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MRS-V, 0000-0001-7587-3648

Transitions to and from aquatic life involve transformations in sensory sys-

tems. The Ross seal, Ommatophoca rossii, offers the chance to investigate

the cranio-sensory anatomy in the most aquatic of all seals. The use of

non-invasive computed tomography on specimens of this rare animal

reveals, relative to other species of phocids, a reduction in the diameters

of the semicircular canals and the parafloccular volume. These features are

independent of size effects. These transformations parallel those recorded

in cetaceans, but these do not extend to other morphological features such

as the reduction in eye muscles and the length of the neck, emphasizing

the independence of some traits in convergent evolution to aquatic life.

provided by El Servicio de Difusión de la Creación I
1. Background
A glimpse of a Ross seal (Ommatophoca rossii) on an ice floe in the Antarctic

summer, with its short flippers and thick neck, is vaguely whale-like, hinting

at the eight months of the year it spends exclusively at sea [1,2]. Spending

months at sea distinguishes this animal from the other three earless Lobodon-

tini seals: the crabeater seal, leopard seal and Weddell seal. Ross seals leave the

water for only two weeks to give birth and moult and have unarguable external

specializations for their extreme aquatic lifestyle [3]. Until now, scarce sampling

of these rare animals has inhibited further exploration of their internal anatom-

ical specializations [3]. As species specialize for aquatic habitats, their sensory

organs undergo major transitions, recorded for other carnivoran mammals

besides the Ross seal [4]. Comparisons with groups that independently invaded

marine environments, such as cetaceans (whales and dolphins) [5], provide

insights on evolutionary convergences, even at the genomic level [6].

Specializations for aquatic habitats are reflected in vestibular anatomy, a

complex area of the head that can be studied using virtual endocasts. Such

endocranial volumes approximate the soft tissue morphology (e.g. ducts,

vessels and nerves), and thus provide information useful to reconstruct sensory

ecology, locomotion, behaviour and phylogeny [7,8]. Although the function of

changes in the vestibular system—concerned with balance, orientation and

motion sensation—in aquatic vertebrates are debated [9], reductions in marine

vertebrates’ semicircular canals have been associated with increased time in

the water but not with axial body rotations [10]. The canals of the bony labyr-

inth of aquatic taxa are recorded to be shorter dorsoventrally and more elongate

rostro-caudally than in terrestrial relatives [11]. Smaller semicircular canals may

be related to reduced neck lengths [9]. Furthermore, the volume of the dorsal

paraflocculus, a lobe of the cerebellum associated with the vestibular system,
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Figure 1. Virtual reconstruction of the right inner ear of the Ross seal, Ommatophoca rossii MACN 48.259 in isolation and within the petrosal bone: (a) anterior, (b) lateral,
and (c) ventral view, and with the paraflocculus in (d ) dorsal, and (e) medial views. Aa: anterior ampulla; AqV: vestibular aqueduct; ASC: anterior semicircular canal; Bu:
subarcuate fossa housing the dorsal lobe of the paraflocculus; Cc: commune crus; Cu: cupula; Co: cochlear canal; ArE: arched eminence; FV: vestibular fenestra; IAM: internal
acoustic meatus; La: lateral ampulla; LSC: lateral semicircular canal; RP: Ross prominence; Pa: petrosal apex; Pr: promontorium; PSC: posterior semicircular canal.
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is also reduced given its relation to agility and coordination of

movements using vision and balance [12,13].

2. Methods
A list of museum sources and accession numbers of specimens exam-

ined is provided in the electronic supplementary material. A total of

68 petrosal bones from six species of phocids were investigated. All

four members of the Lobodontini were sampled: two specimens of

the Ross seal (an adult female MACN 48.259 and a newborn

MACN 48.260), seven leopard seals (Hydrurga leptonyx), 11 Weddell

seals (Leptonychotes weddellii) and 15 crabeater seals (Lobodon carcino-
phagus). The extant phylogenetic bracket is represented by 30

elephant seals (Mirounga leonina), one harbour seal (Phoca vitulina),

one walrus (Odobenus rosmarus), one South American sea lion

(Otaria byronia; Otariidae), a Tibetan wolf (Canis lupus filchneri), a

hyena (Crocuta crocuta), and a sea otter (Enhydra lutris) (electronic

supplementary material). We compiled body length data from the

literature [14]. Statistics and graphs were generated using R [15].

We reconstructed the bony labyrinth and the petrosal in three-

dimensional CT scans using VGStudio MAX v. 2.2, Mimics v. 10.1

and Avizo v. 6.2 (figure 1; electronic supplementary material).

We measured the volume of the subarcuate fossae, which

houses the dorsal cerebellar paraflocculus, also called the dorsal

portion of the petrosal lobe. Histological preparations confirmed

the correspondence of the two structures (electronic supplemen-

tary material). The three-dimensional models are available at

(http://morphomuseum.com/).

3. Results
The Lobodontini, in order of largest to smallest arc radius of

the loops of the semicircular canals and common crus, are
leopard seals, crabeater seals, Weddell seals and Ross seals.
The maximum diameter of each of the three semicircular

canals and the length of the common crus of the Ross seal

are significantly shorter than in other Phocidae (Welch t-test

Ross seal ¼ 0.7003617, other seals ¼ 1.03011095, t ¼ 26.9386,

d.f. ¼ 6.5762, p ¼ 0.0002965; graph 1 in electronic supplemen-

tary material). Elephant seals exhibit less reduction of the

semicircular canals versus the Lobodontini. In all Phocidae

the horizontal canal is consistently the shortest and the

anterior canal the longest.

A comparison of the Ross seal with other phocids also

reveals reduced parafloccular volume with a simpler shape

(figure 2). This difference persists after correction for body

mass; a linear regression of the ratio of the parafloccular

volume to the natural log average mass for the species still

results in significant differences (t-test p ¼ 0.03073; electronic

supplementary material). The paraflocculi of the other

Lobodontini, besides being larger, have several individual

digitiform projections extending around the horizontal semi-

circular canal, absent in the Ross seal (figure 2). The endocast

of the subarcuate fossa of the Ross seal clearly exhibits less

surface rugosity as well as greater simplicity and roundness.

The Ross seal has a double internal acoustic foramen,

common to all phocids. The cochlea has two and a half turns,

similar to the other Lobodontini, but it ends in a poorly demar-

cated cupula (figure 1). Additionally, Lobodontini and phocids

have fewer cochlear turns than mustelids [17].

The Ross seal shares features characteristic of Cetacea that

are absent in other lobodontines: a reduced parafloccular

volume and lack of surface projections. Both also share a sec-

ondary basal lamina on the first turn of cochlea [18,19] that is
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Figure 2. Three-dimensional models of relative labyrinth and parafloccular volume among the Antarctic true seals (Lobodontini) in the context of the phylogenetic
relationships among pinniped carnivorans [16]. Photographs by C. M. Loza, drawing of the Ross seal by A. E. Latimer.
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antero-ventral to the rest of the labyrinth, and is separated

from the rest of the coil. An extremely thick squamosal portion

of the temporal bone is present in Ross seals and cetaceans [3].

Likewise is a thickening of the anterior half of the petrosal

which develops a rostral projection, a reduced arcuate emi-

nence (probably due to the small size of the anterior

semicircular canal), and an expanded medial side, as in

some cetaceans [8]; see also electronic supplementary material.

In the Ross seal the vestibular fenestra is visible on the lateral

face of the vestibule, and the vestibule is smaller and more

globular than in other species of phocids. Further anatomical

comparisons are in the electronic supplementary material.

4. Discussion
The exceptionally aquatic lifestyle of the Ross seal among car-

nivoran mammals is reflected in anatomical specializations
that are hypothesized to be related to sensory function and

which in some cases are similar to those recorded in

whales. The semicircular canals of the Ross seal exhibit an

extreme size reduction among phocids, as recorded also for

cetaceans within Cetartiodactyla. This similarity does not

extend to all other aspects of inner ear anatomy and

correlated anatomical features.

Neck mobility and neck length have been proposed to

affect the morphology of semicircular canals. Reduced ver-

tebral mobility restricts the degrees of freedom of the neck,

and the semicircular canals reduce in size accordingly [9].

In pinnipeds, otarids have thinner canals and longer necks

than phocids [20,21] and exhibit more neck mobility both

during swimming and while moving on land [21]. However,

among phocids including the Ross seal, correlation between

the parallel reduction of the semicircular canals and neck

length is not straightforward (electronic supplementary
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material), and neck mobility may play a larger role. Among

phocids, leopard seals have the longest neck and practice

wide three-dimensional movements of the head, the fastest

and most precise of which are related to prey capture

[21–23]. Its large semicircular canals contrast with the

reduction in the Ross seal.

Lobodontini have thick semicircular canals and ducts, as

is characteristic of seals, but different from other aquatic

mammals, e.g. sea lions, with thinner canals [20]. The semi-

circular canals in the Ross seal are smaller in radius than in

other phocids, but larger than canals in cetaceans.

The Ross seal has a proportionally reduced paraflocculus

with respect to other phocids; the simplicity of the parafloccu-

lus and the semicircular canal may be coupled functionally, as

is hypothesized for cetaceans. Not all the features of the Ross

seal are consistent with whale anatomy. Reduced semicircular

canals in cetaceans have been linked with a reduced need for

the vestibulo-ocular reflex with reduction of extra-ocular

muscles [24,25]. Ross seals, in contrast, have well developed

ocular musculature and large eyes, and likely rely on vision

for prey capture. The mechanism for the reduced
paraflocculus and semicircular canals therefore cannot be

coupled solely on the musculature of the eyes.
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