as well as internal events and new goals, serve as input to
the agent’s internal reaction and deliberation mechanism. Based on the results of the

deliberation process these events are dispatched to already running plans, or to new
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plans instantiated from the plan library. Running plans may access and modity the be-
lief base, send messages to other agents, create new top-level or sub-goals, and cause

internal events.
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Figure 2.5: Deliberative Architecture [Pokahr 03]

Some of the popular approaches are learning and evolutionary methods. For ex-
ample, [Uhrmacher 00] developed a simulation layer of a Java Based Agent Modeling
Environment for Simulation (JAMES) that implements a moderately optimistic strat-
egy which splits simulation and external deliberation into different threads and allows
simulation and deliberation to proceed concurrently by utilizing simulation events as
synchronization points. [Lee O04a] used neural networks for the behaviour decision
controller. The input of the neural network is decided by the existence of other agents
and the distance to the other agents. The output determines the directions in which
the agent moves. The connection weight values of this neural network are encoded as
genes, and the fitness of individuals is determined using a genetic algorithm. Here, the

fitness values imply how much group behaviours fit adequately to the goal.

2.4.2 Reactive Architecture

The Reactive approach involves the autonomous agent reacting to its environment with
tight sensing - acting connections. These virtual agents do not have a plan, nor do they
have a map. These agents explore their world and react to the environment as they
encounter it. A reactive architecture relies on a quick response. They are based on
the assumption that intelligent behaviour can be generated without explicit represen-
tation nor explicit reasoning (as it is the case in deliberative architectures) and that

intelligence is an emergent property of certain complex systems.
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Reactive agents are also called situated agents. The basic structure of a reactive
agent consists of all behaviours, taking input from the sensors and sending output to
the actuators [Pérez 00]. A coordinator is needed in order to send only one command
at a time. The goal is achieved by subdividing the overall task into small independent
behaviours that focus on execution of specific sub-tasks [Seraji 02]. The resulting
architecture can be very simple, but fast (in computational time) and cfficient. They
perform well in quickly changing complex environments (in which time is important),
though they lack the adaptability of deliberative planning. However, there are three
main problems [Li 94, Pérez 00}:

. it is hard to formulate reactive behaviour quantitatively and also there might be

no applicable approach to coordinating conflict;

2. there is competition among different reactive behaviours to achieve a good per-

formance; and

3. how to select the proper behaviours for robustness and efficiency in accomplish-

ing goals.
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Figure 2.6: Reactive Architecture [Weyns 04}

An example of reactive architecture with a focus on the functional decomposition
of an agent’s behaviour is depicted in Figure 2.6. Agents produce influences into the
environment and subsequently the environment reacts by combining the influences to
deduce a new state of the world from them. The reification of actions as influcnces
enables the environment to combine simultaneously performed activities.

Traditional architectures for reactive agents (see e.g. [Brooks 91, Tyrrell 93, Maes 97,

Bryson 01]) take the viewpoint of the individual agent to select the most appropriate
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action. This architecture can be summarized based on their characteristics, as in Ta-
ble 2.2.

Table 2.2: Reactive Architectures and their Basic Characteristics [Arkin 98, Pérez 00]
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More recent work by [Pisan 02] proposes an architecture that uses a logic-based
truth maintenance system coupled with a rule engine to create articulate agents capa-
ble of having conversations with the player. [Weyns 06] introduced a virtual environ-
ment for agents to live in. This virtual environment offers a medium that agents can
use to exchange information and coordinate their behaviour, and serves as a suitable
abstraction to shield low-level physical processing from the agents. Since the only in-
frastructure available to the Automatic Guided Vehicles (AGVs) is a wireless network,
the virtual environment is necessarily distributed over the AGVs. Synchronization of
the state of the virtual environment is provided by ObjectPlaces, a middleware infras-

tructure that offers support to exchange and share information among nodes in mobile
and ad-hoc networks.

2.4.3 Hybrid Architecture

Hybrid architectures attempt to combine deliberative and reactive processes to get the
advantages of both types of architecture. The processes are used in parallel and allow
both quick response and planned behaviours. The core of the architecture is that the

behaviours of an autonomous agent can be specified as a dynamical system. This ar-
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chitecture includes reactivity (elementary behaviours level) and BDI (high behaviours
level). The main function of the elementary behaviours level is the agent’s basic ac-
tions. With the use of these behaviours the agent can accomplish simple tasks without
coordination with other agents. Where the agents must collaborate with other agents,
the high level behaviours can be named collaborative behaviour. These behaviours can

act in complex tasks, which the elementary behaviours could not execute.
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Figure 2.7: Hybrid Architecture [Franklin 97)

In some architectures, fuzzy logic is an alternative to a Bayesian approach [Berger 93].
The Bayesian approach is based on a rigorous theory with a vast amount of known
results [Lindley 87]. The lack of ability to handle continuous input, requires a vast

amount of storage and computational manipulation making this probabalistic method

computationally infeasible. If integrated with the fuzzy logic approach of making the
data members of discrete sets, the hybrid system should be able to handle all the de-
mands of uncertainty [Rao 08].

More recent work by [Karim 06] has investigated ways in which different cogni-
tively styled agents using knowledge representations of varying levels of abstraction
can be combined into a hybrid architecture. They used a reactive learner known as
Falcon, which is based on a reinforcement learning technique, with that of a high-level
plan execution engine, and reactive plan execution engine based on BDI known as
JACK. [Bajo 07] has developed deliberative planner agents using Case-Based Reason-
ing (CBR) systems. This hybrid architecture meets the conditions needed to introduce
a representation and a reasoning based on the action, This is because a CBR-BDI
agent uses case-based reasoning as a reasoning mechanism, which allows it to learn

from initial knowledge, to interact autonomously with the environment as well as with
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users and other agents within the system, and to have a large capacity for adaptation to

the needs of its surroundings.

2.5 Action Selection Mechanism

In general, action can be referred to as the process or state of acting or of being ac-
tive. A more precise definition comes from Webster’s Revised Unabridged Dictionary
[DICT.Org 13] which defines action as:

A process or condition of acting or moving, as opposed to rest; the doing
of something; exertion of power or force, as when one body acts on an-
other; the etfect of power exerted on one body by another; agency; activity;
operation; as, the action of heat; a man of action.

Figure 2.8: Internal View of Agencies [Pirjanian 99a)

In the autonomous agent context, action selection also refers to activation of a
behaviour best suited to the agent. Thus, agents can have two roles in an agency:
actions and action selection mechanisms. Based on these two roles, it subordinates an
agent as an action selection mechanism, and with respect to its superior, an agent is
viewed as action [Pirjanian 99al; this is illustrated in Figure 2.8. The two roles of an
agent in the agent hierarchy are that from its own point of view an agent is an action
selection mechanism, whereas from a superior’s point of view it is an action.

One fundamental question about decision making or action selection is whether it
is rcally a problem at all for an autonomous agent, or whether it is just a description
of an emergent property of an intelligent autonomous agent’s behaviour. However, the
history of intelligent systems, both artificial [Bryson 00] and biological [Prescott 07},
indicate that building an intelligent system requires some mechanism for decision mak-

ing or action selection. This mechanism may be highly distributed, or it may be one
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or more special-purpose modules, and also, the following features might be required
[Brom 06]:

* The acting agent typically must select its action in dynamic and unpredictable

environments,

* The agents typically act in real time; therefore they must make decisions in a

timely fashion.

* The agents are normally created to perform several different tasks. These tasks

may conflict for resource allocation.

* The environment the agents operate in may include humans, who may make

things more difficult for the agent (either intentionally or by attempting to assist).

* The agents are often intended to model humans and/or other animals. However

animal behaviour is quite complicated and not yet fully understood.

The action selection techniques determine not only the agent’s actions in terms of its
impact on the world, but also directs its perceptual attention, and updates its memory.
These self-centered sorts of actions may in turn result in modifying the agent’s basic
behavioural capacities, particularly in that updating memory implies some form of
learning is possible. Ideally, action selection itself should also be able to learn and
adapt, but there are many problems of combinatorial complexity and computational

tractability that may require restricting the search space for learning.

2.5.1 The Action Selection Problem

The problem of action selection is central each time autonomous entities such as
robots, virtual characters, or humans are designed. The system should decide what
to do next according to its internal and external information without outside interven-
tions. Action selection is a control structure for an autonomous agent (see Figure 2.9)
and can be considered as the mind of the agent. The continuing task of mind is to
produce the agent’s next action to answer the only really significant question there is:
what shall I do next?

In the decision process, multiple conflicting objectives are considered simultane-
ously, subject to certain constraints dictated by the agent limitations [Pirjanian 97].

The constraints are based on the complexity of the environment, unpredictabilities and
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Figure 2.9: The Action Selection Module Inside the Animal Brain

an agent’s limited resources. This implies that the action selection cannot be com-

pletely optimal. The action selection should be fast, robust and good enough for satis-

fying a decision [Simon 77]. The decision making process searches for ‘good enough’

options, rather than an optimum solution. With satisfying, decision making becomes

something which is carried out in a limited time, and with some limits on the individ-

uals concerned [Brown 05]. According to [Maes 89, Tyrrell 93] the following require-

ments are needed in the development of a good enough action selection mechanism:

l.

(5]

6.

Goal-orientedness - it favours actions that contribute to one or several goals.

. Situatedness - it favours actions that are relevant to the current situation.

. Persistence - it favours actions that contribute to the ongoing goal.

Planning - it looks ahead to avoid hazardous situations.

Robustness - it never completely breaks down, even when certain components
fail.

Reactivity - it provides fast and timely responses.

Dealing with all types of sub-problem - the same action selection should handle

all sub-problems.

. Compromised actions - the need to choose actions that are best for the collection

of behaviours rather than individual behaviour.

Opportunism - should allow the agent to interrupt the ongoing goal and pursue a

new one.
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Some of these requirements might be conflicting with each other, for example, plan-
ning is in conflict with reactivity [Pirjanian 99a). This is not a major problem since
it depends where and when the action selection is to be used. Also, there are some
agent architectures and action selection methods that use both planning and reactive
approaches, such as in hybrid systems. The main concern is how this method can
fulfill the autonomous agent goal of good enough action.

Atevery instant the agent should choose the actions which can achieve its objective,
given its internal state (e.g. food and water needs), its perception of its environment,
and its repertoire of possible actions. Moreover, the temporal pattern of its behaviour
should make sense as well. If it is working on a given goal, it should continue working
on that goal until either the goal is satisfied or something better comes along. That is,
it should be able to balance persistence with opportunism and have a sense of whether
it is making progress, i.e., it should not get stuck in mindless loops [Maes 90]. Many
problems are linked with action selection such as action persistence, evaluation of the
action choice, chaining actions to obtain coherent behaviours, authorizing opportunist

and compromise behaviours [Blumberg 94].

2.5.2 Classification ot Action Selection

Many action selection methods have been proposed, yet there is still no clear classifi-
cation of the different techniques in the literature. A global classification, accepted by
the majority of scientists [Ziemke 98], lists systems according to their adaptability and
might depend on when and where it is being used, and also on how the action selection

has been accomplished.

Coordination Classes Classes of ASM
/\ Arbitration Command Fusion
State-based Continuous
iof - Votin Fuzzy
Competetive Temporal Cooperative Priority State-based 9
Sequencing Winner-take- all Superposition
(a) (b)

Figure 2.10;: Classification of Action Selection (a) [MacKenzie 97] {b) [Saffiotti 97]

One of the earlier classifications was introduced by [MacKenzie 97] in Figure 2.10(a)

and by [Saffiotti 97, Pirjanian 99a] in Figure 2.10(b). The classifications have some
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similarity, in that arbitration (Competitive behaviour) and command fusion (Coopera-
tive behaviour) corresponded to state-based and continuous approaches, respectively.
Both also focus on the problem of behaviour coordination and command fusion.

Behaviour coordination is concerned with how to decide which behaviour to acti-
vate at each moment or state, and command fusion is concerned with how to combine
the results from different behaviours into one command {Pirjanian 99aj. Alternatively,
[Brom 06] classified action selection into a symbol-based system (classical planning),
distributed solution and reactive planning (dynamic planning). Even though there is
some similarity with [MacKenzie 97} and [Saffiotti 97, Pirjanian 99a] classification,
the action selection has been classified based on agent architecture, as described in
Section 2.4.

Arbitration and command fusion action selection mechanisms are mutually exclu-
sive in that the same set of behaviours cannot use both mechanisms at the same time.
However, it is still possible to use them together in the same architecture as long as
there is a way to decide which selection mechanism gets to select behaviours at any
given time, for example in hybrid architecture [Scheutz 04]. Furthermore, [Scheutz 02]
expanded arbitration and command fusion into implicit behaviour and explicit be-
haviour.

Implicit behaviour selection uses structural features of the architecture to select be-
haviours. This can be seen, for example, through the relative strengths of inhibitory
and excitatory connections among components as in the cooperative example of Brait-
enberg vehicles |Braitenberg 84]. In contrast, explicit behaviour selection uses spe-
cialized components. Implicit and explicit behaviour selection mechanisms are also
mutually exclusive analogous to competitive and cooperative mechanisms. Similar to
arbitration and command fusion, implicit and explicit behaviour also can coexist in one
architecture.

Table 2.3 summarizes the classification of action selection mechanisms that have
been discussed in this section. We have distinguished between arbitration (Competi-
tive behaviour) and command fusion (Cooperative behaviour) action selection meth-
ods. Although both methods can be used in reactive and deliberative architectures,
the distinction between reactive and deliberative behaviour selection is pertinent to
the run-time instance of an architecture. They also can been used together, for exam-
ple in a Hybrid architecture. Hybrid architectures may consist of a command fusion
action-selection mechanism in the reactive layer, and an arbitration action-selection

mechanism in the deliberative layer.
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Table 2.3: Examples of Action Selection Methods.

Reactive
Arbitration Command Fusion
Agent Network [Maes 89] DAMN [Rosenblatt 97
Explicit | Bayesian Network Analysis [Kim 03] | Multi Objective {Pirjanian 97]
Probabilistic Method [Dix 00] Fuzzy Fusion [Satfiotti 97]
Action Voting [Hoft 95
Implicit Subsumption [Brooks 86] Braitenberg [Braitenberg 84]
Deliberative
Arbitration Command Fusion

Explicit | Alliance [Parker 97] | Hybrid Coordination [ Yong 06]
Yamada [Yamada 01] BeCA [Gershenson Q0]
Implicit DAC [Pfeifer 92}

2.5.3 Reactive Action Selection Method

In designing decision making architectures for virtual agents, two approaches exist
which are Top-Down approach and the Bottom-Up approach. Reactive architectures
(Behaviour-based architectures), used principally in robotics [Maes 94, Mataric 97,
Arkin 98], follow the Bottom-up approach and have been implemented to fix prob-

lems with traditional planning architectures:

* Constructing a complete plan before beginning action. A planner cannot de-
termine whether a plan is viable before it is complete. Many plans are in fact

formed backwards because of opportunities and changes in the environment.

Taking too Jong to create a plan, thereby ignoring the demands of the moment.

Being unable to create plans that contain elements other than primitive acts.

Being unable to manipulate plans and goals.

behaviour-based models are used to implement fully reactive agents. A reactive sys-
tem is designed from the beginning to be situated in a complex, dynamic environ-
ment, which it must constantly monitor and to which it must instantly react. They
can respond quickly to new, unexpected or opportunistic situations in the environment
whereas a traditional planner will continue to execute its script until the end even if the
intention of the agent or the conditions of the plans are changed. Reactive agents will
notice and take decisions according to opportunities which can fulfill any of their goals.

Moreover in reactive agents, the information is always up-to-date and consequently the
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behaviour plan also. This is because no information is stored. All information is a re-
flection of the current environment

This section has a focus on the reactive architectures. These methods were de-
signed independently and are based on different ideas within the field of Behaviour-
based Robotics. The methods and their basic characteristics can be seen in Figure 2.10
and Table 2.3. Table 2.4 shows some of the methods that have been developed by
several researchers. There is some overlap between these methods, and in some cases
there are techniques which do not fall into any of the categories. The next section
will discuss some examples of reactive action selection methods which are based on
|Saffiotti 97].

2.5.3.1 Arbitration

Arbitration requires the selection of an action based on the result of some compe-
tition process among different components, possibly followed by the arbitration of
the current behaviour (if an action is different from the current one that was selected
during competition) [Scheutz 02]. Arbitration ASMs allow one behaviour or a set of
behaviours at the same time to take control for a period of time until another set of
behaviours is activated. Arbitration mechanisms select one behaviour, from a group of

competence modules.

Priority-based

Subsumption architecture [Brooks 86] is based on priority-based mechanisms. The ar-
chitecture consists of series of behaviours, which constitute a network of handwired fi-
nite state machines. Action consists of higher-level behaviours overriding (subsuming)
the output of lower level behaviour [Pirjanian 99a]. The behaviour which has higher
priority is allowed to take control of assigned priorities. These innovations allowed the
development of the first robots capable of animal-like speeds [Brooks 90].

Figure 2.11 shows the structure of a subsumption architecture for agents in com-
puter games developed by [Kenyon 06] in which the one-per-layer behaviour modules
are not networked except for strict downwards subsumption. The system allows for
future expansion to a series of Finite State Machines (FSM). The characteristics of this
architecture are that each layer can receive sensor information and make responses to
the change of environment without waiting for the higher layer’s order. The architec-

ture can be divided into three layers according to the tasks that system should achieve.
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Table 2.4: Virtual Agent Action Selection Methods [Delgado 04]
s . Combination
Author Disciplines Design s Used
Stimuli
b e e e e 4 R —
. . Distributed network of N Physical
Brooks Robotic finite state machines Subsumed robot
Hierarchical behaviour
Blumberg Ethology system using releasing Summed 3D graphics
mechanisms with learning |
—_— . Loose hicrarchy of Can be any -
I'yrell Ethology behaviour function Grid
cinf W-leamin,
Runtorc.ement o & Synthesised and .
Humphry learning Minimising “worst subsumed Grid
Brooksian ethology unhappiness”
Bryson Ithology Reactive hierarchy Synthesised Grid
Montes Basal ganglia Ncurolqglcal model of Leaky intcgration Robot
I neurology mammalian basal ganglia
S S
Reactive behaviours
Martines Robotic ethology blended usefl in conjunction Context dePendmg Robot
to accomplish a navigation blending
task
Flocking behaviour with
Revnolds Animal behaviour collision avoidance, Vectorial 3D (rough)
YOS computer graphics | velocity matching and flock summation &
centring
Barnes Robotic Reactive beh‘awour Synthesised Phy S'Ljal
synthesis robotic
Ethology computer | Physics based modelling of
Tu graphics physic based | artificial fish, hierarchical Winner-takes-all | 3D graphics
modelling action selection
. ; . Perceptual processes . Physical
Arkin Iithology guided attached to motor schemas Vector summation robot
Maes ANN and robotics Non-hicrarchical distributed Summed Robot
network
Non-hierarchical distributed
Negrete Neuro-physiology network neuro-humoral Summed 2D
neuron
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Figure 2.11: Agent Al Subsumption Architecture. An | node indicates inhibition; an S
node indicates suppression.

The higher layers subsume the functions of lower layers. Adding new functions to the

control system can be easily realized through building a new layer on the old levels of
competence.

State-based

A set of behaviours is selected that is adequately competent to handle the situation
corresponding to some given state. Action selection is done using state transition,
where upon detection of a certain event a shift is made to a new state, thus a new
action. In Discrete Event Systems [Kosecka 93] and Temporal Sequencing [ Arkin 94,
the agent and its interaction with the environment are modelled using FSM.

The Discrete Event System in Figure 2.12(a) shows a finite state mobile agent de-
veloped by [Yong 05]. The model used fabric architecture, named virtual organization
(VO or group), to support the computation. The basic elements of virtual organization
are nodes that connect via a network. The virtual group based fabric architecture is the
platform of the mobile agent migration. By this method, the mobile agent can explore
and move more effectively and it also can greatly decrease the mobile agent size when
migration occurs.

Temporal Sequencing alternatively, uses FSM for the formulation of sequencing
between a series of behaviours based on perceptual triggers. [Sevin 05] developed a
motivational model of action selection based on this method, as shown in Figure 2.12(b).
The model is for autonomous virtual humans in which overlapping hierarchical classi-

fier systems, working in parallel to generate coherent behavioural plans, are associated
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with the functionality of a free flow hierarchy to give reactivity to the hierarchical
system.

A bayesian network analysis [Kristensen 97] showed that the competition of be-
haviours is the basic characteristic of a behaviour network. Each behaviour can get
a higher activation level than other behaviours from forward and backward activation
spreading. Among candidate behaviours, the one that has the highest activation level is
selected and has control of the robot. The precondition is the sensor that is likely to be
true when the behaviour is executed. The add list is a set of conditions that are likely
to be true by the execution of the behaviour and the delete list is a set of conditions

that are likely to be false by the execution of the behaviour. Figure 2.13 is a typical

S G,
Sz B! ' : Bs _ G,
S i N G
[. 3_ -Bs Bs' ’
[ Ss R TIag | G,

Note: S(sensors), B(behaviour), G (goal), the solid line among behaviours rep-

resents a predecessor link and the dashed line represents a successor link

Figure 2.13: An Example of a Behaviour Network



Chapter 2. Literature Review 36

example of a behaviour network. [Banerjee 00] presented research to enable bayesian
network based modelers to select actions that lead to more accurate models about the
nature of another agent. The mechanism involves the use of a max-min procedure for
action selection that guarantees a minimum level of improvement in estimation of an

agent’s trustworthiness irrespective of whatever action the latter selects.

Winner-takes-all

Action selection results from the interaction of a set of distributed behaviours that
compete until one behaviour wins the competition and takes control of the agent. There
are obvious similarities between the agent network architecture and neural network
architectures. Perhaps the key difference is that it is difficult to say what the meaning
of a node in a neural network is; it only has a meaning in the context of the network
itself. Since competence modules are defined in declarative terms, it is very much
easier to say what their meaning is.

Pattie Maes [Maes 89, Maes 91] has developed an agent architecture which is
known as an Activation Network. The agent is defined as a set of competence modules.
Each module is specified by the designer in terms of pre- and post-conditions, and an
activation level, which gives a real-valued indication of the relevance of the module
in a particular situation. The higher the activation level of a module, the more likely
it is that this module will influence the behaviour of the agent. Once specified, a set
of competence modules is compiled into a spreading activation network, in which the
modules are linked to one-another in ways defined by their pre- and post-conditions.
For example, if a module has a post-condition, and a module has a pre-condition of an-
other module, then they are connected by a successor link. Other types of link include
predecessor links and conflicted links. When an agent is executing, various modules
may become more active in given situations, and may be executed. The result of ex-
ccution may be a command to an effector unit, or perhaps the increase in activation
level of a successor module.

2.5.3.2 Command Fusion

In command fusion, the action selection requires mechanisms that achieve some sort
of behaviour (or command) fusion, integrating information from different sources to
obtain the current action [Scheutz 02]. Command fusion allows multiple behaviours to

contribute to the final control of the agent, which means combining recommendations
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from multiple behaviours to form a control action that represents their consensus.

Voting

Voting interprets the output of each behaviour as votes for or against possible ac-
tions. The action with the maximum weighted sum of votes is selected. Action Voting
{Holt 95) is where each behaviour votes for an action which it determines the robot
or agent should perform. Action choices are assumed to be mutually exclusive; a sin-
gle action is selected for one time-step. The behaviour shows its preference for the
action with a value in the range of 0 to 1. These base action votes are tallied, modifi-
cations are applied (discussed below), and the action with the highest total is selected
for execution.

A Distributed Architecture for Mobile Navigation (DAMN) [Rosenblatt 97] is used
for command fusion regarding the safety behaviours for turn and speed of the mobile
robot. The beauty of the DAMN design is that the deliberative and reactive components
of the architecture can operate at the same level and also it is scalable due to lack of
hierarchy.

Aspiration Activation Activation
Levels ASL Levels ACL  Matrix AM

|

Attributes Detecting Activating Voters
AT Events Goals G

Action Action
Selection| ac
o e Checking Actions’ | Candidates
- = Preconditions A
PC
Weights PV
Impact Matrix iM-

Figure 2.14: Goal-Action-Attribute Model

Similar to DAMN, [Salehie 07] proposed a weighted voting mechanism which
makes decisions based on a Goal-Action-Attribute Model (GAAM). Figure 2.14 il-
lustrates the flow of the proposed decision process. Before making a decision, it is
essential to determine which goals have been activated and which actions are feasible
to take effect. The activated goals (G) are voters and the feasible actions (A) are eligi-

ble candidates. As shown in Figure 2.14, events are detected by the aspiration values
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of each goal, ac;. In GAAM, low-level goals are used which are directly related to the

attributes.

Fuzzy/Multivalued Logic

This is similar to voting, but uses fuzzy inferencing methods to formalize the voting
approach. The result of inferencing is represented in a fuzzy variable and a defuzzify
to get a crisp value that can be directly used to control the agent. Two main advan-
tages of using fuzzy logic compared to other methods are that it deals with various
situations without needing an analytical model of the environment; and it is easier to
merge different strategies by means of the fuzzy rules depending on different situations
[Chee 96].
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Figure 2.15: Fuzzy Rule Based Controller [Vosinakis 07]

[Vosinakis 07] proposed a fuzzy rule-based mechanism for the low-level decision
process of autonomous agents in dynamic environments that operates using vaguc lo-
cations. The proposed architecture is presented in Figure 2.15. All sensor data are
stored in the agent’s memory, which contains the known objects and their property
values. The agent’s effectors operate using crisp positions. They have an equal num-
ber of fuzzy rule sets assigned to them, and they receive crisp input after a complete
fuzzytication - evaluation - defuzzification loop. Fuzzy rule sets contain condition or
action rules that are defined by the designer using vague locations. The condition part

of a rule may be a simple or a compound condition.
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Superposition

Superposition based command fusion combines behaviour recommendations using lin-
ear combinations. Potential Field [Khatib 86), Motor Schemas [Arkin 89] and Dynam-
ics System approaches fall under this method. In a potential field, the motor commands
of the agent at any position in a potential field correspond to the vector on which the
agent is situated. Goals attract and will have vectors pointing towards them, obsta-
cles repulse and will be surrounded by vectors pointing away. [Katoh 04] for example,
used the potential of the environment to give agents some criteria to assess environ-
mental situations from their own perspective. The potential of each object represents
its influence on the environment and the environmental potential, i.e., the summation
of each object’s potential, represents the global situation of the environment. An agent
decision regarding their behaviour will be made by refining the policy obtained from
the potential.

[Pezzulo 06] presents a schema-based agent architecture which is inspired by an
ethological model of the praying mantis. It includes an inner state, perceptual and
motor schemas, several routines, a fovea and a motor. The model includes six mo-
tor schemas: stay in path (the default behaviour), chase, escape, mate, hide and avoid
obstacle. They have three components: a detector, which sets the value of the precondi-
tions by monitoring the state of the perceptual schemas (e.g. detect prey is very active);
a controller (an inverse model), which sends commands to the motor (e.g. move left);
and a forward model. The motor schemas receive activation from the related percep-
tual schemas in the form of matched preconditions: a very active detect prey activates
chase (which learns to interpret it as: there is prey). The motor schemas also receive
activation from the inner states: a fearful mantis activates its motor routines for escap-
ing even in the absence of real danger; as in the case of perceptual routines, they can
only remain active if the right stimuli are in place. The main role of the controller is
to send commands to the motor. The main role of the forward model is to produce
expectations about perceptual stimuli (to be matched with sensed stimuli, including

vision and proprioception).

Multi-objective

Each behaviour calculates an objective function over a set of permissible actions. The
action that maximizes or minimizes the objective function corresponds to the action

which best satisfied the objective. Multiple behaviours are blended into a single com-
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plex behaviour that seeks to select the action that simultaneously satisfies all the objec-
tives as closely as possible [Pirjanian 99b]. In general, an agent has a set of behaviours
for achieving various objectives, and must integrate these behaviours according to the
environmental conditions.

[Pirjanian 00| proposed the method for multi-objective behaviour coordination.
Then [Ban 07] used [Pirjanian 00]'s method for solving decisions based on percep-
tion for behaviour animation of autonomous agents. First, the internal state of agents
was modeled, which was caused by temporary stimuli and accumulation of physical
and mental states. Secondly, the agents’ desires were described which are generated
by the internal state and used for guiding perception. Thirdly, the net value of the pos-
sible feature combinations for a given desire was figured out using decision-theoretic
principles to determine whether the process on the feature combinations was worthy
or not. Then, a multi-objective decision making algorithm was introduced to achieve
a decision based on perception, thus the connection between the actual desires and
behaviours are established.
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Figure 2.16: Multi-objective Behaviour Coordination {Kubota 07]

[Kubota 07] proposed a multi-objective behaviour coordination to realize forma-
tion behaviours based on the integration of the intelligent control from the local view-
point of individual intelligence and the spring model from the global viewpoint of

collective intelligence. This method is composed of a behaviour coordinator and a
behaviour weight updater.
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2.6 Summary

In this chapter, we have seen that an autonomous agent will make its own decisions
and have some degree of autonomy. [t can be a situated agent or embodied agent
depending on their use and function. Autonomous agents architectures can be reactive,
deliberative or hybrid. Although virtual agents use different architectures, they can still
be used for solving the same problem in a different way. Another important aspect of
autonomous agents is the action selection mechanism: which of the many things an
agent can do at any moment is the right thing to do?

We recognise that virtual agents should respond quickly to the environmental changes
and manage autonomously the fulfillment of goals. With these requirements fulfilled,
virtual agents are highly autonomous and distinct. The next chapter will describe how
a fuzzy reactive architecture has been used for autonomous agents. A new fuzzy action

selection method has been developed based on the a.—/evel ranking method.
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The Methodology

No sensible decision can be made any longer without taking into
account not only the world as it is, but the world as it will be. . .
- Isaac Asimov (1920- 1992)

Humanist and a rationalist

Rational behaviour requires theory. Reactive behaviour requires only
reflex action.

- W. Edwards Deming (1900-1993)
American statistician, professor, author, lecturer, and consultant

3.1 Introduction

The behaviour-based control method is based on decomposing the problem of au-
tonomous control by task rather than by function. Behaviour-based control is usually
designed to be a reactive system, which maps a perceived situation to an action. How-

ever, this simple approach brings up three main problems which are [Li 94, Pérez 00]:

1. it is hard to formulate reactive behaviour quantitatively, and also there might be

no applicable approach to coordinating conflict;

2. there is competition among different reactive behaviours to achieve a good per-

formance; and

3. how to select the proper behaviours for robustness and efficiency in accomplish-

ing goals.

Because of the above problems a reliable action selection mechanism is required. The

role of the action selection mechanism is to compute which action should be executed

42
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by a behaviour-based system using the internal state and the external perceptions of
the virtual agent. Unfortunately, it is difficult to make good decisions that satisfy both
goal and constraints. One of the main issues is how to define the required behaviours to
accomplish the goal [Saffiotti 98]. This problem appears in the decision process when
sensory data matches with several behaviour rules (conditional parts of the rules). Asa
result, behaviour rules conflict with one another, which means that more than onc rule
becomes active at one time.

We focus on the development of a reactive/behaviour-based architecture using
fuzzy logic. The main advantages of this method are that no mathematical model
is required and the ability to represent human expert knowledge on a control plan. The
virtual agent will interact with the environment continuously, where action is executed
without planning. The action is triggered by reacting to the environment rather than

deliberation, or cognitive assessment.

3.2 Overview of Fuzzy Logic Approach

In this section, we briefly review the basic concepts of fuzzy sets and fuzzy logic which

will be used in describing our fuzzy logic system.

3.2.1 Basics of fuzzy sets

3.2.1.1 Fuzzy sets

In classical set theory a set can be represented by enumerating all its elements using
A = {ay,dz,a3,...,a,}. If these elements a; (i = 1,...,n) of A are together a subset
of the universal base set X, the set 4 can be represented for all elements x € X by its
characteristic function

1 ifxeAq
Ha(x) = _ 3.1
0 otherwise

In classical set theory g4 (x) has only the values O (false) and 1 (true), two values of
truth. Such sets are also called crisp sets.

Non-crisp sets are called fuzzy sets, for which a characteristic function can be
defined. This function is called a membership function. The membership of a fuzzy
set is described by this membership function pa (x) of 4, which associates to each

element x, C X a grade of membership ua (x,). In contrast to classical set theory a
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membership function p4 (x,) of a fuzzy set can have in the normalised closed interval
[0,1].

Therefore, each membership function maps elements of a given universal base set
X, which is itself a crisp set, into real numbers in [0, 1]. The notation for the member-

ship function p4 (x) of a fuzzy set 4 is used.

a4:X —10,1] (3.2)

Each fuzzy set is completely and uniquely defined by one particular membership func-
tion. Consequently symbols of membership functions are also used as labels of the
associated fuzzy sets. That is, each fuzzy set and the associated membership function
are denoted by the same capital letter. Since crisp sets and the associated characteristic
functions may be viewed, respectively, as special cases of fuzzy sets and membership

functions, the same notation is used for crisp sets, as in Figure 3.2:

ff) #elx) X
05¢ | C F
I

0 X
Figure 3.1: Membership Functions of a Crisp Set C and a Fuzzy Set ¥

The base set is introduced above as a universal sct. In practical applications, phys-
ical or similar quantities are considered that are defined in some interval. When such
quantities are described by sets, a base set can be generalised seamlessly to a crisp base

set that exists in a defined interval.

3.2.1.2 Elementary operators for fuzzy sets

The basic connective operations in classical set theory are those of intersection, union
and complement. These operations on characteristic functions can be generalised to
fuzzy sets in more than one way. However, one particular generalisation, which results

in operations that are usually referred to us as standard fuzzy set operations, has a
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special significance in fuzzy set theory. In the following, only the standard operations

are introduced. The following operations can be defined:

« The fuzzy intersection operator N (fuzzy AND connective) applied to two fuzzy

sets 4 and B with the membership functions w4 (x) and up (x) is
pans (x) = min {ga (x),up ()}, xeX (3.3)
* The fuzzy union operator U (fuzzy OR connective) applied to two fuzzy sets 4
and B with the membership functions us (x) and pg (x) is
paup (x) = max {ua (x),u8 (X)}, xeX 3.4
* The fuzzy complement (fuzzy NOT operation) applied to two fuzzy sets 4 with
the membership function p4 (x) is
pp(x) =1-pa(x), xeX (3.5)

3.2.1.3 Fuzzy relations

Fuzzy relation R from set X to set Y is a fuzzy set from the direct product X x ¥ =

{(x,y)x € X,y € Y}, and is a characterised by a membership function ug:

g X xY —[0,1] (3.6)

Note, when X =Y, R is known as a fuzzy relation on X.

3.2.1.4 Fuzzy composition

If R is a fuzzy relation in X x Y and S is a fuzzy relation in Y x Z the composition of R

and S, Ro S, is a fuzzy relation in X x Z as defined below:

RoS & pros(x,2) = M {ugr (x,y) Aps (y,2)} 3.7

where V == max and A = min. This composition uses max and min operations, also

known as max-min composition.
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3.2.1.5 Fuzzy Implication

There are many possible ways to define a fuzzy implication [Mizumoto 88], but in con-
trol applications two common approaches are the Larsen implication and the Mamdani
implication [Kovacic 06]. Let A and B be fuzzy sets in U and V. A fuzzy implication,
denoted by A —» ‘B, is a special kind of fuzzy relation in U X V with the following

membership functions:
* The Mamdani implication:
pi (x,y) = min [us (x) - g ()] (3.8)

» The Larsen implication:
pr (x,y) = min {1,[1 — pa (x) +us (¥)]} (3.9)

3.2.1.6 Membership functions

The membership function u4 (x) describes the membership of the elements x of the
base set X in the fuzzy set 4, whereby for g4 (x) a large class of functions can be
taken. Popular functions are often piecewise linear functions, such as triangular or

trapezoidal functions.

HY

1'0T /‘A\.. H
i (x0)
05+
Huxo)
Q xO X

Figure 3.2: Membership Grades of x, in the Sets A and B

The grade of membership u4 (x,) of a membership function u4 (x) describes for the
special element x == x,, which grade it belongs to in the fuzzy set A. This value is in
the unit interval [0, 1]. Of course, x, can simultaneously belong to another fuzzy set B,
such that pp (x,) characterises the grade of membership x, of to B. This case is shown
in Figure 3.2.
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3.2.1.7 Rule Base

In the previous section, elementary fuzzy terms and fuzzy logic operations have been
introduced. In this section, the application to the treatment of rule-based knowledge
follows. For this a rule-based fuzzy system is needed, containing a rule base and
a reasoning algorithm, which is used to process crisp or fuzzy input values x;,i ==

1,2,...,nto acrisp or fuzzy output value y, as in Figure 3.3.

Fuzzy
Controller

Figure 3.3: Rule-based Fuzzy System with n Inputs and One Output

Using multiple inputs and one output implies no restriction as a multi-input-multi-
output fuzzy system can always be decomposed into multiple systems. Such systems
are the basis for the realisation of fuzzy controllers. As there are mostly crisp input
values x; from measurements and for controllers only a crisp output y, a fuzzy system
must contain additional components, fuzzification and defuzzification.

For example in Figure 3.3, if the rule base for a two-input and one-output controller

consists of a finite collection of rules with two antecedents and one consequent of the

form as in:

Rule' : \F x is AX AND x, is AS THEN y is B¢ (3.10)

where:

k=1.2,...,r

A’{ and A'; are the fuzzy sets representing the k' antecedent pairs,

BX is the fuzzy set representing the k* consequent.

For a given pair of crisp input values x| and x; the antecedents are the degrees
of membership obtained during the fuzzification: gk (x1) and p AL {x2). Based on the
Mamdani implication in equation (3.8), the strength of the Rule’ (i.e its impact on the

outcome) is as strong as its weakest component:

ppi (¥) = minp g (x1) g (x2)) (3.11)



Chapter 3. The Methodology 48

If more than one activated rule, for instance Rule” and Rule9, specify the same output

action, (e.g. yis BY), then the strongest rule will prevail:

s ) = max {minluge, (1) g (o) minlgy (1) g (21} G12)

Input(i) \ Inpuitj) X A
Rule 2
ey 1 |
| AL Ass .
-l /{_\\' - 2w :

Input(i 4 Input ) A

Figure 3.4: Mamdani Implication with Crisp Inputs

Figure 3.4 shows a simple intepretation of equation (3.12). The figure illustrates
the analysis of two rules, where the symbols A;; and Az refer to first and second
fuzzy antecedent of the first rule, respectively, and the symbol By refers to the fuzzy
consequent of the first rule. The symbols A3 and A2 refer to first and second fuzzy
antecedent of the second rule, respectively, and the symbol By refers to the fuzzy con-
sequent of the second rule. The minimum fuction in equation (3.12) is illustrated in
Figure 3.4 and arises because the antecedents pair given in the general rule structure
for this system are connected by a logical AND connective as in equation (3.10). The
minimum membership value for the antecedents propagates through to the consequent
and truncates the membership function for the consequent of each rule.

The truncated membership functions for each rule are aggregated using a disjunc-
tive rule as follows:
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py (y) = max (g (y) 12 (¥), -y (v))  forye¥ (3.13)

So the aggregation operation max results in an aggregated membership comprised of

the outer envelope of the individual truncated membership form from each rule.

3.2.2 Fuzzy Systems

The Fuzzy Inference System (FIS) is defined as a process of mapping from a given
input to an output, using the theory of fuzzy sets. Fuzzy rules are linguistic /FF —THEN

constructions that have the general form as follows:

IFxisAANDyis BTHENzisC (3.14)

where x, y and z are linguistic variables for the inputs and outputs of the fuzzy con-
troller and A, B and C are the terms of the variables X, Y and Z.

There are specific components characteristic of a fuzzy controller to support a de-
sign procedure. In the block diagram in Figure 3.5, the controller is between a input

and a output.

Fuzzy Controlier

Rule Base
< S
g =1
Input 8 l é Output
= L
N Inference 5
w Engine 2

l Membership Functions I

Figure 3.5: Basic Fuzzy Controller

Most commercial fuzzy products are rule-based systems that receive current infor-
mation in the feedback loop from the device as it operates and control the operation
of a mechanical or other device [Ross 04]. Crisp input information from the device is
converted into fuzzy values for each input fuzzy set with the fuzzification block. The
universe of discourse of the input variables determines the required scaling for cor-
rect per-unit operation. The scaling is very important because the fuzzy system can

be retrofitted with other devices or ranges of operation by just changing the scaling
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of the input and output. The decision-making-logic determines how the fuzzy logic
operations are performed, and together with the knowledge base determine the outputs
of each fuzzy IF-THEN rule. Those are combined and converted to crispy values with
the defuzzification block. The output crisp value can be calculated by the center of

gravity or the weighted average.

3.3 Modeling of the Control System

A Fuzzy Associative Memory (FAM) is used as a process of encoding and mapping
the input fuzzy sets to the output fuzzy set [Kosko 92]. Consider a set of fuzzy rules,

R = {R\,Rz,...,R;,..., R}, where R,, is the m'" rule of the fuzzy controller. The rule

R, is given as follows:
IF X, is AT AND X; is A} AND...AND X, is A, THEN Z is ) (3.15)
The following fuzzy relation will implement R;:
R (X1, X2, ... Xn, Z) = (AT x Ay x ... x A} = C) (X1, X2,... . Xn, Z) (3.16)
We can rewrite equation (3.16) as below:
R (X1, X2,... . X0, Z) = [AT (X)) AAS (X2) A ... AAY (X)) — Cy (Z) 3.17)

where X1, Xa, ..., X, are input variables which are the sensor data of the virtual agent,
AT AT A" are the input fuzzy sets, Cy' is the output fuzzy set, Z is the output
variable, n is the dimension of the input vector.

In order to create an n fuzzy input vector X = {X1,X2,...,X,}, the system needs
to compose the input vector X with the calculated fuzzy relation Ry, to produce the
following output C . ie.,

C; = (X1,X2,...,Xn) 0 R (3.18)

where X, is the fuzzified crisp value of X,, into a fuzzy output class C, (Z). The output
of the m™” rule C,, (Z) is defined as:

C(Z) = [AT (X)) AAD (X2) A ... AAT (X)) = Cn(Z) (3.19)
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The weighted sum C for each individual membership can be defined by using

minmax aggregation [Ross 04] operators as given below:

k
¢ = Y UG,

me=1

k
= Z U([AT (X)AAT (X)) A AA X = Ca(Z)) (3.20)
m=1
where the non-negative weight U,,, summarises the strength of the m" FAM rule for
the m'” FAM entry and n x m is the number of rules in the system. In order to relate the
n'® fuzzy set of the m™ fuzzy rule, the fuzzy implication model using the Mamdani min

operator [Wang 97| interprets the logical rules for rule firing. Combining the equations
(3.16) and (3.20), we obtain:

n
HR, (Xl , X2, - ,X”,Z) = r"‘lg? [yAf (Xn)] (3.21)

Then, the final defuzzification response for a k output membership function uc (z) is

defined as:

x [ »
pe (2) = max [g‘lfll [Har (Xu) bR, (X1, X2, - . ,Xn,Z)]] (3.22)

m==1
X=U

Equations (3.17) and (3.22) are used to derive the FAM model and the output fuzzy

system, respectively.

3.3.1 Behaviour Conflicts and o — [evel Thresholds

The o — level fuzzy logic methodology is established and used to resolve the behaviour
conflicts. o - level |[Nguyen 99] thresholds control the behaviour rules that are fired
during navigation. An o — leve! makes all the truth membership functions between the
threshold intervals to be true and the remaining values to be zero. When an o — level
threshold is applied to the truth of a rule’s predicate, it determines whether or not the
truth is sufficient to fire the rule. When an o, — leve! threshold is applied to a fuzzy set, it
establishes a line through the truth membership function, which gives a value between
o intervals. Truth membership values below and above the intervals are considered to
be equal to zero. An & — level threshold fuzzy setis defined as the crisp set of elements

which belong to a fuzzy set A at least to the degree of o.. The o fuzzy set A is defined
mathematically as below:
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The weighted sum C for each individual membership can be defined by using

minmax aggregation [Ross 04] operators as given below:

k
C = Y UG,

m=1

k
= Y U(AT (X)) AAT (X2) A AAT (X)) = Cu(Z)) (3.20)
m=1
where the non-negative weight U,,, summarises the strength of the m™™ FAM rule for
the m'" FAM entry and 1 x m is the number of rules in the system. In order to relate the
n' fuzzy set of the m™ fuzzy rule, the fuzzy implication model using the Mamdani snin

operator [Wang 97] interprets the logical rules for rule firing. Combining the equations
(3.16) and (3.20), we obtain:

n
ur, (X1,X2, ..., Xn, Z) = 21311 [Har (X2)) 3.21)

Then, the final defuzzification response for a k output membership function uc (z) is
defined as:

K [ »
pce(z) = rgg)l( [["1'151 [/‘Ai." (Xn) ,ur,, (X1,X2,... ,X,,,Z)]] (3.22)
X=U

Equations (3.17) and (3.22) are used to derive the FAM model and the output fuzzy

system, respectively.

3.3.1 Behaviour Conflicts and o — level Thresholds

The o — level fuzzy logic methodology is established and used to resolve the behaviour
conflicts. a - level [Nguyen 99] thresholds control the behaviour rules that are fired
during navigation. An o — leve! makes all the truth membership functions between the
threshold intervals to be true and the remaining values to be zero. When an o — level
threshold is applied to the truth of a rule’s predicate, it determines whether or not the
truth is sufficient to fire the rule. When an o — leve! threshold is applied to a fuzzy set, it
establishes a line through the truth membership function, which gives a value between
o intervals. Truth membership values below and above the intervals are considered to
be equal to zero. An o.— level threshold fuzzy set is defined as the crisp set of elements

which belong to a fuzzy set A at least to the degree of . The o fuzzy set A is defined
mathematically as below:
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Ag = {xlpa (x) >a}; ac(01] (3.23)

Ag = {xl,uA (x) > (X}; ac [0, l] (3.24)

where Ay and Ag are the crisp fuzzy sets, x is the linguistic variable of the universal
set U/, and g4 is the membership function of the sets. In order to illustrate the Fuzzy
Inference System (FIS) in conjunction with the o — level fuzzy set, the following rule
table (Table 3.1) is formulated with the number of rules (n < m), which are the products
of the number of terms in each input linguistic variable A1 and A2. The rules with the

possible fuzzy outputs labeled C;; are presented symbolically in Table 3.1.

Table 3.1: Rule Table: /F — THEN rules

C = output A2} oo A2j A2_,'+1 s A2,
Aly Ci, Cr; | Cijn Cim
Al; Cit Cij Ciji1 Cim

Alip Cii1,1 Civij | Civ1jl Citim
Al, Cn Cn.j Cn.jH Coam

3.3.2 Rules Evaluation

The measurement values of input parameters obtained from the sensors have to be
translated to the corresponding linguistic variables. Normally any reading has a crisp
value, which has to be matched against the appropriate membership function represent-
ing the linguistic variable. The matching is necessary because of the overlapping of
terms as shown in Figures 3.6(a) and (b), and this matching is known as fuzzification.

In these figures, the reading xo € Uy, corresponds to two values a1, (x0) and pas,, , (Xo0)
which are called fuzzy inputs. They can be interpreted as the truth values of xo related
0 A; and 1o A;, 1, respectively. In the same way, the fuzzy inputs are obtained cosre-
sponding to the reading y € Uy also. In both the figures, only a few terms of the fuzzy
sets Al and A2 are presented.

The straight line passing through xo parallel to the u axis intersects only the terms

Al;and A1, of Al giving the result denoted as shown below:

Ali(x0) = {pai,(x0), a1, (x0) } (3.25)
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Figure 3.6: Fuzzy Input Corresponding to xo and yg
Similarly, the line passing through yo intersects only the terms A2; and A2;; | of A2,
giving the crisp values as shown below:

A2i(x0) = {pa2,(x0), a2, (x0) } (3.26)

The active rules, which are shown in Table 3.2, are from Table 3.1. Four cells in
Table 3.2 contain nonzero terms. These cells are called active cells. Table 3.2 shows

that only four rules are active. The rest of the rules will not produce any output.

Table 3.2: Decision Table with an Active Cell

Sensor §3
B uaz ,(Yo) | #az(Yo) | Az, (Yo)
Sensor S4 HAL 1(X()) 0 0 0
| a1, (Xo) 0 uc,(2) | wc,,,(2)
Ha,,, (Xo0) 0 HCi (2) | K, F1jet (2)

The process of conflict resolution is illustrated by using these four rules, R1 to R4,

and thus are given below:

R1: [IFxisAli(xy) AND yis A2;(yo) THEN zisC;;

R2: 1FxisAli(xo) ANDyisA2;,1(yo) THEN zis C; j)

R3: 1FxisAl;y(xo) ANDyisA2;(yg) THEN zis Gy
R4: 1FxisAl;(x0) ANDyisA2j,(yo) THEN zis Ciyq ;1

3.27)

The THEN part of cach rule is called the strength of the rule. The strengths «;; of the

rules are obtained as shown below:
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o = min(pm,.(xo),quj(yo))
Qi j41 = min(ﬂAli(Io),PAz, 1 (y0)) (3.28)
Qipry; = min(ga,,, (x0); taz; (o))

Qg1 = min(gai,,, (Xo), #a2;., (Yo))
The numbers expressing the strength of the rules are output fuzzy sets of Table 3.2.

‘The Control Output (CO) of each rule is defined by the conjunction operation applicd

based on the rule strength. They are:

CO1 = min(ay;,uc,;(2))

CO2 = min(ay j i 1,4c, ;,,(2))
CO3 = min(Qir1,j,Hc;,,,(2))
CO4 = min(Qy1,j41,4C;y 1 ;11(2))

(3.29)

This is equivalent to performing a min operation on the corresponding elements in
the active cells. The output of the four rules in equation (3.29), have to be combined or
aggregated in order to produce one control output with a membership function, namely

Magg(2), as shown below:

Hagg(z) = (0 Apic, (D)) V (i ji1 Ac 0 (2)) (3.30)
V(@1 A, (D) (1 et AHC Ly (2))

In the equations (3.29) and (3.30) the operation A (min) is performed on a number

and a membership function of a fuzzy set. In this context, the real number o and the

output fuzzy set C with membership function aC(gq) can be obtained as shown below:

Ha (2) A pc(z) = min(pa(2), ue(2)) (3.3D
u
HC*(z)
“ HCH(2)=a
. Hg A HC*(2) z

Figure 3.7: Trapezoidal Fuzzy Numbers

The final output as shown in Figure 3.7, uses a trapezoidal shape. It represents a
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non-normalized clipped fuzzy number. The final output of the fired rule is ob ained

using equation (3.31).

3.4 Action Selection Method

In the decision making process multiple conflicting objectives should be considered
simultancously, subject to certain constraints dictated by the virtual agent limtations
[Pirjanian 97]. A major issue in the design of systems for controlling an autoriomous
virtual agent is the formulation of an effective mechanism for the combination of mul-
tiple objectives into strategies for rational and coherent behaviour [Pirjanian ©7]. For
example, given a set of actions, X = {x},x2,...,x,}, the virtual agent has tc decide
which is the most appropriate or the most relevant next action to take at a particular
moment, when facing a particular situation [Maes 89].

The fuzzy action selection method is inspired by the ranking method of [Hu.ing 89,
[Mabuchi 88] and |Yuan 91] and uses o — level and fuzzy subtraction operations to cal-
culate the area of a new fuzzy number, which is produced by the comparison of two
fuzzy numbers. If there are m fuzzy numbers, then m (m — 1) /2 pairs of fuzzy numbers
must be compared to determine overall rank. Our proposed method will reduce the re-
dundancy of calculating m (m — 1) /2 pairwise comparisons to m pairwise comiparisons
by the fuzzy subtraction operation.

In general, when comparing m different fuzzy numbers produced by each tchaviour
the height and common maximizing and minimizing barriers are used. Let g (x) be the
membership function of a fuzzy number, X (behaviour output), defined on 1. Unlike
convexity, assumptions about the normality of ug (x) are made.

In Figure 3.8, an arbitrary, bounded fuzzy number X has given. Suppose X},o,,?al vy Xop,

are the o — level interval numbers of X and they have the following properties:

L. Xq, = [li,ri), i = 0,1,...,n, where [; is the left spread of X, and r; is the right
spread of fai.

2. a0 = 0,00, = | and 0, 01y, .., @, is strictly increasing sequence.

3. The distance between each two adjacent o — level values are equal,

Le. oy — 0= o — Oy, Vijk € {l,2,...,n}.

Based on [Choobineh 93], the loci of the left or right spreads and the maximum

and minimum barriers of the o — cut of the fuzzy number, X, are ,u% (x) and ;1; (x),
o a
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Figure 3.8: Trapazoidal Fuzzy Number

0 <o < hy , respectively, where 4y is the height. If ia is denumerable or connected,

then:

[

,u;;u(x) = m(in {xlx € Xa} ,0<a<hg, and

;r; (x) = max {xlx € fa} O <a<hy (3.32)
In addition the maximixing and minimizing barriers can be defined as:":

* The crisp maximizing barrier, Uy, of the membership function for the fuzzy

number X is defined as My (x) = {’}, where max {,ul; (x)} =d* <d < oo,
o n

¢ The crisp minimizing barrier, Ly, of the membership fuction for the fuzzy num-

< . . h . .
ber X is defined as g (x) = X where 0 <o < o = min {,ugéu (x)}.

The height, maximizing and minimizing barriers are set to:

hy(x) = max {ﬂgili = l,2,...,m} ,
¢ - m(}n{,,ffu (x)li = l,2,...,m;0§a§hf}, (3.33)
d = m&n {pga ()i=12,....m0<a< hg}.
Based on equation (3.33), 4 (x) is the maximum value of the height of all m fuzzy
numbers. The variables ¢ and d are at the minimum value of the left spread and the

minimum right spread of all fuzzy numbers, respectively. To simplify the fuzzy sub-

traction between the fuzzy number X and referential rectangle ﬁ, at o; level, interval
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subtraction is used:

Xo, ()R = [lri}[-][c.d]
= [i—d,ri—c],i=12,...,n (3.34)

then, the behaviour weight, ® of equation (3.34) becomes:

n

Y (ri-o)
o (%,R) = —=* o (335)

n

Y (ri—o)=Y (i—d)
i=0 i=0

where n is the number of o — levels. A n approaches to o, the summation becomes the

area measurement.
n n

In equation (3.35), Z (ri —c) is a positive value and Z (I; — d) is a negative value.

i=0 i=0
Here, the denominator represents the total area as n approaches co. In addition, if all of
the aggregated fuzzy numbers are normal and within the unit interval, then hy = 1,¢ =

0,d - 1, and equation (3.35) becomes:

n
)i
= ,and n = oo (3.36)

Y -1

i=0

= n
£
i=0

In our case, the behaviour weight value ® from equation (3.36) will be used. For
every o, we use the Hurwicz criterion, which selects the lowest value from each be-
haviour as 8y; and then selects the highest value from each behaviour as 8;. The index
of optimism [Chen 97],0, is used to represent the level of optimism of the virtual en-
vironment.

When selecting one particular action from a range of possible actions, the selection

is based on the Hurwicz criterion [Choobineh 93] which is defined as:

N =o- (minfL 0;j,) + (1 — ) - (max}Z, w;, ) 337
o = (0 — max-min criterion
where = ¢ 0 <6 < 1 — compromise opinion (3.38)

o = | — max-max criterion

Based on the above discussion, the following algorithm has been developed. Let
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X\, X, ..., X j,...,fn, be m arbitrary bounded fuzzy numbers produced by each be-

haviour.

Step 1: Set the height 25 (x), common maximizing barrier 4 and minimizing barrier ¢

for reterential rectangle R.

Step 2: Determine the subtracted interval numbers [/ —d,r —c¢|, i = 1,2,...,n by cal-

culating the n a-levels for each fuzzy number X; (—) Rj=12,....m
Step 3: Determine the behaviour weight, o for each X j» by equation (3.36).

Step 4: Repeat Steps 2 and 3, for every j, j = 1,2,...,m and the m behaviour weights
for fuzzy numbers are obtained.

Step 5: For every o, use the minimax (maximin) criterion, which selects the lowest
value from each behaviour as 8, and selects the highest value from each be-

haviour as 8;.

Step 6: Determine the index of optimism . The final action is selected based on the

Hurwicz criterion using equation (3.37).

3.5 Summary

The proposed fuzzy behaviour-based architecture provides a general framework for
reactive behaviour coordination in an autonomous virtual agent. A Fuzzy Associative
Memory (FAM) is used as a process of encoding and mapping the input fuzzy sets to
the output fuzzy set. The behaviour will produce its own behaviour weight and this
value will be used by the behaviour selection module for action selection. The action
selection is based on a fuzzy a-level with the Hurwicz criterion. The method considers
the loci of left and right spreads at each o — level of a group of fuzzy numbers and the
horizontal-axis locations of the group of fuzzy numbers based on their common max-
imizing and minimizing barriers, simultancously. The ranking method combines the
above techniques with the summation of interval subtractions as an area measurement
to make them more cffective and efficient compared to the existing ranking methods
that use only one of & — cut, Hamming distance, left/right score, centroid index or area
measurement techniques. The method for m fuzzy numbers uses only m comparisons
to the same referential rectangle as opposed to the m{(m — 1)/2 pairwise comparisons

needed by existing methods. The method uses very few o — cuts such as 3 or4 o0 — cuts
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and uses the summation of each o — [evel interval which does not require normalization
to measure the summation for the ranking order of the fuzzy numbers. The behaviour
rules containing o intervals of inputs and output spaces are easily integrated with a

virtual agent.



Chapter 4
Virtual Agent Navigation

A young sailor boy came to see me today. It pleases me to have these
lads seek me on their return from their first voyage, and tell me how much

they have learned about navigation.
-Maria Mitchell (1818-1889)
American astronomer

4.1 Introduction

Navigation is the process where people control their movement using environment cues
and artificial aids such as maps so that they can achieve their goal without getting lost
[Darken 93], Navigation in a virtual environment can be a difficult task, particularly
in unfamiliar environments. People have severe problems in navigation in unknown
environments. However, current implementations of virtual environments provide little
support for effective navigation.

Research work on navigation in virtual environments can be classified into two

main categories [Salomon 03]:

1. Understanding the cognitive principles of navigation.

These focus on human factor or body centered interaction methods by evaluating
various interaction techniques [Usoh 99]. For example, using navigation aids
(visual, sound or character) to provide feedback to the user such as a virtual map
[Grammenos 02], 3D location pointing [Chittaro 04] and perceptual interface

techniques [Konrad 04].

60
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2. Developing navigation techniques for a specific task and application.

These focus on path planning, motion planning and autonomous navigation. Ex-
amples are, behavioural animation [Reynolds 99] and using Al techniques such

as a neural network [Lozano 02].

Unfortunately, most of the work focuses on knowledge and abilities required by the
user and comprise real world navigation to navigate in virtual environments
[ Van Dijk 03]. For this reason we focus on developing navigation techniques for be-
haviour animation of virtual agents as one of our contributions to this area .

Autonomous virtual agent navigation in a virtual environment can be described
as the ability of a virtual agent to move purposefully without user intervention. The
navigation task may be decomposed into three sub-tasks: mapping and modeling the
environment; path planning and selection; path following and collision avoidance
[Wan 03]. Virtual agent navigation can occur in known and unknown environments.
For a known environment, the virtual agent will have knowledge about the environment
and can generate the navigation path. The methods used are based on optimization and
computational intelligence. In contrast, in an unknown environment in which the vir-
tual agent does not have any knowledge about the environment, the navigation path
is generated according to user specifications and the virtual agent cannot be prepared
ahead of time [Li 99].

4.2 Related Work

The basic problem of navigation is moving from one place to another by the coor-
dination of planning, sensing and control. The challenge is generating an optimal
traversing sequence through the user-specified locations of interests and computation

of a collision free path. This task comprises of [Crowley 84, Noser 95]:

1. local navigation - use direct input from the environment to reach the goals or

sub-goals of global navigation and to avoid unexpected obstacles; and

2. global navigation - use a pre-learned model of the domain which may be a
somewhat simplified description of the virtual environment and might not re-

flect changes in the environment.

Figure 4.1 illustrates an example of a path traversing through all user-specified loca-
tions |Li 99]. In order to navigate in an unknown environment, a virtual agent needs to

deal with the environment in a timely manner.
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Figure 4.1: An Example of Path Traversing Through All User-Specified Locations.

Steering rules are a special reactive technique often used for some of the navigation
problems, primarily those concerning flocks or herds of virtual agents. It is based on
superposition of attractive and repulsive forces that effect the virtual agent. Steering is
based on the original work of [Reynolds 87]. By means of steering, one can achieve a
simple form of:

* navigating towards a goal,

¢ obstacle avoidance behaviour,

wall or path following behaviour,

fleeing enemies and avoiding predators, and
* coordinated behaviour (non-interference) by crowds.

The advantage of steering is that it is computationally very effictent. In computer
games, hundreds of soldiers can be driven by this technique. In cases of more compli-
cated terrain (e.g. a closed-space in a building), however, steering must be combined
with path-finding, which is a form of planning.

The use of personal virtual agents such as navigating in a virtual environment, have
many common characteristics with agent navigation in real worlds. However, there is
some limitation on the performance variety of the task for example achieving a lifelike
virtual agent. [Chittaro 03, Van Dijk 03] have used animated characters to guide visi-
tors through automatically generated tours in a 3D virtual world. For dynamic virtual
environments, [ Yan 03] proposed a three level control model. Level-0 and Level-1 are

for collision avoidance and path planning. Level-2 is an expert system for intelligent
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navigation. This has shown an improvement, by using subsumption architecture and
adding a global planning ability.

Other approaches such as discrete grid based [Bandi 00], central path computa-
tion {Chaudhuri 04] and roadmap with tactical information approaches |[Rook 05] have
been used for collisions free path planning. For example [Stilman 04] in Figure 4.2
studied navigation among static and movable obstacles. The planner takes advantage
of the navigational structure through state-space decomposition and a heuristic search.
The planning complexity is reduced to the difficulty of the specific navigation task,

rather than the dimensionality of the multi-object domain.

Figure 4.2: Path Generated by Initial Position and Final Heuristic Plan [Stilman 04].

Inspired by studies in human behaviour, [Lamarche 04] proposed a general model
to simulate the navigation process inside indoor and outdoor environments. This model

is composed of four parts:
I. a spatial subdivision algorithm detecting bottlenecks inside the environment;

2. a hierarchical path planning algorithm based on the abstraction and generaliza-

tion of topological properties extracted from the spatial subdivision;
3. an efficient structure computing neighbourhood relations between entities; and

4. a general and modular algorithm which handles reactive navigation and includes
visual optimization of the trajectory and collision avoidance. The human be-
haviour is configured through complementary modules describing rules inspired

by psychological studies.

Techniques such as set hierarchy, regular graph, artificial potential field and corner
graph have been used but are only suitable for 2D environments. One of the reasons

is those algorithm require high computational resource in 3D environments. For a
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3D environment, navigation mesh and waypoint graph techniques are very popular.
A navigation mesh technique is a representation that covers the walkable surface of
the world with convex polygons [Tozour 03]. Waypoint is a set of points in the 3D
cnvironment with reachability links between them [Elusive 98], where we can place
a waypoint at any point in 3D space. The disadvantages of these two techniques are
large memory usage, and they require a powerful processor. Even though some of these
techniques have been used in computer games, it is still not clear that these approaches
have been used in autonomous navigation in virtual environments [Salomon 03].

Artificial intelligence techniques, for example neural networks [Lozano 02], ge-
netic algorithms | Velagic 06] and reinforcement learning [Seo 00] have been used.
[Wang 02] presented a multi-agent based evolutionary artificial neural network (ANN)
for general navigation. The virtual creature explores unknown environments as far as
possible with obstacle avoidance. Through constant interaction with the environment,
the virtual agent systems co-decide and consult with each other for the move deci-
sion. [Lozano 02] have integrated attention and navigation skills in a 3D virtual agent.
They divided their neural model into two main phases. First of all, the environment
categorization phase, online pattern recognition and categorization of the virtual agent
current input sensor data is carried out by an adaptive resonance driven self organizing
neural network. Then, the model must learn how and when to map the current short
ferm memory state into navigation and the attention of the virtual agent. However the
majority of 3D virtual agents focus on low cost global techniques to solve navigation
problems and attention is less frequently considered in virtual worlds.

The reactive virtual agent |Piaggio 97] is capable of carrying out autonomous nav-
igation. The virtual agent extends the artificial potential field approach, used for tra-
jectory formation, to environment exploration and symbolic feature detection. The
virtual agent’s capabilities range from obstacle avoidance to maze navigation, carried
out autonomously or under the supervision of higher cognitive levels. Other methods
by [Salomon 03] have been used in a known environment. On the other hand, in an un-
known environment, methods such as sensor based control in [Wan 03] use Adaptive
Dynamic Points of Visibility (ADPV) for moving virtual agents in dynamical uncon-
figured environments.

A fuzzy logic system is one of the potential ways to solve problems in autonomous
navigation in virtual environments. However, it is difficult to maintain the correctness,
consistency and completeness of a fuzzy rule base constructed and tuned by a human

expert [Cang 03). There is argument between researchers using fuzzy logic and other
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techniques, such as neural networks or genetic algorithms. All these techniques try to

achicve the same goal, but with different approaches.

4.2.1 Fuzzy Logic

Fuzzy logic has been utilized in navigation systems for mobile robots for over a decade.
Larly in 1991, Yen and Pfluger [Yen 91) proposed a method of path planning and ex-
ccution using fuzzy logic for mobile robot control. The two main advantages in using
a fuzzy logic approach are the ability to express partial and concurrent activations of
behaviours, and the smooth transitions between behaviours [Saffiotti 97]. From that
time, the advantage of using fuzzy logic in mobile robot navigation systems has been
demonstrated and several new solutions for navigation problems in unknown environ-
ments have been proposed such as [Aguirre 00, Anmin 04, Velagic 06].

Researchers such as [Wang 04] have proposed a generalized framework for a
behaviour-based navigation strategy for autonomous robotics which is independent of
any specific robotic development platform. [Tunstel 97] have used hierarchical fuzzy
behaviour control for an autonomous mobile robot. [Hercock 99] used a multi-layer
control system for two co-operating mobile robots, which uses fuzzy logic to adapt the
relative importance of a set of reactive behaviours.

There also exist methods combining fuzzy logic with other algorithms. For exam-
ple, |Chronis 99] used a fuzzy genetic algorithm as an agent learning mechanism for
mobile robot navigation. A neural network as learning algorithm by (Zhu 05] is used to
tune the parameters of membership functions, which smooth the trajectory generated
by the fuzzy logic system. |Cang 03] also used fuzzy logic with supervised learn-
ing assisted by a reinforcement learning algorithm for obstacle avoidance in unknown
environments. Other algorithms have also been used with fuzzy logic such as poten-
tial fields {Huh 02], roadmap [Ma 04], multi-objective [Nojima 03], Dempster-Shafer
|Kim 02] and the Agoraphilic algorithm [Ibrahim O1].

Although there are successful implementations of fuzzy logic in robot navigation,
the technique has not commonly been used in virtual environments. In order to max-
imize the fuzzy logic concept, [Walker 00] used a cell decomposition strategy. This
strategy has similar characteristics to those found in fuzzy systems. As a result, fuzzy
logic improves the description of the virtual agent’s environment. Fuzzy logic does not
modify a virtual agent’s environment, but instead describes the environment in greater

detail. This allows virtual agents to navigate better among obstacles. [Gatzoulis 04]
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have developed intelligent virtual agents, with the intention of learning and enhancing
their task performance in assisting humans in housekeeping. The learning systems are
incorporated into the decision-making process of the Virtual Robot Servant to allow it
to understand and evaluate the fuzzy value requirements and enhance its performance.
In agent-based game design, fuzzy logic has provided a natural way of modelling the
games creatures with high flexibility and low coupling allowing verity of behaviour.
This has improved the quality of the interaction [Yifan 04).

Fuzzy reinforcement learning has also been used to represent vague goals as well as
uncertain cnvironments [Sco 00]. This has been done by defining the fuzzy reinforce-
ment function using the fuzzy goal and the fuzzy state with extended fuzzyQ-learning.
The results show that with fuzzy reinforcement the agent learned faster than with Q-
Learning. The limitations of this method are the requirement of exacting analysis
o generate the proper fuzzy sets to the vague goal and the uncertain environments.
Morcover, the intelligent virtual agent should be able to explore and adapt to dynamic
environments and distributed environments.

Fuzzy Cognitive Maps (FCMs) can structure virtual worlds that change with time.
A FCM links causal events, virtual agents (actors), values, goals, and trends in a fuzzy
feedback dynamical system [Dickerson 96]. A FCM lists the fuzzy rules or causal
flow paths that relate events. It can guide a virtual agent in a virtual world as the

virtual agent moves through a web of cause and eftect and reacts to events and to other
actors,

4.2.2 Behaviour-based Architecture

Since the first behaviour-based architecture was proposed by [Brooks 86], much work
has been done to improve the architecture. Two main issues in behaviour coordination
for virtual agents are how to decide which behaviour should be active at each moment
and how to combine the results from different behaviours into one command to the
virtual agent |Saffiotti 98]. To overcome these problems, research such as [Yen 99,
Chrysanthakopoulos 4] proposed behaviour-based architectures that had three major
features which need to be implemented [Kaelbling 86]:

* Modularity - the controller should be developed incrementally from small com-

ponents that are easy to implement and understand;

» Awareness - the system should be able to react to unexpected sensory data; and
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= Robustness - the system should be able to continue to behave plausibly in novel

situations and when one of its sensors is not working or impaired.

Behaviour coordination for a virtual agent can be divided into two categories: arbi-
tration and command fusion schemes. Both comprise of two paradigms in designing
distributed systems: hicrarchical (top-down) approaches and non-hierarchical (bottom-
up) approaches | Mataric 01]. In hierarchical approaches, a set of behaviours at the low-
est level are activated using prior knowledge of the system and ensures goal-directed
decision-making. On the other hand, in non-hierarchical approaches, all behaviours
are concurrently active eliminating the requirement of prior knowledge of the system
which makes the system more reactive.

Behaviour arbitration allowed one behaviour or a set of behaviours at the same
time o take control for a period of time until another set of behaviours is activated
[Jaafar 07¢]. Arbitration mechanisms are suitable for competitive behaviours, but un-
fortunately always have problems of instability and starvation. Instability arises when
the control of the virtual agent/robot alternates between two behaviours and starvation
occurs when a behaviour does not gain control of the virtual agent for a long period of
time |Huq 07].

One of the earliest works on a fuzzy behaviour arbitration navigation system was
the Fuzzy Behaviourist Approach (FBA) [Pin 94, Pin 96]. Fixed arbitration schema
based on suspension and inhabitation mechanisms were used based on subsumption
architectures. This approach is based on the representation of the system’s uncer-
taintics using Fuzzy Set Theory based approximations and on the representation of
the reasoning and control schemes as sets of elemental behaviours. The system also
checks for completeness of the rule base and for non-redundancy of the rules (which
has traditionally been a major hurdle in rule base development). [Hombal 00] used
active perception layers instead of whole behaviour components. This provides for
context sensitive behaviour arbitration. Each behaviour is tied to an active perception
unit that may implement a behaviour selection mechanism. [Hendzel 04] proposed a
fuzzy combiner which can fuse low-level behaviours. The fuzzy combiner is a soft
switch that chooses more than one low-level action to be active with different degrees
through fuzzy combination at each time step.

The command fusion mechanism allowed multiple behaviours to contribute to the
final control of the virtual agent, which means combining recommendations from mul-
tiple behaviours to form a control action that represents their consensus [Jaafar 07c|.

However, a common problem arises in command fusion techniques when competing
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behaviours issue conflicting control commands, which lead to oscillation of the virtual
agent/robot or stagnation during navigation [Pirjanian 99a]. To overcome such a prob-
lem [Saffiotti 97| used context dependent blending of behaviours, which used a set of
fuzzy rules to define a fuzzy behaviour. Another set of fuzzy rules, called meta rules,
are used to control the activity of individual fuzzy behaviours by detecting conflicting
situations based on current sensory information. Other work such as [Fraichard O1]
used what they called Execution Monitor (EM). EM generates commands for the servo-
systems of the vehicle so as to follow a given nominal trajectory while reacting in real
time to unexpected events. EM is designed as a tuzzy controller, i.e. a control system
based upon fuzzy logic, whose main component is a set of fuzzy rules encoding the
reactive behaviour of the vehicle. Most recent work such as [Shou-Tao 06} addresses
the generation of complex hierarchical behaviours by the combination of simpler be-
haviours as the lowest level of a hybrid architecture. The architecture is based on the
theoretical foundations in designing ot the Compound Zeno Behaviour [Shou-Tao 05].
Zeno Behaviour refers to primitive behaviour where two primitive behaviours make an
mfinite number of discrete transitions in finite time and Compound Zeno Behaviour is

where more than two primitive behaviours join in the discrete transitions for infinite

times in finite time.

4.2.3 Local Minima Problem

Once of the major problems for local navigation is being trapped in local minima.
Significant efforts have been dedicated to overcome this problem, often by using ap-
proaches from other disciplines of study such as harmonic functions [ Keymeulen 94]
and Maxwell’s equations [ Hussein 02]. Others used randomized or optimization driven
path planning algorithms including discrete grid based [Bandi 00], central path com-
putation [Chaudhuri 04] and roadmap algorithms [Rook 05]. Unfortunately, these al-
gorithms can be expensive in particular environments, and may even fail to reach
the goal state. Approaches such as the Bug algorithm [Lumelsky 91}, random walks
{Chang 96], virtual target [Zou 03] and wall-follower [Yun 97] are commonly used in
dealing with local minima. This can be done by iteratively modifying a global path
under the influence of the obstacle’s artificial potential. These techniques focus on
evaluating whether the virtual agent is in a trap before suitable action is invoked. The
main weaknesses are that the virtual agent has to self-react to the sensory information

and self-learn from repeated action.
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One of the solutions to this problem might be to start building a map, and to plan
the agent’s path out of the local minima situation. Artificial intelligence techniques
such as ncural networks [Wang 99, Lozano 02), genetic algorithms {Gordon 04] and
reinforcement Iearning [Conde 04] have been used. All of these approaches have inte-
grated attention and navigation skills in a virtual agent. A drawback of this approach is
that it relies on training to relate inputs to outputs. What really happens during training
is not quite explicit and the algorithms perform a randomised global search of an en-
vironment which requires more resources. However, this is not really necessary, if the
agent can detect when it makes a U-turn and keep reasonable track of its position rela-
tive to the goal, then a few simple heuristic rules can allow it to escape from any wall
and reach the goal [Jaafar 07b]. Fuzzy logic, on the other hand, is potentially a way
to solve the local minima problem for autonomous navigation in virtual environments.
Compared with other approaches, fuzzy logic demonstrates less computational cost.
In order to overcome this problem, [Xu 00] introduces a disturbance signal to attract

a robot away from the local minima and [Wu 05] introduces a fuzzy logic algorithm

with back-tracking ability.

4.3 Behaviour Design

We consider virtual agents that have no internal state and that simply react to im-
mediate stimuli in their environment, also known as stimulus-response (S-R) agents

[Nilsson 98]. Virtual agents must also fulfill two main requirements [Lozano 02]:
* for any goal position, the virtual agent must reach it autonomously; and
* virtual agents must reach their goal without collision with any obstacles.

In general, each behaviour B can be described in terms of a desirability function

| Petropoulakis 00, Ruspini 91, Saffiotti 98]:
Desg : state x control — [0,1] 4.1

For example, based on Equation 4.1, a simple Goal-Seeking behaviour by moving
toward a goal G, might map information from a virtual environment into a function
7, which moves the virtual agent toward its target goal, based on function ¥. The

function F is a measure of the success of behaviour C. This will associate each instance
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of the current system state s with a fuzzy set of control values ¢ characterized by the

membership function:
Ac(c) = Fg(s,c) 4.2)

Where the function £ is:
kg state x control — [0, 1) (4.3)
In this case, ¢ is a vector of set and variable points which are position, angle, direction

and distance of the virtual agent to the goal and nearest obstacle in a virtual environ-
ment.
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Figure 4.3: Navigation Framework for Virtual Agents

Figure 4.3 shows a navigation framework for a virtual agent navigation. The in-
ference process 1, performed by the virtual agent reasoning system, can be defined as
a relationship between the input space U and the output space V. The input space U

defines distance and direction of the virtual agent to obstacle or goal, and the output
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space V defines the steering angle. Thus it is expressed as [Wang 04]:
LU (51,5208 e080) = V(€1,02,.0,Cjy oy Cm) 4.4)

The virtual agent will sense the virtual environment and the goal. If the virtual
agent has identified the goal the navigation will stop. However, if it is not a goal
and it is an obstacle, then it will check the obstacle direction and distance. After
obstacle direction and distance have been identified, the virtual agent will select an
appropriate behaviour to avoid the obstacle using the proposed steering angle retrieved
from the fuzzy controller. Finally, after avoiding the obstacle, the virtual agent will
move forward toward the goal. This framework allows multiple individual behaviours,
and the models of the behaviours to be executed in parallel.

The sct of fuzzy logic navigation rules will drive the virtual agent from a known
initial position to a goal position, regardless of obstacles etc. Once the virtual agent is
aligned with the goal direction, it then proceeds towards the goal position on a straight

path. Table 4.1 shows an example of a state table of virtual agent action.

Table 4.1: State Table

STATE CONDITION ACTION
Start/Sensing Goal Found Stop navigation
Goal not found Search obstacle

Move forward/towards goal

Obstacle Avoidance Obstacle found Check direction and distance

Calculate turning angle
Obstacle not found Move forward/towards goal
Steering Angle If direction is X AND distance is Y turn Z

The obstacle located to the left-hand side of the virtual agent is considered an
obstacle with a negative heading angle. Likewise, an obstacle located to the right-hand
side of the virtual agent is considered to be of a positive heading angle. The output
of the fuzzy controller is an escape vector consisting of a distance and heading angle,
leading the virtual agent to an approximate target. Once this vector has been followed

the virtual agent then returns to a recalculated heading vector.

4.4 Navigation System

The navigation system can be divided into three main components, which are the fuzzy

navigator, virtual agent and the environment, as in Figure 4.4. The main component
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of the navigation system is the virtual agent itself. The virtual agent should be able
to make its own decisions; does not require any information about the virtual environ-

ment; and does not require any training or learning before the navigation task.

Local Minima Solver

[ ]

Output {Real-Value) FLC Input (Real Value)
» dy dy dy dyy d,
Action Selection
Fuzzy Navigator

Action Current State
B LB

Figure 4.4: Navigation System

The fuzzy navigator is the main engine for the virtual agent. It comprises of three

main components:

. Fuzzy Logic Controller (FLC) - using a behaviour-based architecture which com-
prises of Path-Planning Behaviour (PP), Goal-Seeking Behaviour (GS) and
Obstacle-Avoidance Behaviour (OA).

2. Local Minima Solver (LMS) - responsible for helping the virtual agent escape

from dead-ends.

3. Fuzzy Action Selection Mechanism (Fuzzy-ASM) - to make the final decision in

selecting the possible action required by the virtual agent to reach the goal.

The fuzzy navigator receives input from the visual sensor and produces the final action
needed to be executed by the virtual agent. Each component in the fuzzy navigator is
integrated and works independently.

In order to make the above features possible, the virtual agent is equipped with two

main components, which are:

|. visual sensor (Section 4.4.1) - retrieves information in real-time and sends it to

the fuzzy navigator; and



Chapter 4. Virtual Agent Navigation 73

2. virtual motion (Section 4.4.2)- translates information from the fuzzy navigator

into a navigation task to reach the goal.

4.41 Visual Sensor

The main information between environment and virtual agent is retrieved using a visual
sensor. This visual sensor differs from vision systems in robotics, since all information
about pattern recognition and noisy images can be ignored [Kuffner 99]. The visual
sensor captures the information about the virtual environment or identifies which part
of an obstacle can be seen from the position of the virtual agent as in Figure 4.5. Also,
the visual sensor only identifies whether a square (cell) in the vision range is occupied

by an obstacle or not. The assumption has been made that all objects are opaque.

Figure 4.5: Example of Vision Field and Sensor’'s Region based on location.

The visual sensor ficld of the vision range is 180°. The vision field is divided into
cight main sectors which are represented as S0, S1, S2, §3, $4, $5, $6 and S7. Hence,
there is a probability that the cells located in the proximity may be occupied. Cells well
inside the vision field sector are likely to be empty. An occupancy grid is essentially
a data structure that indicates the certainty that a specific part of space is occupied by
an obstacle. It is a representation of an environment as a two-dimensional array. Each
clement of the array corresponds to a specific square on the surface of the actual world,
and its value shows the certainty that there is some obstacle there.

The visual sensor in [ Wang 99] has been modified by using Dempster-Shafer evi-
dence theory |Shafer 76]. Whenever the virtual agent moves, it catches new informa-
tion about the environment and updates the map. To facilitate building an occupancy
map |[Velagic 06] of the environment, a grid representing the whole space needs to

be constructed. Every discrete region of the map (each cell) may be in two states,
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Empty is (K) and Full is (F). Then, a frame of discernment, «, is defined by the set
K — {K,I'}, where E and F represent the possibility that a cell is Empty or Full. The
advantage of this technique is that the building of occupancy maps is well suited to

path planning and obstacle avoidance [Kim 02].

Review of [Kim 02] Use of Dempster-Shater’s Theory of Evidence

A basic probability assignment is a function m : x — [0, 1], where I' is a set of all
subscts of k. In our case, I' = 2% = {¢,{E},{F},{E,F}}. The state of each cell is
described by assigning a basic probability number to each label in T. For each cell

(i, ) in the grid, it is required that:

m,-.]-((b) =0 (45)

Y {mij}A) = mij(0)+mi;{E}+mi;{F}+m{E F} (4.6)
Acl?
-1

Livery cell in the environment is initialized as follows:

m,-‘j{E} = m,;,-{F}zO (4.7)
m,-_j{E,F} = | (4-8)

Then, the virtual agent moves and scans the environment. If z cells exist in the vision

ficld scctor, the basic probability assignment for the vision field sector is as follows:

1
m; j(F) = ;,mi,j(E) =0, Veells(i, j) € sector 4.9)
m; [(F) = 0,m;;(E)=0, Vcells(i, j) ¢ sector (4.10)

By adding subscripts § and M to basic probability masses m, we can describe the basic

probability assignment of the sensor as equations (4.12) and (4.13):

K =1 —mpy(EYmg(F) — mpy(F)mg(E) 4.1

{mp(E)Ym(E) + my(EYmg({E,F}) +my ({E, F })mg(E)}

mpg Hmg(E) == K

4.12)
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{_rzzM(F)ms(F) +mp(F)mg({E,F}) + mpy({E, FP)mg(F)}
K

However, the number of states can be reduced to two (m; j(E),m; j(F)), assuming

myg hmg (1) —

4.13)

that m; ;(¢) - 0 and applying equation 4.6. The state (0,0) means total ignorance, and
som; j({#,1'}) -~ 1. When the virtual agent is sure about cell occupancy, m; j(F) =1,
the other labels are made equal to zero. On the other hand, m; j(E) = | when the virtual
agent is sure that the cell is empty.

The input value © of the virtual agent, which is a real number normalized in the

interval [0, 1], then results from a weighted sum of all the points in the visual field.

x 4.14)
summed over all x in visual field

where d(x) is the distance of a point x from the current position of the virtual agent,
and p(x) indicates the availability of the point x. Since the visual sensor is related to
availability of spaces in the visual field, it is independent of specific environments and
objects. ‘The result is that the occupancy of cells is increased. This process will be

carried on until the virtual agent reaches the goal.

4.4.2 Virtual Motion

The virtual agent only has two types of virtual motion: MotorMove and TurnAngle.
MotorMove is used to move the virtual agent one step forward. TurnAngle is used

to tumn the virtnal agent by a specified angle. By computing the difference between

desired angle, a; and current turning angle, o,
o = Oy — Oly 4.15)
the new position of the virtual agent can be updated by the following equations [Wang 99]:

X = x+4rcos(ar)
y = y+rsin(a) (4.16)

o = o+0
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4.5 The Fuzzy Controller

The architecture of the fuzzy controller is comprised of three behaviours. The be-
haviours operate at three different ranges, with Path-planning (PP) and goal-seeking
(GS) behaviours in global path planning, and the obstacle-avoidance (OA) behaviour

in local path planning, as in Figure 4.6.
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Figure 4.6: Behaviour-based Architecture

4.5.1 Fuzzy Associative Memory

‘The relationships between fuzzy sets and rules are represented as the Fuzzy Associative
Memory (FAM). FAM is a process of encoding and mapping the input fuzzy sets to
output fuzzy sets. In accordance to the FAM methodology, each dimension of the
matrix of FAM represents the fuzzy sets assigned to an independent variable. As the
number of variables in the model increases, the number of rules used to describe the
complete behaviour of the model grows exponentially. For example, a virtual agent
using eight inputs and two outputs is considered. If each input is represented by three
fuzzy sets and cach output is represented by seven fuzzy sets, then a single layer of
inference will require about 3% = 6,561 rules to be established for the virtual agent.
The proposed FAM approach reduces this number of rules significantly. Without it,

the rules are difficult to determine, processing is time consuming and would make real
time operation difficult.
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4.5.1.1 Establishment of FAM

The virtual agent, is supported with eight visual sensors which provide object detec-
tion and range information for recognition of features, as well as navigation around
obstacles. Figure 4.5 shows the visual sensors array with sensing angles. The input

and output fuzzy sets and their ranges are shown in Table 4.2. These values are used

Table 4.2: Linguistic Input Fuzzy Set and Their Ranges

Distance Range
Variable | Notation | Range
Near Ne <2
Medium Me 2<E<5
Far Fa £>5

Turn angle or orientation angle 9 in deg
Variable Notation Range
Negative Large NL -3
Negative Small NS —
Zero ZE
Positive Small PS
Positive Large PL

1)

]

Hafapolal O N

to establish the FAM Table and fuzzy logic controller.

4.5.1.2 Generation of behaviour rules using FAM

In the establishment of the proposed methodology, the FAM uses the fuzzy set as an

index to a lookup table. The following assumptions are made in developing behaviour
rules:

1. It is assumed that the virtual agent can only move in the forward direction by

using the front vision sensor.

2. The rule combinations should have a tendency to select the direction that is clos-
est to the forward direction, so that the virtual agent does not make unnecessary
rotations; and

3. Rule combinations that yield empty sets should be eliminated.

In the first step of the FAM methodology, the most traversable sector in the right and
left regions are found independently with a preference towards the forward direction.
In the second step, the best sector among the Preferred-Right (PR), Preferred-Left
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(PL), and front sectors is determined. FAM uses a fuzzy inference system to derive
the behaviour rules. Figure 4.7 shows the FAM model for the PR sectors and PL
sectors independently, and also for the PR and PL sectors combined with the front
sectors. The rules obtained from the FAM are used in the fuzzy logic controller to
obtain the fuzzified output rules and the related Fuzzy Inference System (FIS) is shown

in Figure 4.7,
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Figure 4.7: FAM for Fuzzy Rule Representation.

4.5.2 Path-Planning Behaviour

The Path-planning (PP) behaviour is used to develop simple fuzzy rules for determina-
tion of the virtual agent turn angle as shown in Figure 4.8. This behaviour will monitor
sensor information and identify a local minima situation while the regular fuzzy con-
troller is working,

In general, the fuzzy controller for PP behaviour contains two main parts, which
are turn rules and the weight rule. The local minima algorithm identifies if the virtual
agent is trapped in a local minima or not. Here, the fuzzy controller will generate the

potential turning angle and the weight rule used for the virtual agent in its behaviour
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Figure 4.8: PP Behaviour with FLC and Local Minima Algorithm

selection.

4.5.2.1 Turn Rules and Weight Rules

The o value of PP behaviour is represented by three linguistic fuzzy sets (LOW, MEDIUM,
HIGH), and is derived directly from both the obstacle distance dgs and obstacle di-
rection 8y, using the rule sets in Figure 4.9.

dngm
Danger Uncertain Safe A ont

de Dang% ZE / NS / NL /‘I Danger
UMV Ps V COAL / NS / :
Safro/ / PS / GOAL /’gm !

Danger Unkertain Safe l dfrom

e e e
|Uncerla}|fn/ ZE V ZE /l Ns/ '
SqV / / Gom_/n |

Danger Unkertain Safe ld/m"

: diep DangV = / = V = / .
| Uncertain € ZE | zE

sqo { /ze/ = //

{0,0)

Figure 4.9: Turn Rules for Path-Planning Behaviour

The virtual agent turn angle is represented by five linguistic fuzzy sets {NL, NS,
ZE, PS, PL}, with the membership functions shown in Figure 4.10, where NL is
negative-large, NS negative-small, ZE zero, PS positive-small, and PL positive-large.
Negative and positive mean that the virtual agent turns to the left and right, respec-
tively.
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Figure 4.10: Membership Function for Turn Angle

The weighting factor represents the strength by which the PP behaviour recommen-
dation is taken into account to calculate the final motion command. The weight of PP
behaviour is represented by three linguistic fuzzy sets {SMALL, MEDIUM, LARGE},
and is derived directly from both the obstacle distance and obstacle direction, using the
rule sets in Table 4.3.

Table 4.3: Weight Rules for Path-Planning Behaviour

HIGH | MEDIUM LOW
High Danger Danger Danger

Medium | Danger Danger Uncertainty
Low Danger | Uncertainty Safe

4.5.2.2 Local Minima Algorithm

Reaction based navigation has been considered more suitable for navigation in com-
plex and dynamically changing environments, because it controls the agent in a real-
time manner as it moves around while avoiding collision using its perceptual system
to gather information about the environment [Ding 05]. However, a well-known draw-
back of reactive navigation is that the agent suffers from local minima problems in
that it uses only locally available environmental information without any previous path
memory |Luh 06].

The local minima problem also occurs when a virtual agent navigating to pass ob-
stacles towards a desired target with no a priori knowledge of the environment gets
trapped in a loop. This happens especially if the environment consists of concave ob-
stacles and mazes. To come out of the loop, the virtual agent must comprehend its

repeated traversal through the same environment, which involves memorizing the part
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of the environment already seen. To do so, intelligent computing-based methods such
as ncural networks [Lozano 02], genetic algorithms [Gordon 04] and reinforcement
learning [Conde 04] have been used. Some of these methods provide good perfor-
mance in specific environments. A drawback of these approaches is that they relie on
training to relate input to outputs. What really happens during training is not quite ex-
plicit and the algorithms perform a randomised global search of an environment which
requires more resources. [Brock 01] combine the advantages of reactive controllers
and the advantages of planners by an elastic band or elastic strip formulation. How-
ever, the algorithm is relatively complex, time-consuming, and is not very useful for
real-time applications.

[n our architecture, the Local Minima Solver (LMS) with one-step memory is used
to monitor sensor information and identify a local minima situation while the regular
fuzzy controller is working. One-step memory is used for the virtual agent to know
its previous step information, The main focus is on escaping from a dead-end or local
minima without learning or memorizing detail of the environment. The main objective
is to imitate the way a human might understand being in a trapped state and by guess-
work make recovery decisions based on available information surrounding them. This
can be done by recognizing its trapped state (infinite loop), where the virtual agent
oscillates between two points. At this point, the agent will move one step back based
on one-step memory. This will help the virtual agent to ecscape the dead-end situation
casily. The major steps are described below:

Step 1: All the associated input variables are first fuzzified into linguistic labels within
the universe of discourse, and the membership value is calculated based on the
membership functions described in Table 4.3;

Step 2: The virtual agent oscillates between two points, if loop number, & > 10. If
no PP behaviour evaluates to Danger, W = 0 and go to regular fuzzy controller.

Otherwise, the virtual agent will move one step to its previous step and move to
step 3;

Step 3: Calculate the new weight value Wpp. If Wpp > 1, go to regular fuzzy con-
troller; else, if Wpp < 1 and PP behaviour evaluates to Danger, get new sensor

information, else, send the W, value to the behaviour selection module.

Step 4: The behaviour selection module will decide what action needs to be executed,
such as a larger right/left turn, or to back up to a nearest safe point along the safe
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path, and then make a turn, to pull the virtual agent out of its trap.

4.5.3 Goal-Seeking Behaviour

The Goul-Seeking behaviour generates a turning angle based on the location of the
goal. A simple analytical model rather than a set of fuzzy logic navigation rules have

been used. Two assumptions has been made, that the GS behaviour:

1. does not influence the speed of the virtual agent, and contributes only to the
turning angle; and

2. the wirn angle recommended by the GS behaviour is the heading error between
the current virtual agent heading and goal direction. Thus, the value domain of
this turn angle is (-180°, 180°).

The visual sensor provides information that the virtual agent is presently at the position
(x,y) with azimuth, and the goal location is at (x1,y;). Equations (4.15) and (4.16) are
used in calculating goal direction.

Once the goal direction has been identified, GS behaviour will produce a potential
turning angle towards the goal. The weight of GS behaviour wy, has also been cal-
culated based on the weights of both OA and PP behaviours. Figure 4.11 shows the

weight determination of three behaviours. The simple weight rules are as follows:
* IF Wpp is Large OR Wy, is Large, THEN Wgs is Small
¢ [F Wpp is Small AND W, is Small, THEN Wgs is Large

Importantly, the weight of GS behaviour is suppressed and small when any one
weight of the OA and PS behaviours is not SMALL. When the weights of both OA
and PS are SMALL, the GS behaviour makes a dominant contribution to the final
control command. Although the GS behaviour is often suppressed, the GOAL factor
is reflected in the turn rules of both OA and PP behaviours.

4.5.4 Obstacle Avoidance Behaviour

The local Obstacle-Avoidance (QA) behaviour is actually a sensor-based behaviour
which implements a control strategy based on external sensing. OA behaviour is ef-
fective if obstacles are close. The visual sensors of the virtual agent are grouped into
five sectors (Left, LeftFront, Front, RightFront and Right). If the virtual agent has
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Figure 4.11: Weight Determination of OA, PP and GS Behaviours

| FLCqs [ Woy

a ring of eight forward vision fields, these will produce a set of obstacle distances
(do.d\,dr,d3,d4,ds dg.d7). From these, we obtain three groups of obstacle distances by
the following equations:

* dies = min(dy,dy);
* dfmm = 'ni“(dZ’d3,d47d5);
. d'il:’" = min(d(,,d-,).

The obstacle distance of each sector is represented by three linguistic fuzzy sets { NEAR,
MEDIUM, FAR}. The wrn rules for the OA behaviour are summarized in Figure 4.12.
Obscrve that the rules exhibit the behaviour characteristic: if the obstacle distance in
any sector is NEAR, the virtual agent should turn away to find a safer direction. For

instance, the (1,3) element of the bottom layer in Figure 4.12 can be written out as the
rule:

* [Fdyon is Far AND dy, g, is Far AND dyighs is Near, THEN 0,, is PS

Note that, in Figure 4.12, when the virtual agent needs to turn, but the left and right
sectors have the same obstacle distance, then the recommended tumn angle is GOAL,
where GOAL implies that the recommended tum angle should be toward the direction
closest to the goal location. This is similar to the turn rules for PP behaviour. One
last important note: when the three sectors have the same NEAR obstacle distance as

shown in the (3,0) element of the top layer in Figure 4.12, a large left turn (PL) angle



Chapter 4. Virtual Agent Navigation

Far Medium dpon

b e T A
e

edium Near . d,",,,,

e
o o 7 e
/Is/ze
//

/NS/ZE |PS/:
/NS

|
| d, right

Near ! dpont

P
ZE / PS/
e

Figure 4.12: Turn Rules for OA Behaviour

—_——— ey — — — ——

Ne
N

ehr

Y

Madlum dfm

dip / Large / Large / L.,g,/' Near
MedluV Largo‘/ Large / Large / :
Ney Large /i Largo/ Large /gh :

Medium Near pon
I Far/I Medlum Large :/ Large /' Medium
| s ] |

| M“'“Vurgo / Large / | Large / :
Ne/ Large /I Large / ung.| dgn I

Médium Near dfm,,

i / Smalt / Small / Small / Far
|Mad|uV Small / Medium Large /
(op;‘;l/ e / teroe / Large /

Figure 4.13: Weight Rules for OA Behaviour




Chapter 4. Virtual Agent Navigation 85

is recommended. This turn rule enables the virtual agent to escape from its current
dead-end sitvation.

Similarly to the weights of PP behaviour, the weights of OA behaviour W, are
represented by three linguistic fuzzy sets {SMALL, MEDIUM, LARGE}, and are de-
rived directly from obstacle distances in the three sectors. The weight rules for the OA

behaviour are summarized in Figure 4.13.

4.6 Experiments

The objective is to measure the performance of the reactive architecture based on
fuzzy logic developed in the previous section, Fuzzy-ASM. Validation experiments
have been conducted and the results can be seen in Appendix A. The performance
is based on robustness and quality of path produced by an autonomous virtual agent
during a navigation task. In order to test the performance of the reactive architecture
based on fuzzy logic, five different experiments have been carried out in simulation.
The experiments are moving towards the goal; escape from local minima; navigation

in a complex environment; the action selection method; and performance comparison.

Experiment Criteria

In the experiments, the navigation task is in an unknown environment, The only in-
formation known by the virtual agent are the coordinates of the start and target/goal
points. The navigation task requires the virtual agent to activate each of the behaviours
separately in its own context of applicability. The shapes of obstacles are not used as

parameters. The following criteria have been taken into account during the experimnent:
1. Each experiment will be run 25 times.

2. Alimited 2000 steps per run was set, and if reached, it meant the run was unsuc-
cessful and the virtual agent failed to reach its goal.

Assessment Strategy

The performance metric is a measure based on virtual agent navigation tasks in differ-
ent unknown environment settings, based on the concept of run. A run is a path from
a new start point to the randomly selected goal. The performance of each experiment
has been summarised and compared. The evaluation can be divided into:



Chapter 4. Virtual Agent Navigation 86

L. Baich of trials

Within the batch, a group of runs will be executed, corresponding to different
types of virtual environment. The performance of groups within the batch will

be summarised and compared.

2. Performance comparison

The same parameters will be used to provide a direct way of comparing results.
Two types of comparison are used:

(a) using different behaviour weights, as in Section 4.6.5.1

(b) comparison with other methods - The actual rule been used in our method
had been modified to match with method been used in the evaluation. Most
of the modification is declaration structure of the rule since those methods
using difference parameter in their fuzzy controller. The numbers of rules
still the same.

i. Fuzzy-ASM vs. Fuzzy Behaviour Fusion (FBF) [Cang 00] in Section
4.6.4. FBF uses a behaviour-based architecture with behaviour fusion
as action selection method. Since it use the same architecture and
the main difference is in action selection method, this will help us
to measure the performance of our action selection method compared
with the behaviour fusion method.

ii. Fuzzy-ASM vs. Fuzzy Potential Field (FPF) [Makita 94, Katoh 04] vs.
Fuzzy Roadmap (FRM) [Sanchez 04, Lee 04b] in Section 4.6.5. FPF
and FRM use different architectures for the same purpose as Fuzzy-
ASM. Both methods are commonly used with fuzzy logic. This will
help us to measure performance of our architecture compared to other
known architectures in solving the same problem. There is some mod-

ification in rules been used depend on the architecture.

Performance Parameters

Throughout the experiments we aim to maintain correctness, consistency and com-
pleteness of the virtual agent navigation in a virtual environment. Two characteristics
will be used as quality indices during the experiments:
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Path Quality - The quality of navigation should satisfy the following criteria
[Overmars 01]:

* short path - it should not contain long detours when significantly shorter
routes are possible and visible;

* smooth path - containing no sharp turns;

* path clearance - the distance of any point on the path from the closest

obstacle should not be lower than some prescribed value.

Note that the requirements for a smooth path and path clearance may conflict
with the short path criteria in the case when it is possible to considerably shorten
the path by taking a shortcut through a narrow passage. In such cases we may

prefer a path with less clearance (and perhaps containing sharp turns).

. Robustness — the capability of a virtual agent to carry out a successful navi-

gation in environments with disturbed conditions [Hoshino 98]. Specifically, to
what extent does it accomplish its goals in specified environments, and are those

methods applicable across many different environments and tasks?

The following performance parameters [Yen 95] are defined in identifying robustness

of different coordinators.

Average distance to the nearest obstacle (30)
1 K
do= =Y do(i) 4.17)
K i=1

Where K is the total number of decision cycles and d, (i) is the distance to the

closest obstacle in i* decision cycle. High value of d, indicates safer navigation.

. Total traveled distance (d) - Low value of d is expected to optimize the traveled

distance.

. Total navigation time (1) - Low value of 1 expected for fast navigation.

Total number of collisions (C) - should be zero for safe navigation.

Safety Index (SI) - € percentage of the simulation runs in which the agent suc-
cessfully reaches the goal without collision.
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6. Steering Smoothness Index (SSI)

- zf—_-[ IAéil

@ k

(4.18)

where

A®;| stands for absolute average steering angle in the i simulation run.

1. Velocity Smoothness Index (V SI)

Z?:l |A‘-’i I

a= A

(4.19)

where |Av| stand for the absolute average of the velocity change in the ' simu-

lation run.

8. Average radius of curvature R, which is defined as:

R PO
p = mi;ap(‘), p(i)

O [ax )P+ (s y0)) .
= an® a2y sy atn@) &0
= x (i) —x,(i—1), &y (i)
= 3l = yli=1), A2, (i)

= Ax(i)— ax(i—1), a? yr() =8y (D)= Ay, (i—1)

where (x,(i),y,()) is the agent coordinate in i** decision cycle. Higher value of
P indicates smoother trajectory of navigation.

4.6.1 Moving Towards the Goal

The experiment is conducted in the environment with one obstacle and the result is
shown in Figure 4.14. The virtual agent moves toward the goal, when it reaches the
obstacle, the virtual agent starts to turn to the right slowly to avoid the obstacle. At the
same time it still maintains its path toward the goal.

Table 4.4 shows statistical results for time, path length and number of decisions
taken by the virtual agent during navigation to reach the goal. The results show the
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Figure 4.14: Virtual Agent Trajectory with One Obstacle

mean for time taken, 7 = 5.4507s, the length is d= 60.7833 and total number of deci-
sions is K= 28.6544. Looking at the Mean Standard Error (S. E.), these are very low, at
0.0325 for time, 0.3684 for length and 0.2369 for number of decisions. The differences
between maximum and minimum values are also low, which are Ar= 0.5500s, Ad=
6.1167 and Ak=4.550.

The result also indicates that the number of decision become very high mainly
when the virtual agent starts making a turn. This makes the virtual agent change their
angle frequently. Not all steps been shown in Figure 4.14 but it enough to show the
frequency of steps along the path. The result also shows that eventhough the virtual
agent has high number of decision to be made, it still maintans its speed by taking
shortes path and shortes time to reach the goal.

Table 4.4: Statistical Result for Navigation with One Obstacle

Time (#) | Distance {d) | Decision (X) Bpmin Omax FAY: )
Max 5.7467 63.9000 31.2000 0.028058 | 0.028900 ( 0.003000
Min 5.1967 57.7833 26.6500 0.021667 | 0.023500 | 0.000500
A(max-min) | 0,5500 6.1167 4.5500 0.006392 | 0.005400 | 0.002500
Mean 5.4507 60.7833 28.6544 0.025113 | 0.026574 | 0.001461
MeanS,E(g) | 0.0325 0.3684 0.2369 0.000349 | 0.000338 | 0.000141
Std. Deviation | 0.1625 1.8422 1.1845 0.001745 | 0.016878 | 0.000704

From the graph in Figure 4.15 we can see the average turning angle for each of the
25 test runs. Additionally in Table 4.4, we show statistical results for turning angle
produced by the virtual agent. The path produced can be considered smooth since
there is no major angle turn produced. The difference for the minimum turning angle
is 0.0005 and for the maximum is 0.003, which can be considered low. The mean
for the minimum turning angle is 0.0251 and for the maximum turn angle is 0.0266,
and the Mean S.E.s are 0.000349 for the minimum and 0.000338 for the maximum
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turn angles. The differences /AA® for each test run are very low and consistent. This
indicates that the turn angle produced by the virtual agent during the navigation task is

small. As a result, this indicates smooth turning during avoidance of the obstacle.

123458678 910111213141516171819202122232425
Test Run

|+-8min "« @max ~— A8 - 2 per. Mov. Avg. (46)]

Figure 4.15: Turning Angle for One Obstacle.

Weight transition between behaviours has been measured to verify the smoothness
of behaviour transition of the fuzzy controller. Behaviour weight, W, versus the time
step graph is plotted in Figure 4.16. The graph shows that the behaviour weight, W,
increases and decreases gradually when encountering or leaving an obstacle. There-

fore the fuzzy controller transits between behaviours gradually instead of switching
between them.

0 L T L L] L] Ll LS L} Ll L] Ll LE L) T
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
Time Step

Figure 4.16: Behaviour Transition

In terms of defuzzification techniques, three techniques have been tested. The
objective of this testing was to evaluate the robustness of the fuzzy controller used
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with different defuzzification techniques. These are our proposed technique, Mean of
Maximum (MOM) and Center of Area (COA). The index of optimism (as discussed
in Scction 3.4) has been fixed to 0.1 for all methods so that the agent will have a high
level o uncertainty. The results in Table 4.5 show that the proposed defuzzification
technique has produced a safer and smoother control of the virtual agent compared to
the MOM and COA techniques. This also shows that our technique is computationally
faster and casier and gives fairly accurate results. In contrast, COA is computationally
ditlicult because of having complex membership functions and MOM computationally
faster but is only accurate for peaked output.

In addition 1o obstacle avoidance and reaching the goal, navigating a narrow path
has also been tested. Three narrow paths have been used which are to navigate between
two walls, a narrow passage and a corner. The virtual agent produced consistent resuits
(time, number of decisions and path length) for all 25 test runs with a mean error less
than 5%. ‘The path produced can be considered smooth since there is a minimum of
sharp turns as in Figure 4.17.

lor example, in all basic navigation skills the results show that the virtual agent
produced consistent results for all 25 test runs. From Tables 4.6, 4.7 and 4.8 the range
of A8 and Mean S.1. of the turning angle is very small, which produces a smooth path.

‘The result for two walls and corner shaped obstacles was very similar.
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Figure 4.17: Basic Navigation Skill for Two Wall, Narrow Passage and Corner

4.6.2 Escape from Local Minima Problem

Navigation can be very difficult because the virtual agent only uses sensory informa-
tion, and has no prior knowledge about the environment. One of the major problems
for local navigation is being trapped in local minima [Jaafar 07a]. The local minima
problem occurs when a virtual agent navigating past obstacles towards a desired target
with no prior knowledge of the environment gets trapped in a loop. This happens es-
pecially if the environment consists of concave obstacles, mazes or something similar.

A new local minima solution has been implemented as in Section 4.5.2.2.
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Table 4.5: Comparison of Defuzzification Technique

Method [ Smoothness Safety Index | Step/run
MOM 2.698 0.415 175
CoA | 0620 0.907 217

Proposed | 0.550 0.980 153

Table 4.6: Navigating Two Walls

;li‘iinér(rlﬂ)m Distance V(VJ) Decision (X) 0,in (S AB
Max | 8.6967 137.7833 95.3000 | 0.0211 | 0.0229 | 0.0005
Min | 78370 | 144.0333 99.8500 | 0.0275 | 0.0285 | 0.0038
Admax-min) | 08597 | 6.2500 4.5500 0.0065 | 0.0057 | 0.0033
Mean | 82390 |  140.8233 98.1744 | 0.0236 | 0.0252 | 0.0017
MeanS.E. (¢) | 00466 | 03432 0.2388 0.0003 | 0.0004 | 0.0001
Std. Deviation | 02330 17161 1.1941 0.0018 | 0.0016 | 0.0010

Table 4.7: Navigating Through Narrow Passage

“Time (1) | Distance () | Decision (X) Oin O max aX:]
Max | 2.5767 66.7833 129.8500 | 0.0275 | 0.0286 | 0.0030
Min | 2.1967 60.2833 124.1000 | 0.0215 | 0.0225 | 0.0002
Admax-min) | 0.3800 6.5000 5.7500 0.0060 | 0.0060 | 0.0028
Mean 23850 | 63.6873 127.8544 | 0.0250 | 0.0265 | 0.0015
MeanS.E. (¢) | 00200 | 03458 0.3024 | 0.0003 | 0.0003 | 0.0002
Std. Deviation | 0.0998 1.7292 15118 | 0.0017 | 0.0017 | 0.0008

Table 4.8: Navigating Through Corner

| Time (/) | Distance (d) | Decision (K) | 8, Brmae )
Max | 3.7467 22.5333 312000 | 0.0281 | 0.0289 | 0.0200
Min | 32007 19.2833 266500 | 0.0217 | 0.0235 | 0.0005
Almax-min) | 0.5400 3.2500 45500 | 0.0064 | 0.0054 | 0.0195
Mean 3.4475 20.7433 286144 | 0.0251 | 0.0266 | 0.0015
Mean S.E. (6) | 00258 0.1823 0.2300 0.0003 | 0.0004 | 0.0200
Std. Deviation | 0.0258 0.1823 0.2300 0.0003 | 0.0004 | 0.0200

Figure 4.18: Escaping from bench, corner and dead-end.
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We verily the performance of our approach by applying it to three types of basic
obstacle shape which are a bench, corner and a U-shape as shown in Figure 4.18. The
simulation shows that the virtual agent avoids the obstacle, then follows the wall and
heads for the target. When reaching a dead-end or trap (local minima), the virtual
agent successfully escapes from the situation. The virtual agent increases its speed
when there is no obstacle and moves forward, with less decision making needed to be
made. When reaching a trap situation, the agent slows down since it needs to sense the
obstacle and to decide which turn angle needs to be taken. The time and number of
decisions needed to be taken depends on the sharpness of the turn angle needed to be
taken. The path generated by the virtual agent can be considered smooth even though

itis not the shortest path. In general, the experiments demonstrate that the method is

robust and the agent has an adequate capability to escape from a local minima situation.
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Figure 4.19: Escaping from Long-wall Environment with Local minima.

Furthermore, to verify its performance, a long-wall environment with a U-shape
trap has been used, as shown in Figure 4.19. The path produced can be considered
smooth even though there are sharp turns, especially in the beginning and in the area
of the dead-end. The path produced is also not too far from the obstacle trying to
minimize the distance to the obstacle in order to produce a possible shortest path.
The number of steps is high and the virtual agent’s speed slows since it requires extra
processing time for decision making and making a turn. The virtual agent changes
to normal speed and time step when leaving the dead-end, making a deversion and
following the wall. The speed gradually decreases and time steps start to increase
when the agent moves along the wall and needs to make a small deviation to the goal.
The reason is that the virtual agent needs to make a left turn to the goal but at the same
time needs 1o move away from the long wall. The virtual agent start its turn to the left

at the end of the wall with time step and speed becoming normal.
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Figure 4.20: Turn Angles Recommended by Different Behaviours.

Figure 4.20 shows the turn angles recommended by different behaviours. The turn
angle recommended by OA and PP behaviours are consistent during the navigation task
and the GS tirn angle is more than in OA and PP. At some point, the goal is switched
from the left of the virtual agent to the right, or from the right to the left. This is why
the virtual agent leaves the wall (obstacle) and turns toward the goal direction. The
virtual agent starts in the central point of the U-shape obstacle and starts to move at a
normal speed toward the goal, the distance can be considered as short, which makes
the turn angle small. Wpp and W, are small, however W is large and as a result
GS behaviour contributes to the final motion of the virtual agent. This is because the
facing obstacle is distant. When the virtual agent is near to the obstacle, the weight of
the OA behaviour becomes larger. When the OA and PP behaviours are dominant, the
GS behaviour is suppressed and its weight is small. When the virtual agent is far from
an obstacle and approaching the goal, the weight of OA and PP behaviours are small

and only the GS behaviour is dominant.

4.6.3 Navigating in a Complex Environment

In this section, we address the problem of collision-free navigation of virtual agents
moving in a complex environment. The experiment is concerned with the ability of the
virtual agents to navigate in cluttered and maze environments. The first experiments
cvaluate virtual agent navigation in cluttered and maze environments using different

degrees of uncertainty. Figure 4.21(a) shows a result for a cluttered environment. Fig-
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ure 4.22(a) shows the degradation of the Safety Index (SI) and Steering Smoothness
Index (SS of the fuzzy controller as the degree of uncertainty increases. The steer-
ing smoothness index, (SS1) increases only to 1.47 times larger while the Velocity
Smoothness Index (VSI) increases to 4.35 times larger, meaning that the VSI has more
nfluence on the degree ol uncertainty. The maximum value of SSI is 4.2° and the
degradation of SSI is graceful. The maximum value of VSI is 1.65, this is relatively

large compared to the maximum velocity of the virtual agent.
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Figure 4.21: Navigation path (a) Cluttered and (b) Maze Environment.

Iigure 4.21(b) shows a path produced in a maze environment. There are some sharp
turns but other parts of the path are still considered as smooth. Similar results have
been produced for the cluttered environment. Figure 4.22(b) shows the degradation of
the Safety Index (S1) and Steering Smoothness Index (SSI) of the fuzzy controller as
the degree of uncertainty increases. The Smoothness Index, (SI) increases only to 1.89
times larger while the Velocity Smoothness Index (VSI) increases to 5.24 times larger,
meaning that the VST has more influence on the degree of uncertainty. The maximum
value ol SSTis 3.5°, the degradation of SSI is graceful. The maximum value of VS is
I.78 and this is relatively large compared to the maximum velocity of the virtual agent.

Figures 421 and 4.22 show that even if the value of uncertainty is increased as
high as 1.0, the smoothness of the path still can be maintained. The fuzzy controller is
still able to avoid the obstacle in most cases since the standard deviation of uncertainty
measurement is not as large as 60% of the actual value in most cases. This means the
fuzzy controller has high robustness to the level of uncertainty of the environment.

Experiments were also conducted to observe the effect of using different degrees
of optimism, @, by the virtual agent to navigate in complex environments. Figure 4.23
shows the result of the experiment conducted in a cluttered environment using different
degrees of optimism, o, which are (a), 6 = 0.9 and (b) 6 = 0.4. The environments con-

tain different sizes of obstacle and narrow passages. The virtual agent in Figure 4.23(a)
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Figure 4.23: Different Degrees of Optimism (a) 6 = 0.9 and (b) ¢ = 0.4.
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has produced a shorter path compared to the virtual agent in Figure 4.23(b). However
the number of steps is higher compared to Figure 4.23(b). The main reason is that the
virtual agent is required to go through a narrow passage in order to produce the shortest
path. In Figure 4.23(b), the virtual agent has made a sharp turn and high number of
time steps at this point. As a result the virtual agent take a big turn to the wider passage
before turning and reaching the goal. Time steps at the rest of the path are consistent
since there is no complex obstacle to avoid. The results show that the decision process
by the virtual agent is affected by the degree of optimism. Using a higher value of ¢
makes the virtual agent enter the narrow passage compare to a low value of ¢ which
makes the agent prefer to select the wider passage. However the number of decisions
and steps might vary depending on the complexity of the environment.

Further experiments with complex environments have been conducted. The en-
vitonments contain a combination of maze and cluttered obstacles and three random
goals have been selected. The degree of optimism, 6 = 0.5, was used for the first trial.
Unfortunately this value did not give a very promising result as in Figure 4.24. The
virtual agent had successtully reached the goal, but paths produced are long with many

sharp turns and a high number of time steps.
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Figure 4.25: Navigating in combination of cluttered and maze environment (0 =10.8).

)

Based on result in Figure 4.23, using a higher value of ¢ will give a better result.
A new value of o - (.8 has been selected. Figure 4.25(a) and (¢) produce smooth

and short paths compared to the results in Figure 4.24(a) and (c). In Figure 4.25(b),
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the virtual agent follows a similar path compared to Figure 4.24(b) but with a small
number of sharp turns. From the figures, we also notice that the virtual agent does not
take the narrow path at X. One probable is that the passage is too narrow and might
require a higher value of 6. However having a higher value of o, the virtual agent
might follow a longer and unsafe path.

Also in Figure 4.24(b) and Figure 4.25(b), notice that the virtual agent does not
produce the shortest path. The virtual agent moves forward to the goal even though
there are a walls and a dead-end. Then the virtual agent makes a left turn to escape
from dead-end and follow the wall toward the goal. The virtual agent tried to reach
the goal by moving straight ahead towards the goal by having a high value for Goal-
Seeking behaviour. The virtual agent starts to switch to Path-Planning behaviour and
Obstacle-Avoidence behaviour when it encounters an obstacle and needs to make a
turn to reach the goal. This shows that the virtual agent has imitated how a human
might make decisions during a navigation task in an unknown environment by making
a good assumption that the path to the goal is ahead of them even though they cannot
see the goal.

The experiment has shown that the ¢ value might vary depending on complexity
of the environment.  This is because some environments might have many narrow
passages or two walls. With a high value of o, the virtual agent can go through the
narrow passage. Alternatively, with a low value of o, the virtual agent might look for
a wider passage. The paths produced might not be the shortest paths but they are safe
paths (no collision). This is due to the ability of the virtual agent to identify its goal

and the capability of the visual sensor in detecting potential obstacles.

4.6.4 Action Selection Method

A central issue in the design of reactive control architectures for autonomous virtual
agents is the formulation of effective action selection mechanisms (ASMs) to coordi-
nate the behaviours. Experiments will evaluate the Fuzzy-ASM method and compare
the results with the behaviour fusion method (FBF) by Cang [Cang 00].

Four test cases have been used which are the virtual agent being moved from the
same start point to different target points as in Figure 4.26 to 4.29 (Test Case 1, 2, 3
and 4). Figure 4.29 shows the example of the path produced by the virtual agent in
Test Case 4. Figure 4.29(a) is the path produced by Cang’s Method and Figure 4.29(b)
shows the path produced by our Fuzzy-ASM. The path produced by the Fuzzy-ASM
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is shorter than Cang’s method even though the smoothness of the path is similar.

Table 4.9: The Performance of Fuzzy-ASM vs. FBF.

h i P-P
P(m) E==p
_ :I‘ési a , AAAAAAAA Fuzzy- Fuzzy-
Case ' (1) | Asm FBF Asm | FBF
I 2030 | 2132 | 2242 493 10.44
2 22.35 28.81 na 28.90 na
3 B 14.64 20.91 na 42.83 na
4 2301 | 2386 | 2502 | 369 | 9.17
Note:

P, - the shortest path length

P, - the actual path length

I5 - the performance factor, which if small means that the
performance of the method is better.

Morcover, Table 4.9 shows that Fuzzy-ASM had a better performance with a small
performance factor (F), which was 4.38% in Test Case 1 and 2.80% in Test Case 4
compared to a FBF of 11.31% and 9.39%, respectively. The difference in paths pro-
duced between the Fuzzy-ASM and FBF are 1.50 in Test Case | and 1.56 in Test Case
4. The difference in £ and path produced shows that the Fuzzy-ASM has produced
better results compared to the FBF. Unfortunately, Test Case 2 and Test Case 3 showed
that FBI* was trapped in local minima and failed to complete the task. Fuzzy-ASM had
a successful escape form the trap and reached the target point.

Further testing has also been conducted with nine different goal locations as in
Appendix B. Figure 4.30 shows the result of (a) Time (f,), (b) Distance (d;), and
(¢) Decisions (K) taken by the virtual agent for all nine goal locations. The results
show that Fuzzy-ASM has taken less time and a shorter distance to complete the task.
The average percentages of A, and Ad; are 16% and 17.4%, respectively. When we
compare the number of decisions made by each method, Fuzzy-ASM has made fewer
decisions. The average number of decisions is 8.04% less than Wang’s method. Fewer
decisions leads to a faster and more reliable decision making process.

Our tests also show that the success rate for the Fuzzy-ASM is higher than Wang’s
method, as shown in Figure 4.31. Success rate refers to the percentage of test runs
(total of 25 runs) for each test where the virtual agent successfully reached the goal.

In test 1 to test 4, the fuzzy ASM had a 100% success rate. Wang’s method starts to
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Figure 4.31: Test Success Rate.

decreasce at test 2. The lowest success rate is 90% compared to Wang’s method at 70%.

“This suggests that the Fuzzy-ASM is more reliable.

4.6.5 Performance Comparison
4.6.5.1 Comparison Between Different Scenarios.

The aim of this experiment is to measure the robustness of the Fuzzy-ASM using

different behaviour weights. Three behaviour weights have been used to compare the
navigation results:

* Behaviour Weight 1 (BW1) - the Fuzzy-ASM.
* Bcehaviour Weight 2 (BW2) - The behaviour weights are randomly defined as:
Boa -+ 0.46, Bpp =0, Bgs = 0.79
to sec how the virtual agent behaves when having permanent weight.
* Behaviour Weight 3 (BW3) - All behaviour weights are set to 1,
i.e., Boa = Bpp = Bgg = 1.
to see how the virtual agent behaves when having equal weight.

For the experiments, the same virtual agent is used and visual sensors are employed to
obtain range measurements in order to avoid obstacles. For unmodulated coordination,

the sampling time period (i.e., the length of a decision cycle) is set at tp = 50ms. Three
different scenarios have been created.
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Case | : An open U-shaped obstacle is placed on the way to the target.
Case 11 : Narrow passage is placed to obstruct the way to the target.
Case L : Two walls are created on the way to the target.

For the navigation examples, only odometry is used for localization of the virtual agent.
In cach experiment the virtual agent path is traced and the results are shown in Fig-
ures 4.32 10 4.34 and Table 4.10.
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Figure 4.32: A U-shaped Obstacle is Placed on the Way to the Target.
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Figure 4.33: Narrow Passage is Placed to Obstruct the Way to the Target.
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Figure 4.34: A Two Walls are Created on the Way to the Target

In all navigation scenarios the virtual agent was able to reach the target locations
using BW 1 (Figures 4.32(a), Figure 4.33(a) and Figure 4.34(a)). However, Table 4.10
shows that the virtual agent collided with obstacles in Case 111 (BW3, Figure 4.34(c))
due to the non-signiticant contribution of the avoid-obstacle schema. Hence, the per-

formance criteria associated with these cases are ignored since this method violates
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Table 4.10: Performance Comparisons

" Rehavin o l
Pt | A | noloc P
S Case |
o 854 5654 1328 0 2x10'°
2 | Fail | Fail Fail | Fail | Fail
3 et U R Rt | R T Fa |
AAAAAA Case I1
St [ oos [ ae0 Tosomor [ o T 20"
2 Fail Fail Fail Fail Fail
3 1062 2767 25801 0 10x10"
- Case 1
0 786 | 2840 | 25041 | 0 1x10"
2 Fail | Fail Fail | Fail Fail
3 ] 2 | 2018 | 26084 | 1 2x10"

the safe navigation objective set. In Case II, BW3 (Figure 4.33(c)) produces lower
values of d,, = 1011 and p = 11 x 10", and higher values of d, = 3767 and 1,, = 25801
compared o BW1 (Figure 4.33(a)) which produces high values of d, = 1098 and
P <= 3x 10", and low values of d; = 3620 and 1, = 23080. Both behaviour weights
(BWI1 and BW3) produce safe navigation. BW3 produced unsafe navigation, un-
smooth trajectory, higher traveled distance and navigation time, and inconsistent mo-

tion commands as compared to BW1.

1. Behaviour Weight 1

In this navigation task the behaviours are weighted according to environmen-
tal contexts, Appropriate behaviours are selected, Figure 4.35 demonstrates the

weights generated in Case L.

In Case I, Obstacle-Avoidance and Path-Planning behaviour are weighted heav-
ily compared to Goal-Seeking behaviour. This causes the virtual agent to avoid
local minima in the presence of U-shaped obstacles (Figure 4.32(a)). Similarly,
in Case 11 the virtual agent was able to avoid local minima in the presence of
narrow passage obstacles as in Figure 4.33(a). In Case III, appropriate weights
are produced to generate safe navigation in the presence of two walls shown in
Figure 4.34(a).

The performance analysis reveals that the Fuzzy-ASM of motor schemas pro-
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Figure 4.35: Weight Generated in Case |

vides the best performance in all of the three cases. The Fuzzy-ASM has shown
a capability of escaping from a dead-end, is robust to handle environments with
a narrow passage and is without collision in two wall environments. Table 4.10
illustrates that for successful safe navigation BW1 produces higher values of d,,
and p, and lower values of d, and ¢, than Behaviour Weight 2 and 3. As a re-
sult, this approach produces relatively safe navigation, smooth trajectory, lower

traveled distance and less navigation time as compared to Behaviour Weights 2
and 3,

2. Behaviour Weight 2

Behaviour Weight 2 in Cases I (Figure 4.32(b)), IT (Figure 4.33(b)) and III (Fig-
ure 4.34(b)), show the virtual agent is trapped in a local minimum and fails to
reach the target. For all cases, the virtual agent seems to struggle to pass ob-
stacles towards a desired target and gets trapped in a loop. The main reason
was that the agent keeps repeating turn angle which lead the virtual agent to just
move left, right and left continuously. In these cases, the strengths of the weights

alternates and this causes inconsistency in the motion commands to the virtual
agent.

This method leads to unsuccessful navigational tasks in Cases I, II and I1I, where
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the virtual agent fails to reach the target location. As a result, performance crite-

ria are not evaluated for these cases.

3. Behaviour Weight 3

In Behaviour Weight 3 the behaviours are weighted equally. The resultant be-
haviour weights fails to generate a safe heading direction since
Obstacle-Avoidance behaviour is weakened by Goal-Seeking and Path-Planning
behaviours. Therefore, in Case I (Figure 4.32(c)) the virtual agent exhibits oscil-
latory trajectories and in Case 111 (Figure 4.34(c)), the virtual agent experienced a
collision with an obstacle at point P. However, the reduced influence of obstacle-
avoidance also leads to successful virtual agent navigation in Case 11, where the

virtual agent navigates through closely spaced obstacles (Figure 4.33(c)).

4.6.5.2 Comparison with Other Fuzzy Methods.

Two other fuzzy methods have been used for comparison and these are the Fuzzy Po-
tential Field (1FPF) [Makita 94, Katoh 04] and Roadmap (FRM)[Sanchez 04, Lee 04b]
methods. The FPE method is based on an artificial potential field, which is used ex-
tensively for obstacle avoidance. FRM is a sensor-based version of the probability
road-map method and is used to exploit the information obtained from sensors and to
compute a feasible collision-free path.

Figure 4.36 shows an example of navigation path produced by all three methods.
All three methods produced smooth paths which did not contain any sharp turns and
did not collide with any obstacle. Figure 4.37 shows nine test results with each test
using difterent goal locations. The Fuzzy-ASM produced a shorter distance compared
to the FRM and FPF. The Fuzzy-ASM was an average of 6.33% shorter than FRM,
and an average of 11.59% shorter than FPE. This showed that the Fuzzy-ASM required

less time to reach the goal compared to the other two methods.

4.7 Summary

A new deterministic approach to resolve the behaviour conflicts in a complex situ-
ation during virtual agent navigation is developed and validated in the experiments.
The proposed fuzzy o — level level method (Section 3.4) has been used in Fuzzy Con-
troller and Action Selection module as in Figure 4.4. The number of navigation rules

is drastically reduced without reducing the size of input and is purely sensor based for
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Figure 4.36: Example of Navigation Path in Cluttered Environment (a) Fuzzy-ASM (b)
FRM (c) FPF.
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Figure 4.37: Path Length Produced by FPF, FRM and the Proposed Fuzzy Method

building navigation rules. This approach has a modular based structure. Hence, the
decoupled nature of the rules or sensor data significantly reduces the number of rules
needed for navigation. Path-Planning behaviour helps to identify a local minima situ-
ation in real-time without any form of learning of the environment. The behavioural
selection module has to decide which behaviour task needs to be executed when local
minima problems occur. The behaviour rules are adapted easily and the virtval agent
has deviated with minimum distance when it encountered obstacles.

[n this chapter we described and demonstrated the capability of our virtual agent
navigating in various unknown virtual environments. The testing was divided into four
parts: {(a) moving towards the goal; (b) escaping from local minima; (c) navigating in
complex environment; and (d) comparison with other methods. The aim of the testing
was to evaluate the performance of our fuzzy method in terms of robustness and quality
of path generated by the virtual agent.

In general, the virtual agent is robust enough to handle different uncertainty levels
in various types of environment. It also meets all the basic skills required in order
to navigate in unknown environments. In complex environments such as in dead-end

situations, mazes and cluttered environments, the virtual agent successfully reached
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the goal. The qualities of path produced are reasonably smooth, short and clear of
collision. "The method also produced a better performance compared to other fuzzy

methods used in this testing in terms of safety and speed.



Chapter 5
Virtual Agents in Computer Games

Computer games don’t affect kids, 1 mean if Pac Man affected us as
kids, we'd all be running around in darkened rooms, munching pills and
listening to repetitive music.

Marcus Brigstocke (b.1973)

English comedian

We want computer games to move people emotionally, like a great piece
of art, a great movie or a great piece of music.

Neil Young (b.1945)

Canadian Singer and Guitarist

5.1 Introduction

There are several orthogonal dimensions along which agent applications could be clas-
sified. They can be classified by the type of the virtual agent, by the technology used to
implement the agent, or by the application domain itself. In this chapter, we describe
how the proposed method can be applied in different domains. Domains such as de-
cision support in financial forecasting [Collan 03], knowledge management [Elst 03]
and computer games [Sanornoi 04] have been identified as potential examples for ap-
plication of our architecture. We choose to use the computer game domain, since
this view fits best with the proposed method and available expertise. The same gen-
eral framework and architecture is used with minor modifications and tuned to suit
the game design. The same fuzzy control system and action selection method for be-
haviour selection has been used. The main differences are in the fuzzy rules and the
virtual agent behaviours since computer games have different requirements compared
o autonomous virtual agent navigation.

109
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In the domain of games, classical rule-based systems often fail to attain subtlety,
fuzzy rule-based systems allow the nuances among inputs to be captured and further
reflected in the decisions at rclatively low computational cost [Yifan 04). With tuzzy
logic it is also easier to write logic for reasoning with probabilities and the resulting
probabilities take into account all the rules, not just the first/best. Fuzzy logic plays an
increasingly important role in computer games (described in Section 5.2), yet it still
has gaps compared with other popular methods which have been used in developing
computer games.

5.2 Background

Computer games can be traced back to the 1950s when computers were in their early
stages. Early games were text oriented with simple user interfaces. Since then, com-
puter games have evolved into highly sophisticated computer software. Computer
games are programs that enable a player to interact with a virtual game environment
for entertainment and fun. Each game has its own strategy, action, curiosity, challenge
and fantasy that make each game unique and interesting, which can motivate game
players [Hsu 06].

Although computer games mainly provide entertainment and fun to the user, games
have long been a popular area for academic research in AL This is because games are
challenging yet casy to formalize. They can also be used as platforms for the develop-
ment of new Al methods and for measuring how well they work. In addition, games
can demonstrate that machines are capable of behaviour generally thought to require
intelligence without putting human lives or property at risk [Miikkulainen 06]. How-
ever, the main question is whether and to what extent, Al techniques can be applied to

modern computer games, since most of the games involve four main issues, which are
[Nareyek 00]:

* Real Time - There is only very limited time for reasoning.

* Dynamics - Computer games provide a highly dynamic environment.

Incomplete Knowledge - A game character generally has incomplete knowl-
edge of the world.

* Resources - The game character’s/world’s resources may be restricted.
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Nowadays there is a trend toward creating a virtual environment which is populated
with distinctive characters or virtual agents. Whether these characters are faceless
guards in a top-secret facility, players on a football pitch, or evil plumber-battling
princess-kidnapping despots, they can all be viewed as examples of (more or less)
mtelligent virtual agents. The field of agent building in Al is very wide ranging, in-
corporating robotics, simulation, philosophy, vision and so on. Computer games need
the application of these techniques if they are to increase the intelligence of their char-
acters, and consequently the appeal and quality of the games {Lent 99]. The use of
autonomous characters has contributed to two main issues [Pisan 02]:

* what should the general nature of this virtual agent be for interesting game play-

ing; and
* what type of architecture will best facilitate such characters and environments?

Another question when we deal with virtual agents is regarding goal-directed be-
haviour. The common approach to implementing this behaviour is using a predefined
behaviour pattern, for example, /F-THEN rules. Recently, learning or adaptive be-
haviour has been introduced, such as neural networks [Cho 05], genetic algorithms
[Hussain 06} and reinforcement learning {Merrick 06]. However, the pure reactive
property has still not been overcome and we still struggle with real-time responsive
behaviour because of some limitations in algorithms and restrictive processor avail-
ability.

One of the most recent works is the D-FSM (Dynamic Finite State Machine)
method by [ Yoon 07]. The method collects and analyzes the action patterns of game
players. The game player patterns are modeled using a FSM (Finite State Machine).
The results obtained by analyzing the data on game players is used for creating NPCs
(Non-Player Characters) which show new action patterns by altering the FSM defined
previously. These characters are adaptable NPCs which can learn the action patterns
of game players. Unfortunately, there is no performance information yet reported.
Other rescarchers, such as {Hicks 04], apply a Bayesian Network for multi-source
data fusion to achieve the situational awareness that supports C2 decision making,
and [Gorman 06] describe an approach to the imitation of strategic behaviour and mo-
tion; and propose a formal method of quantifying the degree to which different virtual
agents are perceived as humanlike.

Intelligent virtual agents and fuzzy logic are two techniques that can improve the

quality of interaction in computer games. Virtual agents present a new architecture



Chapter 5. Virtual Agents in Computer Games t12

in game design which contribute to more flexible interaction, and at the same time
fuzzy control offers a practical method for generating subtle behaviour [Yifan 04].
Virtual agents with subtle behaviour enhance the perceived complexity, enjoyability
and credibility of the virtual environment.

Onc of the earlier works is the development of the BattleCity.net game by
[Yifan 04]. The game uses a BDI-style framework but lacks any human interaction,
which is one of the important aspects of most computer games|[Shaout 06]. [Sanornoi 04]
have developed intelligent virtual agents using a behaviour-based control approach.
Unfortunately, the overall architecture and behaviour selection has not been described
in detail.

Close Combat and S.W.A.T. 2 [Woodcock 07] are examples of successful imple-
mentations of tuzzy logic in commercial computer games. The fuzzy logic is used
for action selection that the soldier needs to perform. To prevent inconsistency in the
selection of actions (in Close Combat, the soldier decides to go prone, then the next
instant decides to stand up, then go prone, etc.) a series of weights are associated with
good behaviour. In the case of bad behaviour, the soldier is restricted from choosing
a good behaviour action until certain conditions or a time limit has been met. During
the development, the main problem is in the balancing of the game engine. Often this
Just involves adding more parameters to the engine to account for the new circum-
stances. However, several attempts are required for an adjustment to the current values
by putting more weight on one or more parameters. This subsequently can cause other

behaviours to get out of balance given slightly different circumstances.

5.3 Pacman

Pacman is an arcade game made by Namco in 1981 [Namco 07] and is one of the best
selling coin operated games in history. The purpose of the game is to move the Pacman
through a small maze collecting every dot and scoring points, and after collecting every
dot the player advances to the next level. Ghosts spawn in the middle of the map and
try to catch Pacman. On contact with a ghost, Pacman will die and the level will be
restarted with the remaining dots. A limited number of power pills are found in the
map and when caten will reverse the roles of Pacman and Ghosts, allowing Pacman
to eat them and score extra points. A few times in a level, fruit will appear and if
caten gives extra points. At first glance, it looks like a simple game; however playing
well requires advanced strategies [KiLLerCloWn 07). It was not until 1998 that Billy
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Mitchell played the perfect game achieving a score of 3,333,360 and taking 6 hours to
complete it. He beat all 256 screens eating every dot, fruit, and ghost (all four ghosts
were caten with each power pellet) using only one life.

Game artificial intelligence can be designed without the use of fuzzy techniques.
lor most versions of Pacman, including the original, they used crisp control raecha-
nisms. The deterministic logic that controlled the ghosts caused them to react consis-
tently in predictable ways to player action. They did not learn from previous player
performance and consequently adjust the level of difficulty. To create the illusio of in-
telligence, the original implementation of Pacman had special (crisp) rules for ::ach of
the four ghosts. For instance, certain ghosts would try to approach Pacman fromn differ-
ent sides. Although this allowed the ghosts to behave more realisticaily, it undoibtedly
added to the size and complexity of the code.

There is a small amount of work that has been conducted toward the application
of Alto Pacman or similar games. The work can be divided into two areas, which are
approaches for a self-playing Pacman system (artificial virtual agent that learns to play
the Pacman game) and approaches for controlling and optimization of the Ghosts in
Pacman,

3.3.1 Self-playing Pacman

One of the carlier works used genetic programming to demonstrate the task prioriti-
zation in the Pacman agent [Koza 92]. The approach relies on the set of predefined
control primitives for perception, action and program control. It uses a population of
500, and a fitness function based on the score. The resulting algorithm was success-
ful, achicving a score of 9,220 points eating all the food and finishing the first level.
However, this approach only works in one particular maze and is not a virtual agent
approach that would work in a different maze.

Pac-Tape (Self-playing Pacman system) was developed by [Gugler 97], which used
the original Pacman arcade game emulated on a desktop PC. The approach is based on
a brute force search, but has not been described in detail or tested
|Gallagher 03]. On the other hand, [Lawrence 99] used the same Pac-Tape by applying
a genetic algorithm (GA). Unfortunately, due to poor interaction between the genetic
operator and the representation used, the system was not very successful [Gallagher 03].
Similar work by |Bonet 99] applied an embodied intelligence approach to learn playing

strategies in Pacman, They used a creature centered perception network with reinforce-
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ments based on previous rewards (reinforcement learning). Both the Ghost and Pacman
agents were evolved, starting from simple boards and working up to a complete one.
The representation of the world state was multiple 2D bit arrays representing different
items in the game. There has also been some work on learning routes for Pacman, but
this approach is not viable for Ms.Pacman [Lucas 05].

A simple state machine and a parameter rules set, with a population based on an
incremental learning (PBIL) algorithm was developed for artificial virtual agents that
learn to play a simplified version of Pacman [Gallagher 03]. The representation had
very serious limitations for scaling up the intelligence of the virtual agent, which might
contribute o a very high dimensional optimization problem. As a result, the system
required a lurge amount of computational time to allow enough generations for the
algorithm to produce a good result. [Lucas 05] and [Yannakakis 05] describe an ap-
proach of evolving a Pacman playing agent based on evaluating a feature vector for
cach possible next location given by the current location of Pacman. A neural network
was used as the control algorithm. The experimental results showed that useful be-
haviours can be evolved that are frequently capable of clearing the first level, but still
at risk of making a poor decision.

More recently [Gallagher 07] developed a Pacman agent that learned game-play
based on minimal on-screen information which was based on an evolutionary algo-
rithm which is a neural network. The resuit showed that this neuroevolution is able to
produce a virtual agent that displayed novice playing ability, with the minimum amount
of on-screen information, no knowledge of the rules of the games and a minimally in-
formative fitness function. Unfortunately, no virtual agent was able to clear a maze
of dots during the experiment. The performance is lower than previous approaches
in |Gallagher 03] and [Lucas 05] and the results are inconclusive with respect to the
influence of a number of system parameters.

Alternatively [Szita 07] use reinforcement learning by defining a set of high-level
observation and action modules, from which rule-based policies are constructed auto-
matically. In these policies, actions are temporally extended, and may work concur-
reatly. The policy of the agent is encoded by a compact decision list. The components
of the list are selected from a large pool of rules, which can be either hand-crafted
or gencrated automatically, A suitable selection of rules is learnt by the crossen-
tropy method, a recent global optimization algorithm that fits the framework smoothly.
Crossentropy-optimized policies perform better than our hand-crafted policy, and reach

the score of average human players.
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5.3.2 Intelligent Control of The Ghost Behaviour

There is small amount of work in intelligent control of the ghost behaviour or non-
player characters in the Pacman game. The evolutionary algorithm used by
[Kalyanpur O1] optimized the genes of ghosts by a combination of genetic algorithms
and a ncural network. The genes of the ghost were an array representing the intersec-
tions of corridors in the map whose values contained the direction the ghost would turn.
The back-propagation algorithm with neural network is used to determine best values
for mutation and crossover probability given success times. Although this strategy was
somewhat successful, the ghosts had predetermined moves, and therefore possessed no
real-time decision-making or task prioritization.

Other work explored the possibilities of real-time behaviour of live animals for
the Pacman game |Eck 06]. Instead of computer code, they used animals controlling
the ghosts. The real maze for the animals to walk around had been built, with its
proportions and layout matching the maze of the computer game. The position of
the animals in the maze is detected using colour-tracking via a camera, and linked to
the ghosts in the game. This way, the real animals are directly controlling the virtual
ghosts. During the tests, one of the crickets stopped moving, and it was shedding
its skin. The cricket’s new skin was very light, and therefore it did not get detected
by colour tracking anymore. After about half an hour the cricket’s skin turned dark

enough 1o be noticed by the colour tracking system, resulting in five ghosts being put
in the game.

5.4 The Framework

The original Pacman for MATLAB was developed by [Bauerbach 04]. It is designed
so that the same system can be easily modified to be used with other games. In our
implementation the original Pacman game environment is used, the main difference is
the game engine had been modified to integrate with our proposed fuzzy architecture.

In Figure 5.1, we present a proposed overall framework for the Pacman game. The
framework can be divided into three main parts which are the virtual agent (ghost),
Fuzzy Controller and Control Tread. The virtual agent (ghost) acts as an interface
between the Tuzzy Controller and the Control Tread. The Control Tread and fuzzy
behaviour is adapted from [Shaout 06]. The fuzzy controller is based on FAM as de-
scribe in Chapter 3. 1t takes the new representation and feeds it through the network.
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The output consists of 4 real values representing directions. The direction with the
highest value is taken as the execution for the corresponding movement control. This
information is sent to the game control system. Because these controls are the same

as those used in our proposed reactive architecture, nothing needs to be changed in the

game control system.
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Figure 5.1: Game Overall Framework

The next section describes the Control Thread (Section 5.4.1), fuzzy behaviour and
fuzzy variables (Section 5.4.2) of the [Shaout 06] Pacman game which was used in this
implementation.

5.4.1 Control Thread

The Control Thread [Shaout 06] is the main interface between the player and the game
and executes most of the game logic. The Control Thread is a large two-dimensional
array of integers defining the map and a set of Ghost Objects and Thing Objects with
grid associated positions. This map information needs to be interpreted in a way that
can be used as input to the Fuzzy Controller and be updated as objects move in the
game. The representation for the Fuzzy Controller focuses on a square grid, centered
on the ghost’s position,

The Control Thread checks if a new level needs to be initialized when a level ends
or anew game has begun. 1t also checks if Pacman is powered-up. Pacman becomes
temporarily powered-up after eating special power peliets, which enable him to eat the
ghosts. The Thread also checks for a collision between Pacman and a ghost. This

happens when Pacman and a ghost occupy the same location on the game grid or



Chapter 5. Virtual Agents in Computer Games 17

Pacman and a ghost have swapped positions. The Control Thread also handles the
cevent of Pacman losing a life. Pacman loses a life if the collision flag is set and the
power pellet time is 0. The number of lives is decremented by 1. After that, the ghosts
and Pacman are reset to their initial starting positions for the level.

The ghost must move in a direction that will take it towards the area of the map

with the highest pellet density. The following steps are required to find this area::

[. Divide the map into nine overlapping sections based on combinations of the
following fractions of the x size and y size of the level map 0 to % % to %, and %
tol;

2. Sum the total number of pellets in each section;
3. Seleet the section with the highest number of pellets;

4. Return the coordinates of the middle pellet in that section:

The middle pellet is found by traversing the pellets in that section from left to
right, top to bottom and stopping when the number of pellets encountered is half

the total number of pellets in that section.

In order o determine the direction of the shortest path the A* algorithm [Matthews 02]

has been used as follows:
I. Calculate the city-block distance between the source ghost and the other ghosts;
2. Select the ghost that is closest to the source ghost;

3. Determine the differences in x and y location between the source ghost and the

closest ghost;
4. 11 the x difference is greater or equal to the y difference:

* If the square in the x direction from the source ghost away from the clos-
est ghost is not blocked, return the direction from the source ghost to that

square;

* Else if the square in the y direction from the source ghost away from the
closest ghost is not blocked, return the direction from the source ghost to

that square;

* Else return one of the two remaining directions (whichever leads to a path
that is not blocked);
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5. Else the y difference is greater than the x difference:

* It the square in the y direction from the source ghost away from the clos-
est ghost is not blocked, return the direction from the source ghost to that

squarc;

* Else if the square in the x direction from the source ghost away from the
closest ghost is not blocked, return the direction from the source ghost to
that square;

* Else return one of the two remaining directions (whichever leads to a path
that is not blocked).

5.4.2 Fuzzy Behaviour and Fuzzy Variables

The Fuzzy Controller contains four main behaviours which are hunting, defence, de-
ploy and random |Shaout 06]. Each behaviour works independently to produce their
behaviour weight (). The behaviours can be described as below:

Hunting - the ghost will actively seek for Pacman;
Defence - the ghost will protect the area that has the most pellets;
Deploy - the ghosts will spread out and cover the entire level (Shy in [Shaout 06));

Random - this approach is chosen when no other behaviour is a preferred choice, a

ghost will randomly move about the level.

The fuzzy behaviour contains three main fuzzy variables which are distance, time and
rate | Shaout 06).

Distance Variables

Figure 5.2 shows the membership functions of the distance variable with: Near, Medium,
and Far. Two types of distance variables use the same membership functions which
which are the distance between Pacman and each of the ghosts; and the distance be-

tween every possible pair of ghosts.



Chapter 5. Virtual Agents in Computer Games 119
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Figure 5.2: Membership Functions for Distance.

Time Variables

Figures 5.3 and 5.4 show the membership functions for pellet time and average lifetime
with Short, Medium, and Long. Two types of time variables are used which are a
measurement of the amount of time since Pacman has eaten a pellet, and the average

period of time that Pacman has gone without losing a life.
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Figure 5.3: Membership Functions for Pellet Time

Rate Variables

The membership function for pellet consumption rate is show as in Figure 5.5. Three
linguistics variable types are defined for the pellet rate which are Good, Medium and
Poor. ‘The pellet rate represents the ratio of the number of pellets eaten to the number
ol ticks that have passed since the game started.
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Figure 5.4: Membership Functions for Average Lifetime

Figure 5.5. Membership Functions for Pellet Consumption Rate

5.4.3 Behaviour Selection

Behaviour selection is based on our proposed method described in Section 3.4. The
@ values from cach behaviour, and the behaviour weight, ®, for each behaviour can
be calculated using equation (3.36). Once the behaviour weight value is determined

for cach behaviour, the final action is selected based on the Hurwicz criterion using
equation (3.37).

5.5 Implementation

The original features of the Pacman game have still been used in order to reduce any
confusion for the user. Figure 5.6 shows an example of the Pacman game screen de-
sign,

Figure 5.7(a) shows an example of Pacman game using a low weight factor (0 =
0.2). The Ghosts moved randomly and were searching for Pacman, since they do not
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Figure 5.6: Pacman Screen Design.

know the exact location of Pacman. Random behaviour was selected and the Ghost’s
will keep searching for the Pacman. If one of the Ghosts find Pacman, its behaviour

will be changed to hunting behaviour.

Figure 5.7: Example of Ghost with (a) Random Movement (b) Hunting Pacman.

Then again, in Figure 5.7(b), by having a high weight factor (o = 0.8), the player
must be aware that the Ghosts will aggressively move towards Pacman. This will make
the game more challenging to the player. In some situations such as in Figure 5.8, the
Ghosts might also be capable of trapping the player. This happens when the all the

Gihosts move toward Pacman at the same time.
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Figure 5.8: Example of Pacman Trapped by the Ghosts.

5.5.1 Performance Evaluation

The aim of performance evaluation is to measure CPU utilization when running the
Pacman game. The experiment used the same experiment setup as used by [Shaout 06].
"The main reason of using this setup is to observe if there is any performance improve-
ment using a Fuzzy method compared to original method. The original Pacman game
[Bauerbach 04] and Fuzzy-ASM were run on a Pentium IV 2.6 GHz.

20 '

- Py
N @D

CPU Utitization (%)
o

M Original ® Fuzzy-ASM

Figure 5.9: CPU Utilization.

Figure 5.9 shows the result of the evaluation. There are some improvements in CPU
utilization. For the easy level the Fuzzy version has shown a 25% improvement which
is 1.8% less than the original method, 7.2% and 5.4% respectively. This is similar
to the hard level where the fuzzy version (10.3%) had improved by 21.7% which is
3.5% less as compared to the original method (13.8%). This demonstrates that as the
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degree of difficulty increases, the fuzzy version of Pacman gets significantly better
performance as compared to the original method.

Similar issues have been identified as raised in [Shaout 06], where some of the
fuzzy rules and behaviour weights need to be modified. This is to make sure that the
game is not too difficult and the ghost behaviour is not too rigid. The main reason is to

make sure the game is enjoyable and fun to play.

5.5.2 User Evaluation

The aim of user evaluation is to observe the player opinions of what they think about
the ghosts behaviour and response. The eight criteria that have been used as proposed
by [Shaout 06] are: difticulty levels (easy, medium and hard); predictability; respon-
sive (feel); human-like; fun and overall impression.

Ten different players with various skill have been selected. They are required to
answer a short questionaire by rating each categorie on a scale of | to 10, where 1 is
the lowest and 10 is highest.

10

Player Rating

M Fuzzy Pacman B Original Pacman

Figure 5.10: Player Ratings of Fuzzy vs. Original Pacman.

The average score of each game in each category is presented in Figure 5.10. In
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general, when compared with results in [Shaout 06), the trend is the same even though
[Shaout 06] has given a better result in two of the criteria, hard and responsive.

The results also show that the players rated our version higher in each criterion
compared to the original Pacman game. The Ghost in Fuzzy-ASM behaves more
human-like and has a good response to the player which makes the game become more
interesting. The game becomes more challenging and the player will have a different
experience each time playing the game. As in [Shaout 06], the ghost has demonstated
capabilities of intelligent, rational entities, which humans would expect. In terms of
the level of difficulties (casy, medium and hard), the Fuzzy Pacman has matched its
level of difficulties with the player’s skills. The overall rating shows most of the play-
ers like to play with the Fuzzy Pacman because each of the ghosts has its own preferred

behaviour and intelligence level, compared to the original Pacman which has one level
of intelligence.

5.6 Discussion

The implementation has demonstrated how different components from [Bauerbach 04}
and [Shaout 06| can be integrated easily with our fuzzy controller and behaviour selec-
tion method. Only minimum modification was needed while maintaining the original
features of the Pacman game. For example, by changing some of the parameters so
that each component can read the same values.

Fuzzy-ASM Pacman also reduces code complexity as compared to other methods
described in Section 5.2 and . It is easy to add to or change ghost behaviour. For
example, if new rules or behaviours need to be added, only the relevant component has
to be modified. Other components can still work independently.

Compared to the original Pacman game in terms of performance evaluation, the
Fuzzy-ASM Pacman game has shown better performance in CPU utilization which is
lower than the original game. The main reason is that fuzzy rules are simpler to execute
as compared to deterministic logic. Other methods such as learning algorithms and
evolution algorithms require high CPU resources and need to be trained. They also

have complex behaviour selection which requires more processing before any decision

can be executed,
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5.7 Summary

In this chapter we have examined how a proposed fuzzy logic method and intelligent
virtual agent architecture can be applied to other domains. The Pacman game was used
as an example implementation domain. The same architecture and Fuzzy-ASM devel-
oped for virtual agent navigation has been used. The main modification is in the tuzzy
rules and membership functions. The performance evaluation and user evaluation also
gave very promising results, even though full evaluation has not been conducted. This
has given us an indicator that the proposed architecture is flexible and easily adapted

o be used in other domains.



Chapter 6
Conclusion

Most, probably, of our decisions to do something positive, the full
consequence of which will be drawn out over many days to come, can
only be taken as a result of animal spirits.

- John Maynard Keynes (1883-1946)

British economist

6.1 Summary

This thesis presents the design of a control architecture for autonomous virtual agents
in virtual environments. The main focus is to improve the performance of the reactive
behaviour of virtual agents, with the intention that the virtual agents take their decisions
continuously in real-time, according to internal and external factors. Indeed, virtual
agents in virtual environments have to keep on choosing what to do next even after
they have finished the specific task.

Our architecture is based on a fuzzy behaviour-based approach and Fuzzy Associa-
tive Memory (FAM) is used to optimize the fuzzy behaviour rules. Each behaviour will
produce its own behaviour weight and this value will be used by the behaviour selection
module for action selection. The action selection method is based on fuzzy o — level
with the Hurwicz criterion. The method will reduce the redundancy of calculating
m(m - 1)/2 pairwise comparisons to m pairwise comparisons by the fuzzy subtraction
operation. The behaviour rules containing o intervals of inputs and output spaces are
casily integrated with a virtual agent.

Validation experiments have shown how the number of fuzzy rules can be reduced
without reducing the size of input which is purely perception based and perceived data

are optimized and used for building navigation rules. At the same time, behaviour
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conflict has also been resolved. The validation results clearly indicate the mapping of
inputs to outputs with an near-optimum path in every control cycle of agent navigation.

In autonomous agent navigation, the experimental results show that our autonomous
virtual agent had successfully navigated various virtual environments. It also elimi-

nates the existing problems of autonomous virtual agents:
1. basic navigation for one obstacle, two walls, narrow passage and corner;
2. trap situations due to local minima; and
3. nmavigating in complex environments (cluttered and maze).

The experimental results in Section 4.6.1 show that the virtual agent had success-
fully fulfilled the requirement for basic navigation. It also showed our defuzzification
method produced better results compared with the other two defuzzification methods.
In Section 4.6.2 the virtual agent had escaped from a local minima and reached the
goal, although time, path length and number of decisions may have varied for each
test, which depends on the complexity of each local minima situation. Section 4.6.3
showed the results for complex environments. The results show the virtual agent had
reached its goal successtully and was robust enough to handle those conditions.

In Section 4.6.5.1 we showed the performance results when using different be-
haviour weights. Behaviour Weight 1 produces a superior performance compared to
Behaviour Weights 2 and 3. Behaviour Weight 3 is prone to being trapped in local
minima and produces an oscillatory trajectory. Behaviour Weight 2 experiences the
highest number of collisions leading to unsafe navigation. Besides, the agent trajecto-
ries produced in Behaviour Weight 2 produced high travel distances, high navigation
time, and an inconsistent velocity.

When comparing FPF and FRM the results clearly demonstrated that our method
produces better results, as in section 4.6.5.2. Similar results have also been recorded
in Scction 4.6.4. The results show our method required less decision making which
means more reliable decisions had been generated and redundant decisions can be
reduced. This will in wrn reduce the processing time and help the agent to reach the
goal quicker.

The quality of path from all the tests has shown that most of the paths produced
were safe from collision with obstacles and reached the goal successfully. Paths pro-
duced were reasonably smooth even though there were some sharp turns in complex

environments. Although the path length is not the shortest path, it does not divert too
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far from the potential shortest path. The shorter paths mean less time is required to
reach the goal. When compared with FBE, FPF and FRM methods, our virtual agent
still produced the smoothest and shortest path. In some cases sharp turns were nec-
essary, especially for 90° comers and narrow passages, our method tried to minimize
the sharp turns in order to produce smoother paths. However, it still produced better
results when compared with other methods in the experiments.

In controlling the ghosts (agents) in the Pacman game, our fuzzy method had made
the game more interesting and challenging. The level of difficulty in the game is based
on player selection and capabilities. For example, for the easy level, less weight is
given to hunting Pacman and for the harder levels, the weights are configured so the
ghosts are more likely to hunt Pacman than to choose other behaviours.

The performance evaluation in Section 5.5.1, shows there are some improvements
in CPU utilization since for the casy level of the fuzzy version of the Pacman game
it was 15% better than the original method, similar to the hard level where the fuzzy
version was 23% better compared to the original method. This demonstrated that the
fuzzy method had better performance compared to the original method. For user eval-
uation in Section 5.5.2, we noticed that players rated the ghosts in the fuzzy version
as more responsive and more human-like. It is also interesting to note that players
felt the ghosts in the fuzzy system were more predictable. This is due to the fact the
ghosts were designed as intelligent, rational entities, meaning they demonstrate logical
behaviours that humans would expect.

In general, the experimental results from both implementations show how our fuzzy
architecture can be used for agent control, action selection and escape from local min-
ima in two different application domains. It has produced better performance com-
pared (o other fuzzy methods that have been used in both applications. The virtual
agent is robust enough to handle different uncertainties in various types of environ-
ment. In agent navigation, it meets all the basic skills required in order to navigate
inunknown environments. Then again, in the Pacman game we rectified many of the
deficiencies found while maintaining code simplicity. The architecture allows rules to
be altered or created and then integrated into the control logic with a change in only
a single line of code. The rules can be changed independently, and all variables are
always scaled to a common range.

During the implementation and evaluation, we have identified the following limi-
tations:

I. "The virtual agent navigation task depends on the complexity of the environment.
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For example, types of local minima, distance between two walls and narrow
passages.

2. The minimum distance between walls and/or obstacles in a maze and cluttered

environment must not be less then 5 grid squares.

3. Shape of obstacle, such as disc or trianglar prism has not been tested, in order to

see how it can eflect the virtual agent during navigation,

4. Information about pattern recognition and noisy imaging has been ignored in this
implementation. In the real world the environment is very different compared to
avirtual enviromment. An implementation using a physical agent such as a robot

woukl help measure the robustness of our method in the real world.

5. There is no interaction between virtual agents in the Pacman game implementa-
tion. The virtual agents behave individually and conflict between virtual agents
has not been tested.

6.2 Contributions

The work described here has made a number of contributions to the study of reac-
tive behaviour for autonomous agents, especially on the implementation of behaviour-
based acchitecture and action selection methods based on fuzzy logic. These contribu-

lions are summarized below,

Behaviour-based Architecture

1. A practical solution to the heuristic design and implementation of flexible and

uncertainty tolerating agent behaviour using behaviour-based fuzzy logic.
¢ The interface is simple, thus speeding up the development life cycle.
* The system is more reliable in terms of fault tolerance.

¢ The experience of human reaction to the environment is used to derive
fuzzy reasoning rules,

2. A new solution to the problem of behaviour coordination in behaviour-based
architecture.
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* The fuzzy controller with a behaviour selection module is based on the
self-reaction of an agent in the environment. It can effectively be used to

control an agent based on the different sensing information.

* Control is more versatile, in the sense that this method facilitates the si-
multancous use of several controllers/behaviours based on different tech-
niques (each with its own errors and response time depending on the prob-
lem state).

3. The architecture is generic and applicable where decision making with uncer-
. taintics is required and is not limited to any specific domain. This can be done
wilh some modifications in its architecture to suit the implementation domain

requirements. This can be seen in how we implement this architecture in virtual

agent navigation (Chapter 4) and in a computer game (Chapter 5).

Action Selection Method

L. TFormulation of action selection mechanisms based on multiple behaviour deci-

sion making using a Fuzzy o — level approach with Hurwicz criterion.

* The method considers the loci of left and right spreads at each o — level of
a group of fuzzy numbers and the horizontal-axis locations of the group of
luzzy numbers based on their common maximizing and minimizing barri-
crs, simultaneously. The ranking method combines the above techniques
with the summation of interval subtractions as an area measurement to
mike them more effective and efficient compared to the existing ranking
methods that use only one of o — cur, Hamming distance, left/right score,

centroid index or arca measurement techniques.

* The method for m fuzzy numbers uses only m comparisons to the same
referential rectangle as opposed to the m(m — 1)/2 pairwise comparisons
needed by existing methods.

* The method uses very few o — curs such as 3 or 4 o — cuts and uses the
summation of cach o — level interval which does not require normalization

to measure the summation for the ranking order of the fuzzy numbers.

* The final behaviour selection has been done using the Hurwicz criterion.

It takes into account the optimistic and pessimistic view of different be-
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haviours for various agent tasks, which is something in between the max-
imin and maximax solution. From the overall behaviour selection, a Hur-

wicz criterion is derived using an optimism-pessimism index.
2. Continuous real time decision-making

* Autonomous virtual agents will keep on making decisions according to
their internal and external factors. The virtual agent will choose the next

action, i.e. its task is not finished once a specific task is solved.

* Indeed at certain moments in time, the user cannot control the virtual agent
because he is not always present in the virtual environment. Therefore the
virtual agent has to be able to take its own decisions when it is not employed
in specific tasks such as interacting with users.

* Experiments have demonstrated the virtual agent architecture to be capable
of handling various types of situations in different domains. In these cases,

virtual agents had a reasonable level of autonomy and reactive behaviour.

3. Fuzzy decision making has been used rarely in autonomous virtual agents. This
implementation has shown that the method is simple and easy to integrat with

autonomous virtual agents.

Uncertainty Handling

I. Decision making under uncertainty

* The action selection method reflects both subjective judgment and objec-
tive information for fuzzy decision making problems in real life situations.

In essence, determination of weights is objective and automatic.

* Therefore, the final decision results are relatively reasonable and reliable.
This may present a new way to solve fuzzy decision making problems un-

der complex environment conditions.
2. New solution for autonomous virtual agent escape from local minima situations.

* The local minima solver is based on the characteristics of the self-reaction
of a virtual agent in the environment. The agent can recognize its trapped

state (infinite loop), where the virtual agent oscillates between two points.
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* The algorithm is simple and works well in both implementation domains.

3. A Dempster Shafer theory has been used to integrate visual sensor and model

information.

¢ Itis interval based, as defined by the upper and lower probability bounds
which allow a lack of data to be modeled adequately. Thus, this method no
longer requires a full description of conditional (or prior) probabilities and
small incremental evidence can be adequately incorporated.

* The building of occupancy maps is well suited to path planning and obsta-

cle avoudance.

6.3 Further Work

Our work on the behaviour-based architecture and action selection method using fuzzy
logic ix just a start, There are a number of improvements and extensions that could be

done 10 the work described in this thesis. Some of the work which can be pursued in

the future is as follows.
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9

Hybrid system

Ordinary uzzy systems do not have the capability to learn from examples but
the membership functions can casily be formed. By using a hybrid architecture
both of the above characteristics can be utilized. In hybrid architectures the in-
tegration of reactive system components with deliberative planning components
allow long term planning. The important issue is to investigate the role of our
method for multiple behaviours in hybrid architectures. In particular how can
@ planning component be integrated with our architecture and action selection

method tor agent hehaviour selection?

- Type 2 Juzzy Logic Controller (Type-2 FLC)

Type 2 'LCs are an attractive alternative because they can cope better with mod-
cling uncertainties. Unfortunately, type-2 FLCs are computationally intensive.
The main challenge is how our method can be used with Type-2 FLCs to re-
duce the computational burden by providing faster type-reduction methods and

asmpler architecture.

- Action Selection Mechanism

There are similarities between decision making under uncertainty and multi-
behaviour (multicriteria) decision making problems, two areas which have been
developed in almost completely independent ways until now. The multicriteria
decision problem is usually viewed in these models as the joint satisfaction of
the set of criteria, with or without compensation between the levels of satisfac-
tion, taking into account the levels of importance of the criteria [Dubois 00].
The main problem for action selection for multiple behaviour is a combination
of complexity for each behaviour, Furthermore, all computation takes both time
and space (in memory), agents cannot possibly consider every option available to
them at every instant in time. The challenge is how our action selection method
can solve this prablem. Additionally, by implementing Fuzzy-ASM in domains
such as decision support for finance, knowledge management and medical ap-
plications we could investigate how this method can benefit them by producing

more accurale results,

Multi-Agent System (MAS)

There is some need for an application which requires multiple agents that can

work together. A multi-agent system is where agents interact to solve prob-
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lems that are beyond the individual capacities or knowledge of each problem
solver. Some of the major issues of MASs are that each agent has incomplete
information or capabilities for solving the problem and, thus, has a limited view-
point; there is no system global control; data are decentralized: and computation
18 asynchronous [Sycara 98]. There is potential in how our method can be ex-
panded in this type of system for example in Beliefs, Desires, and Intentions

(BDI) architectures.

5. Behaviour Animation

Behavioural animation is a type of procedural animation, which is a type of com-
puter animation. In behavioural animation an autonomous character determines
its own actions, at least to a certain extent. This gives the character some abil-
ity to improvise, and frees the animator from the need to specify each detail of
cvery character’s motion. Futhermore, in behavioural animation, virtual agents
acquire capabilities of perceiving their environment, are able to react and make
decisions, depending on this input. The problem is how to populate virtual envi-

ronments with virtual agents so that they can behave autonomously.

6.4 Final Remark

The thesis shows a novel architecture for reactive behaviour for autonomous agents
using behaviour-based fuzzy logic. The two implementation domains are examples
of how this architecture can be used, and how it might be implemented in other do-
mains such as financial analysis, decision support systems etc. We hope that this work

provides a step towards exploring this fascinating area.
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Appendix A
Validation Experiments

The objective of validation testing is that a set of core functions on a component can be
tested in a short amount of time. This is different from a Full Test which takes much
longer to run but has a more complete amount of information (discussed in Chapter 4).
Validation tests are designed to ensure that core functions are working correctly.

For the test, a simple virtual agent and virtual environment have been developed.
The virtual agent task is to navigate in an unknown environment; the only information
known by the virtual agent are the coordinates of the start and target/goal points. The
navigation tasks require the virtual agent to activate each of the components separately
in its own context of applicability. The performance of each component is a measure
based on robustness, which refers to the capability of each component to carry out its
task with disturbed conditions to reach a specified goal. Two major components, the
fuzzy controller and behaviour selection, have been tested and the results are shown in

the following sections.

A.1  Fuzzy Controller

The fuzzy controller architecture is validated using simulation experiments. Figure A. |
shows the virtual environment and virtual agent with visual sensors. The positions a, b
and ¢ are locations of the virtual agent while turning and navigating towards the goal
position. The virtual agent produced a smooth navigation path. Less decisions were
required when the agent moved in a straight line. More decisions need to be made
when the virtual agent encounters obstacles. For example at position (a), the virtual
agent had encountered an obstacle and needed to make a sharp turn. The movement

became slower and decision numbers increased for the virtual agent to turn and avoid

159



Appendix A. Validation Experiments 160

Figure A.1: Simulation of Environment with Obstacles and Rule Actuation, when Turn-
ing Away from Obstacles.

the obstacle.

Figures A.2 (i) to (vi) on the following page show the responses of the visual sen-
sors as they encountered obstacles, while the virtual agent is moving towards its target
position. These graphs show the respective sensor’s data plotted against the individual
sensors. Figure A.2(ii) illustrates the sensor S3 and sensor Sy facing an obstacle at a
distance of 1000 from the virtual agent, respectively. Since the other sensors have not
encountered any obstacles, these sensor’s values remain the same.

Based on the responses of sensors Sy to 7, when the virtual agent has traveled from
its rest position to the target position, the fuzzy controller computes the outputs, which
are shown in Figure A.3, which illustrates the time plotted against turning angle and
distance. From the simulation study, it is observed that the behavior rule of the entire
SeNSOTs space is necessary to decide the turn angle behavior in a complex environment.

This is achieved by the proposed technique.

A.2 Behaviour selection method

The experiments are conducted using a virtual agent in an unstructured virtual envi-
ronment. Obstacle avoidance behavior, while wandering around the environment, is
tested with different obstacle configurations. Figure A.4 shows virtual agent positions
with a few obstacles while the virtual agent navigates in an unstructured environment.

Figure A.5 shows the virtual agent’s sensors readings Sp to §7. In all the cases
it is observed that the virtual agent paths are optimized based on the behavior rules
incorporated with o intervals. Normally, when behavior rules with more than one

activation strength are received from the front sensors, behavior conflict arises. Here,
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Figure A.3: Distance Traveled Against Speed and Heading Angle.

Figure A.4: Virtual Agent Moves Away from Obstacles and Deviates with Minimum
Proximity from obstacles.
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Figure A.5: Sensors’ Data and Corresponding Output Shown Using Surface Viewer.
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the rule contlicts are resolved and rules are switched automatically based on the o level
interval. On all these occasions, it is observed that the virtual agent deviates from the
obstacle with minimum proximity based on the o intervals. Figure A.4 depicts such
occasions. In most of the carlier research work, these types of situations are resolved
cither by deviating the virtual agent path to an alternate direction where there are no

obstacles, or by stopping the virtual agent.
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Figure A.6: Sensors’ Data (S, S>, S3 and S4) and Encoder’s Output While Navigating
with Constant Speed.

Iigure A.6 shows the ability of the virtual agent to interact with its environment
by being able to respond to the encountered obstacle. One observation made from the
graph is that the turn angle deviations are mostly based on the front sensors. S> and
S3. For example, in Figure A.6, when S> and §3 sensors values are high. the turn angle
cither goes up or down. It also shows the responses between inputs and outputs against
the distances moved for a continuous run of 30 sec. From the experiments. based
on the multiple obstacles present close to the virtual agent, the output turn angles are
automatically computed based on the o intervals.

The experimental results shown through Figure A4, illustrate the behavior rule se-
lection, when more than one behavior rule of the same kind is encountered. The virtual
agent is facing two obstacles, which are located at a distance of 600 and 1000 from the
virtual agent. These obstacles are located in the vicinity of the same fuzzy set, small.
In these situations, the rule established using the o — fevel interval is active to resolve
the conflicts. The path of the virtual agent indicates that the virtual agent deviates from

the obstacle with minimum proximity, while in navigation. In this situation, the behay-



Appendix A. Validation Experiments 164

ior rule selection using the o — level fuzzy logic system optimizes the path and also

cnsures smooth navigation, as indicated in the plot in Figure A.7.
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Figure A.7: Sensors’ Data S3 and S4 Versus Turn Angle.

A.3 Summary

The validation experimental results clearly indicate the mapping of inputs to outputs
with a nearly optimum path in every control cycle of virtual agent navigation. This
architecture involves a natural way of dealing with the environments using simple lin-
guistic logic rules without using any mathematical model. The knowledge base of
cach behavior rule is easy to comprehend, because it captures the behavior rules in a

linguistic form by simple intuitive o threshold interval based rule statements.
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Appendix C
Behaviour Rules

The tollowing list of rules contributes to the hunting behavior:
* IV pacwman near AND skill good, THEN hunting_behavior
* W pacman _near AND skill med AND pellet_med, THEN hunting_behavior
* I pacman near AND skill med AND pellet_long, THEN hunting_behavior
* M¥ pacman _med AND skill_good AND pellet_long, THEN hunting_behavior

e IF pacman med AND skill _med AND pellet_long, THEN hunting_behavior

WK pacman_ fur AND skill good AND peliet_long, THEN hunting_behavior

The tollowing rules relate to the defence behavior:

o WF pacman_far AND skill_bad AND ghost_far AND pellet_short, THEN de-

fence _behavior

o I¥ pacman_fur AND skill bad AND ghost_far AND pellet_med, THEN de-

fence behavior

* \F pacman fur AND skill_bad AND ghost_med AND peller _short. THEN de-

fence behavior

o W pacman far AND skill_bad AND ghost_med AND pellet_med, THEN de-

fenee behavior

* I¥ pacman_ far AND skill_med AND ghost_far AND pellet_short, THEN de-

Jence behavior
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o IF pacman med AND skill_bad AND ghost_far AND peliet_short, THEN de-

fence behavior
The following rules are associated with the deploy behavior:

o IF pacman far AND skill_ bad AND ghost_near AND pellet_short, THEN de-

ploy behavior

o I¥ pacman_far AND skill_bad AND ghost_near AND pellet_med, THEN de-

plov _behavior

* I¥ pacman_ fur AND skill_bad AND ghost_med AND pellet_short, THEN de-

ploy _behavior

e IF pacman_ far AND skill_bad AND ghost_med AND pellet_med. THEN de-

ploy _behavior

* IF pacman_far AND skill_med AND ghost_near AND pellet_short, THEN de-

ploy_behavior

IF pacman med AND skill_bad AND ghost_near AND pellet_short, THEN
deploy_behavior

The tollowing rules are related to the random behavior:

* IF NOT (hunting_behaviory AND NOT (deploy_ghost_belmw’or) AND NOT

(defence_behavior), THEN random_behavior
The following fuzzy rules are used to define the player skill variables:
o IF Timelife is Short OR PelletRate is Poor THEN Skill = Poor
o IF TimeLife is Medium OR PelletRate is Medium THEN Skill = Medium

o IF TimelLife is Long AND PelletRate is Good THEN Skill = Good
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Abstract

One of the fundamental aspects of a virtual environment is the virtual agents that in-
habit them. In many applications, virtual agents are required to perceive input infor-
mation from their environment and make decisions appropriate to their task based on
their programmed reaction to those inputs. The research presented in this thesis fo-
cuses on the reactive behaviour of the agents. We propose a new control architecture
to allow agents to behave autonomously in navigation tasks in unknown environments.
Our behaviour-based architecture uses fuzzy logic to solve problems of agent control
and action sclection and which can coordinate conflicts among different operations of
reactive behaviours. A Fuzzy Associative Memory (FAM) is used as the process of
encoding and mapping the input fuzzy sets to the output fuzzy set and to optimise the
fuzzy rules. Our action selection algorithm is based on the fuzzy o — level method with
the Hurwicz criterion. The main objective of the thesis was to implement agent naviga-
tion from point to point by a coordination of planning, sensing and control. However,
we believe that the reactive architecture emerging from this research is sufficiently gen-
eral that it could be applied to many applications in widely differing domains where
real-time decision making under uncertainty is required. To illustrate this generality,
we show how the architecture is applied to a different domain. We chose the exam-
ple of a computer game since it clearly demonstrates the attributes of our architecture:
real-time action selection and handling uncertainty. Experimental results are presented
for both implementations which show how the fuzzy method is applied, its generality
and that it is robust enough to handle different uncertainties in different environments.
In summary, the proposed reactive architecture is shown to solve aspects of behaviour
control for autonomous virtual agents in virtual environments and can be applied to
various application domains.
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