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Abstract

Binary evolution is investigated as the source for the extreme horizontal branch (EHB) stars in the old and metal-
rich open cluster NGC6791. Employing an updated version of our binary stellar evolution code, we demonstrate
that EHB stars naturally emerge from the common-envelope phase. In sum, the binary model reproduces the
observed (Teff, glog ) and temporal properties of the EHB overdensity tied to NGC 6971, without needing an
ad hoc and anomalous mass-loss prescription.
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1. Introduction

NGC6791 is a metal-rich and old Galactic open cluster
([Fe/H]=0.30–0.40, τ∼7 Gyr) that exhibits two prominent
overdensities on the horizontal branch (HB). Approximately 45
stars occupy the red clump (RC) region (Buzzoni et al. 2012),
which is reproduced by standard stellar evolution codes
modeling metal-rich clusters. However, 12 cluster stars—with
membership confirmed only for some of them—are signifi-
cantly hotter than their RC counterparts, which is in conflict
with such classic modeling. Those stars are designated extreme
HB (EHB) stars when associated with star clusters, and hot
subdwarf B and potentially O stars when belonging to the field
(sdB/sdO). Their effective temperature Teff and gravity span
Teff=25,000–45,000 K and glog =4.5–6.2 (Liebert et al.
1994), respectively. Presumably, these stars are surrounded by
a thin hydrogen envelope (∼0.01Me). EHB stars are present in
a number of Galactic globular clusters (Moni Bidin et al. 2008).
However, first, NGC 6791 HB is much different from any
globular cluster HB, as amply discussed in Liebert et al. (1994);
second, the combination of mass, age, and metallicity makes
NGC 6791 a unique system, with no overlap with Galactic
globular clusters.

The mechanism and stellar evolutionary path that give rise to
EHB in NGC 6791 have been an active source of debate,
particularly since the discovery of a bimodal HB distribution in
NGC 6791 (Kaluzny & Udalski 1992). One proposal involves
invoking extreme mass loss that is tied to the clusterʼs high
metallicity (D’Cruz et al. 1996; Yong et al. 2000; Kalirai
et al. 2007), and whereby a Reimers (1975) stellar wind mass-
loss parameter as large as η∼1.2 is adopted. Conversely, RC
stars exhibit typical masses of 1.03±0.03Me and lose
0.09±0.07Me while ascending the red giant branch (RGB)
phase (Miglio et al. 2012), which implies a mass loss
compatible with a significantly smaller Reimers parameter of
0.1�η�0.3. Direct observations confirming a sizable mass-
loss rate (e.g., ∼10−9Me yr−1; Yong et al. 2000) remain
outstanding. Asteroseismological studies support a marginal
mass-loss rate (Miglio et al. 2012), while direct Spitzer
observations did not reveal circumstellar dust production that
would accompany enhanced mass loss during the RGB phase

(van Loon et al. 2008). Furthermore, there is a lack of
consensus on the details of (fine-tuned) mass loss required to
yield the Teff and envelope size of EHB stars. Finally, current
models reproduce nearly all evolutionary phases present in the
CMD of NGC6791 without anomalous mass loss (Carraro &
Chiosi 1995; Buzzoni et al. 2012).
An alternative mechanism reiterated by Liebert et al. (1994)

and Carraro et al. (1996) is that EHB stars could emerge from
type-B or type-C binary systems, whereby their envelope
would be largely removed during a common-envelope (CE)
phase (see also Mengel et al. 1976; Han et al. 2002;
Brown 2008). Complex models were not initially readily
available to provide a robust evaluation of the hypothesis, and
moreover, there was little evidence for binarity among the
sample. Subsequent observations and models in concert
suggest that NGC6791 exhibits a high binary percentage of
∼50% (Bedin et al. 2008; Twarog et al. 2011), and among the
EHB class, three systems have been confirmed: B4 (Pablo et al.
2011; Mochejska et al. 2013), B7, and B8 (Mochejska
et al. 2013; van den Berg et al. 2013). Indeed, it has been
noted that a high fraction of sdB stars might belong to binary
systems (Green et al. 2001; Maxted 2004 and references
therein).
In this study, it is demonstrated that an updated prescription

of the Benvenuto & De Vito (2003) binary evolutionary code
successfully predicts the observed and temporal properties of
EHB stars in NGC6791.

2. Results

In the following analysis, EHBs are thought to arise from
binary evolution, which provides a natural mechanism of
depleting the hydrogen-rich outer layer of the star without an
ad hoc or simplified prescription of mass loss. Essentially, the
mass transfer to the companion is unstable and thus a CE
encompasses the stars; subsequently, as the two stellar nuclei
approach each other, the envelope expands owing to heating
and is lost (Paczynski 1976; see also the discussion in
Maxted 2004).
The binary evolution is modeled via an updated version of

the Benvenuto & De Vito (2003) code, who developed a
Henyey-type algorithm to compute stellar evolution in close
binary systems, based on a modification of the scheme
presented by Kippenhahn et al. (1967) to solve the set of
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differential equations of stellar evolution together with the mass
transfer rate. This approach was subsequently modified to
ameliorate transporting extremely steep chemical profiles
outward (corresponding to stars just prior to undergoing the
helium flash). Convection is treated using the canonical mixing
length theory with αmlt=2.0, and semi-convection was
introduced following Langer et al. (1985) with αsc=0.1.

It is known that diffusion slightly affects HB evolution
(Reed et al. 2012), and it is certainly necessary to account for
surface abundances of EHB stars (Michaud et al. 2007). Here,
because of the exploratory nature of this Letter, diffusion
processes were ignored and will be addressed elsewhere.

Donor stars that evolve to EHB conditions should have
initial masses marginally larger than that of cluster turn-off, as
EHB stars are undergoing core helium burning, which is an
evolutionary phase appreciably shorter than core hydrogen
burning. Binary systems consisting of similar mass stars are
considered, whereby one star is 1.3Me, above the turn-off
(Mto≈1.15Me), and the companion is slightly below and
features a sufficiently lengthy initial orbital period. The stars
are modeled with a metallicity of Z=0.04. Moreover, EHBs
should stem from stars that reached the RGB in the recent past.
Consequently, binaries are considered whereby the primaries
fill their Roche lobes as they have extended convective
envelopes. Such conditions result in systems that undergo a
CE stage in which the primary loses the bulk of its hydrogen-
rich envelope, while the companion keeps its initial mass and
the orbital period falls off appreciably. EHB stars are the
objects that evolve after emerging from the CE phase.

Our main interest is not the CE phase but the emerging
objects. Therefore, the CE stage is mimicked assuming a strong
mass-loss rate until detachment (Iben & Tutukov 1993). This
causes the deep chemical composition profile to remain
essentially unaltered, which is expected since CE lasts a short
time. The binary pair is assumed to undergo the CE phase when
the helium core reaches mass values of 0.3480, 0.3694, and
0.4067Me. All of them ignite helium well after the CE phase.
Larger helium core masses ignite helium before reaching EHB
conditions and delineate an evolutionary path that is unim-
portant for the present discussion.

Each model was evolved until reaching a radius of
detachment (Rd) of 7.5 and 1 Re. For Rd=7.5 Re, the total
masses corresponding to each helium core at the end of the CE
phase were 0.35048, 0.37367, and 0.41344Me, whereas for
Rd=1 Re the results were slightly smaller, namely 0.34863,
0.37084, and 0.40973Me. The differences correspond to the
varying thickness of the outermost hydrogen layer. After the
CE phase, the stars are evolved at constant mass, and the
computations are terminated at an age of τ∼9 Gyr, which is
an upper limit for the age of NGC6791.

The evolutionary tracks of the two most massive models for
each Rd value are presented in Figure 1. As noted above, two
radii were assumed after the emergence from the CE phase. The
larger Rd value implies a thicker hydrogen-rich layer, and thus a
lower Teff during most of the evolution. At post-CE stages, the
star evolves blueward and ignites helium off-center owing to
strong neutrino emission. The evolutionary track subsequently
bends downward almost at constant radius. Thereafter, the star
depletes the helium core and then progressively the bottom of
helium-rich layers, following a cyclical-like trend. The stars
exhibit EHB conditions during that stage (notice the blue
squares in Figure 1 that represent the EHB stars in NGC6791).

When helium burning becomes weaker, the star contracts,
again evolving blueward and igniting the outermost hydrogen
layers that gives rise to few thermonuclear flashes. These
flashes burn enough hydrogen to cause the star to finally evolve
to the white dwarf stage. Lower-mass objects undergo a larger
number of cycles during helium burning and hydrogen flashes
because nuclear ignition episodes are weaker.
The evolution of stars that emerge from the CE phase with

Rd=7.5 Re is shown in Figure 2, together with data
corresponding to the EHB stars B4-B7. Successfully, the
model produces Teff and surface gravities that match the
observations. This is largely due to helium ignition that makes
the star stop its contraction at the right conditions. As expected,
stars that emerge from the CE stage featuring Rd=1 Re
exhibit a larger surface gravity since they are more compact
(Figure 3).
It can be noticed from Figure 1 that tracks pass several times

across the Teff interval corresponding to EHBs ( Teff EHBD( ) ); see
Section 1. Most of the time they fall at Teff EHBD( ) , they undergo
helium-burning-dominated cycles. The time they spend at

Teff EHBD( ) during thermonuclear flashes and the final white
dwarf cooling track is much shorter. So, the time the modeled
stars spend at Teff EHBD( ) is essentially that when they resemble
EHBs. This time is crucial since the longer the time the easier to
find them as EHBs. Figure 4 conveys the temporal evolution as a
function of Teff for the case of Rd=7.5 Re. Temperature
intervals indicated by the observations presented in Liebert et al.
(1994) are likewise included. Remarkably, the modeled stars can
be detected as EHBs for several hundred million years. The same
is true for models featuring Rd=1 Re (see Figure 5).

3. Discussion

The resulting orbital periods of such systems can be
estimated via Equation (3) in Ivanova et al. (2013):
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Figure 1. Evolutionary tracks for the initial 1.3 Me model up to the moment at
which it has a helium core with 0.4067 Me. Since then, it is assumed that the
object undergoes a CE episode. If the star emerges from the CE with a radius of
7.5(1)Re, it has a mass of 0.41344(0.40973)Me and follows the tracks
depicted with the black (red) solid line. The blue points are bona fide NGC
6791 members (see Buzzoni et al. 2012), and blue squares represent the EHB
stars.
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where G is the gravitational constant and M1, M1,env, M1,c are
the total, envelope, and core masses of the donor star,
respectively. M2 is the companion mass; ai, af are the initial
and final semi-axes; αCE is the CE efficiency; and λ accounts
for the density profile of the donor star. The semi-axis at the
onset of mass transfer is ai and is computed via the relation
between the orbital semi-axis and the equivalent radius of the
Roche lobe (Eggleton 1983). The final orbital period Pf follows
and is an (increasing) function of the parameter ξ=λ αCE/2.
Here, ξ=0.10 and M2=1Me are adopted as representative
values and the models corresponding to the case of Rd=1 Re.
If Roche-lobe overflow occurs when the donor star develops

a helium core of 0.3486Me and exhibits a radius of 69 Re,
then ai=172.1 Re, af=1.876 Re, and Pf=0.254 days. If
overflow occurs when the helium core is 0.4067Me and
features a radius of 137 Re, then ai=342 Re, af=4.61 Re,
and Pf=0.962 days.
The estimated periods fall in the range of observations

(Green et al. 2001; Maxted 2004 and references therein), and
indeed, EHB B4 displays an orbital period of P=0.4 days
(Pablo et al. 2011).

4. Conclusions

In this study, it is advocated that binary evolution is the
source of the EHB population within NGC6791, completely

Figure 2. Surface gravity as a function of Teff for models that detach from CE
with 7.5 Re. Green, red, and solid lines correspond to models with masses of
0.35048, 0.37367, and 0.41344 Me, respectively. Data corresponding to stars
B3-B6 are shown with their corresponding error bars.

Figure 3. Same as Figure 2, but for the case in which CE resumes at 1 Re.
Here, green, red, and blue solid lines correspond to models with masses of
0.34863, 0.37084, and 0.40973 Me, respectively.

Figure 4. Effective temperature as a function of time for the models included in
Figure 2. As in Figure 2, green, red, and blue solid lines correspond to models
with masses of 0.35048, 0.37367, and 0.41344 Me, respectively. The hatched
areas indicate the Teff interval (due to error bars) as given in Liebert et al.
(1994). B3, B4, and B5 intervals overlap in the lower hatched region,
meanwhile the upper one corresponds to star B6. Notice that the Teff of the
models falls inside the observed intervals during a considerable amount of
time, making its detection probable.
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similar to a field subdwarf (Han et al. 2002). An updated form
of the Benvenuto & De Vito (2003) code is used to
demonstrate that EHBs can emerge from the post-CE evolution
of binary stars with masses conducive to the clusterʼs turn-off
(Mto≈1.15Me). The numerical model employed yields
synthetic stars that match the observational and temporal
properties of NGC6791ʼs EHB members. The binary mech-
anism is not the only means for stars to evolve to EHB
conditions since isolated stars with heavy mass loss might
succeed. However, the evolutionary path explored here is
preferred since it does not require ad hoc anomalous and
observationally unconfirmed mass-loss rates and granted that
NGC6791 and EHB stars exhibit a high rate of binarity.

One may wonder whether our results can be extended to other
stellar systems. Unfortunately, no other open cluster is known to
harbor EHB stars, which might be interpreted as arguing that
they are by far less massive than NGC 6791, even if they host a
comparable amount of binary stars. This stresses once again the
uniqueness of NGC 6791 among open clusters in the Milky
Way. On the other hand, EHBs stars are more common in
globular clusters, but they do no share the same properties of the
NGC 6791 EHB population (Liebert et al. 1994). First, in NGC
6791, EHBs are not centrally concentrated (Buzzoni et al. 2012),
while in globular they are (Liebert et al. 1994). Second, in
globulars, they span a much wider range of colors (hence
temperature). This was historically interpreted with the existence

of a wide range of envelope sizes, hence with differential mass
loss during the RGB ascent. Nowadays, the segmented EHB in
globulars is mostly interpreted as evidence of multiple stellar
generations, each segment with a different degree of He
enhancement (Marino et al. 2014). Other authors consider rapid
rotation (Tailo et al. 2015) as well. These scenarios are difficult
to invoke for NGC 6791 since we lack any accepted evidence of
multiple stellar populations in NGC 6791 (see Geisler et al.
2012; Bragaglia et al. 2014).

G.C. deeply thanks La Plata Observatory for financial
support during a visit where this project was started. The
authors deeply thank Daniel Majaess for reading and
commenting on the manuscript.
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