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Abstract. Star clusters are among the fundamental astrophysical objects used in setting the
local distance scale. Despite its crucial importance, the accurate determination of the distances
to the Magellanic Clouds (SMC/LMC) remains a fuzzy step in the cosmological distance lad-
der. The exquisite astrometry of the recently launched ESA Gaia mission is expected to deliver
extremely accurate statistical parallaxes, and thus distances, to the SMC/LMC. However, an
independent SMC/LMC distance determination via main sequence fitting of star clusters pro-
vides an important validation check point for the Gaia distances. This has been a valuable lesson
learnt from the famous Hipparcos Pleiades distance discrepancy problem. Current observations
will allow hundreds of LMC/SMC clusters to be analyzed in this light.
Today, the most common approach for star cluster main sequence fitting is still by eye. The
process is intrinsically subjective and affected by large uncertainties, especially when applied to
poorly populated clusters. It is also, clearly, not an efficient route for addressing the analysis of
hundreds, or thousands, of star clusters. These concerns, together with a new attitude towards
advanced statistical techniques in astronomy and the availability of powerful computers, have
led to the emergence of software packages designed for analyzing star cluster photometry. With
a few rare exceptions, those packages are not publicly available.
Here we present OCAAT (Open Cluster Automated Analysis Tool), a suite of publicly available
open source tools that fully automatises cluster isochrone fitting. The code will be applied to a
large set of hundreds of open clusters observed in the Washington system, located in the Milky
Way and the Magellanic Clouds. This will allow us to generate an objective and homogeneous
catalog of distances up to ∼ 60 kpc along with its associated reddening, ages and metallicities
and uncertainty estimates.
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1. Introduction
The aim of OCAAT is to bring together many of the algorithms which are usually

applied on open clusters (OCs) throughout the literature, in a single easy to use pack-
age. OCAAT is able to assign a precise center, calculate a limiting radius, reject stars
based on their errors, obtain the cluster’s luminosity function and its integrated color,
assign a probability of the cluster being a real system and not a random overlapping of
field stars, assign membership probabilities for each star within the cluster region and
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Figure 1. Left : Finding chart of synthetic cluster. Center : Center determination via a KDE
spatial density function. Right : radius assignment, obtained as the value where the RDP reaches
the field density level.

Figure 2. Left : Cluster and average field luminosity functions curves in red and blue
respectively. Right : Integrated B and V magnitudes for the cluster region and averaged field

regions.

estimate the cluster’s parameters: metallicity, age, distance and extinction along with
their uncertainties.

2. Functions description
Structural parameters. Traditionally, centers are inferred by eye after the identification

of a visible spatial overdensity, seldom refined applying a simple histogram-based search
for the maximum concentration in each axis separately. In OCAAT we employ a 2-
dimensional Gaussian kernel density estimate (KDE) function applied to the entire region
and the location of its maximum value. Fig. 1 shows to the left a field where a synthetic
young cluster is located and to the center its center assignment. The radius is assigned
as the value where the radial density profile (RDP) reaches the level of the field density
contribution df ield , as shown to the left. The error is obtained as the standard deviation
of the radius values estimated using different conditions to establish when the RDP has
stabilized around df ield (grey area in the plot). A 3-parameter King profile is fitted to
obtain the core and tidal radius, if the process does not converge then a 2-parameter fit
is attempted to derive the core radius only.

Errors, LF and integrated color. A curve composed of a polynomial plus an exponential
fit is used as an upper envelope for the error distribution in magnitude. Stars that are
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Figure 3. Left : CMD of synthetic cluster showing rejected stars (ie: stars above the maxi-
mum error limit) as green crosses. Center : CMD of the cluster region colored according to the
membership probabilities. Right : Best fit synthetic cluster created from the red isochrone shown.

located above this curve or above a maximum error threshold in magnitude or color are
rejected. The luminosity function curve is obtained for both the cluster region and the
field region (scaled to the cluster’s area) and the same is done to calculate the integrated
color of the stars within the cluster region. Fig. 2 shows these curves for the cluster and
field regions.

Cluster KDE probability. A KDE-based algorithm is used to asses the similarity be-
tween the arrangement of stars in the cluster region CMD versus CMDs of the field
regions, quantified by p-values. The curves formed by these cluster vs field and field vs
field region p-values overlap an amount proportional to the probability that the cluster
and average field region were drawn from the same distribution. An overlap value close
to 1 points to a high probability of the system being a true cluster.

Decontamination algorithm. A Bayesian algorithm inspired by the one presented in
Cabrera-Cano & Alfaro (1990) is implemented to assign membership probabilities to
stars within the cluster region, based on photometry data alone. Fig. 3 shows to the
left all stars inside the defined cluster radius and at the center only those stars below
the error cut-off, colored by the membership probabilities assigned by the code. Higher
values are usually associated with brighter stars due to the usual field star contamination
in the faint region of the CMD.

Synthetic cluster fit. Here is where we obtain the cluster distances. The membership
probabilities calculated by the decontamination algorithm are used as weights in a like-
lihood equation that identifies the best observed vs synthetic cluster fit, based on the
one presented in Hernandez & Valls-Gabaud (2008). Each synthetic cluster is generated
from a theoretical isochrone accounting for errors, binarity and completeness effects. The
search for the synthetic cluster which minimizes the likelihood can be done either via a
brute force algorithm or a genetic algorithm (GA). In Fig. 3 (right) the best synthetic
cluster found by the GA can be seen, with the underlying theoretical isochrone shown
in red (same isochrone shown in gree in the center plot) The uncertainties are estimated
applying a bootstrap process.
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