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Abstract. Deep Learning algorithms have achieved great progress in
different applications due to their training capabilities, parameter reduc-
tion and increased accuracy. Image processing is a particular area that
has received recent attention promoted by the growing processing power
and data availability. Remote sensing devices provide image-like data
that can be used to characterize Earth’s natural or artificial phenom-
ena. Particularly, forest detection is important in many applications like
flooding simulations, analysis of forest health or detection of area deser-
tification. The existing techniques for forest detection based on satellite
data lack accuracy or still require human expert intervention to correct
recognition errors or parameter setup. In this work a Deep Learning
architecture for forest detection is presented, that aims at increasing ac-
curacy and reducing expert dependency. A data preprocessing procedure,
analysis and dataset composition for robust automatic forest detection
is described. The proposed approach was validated with real SRTM and
Landsat-8 satellite data.
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1 Introduction

The characteristics of the land surface, if adequately processed, can provide
fundamental information for many applications like modeling and simulating at-
mospheric, hydrologic and ecological processes occurring on the surface of the
Earth [17]. Recently, some projects like the Shuttle Radar Topography Mission
(SRTM) and Landsat 8 provided elevation as well as optical and thermal infor-
mation with almost full coverage of the Earth’s surface. However, SRTM and
Landsat 8 remote sensing systems have different drawbacks, compared with other
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remote sensing devices, which need to be addressed in order to provide accept-
able models. One of these problems is the SRTM radar’s inability to penetrate
tree canopies, which only allows for Digital Surface Models (DSM), instead of
Digital Elevation Models (DEM) [10].

The conversion from DSM to DEM requires the detection of forested areas
in order to adjust the elevation in those particular pixels. This has a critical
impact in research fields like hydrology, where the simulation of water flow is de-
termined according to the land characteristics. Also, forest detection is required
in ecological studies like soil classification, forest health tracking, desertification
monitoring, among others [16]. The detection of forested areas is not a triv-
ial task and is usually performed with a combination of vegetation detection
techniques and human expert intervention, which is tedious and error-prone.

Machine Learning (ML) is a field that offers different techniques to solve
complex problems by learning models. During training, classification algorithms
adjust models to recognize different patterns in the data to perform classifica-
tion over the inputs provided. The input data is analyzed automatically during
training based on the expected results of each example in the training set. The
learned model is then used for the classification task, rather than having to rec-
ognize patterns manually or using custom algorithms for each case, reducing the
problem of misinterpretation of the data or the omission of unseen patterns.
Therefore, ML techniques have a potential application in forest detection.

Different solutions have been proposed based on ML algorithms to solve
forest/no-forest classification problems. However, these techniques usually lack
accuracy. In this work, we address this problem by means of a Convolutional
Neural Network to generate a forest/no-forest mask. The data used for training
are based on radar, optical and thermal information provided by SRTM and
Landsat-8, using the JAXA Forest/No Forest (JFNF) mask as ground truth.

This paper is structured as follows. Section 2 presents a literature review of
techniques in ML and forest recognition. Section 3 describes the data preprocess-
ing. Section 4 exposes the dataset distribution analysis. Section 5 explains the
proposed architecture and the classification algorithm. Experiments performed
on a case of study are shown in section 6, followed by conclusions and future
work (section 7).

2 Literature

Digital Elevation Models are a common representation in Earth Sciences. In par-
ticular, hydrological modeling techniques use DEMs to calculate the terrain slope
and aspect to predict the divergence or convergence of the water flow [18]. High
resolution DEMs can be obtained from sensing devices such as LiDARs mounted
on airplanes or unmanned aerial vehicles (UAV), but this involves a high cost
for relatively small area coverage. An alternative is the use of cheaper forms of
data retrieval with near to global coverage like sensors mounted on satellites or
space shuttles, like the SRTM and the Advanced Spaceborne Thermal Emission
and Reflection Radiometer (ASTER) missions, which provided 30 meter resolu-

XXV Congreso Argentino de Ciencias de la Computación Río Cuarto, 14 al 18 de Octubre de 2019

-65-



tion DSMs. Nevertheless, DSMs are different than DEMs as they include tree
canopy in their elevation measures [7]. This affects water flow simulations as
forested zones can be interpreted as higher ground areas and thus creating flow
divergences, while water actually passes under the tree canopy. Because of this,
DSMs need to be converted to DEMs performing a reduction of the measured
elevation by an average of tree height on forested pixels.

Different efforts have been made to solve the problems described in SRTM
and ASTER DEMs [5, 9]. However, these solutions require manual adjustments
or cannot be applied to different zones. The use of multispectral bands data
provided by satellite-based sensors like Landsat-8 or Sentinel help with the de-
tection of vegetation through calculating the NDVI as it is exposed by Ganie et
al. [6] and Costa et al. [3]. However, NDVI is not accurate enough to discrim-
inate between trees and other forms of vegetation. In order to avoid or reduce
human intervention, accurate automatic detection and classification techniques
for forest recognition are required.

Machine Learning algorithms are known for their ability to learn patterns
from training samples and constructing models for automatic data classification
and prediction. Different techniques have been proposed in the area of forest
recognition. A Random Forest-based classification system to determine different
species of trees in Australia was proposed by Mellor et al. [11]. Pimple et al. [12]
present a similar technique to determine the forest types in the north-east moun-
tains of Thailand. A Multilayer Perceptron (MLP) based technique is proposed
by Wendi et al. [15] to recognize forested areas from SRTM and Landsat-8 data.
Even though these techniques can improve the SRTM DEMs, they were not
tested in wide scale areas, they lack accuracy or still require expert intervention.
Deep Learning (DL) techniques have been applied to different image processing
tasks with better results. In particular, Convolutional Neural Networks (CNN)
is a DL technique widely applied in problems like object recognition and classi-
fication, noise detection and stereo matching, among many others [2, 13]. This
work uses a CNN based system as a binary classifier to create a forest/no-forest
(FNF) binary mask, taking SRTM DSM and the different bands of the Landsat-8
satellite as inputs.

3 Data Preprocessing

A dataset was created joining information from the SRTM, Landsat-8 and JFNF
projects. Each source of information is accommodated in a cube describing a zone
of the Earth. In order to compile a dataset with homogeneous and normalized
data, a series of preprocessing steps are required. The data is normalized to
the [-1, 1] range, without distorting the difference factor between values, using
equation 1.

N(v) =

⎧⎪⎪⎨
⎪⎪⎩
RNGm v < SRCm

RNGM v > SRCM

RNGm +

(
(v−SRCm)∗(RNGM−RNGm)

)
SRCM−SRCm

otherwise

(1)
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In the equation, v is the matrix containing the raster values, v is the value
to be normalized, RNGm and RNGM are the minimum and maximum values
for the range, SRCm and SRCM are the minimum and maximum valid values
for each input type of the data source (e.g. elevation, reflectance, etc).

The selected information from the SRTM and Landsat-8 missions, and the
JFNF project come in different presentations, having distinct projection system,
resolution, coverage area, etc. In consequence, each information source requires
different standard preprocessing steps in terms of raster manipulation, like Dig-
ital Number conversion [14], multiple raster merging, reprojection, pixel size
redimension, and raster clipping before performing the data normalization men-
tioned before.

Once each product has been preprocessed, a final cube is created conformed
by a first layer with the SRTM normalized data, and the rest of the layers with
the different Landsat-8 bands homogenized and normalized. Since the SRTM
raster dimension is 3601x3601 and the Landsat-8 raster bands were clipped to
this size, the final dataset cube is a 12x3601x3601 dimension structure repre-
senting the description of a 1◦x1◦ zone of the Earth.

The FNF binary mask is a 3600x3600 matrix which is used as ground truth
to train and compare the results of the proposed architecture. The missing row
and column to match the SRTM raster size are simply omitted.

4 Data Analysis

After preprocessing the SRTM, Landsat-8 and JFNF data from 12 different zones
covering an area from 25◦0’0”S - 53◦0’0”W to 28◦0’0”S - 49◦0’0”W, the training
dataset is composed of 89,657,414 No-Forest and 65,862,586 Forest points.

Due to the amount of data available, training with all the points would take
a significant amount of time. Therefore, a reduced training set was randomly
extracted, whose size was determined by analyzing the distribution of the data.
The different layers of the complete dataset were analyzed individually as each
one has its own distribution. Smaller samples of different sizes were created
randomly and the distribution of each one was compared to the distribution of
the full dataset. In order to do that, a histogram of each sample was created,
where the number and width of bins (columns in the histogram) were determined
with the Freedman & Diaconis [4] rule. The generated histograms resulted in a
high concentration of the data points in a relatively short range of values, with
a shape similar to a normal distribution.

Even though the width of bins determined was good enough to analyze the
data distribution, it also resulted in a large number of bins containing only a
few items, as depicted in the left image of figure 1. These bins containing a
low number of items represent a problem at the time of comparing a full dataset
histogram with a reduced one because they show large relative deviations, which
bias the comparison. To overcome this issue, an outlier detection method was
used to determine the most representative bins, i.e. those containing a sufficiently
large number of items. Following the Iglewicz & Hoaglin [8] work on this topic,
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Fig. 1. Forest histograms of the layer 2 using Freedman & Diaconis rule to determine
the bins width without outlier removal (left image), and the same histogram with
outlier removal based on Robust Z-score and Median Absolute Deviation (right image).

a robust z-score method with a Median Absolute Deviation is used to determine
the importance of each bin in the histogram as shown in equation 2.

MAD = median{|xi − x̃|} Mi =
0.6745(xi − x̃)

MAD
(2)

Mi is the score of the histogram bin i, x̃ is the median of the sample and
0.6745 is the 0.75th quartile of a standard normal distribution and xi is the
amount of elements in the bin i. Each Mi is then compared with a threshold
in order to determine the lower and higher values where the bins start being
considered as outliers. In our experiments, the suggested threshold of 3.5 by
Iglewicz & Hoaglin was too restrictive. Instead, we used a threshold equal to 4.5
obtaining better results. The resulting histograms after the outlier detection and
the determination of the most representative histogram bins range are depicted
in the right image of figure 1.

Once the outliers were removed from the histograms, these were used to an-
alyze the reduced samples. The relative deviation of the reduced samples with
respect to the full dataset was calculated by comparing the percentage of ele-
ments in corresponding bins of the full and reduced datasets, and obtaining the
relative absolute difference bin to bin. Once the relative deviations are calculated
for each bin, the mean and median error of the histogram for each layer and class
was obtained for each reduced dataset. This process was repeated 10 times per
reduced sample size that ranged between 5% and 95% obtaining a final average
mean and median deviation for each sampling size. Table 1 shows the results for
a sample with 30% the size of the full dataset as an example.

The results obtained indicate that a random sample of 30% of the full dataset
is the minimum required to ensure a mean and median deviation below 5% and
1% respectively in all the layers of the forest and no-forest classes with respect
to the full dataset. The 30% sized dataset has a total of 26,897,225 randomly-
selected points for each class, which were then used to train the network.
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Table 1. Deviation of 30% sized sample w.r.t. full dataset by class and input layer

Layer type SRTM Landsat 8

Class Elev. B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

No Forest Mean 1.76 4.58 3.82 2.02 1.71 1.48 0.90 0.84 1.75 3.36 2.17 1.74

Median 0.65 0.59 0.60 0.55 0.49 0.54 0.54 0.50 0.52 0.73 0.68 0.64

Forest Mean 1.77 2.54 2.39 2.64 2.44 1.07 1.68 1.65 2.28 2.73 1.52 1.70

Median 0.58 0.54 0.55 0.60 0.57 0.61 0.54 0.53 0.58 0.68 0.65 0.72

5 System Architecture

The model flow and steps are depicted in figure 2. SRTM rasters at a resolution
of 30 meters cover a 1◦x1◦ zone, which involves a data matrix of 3601x3601.
Additionally, including all the 11 bands of the Landsat-8 satellite clipped at the
same size increases the input to a 3601x3601x12 per zone. Because of the size of
the input cube, in order to better use the hardware available the input is split
in multiple samples of 13x13x12 for each different center pixel.

Since the key piece of information is the pixel at the center of the sample,
the rest of the surrounding pixels are considered a 6 pixel neighbor area helping
to provide contextual information. In order to be able to process border pixels,
each matrix of the zone data cube is padded with a 6 pixels border containing
zeros, thus generating a 3613x3613x12 size structure.

In case the model is working in testing mode, all the pixels of the zone input
cube are sampled in order and provided in batches to the classification module
where the class of each center pixel is predicted. In case the model is set to
training mode, only a percentage of the input zone cube is sampled following a
random order, but maintaining the same number of samples for each class. The
position of each training sample in the zone data cube is also stored in order to
retrieve the corresponding ground truth class from the JFNF mask, and then be
able to compare the predicted class with the expected class.

With the purpose of providing an optimized classifier, a parameter search
was performed over 32 different models, testing alternative architectures with a
different number of convolutional layers, feature maps, dense layers, fully con-

Fig. 2. Proposed architecture input-output model

XXV Congreso Argentino de Ciencias de la Computación Río Cuarto, 14 al 18 de Octubre de 2019

-69-



Fig. 3. CNN architecture composed of 5 convolutional layers with 128 feature maps, 3
dense layers with 2000 neurons, and a final SoftMax dense layer with 2 neurons.

nected neurons, kernel sizes at the input layer and alternative optimizers. The
architecture described here is the one that presented the best validation accu-
racy, over a 10 epoch training with a 3 times cross-validation over a 30% reduced
dataset.

This architecture is comprised of a series of convolutional layers each one fol-
lowed by a Rectified Linear Unit (ReLU) activation layer, joining at the end with
a fully connected neural network with a SoftMax binary classifier, as depicted
in figure 3. Each convolutional layer has a kernel size of 3x3 with no padding
and 1x1 stride (except for the first layer which has a 5x5 kernel), generating 128
feature maps. The model predicts the class of a certain pixel by evaluating the
twelve different input channels corresponding to the SRTM DSM and Landsat-8
bands along with the neighbor pixels. According to the number of convolutional
layers, their kernel size, padding, and size, the minimum input size of 13x13
window is provided creating a final input of 13x13x12. After the five Convolu-
tional/ReLU layers a flattening layer is added in order to generate a vector of
features to be fed into a fully connected neural network, which in turn is com-
posed of 4 layers: three layers with 2000 neurons and ReLU activation function,
and a last layer with 2 neurons using a SoftMax activation function. The model
provides a single value output indicating if the pixel in the center of the input
window corresponds to the Forest or No-Forest class.

The classifier is trained using a binary cross-entropy loss function and Stochas-
tic Gradient Descent optimization technique.

The construction module is executed only in testing mode once the classifier
module has finished predicting all the pixels’ class. It simply reshapes the single
vector of results to a matrix of size 3601 x 3601 creating in this way a mask
where each position corresponds with a position of the SRTM raster used in the
input.
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Fig. 4. Zone 13 of the JFNF mask (left), our FNF mask (center) and comparison
(right) where correctly predicted points are shown in brown and green (No-Forest and
Forest respectively), while errors are shown in blue and red respectively.

6 Case Study

The experiments were performed on an AMD Ryzen 1700 CPU with 32 GB
DDR–4 2400 MHz RAM and a NVidia Titan Xp. The source code and the data
used in this work are publicly available4.

The training samples were created by obtaining the 13x13x12 data cubes at
each position of the dataset and were provided in batches of 512 samples to the
training algorithm. A k-fold cross-validation training schema was used with k =
5. A selection of 45% of the dataset points was randomly selected maintaining
the balance between No-Forest and Forest points. Since KFold splits 45% of the
points into 5 parts, 36% of the points are selected for training/validation and
9% for test on each of the 5 runs. Then, the training/validation set is split in
85% for training and 15% for validation, generating a 30.6%/5.4% selection from
the full dataset respectively and thus, maintaining a higher than 30% dataset
selection for training as it was analyzed in the section 4. The network was trained
over 30 epochs with a learning rate of 0.01 and default parameters following
the recommendations for Stochastic Gradient Descent in [1]. In our tests, other
optimizers like Adam produced vanishing gradients so they were discarded.

The classification module obtained an average test accuracy of 91% during
training. The results of the KFold cross-validation in terms of average precision,
recall and F1-score (with their standard deviations) for the No-Forest class were
91.4% (1.5%), 91.4% (1.5%) and 91.2%(0.4%), while the Forest class obtained
91.4% (0.9%), 91.4% (1.5%) and 91.4% (0.5%) respectively. Then the model was
tested against the test zone 13 composed of 8,546,237 No-Forest and 4,413,763
Forest points with an accuracy of 87.36% taking 352 seconds.

The JFNF mask and the one produced by our network for zone 13 are shown
and compared in the figure 4. One thing to notice is that in some cases the

4 https://github.com/labsin-uncuyo/py-cnn-geo
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Fig. 5. Small area of the comparison between JFNF mask and our FNF mask showing
multiple errors in our results in blue and red (left image), but correctly detecting real
forested areas omitted by the JFNF mask (right image).

network was capable of recognizing real forest points that were not correctly
labeled in the JFNF mask (figure 5).

7 Conclusion and Future Work

In this paper, we presented a CNN architecture capable of learning to recognize
forested areas from different inputs obtained by remote sensing devices. The
model generated a binary mask with an 87.36% accuracy compared with the
JAXA FNF mask in less than 6 minutes for 1◦x1◦ coverage areas. After a detailed
analysis of the results, we found that the network is able to recognize forested
areas omitted in the ground truth mask, denoting a potential benefit of using our
approach even for improving the available data. Also, these misclassified points
in the ground truth mask could be introducing noise in the training phase of the
network, so we think the results can be further improved by using better data
for training.

Future work includes testing additional network models, training and opti-
mization parameters in order to find better classification architectures. Also, we
will explore different post-processing techniques for improving the quality of the
binary mask and reducing the noise. In addition to this, the proposed solution
should be tested in areas with an imbalanced proportion of Forest and No For-
est points, or different land characteristics in order to assess the strengths and
weaknesses of the model in more difficult scenarios. An analysis of the signifi-
cance of input layers on the result can help to determine unneeded input data
and result in faster and more accurate execution of the network. Finally, other
satellite-based data inputs can be explored, like Sentinel mission data, to verify
the model’s sensitivity to different data sources.
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