
CHAPTER 5 

MULTIVARIABLE NONLINEAR SYSTEM IDENTIFICATION 

5.1 Introduction 

In this chapter the results of nonlinear system identification are presented. Three 

different modeling approaches have been used. Neural network trained with Gradient 

Decent with Momentum (GDM) and Lavernberg Marquardt (LM) algorithm, 

Nonlinear State Space model and Adaptive Neuro Fuzzy Inference System (ANFIS). 

Modeling errors have been analyzed and discussed. Modeling approach has been done 

considering MISO system. 

5.2 Neural Network Approach 

5.2.1 Gradient Decent with Momentum (GDM) 

For nonlinear system Identification the first approach which has been used is the 

Backpropagation Feedforward network trained using the delta rule (also known as 

gradient decent, with the addition of momentum). Modeling for both top and bottom 

temperature of the distillation column has been done with respect to the two inputs 

which are shown in Figure 3.5 for the reflux flow and Figure 3.6 for the steam flow of 

chapter 3. Figure 5.1 and 5.2 show the estimation result for top and bottom 

temperature of the distillation column. 2000 data points are used for estimation. 

Network architecture used is 2-10-1 and the model achieved its target within 57 

epochs. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UTPedia

https://core.ac.uk/display/301108369?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 84 

 

Figure 5.1: NN GDM Distillation Column Top Temperature Estimation. 

 

Figure 5.2: NN GDM Distillation Column Bottom Temperature Estimation. 

Figure 5.3 and Figure 5.4 shows the validation result for top and bottom 

temperature of the distillation column. 2000 data points are used for Validation. 
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Figure 5.3: NN GDM Distillation Column Top Temperature Validation. 

 

 

Figure 5.4: NN GDM Distillation Column Bottom Temperature Validation. 

Identification of the APC plant by the NN trained by GDM algorithm shows a very 

significant result. The network is able to capture the dynamic changes of the process 

plant. 
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5.2.2 Lavernberg Marquardt (LM) 

Lavernberg Marquardt algorithm for training a neural network is a very well known 

approach. Neural network trained with LM algorithm also is used for modeling the 

process plant. Modeling for both top and bottom temperature of the distillation 

column has been done with respect to the two inputs which are shown in Figure 3.5 

for the reflux flow and Figure 3.6 for the steam flow of chapter 3. Figure 5.5 and 5.6 

shows the estimation result for top and bottom temperature of the distillation column. 

2000 data points are used for estimation. The models took 37 epochs to achieve its 

target with network architecture of 2-10-1. 

 

Figure 5.5: NN LM Distillation Column Top Temperature Estimation. 

 

Figure 5.6: NN LM Distillation Column Top Temperature Estimation. 
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Figure 5.7 and Figure 5.8 shows the validation result for top and bottom 

temperature of the distillation column. 2000 data points are used for Validation. 

 

Figure 5.7: NN LM Distillation Column Top Temperature Validation. 

 

Figure 5.8: NN LM Distillation Column Bottom Temperature Validation. 

Observing the resposne of the neural network trained with Laverberg Marqurdt  

algorithm, the nework is capable of capturing the changes in the dynamics of the 

nonlinear process.  
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5.3 Nonlinear State Space Model  

A different type of approach using neural network, nonlinear state space model was 

developed in conjunction of linear state space model along with neural network as has 

been explained in Chapter 2. Modeling for both top and bottom temperature of the 

distillation column has been done with respect to the two inputs which are the reflux 

flow and the steam flow. The linear state space model of 3rd order discrete time 

system is used for developing the nonlinear state space model. The MISO forms of 

linear state space models obtained for top temperature of the system is given by 

equation 5.1 to 5.3. The equation is taken from the linear model discussed in chapter 

4. 
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The MISO linear state space model output equation obtained for top temperature of 

the system is given as; 

    211 0)(100)( UUkxky     (5.2) 

Where x(k) is the system state, y1(k) is the output of the system. The initial state x(0) 

of the system is given as;  
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As stated in [24], when using neural network to identify the system two important 

assumptions are considered: (1) all the system states are measureable; (2) the system 

is stable. States for the physical system are considered to be measured and the 

stability of the system is observed by the pole-zero plots as shown in Figure 5.9 for 

top temperature process and Figure 5.10 for bottom temperature process. Observing 
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the graphs from Figure 5.9 and Figure 5.10, all the poles positions appears to be 

within the unity circle which shows the stability if the system. 

 

    (a)            (b) 

Figure 5.9: (a) I/O Poles & Zeros from Input U1 to Output Y1  

        (b) I/O Poles & Zeros from Input U2 to Output Y1 

 

    (a)            (b) 

Figure 5.10: (a) I/O Poles & Zeros from Input U1 to Output Y2  

         (b) I/O Poles & Zeros from Input U2 to Output Y2 
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Figure 5.11 and Figure 5.12 shows the estimation and validation result for top 

temperature of the distillation process column. 2000 data points are used for both 

estimation and validation. 

 

Figure 5.11: Nonlinear State Space Model for Top Temperature Estimation. 

 

Figure 5.12: Nonlinear State Space Model for Top Temperature Validation. 

The MISO forms of linear state space models obtained for bottom temperature of 

the system is given by equation 5.4 to 5.6. The equation is taken from the linear 

model discussed in chapter 4.  
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The MISO linear state space model output equation obtained for bottom temperature 

of the system is given as; 

    212 0)(5.000)( UUkxky     (5.5) 

Where x(k) is the system state, y2(k) is the output of the system. The initial state x(0) 

of the system is given as; 
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Figure 5.13 and Figure 5.14 shows the estimation and validation result for bottom 

temperature of the distillation column. 2000 data points are used for both estimation 

and validation.  

 

Figure 5.13: Nonlinear State Space Model for Bottom Temperature Estimation. 
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Figure 5.14: Nonlinear State Space Model for Bottom Temperature Validation. 

Analysing the response of nonlinear state space model, the model is capable of 

capturing the nonlinear dynamic changes of the system. The error analysis for both top 

and bottom of the model are tabulated in Table 5.3 and Table 5.4. 

5.4 Adaptive Neuro-Fuzzy Inference System 

Adaptive Neuro Fuzzy Inference System is one another approach can be used for 

identifying nonlinear systems. In construction of ANFIS structure, parameters are 

determined. There are quite a few MFs such as Triangular, Trapezoidal and Gaussian 

can be used as an input MFs. Commonly used MFs in literature are the Triangular and 

Gaussian. For this reason, Sigmoid, Gaussian and Triangular are chosen as input MF 

type in this study. Number of MFs on each input can be chosen as 3, 5, and 7 to define 

the linguistic labels significantly.  

Since, there is no typical method to employ the expert knowledge; automatic rule 

generation (grid partition) method is usually preferred [51]. According to this method, 

for instance, an ANFIS model with two inputs and three MFs on each input would 

result in 32=9 Takagi-Sugeno fuzzy if-then rules automatically. Although this method 

can require much computational knowledge especially in systems that have to be 

defined with many inputs, it is used in this study due to advantage of MATLAB 
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software. Therefore, rule bases of the estimators are formed automatically with the 

number of inputs and number of MFs. After the ANFIS structure is constructed, 

learning algorithm and training parameters are chosen. As mentioned in chapter 2, the 

hybrid learning algorithm is used in this study. Simulation has been performed for the 

top temperature and bottom temperature of the distillation column using ANFIS 

structure. Table 5.1 and Table 5.2 show the RMSE statistics of the ANFIS model. 

Table 5.1: RMSE Estimation Performance Measurement for ANFIS structure 

 Top Temperature Bottom Temperature 

Membership 
Functions 

3MFs 5MFs 7MFs 3MFs 5MFs 7MFs 

Sigmoid 0.7578 0.7074 0.6781 0.2696 0.2597 0.2464 

Gaussian 0.7490 0.6930 0.6770 0.2695 0.2569 0.2470 

Triangular 0.7841 0.7111 0.7064 0.2774 0.2611 0.2501 

Table 5.2: RMSE Validation Performance Measurement for ANFIS structure 

 Top Temperature Bottom Temperature 

Membership 
Functions 

3MFs 5MFs 7MFs 3MFs 5MFs 7MFs 

Sigmoid 1.0746 1.0107 1.0037 0.3115 0.304 0.2902 

Gaussian 1.0834 1.0158 0.9943 0.3122 0.3028 0.2903 

Triangular 1.1589 1.0451 0.9982 0.3299 0.3026 0.2918 

Analyzing Table 5.2, 5 Gaussian type MF shows a good result with RMSE value 

of 1.0158 for top temperature and 0.3028 for bottom temperature. Although the other 

type MF shows similar result but due to higher number of rules, the computation for 

both learning and training phase could take a much longer time. Figure 5.15 and 

Figure 5.16 show the estimation and validation result of the ANFIS structure of the 
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Gaussian type with 5MFs modelled for top temperature of the distillation column. 

Membership functions and fuzzy inference rules are given in Appendix C. 

 

Figure 5.15: ANFIS Top Temperature Estimation. 

 

 

Figure 5.16: ANFIS Top Temperature Validation. 

Analyzing Table 5.2, 5 Gaussian type MF shows a good result compared to other 

ANFIS approaches. Although 7 Gaussian and Triangular type MF shows similar 

result but due to higher number of rules, the computation for both learning and 

training phase could take a much longer time. The following Figure 5.17 and Figure 
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5.18 shows the estimation and validation result of the ANFIS structure of the 

Gaussian type with 5MFs modeled for bottom temperature of the distillation column. 

Membership functions and fuzzy inference rules are given in Appendix C. 

 

Figure 5.17: ANFIS Bottom Temperature Estimation. 

 

Figure 5.18: ANFIS Bottom Temperature Validation. 
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Looking into the ANFIS response both for top and bottom of temperature, the result 

is very noisy. This is because ANFIS is sensitive to noisy signals when given at the 

input. This is one reason that the ANFIS has not accurately modelled the input-output 

data’s which in result shows that big error is present in the response. 

5.5 Modelling Error Analysis 

5.5.1 Best Fit Error Analysis 

Following Table 5.3 shows the performance measurement of different types of 

nonlinear models. 

Table 5.3: Numerical Results Performance Measurement for Top Temperature 

Model Performance Measurement  

 Validation for Top Validation for Bottom 

Model Structure 
Best Fit 

(%) 

Sum of 
Squared 

Prediction 
Error 

Best Fit 

(%) 

Sum of 
Squared 

Prediction 
Error 

Gradient Decent 
Momentum 

97.43 0.0120 98.44 0.0216 

Lavernberg Marquardt 97.77 0.0312 98.39 0.0134 

Nonlinear State Space 97.96 0.0162 99.38 0.0090 

ANFIS 50.16 0.0997 60.13 0.0852 
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Analyzing Table 5.3, it can be observed that all the nonlinear models are capable 

of modeling the dynamic nonlinear system. Neural network trained by gradient decent 

with momentum and LM shows a very good result. The NSS model is also capable of 

identifying the dynamic nonlinear system. NSS model shows the best result with the 

best fit of 97.96% and 0.0162 SSPE for top temperature and 99.38% of best fit and 

0.009 SSPE for bottom temperature process. ANFIS identification did not show a 

better result; this is because that every data point of the plant has to be evaluated from 

every rule defined in the ANFIS structure. Due to this process the computation takes a 

longer period and the process output observed is also noisy. 

5.5.2 Nonlinear Identification Model Residual Analysis 

5.5.2.1 Gradient Decent with Momentum 

Figure 5.19 and Figure 5.20 show the predicted error or residual plot of the developed 

neural network model using GDM as the learning algorithm along with the residual 

histogram. These plots are based on the validation result of the model.  

 

Figure 5.19: Residual Histogram for Top Temperature. 
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Figure 5.20: Residual Histogram for Bottom Temperature. 

Observing Figure 5.19, the model does not show a proper histogram distribution 

for the validation data. Moreover, the cross-correlation graphs also show that the 

estimation data used for the development of the model did not completely modelled 

the top temperature of the process plant since correlation exits between the inputs and 

the residual. Observing Figure 5.20, the model validation shows a well distribution 

plot but the cross-correlation of the response shows that the estimation data used did 

not completely modelled the process plant as the graph has some values out of the 

95% confidence interval boundary. 

5.5.2.2 Lavernberg Marquardt 

Figure 5.21 and Figure 5.22 show the predicted error or residual plot of the developed 

neural network model using LM as the learning algorithm along with the residual 

histogram. These plots are based on the validation result of the model.  
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Figure 5.21: Residual Histogram for Top Temperature. 

 

Figure 5.22: Residual Histogram for Bottom Temperature 

Observing Figure 5.21, the model shows a proper histogram distribution for the 

validation data. Moreover, the cross-correlation graphs show that the estimation data 

used for the development of the model did not completely modelled the top 

temperature of the process plant since correlation exist between inputs and the 

residual. Observing Figure 5.22, the model validation shows a well distribution plot of 

the histogram but the cross-correlation of the response shows that the estimation data 
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used did not completely modelled the process plant as the graph has some values out 

of the confidence interval line. 

5.5.2.3 Nonlinear State Space Model 

Figure 5.23 and Figure 5.24 show the predicted error or residual plot of the developed 

NSS model along with the residual histogram. These plots are based on the validation 

result of the model.  

 

Figure 5.23: Residual Histogram for Top Temperature. 

 

Figure 5.24: Residual Histogram for Bottom Temperature 



 101

Observing Figure 5.23, the model shows a well histogram distribution plot for the 

validation data. Moreover, the cross-correlation graphs also show that the estimation 

data used for the development of the model completely modelled the top temperature 

of the process plant since no correlation exist between the inputs and the residual. 

Observing Figure 5.24, the model validation shows a well distribution plot and also 

the cross-correlation of the response shows that the estimation data used completely 

modelled the process plant as the graph lies within the 95% confidence interval 

boundary. 

5.5.2.4 ANFIS Model 

Figure 5.25 and Figure 5.26 show the predicted error or residual plot of the developed 

ANFIS model using along with the residual histogram. These plots are based on the 

validation result of the model. 

 

Figure 5.25: Residual Histogram for Top Temperature. 
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Figure 5.26: Residual Histogram for Bottom Temperature. 

The ANFIS model shows a well distributed histogram response for both top and 

bottom temperature model of the process plant but the cross-correlation performance 

from input U1 and input U2 did not performed well since correlation exist with the 

residual. 

Table 5.5 shows the mean and variance of the prediction errors for all the nonlinear 

models. 

Table 5.4: Nonlinear Models Residual Histogram Performance Measurement 

Model Top Temperature Bottom Temperature 

 Mean Variance Mean Variance 

GDM 0.0408 0.0020 0.0003 0.0002 

LM 0.0021 0.0001 -1.917e-004 5.126e-004 

NSS 2.3e-005 5.3e-005 4.61e-005 2.01e-005 

ANFIS 0.8540 0.8670 0.2210 0.1850 
 

Analysing the residual statistic of the developed nonlinear models from Table 5.5, 

it shows that Nonlinear State Space model shows a well compatible result to the 
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process output with the minimum mean value of 2.3e-5 and variance of 5.3e-5 for top 

temperature process and minimum mean 0f 4.61e-5 and 2.01e-5 for bottom 

temperature process. Neural network models also show a good compatible result. 

Analysing the residual histogram of these models, the graph is well distributed and 

centred at the origin. For ANFIS model, the residual is not well distribution at the 

centre for both top and bottom temperature models. 

5.6 Summary 

In this chapter, results has been shown and evaluated for different types of nonlinear 

models. The NN trained by GDM algorithm and LM, NSS model which is the 

combination of LSS models and NN trained by LM algorithm. All these models show 

a very significant result compared to the ANFIS. The simulation results shows that the 

identifier performance for estimating the model output is acceptable to some extend 

since the models are able to capture the changes in the dynamics of the process. 

Analyses of the result are given in Table 5.1, Table 5.2 and Table 5.3 and the best 

model results are highlighted. Further Analysis was performed by observing the 

prediction error and the residual histogram. Cross correlation testing is also observed 

from the two inputs U1 and U2. NSS model shows the best performance compared to 

all the other nonlinear models.  


