
Filtering Useless Data at the Source

Pablo Pessolani1, Constanza Quaglia1, and Ramón Nou2

1Departamento de Ingenieŕıa en Sistemas de Información
Universidad Tecnológica Nacional - Facultad Regional Santa Fe

Santa Fe, Argentina
{ppessolani,cquaglia}@frsf.utn.edu.ar

2Barcelona Supercomputing Center
Departamento de Arquitectura de Computadores

Universitat Politécnica de Catalunya. Barcelona, España
ramon.nou@bsc.es

Abstract. There are some processing environments where an applica-
tion reads remote sequential files with a large number of records only to
use some of them. Examples of those environments are servers, proxies,
firewall and intrusion detection log analysis tools, sensor log analysis,
large scientific datasets processing, etc.
To be processed, all file records must be transferred through the net-
work, and all of them must be processed by the application. Some of
the transferred records would be discarded immediately by the applica-
tion because it has no interest in them, but they just consumed network
bandwidth and operating system’s cache buffers.
This article proposes to filter records from the source of data but without
changing the application. Those records of interest will be transferred
without modifications but only references to the other records will be
transferred from the source to the consuming application. At the ap-
plication side, the sequence of records is rebuilt, keeping the content of
records of interest and filling the others with dummy values which will
be discarded by the application. As the number and length of records are
preserved (and therefore the file size too), it is not necessary to modify
the application. Once a filtering rule is applied to a file, only the useful
records and references to unuseful ones will be transferred to the appli-
cation side reducing network usage, transfer time, and cache utilization.
A modified (but compatible) version of NFS protocol was developed as
a proof of concept.

Keywords: Logging, Network File System, NFS

1 Introduction

Some remote applications, servers, network devices, and IoT sensors produce a
large number of data which will be processed by other applications in a central
location. Online transactional applications, backup servers, mail servers, web

XXV Congreso Argentino de Ciencias de la Computación Río Cuarto, 14 al 18 de Octubre de 2019

-879-

CORE Metadata, citation and similar papers at core.ac.uk

Provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301103889?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


server, network proxies, routers, firewalls, IDS/IPS, environment sensors, etc.
are a sample of that. Often, an application is used to analyze the content of
these data to search records of interest as suspicious transactions, abnormal be-
havior, patterns of security attacks, malformed network packets, excessive tem-
perature detected by a sensor, etc. To perform the data analysis the complete
dataset must be transferred from the source to the central application. As the
application would not be interested in the content of all data records, several
records will be transferred from the source to the client but later, they would be
ignored/discarded by the application. This behavior misspends network band-
width, operating system cache buffers and, in some cases, increases the transfer
time. An additional drawback occurs in cases where the network is leased and
and the services are paid for each packet or amount of transferred data.

This article proposes to filter records from the source of data but without
changing the application. Those records of interest will be transferred without
modifications but only references to the other records will be transferred from
the source to the application. At the application side, the sequence of records is
rebuilt, keeping the content of matching ones and filling the others with dummy
values which will be discarded by the application. As the number and length of
records and the file size are preserved, it is not necessary to modify the applica-
tion.

The “filtering useless data at the source” approach is not new. It is often used
by Client/Server applications where the Client request data using and Database
(like SQL) query to filter those records of interest. Then, the Database Server
replies sending only the requested records to the Client application.

As a proof of concept of the “filtering useless data at the source” approach,
a modified (but compatible) version of NFS protocol version 3 was developed,
based on UNFS3 [1] and HSFS [2]. The same approach could be used on other
network or distributed file systems, FTP-like servers or storage devices. Seeing
the processing power that controllers of storage devices currently have, a portion
of these power could be used to perform filtering at the source [3].

The remainder of this paper is organized as follows. Section 2 describes the
authors’ motivation for this project. Section 3 outlines FNFS design and im-
plementation. Section 4 presents some experimental results. Finally, section 5
presents conclusions and future work.

2 Motivation

Data traffic reduction is essential when it comes to high latency links, limited
bandwidth, high packet loss or when the system uses a paid communication
service in which amount of transferred data impacts on the costs, or when an
autonomous device needs to save energy to keep its batteries charged for as
much time. Low Earth Orbit (LEO) satellite and mobile networks like 4G are
examples of leased links with appreciable latency, eventually packet loss, and
limited bandwidth. IoT devices must be specially considered, as they are being
increasingly used for different purposes. These devices normally have a low cache

XXV Congreso Argentino de Ciencias de la Computación Río Cuarto, 14 al 18 de Octubre de 2019

-880-



or buffer storage (due to having low memory in general) and energy usage is
a critical issue since they are battery-powered. In this sense, reducing packet
transmission also helps to reduce battery usage.

This article proposes a methodology to mitigate these negative issues of data
transfer through these kinds of networks.

3 Filtered Network File System

This section presents FNFS design goals and implementation details that in-
cludes:

1. How to specify filtering rules outside the application which consumes the
data.

2. How the data are encoded and transferred from the Server to the Client.
3. How data compression can be made on the transferred data.

The prototype implements Filtered NFS (FNFS) using a user-space NFS
server [1] and client [2] as base source code. Even though the prototype was
implemented using user-space NFS server and client, the same approach would
be applied to kernel versions and to other network/cluster filesystems.

Although FNFS can be used in production environments, it was developed
as a proof of concept of the “filtering useless data at the source” approach.
Currently, it has some constraints as it can only filter sequential ASCII text
files.

3.1 FNFS Design goals

The following are the properties of FNFS established as design goals:

1. Compatibility: Keep client and server compatibility with unmodified NFS
servers and clients.

2. UID and File specification: The filters will be applied considering the file-
name (complete path) and the UID of the requester client.

3. External filtering rule specification: The application does not need to be
modified. Therefore, an external filtering rule specification mechanism must
be used.

4. Efficiency: The filtering mechanism must have high efficiency related to net-
work bandwidth usage, count of packet transfers, cache buffers savings and
total transfer time.

5. Simple filtering rule specification: Filtering rules must be specified by a sim-
ple and well-known language.

6. Fixed and Variable length records: The length of records must be kept and
it must support fixed length records and variable length records (Line Feed
terminated).

7. Discretional data encoding: Encoding only will be applied if appropriate.

XXV Congreso Argentino de Ciencias de la Computación Río Cuarto, 14 al 18 de Octubre de 2019

-881-



8. Include compression: To improve network bandwidth and packet transfer
savings, apply data compression on records of filtered files.

FNFS lets specify filtering rules outside an application that will be applied
by the Server before sending file records to the Client. This feature is very
useful because different filtering rules could be applied for each user/application
which uses the data or when modifying the application is expensive or when the
application source programs are not available.

As it is well known, NFS is a stateless file-server protocol. The Client side
of FNFS gets the filtering rules, encodes them on each read request afterwards
it sends them to the Server. The Server decodes the Read Request with the
filtering rules and applies them to the file records. Those records which match
the filtering rules are sent from the Client to the Server without modifications.
For those records which do not match the filtering rules, only the length and
position of them are encoded and sent to the Client.

Later, when the Client receives the reply, it decodes the data received from
the server, and it rebuilds the sequence of file records filling the not-matching
records with specified dummy data that will be ignored or discarded by the
application. An example can clarify FNFS operation. Suppose that the appli-
cation only processes records with the text “ARGENTINA” in position 10,
discarding the other records.

char *country; // point to the country name first character

country = &record[10]; // record just read

if (strncmp(country, "ARGENTINA", 9) == 0) {

// process the matching record

} else {

// discard the record

}

When FNFS Client receives the code of a not-matching record from the
Server, it creates a dummy record with dummy text in position 10 as “123456789”
whose will be discarded by the application if sentence.

As the application processes the same number of records as the original file
and record lengths are preserved, there is no need to modify it. In addition to
FNFS data filtering features, data compression was added to improve the usage
of network bandwidth and to reduce the transfer time. Data compression is a
feature that the user can disable. In some use cases, it is not desired due to the
higher CPU and memory usage required (i.e. IoT devices).

Data encryption is another feature considered to be added in the near future.
The current version presented here only supports sequential ASCII text files with
fixed or variable record length and text filters.

3.2 Filtering Specifications

As was mentioned earlier, filters are specified outside the application. FNFS
adopts a simple approach by using shell environment variables.

XXV Congreso Argentino de Ciencias de la Computación Río Cuarto, 14 al 18 de Octubre de 2019

-882-



– FNFS FILTER: Specifies if the filter will be applied (YES/NO).
– FNFS FILENAME : The pathname of the file to be read and filtered.
– FNFS RLEN : The record length. It must be a positive number for fixed

length records or zero for variable length records.
– FNFS FILTER: The text search on each record.
– FNFS MATCH : If the value is “YES” it means that the matching registers

will be transferred to the Client. If the value is “NO”, unmatching registers
will be transferred to the client.

– FNFS DUMMY : It specifies the character which replaces all characters within
useless registers. i.e. “#”.

– FNFS COMPRESS : Specifies if compression will be applied (YES/NO).

These environment variables must be set and exported before starting FNFS
Client. Once the Client checks correct values, it codifies them into newly added
fields of the NFS read request.

3.3 Data Encoding

Data encoding must meet design goals #4, #6, #7. The server sends to the
client a block of data which consists of a variable size list followed by a sequence
of matching records as shown in Figure 1.

Figure 1 presents the data encoding of a block of 10 fixed length records of
80 bytes each (records #0 to #9). The records that match the filtering rules are
#2, #4, #5, #6, #8 and #9. The first two rows represent a list of 10 items, one
for each record. Each list element with a value greater than zero represents the
record length of a non-matching record. If the value is 0, it means that the record
in this position matches the filtering rule, and it is stored in order and without
modifications within the block. Figure 1 represents 10 records of 80 bytes or
800 bytes, but only 6 records of 80 bytes (480 bytes) plus the size of the array
(10 elements of 4 bytes) are sent to the client, saving about 35% of data to be
sent through the network. Figure 2 presents the data block encoding of variable
length records terminated with Line Feed character.

Fig. 1: Fixed Length Records Data Block Encoding

XXV Congreso Argentino de Ciencias de la Computación Río Cuarto, 14 al 18 de Octubre de 2019

-883-



The last character LF on each matching record is a Line Feed ASCII code.
It is used by the FNFS client to compute the record length. Figure 2 represents
the encoding of a block of 10 records totalizing 521 bytes, but only 6 records
totalizing 348 bytes plus the size of the array (10 elements of 4 bytes) are sent
to the client, saving about 26% of data to be sent through the network.

Fig. 2: Variable Length Records Data Block Encoding

Let rlen the length (bytes) of each record and nrecs the total amount of
records of the file.

For fixed length records, without filtering, the total bytes is defined as:

Tbytes = rlen ∗ nrecs (1)

With filters, and a matching rate k of the filtering rule (0 ≤ k ≤ 1), the number
of bytes to be transferred is:

Fbytes = (rlen ∗ nrecs ∗ k) + (nrecs ∗ 4) = nrecs ∗ ((rlen ∗ k) + 4) (2)

For variable length records, without filtering:

Tbytes =
∑

rleni (3)

With filters and Ki = {0, 1} where 1 means that the record match:

Fbytes =
∑

(rleni ∗Ki) + (nrecs ∗ 4) (4)

Only if Fbytes < Tbytes the block is encoded by FNFS. The saving ratio is

1–
Fbytes

Tbytes
.

3.4 Data Compression

Data filtering reduces the total data sent from Server to Client. Applying com-
pression to encoded data introduces another level of efficiency improvement on
network usage. The simple additions of compression functions to the filtering
code produce important savings.

The resulting block of encoded data on the Server is compressed using the
zlib[4] compression library functions.

XXV Congreso Argentino de Ciencias de la Computación Río Cuarto, 14 al 18 de Octubre de 2019

-884-



4 Evaluation

Several benchmarks have been performed with simulated networks, considering
different latency and bandwidth scenarios, and with and without data compres-
sion. The tests consist of filtering records without the occurrence of an ASCII
string. Only records with the occurrence of the string will be transferred without
modification. On the server-side, several files were created with different rate of
occurrence of the string to be filtered. The x-axis in charts represents the hit
rate of the filtering rule. A hit rate of 128 means that the probability of string
matching is 1/128, and so on. A hit rate of 1 means that the probability of string
matching is 1/1 (the entire file).

For each simulation, the charts show the amount of transmitted packages and
transmission time, under the specified conditions. Each line is labeled as follows:

– NFS : NFS protocol without modifications.
– FNFS : Filtered NFS without compression.
– FNFS w/c: Filtered NFS with compression.
– GZIP : NFS standard protocol with the file previously compressed with GZIP

at the server and decompressed at the client.

Simulations were made using the Traffic Control tool (tc) on the server side. tc
allows modifying traffic parameters like latency, bandwidth limit, and error rate.
In this way, the server was set to simulate VSAT, Low-Earth Orbit (LEO) and
Mid-Earth Orbit (MEO) satellite, and mobile 4G communication behaviours.

4.1 VSAT

VSATs (Very Small Aperture Terminals) consist of small satellite stations, that
work with Geostationary Satellites (GEO)[5]. Each VSAT station can be con-
figured in point-to-point or mesh topology. Usually, they are configured in a
star topology with a special station with a high-gain antenna, called Hub. In
this configuration, the signal must go through two round trips to the satellite
increasing the latency time.

4.2 LEO and MEO satellite constellations

A constellation of LEO satellites is placed near the surface of the earth (about
2000 to 5000 Km). Due to their closeness, stations do not need much power,
and the communication delay is around a few milliseconds (30-50 [ms])[6]. MEO
satellite constellation moves across the sky at a height of 8000 Km with a delay
of 70 to 150 [ms].

4.3 Mobile 4G communications

4G mobile networks[7] are intended to provide services like video and voice
streaming and mobility support. Packet loss must be especially considered here,
due to the kind of services these networks are thought to bring.

XXV Congreso Argentino de Ciencias de la Computación Río Cuarto, 14 al 18 de Octubre de 2019

-885-



4.4 Simulation Results

To evaluate the performance and the operation of FNFS, two nodes were used
with the following hardware configurations: Server) AMD A6-3670, 2.7 GHz,
8GB RAM. Client) Intel(R) Celeron(R) CPU G1820, 2.7 GHz, 4 GB RAM. The
nodes were connected through a dedicated 1 Gbps LAN Switch. Both nodes run
Debian 9.4 (called “stretch”) with a Linux kernel version 4.9.88.

The benchmarks performed to evaluate the amount of packet transferred
which would affect the network and battery usage, eventually the cost of the
transfer, and the total transfer time. Different hit rates of the filtered string,
between 0 (no matches) and 1 (100% matches) were used for the benchmarks.
Table 1 shows the configuration parameters (delay, bandwidth and packet loss)
considered for each technology. Fig. 3 presents the amount of packets transferred

Delay [ms] Bandwith [kbps] Packet loss [%]

MEO 150 492 0
4G/LEO 40 5120 2
VSAT 540 1024 0

Table 1: Summary of the Evaluated Configurations

(a) and the total tranfer time (b) on a MEO satellite link. For a hit rate lower
than 1/3, the amount of packets is reduced, even more if compression is used
(1/2). The total transfer time is greater than compressing the file with gzip,
only for a hit rate lower than 1/64 w/o compression and lower than 1/16 with
compression. Only when there are no hits, the transfer with the standard NFS
protocols is better than FNFS. The amount of packets transferred (Fig. 4(a))
for 4G/LEO links is lower for FNFS when the hit rate is lower than 1/3 without
compression and lower than 1 when FNFS uses compression. The total transfer
time (b) is lower for FNFS only for a hit rate of lower 1/64 w/o compression
and 1/16 with compression against zipping the file.

Fig. 5 shows the amount of packets transferred (a) and transfer time (b) on
a VSAT link. For a hit rate lower than 1/4, the amount of packets is reduced,
even more if compression is used (1/2).

Finally, the transfer time for a VSAT link results better when the file is
previously compressed and FNFS has not appreciable advantages over NFS.

As shown in figures 3-5, FNFS demonstrated to reduce the amount of pack-
ets transmitted and, in some cases the total transfer time with the exception
of a hit rate of 1. In this case, NFS performs better due to the extra work
(compression/encryption) made by FNFS. Even though these few cases, FNFS
is appropriated to reach the proposed goals.

XXV Congreso Argentino de Ciencias de la Computación Río Cuarto, 14 al 18 de Octubre de 2019

-886-



(a) Amount of packets transferred (b) Transfer time

Fig. 3: Results for MEO satellite.

(a) Amount of packets transferred (b) Transfer time

Fig. 4: Results for 4G/LEO.

(a) Amount of packets transferred (b) Transfer time

Fig. 5: Results for VSAT.

XXV Congreso Argentino de Ciencias de la Computación Río Cuarto, 14 al 18 de Octubre de 2019

-887-



5 Conclusions and Future Works

This work proposes to apply the “filtering useless data at the source” approach
on applications which read a large amount of raw data from a remote server.
The filtering rules are specified outside the application and are sent to the server
which applies them, afterwards it sends only useful records and encoded useless
records to the client. The Client rebuilds useless records with dummy data which
will be discarded by the application. This approach reduces network usage, cache
buffer utilization, transmission costs in per-packet leased links and battery usage
on remote autonomous IoT devices.

To evaluate the proposed approach, popular user-space NFS Client and NFS
Server were modified to include filtering capabilities resulting in FNFS. FNFS
was designed to keep compatibility with unmodified NFS versions. Moreover,
applications that use the protocol don’t have to be modified to work with it.

On the other hand, different environment benchmarks reveal a better use
of bandwidth, and in some cases lower transfer time. Also, as a consequence of
data compression, it reduces the amount of packet transferred. These features
translate into buffer saving, smaller numbers of packets to be processed by client
and server kernels and fastest communications. In addition, it also helps to keep
battery energy when talking about IoT devices, since they usually have limited
battery supply. Finally, it may also contribute to decrease communication costs
due to decreasing packet transmission for those services whose cost is propor-
tional to the data transferred.

Currently, FNFS is a prototype which can be improved to be used in produc-
tion environments and only supports a single preloaded filter. Future versions
should allow dynamic and multiple filters configurations and data transfer en-
cryption.

References

1. User-space NFSv3 Server, https://unfs3.github.io/
2. HSFS - an NFS client via FUSE, https://github.com/openunix/hsfs
3. J. Kreyig, H. Schukat, H.Ch. Zeider, H. Diel, H. Weber, An intelligent disk controller

- A processor system for file management and querry functions, Micropro- cessing
and Microprogramming, Volume 25, Issues 1-5, Pages 55-60, ISSN 0165-6074, 1989.

4. ZLIB, A Massively Spiffy Yet Delicately Unobtrusive Compression Library-
http://www.zlib.net/.

5. Bruce R. Elbert, The Satellite Communication Applications Handbook, Artech
House Space Applications Series, ISBN 1580534902, 2003. Pag. 327 and 406.

6. Satellite Internet access. https://en.wikipedia.org/wiki/Satellite Internet access
7. N. J. Upadhyay, Analyzing VoIP for 3G / 4G Wireless Networks, 2009.

XXV Congreso Argentino de Ciencias de la Computación Río Cuarto, 14 al 18 de Octubre de 2019

-888-




