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ABSTRACT

Context. Among the main effects that the Milky Way exerts in binary systems, the Galactic tide is the only one that is not probabilistic
and can be deduced from a potential. Therefore, it is possible to perform an analysis of the global structure of the phase space of
binary systems in the solar neighbourhood using the Galactic potential.
Aims. The aim of this work is to obtain a simple model to study the collisionless dynamical evolution of generic wide binaries systems
in the solar neighbourhood.
Methods. Through an averaging process, we reduced the three-dimensional potential of the Galaxy to a secular one-degree of freedom
model. The accuracy of this model was tested by comparing its predictions with numerical simulations of the exact equations of motion
of a two-body problem disturbed by the Galaxy.
Results. Using the one-degree of freedom model, we developed a detailed dynamical study, finding that the secular Galactic tide
period changes as a function of the separation of the pair, which also gives a dynamical explanation for the arbitrary classification
between “wide” and “tight” binaries. Moreover, the secular phase space for a generic gravitationally bound pair is similar to the
dynamical structure of a Lidov-Kozai resonance, but surprisingly this structure is independent of the masses and semimajor axis
of the binary system. Thus, the Galactic potential is able to excite the initially circular orbit of binary systems to high values of
eccentricity, which has important implications for studies of binary star systems (with and without exoplanets), comets, and Oort
cloud objects.

Key words. galaxies: kinematics and dynamics – binaries: general – solar neighborhood – methods: analytical –
methods: numerical – planets and satellites: dynamical evolution and stability

1. Introduction

The binary systems in the solar neighbourhood are commonly
associated with gravitationally bounded stars. However, the Sun
and a comet or an Oort cloud object can also be considered a bi-
nary system in the framework of a restricted two-body problem.
For any of these pairs, their orbits mainly change by the influ-
ence of Galactic tides and encounters with close passing stars
and molecular clouds (Brunini 1995; Eggers & Woolfson 1996;
Levison & Dones 2001; Fouchard et al. 2006; Jiang & Tremaine
2010; Kaib et al. 2011, 2013).

The effect exerted by the Milky Way on a binary system
depends on its orbit, since its semimajor axis (a) regulates the
influence of the Galactic environment. Binary systems with a
large separation are weakly bound by self-gravity, and there-
fore they are the most disturbed by the Galaxy (Heggie 1975;
Bahcall et al. 1985; Jiang & Tremaine 2010). These configura-
tions with a > 1000 au are called “wide binaries” (Roell et al.
2012) and a system with smaller semimajor axis is considered a
“tight or close” binary. This limit (∼1000 au) is defined empiri-
cally, but there is not an analytic deduction that supports it.

In the solar neighbourhood, our Galaxy disturbs a binary sys-
tem with two main effects: first, the tidal field of the Milky Way
and, second, the gravitational perturbation from passing stars
or other perturbers (e.g. molecular clouds). However, while the
Galactic tidal field is derived from an analytical potential, the

effects of encounters caused by passing stars (or other object)
correspond to a stochastic perturbation on the pair.

Therefore, because of the random influence of the
Milky Way in wide pairs, almost all the works carried out in this
area are statistical studies (Brunini 1995; Eggers & Woolfson
1996; Levison & Dones 2001; Fouchard et al. 2006; Jiang &
Tremaine 2010). However, despite the dynamic importance of
a theoretical analysis about the effect of the Galactic tide on a
binary system, it is difficult to find these types of studies in the
literature.

Heisler & Tremaine (1986) performed an analytical study of
the Galactic potential for the restricted two-body problem (i.e.
Sun-comet), but they focused on the lost rate of minor bodies due
to the Galactic tide and stellar encounters. We have not found a
specific study about the dynamic portrait of the secular phase
space of a binary system disturbed by the gravitational potential
of the Milky Way.

The importance of a detailed dynamical study about these
systems relies on the possibility of simplifying the Hamiltonian.
Such a mathematical procedure allows us to reduce the equations
of motion, with the consequent low computational cost, despite
the diversity of systems and initial configurations that can be
analysed.

The aims of the present work are twofold: first, to
obtain a simple model for the secular evolution of a pair of
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objects that are gravitationally bound and located in the solar
neighbourhood, and second, through that model, to perform a
detailed study of the effects of the Galactic gravitational poten-
tial in generic binary systems (i.e. star-star, Sun-comet, etc.).

In Sect. 2 we deduce the model that has one-degree of free-
dom. In Sect. 3 the model is used to find the position of the equi-
librium points of the Hamiltonian. In Sect. 4 a detailed analysis
of the phase space of a binary system is presented. An applica-
tion of the model is in Sect. 5. Conclusions close the paper in
Sect. 6.

2. The model for the Galactic potential

We allow m1 and m2 to be the masses of the components of a
binary system (i.e. star-star, star-planet, Sun-comet, etc.), which
are negligible compared with the mass of the Galaxy. The motion
of such a binary system in the Galaxy can be described by the
use of the Hill approximation (Heggie 2001; Binney & Tremaine
2008). We consider a non-inertial Cartesian astrocentric coor-
dinate system (x, y, z) with origin in the main body (m1). This
system is at a distance Rg from the Galactic centre, and corotates
with the Galaxy. The z-axis is perpendicular to the Galactic plane
and points towards the south Galactic pole, the y-axis points in
the direction of Galactic rotation, and the x-axis points radially
outwards from the Galactic centre.

Then, assuming a symmetric potential on the plane z = 0,
the Galactic tide disturbs the binary system according to the
Hamiltonian,

K =
1
2

(
ẋ2 + ẏ2 + ż2

)
−

µ√
x2 + y2 + z2

−2ΩG(xẏ − yẋ) − 2ΩGAGx2 +
ν2

Gz2

2
,

(1)

where µ = G(m2 + m1), G is the gravity constant and x, y, z,
ẋ, ẏ, ż are the astrocentric components of position and velocity
of the secondary body m2 around m1. Moreover, ΩG, AG, and
νG are the angular speed of the Galaxy, Oort constant, and fre-
quency for small oscillations in z, respectively. For Rg = 8 kpc
(i.e. approximately the distance from the Galactic centre to the
Sun) their values are (Jiang & Tremaine 2010)

ΩG � 3.017 × 10−8 yr−1 ,

AG � 1.513 × 10−8 yr−1,

νG � 7.258 × 10−8 yr−1.

(2)

The equations of motion for this Hamiltonian are (see
Jiang & Tremaine 2010)

ẋ =
∂K

∂ẋ
, ẍ = −

∂K

∂x
,

ẏ =
∂K

∂ẏ
, ÿ = −

∂K

∂y
,

ż =
∂K

∂ż
, z̈ = −

∂K

∂z
·

(3)

In dynamical studies it is convenient to work with orbital ele-
ments instead of Cartesian coordinates. Once again, we place
the centre of the coordinate system in m1, and then the orbital el-
ements correspond to the astrocentric orbit of m2 around m1. We
define the orbital elements as follows: the size and form of the
orbit are defined by the semimajor axis a and the eccentricity e,
respectively. The mean anomaly M indicates the position of m2
in the orbit. The reference plane is the mid-plane of the Galaxy,

and its intersection with the orbital plane of m2 defines the posi-
tion of the ascending node. The direction radially outwards from
the Galactic centre (i.e. x − axis) is taken as reference to de-
fine the angular position of the ascending node Ω, where the an-
gle is measured in anti-clockwise sense (i.e. towards the positive
y-axis). The inclination I is defined with respect to the reference
plane, and the argument of pericentre ω is measured from the as-
cending node in an anti-clockwise sense. For these astrocentric
orbital elements, we can define the Hamiltonian as

K = −
µ

2a
− 2ΩG

√
µa(1 − e2) cos I − 2ΩGAGx2 +

ν2
Gz2

2
, (4)

where

x = a
{

cos Ω
[
(cos E − e) cosω −

√
1 − e2 sin E sinω

]
− cos I sin Ω

[
(cos E − e) sinω +

√
1 − e2 sin E cosω

] }
,

z = a sin I
[
(cos E − e) sinω +

√
1 − e2 sin E cosω

]
, (5)

and E is the eccentric anomaly, which is an implicit function of
the mean anomaly (M = E − e sin E).

The first term in Eq. (4) corresponds to the two-body con-
tribution, K0. The second term in Eq. (4) is the z component
of the angular momentum multiplied by the angular speed of
the Galaxy (ΩG) and it is included because we are working in a
non-inertial frame. The influence of this term (K1) is small com-
pared with the two-body term K0. Finally, the last two terms
correspond to the tidal perturbation of the Galaxy, which are
still smaller than the previous terms, so both are considered a
perturbation called K2. Then, we can schematically write the
Hamiltonian as a disturbed two-body problem,

K = K0 +K1 +K2. (6)

Considering the distant-tide approximation (Jiang & Tremaine
2010), it is possible to write the effects of the Galactic tidal
field (i.e. K2) about Rg = 8 kpc using a Taylor series ex-
pansion. We truncate the series expansion at second order in
r =

√
x2 + y2 + z2, as in many other works (Heisler & Tremaine

1986; Jiang & Tremaine 2010; Kaib et al. 2013). Although it is
possible to consider higher orders of the series, their effects are
negligible for the range of distance (r) considered in this pa-
per (Sect. 2.2) and also for larger separations between the pair
Jiang & Tremaine (2010).

However, the orbital elements are not canonical variables,
which makes the application of the canonical perturbation the-
ory difficult (Morbidelli 2002; Ferraz-Mello 2007), despite the
complex equations of variation of the orbital elements. Then, a
better choice is to work with the canonical action-angles vari-
ables of Delaunay associated with the orbital elements defined
above written as

L =
√
µa, M,

G = L
√

1 − e2, ω,
H = G cos I, Ω.

(7)

In these variables the Hamiltonian is defined as

K0 = − 1
2µ

2L−2,

K1 = −2ΩGH,

K2 = −2ΩGAGx2 +
1
2
ν2

Gz2,

(8)
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where

x =
L2

µ

[
cos E

(
cosω −

H
G

sinω sin Ω

)
−

G
L

sin E
(
sinω cos Ω +

H
G

cosω sin Ω

)
+

√
1 −

(G
L

)2 (H
G

sinω sin Ω − cosω cos Ω

) ]
,

z =
L2

µ

√
1 −

(H
G

)2[
cos E sinω

+
G
L

sin E cosω −

√
1 −

(G
L

)2

sinω
]
,

(9)

and with these variables, the equations of variation of the orbital
elements are the following Delaunay equations:

Ṁ =
∂K

∂L
, L̇ = −

∂K

∂M
,

ω̇ =
∂K

∂G
, Ġ = −

∂K

∂ω
,

Ω̇ =
∂K

∂H
, Ḣ = −

∂K

∂Ω
·

(10)

For the objectives of this paper, it is convenient to write the
Eq. (9) as

x = ax1

z = az1,
(11)

where x1 and z1 are functions of the orbital elements e, I, M,
ω, and Ω with their range of values between –1 and 1. More-
over, the derivative of these functions with respect to the action
variables L, G, and H can also be written in a simplified form as

∂x
∂χ

=

√
a
µ

xχ

∂z
∂χ

=

√
a
µ

zχ,
(12)

with χ representing any of the action variables. The functions xχ
and zχ are dependent of the orbital elements e, I, M, ω, and Ω,
and they are bounded in the range ∈ (–1, 1).

Finally, the limit for the disturbed two-body problem de-
pends on the semimajor axis, since for small values of a the per-
turbations of the Galaxy (K1 and K2) are too small. However,
with the increase of the semimajor axis such approximation is
no longer valid because of the increase of the disturbing terms
(i.e. we leave the regime of a disturbed two-body problem).

2.1. The one-degree of freedom model

The Hamiltonian (6) can be written as

K = Kg0 + εKg1, (13)

with,

Kg0 = −
µ2

2L2 − 2ΩGH,

ε =

(
a
rJ

)3

,

Kg1 = −
µ

2 a3 x2 +
β µ

4 a3 z2,

(14)

where

β =
ν2

2ΩGAG
= 5.77 (15)

is a constant and

rJ =

(
µ

4ΩgAg

)1/3

(16)

is the radius of Jacobi of a binary system in the tidal field of
the Galaxy (Jiang & Tremaine 2010). Considering a three-body
system composed by the binary system and the Galaxy, the tidal
radius rJ is the position of the stationary Lagrange points L1,
which defines the Roche lobe of the binary. Here, Kg0 is the
integrable approximation, Kg1 the disturbing function or per-
turbation. and ε a small parameter. Thus, we can represent the
Hamiltonian (6) as the Hamiltonian of a quasi-integrable sys-
tem (Morbidelli 2002; Ferraz-Mello 2007). Moreover, the quasi-
integrable Hamiltonian (13) can be written in the simplified
form,

K(L,H,G,M,Ω, ω) = Kg0(L,H) + εKg1(L,H,G,M,Ω, ω) ,
(17)

where

fo =
∂K0

∂L
= n,

fn =
∂K0

∂H
= −2ΩG

(18)

are the frequencies of the integrable approximation and n the
mean motion of the binary system. Therefore, we can perform a
first-order averaging of the Hamiltonian over the fast angles M
and Ω. This averaging is performed by the Hori method at first
order (Morbidelli 2002; Ferraz-Mello 2007), which takes ad-
vantage of the Lie series and is similar to the transformation
of Von Zeipel-Brouwer (Brouwer & Clemence 1961; Naoz et al.
2013).

The averaged Hamiltonian can be written as

K∗(G∗, ω∗; L∗,H∗) = K∗g0(L∗,H∗) + εK∗g1(G∗, ω∗; L∗,H∗),
(19)

where K∗g0 has the same functional form that Kg0, and K∗g1
define the homologic equation,

K∗g1 = Kg1 + {Kg1, χg}, (20)

with χg as the generating function.
In order to solve the homologic equation we take advantage

of the Hamiltonian (6), which is periodic in the angles M and Ω,
the disturbing function can thereby be expanded in Fourier
series,

Kg1 =
∑
n∈Z3

cn expin.q, (21)

where q = (M,Ω, ω) and n is an integer vector. Then, for a simi-
lar expansion of the homologic equation, the averaged disturbing
function is simply K∗g1 = c0. The corresponding coefficient c0
of the Fourier expansion is

K∗g1 = c0 =
1

4π2

∫ 2π

0

∫ 2π

0
Kg1 dM dΩ , (22)
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or using the implicit relation M = E − e sin E and its differential
form dM = 1 − e cosE dE, we can write

K∗g1 = c0 =
1

4π2

∫ 2π

0

∫ 2π

0
Kg1 (1 − e cosE) dE dΩ . (23)

For more details about the averaging process, see Chap. 2 of
Morbidelli (2002).

Then, the averaging disturbing function is defined as

K∗g1 =
µ2

4 L∗2

{
α

G∗2
[ (

2L∗2 −G∗2
) (

G∗2 − H∗2
)

−
(
L∗2 −G∗2

) (
G∗2 − H∗2

)
cos 2ω∗

]
−

(
2L∗2 −G∗2

) }
,

(24)

with α = 0.5(1+β). In terms of astrocentric orbital elements, the
mean-mean or averaged disturbed function can be expressed as

K∗g1 =
µ

4 a∗
[
α(sin I∗)2

(
1 + e∗2 − e∗2 cos 2ω∗

)
−

(
1 + e∗2

)]
,

(25)

where a∗, e∗, I∗,ω∗ are the mean-mean orbital elements averaged
in the fast angles M and Ω.

From the averaging process we obtain new canonical vari-
ables (L∗, G∗, H∗, M∗, ω∗, Ω∗) such that the transformed Hamil-
tonian is K∗ =K∗(G∗, ω∗; L∗, H∗) and M∗ and Ω∗ are cyclic. The
associated momenta L∗ and H∗ are then new constants of motion,
and the system is reduced to a model with one-degree of free-
dom for the canonical variables (G∗, ω∗). Thus, the mean-mean
Hamiltonian, which defines our one-degree of freedom model, is

K∗ = K∗g0 + εK∗g1, (26)

with

K∗g0 = −
µ2

2(L∗)2 − 2ΩGH∗. (27)

Owing to the conservation of H∗ (H∗ = L∗
√

1 − e∗2 cos I∗),
there is a coupling between the eccentricity and inclination, and
thereby the dynamical behaviour of the system seems to be simi-
lar to the Lidov-Kozai resonance (Lidov 1961; Kozai 1962; Naoz
2016).

2.2. Scope of the approximation

The scope of our quasi-integrable Hamiltonian (6) is defined by
the weight of the disturbing function. The second term of the
right part in Eq. (6) must be a small perturbation over the inte-
grable Hamiltonian Kg0.

The integrable Hamiltonian has two terms and working alge-
braically we obtain

Kg0 = −
µ

2a

(
1 + 4 J(e, i) µ−0.5 ΩG a1.5

)
, (28)

where J is a function with values in the range ∈ (–1, 1). The
functional form of the second term in the parenthesis of the right
side in Eq. (28) can be approximately by its dependence on a be-
cause the range of values of the parameter µ is smaller than the
range of the semimajor axis. So, the second term in the parenthe-
sis becomes comparable to 1 for a ∼ 105 au. In this way we can

Fig. 1. Level curves of constant ε in the plane (a, m1 + m2). The dot-
ted red line indicates the limit for the integrable approximation. The
approximation fails for the binary systems below the dashed blue line.
The red symbols (cross, triangle, and circle) represent the position of
three binary systems (see Sect. 2.5).

approximate Kg0 ∝ µa−1. On the other hand, the perturbation
can be written using the simplified forms (11) and (12),

εKg1 =

(
a
rJ

)3
µ

4 a

(
−2x2

1 + 5.77z2
1

)
, (29)

and then,Kg1 ∝ µa−1. Therefore, the integrable Hamiltonian and
the disturbing function are comparable terms, being ε = a3r−3

J
who defines the weight of the perturbation. The limit for the dis-
turbing regime is difficult to define, but we can consider ε ∼ 0.05
as the upper limit for the quasi-integrable approximation.

However, the small parameter only depends on the semima-
jor axes and the masses

ε =

(
a
rJ

)3

=
4ΩGAG

G

a3

m1 + m2
· (30)

Thus, the scope of the one-degree of freedom model is defined
by two parameters. Figure 1 shows level curves of ε in the plane
(a, m1+m2), with the approximated upper limit (ε ∼ 0.05) shown
with a dotted red line. The binary systems below the dashed blue
curve cannot be approximated by the model, but these are very
separated pairs of small masses. Finally. we can quickly estimate
the limit of the integrable approximation for any binary system
from the graph.

2.3. Numerical approximation of the one-degree of freedom
model

The weak effect of the Galactic perturbation for the case ε < 0.05
can also be deduced from the motion equation of the complete
three-degree of freedom model.

The temporal evolution of the mean anomaly (Eq. (10)) is
defined as

Ṁ =
∂K0

∂L
+
∂K1

∂L
+
∂K2

∂L
· (31)
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The second term in the right side of the Eq. (31) is zero since
it is independent of L, the first term is the mean motion of the
astrocentric orbit of m2 around m1, and the last term is the per-
turbation of the Galaxy,

Ṁ = n +
∂K2

∂L
, (32)

where

∂K2

∂L
= −4ΩGAGx

∂x
∂L

+ ν2
Gz
∂z
∂L
, (33)

which can be written using a simplified form (Eqs. (11)
and (12)), i.e.

∂K2

∂L
∼ −

ε

4

√
µ

a3 (2x1xL − 5.77z1zL). (34)

Because we are considering ε < 0.05 the second term in the
right part of Eq. (32) is smaller than the mean motion of the bi-
nary system. Therefore, the perturbation of the Galaxy is small
enough to use the approximation M ∼ nt + τn (τn is an arbitrary
constant). So, M circulates with a frequency n, and the semima-
jor axis has an almost constant evolution with a small amplitude.

The precession frequency of the ascending node is defined as

Ω̇ =
∂K0

∂H
+
∂K1

∂H
+
∂K2

∂H
· (35)

In this equation the first term of the right part is zero since K0
is independent of H, the second term is the motion of the binary
system around the Galaxy, and the last term corresponds to the
tidal perturbation of the Galaxy,

Ω̇ = −2ΩG +
∂K2

∂H
· (36)

where

∂K2

∂H
= −4ΩGAGx

∂x
∂H

+ ν2
Gz

∂z
∂H

, (37)

which can be written using a simplified form (Eqs. (11)
and (12)), i.e.

∂K2

∂H
∼ −

ε

4

√
µ

a3 (2x1xH − 5.77z1zH). (38)

In this case, for ε < 0.05 the second term in the right side of
Eq. (36) is smaller than the angular velocity of the binary system
around the Galaxy (i.e. ΩG).

Then, since the perturbation of the Galaxy is small we can
write Ω ∼ 2ΩGt + τo (τo is an arbitrary constant), which corre-
sponds to a circulation of the angle Ω with frequency 2ΩG, the
action H has small variations and can be considered almost con-
stant. The circulation of Ω is related to the orbital period of the
binary system around the centre of the Galaxy.

The frequency of the argument of pericentre is defined as

ω̇ =
∂K0

∂G
+
∂K1

∂G
+
∂K2

∂G
· (39)

The first and second terms on the right side are independent of G∗
and then are equal to zero. The last term, which is small, defines
the tidal perturbation of the Galaxy on the binary system. So, the
frequency is defined by

ω̇ =
∂K2

∂G
= −4ΩGAGx

∂x
∂G

+ ν2
Gz
∂z
∂G

, (40)

which can be simplified with the approximations (11) and (12),

∂K2

∂G
∼ −

ε

4

√
µ

a3 (2x1xG − 5.77z1zG), (41)

which define the secular evolution of the binary system.
Thus, for ε < 0.05 the equations of motion for the original

three-degree of freedom model can be approximated by

Ṁ ∼ n, L̇ ∼ 0,

ω̇ =
∂K2

∂G
, Ġ = −

∂K2

∂ω
,

Ω̇ ∼ −2ΩG, Ḣ ∼ 0.

(42)

In this approximation L and H are almost constants with small
variations, and the angles M and Ω circulate with an osculating
period Tn ∼ 2π/n and a Galactic rotational period To ∼ π/Ωg ∼

108 yr, respectively. The latter defines the small precession of
the ascending node, which is related to the circulation of the sys-
tem around the Galaxy. Hence, the tidal secular evolution has a
dynamical behaviour that can be approximated by a system of
one-degree of freedom and is defined by the pair action-angle
variables G and ω. The almost constant value of H implies a dy-
namical behaviour of e and I that is similar to the dynamic of the
Lidov-Kozai resonance, such as we deduce from the averaging
process.

2.4. Frequency analysis

From the three natural frequencies involved in the problem we
can perform a brief comparative analysis between them, such
as that carried out by Antognini (2015). A frequency analysis
(Michtchenko et al. 2002) is very important because this allows
us to predict the interaction between the natural frequencies of
the system, which can act as a source of chaos (i.e. commensu-
rable periods). Our previous deduction of the angular frequen-
cies allows us to define the secular ( fs), node-precession ( fn),
and osculating ( fo) frequencies as

fs = ω̇ ∝ ΩGAG

√
a3

µ
,

fn = Ω̇ ∝ 2ΩG,

fo = Ṁ ∝

√
µ

a3 .

(43)

Then, the ratio between these frequencies are

fo/ fs ∼
4
ε
,

fn/ fs ∼ 4
√

ΩG

AGε
,

fo/ fn ∼

√
AG

ΩGε
·

(44)

Figure 2 shows the ratio between the frequencies for the same
range of masses and semimajor axis of Fig. 1. The relation be-
tween the high frequencies and the secular frequency are indi-
cated with a dashed black line for fo/ fs, and dotted blue line for
fn/ fs. For simplicity, we only plot levels 1 and 10 because the
commensurable region is restricted to binary systems with par-
ticular characteristics. The ratio fo/ fn is plotted with a red line
and we show the levels 1, 2, 5, and 10. For the high frequencies,
the commensurability ( fo/ fn ≤ 5) achieves a greater region in
the plane (a, m1 + m2).
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Fig. 2. Level curves of the ratio between the frequencies: fo/ fs (dashed
black line), fn/ fs (dotted blue line) and fo/ fn (red line). For the com-
parison with the secular frequency we plot the ratio 1 and 10. For the
comparison between the fast frequencies ( fo/ fn) we plot the levels 1,
2, 5 and 10. The red symbols (cross, triangle and circle) represent the
position of three binary systems (see Sect. 2.5).

For binary systems with a < 3×106 au (∼1.5 pc), the problem
of the interaction of the secular frequency with the other periods
is restricted to small masses. For binary systems with m1 + m2 >
0.1 M�, fo and fn are commensurate for a > 60 000 au. Then,
the application of the secular one-degree of freedom model is
accurate for binary systems with fo/ fn ≥ 5. The scope of the
model (Sect. 2.2) is close to the start of the non-secular region.

Finally, the approximated secular frequency for binary sys-
tems with a < 1000 au and m1 + m2 < 10 M� (Eq. (43)) has an
associated period of hundred of Gyr. Such a period is an order
of magnitude greater than the age of the universe (i.e. ∼13 Gyr).
This gives a theoretical explanation for the empirical limit of
1000 au between tight and wide binary systems .

2.5. Testing the one-degree of freedom model:
an application example

In order to show the use of the model we use a binary sys-
tem with masses m1 = 1.0 M� and m2 = 0.3 M� as an ex-
ample. The secondary star is moving around the main star in
an initial configuration named “standard system”, where the
initial parameters are a0 = 10 000 au (L0 = 716.4 au2/yr),
e0 = 0.2 (G0 = 702 au2/yr), I0 = 53◦ (H0 = 421.86 au2/yr),
and ω0 = 90◦. The other two angles are equal to zero. Figures 3
and 4 show the temporal evolution of the action and angle vari-
ables of Delaunay, respectively. In these figures the simulations
were carried out by integrating the exact equations of motion
through a Bulirsch-Stoer code with adopted accuracy of 10−13.

On the top graphs of each Figure we show the evolution of
the osculating elements, the middle panels show the evolution of
motion in the Galactic z direction, and the bottom panel of each
figure represents the secular motion. In the case of M, there is
a circulation and L has a small variation (∆L/L0 ∼ 10−4). The
same behaviour is followed by the angle Ω which circulates, and

Fig. 3. Time evolution of the action variables of Delaunay L (top panel),
H (middle panel) and G (bottom panel) for our standard system. The
small variations of L and H and the circulation of M and Ω (Fig. 4)
confirm the proposed approximation.
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Fig. 4. Time evolution of the angular variables of Delaunay M (top
panel), Ω (middle panel) and ω (bottom panel) for our standard sys-
tem. The small variations of L and H (Fig. 3) and the circulation of M
and Ω confirm the approximation proposed.

Fig. 5. Comparison between the predictions of our model (dashed black
line) and numerical simulations (red and blue lines) in the plane (ω∗, e∗),
for the family of solutions of the standard system.

the variation of H is also small (∆H/H0 ∼ 10−3). If we consider
the secular motion, it is evident that the influence of the two first
degrees of freedom considered are small and this confirms that
L̇∗ ∼ 0 and Ḣ∗ ∼ 0, and then the simple model is useful in this
case.

On the other hand it is remarkable that the tidal secular pe-
riod is long (∼7 × 109 yr) and has a timescale that is comparable
to the age of the solar system as we can see in the evolution of G
andω. The angleω librates (or oscillates) and later we determine
if this motion is resonant or not. The period of the precession of
the ascending node is ∼108 yr, and it is seen in the pair angle-
action Ω and H. This dynamical behaviour shows a combined
dynamics between the tidal secular component and the preces-
sion of the stellar pair, but owing to the great differences between
the terms in the Hamiltonian (K1 � K2), we can approximate
the decoupling of both dynamical components. This is also valid
for the osculating behaviour, where the secular and node preces-
sion are responsible for the amplitude different to zero in L. The
limits for such approximation are determined in the following
sections.

However, our standard system (Figs. 3 and 4) is only one
case. In order to show a more robust confirmation of our ap-
proach, we considered a set of binary systems with equal values
of masses, H∗ and L∗. We call such set of solutions a family.
The mean-mean variables, which are needed in the one-degree
of freedom model, can be obtained with the generatrix function.
Nevertheless, because of the small amplitude of the two osculat-
ing actions variables L and H, we can use the initial values to
approximate their mean-mean values L∗ and H∗.

Although, the action G∗ is a canonical variable, for practical
applications the eccentricity is more useful. Figure 5 shows, with
a dashed black line, the level curves of constantK∗ for the family
of the standard system (i.e. equal values of m1, m2, L∗, and H∗)
in the plane (ω∗, e∗), which were calculated with the one-degree
of freedom model. In Fig. 5 we also include the numerical sim-
ulation of ten binary systems, with the same initial values of H
and L, that could be approximated by the mean-mean values. In
that figure the binary systems with circulation in the angle ω are
indicated in red, and those with oscillation are shown in blue.
We can see that our model is a good approximation of the real
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Fig. 6. Energy levels of the secular Hamiltonian (45) in the plane
(e∗ cos 2ω∗ – e∗ sin 2ω∗) for the family of solutions of the standard sys-
tem. The dashed green line shows the kinematic transition from oscilla-
tion to circulation.

system because the other two degrees of freedom have a small
influence in the secular dynamic of the real binary system, and
this allows us to approximate the mean-mean variables L∗ and
H∗ by their osculating variables L and H.

However, there is a small difference between the model and
numerical simulations at high eccentricities in Fig. 5 because of
our assumption that the osculating actions are similar to their
averaged value. Although in a first approximation the prediction
can be useful, for a more accurate result it is necessary to calcu-
late the averaged value of L and H with the generating function
χg or with a short numerical integration.

Moreover, in order to test our analytic estimations of the
quasi-integrable approximation and the ratio of frequencies, we
carry out three numerical simulations with different semimajor
axes. We consider the standard system with the following dif-
ferent separations: a = 10 000 au (∼0.05 pc), a = 60 000 au
(i.e. ∼0.3 pc), and a = 100 000 au (∼0.5 pc). In Figs. 1 and 2,
the three cases are indicated with red symbols as follows: a
cross for a = 10 000 au, a triangle for a = 60 000 au, and
a circle for a = 100 000 au. For the three examples, we plot
the temporal evolution of the angle ω and the dynamical be-
haviour in the plane (ω, e) in Figs. 7 and 8, respectively. For
a = 60 000 au the temporal evolution shows other perturbations
in addition to the secular frequency and for larger semimajor
axes (i.e. a > 60 000 au) our approximation is no longer valid
(i.e. fo and fn are commensurable), which agrees with our ana-
lytical deduction.

The prediction of the secular one-degree of freedom model
shows a good agreement with the numerical experiments for
ε < 0.05 and out of the region of commensurable frequencies,
indicating that the model seems to be accurate enough for the
approximations considered.

3. Stationary solutions of the averaged Hamiltonian

The family of solutions in Fig. 5 shows two stable stationary so-
lutions at (ω∗, e∗) ∼ (90◦, 0.54) and (270◦, 0.54). Such points
are equilibrium solutions (maxima or minima) of the tidal sec-
ular dynamic defined by the Hamiltonian function. From the

Fig. 7. Evolution of the angle ω for the binary system of Figs. 3 and 4,
but with the following three different values of semimajor axis: a =
10 000 au (top panel), a = 60 000 au (middle panel), and a = 100 000 au
(bottom panel).
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Fig. 8. Dynamical evolution of the binary system of Figs. 3 and 4 in the
plane (ω, e), but for the following three different values of semimajor
axis: a = 10 000 au (red), a = 60 000 au (green), and a = 100 000 au
(black).

mean-mean Hamiltonian of the one-degree of freedom model,
we can find the position of the equilibrium solutions and also
we are able to determine if the coupling between e∗ and I∗
(H∗ = const.) is a consequence of the Lidov-Kozai type reso-
nance or not. In the case of a resonant behaviour there are three
equilibrium points, while in a non-resonant one there is a single
point (Murray & Dermott 1999).

The averaged mean-mean Hamiltonian is

K∗ = −
µ2

2L∗2
− 2ΩGH∗ + εK∗g1(G∗, ω∗; L∗,H∗), (45)

where the two first terms are constant (i.e. H∗ and L∗), and the
equilibrium points of the Hamiltonian are defined by the last
term. Thus, our function is

K∗g1 = K∗g1(G∗, ω∗; L∗,H∗), (46)

with variables G∗ and ω∗.
The zero of the equations of motion are

ω̇∗ = ε
∂K∗g1

∂G∗
= 0,

Ġ∗ = −ε
∂K∗g1

∂ω∗
= 0,

(47)

where the frequency of G∗ is the derivative of the Hamiltonian
with respect to the angle ω∗, and only the second term is a func-
tion of this angle (Eq. (24)). Then, the equilibrium solutions are
possible for sin 2ω∗ = 0 (i.e. 2ω∗ = mπ, with m = 0, 1, 2, etc.).

On the other hand, the frequency of ω∗ is the derivative of
the Hamiltonian with respect to the action G∗,

∂K∗g1

∂G∗
=

µ2

4 L∗2

{
G∗[α (2 cos 2ω∗ − 1) + 1]

−
2α(cos 2ω∗ − 1)H∗2L∗2

G∗3

}
= 0,

(48)

and solving for G∗ we obtain

G∗4 =
H∗2L∗2(cos 2ω∗ − 1)

cos 2ω∗ − 0.5 + (2α)−1 ,
(49)

with (2α)−1 ∼ 0.1477. For an even multiple of π (i.e. mπ, where
m = 0, 2, 4, etc.), the term cos 2ω∗ − 1 is always 0. Hence,
G∗ = 0 (e∗ = 1) and the solutions are in the limit of an hy-
perbolic motion. Moreover, because the coupling of e and I (i.e.
H∗ = const.), there is a single value of H∗ (H∗ = 0) that satis-
fies such solutions. Therefore, we can discard these equilibrium
points because they are not a general solution of each family and
their study are out the scope of our study.

In the case of odd values of m the equilibrium points are

G∗M
2

= H∗L∗
√

−2
−1.5 + (2α)−1 , 2ω∗ = mπ (m = 1, 3),

G∗M ∼ 1.103
√

H∗L∗, ω∗ = mπ/2 (m = 1, 3). (50)

Considering the standard system of Sect. 2.5, we found G∗M ∼
606 au2/yr, or e∗M ∼ 0.54 and ω∗ = 90 and 270◦ (2ω∗ = 180◦),
which is coincident with the maxima shown in the Fig. 5.

Therefore, we found that for each combination of H∗ and L∗
there is a single equilibrium point at 2ω∗ = 180◦, whose value
e∗M in eccentricity could be interpreted as a “forced eccentric-
ity” (e f ). The forced eccentricity is a fixed value and the curves
around it (e.g. e f ) could be defined as a proper or free eccentric-
ity with their own free frequency.

The existence of a single maximum indicates a similar
secular (non-resonant) motion, even if the coupling between
the eccentricity and the inclination seems to behave like the
Lidov-Kozai resonance, but the dynamical behaviour is differ-
ent because there is not a separatrix. The secular motion with-
out resonance could be better appreciated in the plane of the
regular variables x = e∗ cos (2ω∗) and y = e∗ sin (2ω∗), where
the motion is defined as quasi-concentric circles around the
forced eccentricity (e∗M). The level curves of constant mean-
mean Hamiltonian of Fig. 5 (i.e. family of the standard system)
are repeated in the new plane (x, y) in Fig. 6, where the absence
of a separatrix is evident. In fact, we have quasi-concentric cir-
cles with the centre separated from the origin.

The difference between the dynamical structures of reso-
nant and non-resonant motion allows us to understand why this
Hamiltonian is only secular (Murray & Dermott 1999). Indeed,
although the angles could oscillate in both cases, the oscillations
are topologically different. In the resonant case the transition of
the angle from oscillation to circulation occurs through true bi-
furcations of the solutions, along the separatrix that contains a
saddle-like point. In other words, the two regimes of motions, os-
cillations, and circulation are topologically distinct. In this case,
we can say that the resonant angle librates and the system is in a
true resonance state. In the other case (our study case) the oscil-
lations are merely kinematic since all levels, even those passing
through the origin (green dashed curves), belong to the same
structurally stable family. In other words, there is no topological
difference between oscillations and circulations.

Finally, a two-body system that is disturbed by a third body is
able to develop a resonance of Lidov-Kozai (Lidov 1961; Kozai
1962; Antognini & Thompson 2016). In this work we are deal-
ing with a similar problem, where a binary system is disturbed
by an external force, but we found a secular coupling of e and I.
The difference seems to be in the form of the third body; in three
star systems the disturbing body is a point mass, while we are
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Fig. 9. Structure of the secular phase space of the standard system for
the following four different values of the DPAM (J = H∗/L∗): 0.1 and
–0.1 (top panels), and 0.3 and –0.3 (bottom panels). The left panels
show the (ω∗ − e∗) plane, and the right panels show the (ω∗ − I∗)-plane.
Although the dynamical structure is similar, the position of the equilib-
rium points in the e∗-axis (and I∗-axis) and the extension of the phase
space decrease with the increase of J.

working with a potential corresponding to an extended body (i.e.
the Galaxy).

4. Dynamical portait of the secular evolution

In the previous section we analysed the energy levels of a par-
ticular set of values for H∗ and L∗, which we named a “fam-
ily”, and now we consider other families to provide a com-
plete description of the dynamical portrait of the problem. Since
H∗ = L∗

√
1 − e∗2 cos I∗, a better option is to work on fix-

ing the value of L∗, which allows us to introduce the variable
J = H∗/L∗ =

√
1 − e∗2 cos I∗ (i.e. a dimensionless projection of

the angular momentum, DPAM), which varies between –1 to 1.
Then, for the masses and initial value of L of the standard

system, we chose eight different values for DPAM: J = −0.7,
–0.5, –0.3, –0.1, 0.1, 0.3, 0.5, and 0.7, which are represented
in Figs. 9 and 10. However, the Galactic potential is symmetric
in the z-axis; in fact the equilibrium points (Eq. (49)) and the
equations of motion (47) have a quadratic dependence on H∗.
Thus, the secular phase space of the binary system depends on
the absolute value of H∗ or J. Therefore, we represent the eight
DPAM in four dynamical maps, one for each positive-negative
pair of J. In order to make a more complete dynamical analysis,
we represent each map in two planes: the (ω∗ − e∗)-plane and
(ω∗ − I∗)-plane.

We can see that the general structure of the phase space
does not change and there are two maxima for mean-mean
Hamiltonian at ω∗ = 90◦ and 270◦. The most important differ-
ences between the eight maps are the following: first, the po-
sition of the equilibrium points of the Hamiltonian, which de-
creases in eccentricity (and I∗) when J increase; second, smaller
values of J allow greater values of eccentricity (and I∗) and the
extension of the phase space increase in the e∗ direction (I∗ direc-
tion). We are working with mean-mean variables, but we choose

Fig. 10. Same as in Fig. 9 except for DPAM (J = H∗/L∗): 0.5 and –0.5
(top-panels), and 0.7 and –0.7 (bottom-panels).

the initial value of L as our mean-mean value L∗, which is pos-
sible because of the small amplitude of the action variables L
and H (see Sect. 2.5).

Next, we changed the value of L∗, keeping fixed J (H∗/L∗)
in 0.5 (Fig. 10, top panel). However, L∗ depend on the masses
and the semimajor axis, and then we choose three test cases with
a = 100 and 50 000 au, and m2 = 0.8 M�. Figure 11 shows
our results (black line), where the levels of constant mean-mean
Hamiltonian for a = 10 000 au (i.e. Fig. 10, top panel) were
included for comparison (dashed red line). The dynamical struc-
ture is equal in the three cases, and it agrees very well with the
example of reference (dashed red lines).

The independence of the dynamic structure with the vari-
able L∗ is a very important result, which indicates that the long-
period dynamics of a binary system in the Galaxy depends on
the z component of the angular momentum (H), but it is inde-
pendent of the semimajor axis and the masses (L). Because of
such independence of the masses, the dynamical behaviour for
any binary system (i.e. star-star, Sun-comet, etc.) is always the
same for similar values of DPAM (J).

Such results can be analytically deduced from the mean-
mean Hamiltonian,

K∗ = −
µ2

2L∗2
− 2ΩGH∗ + εK∗g1(G∗, ω∗; L∗,H∗). (51)

The two first terms of the Hamiltonian are constants, thus solving
for K∗g1 we can define a new Hamiltonian,

KJ = ε
µ2

4 L∗2
[
α (sin I∗)2

(
1 + e∗2 − e∗2 cos 2ω∗

)
−

(
1 + e∗2

)]
.

(52)

Since εL∗−2µ2/4 is a constant, we can move it to the left side
and we obtain a new Hamiltonian, which is only function of e∗
and I∗, and is written as

KJ2 = α (sin I∗)2
(
1 + e∗2 − e∗2 cos 2ω∗

)
−

(
1 + e∗2

)
. (53)
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Fig. 11. Phase space for different values of L∗: a∗ = 100 (top panel),
50 000 au (middle panel), and m2 = 0.8 M� (bottom panel). As compar-
ison the levels of constant Hamiltonian for a = 10 000 au of the Fig. 10
(top panel) are indicated with dashed red line.

Then, although the absolute value of the Hamiltonian KJ2
changes for different values of a∗ or the masses, its functional

form depends only on the eccentricity and inclination, which ex-
plains the agreement in Fig. 11.

However, the influence of the Galactic potential is only re-
ported for wide binary systems (Brunini 1995; Jiang & Tremaine
2010), and it is ignored for tight binary systems (a < 1000 au).
Therefore we could explore these systems looking for the de-
pendence of the potential with the separation. We find that the
difference lies in the period of the tidal secular cycle. From the
Eq. (51), the Hamilton equations are

ω̇∗ = ε
∂K∗g1

∂G
= ε

µ2

4 L∗2

{
G∗[α(2 cos 2ω∗ − 1) + 1]

−
2α(cos 2ω∗ − 1)H∗2L∗2

G∗3

}
,

Ġ∗ = −ε
∂K∗g1

∂ω
= −ε

2αµ2

4 L∗2 G∗2
(L∗2 −G∗2)(G∗2 − H∗2) sin 2ω∗.

(54)

Once again, working algebraically we obtain

ω̇∗ = ΩGAG
L∗3

µ2

{√
1 − e∗2[α(2 cos 2ω∗ − 1) + 1]

−
2α(cos 2ω∗ − 1)(cos I∗)2

√
1 − e∗2

}
,

Ġ∗ = −2ΩGAGα
L∗4

µ2 e∗2(sin I∗)2 sin (2ω∗).

(55)

Thus, the functional form of the evolution of the variables ω∗
and G∗ is the same and similar to the mean-mean Hamiltonian, it
is independent of the semimajor axis and the masses. However,
the terms L∗3µ−2 and L∗4µ−2 in ω̇∗ and Ġ∗, respectively, change
the frequency of the secular cycle. It is worth to note that, the
evolution of ω∗ is dimensionless, but Ġ∗ is parametrized by L∗.
So, the motion equations ω̇∗ and Ġ∗L∗−1 are a better choice to
understand the dynamical difference between binary systems.

For the modified motion equations (ω̇∗ and Ġ∗/L∗), the tidal
secular period is defined by L∗3µ−2 (a∗1.5µ−0.5). These results al-
low us to understand the difference between tight and wide bi-
nary systems with similar masses. The dynamical behaviour is
the same for any binary system, but the time required to com-
plete the secular cycle changes as a function of the separation
and the masses of the components of the pair.

The analytic result deduced from Eq. (55) is illustrated by
the standard system of Sect. 2.5. For the binary star with masses
m1 = 1.0 M� and m2 = 0.3 M�, we consider two configurations:
aA = 10 000 au and aB = 1000 au. From our one-degree of free-
dom model, in the modified motion equations (ω̇∗ and Ġ∗/L∗)
we can predict a relation between the secular periods as

ω̇∗B

ω̇∗A
=

TA

TB
∼ (a∗B/a

∗
A)1.5 ∼ 0.031,

Ġ∗BL∗A
Ġ∗AL∗B

=
T ′A
T ′B
∼ (a∗B/a

∗
A)1.5 ∼ 0.031.

(56)

Then, the wide binary star (10 000 au) has a secular period
∼31 times smaller than the tidal period of the more compact bi-
nary star (1000 au).

In order to test our theoretical predictions, we consider some
numerical examples. From Sect. 2.5, we know that the tem-
poral evolution of the osculating (G, ω) and mean-mean (G∗,
ω∗) action-angle variable are similar. Then, in Figs. 12 and 13
we show the dynamical behaviour of first, the standard system
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Fig. 12. Secular phase space of the standard system for a = 10 000 au
(black line) and a = 1000 au (red line), in the plane (ω,G/L). Because
we find good agreement between the two binary systems, we decided to
reduce the size of the red curve to appreciate the black curve.

(10 000 au) and, second, a modify standard system (1000 au).
The structures of both systems have similar dynamical be-
haviours, which can be seen in the plane (ω,G/L) in Fig. 12.
However, the temporal evolution of ω and G/L in Fig. 13 show
different secular periods for each one. For clarity, it is easier to
work with the eccentricity than with G/L, so in Fig. 13 we repre-
sent the evolution of e (middle panels) and to give a more com-
plete picture we also include the evolution of I (top panels). We
can see that the standard system completes the cycle in 5 Gyr
(top panel), but the modify standard system (bottom panel) has a
period of 160 Gyr, with a relation of 160/5 ∼ 32, which confirms
our prediction. The implication of this result is that a binary sys-
tem with a < 1000 au have a dynamical behaviour similar to
that shown by a wide binary (a > 1000 au), but the period of the
first system has a Galactic tidal cycle longer than the age of the
universe, which is in agreement with our theoretical predictions,
and cannot be detected in real systems.

The other variables (or parameters) in L∗ are the masses of
each body, m1 and m2. The dependence of the secular frequency
with these parameters is weaker than the dependence with the
semimajor axis. This is because the range of possible masses
is smaller than the range in a (i.e. between 10 and 0 M�), and
the dependence of the secular period with the semimajor axis
has a steeper slope than with the masses. As an example, we
consider the standard system of Sect. 2.5 with a central body of
1 M� and semimajor axis 10 000 au, but we change the mass
of the secondary: 0.8 M� (A), 0.3 M� (B), and 0.001 (C) M�.
The theoretical prediction of the ratio between their tidal secular
periods in ω̇∗ is

ω̇∗B

ω̇∗A
=

TA

TB
∼

√
µA/µB ∼ 1.18,

ω̇∗B

ω̇∗C
=

TC

TB
∼

√
µB/µC ∼ 1.14,

ω̇∗C

ω̇∗A
=

TA

TC
∼

√
µC/µA ∼ 0.74,

(57)

Fig. 13. Temporal evolution of the orbital elements I (top panels), e
(middle panels) and ω (bottom panels) of the standard system: a =
10 000 au (left panels) and a = 1000 au (right panels).

respectively. The same difference is obtained for the frequency
of G∗/L∗. So, the difference is small and the long tidal periods
for different binary systems such as star-star, star-planet, or even
Sun-comet is similar. Figure 14 shows the temporal evolution of
the osculating angleω for the three examples, where, once again,
we consider the temporal evolution of the osculating elements
similar to the mean-mean action-angle variable (Sect. 2.5). The
numerical determined periods are A: ∼6.1 Gyr, B: ∼ 5.2 Gyr and
C: ∼4.5 Gyr, with a ratio between these periods that confirms our
theoretical prediction.

Then, the total mass of the binary system (i.e. m1 + m2) is
not important and has a negligible influence in the dynamical
evolution of the system in the Galaxy. This is an important re-
sult because it shows that the one-degree of freedom model can
be applied to different binary systems (i.e. star-star, planet-star,
Sun-comet, etc.) with similar results.

Finally, from our study we can deduce that the DPAM, J,
defines the structure of the phase space and the scale parame-
ter L∗ regulates the temporal evolution of the binary system in
the Galaxy. So, for each value of J there is a maximum in the
Hamiltonian, and from Eq. (50) we can obtain the position of
such maximum in the plane (e∗, I∗). In this way, different val-
ues of J define a curve of equilibrium points in the plane (e∗,
I∗), which can be defined as a “family of equilibrium solutions”
(FES). Figure 15 shows the position of all the equilibrium solu-
tions calculated for the scale parameter L∗ of the standard system
of Sect. 2.5. We can see that J increases when e∗ and I∗ decrease.
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Fig. 14. Comparison of the temporal evolution of ω for a standard sys-
tem with m2: 0.8 (A, green line), 0.3 (B, red line), and 0.001 (C, black
line) M�.

For simplicity we plotted only the positive values of J because
owing to the potential symmetry the curve is similar for I < 0◦.
The structure of the FES in the plane (e∗, i∗) is equal for any
value of L∗ because it has no influence in the dynamic behaviour
of the binary systems.

5. Application to the problem of stellar collisions

The collision of the components of a wide binary star system due
to the perturbation of the Galaxy (Kaib & Raymond 2014) is an
interesting problem to which we can apply the predictions of our
model. The tidal field of the Milky Way influences the pericentre
distance (q) of the system, forcing close passages between the
components of the pair.

For a collision a close encounter between the components
of the binary system at a distance less than the combined
radii of the stars is necessary. The range of radii considered in
Kaib & Raymond (2014) is ∈ (0.13, 4.4) R�. Then, the minimum
distance of pericentre is equal to the combined radius of the stars
as follows: qm = R1 + R2. According to the range of radii, the
distance qm has a maximum of ∼8.8 R� for two massive stars,
and a minimum of ∼0.26 R� for late-type stars. Moreover, the
separation between the stars in Kaib & Raymond (2014) has a
range of values ∈ (1000, 30 000) au. These two distances (i.e. a
and qm) define the parameter 1 − e = qm/a, which regulates the
probability of a collision.

We can define two limits of probability for the collision:
an upper limit of maximum probability for massive stars with
a = 1000 au and a lower probability limit for late-type stars
separated by 30 000 au. These limits give us a critical value
for the eccentricity of 1 − ec1 ∼ 4 × 10−5 in the first case and
1 − ec2 ∼ 4 × 10−8 in the second case.

According to our one-degree of freedom model, the parame-
ter that regulates the secular phase space of any binary system in
the Galaxy is J. This parameter is defined as J =

√
1 − e2 cos I,

which together with ec and the limit of the cosine function (i.e.
| cos I| < 1) define the probability of collision of a particular
binary star system.

Fig. 15. Position of the maxima for all the possible values of J (FES)
for the L∗ of the standard system in the plane (e∗, i∗). We can see that J
(H∗) increases with the decrease of e∗ and I∗.

In both cases, ec1 and ec2, the maximum value of the relation
|J|/

√
1 − e2

c is 1, which corresponds to I = 0◦. This give us the
critical values |Jc1| ∼ 0.01 and |Jc2| ∼ 3 × 10−4.

Because the whole secular phase space is in the range |J| ∈
(0, 1), the limits |Jc1| and |Jc2| indicate the fraction of the phase
space where a collision is possible. Then, we can consider |Jc1|

and |Jc2| as the maximum and minimum probabilities of collision
(i.e. PM and Pm) of each system. Because we are considered two
limit cases, the probability of collision for any other binary stars
systems is between |Jc1| and |Jc2| (i.e. between PM and Pm).

We note that for a particular value of J, there is a secular
plane of motion associated; see Figs. 9 and 10. Then, for particu-
lar values |Jc1| and |Jc2|, not all the orbits in the plane achieve the
high eccentricities necessary to collide, and it is very difficult to
estimate the percentage of close encounters in each plane. Thus,
for the sake of simplicity we give an approximate 50% probabil-
ity of each plane. This estimation reduces the maximum PM and
minimum Pm probabilities by a factor two. Hence, we can con-
clude that a particular wide binary star system has a probability
between 1 in 200 and 1 in 6000 of having a close encounter that
ends in a collision between their components. Finally, although
we have not considered stellar passages and tidal forces between
the stars, our analytical results are in agreement with the em-
pirical collision probability found by Kaib & Raymond (2014).

As an application example of the prediction of our model,
we carry out two numerical simulations by integrating the ex-
act equations of motion through a Bulirsch-Stoer code with an
adopted accuracy of 10−13. For example, we consider the binary
system of Fig. 1 of Kaib & Raymond (2014) with two stars of
1 M� each, where a = 10 000 au and q0 = 1000 au (i.e. ini-
tial pericentre distance). From the prediction of our one-degree
of freedom model, this system has a collision probability of
∼0.001, which indicates that J ≤ 0.001. Then, we arbitrarily
choose J = 8× 10−4, which, combined with the initial eccentric-
ity (0.9), allow us to calculate the initial inclination, I0 ∼ 89.7◦.
Our model also predicts that the angles M and Ω can be chosen
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Fig. 16. Temporal evolution of a binary system with small pericentre
distance, similar to that of Fig. 1 in Kaib & Raymond (2014). In the
top left panel we plot the semimajor axis (blue line) and the pericentre
distance (black line). The red line indicates the limit of stellar collision.
The top right panel shows the inclination. Bottom panels show a zoom
over the minimum distance of approach between the stars.

randomly because they are fast angles related to the secular pe-
riod. We chose an initial value of 0 for the angle ω because at
90◦ it achieves the minimum pericentre distance. However we
can randomly choose any value between 0 and 80, close to the
minimum q. It is worth noting the simplicity of the process to
define the required initial conditions through the one-degree of
freedom model.

Moreover, we consider another example with same masses
and semimajor axis, but an initially circular orbit (i.e. q0 =
10 000 au). The aim of this second example is to show the im-
portance of the Galaxy even in circular orbits, according to the
prediction of our model. The Jc is equal, so we consider the same
value of J used to calculate the inclination. The angle ω is zero
and the other two angles are randomly defined.

Figures 16 and 17 show the temporal evolution of the semi-
major axis, the pericentre distance and the inclination for both
examples. The red line shows the distance of collision between
the stars. Although we do not consider stellar passages and the
dynamical tidal force between the stars, the isolated effect of the
Galactic potential allows us to deduce important conclusions:

– The fast angles are not important for the problem and, al-
though we show one example for each simulation here, we
have tested other values with identical results.

– The two systems spend most of the time separated by most
of 100 au and at high inclination (I > 88◦).

– The time of approach between the stars is short compared
with the total secular cycle and the inclination only decreases
in such instances.

These conclusions seem to indicate that the most important con-
dition for a close approach between the stars are the high inclina-
tion between the orbital plane and the mid-plane of the Galaxy.

From these conclusions, we can say that the secular model is
an important tool to obtain fast results in wide binary systems.
Through our model we are able to estimate the percentage of

Fig. 17. Same as Fig. 16, but for a system with an initially circular orbit.

the system that ends in collision and also we easily found initial
conditions that end in a collision between the stars.

6. Conclusions

In this paper, we found an analytic one-degree of freedom model
for the secular evolution of a binary system in the Galactic en-
vironment of the solar neighbourhood. With this model, we de-
velop a detailed dynamic portrait of the phase space of a binary
system affected by the tidal field of the Galaxy.

The simple secular model was obtained through an aver-
aging process (Morbidelli 2002; Ferraz-Mello 2007) applied to
the three-dimensional Galactic potential of Binney & Tremaine
(2008). The mean-mean Hamiltonian and corresponding equa-
tions of motion allow a fast calculation of the secular evolution
of binary systems with a low computational cost, despite a fast
characterization of the phase space. We note that our reduced
model is useful not only for binary stars systems, but also for
restricted two-body problems (i.e., star-comet, star-planet, etc.).

On the other hand, we found that the structure of the phase
space of binary systems disturbed by the tidal field of the Galaxy
is only dependent on the angular momentum and is independent
of the masses and the separation of the pair. Moreover, the quasi-
conservation of the z component of the angular momentum gives
a dynamical structure similar to the Lidov-Kozai resonance, but
without the presence of a separatrix (i.e. there is not a resonant
motion). This result has two important consequences for studies
of binary systems: first, the Galaxy can excite the astrocentric
orbit of the companion from a circular initial orbit to a high ec-
centric orbit (Sect. 5), and, second, in the limit of application of
this simple model we do not find a source of chaos in the secular
behaviour (i.e. there is not separatrix), therefore the disruption
of the pair seems to be unlikely.

However, the secular periods change as a function of the
semimajor axis (a). Then, binary systems with lower separa-
tion between their components have higher secular periods than
more separated pairs. This result is very important because it
represents an analytical dynamical interpretation for the empir-
ical limit of ∼1000 au that separates “wide” and “tight” binary
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systems. For object couples with separations lower than 1000 au,
the secular tidal period is greater than the age of the universe.

We also apply our model for the study of a specific problem:
stellar collision in wide binary stars systems. We have found that
the secular model allows us to estimate quickly the region of
the phase space where a close approach is possible. Moreover,
these results may have an important application for studies of
planetary systems in wide binary stars.

Finally, we have determined a limit of the application of our
model, which depends on the masses and separation between
the components of the binary. For very separated binary systems
with small masses, the model loses precision. So, the simpli-
fications are no longer valid and we must consider the three-
dimensional complete model.
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