
DE with Random Vector based Mutatiton for
High Dimensional Problems

Mg. Sebastián Hernández[1], Dr. Efrén Mezura-Montes[2], and Dr. Guillermo
Leguizamón[3]

[1]National University of Southern Patagonia,
[2]Artificial Intelligence Research Center, University of Veracruz

[3]National University of San Luis
sebastian.unpa@gmail.com

emezura@uv.mx

legui@unsl.edu.ar

Abstract. Metaheuristic techniques are the current standard for solving
optimization problems. Differential Evolution (DE) is one of the most
used because all operations are on real floating point numbers and does
not require extra coding. However, the performance shown by DE could
decay when applied in problems of high dimensionality. In this paper we
present RLSDE, a modified version of DE, based on a random vector as a
scaling factor for the differential mutation and the application of a local
search operator. These modifications constitute an algorithm capable of
solving 100D problems using few computational resources. RLSDE is
compared against the results obtained with the classic version of DE
and ELSDE (Enchanced Local Search Differential Evolution), showing
the performance of the proposal.

Keywords: differential evolution, high-dimensional optimization prob-
lem, local search

1 Introduction

As technology advances, it is necessary to create and solve increasingly complex
mathematical models in order to provide more precise solutions. In turn, these
models should involve a large number of variables, which makes the problem
of optimization in a problem of high dimensionality (100 or more variables).
It should also be considered that they are generally non-linear functions and
therefore their resolution is not simple. All these conditions make that optimal
search methods require a large computational cost and often fail in their objec-
tive due, among other factors, to the exponential growth of the search space and
the complexity of the problem. That is why new optimization techniques should
be proposed with simple but powerful conditions [1], [4], [6], [13], capable of fac-
ing and solving high dimensional problems. In this article a modified and hybrid
version of DE is presented. The main modification was made on the differential
mutation: the population was classified into three different groups based on their

XXV Congreso Argentino de Ciencias de la Computación Río Cuarto, 14 al 18 de Octubre de 2019

-52-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301103976?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

performance and then this classification was taken into account when choosing
the vectors to generate the mutant vector. The other modification that was ap-
plied in the generation of the mutant vector is the use of a variable scale factor.
Finally, this proposal was hybridized with a random local search engine whose
operation is based on the classification of the population used in the differential
mutation. The performance of this proposal is evaluated with classical functions
of the literature, the results obtained are compared against those presented in
[12], obtained by the ELSDE algorithm with the same number of function eval-
uations. The results obtained by RLSDE show the quality of this proposal. The
rest of this paper is organized as follows, the second section describe the basic
DE algorithm, the third section presents our version, the RLSDE algorithm.
Its performance is analyzed and compared against DE y ELSDE in the fourth
section. Finally, the conclusions are given in the fifth section.

2 Differential Evolution

Differential evolution was presented in 1996 by Storn and Price [11]. IIt is a pop-
ulation metaheuristic whose operation is based on the application of operators
to the individuals (vectors) of the population, through a time of evolution:

– Initialization. Taking into account that each variable of the search space
is confined to a certain region, real values within this range are generated in
a random way. At generation zero (initial value), the jth component of the
ith individual is defined as:

xj,i,0 = randj [0, 1) · (bj,U − bj,L) + bj,L,

where [bj,L, bj,U] is the definition interval of the jth variable.
– Differential mutation. Like most population metaheuristics, DE applies

an operator to generate new individuals, disrupting existing ones in the pop-
ulation. This is done by randomly selecting three individuals from the pop-
ulation (targets vectors) and creating the donor vector with one of them as
base and the other two in the form of scaled difference:

vi,g = xr0,g + F · (xr1,g − xr2,g) ,

where g represents the evolution time, F is the scale factor applied in the
vector difference and xri , i = 0, 1, 2 are the randomly selected vectors, and
the indices r1, r2, r3 are mutually exclusive. This operator is considered the
most important of DE, since it adds population diversity taking into account
the characteristics of individuals present in the population.

– Crossover. This operator, also called discrete recombination, generates the
trial vector by randomly mixing components of the target and donor vectors,
whose indices in the population are the same:

uj,i,g =

{
vj,i,g if randj [0, 1) ≤ Cr

xj,i,g othercase
,

XXV Congreso Argentino de Ciencias de la Computación Río Cuarto, 14 al 18 de Octubre de 2019

-53-

where Cr is the crossover rate that will be compared to a random value to
decide who will bring the component to the trial vector.

– Selection. The next step of the algorithm calls for selection to determine
whether the target or the trial vector survives to the next generation. When
comparing the fitness of target vector (xi,g) with the trial vector (ui,g), it
is decided whether the target remains at least one more generation in the
population or if it is replaced by the trial vector:

xi,g+1 =

{
ui,g if f (ui,g) < f (xi,g)
xi,g othercase

3 State of the art

DE is a well-known and used population metaheuristic due to its ability to ob-
tain quality solutions. But as it is also affected by the curse of dimensionality,
algorithms based on DE are often presented in order to effectively solve high-
dimensional problems. In 2014 article [3] was presented. The authors suggest
that the strategies used in low dimension (mutation, population size choice,
crossover) are not adequate to solve problems in high dimension. In addition,
with the change of dimension it is known that the search space increases ex-
ponentially but the amount of function evaluations used generally only grows
linearly. In 2017 the articles [5] and [2] were presented. In the first of them,
the center of gravity of three randomly chosen individuals was used as the base
vector for differential mutation, and in the other article the authors used the pop-
ulation covariance matrix because they observe that the traditional approach to
do facing the problem of increasing dimension is to increase the evolution time.
According to the authors, it is not taken into account that both magnitudes are
not modified proportionally and therefore a good performance is not achieved.
In 2018 Meselhi et al. present [8], where they propose the use of the Enhanced
Differential Grouping (EDG) method, capable of discovering the dependency
relationships between variables and then grouping the independent variables in
the same subproblem. In 2019, Cai et al. publish cite Cai2019. In this article
the authors apply to algorithms of high dimension an algorithm that makes a
prediction of the global minimum and from that prediction the direction that
the differential mutation should take in search of that optimum is guided.

4 Proposed modifications

DE, like most optimization algorithms, suffers from the curse of dimensionality
due to the exponential increase of the search space when considering increases in
the dimensionality of the problem. Many modifications have been proposed in or-
der to mitigate the effects of increasing the size of the search space [2], [8]. In this
case, the proposed modifications are simple and show a significant improvement
in performance compared to the efficiency of the original DE version.

XXV Congreso Argentino de Ciencias de la Computación Río Cuarto, 14 al 18 de Octubre de 2019

-54-

4.1 Population partitioning

The population is classified, according to its fitness value, into three groups.
For this, the individual with the minimum fitness is k = 1 and the individual
with the maximum fitness is k = n. Then, A group contains individuals whose k
position on the fitness scale verifies k < 0.25× popsize, that is, the group of the
best individuals; group C contains those where k > 0.75 × popsize (the worst
individuals) and group B includes the remaining individuals of the population.
When differential mutation is applied, three individuals are selected in a random
manner so that the base vector does not belong to the same group as the two to
be used in the difference, in order to favor diversity.

4.2 Vector scale factor

The scale factor F is responsible for smoothing the disturbance generated by the
vector difference when adding to the base vector in the differential mutation.
The lower the value of F , the smaller the size of the steps performed by the
mutation and therefore it will take longer to achieve convergence. Larger values
of F facilitate exploration, but may cause the algorithm to exceed some optimal
values due to its passage width. The classical version of DE uses a fixed scale
factor for the vector difference applied in the differential mutation. In this article
we propose to use a vector as a scale factor, so that each of the variables of the
difference vector is disturbed differently. This new vector is generated from a
center C and a expansion radius r, where the components are random within
the interval (C − r, C + r):

F = [f1, f2, . . . , fD] ,

where the components of the vector are fi = C + 2 · r · rand()− r

4.3 Local search

It is common to hybridize the algorithms of global optimization with local search
algorithms [7], [10], [9]. Local search algorithms intensify the exploration of in-
dividuals located around a particular individual, generally of good performance.
In our case, local search is applied to the best individual in each generation.
The local search operator generates six new individuals for each generation of
evolution, from the best individual in the population (xbest), from the average
of population (xμ), and from the average individual in group A (xA

μ). It’s like

that xA
μ and xμ are obtained respectivelly as follows:

– The jth component of xA
μ is obtained from calculating the average of the

jth components of the individuals in group A, without taking into account
xbest.

– The jth component of xμ is obtained from calculating the average of the jth
components of all individuals in the population, including xbest.

XXV Congreso Argentino de Ciencias de la Computación Río Cuarto, 14 al 18 de Octubre de 2019

-55-

Then, six new individuals are generated with different characteristics and with
different disturbed variables that will be compared, one at a time, against xbest.
The only new individual that emerges from disturbing all its components is xc,
called centroid individual, with a very simple mathematical formulation:

xc =
xbest + xA

μ + xμ

3

where each individual of the population contributes with its components in a
different proportion, which will then be scaled up to a third:

– xbest contributes in full form from the original sum and proportionally to
1/popsize from xμ.

– The individuals of group A, contribute with proportion 1/ (popsizeA − 1)
from the original sum and then with the proportion 1/popsize from xμ.

– The individuals of groups B and C, contribute with the proportion 1/popsize
from xμ.

Then two normalized individuals are generated, according to the infinite
norm of vectors:

A ∈ R
D, ‖A‖∞ = max

i∈[1,D]
|Ai| ,

denominated dA
μ and dμ:

dA
μ =

∣∣xbest − xA
μ

∣∣∥∥xbest − xA
μ

∥∥
∞
, dμ =

|xbest − xμ|
‖xbest − xμ‖∞

,

where its minimum and maximum components can be 0 and 1 respectively.
Only fifteen percent of the components of the distance vectors will be taken into
account, then a permutation is generated on the vector v = [1, D], in our case
v = [1, 2, 3, . . . , 100]. Thus, components v(1) to v(15) indicate which dA

μ values
will be conserved and components v(16) to v(30) shows which components of
dμ will be used. The other components are transformed to zero. With the new
versions of dA

μ and dμ, four new individuals are created in two stages. In the

first one, vectors xbest, d
A
μ and dμ are taken:

xD1
= xbest − Fd ·

(
dA
μ ∗ xA

μ

)
xD2

= dA
μ ∗ xA

μ − Fd · xbest

with

Fd =
f (xbest)

f
(
xA
μ

)
and in second stage:

xD3
= xbest − Fd · (dμ ∗ xμ)

xD4 = dμ ∗ xμ − Fd · xbest

with

Fd =
f (xbest)

f (xμ)

XXV Congreso Argentino de Ciencias de la Computación Río Cuarto, 14 al 18 de Octubre de 2019

-56-

In both cases the symbol ∗ represents the product component to component
between two vectors.

Finally, the last of the individuals is generated: xbest′ , who exchanges inter-
nally five of its variables. This exchange is done taking into account that some
of the functions selected for optimization are not separable and this process can
help the convergence of those functions.

Example From a hypothetical population are obtained:

– xbest = [−0.0654166;−0.0804726; 0.098836;−0.0992805; . . . ;−0.0438895] ,
f (xbest) = 0.0481651791782

– xA
μ = [−0.122108; 0.0187508;−0.0661062;−0.0786949; . . . ;−0.124477] ,

f
(
xA
μ

)
= 0.0703484791916

– xμ = [−0.0570289;−0.0897206;−0.109161; 0.0178861; . . . ; 0.0386951] ,
f (xμ) = 0.093300675794

Then, the centroid individual is created from the three vectors described above:

– xc = [−0.0815178;−0.0504808;−0.0254772;−0.0533631; . . . ;−0.0432238] ,
f (xc) = 0.0317538969857

Since xc has better performance than xbest then the local search is considered
successful, xbest is replaced by xc although the local search process continues
until the six explorations are performed, in case it is possible to further improve
xbest.

The permutation vector v is created randomly, according to this example
with D = 100, where one of the possible combinations for the first fifteen com-
ponents could be:

[7, 10, 1, 12, 11, . . . , 3, 4] ,

these being the positions of the vector dA
μ that do not become zero. So dA

μ , for our
example, is a vector withD = 100, where only the components 7, 10, 1, 12, 11, . . . , 3, 4
are nonzero. Continuing with hypotetical positions 16 to 30 of the permutation
vector v:

[29, 20, 27, 16, 17, . . . , 19, 26] ,

therefore those will be the dμ positions that will not be transformed into the
zero value.

Applying the distance formula and then generating four new disturbed vec-
tors xD:

– xD1 = [−0.0915425;−0.0504808;−0.0309095;−0.0573951; . . . ;−0.0636804],
f (xD1) = 0.036670111539

– xD2
= [−0.074396;−0.00829604;−0.037242;−0.0333039; . . . ;−0.13158],

f (xD2
) = 0.0276253117511

– xD3
= [−0.0815178;−0.0555942;−0.0387451;−0.0533631; . . . ;−0.0386199],

f (xD3) = 0.035218104998

XXV Congreso Argentino de Ciencias de la Computación Río Cuarto, 14 al 18 de Octubre de 2019

-57-

– xD4
= [−0.00990799;−0.0482058;−0.112258;−0.00648596; . . . ; 0.0326252],

f (xD4
) = 0.031244911621

Since xD2
has a better performance than xbest, then it replaces it. Then, in

the last step five components of xD2
(xbest) are exchanged:

– xbest = [−0.074396;−0.00829604;−0.037242;−0.0333039; . . . ;−0.13158],
f (xD2

) = 0.0276253117511
– xbest′ = [−0.0333039;−0.00829604;−0.037242;−0.074396; . . . ; 0.031471],

f (xD2
) = 0.0292658878856

Therefore, the local search operation was successful and the performance of
xbest extracted from the population (xc and xD2

) was improved twice, which
returns to continue with the evolution as a new individual.

5 Experiments

An experimental study was conducted, with nine classic functions of the litera-
ture, to evaluate the efficiency of the proposed algorithm against the classic DE
and ELSDE. The ELSDE algorithm is a modified version of DE where a novel
local search operation was presented. This local operation combines both advan-
tage of orthogonal crossover and opposition-based search learning strategy. The
authors apply this new local search engine only to an individual in the popu-
lation, chosen randomly. Finnaly, concluded that ELSDE is an efficient method
for the high-dimensional optimization problems.

5.1 Scalable functions

The set of functions to which RLSDE was applied is the same as that used in
[12]. These functions are continuous and have different characteristic. They also
have many local extreme points and high optimizing complexity.

1. Sphere. Continuous, differentiable, separable and multimodal. Defined in
[−100, 100]

D
:

f (x) =
D∑
i=1

x2
i

2. Rosenbrock. Continuous, non-separable, multimodal and non-convex. De-
fined in [−100, 100]

D
:

f (x) =
D∑
i=1

[
100
(
xi+1 − x2

i

)2
+ (1− xi)

2
]

3. Ackley. Continuous, non-convex and multimodal. Defined in [−32, 32]
D
:

f (x) = −20 exp

⎛
⎝−0.2

√√√√ 1

D

D∑
i=1

x2
i

⎞
⎠−exp

(
1

D

D∑
i=1

cos (2πxi)

)
+20+exp (1)

XXV Congreso Argentino de Ciencias de la Computación Río Cuarto, 14 al 18 de Octubre de 2019

-58-

4. Griewank. Continuous, unimodal and not convex. Defined in [−600, 600]
D
:

f1 (x) = 1 +
D∑
i=1

x2
i

4000
−

D∏
i=1

cos

(
xi√
i

)

5. Rastrigin. Continuous, separable, multimodal and convex. Defined in [−5, 5]
D
:

f (x) = 10D +

D∑
i=1

[
x2
i − 10 cos (2πxi)

]

6. Schwefel 2.26. Continuous, differentiable, separable and multimodal. De-
fined in [−500, 500]

D
:

f (x) = − 1

D

D∑
i=1

xi sin
(√

|xi|
)

7. Salomon. Continuous, non-separable, multimodal and non-convex. Defined
in [−100, 100]

D
:

f (x) = 1− cos

⎛
⎝2π

√√√√ D∑
i=1

x2
i

⎞
⎠+ 0.1

√√√√ D∑
i=1

x2
i

8. Generalized Penalized Function 1. Continuous, non-separable and mul-
timodal. Defined in [−50, 50]

D
:

f (x) =
π

D

[
10 sin2 (πy1) +

D−1∑
i=1

(yi − 1)
2 [

1 + 10 sin2 (πyi+1)
]
+ (yn − 1)

2

]
+

D∑
i=1

ui

with

ui =

⎧⎨
⎩

100 (xi − 10)
4

xi > 10
0 −10 ≤ xi ≤ 10

100 (−xi − 10)
4

xi < −10

, yi = 1 +
xi + 1

4

9. Generalized Penalized Function 2. Continuous, non-separable and mul-
timodal. Defined in [−50, 50]

D
:

f (x) =

D∑
i=1

ui + 0.1

[
sin2 (3πx1) + (xD − 1) +

D−1∑
i=1

(xi − 1)
2 [

1 + sin2 (3πxi+1)
]]

with

ui =

⎧⎨
⎩

100 (xi − 5)
4

xi > 5
0 −5 ≤ xi ≤ 5

100 (−xi − 5)
4

xi < −5

XXV Congreso Argentino de Ciencias de la Computación Río Cuarto, 14 al 18 de Octubre de 2019

-59-

5.2 Execution parameters

This new proposed algorithm (RLSDE) was executed with the following param-
eter setting:

– Time of evolution: 3500 generations.
– Population size: 50 individuals.
– Dimension of the search space: D = 100.
– Scale factor center: C = 0.4.
– Scale factor radius: r = 0.25.
– Crossover probability: 0.5.
– Number of executions per experiment of each function: 30.

Considering the six new individuals evaluated in each generation by the local
search, the total number of function evaluations per experiment is 3500 (50 + 6) =
1.96E5.

5.3 Results and comparison

The results obtained are shown in the same way that the authors presented
the results of ELSDE, showing the average and the standard deviation of each
function. One difference to highlight is that in ELSDE they used 1.00E6 function
evaluations for each experiment, whereas RLSDE (the proposed algorithm) used
only 1.95E5 function evaluations.

Table 1 shows the results obtained by DE, ELSDE, and RLSDE for the nine
functions of the test suited considered with D = 100.

Fun DE (mean ± std) ELSDE (mean ± std) RLSDE (mean ± std)

f1 4.21E+03 ± 8.65E+02 2.07E-16 ± 1.06E-16 1.18E-36 ± 2.62E-36
f2 5.50E+01 ± 8.53E + 00 8.21E+01 ± 7.95E-01 9.66E+01 ± 3.10E-01
f3 2.63E+05 ± 2.01E+04 1.79E-09 ± 4.62E-10 3.00E-15 ± 1.63E-15
f4 6.20E+01 ± 4.56E+00 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00
f5 2.40E+06 ± 1.38E+06 2.46E-10 ± 3.50E-10 0.00E+00 ± 0.00E+00
f6 4.46E+03 ± 1.24E+03 1.45E+01 ± 7.93E+01 1.03E+02 ± 2.48E+02
f7 4.19E+00 ± 1.81E+00 9.99E-02 ± 1.41E-06 9.99E-02 ± 2.71E-12
f8 8.55E+02 ± 6.89E+01 1.07E-10 ± 5.22E-11 4.71E-33 ± 0.00E+00
f9 8.96E+00 ± 6.68E-01 3.39E-04 ± 2.34E-03 1.35E-32 ± 5.59E-48

Table 1. Comparison of results with dimension D = 100

When the mean values obtained by ELSDE and RLSDE are statistically
compared through the Wilcoxon Signed-Rank test, the difference between the
value of the both algorithms and expected difference μ0 is not big enough to be
statistically significant. Despite this, it is observed that the overall performance
of RLSDE is equivalent or better than that of ELSDE, due to the difference
between the number of evaluations for both algorithms. Figures 1 a 9 shows the

XXV Congreso Argentino de Ciencias de la Computación Río Cuarto, 14 al 18 de Octubre de 2019

-60-

output of one experiment on each of the functions. It should be noted that the
functions f4 and f5 do not reach the 3500 generations in their graphic domain
since the presented scales are logarithmic and the value obtained is zero. The
quality of the solution obtained in F1 can improve, it is necessary to increase
the evolution time or improve the setting of the RLSDE parameters. The func-
tions F2, F6 and F7 show a rapid convergence and then stagnation, possibly the
performance of the local search engine should be improved. Finally, in F3, F4,
F5, F8 and F9, the evolution time is well used, achieving quality convergence
within the scheduled evolution time. This shows the power of RLSDE in high
dimensions.

Fig. 1. f1 - xbest : 1.07E − 36 Fig. 2. f2 - xbest : 9.59E + 01

Fig. 3. f3 - xbest : 4.44E − 16 Fig. 4. f4 - xbest : 0.00E + 00

6 Conclusions

RLSDE, a new modified version of DE was presented. The differential muta-
tion operator was modified, classifying the population, in each generation, into
three groups according to their fitness. In this way, the base vector was chosen
randomly but the vectors used for the difference could not belong to the same
group as the base. In this way, the exploration of the search space is favored by

XXV Congreso Argentino de Ciencias de la Computación Río Cuarto, 14 al 18 de Octubre de 2019

-61-

Fig. 5. f5 - xbest : 0.00E + 00 Fig. 6. f6 - xbest : 1.27E − 03

Fig. 7. f7 - xbest : 9.98E − 02 Fig. 8. f8 - xbest : 4.71E − 33

preventing three individuals of similar quality from interacting to generate the
trial vector, assuming that these individuals possess very few differences from
each other. Another improvement, also within the differential mutation opera-
tor, was the application of a random vector as a scale factor. By not applying a
uniform value, each of the components was affected to a different extent, so the
search space exploration was also favored.

Finally, to favor the exploitation of promising regions, a random local search
engine based on distances was applied to the best individual of each generation.

The results obtained are interesting because they are comparable to those
obtained by other similar algorithms, but with much less function evaluations.

Fig. 9. f9 - xbest : 1.34E − 32

XXV Congreso Argentino de Ciencias de la Computación Río Cuarto, 14 al 18 de Octubre de 2019

-62-

As future work we will try to solve some of the multiple CEC (IEEE) tests
and we will try to improve the performance of this version by adjusting the
execution parameters to obtain a better performance.

References

1. Cao, B., Zhao, J., Lv, Z., Liu, X., Yang, S., Kang, X., Kang, K.:
Distributed parallel particle swarm optimization for multi-objective and
many-objective large-scale optimization. IEEE Access 5, 8214–8221 (2017).
https://doi.org/10.1109/access.2017.2702561

2. Caraffini, F., Neri, F., Iacca, G.: Large scale problems in practice: The effect
of dimensionality on the interaction among variables. In: Applications of Evo-
lutionary Computation, pp. 636–652. Springer International Publishing (2017).
https://doi.org/10.1007/978-3-319-55849-3-41

3. Chen, S., Montgomery, J., Bolufé-Röhler, A.: Measuring the curse of dimensionality
and its effects on particle swarm optimization and differential evolution. Applied
Intelligence 42(3), 514–526 (nov 2014). https://doi.org/10.1007/s10489-014-0613-2

4. Deng, C., Dong, X., Yang, Y., Tan, Y., Tan, X.: Differential evolution with novel
local search operation for large scale optimization problems. In: Advances in Swarm
and Computational Intelligence, pp. 317–325. Springer International Publishing
(2015). https://doi.org/10.1007/978-3-319-20466-6

5. Hiba, H., Mahdavi, S., Rahnamayan, S.: Differential evolution with
center-based mutation for large-scale optimization. In: 2017 IEEE Sym-
posium Series on Computational Intelligence (SSCI). IEEE (nov 2017).
https://doi.org/10.1109/ssci.2017.8280938

6. Lin, H.: A differential evolution algorithm based on local search and boundary
reflection for global optimization. 2015 11th International Conference on Compu-
tational Intelligence and Security (CIS) pp. 253–257 (2015)

7. Locatelli, M., Maischberger, M., Schoen, F.: Differential evolution methods based
on local searches. Computers & OR 43, 169–180 (2014)

8. Meselhi, M.A., Sarker, R.A., Essam, D.L., Elsayed, S.M.: Enhanced differential
grouping for large scale optimization. In: Proceedings of the 10th International
Joint Conference on Computational Intelligence. SCITEPRESS - Science and Tech-
nology Publications (2018). https://doi.org/10.5220/0006938902170224

9. Michiels, W., Aarts, E., Korst, J.: Theoretical Aspects of Local Search. Springer-
Verlag GmbH (2006)

10. Noman, N., Iba, H.: Accelerating differential evolution using an adaptive local
search. IEEE Transactions on Evolutionary Computation 12, 107–125 (2008)

11. Price, K., Storn, R., Lampinen, J.: Differential evolution - A practical approach to
global optimization. Springer-Verlag (2005)

12. Xiao-Gang, D., Chang-Shou, D., Zhang, Y., Yu-Cheng, T.: Enhancing local
search of differential evolution algorithm for high dimensional optimization
problem. In: 2015 34th Chinese Control Conference (CCC). IEEE (jul 2015).
https://doi.org/10.1109/chicc.2015.7260973

13. Zhang, Q., Cheng, H., Ye, Z., Wang, Z.: A competitive swarm optimizer
integrated with cauchy and gaussian mutation for large scale optimiza-
tion. In: 2017 36th Chinese Control Conference (CCC). IEEE (jul 2017).
https://doi.org/10.23919/chicc.2017.8028924

XXV Congreso Argentino de Ciencias de la Computación Río Cuarto, 14 al 18 de Octubre de 2019

-63-

