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Abstract. We present the low energy meson spectrum of a Coulomb gauge QCD motivated
Hamiltonian for light and strange quarks. We have used the harmonic oscillator as a trial
basis and performed a pre-diagonalization of the kinetic energy term in order to get an effective
basis where quark and anti-quark degrees of freedom are defined. For the relevant interactions
between quarks and anti-quarks, we have implemented a confining interaction between color
sources, in order to account in an effective way for the gluonic degrees of freedom. The low
energy meson spectrum is obtained from the implementation of the TDA and RPA many-body-
methods. The physical states have been described as TDA and RPA collective states with a
relatively good agreement. Particularly, the particle-hole correlations of the RPA ground state
improve the RPA pion-like state (159.7 MeV) close to its physical value while the TDA one
remains at a higher energy (269.2 MeV).

1. Introduction
The Quantum Chromodynamics (QCD) is the fundamental theory of strong interaction, the
basic ingredients of this theory are the elementary particles, quarks and gluons. The QCD
describes the propagation and interactions of these particles. The quarks and gluons are color
charged particles, where due to the non-abelian nature of the theory, the gluons can interact
with themselves. The latter is a very important characteristic since several interactions and
phenomena are associated to this fact, e.g., the confinement of quarks and the chiral symmetry
breaking. The low energy regime of QCD is highly non-perturbative since the interaction
coupling is large. However, the Lattice Gauge Theory (LGT) [1–4], the Dyson-Schwinger
equation (DS-eq) [5–7] and the effective models [8–11] have been able to get some insights
about this regime. Particularly, the determination of the spectrum of QCD at low energy has
been a task for many years. In dealing with this problem, LGT has shown to be a very powerful
tool. Unfortunately, it has several disadvantages like huge computational efforts, problems with
the identification of the states with a given spin and the calculation of excited states. Recently,
LGT has been able to determine the spectrum of light and more heavy [3,4] quarks in relatively
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good agreement with the available experimental data.
From the side of the phenomenological approaches, to work with an effective interaction

has shown to be also a good tool in order to describe the spectrum at low energy. They
can be questionable mainly because the origin of the interactions and how they are related
to real QCD. The Coulomb gauge QCD formalism derived in [12], underlying the relevant
interactions of QCD which are dominated by the instantaneous Coulomb potential (ICP) acting
between color charges. It is known that a confinement interaction able to reproduce LGT
potential results [13], can be obtained in this formalism by the implementation of self-consistent
treatments like DS-eq in the Yang-Mills sector and under certain approximations of the vacuum
functional of QCD [14–16]. Following that direction, we have focused on the quark sector of
the Coulomb gauge QCD Hamiltonian and accounts for the effects of the gluon dynamics with
an effective interaction. In the past, we have analysed, step by step, the implementation of a
parametrized interaction with analytic and semi-analytic approaches as well as pairing methods
like BCS [17, 18]. More recently, we have implemented the Tamm-Dancoff-Approximation
(TDA) [19, 20] and the Random-Phase-Approximation (RPA) [21, 22] many-body methods, in
order to describe meson states as collective states.

In this work, we have considered a more realistic interaction of the type Coulomb (−a/|x−y|)
plus linear (b|x− y|) potential and implement both the TDA and RPA methods [23]. We have
restricted the calculations to well defined sub-spaces of spin, parity (JP ), flavor-hypercharge
and isospin (Y, T ) and only color-singlet (0, 0)1 or physical states. Within these sub-spaces, we
have analyzed two sets of parameters, where the quark masses and interaction parameter were
adjusted in order to reproduce certain features of the low lying meson spectrum. Particularly,
the set of parameters leading to a RPA-pion-like state close to the experimental value is used
for comparison with other similar approaches [24] and with experimental data [25] .

2. Motivated QCD Hamiltonian and basic ingredients.
We consider a motivated QCD Hamiltonian which is built by the kinetic and mass terms together
with a confining interaction between quark color charge densities,

Heff =

∫ {
ψ†(x)(−iα · ∇+ βm0)ψ(x)

}
dx− 1

2

∫
ρa(x)V (|x− y|)ρa(y)dxdy, (1)

where ρa(x) = ρaq(x) = ψ†(x)T aψ(x) and

ψ†(x) =
∑

τNlmlσcf

R∗Nl(x)Y ∗lml(x̂)χ†σb
†
τ,Nlml,σcf

=
∑

Njmj lml,σcf

R∗Nl(x)〈lml,
1

2
σ|jmj〉Ylml(x̂)χ†σ

(
b†− 1

2
(Nl)jmj ,cf

+ b†1
2

(Nl)jmj ,cf

)
. (2)

In the last step, we have used the coupled representation of angular momentum and intrinsic
spin-1

2 to total spin (j). The index τ identifies the creation(annihilation) of particles with

positive τ = 1
2 and negative energy τ = −1

2 . The color and flavor intrinsic degrees of freedom
are denoted by c and f , where f is a short hand notation for flavor hypercharge, isospin and
third component of isospin {Y, T, Tz}. Since we are going to consider that the chiral and flavor
symmetries are broken (m0 6= 0 and m0 → mT

0 ), the mass of the light up and down (T = 1
2)

quarks are different than the strange (T = 0) quark (mu,d 6= ms).
Because of confinement, the domain of fields in Eq. (2) is expected to be restricted to a finite

volume in space. Therefore, the eigenfunctions of the three dimensional harmonic oscillator are
chosen as the single-particle orbitals.

RNl(x) = NNl exp(−B0x
2

2
)rlL

l+ 1
2

N−l
2

(B0x
2) , (3)
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where N refers to the number of oscillation-quanta of the orbital level and l the angular
momentum. The particles are restricted to a finite volume of the size of the oscillator length
( 1√

B0
).

The use of the harmonic oscillator basis for the orbital part seems to restrict the validity of
the approximations to a non-relativistic theory, but this is only true when individual levels are
considered to describe quark states. When the complete basis is used, any relativistic state can
be expanded into the non-relativistic basis. This requires to expand the relativistic states into,
in general, an infinite sum. When sufficient basis states are included, this sum can be limited
in such a way that adding new terms would not modify the results. The latter is related with a
non-trivial renormalization procedure [22]. Here, we explore the low energy meson spectrum in
terms of the basic ingredients.

2.1. The Hamiltonian matrix elements.
Using the fermion field quatization given in Eq. (2), the Hamiltonian of Eq. (1) is expressed as

Heff =
∑
jT

∑
τiNili

Kj,T
τ1(N1l1),τ2(N2l2)

(
b†τ1(N1,l1)jT · bτ2(N2,l2)jT

)
+

∑
{Niliji;L}

V L
{Niliji}

[[
b†(N1l1)j1T1

⊗ b(N2l2)j2T2

]γ
⊗
[
b†(N3l3)j3T3

⊗ b(N1l1)j4T4

]γ]0̂
(4)

where γ = 0, L, (1, 1)1, 0, 0 indicates the intermediate couplings of pseudo-spin, spin (L = 0, 1),
(1, 1)1-color and flavor hypercharge and isospin quantum numbers. The scalar structure of the
interaction is denoted by 0̂ = 0, (0, 0)1, 0, representing the total spin, color and flavor hypercharge
and isospin couplings.

The matrix elements of the kinetic-energy are given by

Kj,T
τ1(N1l1),τ2(N2l2) =



kjN1N2
if l1 = j + 1

2 , l2 = j − 1
2 , τ1 6= τ2

kjN2N1
if l1 = j − 1

2 , l2 = j + 1
2 , τ1 6= τ2

mT
0 if (N1l1) = (N2l2) , τ1 = τ2 = +1

2
−mT

0 if (N1l1) = (N2l2) , τ1 = τ2 = −1
2

0 in all other cases

(5)

with mT
0 = mu,dδT, 1

2
+msδT,0 and

kjN1N2
=

√
B0

√
N1 − j + 3

2

2
δN2,N1+1 +

√
B0

√
N1 + j + 3

2

2
δN2,N1−1 (6)

while the potential matrix elements are given by

V L
{Niliji}

=
∑

JN ′rNrlrNRLR

3
√

8
√

(2j1 + 1)(2j2 + 1)(2j3 + 1)(2j4 + 1)
√

2L+ 1(2J + 1)

× (−1)L+j2+j4−J+1
{
l1 L l2
j2

1
2 j1

}{
l3 L l4
j4

1
2 j3

}{
l2 J l4
l3 L l1

}
× (N ′rlr, NRLR, J | N1l1, N3l3, J)(Nrlr, NRLR, J | N2l2, N4l4, J)

∫
d3rΨ∗N ′rl′rlr(r)V (

√
2r)ΨNrlrlr(r) .

(7)

XL Symposium on Nuclear Physics 2017 (Cocoyoc2017)                                                                  IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 876 (2017) 012022          doi:10.1088/1742-6596/876/1/012022

3



The potential V (
√

2r) represents the confining potential in term of the relative coordinate
r = 1√

2
(x− y). In Eq. (7), we have used the Moshinsky brackets (round-brackets) [26, 27] and

integrated the center of mass coordinate R = 1√
2
(x + y). The detailed derivation can be found

in [22].

3. The pre-diagonalization of the kinetic term and the effective basis.
The diagonalization of the kinetic term (Eq. (5)) is achieved by a general procedure i.e., we
implement a unitary basis transformation

b†τ(N,l)jmjcTTz
=
∑
λπk

(
αjTτ(N,l);λπk

)∗
b†λπkjmjcTTz (8)

where the kinetic term has a diagonal representation∑
τi,Ni,li

(
αj,Tτ1,(N1,l1),λ1π1k1

)∗
Kj,T
τ1(N1l1),τ2(N2l2)α

j,T
τ2,(N2,l2),λ2π2k2

= ελ1,π1,k1,j,T δλ1,λ2δπ1,π2δk1,k2 . (9)

The corresponding eigenvalues (ελ1,π1,k1,j,T ) and eigenvectors
(
αjTτ(N,l);λπk

)
allow us to rewrite

the Hamiltonian in terms of creation(annihilation) effective b†Γi(bΓi) quarks (λi = 1/2) and

d†Γi(dΓi) anti-quarks (λi = −1/2) operators:

Heff =
∑

π,k,j,Y,T

επ,k,j,Y,T
(
nπ,k,j,Y,T + n̄π,k,j,Y,T

)
− 1

2

∑
L

∑
{γi}

V L
{γi}

{ [( [
b†γ1
⊗ bγ2

]γ
−
[
dγ1 ⊗ d†γ2

]γ )
⊗
( [

b†γ3
⊗ bγ4

]γ
−
[
dγ3 ⊗ d†γ4

]γ )]0̂
+

[(
[dγ1 ⊗ bγ2 ]γ −

[
b†γ1
⊗ d†γ2

]γ )
⊗
(

[dγ3 ⊗ bγ4 ]γ −
[
b†γ3
⊗ d†γ4

]γ )]0̂ }
(10)

where nπ,k,j,Y,T and n̄π,k,j,Y,T are the quark and anti-quark number operators, γi = πikijiYiTi
and V L

{γi} = V L
{λi,πi,ki,ji,Yi,Ti} with

V L
{λi,πi,ki,ji,Yi,Ti} =

∑
τi,Ni,li

V L
{Niliji} α

j1,T1

τ1(N1l1),λ1,π1,k1
αj2,T2

τ2(N2l2),λ2,π2,k2
αj3,T3

τ3(N3l3),λ3,π3,k3
αj4,T4

τ4(N4l4),λ4,π4,k4

× δτ1τ2δτ3τ4 (−1)
1
3

+
Y1
2

+T1

√
2T1 + 1√

3
δT2T1δY2−Y1 (−1)

1
3

+
Y3
2

+T3

√
2T3 + 1√

3
δT4T3δY4−Y3

(11)

The new extra factor (−1)
1
3

+
Y1
2

+T1

√
2T1+1√

3
δT2T1δY2−Y1 appears as a consecuence of the flavor

symmetry breaking and it comes from extracting the flavor isoscalar of SU(3) [28]. In Eq.
(10), all the information of the chiral and flavor symmetry breaking is carried by the coeficients

αj,Tτ(Nl),λ,π,k of the unitary transformation Eq. (8).

4. The TDA and RPA pseudoscalar and vector solutions.
We implement the TDA and RPA methods [19–23], to define collective states as a linear
combination of the pairs, built by quark (b†γi) and anti-quark (d†γi). The creation RPA collective
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operator is given by

Γ̂†n;Γµ =
∑
γa,γb

{
Xn
γa,γb;Γ

[b†γad
†
γb

]Γµ − Y n
γa,γb;Γ

(−1)φΓµ [dγbbγa ]Γµ̄

}
(12)

where we have used the short hand notation Γ = JP , (0, 0)1, Y, T to denote the spin-parity, color
and flavor hypercharge and isospin of the collective operator and µ = MJ , 0, Tz. The index
n labels the new collective state and it runs from zero to the number of possibilities to form
pairs with quantum numbers Γµ. The backward amplitudes Y n

γa,γb;Γ
6= 0 imply the possibility of

annihilate pairs from the ground state and in that sense the RPA method accounts for particle-
hole correlations on both: the ground state and the excited states. The n-th RPA excited state

is obtained by |n; Γµ〉 = Γ̂†n;Γµ|RPA〉 and the RPA-ground-state (|RPA〉) is constructed in such

a way that the condition Γ̂n;Γµ|RPA〉 = 0 is fulfilled.
The TDA collective operator is obtained from the RPA one by setting to zero the backward

amplitudes Y n
γa,γb;Γ

= 0. Thus, the n-th TDA excited state is obtained by |n; Γµ〉 = Γ̂†n;Γµ|0̃〉,
where the TDA-ground-state (|0̃〉) is annihilated by the quark and anti-quark operators bγi |0̃〉 =
dγi |0̃〉 = 0.

In Table 1, we show how the subspaces defined by quantum numbers of the collective states
JP , (0, 0)1, Y, T are related with the physical pseudoscalar and vector mesons. In particular, the
subspaces with Y, T = 0, 0, do not show any flavor mixing between pure |qq̄〉 (q = up, down
quarks) and |ss̄〉 states, the latter is due to the color confining interaction. Therefore, in order
to make a closer description of physical mesons like the pseudoscalars η and η′ or the vector ω
and φ mesons, a flavor mixing (FM) should be implemented.

Meson {JP , (0, 0)1, Y, T}
Pseudoscalar

π {0−, (0, 0)1, 0, 1}
K {0−, (0, 0)1,±1, 1

2}
η, η′ {0−, (0, 0)1, 0, 0}+FM

Vector
ρ {1−, (0, 0)1, 0, 1}
K∗ {1−, (0, 0)1,±1, 1

2}
ω, φ {1−, (0, 0)1, 0, 0}+FM

Table 1. Identification of the collective-state-subspaces with physical mesons.

In these sample calculations, we have restricted to total single particle spin j = 1
2 , and take

the maximal number of oscillation quanta Nmax = 3. One feature we noted for this low energy
calculation is that the − a

|x−y| interaction does not have a big influence on the TDA and RPA

results, which is due to the low energy regime where long-range (b|x− y|) effects are dominant.
For higher maximal number of oscillation quanta Nmax, the contribution of the interaction
− a
|x−y| becomes more important, as expected. However, when the cut-off, Nmax, is increased,

the calculations must be renormalized in order that the observables remain unchanged. The
details about the renormalization of the quark masses mu,d,ms and of the coupling constants a
and b as a function of Nmax are discussed in [22].
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Set mu,d[GeV ] ms[GeV ] b[GeV 2]

1 0.008 0.31 0.25

2 0.008 0.31 0.40

Table 2. Sets of parameters used for the TDA and RPA calculations. The a parameter is set
to zero and the oscillator length 1/

√
B0 is fixed at 0.7 fm.

In Table 2, we show the parameters used in these sample calculations. The first set leads to
a relatively heavy pion-like state while the second set leads to a pion-like state closer in energy
to the experimental value. The selection of these two sets is motivated from the LGT, where
one can find that the pion reported is at about 400 MeV [4] or at about 150 MeV [3]. In both
case we explore how the TDA and RPA pseudoscalar and vector spectrum at about 1 GeV looks
like. The results are presented in Table 3.

State Exp. Set-1(TDA) Set-1(RPA) Set-2(TDA) Set-2(RPA)
π 139 392.8 369.3 269.2 159.7
K 495 580.1 580.1 490.5 490.5
η 547 467.0 485.2 402.1 402.3
η′ 957 719.4 688.0 646.2 586.2
ρ 770 643.0 639.5 710.8 698.9
ω 782 695.9 691.3 784.5 782.6
K∗ 892 852.9 852.9 966.1 966.1
φ 1020 1020.4 1020.4 1144.5 1135.5

Table 3. Comparison of pseudoscalar and vector mesons with the TDA and RPA results
obtained using Sets 1 and 2 of parameters.

The two set of parameters of Table 1 are able to reproduce relatively well the meson spectrum at
low energy. In the case of Set-1, the pion state is higher in energy compared to the experimental
value, but the rest of the collective pseudoscalar and vector mesons are in good agreement with
data. In the case of Set-2, the mass of the RPA pion-like state is closer to the experimental
value, but the pseudoscalar states associated with Y, T = 0, 0 are lowered in energy. The latter
is an indicator that in the present approach certain interactions are missing, e.g., related with
dynamical gluons. However, the present results show that observed energy differences in spin
and isospin are satisfactorily reproduced, to some extent.
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π

η

K

η′ ρ

K∗

ω

φ

K∗

ω

ρ

φ

0

1.0
E
[G
eV

]

π

η

η′

ρ, ω

φ
η′

π

K

η

JP = 0− JP = 1−

Exp.

JP = 0− JP = 1−

Ref. [24]

JP = 0− JP = 1−

Set-2(RPA)

Figure 1. RPA results of Set-2 compared with experimental data and the results given in
Ref. [24].

In Figure 1, we show the RPA results for Set-2 and compare them with experimental values
and the results of similar approaches that use free trial wave functions.

5. Conclusions and Discussion.
We have presented a motivated QCD Hamiltonian which considers a realistic confining
interaction, and used the harmonic oscillator as a trial wave functions to describe the extension
of the fermion fields. We presented the exact diagonalization of the kinetic energy which provides
the effective basis used for the implementation of the TDA and RPA many body methods for
the diagonalization of the motivated QCD Hamiltonian.

Noticing that the − a
|x−y| contribution does not modify sensibly the results at low energy,

we use only the linear interaction b|x − y| in order to investigate the low energy spectrum of
pseudoscalar and vector mesons. However, the sample calculations presented here correspond
to a low energy cut-off. The general case with an arbitrary cut-off, requires the renormalization
of the quark masses and couplings of the interactions [22].

The TDA and RPA results indicate a pattern which resembles several features of the low
energy meson spectrum but they also indicate that certain interactions, which may be related
with the gluon dynamics, are missing for an even better description of the spectrum.
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