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ABSTRACT	
The	 Talbot	 effect	 is	 a	 diffractive	 phenomenon	 which	 was	 found	 since	 its	 inception	 in	 the	
Gaussian	 optics,	 but	 when	 the	 period	 of	 the	 object	 is	 comparable	 with	 the	 wavelength	 is	
considered	entering	its	non-paraxial	regime.	There,	it	has	attracted	interest	for	its	applications	
related	to	the	design	of	objects	and	their	restorative	effects	posing	in	damaged	gratings	on	this	
scale.	 In	 this	 contribution	 a	 study	 of	 this	 phenomenon	 at	 level	 non-paraxial	 (metaxial)	 is	
presented	 by	 using	 scalar	 diffraction	 theory	 in	 plane	 waves	 representation	 for	 periodic	
transversal	fields.	To	this	end,	a	one-dimensional	amplitude	grating	of	period	p	is	used	which	
is	illuminated	by	a	monochromatic	plane	wave	of	wavelength	λ	where	p	ranges	between	1,5	λ	
and	4,2	λ.		
Key	words:	Talbot	effect,	amplitude	grating,	non	paraxial	optics.	
RESUMEN	
El	 efecto	 Talbot	 es	 un	 fenómeno	 difractivo	 ubicado	 desde	 su	 origen	 en	 la	 óptica	 Gaussiana,	
pero	cuando	la	longitud	de	onda	es	comparable	con	el	periodo	del	objeto	se	considera	que	este	
efecto	 entra	 en	 su	 régimen	no	paraxial,	 el	 cual	 nuevamente	ha	despertado	 el	 interés	por	 su	
volumen	 de	 aplicación	 relacionado	 con	 el	 diseño	 de	 objetos	 y	 sus	 efectos	 curativo	 que	
presenta	en	redes	averiadas	a	esta	escala	En	esta	contribución	presentamos	un	estudio	de	este	
fenómeno	 a	 nivel	 no	 paraxial	 (metaxial),usando	 la	 teoría	 escalar	 de	 difracción	 en	
representación	de	ondas	planas	para	campos	periódicos	transversal.	Para	ello	se	utiliza	como	
objeto	periódico	una	red	de	amplitud	unidimensional	de	periodo	p,	 iluminada	con	una	onda	
plana	monocromática	de	amplitud	unitaria	y	longitud	de	onda	λ,	donde	p	se	encuentra	entre	
1,5	λ	y	4,2	λ	.	
Palabras	clave:	Efecto	Talbot,	red	de	amplitud,	óptica	no-paraxial.	
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1.	Introduction	
The	Talbot	effect	is	displayed	when	a	grating	is	illuminated	with	a	plane	wave	and	consists	in	the	presence	
of	 self-images	 of	 the	 grating	 at	 determined	 planes.	 These	 images	 are	 generated	 by	 propagation	 in	 free	
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space	of	 the	diffracted	optical	 field.	When	 the	 location	of	 these	planes	 is	 related	 to	 the	 so-called	Talbot	
distance,	the	paraxial	regime	takes	place.	In	the	(non-paraxial)	metaxial	regime	at	optical	frequencies,	the	
position	 of	 the	 self-images	 does	 not	 correspond	 to	 the	 Talbot	 distance	 and	 can	 be	 used	 to	 observe	
abnormalities	in	periodic	(or	quasi-periodic)	objects	that	are	perfect	in	the	paraxial	regime,	i.e.,	achieving	
"super-resolution"	 on	 this	 scale	 [1,2].	 The	 paraxial	 Talbot	 effect	 among	 other	 applications	 is	 used	 to	
increase	 or	 decrease	 the	 spatial	 frequency,	 in	 integrated	 optics	 for	 optical	 coupling,	 in	 microscopy	
techniques	 and	 image	 restoration.	 It	 has	 been	 studied	 at	 different	 scales	 and	 in	 different	 propagation	
media.	 Thus,	 it	 has	 been	 shown	 in	 waveguides,	 in	 designing	 the	 components	 of	 integrated	 optics	 and	
multiplexed	applications,	and	also	in	an	inhomogeneous	medium	with	gradient	index	micro-lenses,	giving	
an	idea	of	this	effect	at	micrometric	scale	[3].	 In	addition,	 it	has	been	investigated	the	chromatic	regime	
and	 its	 application	 to	 spectrometry	 [4],	 aberrations	of	 the	 self-images	 in	 the	paraxial	 regime	 [5],	 in	 the	
study	of	 plasmonic	waves	 [6-8]	 and	nonlinear	photonic	 crystals	 [9],	 generation	of	 optical	 vortices	 [10],	
and	more	recently	with	volume	grating	in	photorefractive	crystals	[11,12]	and	digital	holography	[13].		

On	 the	 other	 hand,	 the	 phenomenon	has	 been	 studied	with	 high	density	 gratings	 in	 the	 deep	 region	 of	
Fresnel	diffraction,	which	shows	that	there	are	self-images,	longitudinally	non-periodic,	positioned	by	an	
empirical	 relationship	 and	 is	 called	 quasi-Talbot	 effect	 [17-19].	 Later,	 the	 relationship	was	 established	
from	 the	 scalar	 diffraction	 theory	 [20].	 In	 this	 contribution	 the	 study	 of	 non	 paraxial	 Talbot	 effect	 is	
deepened	 by	 an	 analysis	 of	 propagating	wave	modes	 that	 contribute	most	 to	 self-images	 formation	 for	
gratings	with	periods	between	2λ	and	4,2λ.		

	

2.	Non-paraxial	Talbot	effect	
Let	 us	 consider	 a	 non-limited	 amplitude	 grating	 as	 a	 one-dimensional	 periodic	 distribution.	 The	 scalar	
field	behind	 the	grating	of	period	 p positioned	at	 the	origin	 (z	=	0),	 illuminated	by	a	unitary	amplitude	
plane	wave	normally	incident	can	be	written:		

 ( ) ( ) ( ) ( ) ( )( )1/22 2, exp 2 / exp , 2 / 2 /n n
n z z

n
E x z C inx p ik z k n pp p l p= = -å   (1) 

Where	Cn	is	a	Fourier	coefficient.	Let	us	consider	that	 p l>> ,	then	 ( )2 22 / 2 / 2nk z z n z pp l p l» - .	Taking	

into	 account	 that	 the	 square	 of	 an	 integer	 n 	 is	 an	 integer,	 at	 z	 = 22 /TZ p l= 	 (Talbot	 distance)	 all	 the	
Fourier	components	of	 the	optical	 field	exactly	have	the	same	relative	phase	differences	as	 they	have	at	
the	 plane	 z	 =	 0.	 Thus,	 the	 grating	 field	 distribution	 replicates	 itself.	 These	 self-images	 are	 observed	 at	
distances	that	are	multiples	of	the	Talbot	distance,	that	is	 Tz nZ= .	More	complex	field	patterns	occur	at	
fractional	 Talbot	 distance	 values.	 These	 patterns	 are	 localized	 to	where	 ( / s) Tz q Z= 	 with	 q and	 s 	 are	
integers.	 In	the	case	of	 fractional	Talbot	planes,	many	Fourier	components	of	the	field	(but	not	all)	have	
the	same	relative	phase	difference	and	the	field	pattern	is	similar	to	the	field	distribution	at	z	=	0,	but	not	
reproduced	exactly	[1,	20].	

The	condition	to	achieve	exact	self-images	requires	that	all	plane	waves	are	in	phase	at	the	same	distance.	
If	the	center	frequency	(0,	kz0)	is	chosen	as	the	reference,	this	condition	can	be	written	as	[1,	2,	20]:	

	

 0exp ik z exp ik znz R z Ré ù é ù=ë û ë û   (2) 

By	using	the	first	two	frequencies	it	is:	

 ( )( )2z / 1 1 / pR l l= - -   (3) 

Eq.	(3)	represents	the	Rayleigh	distance	which	is	an	approximation	of	the	metaxial	Talbot	regime	[2,	15].	
Using	the	same	condition	(2)	for	self-images	and	taking	an	arbitrary	component	propagating	mode	m	as	
reference	that	participates	in	the	formation	of	self-image,	the	general	expression	[20]	is	obtained:	

 ( ) ( )( )2 2z / 1 / p 1 / pmn mnC m nl l l= - - -   (4) 



Opt.	Pura	Apl.	50	(2)	119-126	(2017)	 122	 ©	Sociedad	Española	de	Óptica	

Which	determines	the	location	of	the	self-images	in	near	field,	and	the	corresponding	π	radians	shifted	
self-image	results:	

 ( ) ( )( )2 21z / 1 / p 1 / p
2mn mns C m nl l læ ö= - - - -ç ÷

è ø
  (5) 

where	Cnm,	m,	n	and	s	are	integers,	being	m	<	n.	

	

3.	Results	and	analysis	
In	this	one-dimensional	case,	consider	a	periodic	object	with	p	=	1,936	µm	illuminated	with	a	plane	wave	
of	 unit	 amplitude	 and	 wavelength	 λ	 =	 633nm	 (i.e.	 p	 ≈	 3λ)	 as	 in	 references	 [1,	 14,	 20].	 The	 maximum	
number	 of	 propagating	waves,	 according	 to	 the	 values	 of	 p	 and	 λ	 is	n	 =	 3.	 By	 considering	 Eq.	 (1)	 and	
neglecting	the	evanescent	waves,	the	field	distribution	is:	

 ( ) ( )
1/223

1 2 2
3

1, exp 2 / exp 2n
n

nE x z C inx p i z
p

p p
l=-

é ùæ ö
ê ú= -ç ÷
ê úè øë û

å   (6) 

Be	w	 the	width	 of	 each	 slit	 grating.	 By	 assuming	 that	p	 <<	w,	 in	 this	 case,	 the	 coefficients	Cn	 meet	 the	
condition	C1	=	C2	=	C3.	The	respective	intensity	patterns	are	displayed	at	different	z-positions	with	the	help	
of	the	program	Mathematica.	We	show	in	the	following	figures	the	object	as	in	the	work	of	ref.	[20],	and	
some	relevant	self-images.	

	

	
Fig.	1.	Object	at	z	=	0	µm.	

	

	
Fig.	2.	Self-image	at	z	=	10,	20µm	[20].	
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Fig	.3.	Quasi	self-image	at	ZR	=	11,	52µm.	

	

	
Fig.	4.	Self-image	at	z=15,	26µm	[20].	

	
By	observing	these	graphics,	it	can	be	inferred	that	at	the	Rayleigh	distance	no	self-image	is	formed	as	
shown	in	Fig.	3	and	that	the	true	self-images	around	it	are	formed	at	10,	20	µm	and	15,	26	µm	as	we	
observe	 in	Fig.	2	and	Fig.	4,	respectively.	This	 indicates	that	we	are	employing	a	grating	with	period	
comparable	to	the	wavelength	used.	Finally,	the	values	of	Zmn	by	using	Eq.	(4)	and	Eq.	(5)	are	obtained	
in	Fig.	2	with	C12	=	3,	C13	=	12,	C23	=	9	and	in	Fig.	4	with	s	=	2,	C12	=	3,	C13	=	12,	C23	=	9,	respectively.	

When	 we	 consider	 the	 self-image	 formation	 by	 including	 the	 first	 two	 evanescent	 waves,	 that	 is,	
assuming	n	 =	 4	 in	 Eq.	 (1),	we	note	 that	 self-images	 are	 the	 same	 as	 previously	 found	 (for	n	 =	 3).	 It	
indicates	 that	 the	 treatment	 of	 metaxial	 Talbot	 effect	 in	 free	 space	 only	 encompasses	 propagating	
waves.	Then,	it	implies	that	is	an	optical	far	field	phenomenon	in	such	gratings	with	period	in	the	range	
of	wavelengths,	 and	 not	 as	 in	 ref.[14]	 the	 authors	 had	 experimentally	 proposed	 by	 using	 near-field	
microscopy,	and	was	noted	and	corrected	in	ref.	[1]	.	

Hereinafter,	we	consider	the	formation	of	self-images	evaluating	its	location	using	Eq.	(4)	and	(5)	for	
different	relationships	between	the	period	and	the	wavelength. The	intensity	of	 the	self	or	quasi-self	
images	are	obtained	from	the	optical	field	presented	in	Eq.	(6)	at	different	axial	positions	by	operating	
the	 program	 Mathematica	 and	 using	 it’s	 manipulate	 command.	 In	 all	 cases	 a	 one	 dimensional	
amplitude	gratings	is	employed.	

3.a.	Grating	with	p	=	1µm,	λ	=	0,616	µm	(p	=	1,623λ).		
In	 this	 case,	 the	propagating	waves	 in	 the	 self	 image	 formation	 are	 for	n	 =	 -1,	 0,	 1.	Therefore,	 the	non-
paraxial	expression	reduces	to	the	Rayleigh	equation.	In	Table	1,	the	position	interval,	the	self-image	best	
position,	 kind	 of	 image,	 contrast	 C	 (Cimage	=	 (Imax-Imin)/(	 Imax+Imin	 )	 and	 C	 (%)	 =	 Cimagex100/Cobject	 with	 I:	
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intensity)	in	percentage	(%)	and	the	Cmn	values	are	displayed.	The	lowest	contrast	to	observe	self-images	
is	from	60%.	

TABLE	1.	Location	and	image	quality	obtained	with	scalar	diffraction	theory,	for	a	1D	grating	with	p	=	1.623λ	and	λ	=	0.616	µm.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

The	results	of	Table	1	 imply	that	the	grating	shows	an	axial	periodicity	 for	the	self-images	similar	to	
the	classical	case,	that	is	when	the	grating	period	is	much	larger	than	the	wavelength.	

3.b.	Grating	with	p	=	1,226	µm,	λ	=	0,633	µm	(p	=	2λ).		
In	 this	 case,	 the	propagating	waves	 in	 the	 self	 image	 formation	are	 for	n	 =	 -2	 -1,	0,	1,	2.	 In	Table	2,	 the	
position	 interval,	 the	 self-image	 best	 position,	 kind	 of	 image,	 contrast	 C	 in	 percentage	 (%)	 and	 the	Cmn	
values	are	displayed.		

	

Position	

Interval	(µm)	

Position	

(µm)	
Image	type	 C	(%)	 Cmn	and	s	

0,72-0,74	 0,73	 Fractional	 63,6	 C01=1,	C01/4	

1,10-1,80	 1,45	 Integer	π-shifted	 100	 C01=1,	s	=1	

2,15-2,20	 2,17	 Fractional	 63,6	 C01=13,	C01/4	

2,60-3,20	 2,90	 Integer	 100	 C01=1	

3.60-3,65	 3,63	 Fractional	 63,6	 C01=15,	C01/4	

3,80-4,50	 4,30	 Integer	π-shifted	 100	 C01=1,	s	=2	

5,05-5,10	 5,07	 Fractional	 63,6	 C01=1,	7C01/4	

5,30-5,90	 5,80	 Integer	 100	 C01	=2	

6,50-6,55	 6,53	 Fractional	 63,6	 C01=1,	9C01/4	

6,90-7,50	 7,20	 Integer	π-shifted	 100	 C01=1,		s	=3	

7,95-8,00	 7,98	 Fractional	 63,6	 C01=1,	11C01/4	

8,20-8,90	 8,70	 Integer	 100	 C01	=3	

9,42-9,45	 9,43	 Fractional	 63,6	 C01=1,	13C01/4	

9,80-10,40	 10,20	 Integer	π-shifted	 100	 C01=1.	s	=4	

10,86-10,90	 10,88	 Fractional	 63,6	 C01=1,	15C01/4	

11,20-11,90	 11,60	 Integer	 100	 C01	=4	

12,31-12,36	 12,33	 Fractional	 63,6	 C01=1,	17C01/4	

12,70-13,30	 13,10	 Integer	π-shifted	 100	 C01	=1,	s	=5	

13,76-13,80	 13,78	 Fractional	 63,6	 C01=1,	19C01/4	

14,10-14,80	 14,50	 Integer	 100	 C01	=5	

15,21-15,26	 15,23	 Fractional	 63,6	 C01=1,	21C01/4	

15,60-16,20	 15,95	 Integer	π-shifted	 100	 C01=1,	s	=6	

16,67-16,70	 16,68	 Fractional	 63,6	 C01=1,	23C01/4	

17,00	-17,70	 17,40	 Integer	 100	 C01	=6	

18,12-18,15	 18,13	 Fractional	 63,6	 C01=1,	25C01/4	

18,60-19,20	 18,90	 Integer	π-shifted	 100	 C01=1,	s	=7	

19,56-19,60	 19,58	 Fraccional	 63,6	 C01=1,	27C01/4	

19,90-20,50	 20,30	 Integer	 100	 C01	=7	
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TABLE	2.	Location	and	image	quality	obtained	with	scalar	diffraction	theory,	for	a	1D	grating	with	p	=2λ	and	λ	=	0.616	µm.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

3.c.	Grating	with	p	=	2,595	µm,	λ	=	0,633	µm	(p	=	4,1λ	).		
In	this	case,	the	propagating	waves	in	the	self-	image	formation	are	for	n	=	-4	-3	-2	-1,	0,	1,	2,	3,	4.	In	Table	
3,	the	position	interval,	the	self-image	best	position,	kind	of	image,	contrast	C	in	percentage	(%)	and	the	
Cmn	values	are	displayed.		

TABLE	3.	Location	and	image	quality	obtained	with	scalar	diffraction	theory,	for	a	1D	grating	with	p	=	4,1λ	and	λ	=	0.616	µm.	

	

Position	

Interval(µm)	

Position	

(µm)	
Image	
type	 C	(%)	 Cmn	

1,42-1,46	 1,44	 Integer	 80	 C12	=2	

3,64-3,70	 3,68	 Integer	 85	 C02	=6,	C12=5	

4,36-4,46	 4,40	 Integer	 95	 C12	=6,	C02=7,	C01	≈1	

5,04-5,12	 5,08	 Integer	 95	 C12	=7,	C02	=8,	C01	≈1	

5,82-5,86	 5,84	 Integer	 80	 C02	≈	9,	C12	=	8	

8,04-8,08	 8,06	 Integer	 75	 C02	≈13,	C12	=11	

8,74-8,82	 8,78	 Integer	 95	 C02	=14,	C12=12	

9,38-9,58	 9,48	 Integer	 100	 C01	=2,	C02	=15,	C12	=13	

10,18-10,24	 10,22	 Integer	 85	 C02	=16,	C12	=14	

13,14-13,20	 13,16	 Integer	 80	 C12	=18,	C02	≈21,	C01	≈3	

13,84-13,90	 13,88	 Integer	 90	 C12	=19,	C02	≈22,	C01	≈3	

Position	

Interval	(µm)	

Position	

(µm)	
Image	type	 C	(%)	 Cmn	

6,78-6,86	 6,82	 Integer	 66,3	
C02	≈1,	C03	≈	3,	C04	≈	8,	C12=1,	C13	=3,	

C23	=2,	C14	=8,	C24	=7,	C34=5	

8,82-8,98	 8,90	 Integer	π-
shifted	 82,5	 C02	≈2,	C03	≈	4,	C04	≈	11,	C12	≈1,	C13=4,	C23	

≈3,	C14	=10,	C24	=9,	C34	≈	6	

10,58-10,66	 10,64	 Integer	π-
shifted	 68,8	 C02	≈2,	C03	≈	5,	C04	=13,	C12	≈2,	C13	≈5,	C23	

≈3,	C14	≈12,	C24	≈11,	C34	≈	8	

13,76-13,78	 13,74	 Integer	 62,5	 C02	≈3,	C03	≈	7,	C04	=17,	C12	≈2,	C13	≈6,	C23	
≈4,	C14	≈16,	C24	=14,	C3	4≈	10	

14,74-14,84	 14,80	 Integer	 65	 C02	=3,	C03	≈	7,	C04	≈18,	C12	≈2,	C13	≈7,	C23	
≈5,	C14	≈17,	C24	=15,	C34≈	11	

19,46-19,66	 19,61	 Integer	 88,8	 C02	≈4,	C03	≈	10,	C04	≈24,	C12	=3,	C13	≈9,	
C23	=6,	C14	=23,	C24	=20,	C34=14	

20,36-20,54	 0,48	 Integer	 63	 C01	≈1,	C02	=4,	C03	≈	10,	C04	=25,	C12	=3,	
C13	≈9,	C23	≈6,	C14	=24,	C24	≈21,	C34	≈15	

26,32-26,44	 26,40	 Integer	 82	 C01	≈1,	C02	≈5,	C03	≈	13,	C04	≈32,	C12	=4,	
C13	=12,	C23	≈8,	C14	=31,	C24=27,	C34=19	

28,52-28,60	 28,50	 Integer	π-
shifted	 78	 C01	≈1,	C02	≈6,	C03	≈	14,	C04	≈35,	C12	≈	4,	

C13	≈13,	C23	≈9,	C14	=33,	C24=29,	C34	≈21	
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By	observing	the	results	of	the	tables	can	be	affirmed	that	when	the	contrast	is	optimum	the	coefficient	
values	of	the	non-paraxial	equation	take	exact	integer	values.	It	means	that	several	propagating	waves	
arriving	in	phase	contribute	to	self-image	formation	at	the	corresponding	distance.	Besides,	for	images	
with	optimum	contrast	the	coefficients	are	related	by	Cmn	=	Cqn	–	Cqm,	where	q,	m,	n	are	integers	and	0	≤	
q<	m<	 n	 where	 as	 usual	m	 and	 n	 represent	 the	 order	 number	 of	 allowed	 propagating	 waves.	 In	
particular,	the	relation	C12	=	Cq2	–	Cq1	holds	for	gratings	with	periods	between	2λ	and	4,2λ.	On	the	other	
hand,	 just	 few	 propagating	 waves	 contribute	 to	 self	 image	 formation	 in	 the	 lower	 contrast	 cases, 
where	is	observed	that	for	several	Cmn	approximate	their	values	to	an	integer	number.	

4.	Conclusions	
On	the	basis	of	the	results	shown,	it	can	be	concluded	that	the	non-paraxial	Talbot	effect	in	free	space	and	
at	optical	 frequencies	 for	gratings	of	high	density	and	period	between	2λ	and	4,2λ	 lacks	of	 spatial	 axial	
periodicity	 in	the	self-images	 location.	We	note	further	that	the	formation	of	self-images	on	this	scale	 in	
free	space	is	achieved	by	the	superposition	of	propagating	waves	without	the	participation	of	evanescent	
waves.	 Besides,	when	 these	 self-images	 having	 good	 contrast	 can	 be	 observed	 the	 vast	majority	 of	 the	
propagating	waves	interfere	in	phase	at	the	positions	where	are	formed	resembling	thereby	the	paraxial	
case.	Also,	others	which	are	called	quasi-self-images	and	have	acceptable	contrast	are	formed	where	only	
few	 propagating	 waves	 contribute	 in	 phase,	 which	 makes	 of	 this	 case	 different	 from	 the	 classical	
phenomenon	combined	with	the	non-axial	periodicity	location.	Finally,	according	to	the	results	reported	
in	Table	1	for	the	1,623	λ	period	grating,	its	self-image	locations	have	an	approximate	axial	periodicity	and	
agree	with	the	Rayleigh	formula.	In	addition,	half	period	replicas	appear	as	in	the	paraxial	case	where	the	
period	grating	is	much	larger	than	the	wavelength.		
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